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Abstrakt

Kvôli stále sa zvyšujúcemu množstvu e-learningových materiálov, ako sú prednáškové

videá alebo on-line video kurzy, sme sa rozhodli vytvoriť aplikáciu, ktorá môže pomôcť

študentom alebo tvorcom e-learnigového obsahu v ich snahe pripraviť študijné mater-

iály. Hlavným cieľom našej aplikácie je vytvárať slajdy z daného videa, na ktorom

je čierna alebo biela tabuľa bez akýchkoľvek objektov, ktoré by bránili uživateľovi vo

vyhľade na tabuľu, ako napríklad prednášajúci stojaci pred tabuľou. Slajd by mal ob-

sahovať len platné informácie z kľúčových snímok daného prednáškového videa. Tieto

slajdy, za predpokladu, že tabuľa je v statickom videu, sú vyrobené tak že sa získa

tabuľa z jednotlivých snímok, ktorá je potom rozdelená na rovnako veľké obdĺžnikové

bunky. Tieto bunky sú uložené a sledujeme ako sa informácia mení v ich vnútri. Po-

tom je výsledný slajd vytvorený z uložených buniek, keď sú všetky bunky dostatočne

stabilné.

Kľúčové slová: školská tabuľa, prednáška, slajdy, e-learning, generovanie kľúčových

snímkov, generovanie slajdov
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Abstract

With raising amount of e-learning materials such as lecture videos or on-line video

courses, we decided to develop an application, which can help students or content cre-

ators in their effort to prepare study materials. Main goal of our application is to create

slides from given video, depicting a black or white board without any occluding objects

such as lecturer standing in front of this board. Slides will contain valid information

from key frames of the given lecture video. Based on the assumption, that the board

is static in the video, this is done by extracting the board from video frames, which

is then segmented into equally sized rectangular cells. These cells are stored and the

change of information inside them is tracked. Afterwards, the final image is created

from saved cells when all cells are sufficiently stable.

Keywords: whiteboard, blackboards, lecture, generation of images, slides, e-learning,

video presentation perceptual hashes, board extraction, key frame generation, slide

generation
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Chapter 1

Introduction

With increasing amount of lectures, courses and other e-learning materials available on-

line, it is becoming more and more apparent, that students as the primary consumers of

such content, lack tools necessary for its usage in an effective fashion. Given the rise of

massive open on-line courses [3] a strong push for creation of instructional videos, can

also be seen in academic environments. As stated in [4]: “fast expansion of the Internet

and related technological advancements, in conjunction with limited budgets and social

demands for improved access to higher education, has produced a substantial incentive

for universities to introduce e-learning courses”. In [5] the authors also claim that “many

users stop their on-line learning after their initial experience”. They further state that

“instructor attitude toward e-Learning, e-Learning course flexibility, e-Learning course

quality, perceived usefulness, perceived ease of use, and diversity in assessments are the

critical factors affecting learners’ perceived satisfaction”.

It is not difficult to find inefficiencies in the ways instructional video content is most

often consumed. For example, it is very impractical to always rewind on-line lecture to

get to the exact point where specific detail was discussed, pause the video, essentially

“copy” the information from the paused video frame and then continue watching. Not

only does it break the user’s focus but it also requires additional interaction with the

video content, that might result in undesired increase of the user’s frustration which is

certainly not desired.

For this reason, we decided to develop a tool, that could help potential viewers

extract information from these presentations or lectures into a more practical format.

This could also help content creators to prepare and create content which can be then

perceived more easily. As stated in [5] technology is one of the main factors affecting

user satisfaction. We developed and implemented our system as a tool, that others can

insert into their pipelines. For instance, our system can process video directly from

the camera and output can be then shown to a student participating in on-line lecture,

presentation or course on a website. This also means, that we impose requirement on

1
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the speed of our system. Our tool should be able to generate valid slides in real-time.

This can also help developers to create better systems for consumption of e-learning

content and potentially increase perceived “ease of use” of such a system.

In our work, we focus on whiteboard and blackboard based lectures or presenta-

tions. The methods we present select key frames, from which a slide containing the

information previously shown on board is created. Another requirement we enforce, is

that these slides should contain only information that is on the board, and therefore

any occluding objects ought to be removed from the scene and information behind

them should also be shown on our final slide. Lastly, we also require that the slide

should be generated only if the difference in information, displayed on two different

slides, is significant. We do not want to overwhelm user with wasteful amount of gen-

erated slides, so the user would essentially have to sort through the generated slides

which could increase user’s frustration and decrease perceived usefulness.



Chapter 2

Related Work

While our work tries to solve a very specific problem, there are many similar projects

inspired by the increasing amount of readily available video-based lecture material.

These projects also try to transform video content into a better format, that can be

consumed and perceived by user more easily.

Visual Transcripts [1] aims to create lecture notes from blackboard-style videos

(Figure 2.1). Unlike our work, their system assumes that the video only has a black-

board in it, and that the video is static, except for content which is continually added

and a mouse pointer which is used to highlight certain parts of the blackboard. The

same type of video is used in another related work [2], in which the authors summarize

the input video in form of a single image (Figure 2.2). Parts of the image function as

links to positions in the input video and make it very easy for a user to jump to the

precise moment where a specific concept was first introduced.

The focus of many authors is mainly on one or few methods for specific subtasks,

that represent the respective parts of our system. For example most papers on removing

occlusion events from videos focus on 3D objects or use multiple cameras to generate

the final image, as described in [6] and [7]. These methods are quite efficient, especially

when implemented on GPUs. They are quite accurate but they are not suitable for

our purpose.

On the other hand, many approaches are focused on creating fast and efficient

methods for recognition of change in images and search for similar or unique objects

in images. Various methods were designed in order to solve these tasks, such as using

image features to detect similar objects in images or using perceptual hashes [8] to

detect significant change. In [9], the authors developed a new method for image hashing

which can be used for fast look-ups of similar images. The thesis of Christoph Zauner

[10] focuses on implementation and benchmarking of various image hashing algorithms

and methods. While the primary aim of these methods was different, they can be

easily adapted for the purpose of searching for change, in information in series of

3
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Figure 2.1: Example of input from Shin, Hijung Valentina, et al. [1].

Figure 2.2: Output of Monserrat, Toni-Jan Keith Palma, et al. [2].

frames generated from a video sequence.

Algorithms for detecting a change in scenes of video sequences were also proposed

in [11] and [12]. These algorithms search for “drastical” points of change, such as hard

cuts or special editing effects 1. Even though these methods were quite useful as a

model, we could not adapt them because our work is focused more on fine grained

change between multiple frames and longer lasting sequences, where change is being

slowly added through the span of multiple sets of frames.

1An example of thee effects are dissolve or wipe transitions.



Chapter 3

Fundamentals

This chapter introduces the basic concepts and algorithms used in this work. Of course

this chapter does not aim for complete coverage on image processing, recognition or

any other given subjects. For the basics presented here it is assumed that the reader

has basic knowledge about how are images represented in computers and how we can

manipulate them, e.g., from a lecture on given subject or from another source, such as

book explaining basic concepts [13].

3.1 OpenCV

OpenCV(Open Source Computer Vision Library) is free computer vision library that

is written in native C++ and it has C++, C, Python, Java, MATLAB interfaces

and supports most modern platforms including Android or Windows. One of the

main reasons why we chose to work with this library is because of its diversity. Any

method or algorithm can be easily rewritten to most languages or can be deployed

quickly to any platform. “OpenCV was built to provide a common infrastructure for

computer vision applications and to accelerate the use of machine perception.” [14]

This library contains over 2500 optimized basic computer vision algorithms which can

help us identify objects, track camera movements, track moving objects, stitch images

together to produce a high resolution image of an entire scene or find similar images.

It also supports multiple core computation which is crucial for making sure that our

methods and algorithms would run in reasonable amount of time and can process and

generate final slides in real time.

3.2 Thresholds

Thresholding is common and simple segmentation method of image processing. We

can use thresholding methods for many applications, for example, separate regions of

5
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an image, to differentiate the pixels, that we are interested in from the rest or set

determined value to pixels so we can identify them. As name suggest these functions

use some thresholding value to differentiate some pixels from the rest and then set value

to pixels which satisfied thresholding condition or to those which do not, as shown in

Figure 3.1. Most common thresholding functions are:

Threshold Binary This threshold sets value, to pixels that are higher then thresh-

olding value, to some maximum value and others are set to 0.

f(x, y) =







maxvalue iff(x, y)is > threshold

0 otherwise,
(3.1)

where f(x, y) is current value of the pixel.

Threshold Binary, Inverted This function sets maximum value to pixels that

did not match binary threshold criteria and 0 to those that did.

f(x, y) =







0 iff(x, y)is > threshold

maxvalue otherwise
(3.2)

Truncate In this function maximum value is exactly thresholding value so pixels

that are greater are truncated and pixels that are lower are omitted.

f(x, y) =







threshold iff(x, y)is > threshold

f(x, y) otherwise
(3.3)

Threshold to Zero Values for pixels that are lower than thresholding value are

set to 0.

f(x, y) =







f(x, y) iff(x, y)is > threshold

0 otherwise
(3.4)

Threshold to Zero, Inverted Pixels that are lower than thresholding value are

omitted while pixels that are higher than this value are set to 0.

f(x, y) =







f(x, y) iff(x, y)is > threshold

0 otherwise
(3.5)

3.3 Feature detection

This section aims to be brief overview of feature detection and feature matching con-

cepts, which are used in this work. This topic is too complex to provide more than

brief explanation of these concepts. In depth explanation can be found for example

in the book Computer vision: algorithms and applications [13]. Feature detection and
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Figure 3.1: (a) Original image; (b) binary threshold; (c) binary inverted threshold; (d)

truncate threshold; (e) to zero threshold; (f) to zero inverted threshold.

feature matching are widely and commonly use methods in almost all modern image

processing and image recognition applications. These methods are used to abstract

image information and make local decisions, at every point of a image, if there is a

image feature ("interesting parts of image") of given type present at that point or not.

We can later use the found features to help us align images so we can stitch them

together or they can help us construct 3D models of various scenes. Image features are

also widely used in object recognition or video stabilization. There are many types of

image features, here we will mention just a few of the most frequently used ones.

3.3.1 Keypoints

Keypoint features (interest points or corners). These terms are used somewhat in-

terchangeably and refer to point-like features which are often described as patches of

pixels in area surrounding location of some point. This kind of localize feature is used

to detect specific location in the image, like building corners, doorways or interestingly

shaped anomalies in the picture. Main advantage of keypoints is that they can allow

us to perform matching even when occlusion events or large scale orientation changes

are present in a image.

3.3.2 Edges

Another highly used type of a feature are edges. Edges are usualy defined as a set

of points with strong gradient magnitude, that can form almost any arbitrary shape.

These features are good indicators of object boundaries or occlusion of a object by

another object.

3.3.3 Main approaches

There are two main approaches to finding features in the image. First one is more

suitable for video sequences or images taken from nearby viewpoints. First approach

finds features in one image and then tracks them accordingly using some local search

technique, e.g., least squares. The second one is more suitable for object recognition
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or stitching images together to create panoramas. This method identifies features

independently in all images and then matches them based on their local appearance.

Feature detection and matching is usually split into three main stages:

• Feature detection stage, where images are searched for locations, that will match

best in other images.

• Feature description stage, where features are converted into invariant descriptors.

• Feature matching or tracking stage, where images are searched for likely matching

candidates. In image tracking stage only small area around detected feature is

searched.

So, after we detected features we have to match them. But in most cases fea-

tures will change by undergoing some transformation in scale or orientation or even

deformations. We have to compensate for these changes and we have to make feature

descriptors invariant while still preserving difference between patches. For this reason,

many view-invariant local image descriptor have been developed. Some of the the most

known feature descriptors are Bias and gain normalization (MOPS) or Scale invari-

ant feature transform (SIFT). After extracting features and their descriptors, feature

matching or tracking is performed. This stage is also divided into two more stages. The

first one is to select a matching strategy and the second is to find efficient data structure

and algorithm to perform this matching as efficiently and as quickly as possible.

There are many algorithms that performs this entire process such as before men-

tioned SIFT or SURF (Speeded-Up Robust Features). In our work we used probably

one of the most known and used one ORB.

ORB (Oriented FAST and Rotated BRIEF) is a good alternative to SIFT and SURF

in computation cost and matching performance. This method was first brought up in

paper Rublee et al. [15] and while SIFT or SURF are patented, ORB was developed

in openCV Labs and is free to use. In our work, we use ORB for various tasks, for

example, to detect and compare similar images.

3.4 Edge detection

As mention before edges are defined as set of points with strong gradient magnitude.

While interest points are useful for matching images, edges are more common and

usually carry semantic information about a image. For example, boundaries of a object,

occlusion events or shadow boundaries. We can group isolated edge points into straight

lines, curves or contures. But given a image how can we detect and edge? Since

edges occur at boundaries of two regions of different colour, intensity or texture we

can detect edge only from local information as the biggest change. Book Computer
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vision: algorithms and applications [13] defines an edge as “location of rapid intensity

variation.” A mathematical way to define this is through gradient.

J(x) = ∇I(x) =
(∂I

∂x
,
∂I

∂y

)

(x) (3.6)

The local gradient vector J points to steepest ascent in the intensity function. But

taking image derivatives amplifies noise since it accentuate high frequencies. It is there-

fore necessary first to smooth images with low-pass filter and then compute gradient.

Gaussian filter is probably the most used filter for this task.

3.4.1 Canny edge detection

Most known edge detection method is probably Canny edge detection algorithm. This

detector was developed by John F. Canny in 1986 and it is also know as optimal

detector. It was design to satisfy three criteria: Low error rate, Good localization,

Minimal response. This method can be described in four steps.

• Filter out any noise.

• Find the intensity gradient of a image.

• Remove pixels, that are not considered to be part of an edge.

• Threshold the image.

For thresholding a image Canny uses two thresholds (upper and lower).

• Pixel is accepted if gradient value is higher then upper threshold.

• Pixel is rejected if it is below lower threshold.

• If a pixel is between these two thresholds it is accepted, if it is connected to a

pixel, that is higher then upper threshold.

More information and more complex coverage of this topic can be also found in [13].

3.5 Perceptual Hashes

Perceptual hash is a fingerprint of file derived from various features of its content. This

class of hashing functions uses these features of media file to compute distinct but not

unique fingerprints of given file. These fingerprint can later be compared to find same

or similar images based on some similarity measure, e.g., Hamming distance or cross-

correlation [9]. These hash functions are different from cryptographic hash functions

like SHA1 or MD5 because cryptographic hashes use input data as random seed so
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output data are also random. They rely on so called "avalanche effect", small change

in input data will result in drastic change in output of a hash function. Comparing

these hashes can only tell us two things: if the hashes are the same the input data are

also the same, if they are not then data are different. On the other hand two perceptual

hashes can be compared, to give us a some sense of similarity of two files. “Perceptual

hash must be robust enough to take into account transformations or "attacks" on a

given input and yet be flexible enough to distinguish between dissimilar files.” [16].

These transformations can include rotations, skew, contrast adjustments and different

compression or formats. These kind of hashes have many applications, for example, in

copyright protection, search for media files or in digital forensics.

3.5.1 Average hash

Also known as aHash or mean hash is a hashing function which computes hash of a file

by firstly reducing a size of image to small square usually of size 8× 8 to remove high

frequencies. Then reduces a colour of this square to grayscale. Hash is then created by

computing mean value of pixels in transformed image which is then plugged into the

thresholding function (3.7).

f(x, y) =







1 if f(x, y) is > mean

0 otherwise
(3.7)

3.5.2 Difference hash

Difference hash or dHash, similarly to average hash, computes its value by firstly

reducing a size and colour of given image but then it calculates difference between

adjacent pixels. This identifies relative gradient direction in the image. After this it

determines resulting value by using thresholding function (3.8).

f(x, y) =







1 if f(x, y) is brighter than f(x− 1, y)

0 otherwise
(3.8)

While two first algorithms are quick and easy they might be to rigid comparison. For

instance, it can generate false-misses if there is gamma correction or colour histogram

applied to a image. To reduce this effect we use another hash named after this field of

study perceptual hash.

3.5.3 Perceptual hash

Main idea behind perceptual hash, or more commonly know as pHash, is that it uses

discrete cosine transform (DCT) to reduce the frequencies in the image. Same as
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previous hashes (Section 3.5.1 and Section 3.5.2) initial step is to reduce size of given

image and its colour. Then it computes DCT on given image and subsequently reduces

it to keep just lower frequencies of the picture. Next step is to calculate the mean DCT

value while excluding the first term. This leaves out completely flat image information

(i.e., solid colors) from being included. Lastly it further reduces DCT and computes

resulting hash values based on threaholding function (3.9) similar to average hash

(Section 3.5.1).

f(x, y) =







1 if f(x, y) is > mean DCT

0 otherwise
(3.9)

These algorithms can be further enhanced to improve their performance, for example,

the image can be cropped before being reduced in size. Other variations can track

general colouring (e.g., hair is more red than blue or green, background is closer to

white than black) or relative location of lines.



Chapter 4

Preprocessing

Before we start processing our frames we have to prepare them so they can be later

processed by our pipeline. This chapter discuses necessary preprocesing steps such as

determining color of a board or preparing frame for board extraction process to increase

accuracy of our methods.

At first, we blur the image to get rid of undesirable noise and to reduce colour

spectrum of the image. In other words, we quantify colors present in the frame, so in

the next step we can detect colour of a board more easily. For this we used simple

median blur.

Median blur is frequently used method to blur (smooth) images. Median filtering is

widely used because under certain conditions, it preserves edges while still smoothing

the image. This is also the main reason why we choose median blur, while still being

one of the fastest blurs, it can preserve hard edges of the board, which is very important

for a methods used for extraction of the main region of the board described in Chapter

5. The main idea is to run through each element of the image and replace each pixel

with median of its neighboring pixels located in square neighbourhood around the given

pixel.

This area is also called kernel. In our case, we achieved the best results with 5× 5

kernel. This kind of filtering is also particularly effective for impulse noises such as

speckle noise or salt and pepper noise.

Next, we have to decide if we are looking at a white or black board. A mean of

color channels is computed to determine dominant color in the image. This color is

also color of the board under the assumption that the area of a board occupies wast

majority of given frame. This colour is then accentuated by thresholding the image to

only extract colours that are close to dominant colour as follows

12
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(a) Original image frame from the video. (b) Output of the preprocesing function ap-

plied on the original frame.

Figure 4.1: Images of original video1 frame and the resulting frame from the prepro-

cesing function

f(x, y) =































f(x, y) if



















IR(x, y) ∈ 〈0.25 ·Rmean, 1.5 ·Rmean〉 AND

IG(x, y) ∈ 〈0.25 ·Gmean, 2.5 ·Gmean〉 AND

IB(x, y) ∈ 〈0.25 · Bmean, 1.5 · Bmean〉

0 otherwise,

(4.1)

where IR(x, y), IG(x, y) and IB(x, y) are values of red, green and blue channel of

pixel at x and y position respectively. Rmean, Gmean and Bmean are values of red, green

and blue channel of obtained dominant color respectively. These values can range from

0 to 255.

Thresholding value is different for every channel and it is approximated to previously

found dominant color of our image. The mask obtained by this method is then used

to compute bitwise AND in separated colour channels in order to boost our colour as

shown in Figure 4.1b. Note, that green colour is accentuated while background, white

or highly illuminated sections are attenuated. This helps us to increase accuracy of

region of interest localization in the frame. This is ran on every frame, that is going to

be processed by our pipeline.

1We used the video titled "Definite Integration by Parts" by Rob Tarrou which can be found at

https://www.youtube.com/watch?v=6rWG5WPysgE



Chapter 5

Board extraction

Creators of instructional videos strive to present their content (be it on black or white

board) on the majority of visual space the video provides. Despite their efforts, often

there are parts of video frames one would not expect to find in a “presentation slide”.

Moreover, variability in these parts of video frames might cause issues in further stages

of the processing pipeline, as it might be mistaken for the actual content. Therefore,

in order to create a “presentation slide” from a set of video frames, only the significant

parts of the frame need to be considered.

In this chapter, we describe main methods used for extracting board from video

sequences. In our research, we focused mainly on videos with one board present in the

video or multiple boards not separated by a wider space in between them (Figure 5.1a).

After initial preprocessing steps described in Section 4, one of the proposed method is

used to obtain main region of the board.

5.1 Histogram method

This method is based on simple idea of generating two histograms, for both axis of

a input frame, of previously found dominant color. This is done by first reducing a

colour spectrum of the image by thresholding the image one more time as follows:

f(x, y) =































f(x, y) if



















IR(x, y) ∈ 〈0.6 ·Rdom, 1.5 ·Rdom〉 AND

IG(x, y) ∈ 〈0.6 ·Gdom, 1.5 ·Gdom〉 AND

IB(x, y) ∈ 〈0.6 · Bdom, 1.5 · Bdom〉

0 otherwise,

(5.1)

where IR(x, y), IG(x, y) and IB(x, y) are values of red, green and blue channel of

pixel at x and y position respectively. Rdom, Gdom and Bdom are values of red, green

and blue channel of dominant colour. These values range from 0 to 255.

14
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(a) Original image from the video. (b) Mask of the board generated by region

growing method.

(c) Values generated by histogram method.

Blue and green color represents x and y axis

respectively.

(d) Final image with extracted board and

shifted perspective.

Figure 5.1: These images show main steps in board extraction processing pipeline.

Note, in the second image present error area caused by high intensity light.

In the next step, all the values in every row and column are summed up separately

into two arrays. The first derivation is then computed on the acquired arrays to identify

rapid change in dominant colour (Figure 5.1c). Next global maximum and minimum

is identify in both acquired arrays. These extremes then specify corners of the board.

Finally, a bounding box around board is formed from the obtained points.

5.2 Region growing method

This method is based on a simple region growing algorithm. This algorithm consists of

two parts. First part is to select a seed for our algorithm. This is done by thresholding

to zero (Section 3.2) the dominant colour with almost maximum color value of a board,

(5.2) found in advance, as part of the preprocessing step (Section 4).
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f(x, y) =































f(x, y) if



















IR(x, y) ∈ 〈0.6 ·Rdom, Rdom〉 AND

IG(x, y) ∈ 〈0.6 ·Gdom, Gdom〉 AND

IB(x, y) ∈ 〈0.6 · Bdom, Bdom〉

0 otherwise,

(5.2)

where IR(x, y), IG(x, y) and IB(x, y) are values of red, green and blue channel of

pixel at x and y position respectively. Rdom, Gdom and Bdom are values of red, green

and blue channel of found dominant color respectively. These values range from 0 to

255.

This highlights “blobs” of colour with highest values, so we can be almost sure, that

we are starting somewhere in the region of a board and not, for example, on the person

standing in front of it. Then, we select largest region where we randomly place our

seed.

In the second step a region growing follows. Region growing is region-based image

segmentation method1. The main idea is to segment the image into regions. This

approach to segmentation examines neighboring pixels of initial seed point, whether

the neighboring pixels property fits some logical predicate P . If pixels satisfies the

predicate, it is added to the same region as the initial pixels of that region. This is

iterative process. This basic formulation of this method is:

•
⋃n

i=1
Ri = R.

• Ri is a connected region , i = 1, 2, . . . , n.

• Ri ∩Rj = ∅ where i 6= j for all i, j = 1, 2, . . . , n.

• P (Ri) = TRUE for i = 1, 2, . . . , n.

• P (Ri ∪Rj) = FALSE for any adjacent region Ri and Rj.

The regions are grown from the seed points to adjacent pixels. In our case, the

predicate for including pixel into a region, was color of the pixel. If the pixels are

part of the board (satisfy our condition), then they are added as a part of the board.

This process also produces the mask of the board (Figure 5.1b). The mask is created

separately into different image by undergoing binary threshold function (5.3).

f(x, y) =







255 if f(x, y) is part of the region

0 otherwise
(5.3)

Once this is done, and we have obtained the mask of the board, we run series of

dilation and errosion to reduce error areas, that can occur at the edges of the board
1It is also classified as pixel-based segmentation method since it involves selection of initial seed.
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(Figure 5.1b), so the edges of the board are well defined. We search for contours in the

generated mask and extract the biggest one. Then we calculate perimeter of selected

contour. This perimeter might have irregular shape because of impurities at the edges

of found contour in the mask. Then the Douglas-Peucker line-simplification algorithm

[17] is used to reduce number of vertices in the perimeter to obtain more regular shape.

Finally this reduced perimeter is returned as the bounding box of our board.

5.3 Processing output of board extraction methods

Output of every methods is submitted to the last test which checks if the area occupied

by the the bounding box is at least one third of a given image and if its shape is

rectangular. Finally, the image is cropped. If a video or an image is taken from a slight

angle, perspective of cropped board is then slightly shifted to compensate for this,

so that the resulting slide would look more like an observer is standing in front of a

board. This is done by computing transformation matrix based on obtained corners of

the board. These corners are used as correspondence points for estimating homography,

that best fits all the points. The image is then transformed using the obtained matrix

as shown in Figure 5.1d.



Chapter 6

Occlusion removal

Since we require that our slides should contain only board with written information, we

have to remove any occlusion events, that happen in front of the board. This chapter

describes algorithms, that we design in order to remove occluding objects from lecture

videos. We consider as occluding object anything that is bigger than at least one third

of a board and performs some sort of a move. An example of such an object can be

a student or a lecturer. These objects should be then segmented out of the frame and

replaced by correct section of the board, that these objects occlude. The main idea

is to segment the board into smaller sections called cells and then keep track of how

information changes in these cells by keeping a simple count of on how many frames

we saw individual cell. This process can be described as a sequence of the following

steps:

• Divide board into smaller cells

• Initialize each cell

• Compute mask of occluding objects

• Check each cell to see whether it is occluded by another object

• Change “seen” counter for each cell based on occlusion events

• Stitch individual cell into final slide

6.1 Initialization

We divide our cropped image of the extracted board into equally sized rectangular

cells based on width and height of the input image. Individual cells are overlapping

by values spanning between 10 to 20 pixels based on the size of a given frame. Each

cell is then initialized. This is done by setting “seen” counter to 0 and its value is

18
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(a) Input image segmented into grid of rect-

angular cells. Note, that overlap of the in-

dividual cells is not shown on the image.

(b) Occlusion mask produced by inverting

mask of a board generated by region grow-

ing method in board extraction process.

(c) Result of computing absolute difference

between current frame and last saved slide.

(d) Final slide generated by “stitching” al-

gorithm without any further postprocess-

ing.

Figure 6.1: These images show main steps in objects removal processing pipeline.

stored in an array. When cells are initialized, then we evaluate each of them to check

if it is partly or fully occluded by another object1. This is done by computing bitwise

AND between section and occlusion mask (see Section 6.2 and Section 6.3). If there is

overlap detected the counter is not increased, otherwise it is incremented. Occlusion

mask might contain a lot of noise, for instance, from fast changing high intensity pixels.

This can cause a problem, if there is a lot of noise in the section, the section might

be marked as occluded. We try to mitigate this effect by detecting size of occluded

area between cell and occluding object. The cell is marked as occluded only if the

occluded area occupies majority of a cell (Figure 6.1a). For obtaining occlusion mask,

we proposed two methods.

6.2 Region growing based method

The first method is the same as our region growing algorithm (Section 5.2), since this

method only considers pixels, that are part of the board. Pixels representing skin,

1Note, that if a cell is occluded throughout the whole video, we believe, that it is save to assume,

that there is no valid information behind it.
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cloths, hair or other objects are omitted. This can then specify any objects that

are in front of the board. If region growing algorithm was previously used for board

extraction, the inverted mask produced by this method, from the board extraction

process, is then considered as mask of the occluding objects. The inverted mask is

shown in Figure 6.1b and series of dilations and erosions is performed to remove error

areas and to accentuate edges. Finally, we search for contours and filter out those,

that are smaller than one third of the image under a assumption, that the lecturer or

student occupies wast majority of the board.

6.3 Absolute difference based method

The second method is based on computing absolute difference between images. This

is done by subtracting each pixel value of the first image from the corresponding pixel

value in the second image. Since we are interested only in the amount of how much

these pixels differ, the absolute value is calculated for these results. Our method uses

the last slide, which was saved and therefore we assume, that this frame contains only

valid information and it is without any occlusion events and current frame. At first,

both images are converted into grayscale which speeds up the computation of the mask,

since we are not interested in color values of pixels. We can ignore them and focus only

how intensity of the pixel changes. The absolute difference is then calculated between

these images (Figure 6.1c). This generates mask of events that changed from slide to

slide. Next, we threshold this mask with a binary threshold (6.1) to remove pixels, that

arose from slight light changes for example person casting a shadow onto a background.

f(x, y) =







255 if f(x, y) > 50

0 otherwise
(6.1)

Finally, similarly to the previous method we search for contours and filter out those

that are not at least one third of given image.

6.4 Slide generation

The final slide, shown in Figure 6.1d, is then “stitched” together from the last saved

slide and currently stored sections, where we threshold each section’s counter with two

values. If the counter value is higher then upper threshold, we saw that section enough

times to be sowed into the image. If the value is under the lower threshold, section is

rejected and corresponding part of the old image is used. If the value is between these

two thresholds one of the methods discussed in the Chapter 7 is used to detected how

much old and new section differ. If this similarity measure is higher then our threshold,
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then section is rejected because sections were too similar and old part of the slide is

used. If it is lower, the section changed enough so it can be sowed into the image.



Chapter 7

Generation of final slide

This chapter focuses on how are we actually going to choose key frames from the

lecture video. The main problem, that we faced was how we can choose key frame

in the video or presentation. When we can say, that enough information was added

or subtracted from a board, so we can actually create slide of the board. Also we

don’t want to overwhelm user with huge amount of slides where information changed

insignificantly. On the other hand if we choose only few frames of the video as our

keypoints we can loose substantial amount of relevant information. So, we want to

reliably compare changes to the information in last created slide and current slide that

is being processed. For this we developed two main approaches: first one uses feature

detection and second computes perceptual hashes with one of the specified methods in

Section 3.5.

7.1 Feature detection approach

To detect change with this method we used ORB detector for feature detection (Section

3.3). First step is to detect features in both last generated valid slide and current slide.

Next, brute force matching with Hamming norm, between features of these two image,

is performed (Figure 7.1). This binary descriptor matching takes significantly less time

then vector descriptor matching [18]. But nearest neighbor matching will always return

a match. This can lead to a number of false matches. For this a cross check filter is

applied at feature matching stage. As the name suggests it tries to increase accuracy

by matching features in both directions. After this matcher returns only consistent

pairs of descriptors, that are closest to each other in matcher’s collection. Number of

matched features is then compared to maximum of found matches. This ratio is then

returned to be later compared as our similarity measure for further tests.

22
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Figure 7.1: Result of brute force matching between two generated slides. Note, that

features were often matched incorrectly based on similarity of individual symbols.

7.2 Perceptual hash approach

Another approach to detect change in our slides is through perceptual hashes (Section

3.5). We implemented and compared probably three most known functions: aHash,

dHash and pHash. These hash functions are used to compute hashes of the last saved

slide and the currently processed slide. Hamming distance is then computed between

these hashes. To unify the output from hash functions and feature detection function

we compare length of last hash and the obtained hamming distance. This ratio is then

returned.

7.3 Comparing and storing slides

Output from these similarity functions is then compared to our similarity threshold.

The value of the threshold is by default set to 60%. This value can be adjusted by

user to fit their preference. If our measure is lower than this threshold, slides differ

and information on the board has to be different, so slide is created. If it is greater,

then slides are similar. Current slide is thrown away and all counters are reset. With

the slide, we also store mask of the board and number of last generated valid slide, so

we can resume from specific point in the video, if the process of generating slides is

suddenly terminated.



Chapter 8

Dataset and evaluation

One of the main problem we faced, was how to actually evaluate our designed methods,

since at this time, there is not known any publicly available dataset with on-line lecture

videos or images of the lectures, on which we could test and evaluate our methods.

Thankfully, there is plenty of content available on-line issued under standard licenses

which means, that they are save to use for educational and research purpose. An

example of such a source can be, for instance, videos of lectures from Massachusetts

Institute of Technology publicly available on-line1. In this chapter, we describe our

approach of creating a dataset of videos and presentations from various on-line lectures

and courses and methods for evaluating our designed algorithms based on this dataset.

8.1 Dataset

Since, in our work we combine multiple methods, each design to performed specific

task in our pipeline, we had to also create specific datasets for each step in pipeline.

So, we can properly evaluate and compare our methods.

8.1.1 Board extraction

For finding main region of interest in the images, where board is located, we created a

dataset of 19110 images. For these images the bounding box of the board was marked

by a human expert (Figure 8.1a). This was done by creating toolkit program, that

experts used for specifying the corners of the board. These images were extracted

from individual videos and presentations. The process of generating the images can be

described as follows: User selects a video from our dataset of videos. He is presented

with a single window where chosen video starts playing (Figure 8.2a). Every frame of

the video is processed by histogram method proposed in Section 5.1, to approximate

1Videos of various topics can be found at http://ocw.mit.edu/courses/audio-video-courses/.

24
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(a) Ground truth marked by human expert

for board extraction.

(b) Ground truth marked by human expert

for occlusion removal.

Figure 8.1: Sample images of ground truths used for evaluation of propossed methods.

corners of the board. User has the ability to pause the video and adjust found points,

so they better fit corners of the board and resume playing the video or can also rewind

or go through the video frame by frame. Coordinates of corner points are gradually

saved to file in CSV format. From these values we can later reconstruct bounding box

of the board. This should serve as the “ground truth” in our experiments [19].

8.1.2 Occlusion removal

For comparing how well our methods were able to create occlusion mask from individual

frame, we also had to create “ground truth” for these methods so we can later evaluate

and compare their results. Essentially, we had to manually create occlusion mask of

objects, that ought to be remove from the scene, in specific frames. We created a

hand-curated dataset of 150 images for which the ground truth was also provided by

a human expert (Figure 8.1b). This was done by creating another toolkit program.

The process of creating an occlusion mask can be described as follows: User selects

one frame from previously randomly selected set of frames. This frame is compared to

the “0th slide”, that was manually chosen as frame containing only the board without

any occlusion events. Both frames are then converted to grayscale. Then algorithm

similar to method proposed in the Section 6.3 follows. Algorithm computes absolute

difference between grayscale images of given frame. Resulting image is then thresholded

with same function as Equation 6.1. A series of errosions follows. Next, we search for

the contours in the image. Mean value for every colour channels is calculated, in the

area, that is occupied by individual contours, in both original images. For these values

Euclidean distance is calculated as follows
√

∑

I

(

src1(I)− src2(I)
)

2

, (8.1)



CHAPTER 8. DATASET AND EVALUATION 26

(a) GUI of toolkit program used for label-

ing board extraction dataset.

(b) GUI of toolkit program used for label-

ing occlusion removal dataset.

Figure 8.2: GUI of toolkit programs used to create datasets for our methods.

where src1(I) is computed mean value for specific channel of “0th slide” and src2(I) is

mean value of selected frame for specific color channel.

Lastly, we compare these distances with user defined value of distance threshold. If

the value is higher, then the contour is considered as occluding object and all pixels

belonging to contour are set to the maximum value 255. If it is lower all pixels are set

to 0. This identifies how scene changed compared to “0th slide”. However this process

also produces a lot of noise, for instance, bigger objects written to the board can be also

identified as occlusion. To deal with this problem, user is presented with two windows

(Figure 8.2b). In the first window generated occlusion mask is shown. In the second

window an parts of the original image are shown based on previously generated mask.

User can then adjust the image to get rid of the noise or to mark parts of the image

that should also be considered as occlusion. The final mask is then saved and should

server as the “ground truth” for evaluating occlusion removal methods.

8.2 Evaluation

This section describes how we evaluated and compared proposed methods. Every

method was tested for performance from 300 method calls by measuring its individ-

ual speed in milliseconds in our processing pipeline. The tests run on single desktop

workstation, using the following hardware: NVIDIA Corporation GeForce GT 650M,

Intel(R) Core(TM) i7-3610QM CPU @ 2.30GHz.

8.2.1 Board extraction and occlusion removal

While speed might be interesting comparison, we are more interested in their perfor-

mance: essentially the answer to the question how well were proposed methods able

to extract the board from input images or how well they were able to generate occlu-
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sion mask (how well they identified occluding objects). To compare these methods we

computed precision and recall for each of them. We define precision as:

precision =
true positives

true positives+ false positives
(8.2)

and recall as:

recall =
true positives

true positives+ false negatives
(8.3)

In both of these equations true positives are defined as the area of the image which

was marked by the method as a board or as a occlusion event and the “ground truth”

agrees with that. False positives is defined as the area, that was marked by the method

as a board or occlusion object but the “ground truth” did not mark it as a board or a

object. Lastly, false negatives is the area which was marked by “ground truth” but the

method does not agree with that. These two values can be put together into a single

metric, that is called F1 score and it is defined as the harmonic mean of precision and

recall :

F1 = 2 ·
precision · recall

precision+ recall
(8.4)

Note, that while these methods are traditionally more often used in information

extraction, they are also considered a well defined metric in computer vision and image

processing [19].

8.2.2 Change detection

It was difficult to design a measure, that would express how well is function performing

in terms of selecting key frames in video. This was due to the fact, that even though

we can have individual frames in sequence tagged the resulting value, if the selected

key frame is in the right place, is very perception dependent. The number of slides,

that should be generated can vary vastly from user to user. This also corresponds with

reality, where some students are able to remember more from the lecture, therefore

they need to write less information. This is why we chose to only measure how many

slides will a method create and how long it will take, the whole pipeline (with a given

measure), to do so.



Chapter 9

Results

In this chapter we analyze our proposed methods used in our pipeline. We also present

performance values in terms of speed as well as precision and recall values for pro-

posed methods obtained by evaluating each method on specific dataset (Section 8).

Preprocesing of every frame in a video, took on average with 300 method calls - 5.89

ms (+- 0.47 ms). Results of individual methods were compared and the best methods

were selected to be incorporated into our final pipeline. Lastly, we present final slides

generated by our system.

9.0.1 Board extraction results

Method name speed in milliseconds standard deviation

Histogram method 4.75 0.65

Region growing method 2.03 0.57

Table 9.1: Average performance values in milliseconds with standard deviation for

individual board extraction methods.

As we can see in Table 9.1, the Histogram algorithm was on average about two times

slower than the region growing algorithm. This is understandable as the histogram

algorithm is much more complex and needs to perform more operations than a simple

region growing algorithm. The slowest part of the histogram algorithm is actually

summing up color values of individual axis, which means we have to go through every

pixel in the frame.

Given values in Table 9.2, we can observe some interesting statistics about the

proposed methods. We can see, that while the histogram algorithm has a very high

recall and therefore produced quite few false negatives its precision is quite low on

the other hand. This suggests, that it produced quite a lot of false positives which

might not be desired for the final processing pipeline. Since this would mean, that

28
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Method name precision recall F1 score

Histogram method 0.4754 0.9738 0.6389

Region growing method 0.9854 0.9567 0.9708

Table 9.2: Precision, recall and F1 score values of board extraction methods.

parts of a frame that are part of a background, would be marked by our method as

a board and would be included into final slide. This can be caused by the fact that

a lot of the lecture rooms has similar colored background (especially whiteboards).

While region growing stops at the edges of the board, which are usually well defined,

histogram considers color information for entire image, which might increase number

of false positives. This could also later decrease accuracy of change detection methods.

The region growing algorithm on the other hand shows balanced values for both

precision and recall. This suggests that it is a robust method, even though it produced

an increased amount of false negatives which might not be desirable, since it would

mean, that parts of the board would be lost. This can be caused by pixels with higher

intensity values, which might be produced by light pointing at one spot on the board.

These error areas may be considered as different regions and that can lead to loosing

parts of the board, if they are located at the edges. Difference between recall values of

histogram and region growing method are not significant.

As we can see from the comparison of F1 scores, the region growing algorithm seems

to be a more robust method and therefore we can conclude that it might be a better

choice than histogram based method.

9.0.2 Occlusion removal results

Method name precision recall F1 score

Region growing-based 0.2531 0.5595 0.3485

Absolute difference-based 0.4767 0.9877 0.6430

Table 9.3: Precision, recall and F1 score values of occlusion removal methods.

The precision, recall and F1 score value for both of the suggested methods can be

found in Table 9.3. As we can see, the scores of the absolute difference-based method

are better. This can be explained by the nature of the region growing-based method:

given its randomized seeding, it might easily start growing the board’s region from a

point in the middle of the object, that should be removed. This essentially means, that

it does the inverse task and produces incorrect result. Another problem, from which

this method suffers and can produce incorrect results, is connecting regions that should

be disjoint. This can be caused by increase amount of noise in the image. Since region
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(a) Highlighted part of the image should be

considered also as occlusion.

(b) Raw output of abs. difference-based

method with text being considered as oc-

clusion.

Figure 9.1: Invalid occlusion masks generated by region growing and absolute

difference-based methods.

growing considers neighboring pixels, these “noisy” pixels can act as some sort of path

between unrelated regions. Typical example of this problem is shown in Figure 9.1a,

where hair of the lecturer is considered to by part of the board as they have similar

color to the color of the board. This is also caused by our condition for adding pixels

into regions being too general.

Name speed in milliseconds standard deviation

Region growing-based 160.47 0.91

Absolute difference-based 195.68 0.84

Table 9.4: Average performance values in milliseconds with standard deviation for

individual occlusion removal methods.

As we can see in Table 9.3 precision values for both methods are quite low, which

suggest that both methods produced quite a lot of false positives. This can be explained

by the fact that content written on the board can get recognized as occlusion. Region

growing method can consider insides of the letters or larger objects drawn on the board

as different regions, since they usually have strongly defined edges, which produces quite

a lot of noise in the final occlusion mask (Figure 9.1a). This means, that cells which are

not actually occluded are being marked as occluded. This leads to substituting wrong

parts of the frame and result into incorrectly generated slides. Although absolute

difference-based method shows slightly better values for precision, it also suffers from

the same problem, recognizing written content as part of occlusion (Figure 9.1b). These

better results can be explained by incremental nature of the algorithm and the fact

that the information is slowly added to the board throughout multiple frames.

Looking at the performance values in Table 9.4 we can see that while region growing-

based method is faster, the difference is not substantial. Based on this analysis we chose
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the absolute difference-based method to be used in the final pipeline.

9.0.3 Change detection results

Name speed in milliseconds standard deviation

ORB algorithm 13.13 0.85

pHash algorithm 7.52 0.76

dHash algorithm 5.32 0.43

aHash algorithm 3.23 0.59

Table 9.5: Average performance values in milliseconds with standard deviation for

individual methods for change detection methods.

As we can see in Table 9.5, the ORB algorithm was the slowest which is understand-

able as it is also the most complex algorithm. Performance of hashing methods was

comparable with the fastest one being the aHash algorithm1. This can be also closely

related to values in Table 9.6 where, aHash not only has the best performance values in

terms of speed but it also managed to create most slides. This can be associated with

aHash being one of the the simplest methods, that is very vulnerable to even slight

light intensity change in the scene. In a similar fashion, dHash suffers from the same

problem, as it also created the same number of slides.

Name speed in seconds number of slides

ORB algorithm 1783 7

pHash algorithm 1117 6

dHash algorithm 1115 8

aHash algorithm 1112 8

Table 9.6: Average performance values in seconds for individual runs of entire pipeline

with given method on the whole input video and the number of slides created using

these methods.

From values in Table 9.5 and 9.6 we can conclude, that pHash is the best choice for

detecting change in our video sequences. It provides the best ratio between speed of

individual methods, speed of the entire run of a pipeline and number of created slides.

While feature detection did reasonably well in comparing images, its performance could

not compare to hashing algorithms. Original and output images obtained by running

the final processing pipeline on an example video are shown in Figure 9.2.

1Which is not very surprising since it performs simple mean on given images.
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Figure 9.2: Example of final slides generated by our pipeline.



Chapter 10

System limitation

While our system can successfully generate slides from the video lectures or presenta-

tions, the task we try to solve is rather complex in the sense, that the input videos or

presentations may vastly vary. For this reason we had to make some assumption in

terms of input videos. This leads to some restrictions that our system poses and to the

reason why our system still fails to perform in certain cases. This chapter focuses on

these restrictions and limitation of proposed system.

One of the major restrictions of the system is on the color of objects in front of the

board. This might be major problem, if for instance lecturer has clothes of same color

as the board color, parts of his clothes might get recognized as valid region of the board

throughout the video. Which would result in invalid information being displayed on

our slides as these parts would still be occluding information on the board as shown in

Figure 10.1a.

Current methods responsible for generating final slide also do not performed any

tests, if information stitched from multiple frames of the video is in any way relevant.

In other words, if parts of the board that were stitched together should be actually

displayed on one slide, if the information is in any way connected. This might lead to

the loss of information in the slide which would result in the whole slide being invalid.

This is also a problem as some of our methods, for example, absolute difference-based

method, responsible for generating occlusion mask (Section 6.3), are heavily reliant on

the fact that previously generated slides contain only valid information and are without

any occlusion events. This relation can in the end result in whole sequence of frames,

from the point where the first invalid slide was generated, being invalid (Figure 10.1b).

Another restriction that our system poses, is that videos have to contain only one or

multiple boards but not separated by wider space as these boards can still be considered

and are processed as one bigger board. If there are multiple boards present in the video

or presentation, our board extraction methods proposed in Section 6.2, picks one that

occupies the biggest area of the frame. As both of our board extraction methods select

33
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(a) Invalid slide with highlighted error ar-

eas.

(b) Generated slide from whole sequence of

invalid slides.

Figure 10.1: Invalid slides generated with our pipeline.

the biggest contour of rectangular shape present in the frame.

This can also cause problems with videos that use multiple cameras and frequently

switch between them, which can lead to different board suddenly becoming bigger and

being selected by our methods as the biggest one. This would most certainly cause

new slides being frequently generated, as the amount of how much information changed

detected by our change detection algorithm discussed in Chapter 7, would be sufficient.

This inconsistency might not be desirable. But more importantly this inconsistency

can also lead to wrong information being displayed on the slides as consequence of

incremental nature of some of our algorithms.



Chapter 11

Conclusion

In our work, we present and compare methods for detecting and extracting boards from

white or black board video based presentation. This setup can later be abstracted to

detecting and extracting large scale object in image or video, that matches some sort

of a predicate. In our case, it was colour and shape of an object. We got sufficient

results with regards to board extraction with the best method being region growing.

We also tested and evaluated functions for comparing how similar are two images

in order to generate key frames in the video sequence. Finally, we proposed methods

for extracting information from given presentation even with occluding events present

in the sequence. In this category, we also managed to achieve sufficient results with

hashing functions with the best one being the pHash algorithm.

We proposed two methods for removing objects in front of our board. The perfor-

mance of the absolute difference-based one was found to be better overall and chosen

for the final pipeline. The slides created by our final processing pipeline can be seen in

Figure 9.2.

Many of these algorithms can be improved. For example, after function that creates

final slide, we can use post processing method to smooth transition between sections

of the old image and the new one. Also we can add test to the “stiching” process

of the image if the information, that is being stitched to the frame, is actually in

any way connected to the rest of the slide. Such a test, could also help us to find

the best matching slide where we could stitch the new information to the slide. This

could partially solve our issue with incremental nature of our process. Or it might

be possible to further shift perspective in order to better fit the current slide, if for

instance, camera moved during the presentation. Support for multiple boards with

bigger gaps between them can be added as well as support for multiple cameras, which

can provide us with additional information such as depth of the scene. This can

drastically improve accuracy with which occlusion mask is generated, since we could

almost precisely identify, which objects are in front of the board. Also based on colour
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of a board, text on the slide can be further enhanced for latter use for example in OCR

algorithm.

Given our focus on simplicity, performance and speed, we also believe, that the

proposed algorithms might serve as a basis for a system that would produce slides as

images from white and black board based videos in real time and could be integrated

into bigger and more complex e-learning systems.
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Appendix A

Attached CD contains source code of our application as well as example video used in

this thesis.
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