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Abstrakt

V praci sa budeme zaoberat kone¢nymi automatmi, ktoré maji pridant moznost ne-
jakym sposobom transformovat svoj vstup. Bordihn, Hozler a Kutrib skiimali au-
tomaty s niekolkymi konkrétnymi transformaciami, ako reverz a otacanie. Odrazajic
sa od tohto predoslého vyskumu, vytvorime vSeobecny matematicky rdmec pre sku-
manie automatov s transforméaciami vstupu a zameriame sa najma na vypoctovu silu
automatov s fixnym konstantnym ohranicenim poctu aplikacii transforméacie na vstup.
Ukazeme zopar prikladov transformacii, ktoré umoznuju konecnym automatom akcep-
tovat jazyky spadajice do réznych levelov Chomského hierarchie (resp. tuto hierar-
chiu prevysujice). Navyse dokdzeme nutni a postacujicu podmienku, ktorej splnenim
transformacia vstupu zachovava regularitu pri konstantnom pocte jej pouziti kone¢nym

automatom.

KIicové slova: konecny automat, transformécia vstupu, vypoctova sila



Abstract

Finite automata with an additional ability to perform some kind of input transfor-
mations shall be considered in the thesis. Such automata have already been studied
by Bordihn, Holzer, and Kutrib for several particular transformations, such as input
reversal or revolving. Building upon this line of research, we shall provide a general
mathematical basis for the study of automata with input transformations and mainly
focus on computational power of automata that apply their input transformations at
most some fixed constant number of times. We shall describe several examples of input
transformations, which enable finite automata to accept languages from different levels
of the Chomsky hierarchy (and beyond). Moreover, we shall prove a necessary and
sufficient condition, under which an input transformation preserves regularity when

applied at most a constant number of times by a finite automaton.

Keywords: finite automaton, input transformation, computational power
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Introduction

Henning Bordihn, Markus Holzer, and Martin Kutrib have introduced automata with
an additional possibility to perform some kind of transformation on the input for the
first time in [1], where they have examined pushdown automata which can reverse
their input during the computation. The question they have raised was: how does the
computational power of pushdown automata change if they may reverse the remaining
input k times for some natural constant k, or an arbitrary number of times. On the
side, they have posed the same question about finite automata.

The research regarding the change in computational power has been later extended
to finite automata with other types of input transformations such as revolving [2], or
transformations inspired by biology such as hairpin transformation [4]. These automata
have been collectively termed extended finite automata. Next in [3] hybrid extended
finite automata have been introduced. These models use a set of transformations, which
they may apply on the input during the computation. The research on these automata
has been focused on a question, whether adding a specific input transformation to this
set changes the computational power of the automaton. Finally, in [6], a brief summary
of the results known about extended finite automata has been presented.

For the purpose of unified presentation of their results, Bordihn, Holzer, and Kutrib
[6] have presented a semi-formal definition of a general extended automaton, which they
have used as a unifying framework for examining the automata with specific input
transformations. Since this definition lacks sufficient mathematical formality, it is not
suitable for a research focused on answering questions about automata with general
input transformations.

The main objective of this thesis is to initiate a study of automata with input
transformations at such general level. As a result, we shall provide a new common
mathematical basis for a consistent study of extended automata. To do so we shall
define input permutations as those transformations which preserve the number of oc-
currences of each symbol in the input. As a specific family we shall set apart oblivious
input permutations, which can be written as a permutation of positions of symbols in a
word. We shall then define automata with a possibility to use these input permutations.

We shall demonstrate this denition on the transformations from the past research

and add some examples of our own input permutations. We shall focus more on the
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family of oblivious input permutations and we shall show how some of them change
the computational power of finite automata, when used a constant number of times.
Our aim in this thesis is to show what can be said about the computational power
of the automata with input transformations, but not only for some specific transforma-
tions, but in general. As the main result of our research we shall identify a necessary
and sufficient condition under which an input transformation preserves regularity when

applied at most a constant number of times by a finite automaton.



Chapter 1

Extended Finite Automata

Automata with an additional possibility of performing some kind of transformation on
the remaining input were considered for the first time by Henning Bordihn, Markus
Holzer, and Martin Kutrib [1], who introduced pushdown automata with the possi-
bility of reversing their remaining input. The question raised in [1] was whether the
computational power of these pushdown automata was increased or remained the same
if the automata had the possibility of reversing their input either £ times for some fixed

natural k, or an arbitrary number of times.

Inspired by the developments on pushdown automata extended in this way, Bordihn,
Holzer, and Kutrib [1] have also considered finite automata with input reversal. The
main question was the same as for pushdown automata: (how) does the computational

power of finite automata change when they are allowed to reverse their input.

This question was later extended to finite automata with other types of input
transformations, such as shifting to the left and right [2], or transformations inspired
by biology such as hairpin transformation [4]. Such automata have been collectively
termed extended finite automata by Bordihn, Holzer, and Kutrib [3]. In this chapter we

shall give a summary of the results on these extended automata obtained in [1, 2, 3, 6, 4].

In the rest of the thesis, we shall incorporate the particular models surveyed in this
chapter into a more general framework: finite automata with suitably defined input
permutations. This shall provide a common mathematical basis for the consistent
study of extended finite automata. We shall also take a look at the computational

power of these input permutation automata.

This chapter is organized as follows: firstly, we shall present some definitions of
the concepts used in [1, 2, 3, 6, 4]. Then we shall summarize the known results on the
computational power of extended finite automata and consolidate them in the Table 1.1
at the end of the chapter. The most important results of this kind will be summarized
in Chapter 3.



4 CHAPTER 1. EXTENDED FINITE AUTOMATA

1.1 Notation

We shall use the following notation: an empty word shall be denoted by . Families
of regular, context-free, linear context-free, and extended context-sensitive languages
shall be denoted by Z, Lcor, Lrin, ZLcs, respectively. The reversal of a word w shall
be denoted by w? and L = {w® | w € L}. For the length of w we shall use the
notation |w| and for the number of occurrences of a symbol a in w we shall use the
notation |wl|,. We shall write L; \ Lo for the difference between the languages L; and
Ly. We shall denote by (s),, for each s in {0,1}*, the natural number with binary
representation s. The formal definitions of basic concepts of formal language theory

can be found, e.g., in [7, 5, §].

1.2 Extended Finite Automata

We shall now review the definitions of particular families of extended finite automata
introduced in [1, 2, 3, 6, 4]. We shall confine ourselves to semi formal descriptions, as
we shall only use them to present the results from the past research. We shall later
(in Chapter 2) present our formal definition of input permutation automata, which we
shall use while presenting our original results. Most of the models described in this
section can be viewed as specializations of input permutation automata — the formal
definition of input permutation automata will thus serve as formal definition of the
automata described in this section as well.

All types of (nondeterministic) extended finite automata studied in [1, 2, 3, 6, 4]
can be defined to be a 6-tuple A = (Q,%, 5, A, qo, F'), where @ is a non-empty finite
set of states, X is the input alphabet, § is the ordinary transition function, a mapping
from @ x (XU {e}) to 29, A is an input-transforming transition function, a mapping
from Q x ¥ to 29, ¢y € Q is the initial state, and F' C @ is the set of accepting states.

Configurations of an extended finite automaton A = (Q,%,d, A, qo, F') are pairs
(¢, w), where ¢ € @ is the current state, and w € X* is the remaining part of the input.
A step from one configuration to a successor configuration can be induced either by ¢
as an ordinary step of a finite automaton, or by A, which means that a transformation
will be applied to the remaining input.

In particular, for the input transformations examined in [1, 2, 3, 6], the compu-

tational step can be defined as follows. Let us consider a,b € ¥, w € ¥*, and p in
A(g a):

(a) An input-reversal step (later ir): (¢,a) Fa (p,a) and (¢, aw) F4 (p, wfa).

(b) A left-revolving step (later ir): (¢,a) Fa (p,a) and (g, awb) 4 (p, baw).
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(c) A right-revolving step (later r7): (q,a) Fa (p,a) and (g, aw) F4 (p, wa).
(d) A circular-interchanging step (later ci): (¢,a) Fa (p,a) and (g, awd) k4 (p, bwa).

(e) A circular-shift transition (later c¢s): (¢,a) Fa (p,a) and (g, aw) F4 (p,vau), for

all v and v with w = wv.

— —— T o .

L . »
....|ﬂ‘b|....t|d ‘|{£|b||td|
A Ay
Input reversal Left revolving
/‘,.r"'!-_-_ o _-_-h.-"'\‘ //'".--- o T o
}...|ﬂ‘.g,‘....t.‘d| )----|{!b----|t'|d|
T v %
Right revolving C‘i1'c.-11131-1'_ErE::-1'c.-}131rlgc

Figure 1.1: Input transformations: input-reversal, left-revolving, right-revolving, and

circular-interchange

In all cases described above, the language accepted by an extended finite automaton
A is defined as L(A) = {w € ¥* | (g, w) I (¢,¢),q € F}.

Before we proceed to the results, there are some more useful terms and notations
used in the articles [1, 2, 3, 6]:

The language accepted by a finite extended automaton A with at most k£ non-
ordinary steps, for some k € N, is denoted by Li(A). The family of languages Z(o-
NFA),is a family of languages accepted by nondeterministic extended finite automata
with a possibility to use the transformation o. For example Z(Ir-N F A) is a family of
languages accepted by left-revolving finite automata.

A hybrid extended finite automaton is an interesting concept studied specifically in
the article [3]. This automaton can also transform the yet unread input, but this time
it may choose from a set of input transformations. The family of languages accepted

by hybrid extended automata with a set of input transformations O is denoted by

Z(O-NFA).

1.3 Automata with a Single Input Transformation

In 2004, Bordihn, Holzer, and Kutrib examined automata with a possibility of reversing
their input [1]. Although the main concern of the article were pushdown automata,

they slightly touched on finite automata and came to these conclusions:
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Theorem 1. Let k be some natural number. A language L is accepted by some input-
reversal finite automaton A = (Q,%,0,A,q, F') with exactly k (at most k) input-

reversals, if and only if L is reqular.

Theorem 2. A language L is accepted by some input-reversal finite automaton (with an

unbounded number of input-reversals) if and only if L is a linear context-free language.

Later in 2005, extended finite automata with shifting transformations, namely left-
revolving, right-revolving, and circular interchange, were examined [2]. The outcome
of the examination was that the latter transformation does not increase the compu-
tational power of finite automata, even if the transformation is used an unbounded
number of times. This is true about the former two transformations as well, but only
if they are used a constant number of times during the computation. Families of
languages accepted by finite automata allowing an unbounded number of these input
transformations are strict subfamilies of the family of context-sensitive languages and
superfamilies of the regular languages. These families are also incomparable with the
family of context-free languages.

Moreover, it is shown in [2] that if we take a reversal of a language accepted by
a right revolving finite automaton, we can simulate its computation by left revolving.
Finally, it was observed that the family of languages accepted by left-revolving finite
automata and the family of languages accepted by right-revolving finite automata are
incomparable.

The above described results are summarized in the following theorems.

Theorem 3. A language L is accepted by some circular-interchanging finite automaton

(with an unbounded number of input-reversals) if and only if L is reqular.

Theorem 4. Let k be a non-negative integer. A language L is accepted by a revolving
finite automaton A with at most k revolving steps, i.e., Li(A) = L, if and only if L is

reqular.
Theorem 5. The family £ (lr-NF A) is incomparable with £ (rr-NFA).

Theorem 6. Every language accepted by a revolving finite automaton is context sen-

sitive.

Theorem 7. The family of linear context free languages is a strict subfamily of lan-

guages accepted by left-revolving finite automata.

Theorem 8. Let L be accepted by a right-revolving finite automaton A, i.e., L = L(A).
Then the reversal of L can be accepted by some left-revolving finite automaton B, i.e.,
L(B) = L%,
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Here is a summary of relations between the families of languages accepted by ex-

tended finite automata with shifting transformations:
1. Z2C L(rr-NFA) C L({lr,rr}-NFA) C Zes.
2. Lun € L(Ir-NFA) C L{lr,rr}-NFA) C Zes.
3. The families Z(Ir-NFA) and £ (rr-NF A) are incomparable.

4. Each of the families Z(Ir-NFA), L (rr-NFA), and Z({lr,rr}-NFA) are in-
comparable with Zgp. Furthermore, 2 (rr-NF A) is incomparable with £ y.

Z
v cs ,,\\\
/ { \“\\

7 -
ZLer L({rr,lr} - NFA)

T |
Ln = ZLlir—NFA) — Z(Ir — NFA)
x,

\ ZR(rr — NFA)
A
-/

\92 _ Plei— NFA)

Figure 1.2: Inclusion structure of families of languages accepted by finite automata
with shifting transformations. All inclusions depicted are strict, and families that are

not connected with an arrow are pairwise incomparable.

To illustrate the theorems above, we shall present some examples of languages
accepted by extended automata with a possibility to use the above mentioned input

transformations an arbitrary number of times [2].

Example 1. Let A = (Q,%,0,A,q0, F) be a left(right)-revolving finite automaton,
where Q = {q07 Gas Qb}; F= {q0}7 Y= {CL, b}; and

0(go, ¢) = {gc} (Ve € %),
3(qe,d) = {qo} (Ve,d € ¥ such that ¢ # d),

A(ge,¢) = {ge} (Ve € X).

This automaton starts to read the input in qo. It reads the first symbol and re-

members it. If the next symbol is the same as the remembered, the automaton revolves
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the input to left (right) and it keeps revolving it until it finds the other symbol. After
reading the other symbol, it starts form qo anew. It is easy to see that the automaton
accepts the language {w € {a,b}* | |w|, = |w|p}. This example shows that there exists

a non-reqular language which can be accepted by a revolving automaton.

Example 2. Let A = (Q,%,9,A,q0, F) be a left-revolving finite automaton, where
Q = {QanGL?qbaq;)Q;)}; F = {QO}7 Y= {(l, b}7 and

6(qo, ) = {gc} (Ve € ¥),
A<q6> d) = {QQ} (VC, de E)a

0(qc, ) = {ao} (Ve € X).

This automaton starts to read the input in qo. It reads the first symbol and re-
members it. Next it revolves the input to left still remembering the read symbol. If the
following symbol is the same as the remembered, the automaton starts again from qq.
It is easy to see that the automaton accepts the language {ww™ | w € {a,b}*}. This
example shows that there exists a language which can be accepted by a left-revolving
automaton, but (as can be shown [2]) cannot be accepted by any right-revolving au-

tomaton.

1.4 Hybrid Finite Automata

The research of Bordihn, Holzer, and Kutrib [3] on hybrid extended finite automata
dealt with the set of transformations O = {ir,lr,rr,ci,cs}. Their results can be sum-

marized by the following theorems.

Theorem 9. Let X C {ir,lr,rr,ci,cs} and k be a non-negative integer. A language
L is accepted by a X-NFA A with at most k non-ordinary steps, if and only if L is

reqular.
Theorem 10. Let X C {ir,lr,rr,ci,cs}. Then L(X-NFA) C Les

Theorem 11. For any X C {ir,lr,rr, ci,cs} with at least one of the transformations
{lr,rr,cs}, the family L (X-NFA) is incomparable with Lop.

Lemma 1. (a) Z(ir-NFA) =2 ({ir,ci}-NFA).
(b) L(rr-NFA) C ZL({rr,ci}-NFA).
(¢c) L(cs-NFA) C ZL({cs,ci}-NFA).

Theorem 12. Forx € {lr,rr}, we have Z# C L (cs-NFA) C L (x-NFA) = L({z,cs}-
NFA).
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Theorem 13. For any X C {ir,lr,rr,cs} with | X N {ir,lr,rr}| > 1, we have L (X -
NFA)=Z{lr,rr}-NFA).

To sum up, we see that any combination of transformations used during the com-
putation of extended finite automata results in a family of languages that falls into
the family of context-sensitive languages. Any combination containing at least one
of the shifting transformations results in a family of languages which is incomparable
with the family of context-free languages. Circular interchange increases the power of
extended finite automata originally containing either right-revolving or circular-shift
but does not increase the power of the extended automata originally containing input-
reversal. The family of languages accepted by automata with the possibility to use
both right-revolving and left-revolving is equal to the family of languages accepted by
automata containing a combination of shifting transformations and an input-reversal
transformation if the combination contains more than one of these three transforma-

tions: left-revolving, right-revolving, and input-reversal.

1.5 Hairpin Finite Automata

In 2007, Bordihn, Holzer, and Kutrib [4] initiated a study of a new kind of extended
automata with a possibility to use different types of hairpin input transformations.
The hairpin input transformation was inspired by the way how the DNA can fold. It
works as follows: it sets one pointer on the first symbol of a given word. Then it finds
another occurrence of this symbol in the word and sets on it a second pointer. Then
it reverses the word in between the two pointers.

There are three different types of the hairpin transformation: a left-most, a right-
most, and a general hairpin input transformation.

Let us consider an input-transforming function A, a € 3, v,w € ¥*, u € (X \ {a})*
and p in A(q,a). We then have:

R

1. A left-most hairpin step (later lh): (¢, auaw) F4 (p, au"aw).

2. A general hairpin step (later h): (g, avaw) 4 (p, avfaw).

R

3. A right-most hairpin step (later rh): (¢, awau) F4 (p, aw' au).

It was shown that these transformations do not increase the computational power
of the finite automata, when they are used only a constant number of times during the
computation. If an unbounded number of these transformations is used, these finite au-
tomata accept languages that are properly contained in the family of context-sensitive
languages and are superfamilies of the family of regular languages. The following the-

orems summarize the results from [4].
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Theorem 14. Let k be a non-negative integer. A language L is accepted by any type

of hairpin automaton A with at most k hairpin steps, if and only if L is reqular.

Theorem 15. There is a language accepted by a general hairpin automaton, which is

accepted neither by a left-most, nor by a right-most hairpin automaton.

Theorem 16. There is a language accepted by a right-most hairpin automaton, which

is accepted neither by a left-most, nor by a general hairpin automaton language.

Theorem 17. There is a non-context-free right-most hairpin automaton language.

1.6 Summary of Results

To sum up the results, we can see that if we have extended automata using any of
the examined input transformations at most k times, for some natural k, the family of
languages accepted by these automata is equal to the family of regular languages. If we
can use the transformation an unbounded number of times, the computational power of
such automata increases to the ability of accepting languages from a strict subfamily
of the context sensitive languages. In the case of input-reversal the automata can
accept languages belonging to the linear context-free language family and in the case
of circular-interchange, the computational power of the automata with the possibility to
use this transformation even an unbounded number of times does not increase beyond

accepting regular languages. For better picture see the table below.

At most k transformations | Unbounded number of transformations

ci 4 4

Ir X C Zes

IT 4 C Zes

ir 4 LN

cs 4 C Zes

lh X C Zes

rh X C Zes

h x ¢ ZLes

Table 1.1: Computational power of particular families of extended finite automata.



Chapter 2
Finite Input Permutation Automata

We shall now introduce our general framework of finite automata extended with in-
put transformations, which we shall call finite input permutation automata. This will
provide common mathematical framework for models described in the previous chapter.

This chapter is divided into two sections. In the first one, we shall define input
permutations, which shall generalize most of the particular input transformations from
the previous chapter. By an input permutation we shall understand a mapping on
words which satisfies a condition that when it is applied on a word over a set of
symbols, the number of occurrences of each symbol in the permuted word does not
differ from the number in the original word. As a specialization of this definition, we
shall also introduce a family of oblivious input permutations. Such permutations do
not depend on the specific symbols but only on their positions in the word. We shall
be later working with the second definition, because it is simpler and so more can be
said about it.

In the second section, we shall define input permutation automata. These are sim-
ilar to the particular models described in the previous chapter, only this time we shall
use our general input permutations instead of some particular input transformation.

We shall define two variants of input permutation automata: a general one and a
blind one. Each of them has a possibility to apply a specific input permutation. The
difference between them is that the latter one can only nondeterministically decide to
apply the input permutation on the remaining input. The former one can also peek at
the first symbol of the remaining input and decide according to that if it applies the

input permutation or continues in the computation without applying it.

2.1 Input Permutations

Let us fix an infinite universe of symbols €2 for the rest of the thesis. From now on, we
shall always suppose that ¥ C 2 holds for each alphabet X..

11
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Definition 1. An input permutation is a sequence ® = (P,,)nen, where @, : Q" — Q™
is a mapping between words of length n for each n in N, such that |w|. = |P(w)]. is
satisfied for all w in Q" and each ¢ in ). For w in Q* and in particular for w € ¥*
for each X C Q, we shall write ®(w) to denote ®),(w). For each language L C ¥,
O(L) ={P(w) | we L}.

Definition 2. An oblivious input permutation is a sequence p = (©n)nen, where @, :
Ly — Ly, is a bijection for each n in N, which we call an indexr permutation. We
shall identify ¢ with an input permutation ® = (P,,),en defined for all n in N and all
a0, A1, -y A1 00 QDY Dy (@0...Qp—1) = Qp,,(0)---Cpy, (n—1)-

We shall thus write @, (w) = ®,(w) for each n in N and w in X" for some alphabet
Y, as well as p(w) = ®(w) for each w in ¥*. For each language L C ¥*, p(L) =

{o(w) | we L}.

We shall use the following notation: let ® = (®,,),en be an input permutation (or in

particular oblivious input permutation). Then we shall write ®[n] for the mapping ®,,.

Remark 1. The permutations defined above are non-uniform in general, as the map-
pings may be defined differently for each word length. The oblivious permutations de-
pend on word length only, whereas the general permutations can also depend on partic-

ular symbols in the word.

The following examples show that the input transformations considered in [1, 2, 3, 6]

can be modeled using oblivious input permutations.

Example 3. Circular interchange is an oblivious input permutation ¢ = (@n)nen, such
that for eachn € N, ¢,(0) =n—1, pp(n—1) =0, and ¢, (i) =1 fori=1,...,n — 2.

Example 4. Right revolving is an oblivious input permutation ¢ = (py,)nen, such that
for eachn € N, p,(i) = (i +1) (mod n) fori=0,....,n— 1.

Example 5. Left revolving is an oblivious input permutation ¢ = (@n)nen, Such that
for eachn € N, p,(i) = (i — 1) (mod n) fori=0,...,n— 1.

Example 6. Input reversal is an oblivious input permutation ¢ = (@n)nen, Such that
for eachn € N, p,(i)=n—1—1i fori=0,...,n—1.

It is easy to see that left-most hairpin and right-most hairpin mentioned in the
article [4] cannot be modeled via oblivious input permutations. The following examples

show that they can be captured by non-oblivious input permutations.

Example 7. Left-most hairpin is an input permutation ® = (P, )nen, such that for

each w = avau, where a € Q, v € (Q\ {a})*, and u € Q*, P, (w) = awau.
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Example 8. Right-most hairpin is an input permutation ® = (®,)nen, such that for

each w = avau, where a € Q, v e O*, and u € (Q\ {a})*, Py(w) = avfau.

One of the input transformations described in Chapter 1 was circular shift. This
can be modeled via neither of our input permutation definitions. The oblivious one has
a fixed index permutation for each n € N. Similarly, non-oblivious input permutation
maps a specific word of a length n € N to a specific word of the same length. On
the other hand, circular shift can have multiple outputs for a single word. For this
reason some kind of “nondeterministic” input permutations would be needed. These
would certainly be possible to define, however we shall focus on “deterministic” input

permutations only.

2.2 Input Permutation Automata

In this section we shall present two models of automata with a possibility to apply an
input permutation on the remaining input of the automaton. One just nondeterminis-
tically decides when to apply the permutation and the other one reads the first symbol
of the remaining input and decides according to that, if it applies the permutation or

not.

Definition 3. A blind input permutation automaton is a tuple A = (Q, 2,6, A, ¢, qo, F),
where Q) is a non-empty finite set of states, X is an input alphabet, § is an ordinary
transition function, a mapping from Q x (X U {e}) to 29, A is an input-transforming
transition function, a mapping from Q to 29, @ is an input permutation, qo € Q is an

initial state, and F C @) is a set of accepting states.

Definition 4. Let A = (Q,%,0,A,p,qo, F) be a blind input permutation automaton.
A configuration of A is a pair (¢, w) € Q X X*.

The ¢ in the definition of the configuration represents the current state of the

automaton A and w represents the remaining input.

Definition 5. Let A = (Q,%,5,A, ¢, qo, F') be a blind input permutation automaton.
A transition step of A is a binary relation 4 on the set of configurations of A, such
that

(i) If p € 6(q,a) for some p,q € Q, and a € ¥ U {e}, then (q,aw) F4 (p,w) for all
w e X",

(ii) If p € A(q) for some p,q € Q, then (q,w) b4 (p, p(w)) for all w € X*.

(iii) No other pairs of configurations are in the relation b 4.
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Definition 6. The language accepted by a blind input permutation automaton A =
(Q,%,6,A,¢,q0, F) is defined by L(A) = {w € £* | g5 € F : (qo,w) % (qr, )}

Definition 7. An input permutation automaton is a 7-tuple A = (Q, 2,9, A, ¢, qo, F),
where Q) is a non-empty finite set of states, ¥ is an input alphabet, § is an ordinary
transition function, a mapping from Q x (X U {e}) to 29, A is an input-transforming
transition function, a mapping from Q x (X U {e}) to 29, ¢ is an input permutation,

qo € Q is an initial state, and F C Q) is a set of accepting states.

The definition of a configuration of an input permutation automaton is the same

as for the blind input permutation automaton.

Definition 8. Let A = (Q,%,9, A, 0, q0, F) be an input permutation automaton. A

transition step of A is a binary relation 4 on the set of configurations of A, such that

(i) If p € 6(q,a) for some p,q € Q, and a € ¥ U {e}, then (q,aw) Fa (p,w) for all
w e X*.

(ii) If p € A(q,a) for some p,q € Q, and a € X U{e}, then (q,aw) 4 (p, p(aw)) for
all w e ¥*.

(iii) No other pairs of configurations are in the relation 4.

The definition of a language accepted by an input permutation automaton is ana-
logical to the one for the blind input permutation automaton in Definition 6.

Let k¥ € N. We shall denote by L*)(A) a language of all w € X*, such that
there exists an accepting computation of a (blind) input permutation automaton A =
(Q,%,0,A,p,q0, F') on w, during which the input permutation is applied at most k

times.

Definition 9. A (blind) input permutation automaton A is k-permuting for some k €
N, if it applies its input permutation at most k-times on each input. In other words,
a k-permuting automaton uses the input-transforming function at most k times during

the computation on any input.

For any £ € N and an arbitrary input permutation automaton A, we may construct
an automaton simulating A while maintaining a counter of applications of the input
permutation. In this way we can filter out the computations during which the input
permutation is applied at most k times. We shall use this construction in the proof of

the following lemma.

Lemma 2. For every blind input permutation automaton A and k € N, there exists a

k-permuting blind input permutation automaton Ay, such that L(A;) = L*(A).
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Proof. Let A = (Q,%,9,A,9,q0, F) be a blind input permutation automaton. Let
us construct a blind input permutation automaton Ay = (Qk, 2, I, Ak, ¢, (0, 0), Fk),

where
Qk = Q X {0, 1, cens k‘},
F,=F X {0, 1,..., k’},
ox((q,1),a) = {(p,7) | p € 0(¢q,a)} (Vg€ Q, a € ZU{e}, i €{0,1,....k}),
Ap((q,7) ={(p.i+1) | p€ Alg)} (Vg€ Q, i €{0,1,....k —1}}),
A((q,k)) =2 (Vg € Q).
Clearly Ay is k-permuting and L(Ag) = L*)(A). O

Lemma 3. For every input permutation automaton A and k € N, there ewists a k-

permuting input permutation automaton Ay, such that L(Ay) = L*F)(A).

Proof. The proof is analogical to the one of Lemma 2. The only difference is in the

definition of Ay, where we put

Ar((g,3),a) ={(p,i+1) | p€ Alg,a)} (Vg€ Q, ac XU {e}, i €{0,1,...k —1}),
Ar((q,k),a) =2 (Vg € Q, a € B U{e}).

]

Definition 10. Let ¢ be an input permutation and k some natural number. We define
Zrr(v) as a family of languages accepted by blind input permutation automata with
the input permutation p, and ZLpr(p, k) as a family of languages accepted by blind

k-permuting input permutation automata with the input permutation .

Definition 11. Let ¢ be an input permutation and k some natural number. We define
Z(p) as a family of languages accepted by input permutation automata with the input
permutation @, and L (p,k) as a family of languages accepted by k-permuting input

permutation automata with the input permutation p.

Proposition 1. Let ¢ be an input permutation and i,j € N, such that i < j. Then
Zoi(p,1) € Lpi(p, J) and ZL(p,i) € ZL(p,]).

Proof. Evident. O]

Proposition 2. Let ¢ be an input permutation and k € N. Then ZLpr(p) C Z(p)
and Lpr(p, k) C L (p, k).

Proof. We shall show that for each blind input permutation automaton A with an input

permutation ¢, there exists an input permutation automaton A’, such that L(A") =

L(A).
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Let A = (Q,%,0,A,p,q, F') be a blind input permutation automaton and A" =
(Q,%,6,A’,¢,q0, F') be an input permutation automaton that has all the components
of the 7-tuple identical with the components of the tuple A with the only diffenrence
of the input-transforming function A’. We shall put A’(q,¢) for all A(q). It is easy to
see that L(A") = L(A). O



Chapter 3

Power of Input Permutation

Automata

This chapter shall be about the computational power of the input permutation au-
tomata defined in the previous chapter. For simplicity of analysis we shall focus on
oblivious permutations only. All permutations are understood to be oblivious in what
follows.

In the first section, we shall present some examples of oblivious input permutations
that allow the input permutation automata to accept languages that are not regular,
not context-free, or not even recursively enumerable, even when the automata have a
possibility to use the input permutation only once during the computation.

In the second section we shall deal with oblivious input permutations, such that
automata which use them always accept regular languages. After a series of lemmas we
shall prove a theorem characterizing oblivious permutations ¢, such that Z(p, k) = Z
and LpL(p, k) =%, for k € N.

3.1 Permutations Not Preserving Regularity

The input permutations examined in the previous research, namely left- and right-
revolving, circular interchange and reversal can be described as oblivious input per-
mutations, as we have shown in the previous chapter. Languages accepted by input
permutation automata with the possibility to apply the above mentioned input per-
mutations at most k£ times for some k£ in N fall into the family of regular languages.
The following examples show that some oblivious input permutations might empower
the automata to accept some languages that are not regular, not context-free, or not
even recursively enumerable.

The first example describes an input permutation that empowers finite automata

to accept languages that are context-free but not regular.

17
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Example 9. Let us define an oblivious input permutation ¢ = (¢, )ien for eachn € N
as follows: if n =0 (mod 2), for all i € Z,

. i if i =0 (mod n),
onli) =y
n—1i ifi=1 (mod n).

Ifn=1 (mod 2) and |n/2] =0 (mod 2), for alli € Z,

|n/2] ifi=n-—1,

n—i ifi=1 (mod 2) A i< |n/2],
n—i—2 ifi=0(mod2) A i>[n/2],

) else.

Ifn=1 (mod 2) and |n/2] =1 (mod 2), for alli € Z,

|n/2] ifi=n-—1,
' n—i ifi=1 (mod 2) A
on (i) = . .
n—i—2 ifi=0 (mod2) A

i < |n/2],
i>|n/2],

1 else.

It is possible to construct a blind input permutation automaton with the input permu-
tation @, that would apply this input permutation in the beginning of the computation,
and accept the language {a"b™ | n € N}, which does not belong to the family of reqular
languages. The indexr permutation transforms an input w = a™b"™, where n € N, to
(ab)™. The language of all such words is obviously reqular.

It is also possible to construct an input permutation automaton with @, which applies
it on the input in the beginning of the computation that accepts the language L = {w €
¥* | w = w?}, which is also not reqular. This index permutation shuffles the indices
in a way that the first and the last symbols of the input are next to each other, the
second and the second last as well and so on. The automaton can then easily check if
the permuted input is made up of a sequence of pairs of the same symbols. In case the
length of the 