
Commenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Finite Automata with Input
Transformations

Bachelor’s Thesis

2019
Júlia Froncová

ii

Commenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Finite Automata with Input
Transformations

Bachelor’s Thesis

Study programme Computer Science (Single degree study, bachelor I. deg. full time form)
Study field: Computer Science, Informatics
Department: Department of Computer Science
Supervisor: RNDr. Peter Kostolányi, PhD.

Bratislava, 2019
Júlia Froncová

iv

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Júlia Froncová
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Finite Automata with Input Transformations
Konečné automaty s transformáciami vstupu

Anotácia: Práca sa bude zaoberať triedou automatov, ktoré sú rozšírením klasických
nedeterministických konečných automatov o možnosť vykonávať určité
transformácie vstupu. Takéto automaty sa už v literatúre skúmali pre niekoľko
konkrétnych transformácií; tieto špeciálne prípady budú v práci zasadené
do spoločného matematického rámca a na tejto všeobecnejšej úrovni bude
učinených zopár základných pozorovaní o popisnej sile rozšírených konečných
automatov.

Vedúci: RNDr. Peter Kostolányi, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 17.10.2018

Dátum schválenia: 24.10.2018 doc. RNDr. Daniel Olejár, PhD.
garant študijného programu

študent vedúci práce

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Júlia Froncová
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: Computer Science, Informatics
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Finite Automata with Input Transformations

Annotation: The thesis will focus on a class of automata extending classical nondeterministic
finite automata by a possibility of performing certain input transformations.
Such automata have already been studied in literature for several particular
transformations; these concrete instances will be placed into a common
mathematical framework and some basic observations regarding descriptive
power of extended finite automata will be made at this more general level.

Supervisor: RNDr. Peter Kostolányi, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 17.10.2018

Approved: 24.10.2018 doc. RNDr. Daniel Olejár, PhD.
Guarantor of Study Programme

Student Supervisor

vii

Acknowledgement: I would like to thank my supervisor RNDr. Peter Kostolányi,
PhD. for his great help and advice.

viii

Abstrakt

V práci sa budeme zaoberať konečnými automatmi, ktoré majú pridanú možnosť ne-
jakým spôsobom transformovať svoj vstup. Bordihn, Hozler a Kutrib skúmali au-
tomaty s niekoľkými konkrétnymi transformáciami, ako reverz a otáčanie. Odrážajúc
sa od tohto predošlého výskumu, vytvoríme všeobecný matematický rámec pre skú-
manie automatov s transformáciami vstupu a zameriame sa najmä na výpočtovú silu
automatov s fixným konštantným ohraničením počtu aplikácií transformácie na vstup.
Ukážeme zopár príkladov transformácií, ktoré umožňujú konečným automatom akcep-
tovať jazyky spadajúce do rôznych levelov Chomského hierarchie (resp. túto hierar-
chiu prevyšujúce). Navyše dokážeme nutnú a postačujúcu podmienku, ktorej splnením
transformácia vstupu zachováva regularitu pri konštantnom počte jej použití konečným
automatom.

Kľúčové slová: konečný automat, transformácia vstupu, výpočtová sila

ix

Abstract

Finite automata with an additional ability to perform some kind of input transfor-
mations shall be considered in the thesis. Such automata have already been studied
by Bordihn, Holzer, and Kutrib for several particular transformations, such as input
reversal or revolving. Building upon this line of research, we shall provide a general
mathematical basis for the study of automata with input transformations and mainly
focus on computational power of automata that apply their input transformations at
most some fixed constant number of times. We shall describe several examples of input
transformations, which enable finite automata to accept languages from different levels
of the Chomsky hierarchy (and beyond). Moreover, we shall prove a necessary and
sufficient condition, under which an input transformation preserves regularity when
applied at most a constant number of times by a finite automaton.

Keywords: finite automaton, input transformation, computational power

x

Contents

Introduction 1

1 Extended Finite Automata 3
1.1 Notation . 4
1.2 Extended Finite Automata . 4
1.3 Automata with a Single Input Transformation 5
1.4 Hybrid Finite Automata . 8
1.5 Hairpin Finite Automata . 9
1.6 Summary of Results . 10

2 Finite Input Permutation Automata 11
2.1 Input Permutations . 11
2.2 Input Permutation Automata . 13

3 Power of Input Permutation Automata 17
3.1 Permutations Not Preserving Regularity 17
3.2 Regularity Preserving Permutations . 21

Conclusion 27

xi

xii CONTENTS

Introduction

Henning Bordihn, Markus Holzer, and Martin Kutrib have introduced automata with
an additional possibility to perform some kind of transformation on the input for the
first time in [1], where they have examined pushdown automata which can reverse
their input during the computation. The question they have raised was: how does the
computational power of pushdown automata change if they may reverse the remaining
input k times for some natural constant k, or an arbitrary number of times. On the
side, they have posed the same question about finite automata.

The research regarding the change in computational power has been later extended
to finite automata with other types of input transformations such as revolving [2], or
transformations inspired by biology such as hairpin transformation [4]. These automata
have been collectively termed extended finite automata. Next in [3] hybrid extended
finite automata have been introduced. These models use a set of transformations, which
they may apply on the input during the computation. The research on these automata
has been focused on a question, whether adding a specific input transformation to this
set changes the computational power of the automaton. Finally, in [6], a brief summary
of the results known about extended finite automata has been presented.

For the purpose of unified presentation of their results, Bordihn, Holzer, and Kutrib
[6] have presented a semi-formal definition of a general extended automaton, which they
have used as a unifying framework for examining the automata with specific input
transformations. Since this definition lacks sufficient mathematical formality, it is not
suitable for a research focused on answering questions about automata with general
input transformations.

The main objective of this thesis is to initiate a study of automata with input
transformations at such general level. As a result, we shall provide a new common
mathematical basis for a consistent study of extended automata. To do so we shall
define input permutations as those transformations which preserve the number of oc-
currences of each symbol in the input. As a specific family we shall set apart oblivious
input permutations, which can be written as a permutation of positions of symbols in a
word. We shall then define automata with a possibility to use these input permutations.

We shall demonstrate this denition on the transformations from the past research
and add some examples of our own input permutations. We shall focus more on the

1

2 Introduction

family of oblivious input permutations and we shall show how some of them change
the computational power of finite automata, when used a constant number of times.

Our aim in this thesis is to show what can be said about the computational power
of the automata with input transformations, but not only for some specific transforma-
tions, but in general. As the main result of our research we shall identify a necessary
and sufficient condition under which an input transformation preserves regularity when
applied at most a constant number of times by a finite automaton.

Chapter 1

Extended Finite Automata

Automata with an additional possibility of performing some kind of transformation on
the remaining input were considered for the first time by Henning Bordihn, Markus
Holzer, and Martin Kutrib [1], who introduced pushdown automata with the possi-
bility of reversing their remaining input. The question raised in [1] was whether the
computational power of these pushdown automata was increased or remained the same
if the automata had the possibility of reversing their input either k times for some fixed
natural k, or an arbitrary number of times.

Inspired by the developments on pushdown automata extended in this way, Bordihn,
Holzer, and Kutrib [1] have also considered finite automata with input reversal. The
main question was the same as for pushdown automata: (how) does the computational
power of finite automata change when they are allowed to reverse their input.

This question was later extended to finite automata with other types of input
transformations, such as shifting to the left and right [2], or transformations inspired
by biology such as hairpin transformation [4]. Such automata have been collectively
termed extended finite automata by Bordihn, Holzer, and Kutrib [3]. In this chapter we
shall give a summary of the results on these extended automata obtained in [1, 2, 3, 6, 4].

In the rest of the thesis, we shall incorporate the particular models surveyed in this
chapter into a more general framework: finite automata with suitably defined input
permutations. This shall provide a common mathematical basis for the consistent
study of extended finite automata. We shall also take a look at the computational
power of these input permutation automata.

This chapter is organized as follows: firstly, we shall present some definitions of
the concepts used in [1, 2, 3, 6, 4]. Then we shall summarize the known results on the
computational power of extended finite automata and consolidate them in the Table 1.1
at the end of the chapter. The most important results of this kind will be summarized
in Chapter 3.

3

4 CHAPTER 1. EXTENDED FINITE AUTOMATA

1.1 Notation

We shall use the following notation: an empty word shall be denoted by ε. Families
of regular, context-free, linear context-free, and extended context-sensitive languages
shall be denoted by R, LCF , LLIN , LCS , respectively. The reversal of a word w shall
be denoted by wR and LR = {wR | w ∈ L}. For the length of w we shall use the
notation |w| and for the number of occurrences of a symbol a in w we shall use the
notation |w|a. We shall write L1 \ L2 for the difference between the languages L1 and
L2. We shall denote by (s)2, for each s in {0, 1}∗, the natural number with binary
representation s. The formal definitions of basic concepts of formal language theory
can be found, e.g., in [7, 5, 8].

1.2 Extended Finite Automata

We shall now review the definitions of particular families of extended finite automata
introduced in [1, 2, 3, 6, 4]. We shall confine ourselves to semi formal descriptions, as
we shall only use them to present the results from the past research. We shall later
(in Chapter 2) present our formal definition of input permutation automata, which we
shall use while presenting our original results. Most of the models described in this
section can be viewed as specializations of input permutation automata – the formal
definition of input permutation automata will thus serve as formal definition of the
automata described in this section as well.

All types of (nondeterministic) extended finite automata studied in [1, 2, 3, 6, 4]
can be defined to be a 6-tuple A = (Q,Σ, δ,∆, q0, F), where Q is a non-empty finite
set of states, Σ is the input alphabet, δ is the ordinary transition function, a mapping
from Q× (Σ ∪ {ε}) to 2Q, ∆ is an input-transforming transition function, a mapping
from Q×Σ to 2Q, q0 ∈ Q is the initial state, and F ⊆ Q is the set of accepting states.

Configurations of an extended finite automaton A = (Q,Σ, δ,∆, q0, F) are pairs
(q, w), where q ∈ Q is the current state, and w ∈ Σ∗ is the remaining part of the input.
A step from one configuration to a successor configuration can be induced either by δ
as an ordinary step of a finite automaton, or by ∆, which means that a transformation
will be applied to the remaining input.

In particular, for the input transformations examined in [1, 2, 3, 6], the compu-
tational step can be defined as follows. Let us consider a, b ∈ Σ, w ∈ Σ∗, and p in
∆(q, a):

(a) An input-reversal step (later ir): (q, a) `A (p, a) and (q, aw) `A (p, wRa).

(b) A left-revolving step (later lr): (q, a) `A (p, a) and (q, awb) `A (p, baw).

1.3. AUTOMATA WITH A SINGLE INPUT TRANSFORMATION 5

(c) A right-revolving step (later rr): (q, a) `A (p, a) and (q, aw) `A (p, wa).

(d) A circular-interchanging step (later ci): (q, a) `A (p, a) and (q, awb) `A (p, bwa).

(e) A circular-shift transition (later cs): (q, a) `A (p, a) and (q, aw) `A (p, vau), for
all u and v with w = uv.

Figure 1.1: Input transformations: input-reversal, left-revolving, right-revolving, and
circular-interchange

In all cases described above, the language accepted by an extended finite automaton
A is defined as L(A) = {w ∈ Σ∗ | (q0, w) `∗A (q, ε), q ∈ F}.

Before we proceed to the results, there are some more useful terms and notations
used in the articles [1, 2, 3, 6]:

The language accepted by a finite extended automaton A with at most k non-
ordinary steps, for some k ∈ N, is denoted by Lk(A). The family of languages L (o-
NFA), is a family of languages accepted by nondeterministic extended finite automata
with a possibility to use the transformation o. For example L (lr-NFA) is a family of
languages accepted by left-revolving finite automata.

A hybrid extended finite automaton is an interesting concept studied specifically in
the article [3]. This automaton can also transform the yet unread input, but this time
it may choose from a set of input transformations. The family of languages accepted
by hybrid extended automata with a set of input transformations O is denoted by
L (O-NFA).

1.3 Automata with a Single Input Transformation

In 2004, Bordihn, Holzer, and Kutrib examined automata with a possibility of reversing
their input [1]. Although the main concern of the article were pushdown automata,
they slightly touched on finite automata and came to these conclusions:

6 CHAPTER 1. EXTENDED FINITE AUTOMATA

Theorem 1. Let k be some natural number. A language L is accepted by some input-
reversal finite automaton A = (Q,Σ, δ,∆, q0, F) with exactly k (at most k) input-
reversals, if and only if L is regular.

Theorem 2. A language L is accepted by some input-reversal finite automaton (with an
unbounded number of input-reversals) if and only if L is a linear context-free language.

Later in 2005, extended finite automata with shifting transformations, namely left-
revolving, right-revolving, and circular interchange, were examined [2]. The outcome
of the examination was that the latter transformation does not increase the compu-
tational power of finite automata, even if the transformation is used an unbounded
number of times. This is true about the former two transformations as well, but only
if they are used a constant number of times during the computation. Families of
languages accepted by finite automata allowing an unbounded number of these input
transformations are strict subfamilies of the family of context-sensitive languages and
superfamilies of the regular languages. These families are also incomparable with the
family of context-free languages.

Moreover, it is shown in [2] that if we take a reversal of a language accepted by
a right revolving finite automaton, we can simulate its computation by left revolving.
Finally, it was observed that the family of languages accepted by left-revolving finite
automata and the family of languages accepted by right-revolving finite automata are
incomparable.

The above described results are summarized in the following theorems.

Theorem 3. A language L is accepted by some circular-interchanging finite automaton
(with an unbounded number of input-reversals) if and only if L is regular.

Theorem 4. Let k be a non-negative integer. A language L is accepted by a revolving
finite automaton A with at most k revolving steps, i.e., Lk(A) = L, if and only if L is
regular.

Theorem 5. The family L (lr-NFA) is incomparable with L (rr-NFA).

Theorem 6. Every language accepted by a revolving finite automaton is context sen-
sitive.

Theorem 7. The family of linear context free languages is a strict subfamily of lan-
guages accepted by left-revolving finite automata.

Theorem 8. Let L be accepted by a right-revolving finite automaton A, i.e., L = L(A).
Then the reversal of L can be accepted by some left-revolving finite automaton B, i.e.,
L(B) = LR.

1.3. AUTOMATA WITH A SINGLE INPUT TRANSFORMATION 7

Here is a summary of relations between the families of languages accepted by ex-
tended finite automata with shifting transformations:

1. R (L (rr-NFA) (L ({lr, rr}-NFA) (LCS .

2. LLIN (L (lr-NFA) (L ({lr, rr}-NFA) (LCS .

3. The families L (lr-NFA) and L (rr-NFA) are incomparable.

4. Each of the families L (lr-NFA), L (rr-NFA), and L ({lr, rr}-NFA) are in-
comparable with LCF . Furthermore, L (rr-NFA) is incomparable with LLIN .

Figure 1.2: Inclusion structure of families of languages accepted by finite automata
with shifting transformations. All inclusions depicted are strict, and families that are
not connected with an arrow are pairwise incomparable.

To illustrate the theorems above, we shall present some examples of languages
accepted by extended automata with a possibility to use the above mentioned input
transformations an arbitrary number of times [2].

Example 1. Let A = (Q,Σ, δ,∆, q0, F) be a left(right)-revolving finite automaton,
where Q = {q0, qa, qb}, F = {q0}, Σ = {a, b}, and

δ(q0, c) = {qc} (∀c ∈ Σ),

δ(qc, d) = {q0} (∀c, d ∈ Σ such that c 6= d),

∆(qc, c) = {qc} (∀c ∈ Σ).

This automaton starts to read the input in q0. It reads the first symbol and re-
members it. If the next symbol is the same as the remembered, the automaton revolves

8 CHAPTER 1. EXTENDED FINITE AUTOMATA

the input to left (right) and it keeps revolving it until it finds the other symbol. After
reading the other symbol, it starts form q0 anew. It is easy to see that the automaton
accepts the language {w ∈ {a, b}∗ | |w|a = |w|b}. This example shows that there exists
a non-regular language which can be accepted by a revolving automaton.

Example 2. Let A = (Q,Σ, δ,∆, q0, F) be a left-revolving finite automaton, where
Q = {q0, qa, qb, q

′
a, q
′
b}, F = {q0}, Σ = {a, b}, and

δ(q0, c) = {qc} (∀c ∈ Σ),

∆(qc, d) = {q′c} (∀c, d ∈ Σ),

δ(q′c, c) = {q0} (∀c ∈ Σ).

This automaton starts to read the input in q0. It reads the first symbol and re-
members it. Next it revolves the input to left still remembering the read symbol. If the
following symbol is the same as the remembered, the automaton starts again from q0.
It is easy to see that the automaton accepts the language {wwR | w ∈ {a, b}∗}. This
example shows that there exists a language which can be accepted by a left-revolving
automaton, but (as can be shown [2]) cannot be accepted by any right-revolving au-
tomaton.

1.4 Hybrid Finite Automata

The research of Bordihn, Holzer, and Kutrib [3] on hybrid extended finite automata
dealt with the set of transformations O = {ir, lr, rr, ci, cs}. Their results can be sum-
marized by the following theorems.

Theorem 9. Let X ⊆ {ir, lr, rr, ci, cs} and k be a non-negative integer. A language
L is accepted by a X-NFA A with at most k non-ordinary steps, if and only if L is
regular.

Theorem 10. Let X ⊆ {ir, lr, rr, ci, cs}. Then L (X-NFA) (LCS

Theorem 11. For any X ⊆ {ir, lr, rr, ci, cs} with at least one of the transformations
{lr, rr, cs}, the family L (X-NFA) is incomparable with LCF .

Lemma 1. (a) L (ir-NFA) = L ({ir, ci}-NFA).

(b) L (rr-NFA) (L ({rr, ci}-NFA).

(c) L (cs-NFA) (L ({cs, ci}-NFA).

Theorem 12. For x ∈ {lr, rr}, we have R (L (cs-NFA) (L (x-NFA) = L ({x, cs}-
NFA).

1.5. HAIRPIN FINITE AUTOMATA 9

Theorem 13. For any X ⊆ {ir, lr, rr, cs} with |X ∩ {ir, lr, rr}| > 1, we have L (X-
NFA) = L ({lr, rr}-NFA).

To sum up, we see that any combination of transformations used during the com-
putation of extended finite automata results in a family of languages that falls into
the family of context-sensitive languages. Any combination containing at least one
of the shifting transformations results in a family of languages which is incomparable
with the family of context-free languages. Circular interchange increases the power of
extended finite automata originally containing either right-revolving or circular-shift
but does not increase the power of the extended automata originally containing input-
reversal. The family of languages accepted by automata with the possibility to use
both right-revolving and left-revolving is equal to the family of languages accepted by
automata containing a combination of shifting transformations and an input-reversal
transformation if the combination contains more than one of these three transforma-
tions: left-revolving, right-revolving, and input-reversal.

1.5 Hairpin Finite Automata

In 2007, Bordihn, Holzer, and Kutrib [4] initiated a study of a new kind of extended
automata with a possibility to use different types of hairpin input transformations.
The hairpin input transformation was inspired by the way how the DNA can fold. It
works as follows: it sets one pointer on the first symbol of a given word. Then it finds
another occurrence of this symbol in the word and sets on it a second pointer. Then
it reverses the word in between the two pointers.

There are three different types of the hairpin transformation: a left-most, a right-
most, and a general hairpin input transformation.

Let us consider an input-transforming function ∆, a ∈ Σ, v, w ∈ Σ∗, u ∈ (Σ \ {a})∗

and p in ∆(q, a). We then have:

1. A left-most hairpin step (later lh): (q, auaw) `A (p, auRaw).

2. A general hairpin step (later h): (q, avaw) `A (p, avRaw).

3. A right-most hairpin step (later rh): (q, awau) `A (p, awRau).

It was shown that these transformations do not increase the computational power
of the finite automata, when they are used only a constant number of times during the
computation. If an unbounded number of these transformations is used, these finite au-
tomata accept languages that are properly contained in the family of context-sensitive
languages and are superfamilies of the family of regular languages. The following the-
orems summarize the results from [4].

10 CHAPTER 1. EXTENDED FINITE AUTOMATA

Theorem 14. Let k be a non-negative integer. A language L is accepted by any type
of hairpin automaton A with at most k hairpin steps, if and only if L is regular.

Theorem 15. There is a language accepted by a general hairpin automaton, which is
accepted neither by a left-most, nor by a right-most hairpin automaton.

Theorem 16. There is a language accepted by a right-most hairpin automaton, which
is accepted neither by a left-most, nor by a general hairpin automaton language.

Theorem 17. There is a non-context-free right-most hairpin automaton language.

1.6 Summary of Results

To sum up the results, we can see that if we have extended automata using any of
the examined input transformations at most k times, for some natural k, the family of
languages accepted by these automata is equal to the family of regular languages. If we
can use the transformation an unbounded number of times, the computational power of
such automata increases to the ability of accepting languages from a strict subfamily
of the context sensitive languages. In the case of input-reversal the automata can
accept languages belonging to the linear context-free language family and in the case
of circular-interchange, the computational power of the automata with the possibility to
use this transformation even an unbounded number of times does not increase beyond
accepting regular languages. For better picture see the table below.

At most k transformations Unbounded number of transformations
ci R R

lr R (LCS

rr R (LCS

ir R LLIN

cs R (LCS

lh R (LCS

rh R (LCS

h R (LCS

Table 1.1: Computational power of particular families of extended finite automata.

Chapter 2

Finite Input Permutation Automata

We shall now introduce our general framework of finite automata extended with in-
put transformations, which we shall call finite input permutation automata. This will
provide common mathematical framework for models described in the previous chapter.

This chapter is divided into two sections. In the first one, we shall define input
permutations, which shall generalize most of the particular input transformations from
the previous chapter. By an input permutation we shall understand a mapping on
words which satisfies a condition that when it is applied on a word over a set of
symbols, the number of occurrences of each symbol in the permuted word does not
differ from the number in the original word. As a specialization of this definition, we
shall also introduce a family of oblivious input permutations. Such permutations do
not depend on the specific symbols but only on their positions in the word. We shall
be later working with the second definition, because it is simpler and so more can be
said about it.

In the second section, we shall define input permutation automata. These are sim-
ilar to the particular models described in the previous chapter, only this time we shall
use our general input permutations instead of some particular input transformation.

We shall define two variants of input permutation automata: a general one and a
blind one. Each of them has a possibility to apply a specific input permutation. The
difference between them is that the latter one can only nondeterministically decide to
apply the input permutation on the remaining input. The former one can also peek at
the first symbol of the remaining input and decide according to that if it applies the
input permutation or continues in the computation without applying it.

2.1 Input Permutations

Let us fix an infinite universe of symbols Ω for the rest of the thesis. From now on, we
shall always suppose that Σ ⊆ Ω holds for each alphabet Σ.

11

12 CHAPTER 2. FINITE INPUT PERMUTATION AUTOMATA

Definition 1. An input permutation is a sequence Φ = (Φn)n∈N, where Φn : Ωn −→ Ωn

is a mapping between words of length n for each n in N, such that |w|c = |Φ(w)|c is
satisfied for all w in Ωn and each c in Ω. For w in Ω∗ and in particular for w ∈ Σ∗

for each Σ ⊆ Ω, we shall write Φ(w) to denote Φ|w|(w). For each language L ⊆ Ω∗,
Φ(L) = {Φ(w) | w ∈ L}.

Definition 2. An oblivious input permutation is a sequence ϕ = (ϕn)n∈N, where ϕn :
Zn −→ Zn is a bijection for each n in N, which we call an index permutation. We
shall identify ϕ with an input permutation Φ = (Φn)n∈N defined for all n in N and all
a0, a1, ..., an−1 in Ω by Φn(a0...an−1) = aϕn(0)...aϕn(n−1).

We shall thus write ϕn(w) = Φn(w) for each n in N and w in Σn for some alphabet
Σ, as well as ϕ(w) = Φ(w) for each w in Σ∗. For each language L ⊆ Σ∗, ϕ(L) =
{ϕ(w) | w ∈ L}.

We shall use the following notation: let Φ = (Φn)n∈N be an input permutation (or in
particular oblivious input permutation). Then we shall write Φ[n] for the mapping Φn.

Remark 1. The permutations defined above are non-uniform in general, as the map-
pings may be defined differently for each word length. The oblivious permutations de-
pend on word length only, whereas the general permutations can also depend on partic-
ular symbols in the word.

The following examples show that the input transformations considered in [1, 2, 3, 6]
can be modeled using oblivious input permutations.

Example 3. Circular interchange is an oblivious input permutation ϕ = (ϕn)n∈N, such
that for each n ∈ N, ϕn(0) = n− 1, ϕn(n− 1) = 0, and ϕn(i) = i for i = 1, ..., n− 2.

Example 4. Right revolving is an oblivious input permutation ϕ = (ϕn)n∈N, such that
for each n ∈ N, ϕn(i) = (i+ 1) (mod n) for i = 0, ..., n− 1.

Example 5. Left revolving is an oblivious input permutation ϕ = (ϕn)n∈N, such that
for each n ∈ N, ϕn(i) = (i− 1) (mod n) for i = 0, ..., n− 1.

Example 6. Input reversal is an oblivious input permutation ϕ = (ϕn)n∈N, such that
for each n ∈ N, ϕn(i) = n− 1− i for i = 0, ..., n− 1.

It is easy to see that left-most hairpin and right-most hairpin mentioned in the
article [4] cannot be modeled via oblivious input permutations. The following examples
show that they can be captured by non-oblivious input permutations.

Example 7. Left-most hairpin is an input permutation Φ = (Φn)n∈N, such that for
each w = avau, where a ∈ Ω, v ∈ (Ω \ {a})∗, and u ∈ Ω∗, Φ|w|(w) = avRau.

2.2. INPUT PERMUTATION AUTOMATA 13

Example 8. Right-most hairpin is an input permutation Φ = (Φn)n∈N, such that for
each w = avau, where a ∈ Ω, v ∈ Ω∗, and u ∈ (Ω \ {a})∗, Φ|w|(w) = avRau.

One of the input transformations described in Chapter 1 was circular shift. This
can be modeled via neither of our input permutation definitions. The oblivious one has
a fixed index permutation for each n ∈ N. Similarly, non-oblivious input permutation
maps a specific word of a length n ∈ N to a specific word of the same length. On
the other hand, circular shift can have multiple outputs for a single word. For this
reason some kind of “nondeterministic” input permutations would be needed. These
would certainly be possible to define, however we shall focus on “deterministic” input
permutations only.

2.2 Input Permutation Automata

In this section we shall present two models of automata with a possibility to apply an
input permutation on the remaining input of the automaton. One just nondeterminis-
tically decides when to apply the permutation and the other one reads the first symbol
of the remaining input and decides according to that, if it applies the permutation or
not.

Definition 3. A blind input permutation automaton is a tuple A = (Q,Σ, δ,∆, ϕ, q0, F),
where Q is a non-empty finite set of states, Σ is an input alphabet, δ is an ordinary
transition function, a mapping from Q× (Σ ∪ {ε}) to 2Q, ∆ is an input-transforming
transition function, a mapping from Q to 2Q, ϕ is an input permutation, q0 ∈ Q is an
initial state, and F ⊆ Q is a set of accepting states.

Definition 4. Let A = (Q,Σ, δ,∆, ϕ, q0, F) be a blind input permutation automaton.
A configuration of A is a pair (q, w) ∈ Q× Σ∗.

The q in the definition of the configuration represents the current state of the
automaton A and w represents the remaining input.

Definition 5. Let A = (Q,Σ, δ,∆, ϕ, q0, F) be a blind input permutation automaton.
A transition step of A is a binary relation `A on the set of configurations of A, such
that

(i) If p ∈ δ(q, a) for some p, q ∈ Q, and a ∈ Σ ∪ {ε}, then (q, aw) `A (p, w) for all
w ∈ Σ∗.

(ii) If p ∈ ∆(q) for some p, q ∈ Q, then (q, w) `A (p, ϕ(w)) for all w ∈ Σ∗.

(iii) No other pairs of configurations are in the relation `A.

14 CHAPTER 2. FINITE INPUT PERMUTATION AUTOMATA

Definition 6. The language accepted by a blind input permutation automaton A =
(Q,Σ, δ,∆, ϕ, q0, F) is defined by L(A) = {w ∈ Σ∗ | ∃qf ∈ F : (q0, w) `∗A (qf , ε)}.

Definition 7. An input permutation automaton is a 7-tuple A = (Q,Σ, δ,∆, ϕ, q0, F),
where Q is a non-empty finite set of states, Σ is an input alphabet, δ is an ordinary
transition function, a mapping from Q× (Σ ∪ {ε}) to 2Q, ∆ is an input-transforming
transition function, a mapping from Q × (Σ ∪ {ε}) to 2Q, ϕ is an input permutation,
q0 ∈ Q is an initial state, and F ⊆ Q is a set of accepting states.

The definition of a configuration of an input permutation automaton is the same
as for the blind input permutation automaton.

Definition 8. Let A = (Q,Σ, δ,∆, ϕ, q0, F) be an input permutation automaton. A
transition step of A is a binary relation `A on the set of configurations of A, such that

(i) If p ∈ δ(q, a) for some p, q ∈ Q, and a ∈ Σ ∪ {ε}, then (q, aw) `A (p, w) for all
w ∈ Σ∗.

(ii) If p ∈ ∆(q, a) for some p, q ∈ Q, and a ∈ Σ∪ {ε}, then (q, aw) `A (p, ϕ(aw)) for
all w ∈ Σ∗.

(iii) No other pairs of configurations are in the relation `A.

The definition of a language accepted by an input permutation automaton is ana-
logical to the one for the blind input permutation automaton in Definition 6.

Let k ∈ N. We shall denote by L(k)(A) a language of all w ∈ Σ∗, such that
there exists an accepting computation of a (blind) input permutation automaton A =
(Q,Σ, δ,∆, ϕ, q0, F) on w, during which the input permutation is applied at most k
times.

Definition 9. A (blind) input permutation automaton A is k-permuting for some k ∈
N, if it applies its input permutation at most k-times on each input. In other words,
a k-permuting automaton uses the input-transforming function at most k times during
the computation on any input.

For any k ∈ N and an arbitrary input permutation automaton A, we may construct
an automaton simulating A while maintaining a counter of applications of the input
permutation. In this way we can filter out the computations during which the input
permutation is applied at most k times. We shall use this construction in the proof of
the following lemma.

Lemma 2. For every blind input permutation automaton A and k ∈ N, there exists a
k-permuting blind input permutation automaton Ak, such that L(Ak) = L(k)(A).

2.2. INPUT PERMUTATION AUTOMATA 15

Proof. Let A = (Q,Σ, δ,∆, ϕ, q0, F) be a blind input permutation automaton. Let
us construct a blind input permutation automaton Ak = (Qk,Σ, δk,∆k, ϕ, (q0, 0), Fk),
where

Qk = Q× {0, 1, ..., k},

Fk = F × {0, 1, ..., k},

δk((q, i), a) = {(p, i) | p ∈ δ(q, a)} (∀q ∈ Q, a ∈ Σ ∪ {ε}, i ∈ {0, 1, ..., k}),

∆k((q, i)) = {(p, i+ 1) | p ∈ ∆(q)} (∀q ∈ Q, i ∈ {0, 1, ..., k − 1}}),

∆k((q, k)) = ∅ (∀q ∈ Q).

Clearly Ak is k-permuting and L(Ak) = L(k)(A).

Lemma 3. For every input permutation automaton A and k ∈ N, there exists a k-
permuting input permutation automaton Ak, such that L(Ak) = L(k)(A).

Proof. The proof is analogical to the one of Lemma 2. The only difference is in the
definition of ∆k, where we put

∆k((q, i), a) = {(p, i+ 1) | p ∈ ∆(q, a)} (∀q ∈ Q, a ∈ Σ ∪ {ε}, i ∈ {0, 1, ..., k − 1}),

∆k((q, k), a) = ∅ (∀q ∈ Q, a ∈ Σ ∪ {ε}).

Definition 10. Let ϕ be an input permutation and k some natural number. We define
LBL(ϕ) as a family of languages accepted by blind input permutation automata with
the input permutation ϕ, and LBL(ϕ, k) as a family of languages accepted by blind
k-permuting input permutation automata with the input permutation ϕ.

Definition 11. Let ϕ be an input permutation and k some natural number. We define
L (ϕ) as a family of languages accepted by input permutation automata with the input
permutation ϕ, and L (ϕ, k) as a family of languages accepted by k-permuting input
permutation automata with the input permutation ϕ.

Proposition 1. Let ϕ be an input permutation and i, j ∈ N, such that i ≤ j. Then
LBL(ϕ, i) ⊆ LBL(ϕ, j) and L (ϕ, i) ⊆ L (ϕ, j).

Proof. Evident.

Proposition 2. Let ϕ be an input permutation and k ∈ N. Then LBL(ϕ) ⊆ L (ϕ)
and LBL(ϕ, k) ⊆ L (ϕ, k).

Proof. We shall show that for each blind input permutation automaton A with an input
permutation ϕ, there exists an input permutation automaton A′, such that L(A′) =
L(A).

16 CHAPTER 2. FINITE INPUT PERMUTATION AUTOMATA

Let A = (Q,Σ, δ,∆, ϕ, q0, F) be a blind input permutation automaton and A′ =
(Q,Σ, δ,∆′, ϕ, q0, F) be an input permutation automaton that has all the components
of the 7-tuple identical with the components of the tuple A with the only diffenrence
of the input-transforming function ∆′. We shall put ∆′(q, ε) for all ∆(q). It is easy to
see that L(A′) = L(A).

Chapter 3

Power of Input Permutation
Automata

This chapter shall be about the computational power of the input permutation au-
tomata defined in the previous chapter. For simplicity of analysis we shall focus on
oblivious permutations only. All permutations are understood to be oblivious in what
follows.

In the first section, we shall present some examples of oblivious input permutations
that allow the input permutation automata to accept languages that are not regular,
not context-free, or not even recursively enumerable, even when the automata have a
possibility to use the input permutation only once during the computation.

In the second section we shall deal with oblivious input permutations, such that
automata which use them always accept regular languages. After a series of lemmas we
shall prove a theorem characterizing oblivious permutations ϕ, such that L (ϕ, k) = R

and LBL(ϕ, k) = R, for k ∈ N.

3.1 Permutations Not Preserving Regularity

The input permutations examined in the previous research, namely left- and right-
revolving, circular interchange and reversal can be described as oblivious input per-
mutations, as we have shown in the previous chapter. Languages accepted by input
permutation automata with the possibility to apply the above mentioned input per-
mutations at most k times for some k in N fall into the family of regular languages.
The following examples show that some oblivious input permutations might empower
the automata to accept some languages that are not regular, not context-free, or not
even recursively enumerable.

The first example describes an input permutation that empowers finite automata
to accept languages that are context-free but not regular.

17

18 CHAPTER 3. POWER OF INPUT PERMUTATION AUTOMATA

Example 9. Let us define an oblivious input permutation ϕ = (ϕn)i∈N for each n ∈ N
as follows: if n ≡ 0 (mod 2), for all i ∈ Zn

ϕn(i) =

i if i ≡ 0 (mod n),

n− i if i ≡ 1 (mod n).

If n ≡ 1 (mod 2) and bn/2c ≡ 0 (mod 2), for all i ∈ Zn

ϕn(i) =



bn/2c if i = n− 1,

n− i if i ≡ 1 (mod 2) ∧ i < bn/2c,

n− i− 2 if i ≡ 0 (mod 2) ∧ i ≥ bn/2c,

i else.

If n ≡ 1 (mod 2) and bn/2c ≡ 1 (mod 2), for all i ∈ Zn

ϕn(i) =



bn/2c if i = n− 1,

n− i if i ≡ 1 (mod 2) ∧ i ≤ bn/2c,

n− i− 2 if i ≡ 0 (mod 2) ∧ i > bn/2c,

i else.

It is possible to construct a blind input permutation automaton with the input permu-
tation ϕ, that would apply this input permutation in the beginning of the computation,
and accept the language {anbn | n ∈ N}, which does not belong to the family of regular
languages. The index permutation transforms an input w = anbn, where n ∈ N, to
(ab)n. The language of all such words is obviously regular.

It is also possible to construct an input permutation automaton with ϕ, which applies
it on the input in the beginning of the computation that accepts the language L = {w ∈
Σ∗ | w = wR}, which is also not regular. This index permutation shuffles the indices
in a way that the first and the last symbols of the input are next to each other, the
second and the second last as well and so on. The automaton can then easily check if
the permuted input is made up of a sequence of pairs of the same symbols. In case the
length of the input is odd, there will be one extra symbol at the end of the permuted
input, which was originally on the bn/2c-th position.

Figure 3.1: Input permutation from the Example 9 shown on different lengths of inputs.

3.1. PERMUTATIONS NOT PRESERVING REGULARITY 19

Next we shall show an example of a context-sensitive language, which does not
belong to the LCF family, that can be accepted by an automaton with an input per-
mutation.

Example 10. Let us define an oblivious input permutation ϕ = (ϕn)i∈N as follows: let
n ∈ N. If n ≡ 0 (mod 2) and n/2 ≡ 0 (mod 2), then for all i ∈ Zn

ϕn(i) =


n/2 + i− 1 if i ≡ 1 (mod 2) ∧ i < n/2,

n/2 + i+ 1 if i ≡ 0 (mod 2) ∧ i ≥ n/2,

i else.

If n ≡ 0 (mod 2) and n/2 ≡ 1 (mod 2), then for all i ∈ Zn

ϕn(i) =

n/2 + i− 1 if i ≡ 1 (mod 2),

i else.

This permutation shuffles the symbols similarly to the example {w ∈ Σ∗ | w = wR},
but this time it does not take the symbol from the end of the word, but from the middle.
If n is an even number and if we divide an input word w in half into w1 and w2, then
applying ϕ on w results in a word composed of a sequence of pairs of symbols, in which
one symbol is from w1 and one from w2, both from the same position in their words.
This can be easily checked by a finite automaton. It is easy to see that this automaton
accepts the language {ww | w ∈ Σ∗}.

If n ≡ 1 (mod 2), it does not matter how the index permutation ϕn is defined, we
can for example put ϕn(i) = i for all i ∈ Zn, because the input then can never belong
to the language L = {ww | w ∈ Σ∗}. This can also be checked by a finite automaton.

Figure 3.2: Input permutation from the Example 10 shown on different lengths of
inputs.

We shall show that input permutation automata with an oblivious input permuta-
tion can even accept languages that do not fall into the family of recursively enumerable
languages. We shall do this by reduction, where we shall show that with the help of
such automaton we can construct a Turing machine accepting a language of binary

20 CHAPTER 3. POWER OF INPUT PERMUTATION AUTOMATA

codes of Turing machines which accept an empty language, which is clearly not re-
cursively enumerable. In what follows 〈M〉 denotes any effective encoding of Turing
machines into binary strings.

Example 11. Let L∅ = {〈M〉 | M is a Turing machine ∧ L(M) = ∅}. We can
map these binary codes of Turing machines from the language L∅ into a set of natural
numbers S, where each number would represent one code of a Turing machine from L∅.
Let convert : {0, 1}∗ −→ N be a mapping from binary strings to natural numbers, such
that for s ∈ {0, 1}∗: convert(s) = (1s)2. In other words a binary string s is mapped
on a natural number, represented in a binary form, by putting 1 in front of the binary
string s.

Let S = {convert(〈M〉) | 〈M〉 ∈ L∅} be our set of natural numbers representing L∅.
Let LS = {anb | n ∈ S}. This language clearly is not recursively enumerable. If it was,
we could construct a Turing machine M∅ accepting L∅ using a reduction depicted in
Figure 3.3. This M∅ would work this way: Let AS be a Turing machine accepting LS.
Our M∅ takes its input 〈M〉 and transforms it to w = anb, where n = convert(〈M〉).
This is possible to be carried out algorithmically. This w is then presented to AS. If
AS accepts w, M∅ accepts 〈M〉, if it rejects or ends in a cycle, M∅ does the same on
〈M〉. This way M∅ accepts its input 〈M〉 only if 〈M〉 is a binary code of a Turing
machine accepting an empty language. LS thus cannot be recursively enumerable.

Let us now take an input permutation ϕ with an index permutation ϕn = ϕ[n] for
all n ∈ N. For all n 6∈ S, we put ϕn+1(i) = i, for all i ∈ Zn. For all n ∈ S we put
ϕn+1(i) = i − 1 (mod n), for all i ∈ Zn. ϕ0 may be defined arbitrarily. A non-blind
automaton with ϕ that applies this input permutation on its input in the beginning of
the computation in case a is the first symbol of the input, and then checks if the input
is of the form bak, for some k ∈ N, can accept our LS. This shows that some input
permutation automata can even accept languages that do not belong to the recursively
enumerable language family.

Figure 3.3: Turing machine M∅ from the Example 3.3, which gets an input 〈M〉, then
uses an algorithm B, which transforms the input with the mapping convert into a
suitable input for AS. AS accepts or declines the transformed input and so does M∅.

3.2. REGULARITY PRESERVING PERMUTATIONS 21

3.2 Regularity Preserving Permutations

In this section we shall identify a necessary and sufficient condition under which a family
of languages accepted by k-permuting input permutation automata with a specific
oblivious input permutation falls into the family of regular languages.

First, we shall prove some basic properties of oblivious input permutations. Next
we shall define a normal form of input permutation automata that will serve us in the
proof of our main results. Finally we shall prove that k-permuting input permutation
automata equipped with an oblivious permutation ϕ always accept regular languages
if and only if R is closed under ϕ−1.

Definition 12. Let ϕ be an oblivious input permutation and ϕn = ϕ[n] for all n ∈ N.
Then we shall denote by ϕ−1 the inverse oblivious input permutation defined for all
n ∈ N by ϕ−1[n] = ϕ−1

n .

Thus if w = a0...an−1 for a0, ..., an−1 ∈ Σ and ϕ = (ϕn)n∈N is an oblivious input
permutation, then ϕ−1(w) = aϕ−1

n (0)...aϕ−1
n (n−1) and ϕ−1(L) = {ϕ−1(w) | w ∈ L}.

Lemma 4. Let ϕ be an oblivious input permutation and L a language. Then ϕ−1(ϕ(L)) =
ϕ(ϕ−1(L)) = L.

Proof. We shall only prove the identity ϕ−1(ϕ(L)) = L. The identity ϕ(ϕ−1(L)) = L

shall follow by the latter via substituting ϕ−1 for ϕ, as it is clear that (ϕ−1)−1 = ϕ

“⊆”: Let w = a0...an−1 ∈ ϕ−1(ϕ(L)). From the definition of ϕ−1 we know that
there exists some v ∈ ϕ(L), such that w = ϕ−1(v). Let v = c0...cn−1. Similarly from
the definition of ϕ, there exists u ∈ L such that v = ϕ(u). Let u = b0...bn−1. Then
v = ϕ(u) = ϕ(b0...bn−1) = bϕn(0)...bϕn(n−1), so ci = bϕn(i) for all i ∈ Zn. Moreover
w = ϕ−1(v) = ϕ−1(c0...cn−1) = cϕ−1

n (0)...cϕ−1
n (n−1) = bϕn(ϕ−1

n (0))...bϕn(ϕ−1
n (n−1)), and so

ai = cϕ−1(i) = bϕn(ϕ−1
n (i)), for all i ∈ Zn. As a result, we get ai = bϕn(ϕ−1

n (i)) = bi, for all
i ∈ Zn, and so w = u and w ∈ L.

“⊇”: Let w = a0...an−1 ∈ L. If we apply ϕ on w, we get ϕ(w) = ϕ(a0...an−1) =
aϕn(0)...aϕn(n−1). Next we apply ϕ−1 on ϕ(w), we get ϕ−1(ϕ(w)) = ϕ−1(aϕn(0)...aϕn(n−1)) =
aϕn(ϕ−1

n (0))...aϕn(ϕ−1
n (n−1)) and as a result, we get aϕ−1

n (ϕn(0))...aϕ−1
n (ϕn(n−1)) = a0...an−1,

which means that ϕ−1(ϕ(w)) = w and so w is in ϕ−1(ϕ(L)).

Lemma 5. Let ϕ be an oblivious input permutation. Then for all L ⊆ Σ∗:

{w ∈ Σ∗ | ϕ(w) ∈ L} = ϕ−1(L).

Proof. Let ϕ be an oblivious input permutation and L ⊆ Σ∗.
“⊆”: Let w = a0...an−1 ∈ Σ∗ be such that ϕ(w) ∈ L. Thus there exists u =

b0...bn−1 ∈ L such that u = ϕ(w). From the last equality we get b0...bn−1 = ϕ(a0...an−1) =

22 CHAPTER 3. POWER OF INPUT PERMUTATION AUTOMATA

aϕn(0)...aϕn(n−1). If we apply ϕ−1 on u we get ϕ−1(b0...bn−1) = bϕ−1
n (0)...bϕ−1

n (n−1) =
aϕn(ϕ−1

n (0))...aϕn(ϕ−1
n (n−1)) = a0...an−1, which means that w ∈ ϕ−1(L).

“⊇”: Let w ∈ ϕ−1(L). This means that there exists u ∈ L such that w = ϕ−1(u).
If we apply ϕ on both sides of the last equality, we get ϕ(w) = ϕ(ϕ−1(u)). We need
to show that ϕ(ϕ−1(u)) = u. Let u = a0...an−1 and v = b0...bn−1 so that v = ϕ−1(u) =
aϕ−1

n (0)...aϕ−1
n (n−1). If we apply ϕ on v, we get ϕ(v) = ϕ(b0...bn−1) = bϕn(0)...bϕn(n−1) =

aϕ−1
n (ϕn(0))...aϕ−1

n (ϕn(n−1)) = a0...an−1. We proved that ϕ(ϕ−1(u)) = u and so ϕ(w) ∈
L.

Lemma 6. LBL(ϕ, 0) ⊆ R and L (ϕ, 0) ⊆ R.

Proof. The proof is trivial since L (ϕ, 0) (LBL(ϕ, 0)) is a family of languages for which
there exists a (blind) automaton with an oblivious input permutation, such that it
does not apply the input permutation at all, which is the same as a family of languages
accepted by finite automata, in other words R.

The following definition describes a normal form of input permutation automata,
which allows the automata to divide their states into two sets. This partition assures
that once the input-transforming transition function is defined from one state, the
ordinary transition function may not be defined from this state, which will later help
us in the proof of our theorems.

Definition 13. Let A = (Q,Σ, δ,∆, ϕ, q0, F) be a (blind) input permutation automaton.
Let Q = Q1 ∪Q2, where Q1 = {q | ∃a ∈ Σ : ∆(q, a) 6= ∅} (Q1 = {q | ∆(q) 6= ∅} for
a blind automaton) and Q2 = {q | ∃a ∈ Σ : δ(q, a) 6= ∅}. The automaton A is said
to be in state-disjoint normal form if Q1 ∩ Q2 = ∅, in other words, once the input-
transforming transition function is defined from some state q, the ordinary transition
function may not be defined from this state and vice versa. We shall write Q∆ for Q1

and Qδ for Q2.

We shall now prove that this is indeed a normal form.

Lemma 7. For each blind input permutation automaton A = (Q,Σ, δ,∆, ϕ, q0, F) there
exists a blind input permutation automaton A′ in state-disjoint normal form, such that
L(A′) = L(A). Clearly, if A is a k-permuting automaton for some k ∈ N, then A′ is a
k-permuting automaton as well.

Proof. Let A = (Q,Σ, δ,∆, ϕ, i, F) be a blind input permutation automaton. Let

3.2. REGULARITY PRESERVING PERMUTATIONS 23

A′ = (Q′,Σ, δ′,∆′, ϕ, iδ, F ′) be such that:

Q′ = {q∆, qδ | q ∈ Q},

F ′ = {qδ | q ∈ F},

∆′(q∆) = {pδ | p ∈ ∆(q)} (∀q ∈ Q),

δ′(qδ, a) = {pδ | p ∈ δ(q, a)} (∀q ∈ Q, a ∈ Σ),

δ′(qδ, ε) = {q∆} ∪ {pδ | p ∈ δ(q, ε)} (∀q ∈ Q).

It is easy to see that A′ is in state-disjoint normal form and that L(A′) = L(A).
Clearly, if A is k-permuting k ∈ N, then A′ is k-permuting as well.

Lemma 8. For each input permutation automaton A = (Q,Σ, δ,∆, ϕ, q0, F) there
exists an input permutation automaton A′ in state-disjoint normal form, such that
L(A′) = L(A). Moreover, if A is a k-permuting automaton for some k ∈ N, then A′ is
a k-permuting automaton as well.

Proof. Let A = (Q,Σ, δ,∆, ϕ, i, F) be our input permutation automaton. Let A′ =
(Q′,Σ, δ′,∆′, ϕ, iδ, F ′) be such that:

Q′ = {q∆, qδ | q ∈ Q}

F ′ = {qδ | q ∈ F}

∆′(q∆, a) = {pδ | p ∈ ∆(q, a)} (∀q ∈ Q, a ∈ Σ ∪ {ε})

δ′(qδ, a) = {pδ | p ∈ δ(q, a)} (∀q ∈ Q, a ∈ Σ)

δ′(qδ, ε) = {q∆} ∪ {pδ | p ∈ δ(q, ε)} (∀q ∈ Q)

It is easy to see that A′ is in state-disjoint normal form and that L(A′) = L(A).
Moreover, if A is k-permuting k ∈ N, then A′ is k-permuting as well.

The following theorems tell us what condition the input permutation has to satisfy
in order to preserve regularity when applied at most k times during each computation
for some k in N.

In what follows, we shall use the notation Lp,q(A) = {w ∈ Σ∗ | (p, w) `∗A (q, ε)},
where A = (Q,Σ, δ,∆, ϕ, q0, F) is an input permutation automaton and q, p ∈ Q.

Theorem 18. Let ϕ be an oblivious input permutation and k ∈ N. If R is closed
under ϕ−1, then LBL(ϕ, k) ⊆ R. Conversely, if k ≥ 1 and LBL(ϕ, k) ⊆ R, then R is
closed under ϕ−1.

Proof. We shall prove the first part of this statement by induction. The statement is
trivial for k = 0, as we have shown in Lemma 6.

Let us now suppose that the statement holds for some k ∈ N. We want to show that
it is also true for k + 1. Let L ∈ LBL(ϕ, k + 1). From the definition of LBL(ϕ, k + 1)

24 CHAPTER 3. POWER OF INPUT PERMUTATION AUTOMATA

we know that there exists a (k + 1)-permuting blind input permutation automaton
A = (Q,Σ, δ,∆, ϕ, q0, F), such that L(A) = L. By Lemma 7 we can assume that A is
in state-disjoint normal form.

As A is k-permuting, it is clear that a number #(q) in {0, ..., k+1} can be associated
with each q in Q so that #(q) is the maximum number of applications of ϕ over all
computations of A starting in q. Without loss of generality, it can be assumed that
#(q0) = k + 1 (otherwise L(A) belongs to LBL(ϕ, k), and it follows by the induction
hypothesis that L(A) is in R).

The automaton is in state-disjoint normal form by assumption, thus Q is partitioned
to two disjoint subsets Q∆ and Qδ as in Definition 13. For the purpose of this proof
we shall use the following notation:

Q[i, δ] = {q ∈ Qδ | #(q) = i} (∀i ∈ {0, ..., k + 1})

Q[i,∆] = {q ∈ Q∆ | #(q) = i} (∀i ∈ {0, ..., k + 1})

Q[i] = Q[i,∆] ∪Q[i, δ] (∀i ∈ {0, ..., k + 1})

F [i] = {q ∈ F | #(q) = i} (∀i ∈ {0, ..., k + 1})

If we analyze the accepting computations of the automaton A, it follows by Lemma
5 that

L =
⋃

f∈F [0]
Lq0,f (A) ∪

⋃
p∈Q[0,∆]

Lq0,p(A)ϕ−1(L′[p])

where
L′[p] =

⋃
r∈∆(p)
f∈F

Lr,f (A).

We can construct a blind input permutation automaton A′p for each p ∈ Q[0,∆],
such that L(A′p) = L′[p]. We define A′p = (Q′,Σ, δ′,∆′, ϕ, q′0, F ′), where q′0 is a new
state and

Q′ = {q′0} ∪Q \Q[0]

F ′ = F \ F [0]

∆′(q) = ∆(q) (∀q ∈ Q \Q[0])

δ′(q, a) = δ(q, a) (∀q ∈ Q \Q[0], a ∈ Σ ∪ {ε})

δ′(q′0, ε) = ∆(p)

δ′(q′0, a) = ∅ (∀a ∈ Σ)

∆′(q′0) = ∅

This automaton is clearly well defined and it can apply the input permutation at
maximum k times. It begins each computation in q′0 and transitions on ε to one of

3.2. REGULARITY PRESERVING PERMUTATIONS 25

the states r ∈ ∆(p). Clearly r ∈ Q[1, δ]. From there the automaton continues the
computation according to δ and ∆ functions. Clearly L(A′p) = L′[p] and so L′[p]′ ∈
LBL(ϕ, k). From the induction hypothesis we know that LBL(ϕ, k) ⊆ R. Since the
languages Lq0,f (A) for all f ∈ F [0] are clearly regular and R is closed under union and
concatenation, the language L belongs to R if R is closed under ϕ−1.

We shall prove by contradiction the second part of the statement. Let ϕ be an
oblivious input permutation. Suppose that k ≥ 1, LBL(ϕ, k) ⊆ R and R is not closed
under ϕ−1. Let L ∈ R be such that ϕ−1(L) 6∈ R. Since L ∈ R, there exists a finite
automaton A = (Q,Σ, δ, q0, F), such that L(A) = L. We can construct a blind input
permutation automaton A′ = (Q ∪ {q′0},Σ, δ,∆, ϕ, q′0, F) with our input permutation
ϕ, which applies ϕ as the first thing in the beginning of the computation and moves
to q0. From there it follows the ordinary transition function δ. It follows by Lemma 5
that L(A′) = ϕ−1(L). Moreover L(A′) ∈ LBL(ϕ, 1) ⊆ LBL(ϕ, k). Since ϕ−1(L) 6∈ R

also LBL(ϕ, k) 6⊆ R, which is in contradiction with our assumptions. From this we get
that if LBL(ϕ, k) ⊆ R, then R is closed under ϕ−1.

Theorem 19. Let ϕ be an oblivious input permutation and k ∈ N. If R is closed
under ϕ−1, then L (ϕ, k) ⊆ R. Conversely, if k ≥ 1 and L (ϕ, k) ⊆ R, then R is
closed under ϕ−1.

Proof. The proof of this theorem will be similar to the one of the Theorem 18. We
shall use induction to prove the first part of the statement. For k = 0 is the statement
trivial, as we have shown in Lemma 6.

Let us now suppose that the statement holds for some k ∈ N. We want to show
that it is also true for k + 1. Let L ∈ L (ϕ, k + 1). From the definition of L (ϕ, k + 1)
we know that there exists a (k + 1)-permuting input permutation automaton A =
(Q,Σ, δ,∆, ϕ, q0, F), such that L(A) = L. By Lemma 8 we can assume that A is in
state-disjoint normal form.

As A is k-permuting, it is clear that a number #(q) in {0, ..., k+1} can be associated
with each q in Q so that #(q) is the maximum number of applications of ϕ over all
computations of A starting in q. Without loss of generality, it can be assumed that
#(q0) = k + 1 (otherwise L(A) belongs to L (ϕ, k), and it follows by the induction
hypothesis that L(A) is in R).

The automaton is in state-disjoint normal form by assumption, thus Q is partitioned
to two disjoint subsets Q∆ and Qδ as in Definition 13. For the purpose of this proof
we shall use the notation Q[i, δ], Q[i,∆], Q[i], F [i] defined in the same way as in the
proof of the Theorem 18.

If we analyze the accepting computations of the automaton A, it follows by Lemma
5 that

L =
⋃

f∈F [0]
Lq0,f (A) ∪

⋃
p∈Q[0,∆]

Lq0,p(A)
⋃

a∈Σ∪{ε}

(
ϕ−1(L′[p, a]) ∩ aΣ∗

)

26 CHAPTER 3. POWER OF INPUT PERMUTATION AUTOMATA

where
L′[p, a] =

⋃
r∈∆(p,a)
f∈F

Lr,f (A).

We can construct an input permutation automaton A′p,a for each p ∈ Q[0,∆] and
a ∈ Σ ∪ {ε}, such that L(A′p,a) = L′[p, a]. We define A′p,a = (Q′,Σ, δ′,∆′, ϕ, q′0, F ′),
where q′0 is a new state and

Q′ = {q′0} ∪Q \Q[0]

F ′ = F \ F [0]

∆′(q, b) = ∆(q, b) (∀q ∈ Q \Q[0], b ∈ Σ ∪ {ε})

δ′(q, b) = δ(q, b) (∀q ∈ Q \Q[0], b ∈ Σ ∪ {ε})

δ′(q′0, ε) = ∆(p, a)

δ′(q′0, b) = ∅ (∀b ∈ Σ)

∆′(q′0, b) = ∅ (∀b ∈ Σ ∪ {ε})

This automaton is clearly well defined and it can apply the input permutation at
maximum k times. It begins each computation in q′0 and transitions on ε to one of
the states r ∈ ∆(p, a). Clearly r ∈ Q[1, δ]. From there the automaton continues
the computation according to δ and ∆ functions. Clearly L(A′p,a) = L′[p, a] and so
L′[p, a] ∈ L (ϕ, k). From the induction hypothesis we know that L (ϕ, k) ⊆ R. Since
the languages aΣ∗ and Lq0,f (A) for all f ∈ F [0] are clearly regular and R is closed
under union, intersection and concatenation, the language L belongs to R if R is closed
under ϕ−1.

In the proof of the second part of the statement of the Theorem 18, we have shown
that if k ≥ 1 and LBL(ϕ, k) ⊆ R, then R is closed under ϕ−1. By Proposition 2 we
know that LBL(ϕ, k) ⊆ L (ϕ, k). This way, if the statement applies to LBL(ϕ, k), it
also applies to L (ϕ, k).

Theorem 20. Let ϕ be an oblivious input permutation. Then the following statements
are equivalent:

(i) LBL(ϕ, k) = R for all k ∈ N.

(ii) L (ϕ, k) = R for all k ∈ N.

(iii) R is closed under ϕ−1.

Proof. We have proved in Theorems 18 and 19 that the inclusion “⊆” in (i) and (ii)
is equivalent to (iii). The reversed inclusion is trivial, we would just take k = 0 and
apply Proposition 1. Thus we have proved the equivalences (i)⇔ (iii) and (ii)⇔ (iii).
From (i)⇔ (iii)⇔ (ii) we get (i)⇔ (ii).

Conclusion

This thesis has focused on automata with an additional possibility to use an input
transformation. A question on the computational power of these models has been
raised: do they still accept regular languages or can they also accept languages from
different levels of the Chomsky hierarchy?

In Chapter 1 we have summarized the past research on languages accepted by
automata with some specific input transformations. In Chapter 2 we have provided
mathematical basis for a study of input transformation automata at a general level
by defining an input permutation and a specialization of this concept – an oblivious
input permutation. The former is a mapping of words which preserves the number
of occurrences of each symbol. The latter, in addition, does not depend on specific
symbols but only on their positions in the word. Next we have defined two variants of
input permutation automata, a general one and a blind one. Both have a possibility
to use a specific input permutation during their computation. The difference between
them is that the former may peek at the first symbol of the input and decide according
to that if it uses the input permutation, of continues without using it, and the latter
may perform the input permutation only according to the current state.

Later we have defined what we have called k-permuting input permutation au-
tomata, which are automata that use the input permutation at most k times during
the computation on any input. We have showed, that for each input permutation au-
tomaton A, we can construct a k-permuting automaton Ak, such that L(Ak) = L(k)(A).
Finally, we have defined a family of languages accepted by blind input permutation
automata with an input permutation ϕ denoted by LBL(ϕ) and a family of languages
accepted by blind k-permuting input permutation automata with an input permuta-
tion ϕ and some natural k denoted by LBL(ϕ, k). Similarly we have defined L (ϕ) and
L (ϕ, k) for non-blind input permutation automata.

In the last chapter, we have presented some examples of oblivious input permuta-
tions, which can transform some of the languages which are not regular, not context-
free, or not even recursively enumerable into languages recognizable by finite automata.
This way we have showed how powerful the input permutation automata can be. Next,
for the purpose of our future proofs, we have showed that ϕ−1(ϕ(L)) = ϕ(ϕ−1(L)) = L

and {w ∈ Σ∗ | ϕ(w) ∈ L} = ϕ−1(L) for an oblivious input permutation ϕ and all

27

28 Conclusion

L ⊆ Σ∗. Later we have defined a state-disjoint normal form, which ensures that the
set of states, from which the ordinary transition function of an automaton is defined
is disjoint from the set of states, from which the the input-transforming function is
defined. This has helped us in the proof of our final theorems.

The main results of this thesis are the final theorems. They tell us about the
necessary and sufficient condition under which the families LBL(ϕ, k) and L (ϕ, k),
where ϕ is an oblivious input permutation and k a natural number, are equal to R.
The condition states that it must be satisfied that R is closed under ϕ−1.

Some questions for further research can be raised: are the families LBL(ϕ, k) and
L (ϕ, k) equal if ϕ is a non-oblivious input permutation? What is the relationship
between the families LBL(ϕ) and L (ϕ)?

Bibliography

[1] Henning Bordihn, Markus Holzer, and Martin Kutrib. Input reversals and iterated
pushdown automata: a new characterization of Khabbaz geometric hierarchy of
languages. In International Conference on Developments in Language Theory (DLT
2004), pages 102–113. Springer, 2004.

[2] Henning Bordihn, Markus Holzer, and Martin Kutrib. Revolving-input finite au-
tomata. In International Conference on Developments in Language Theory (DLT
2005), pages 168–179. Springer, 2005.

[3] Henning Bordihn, Markus Holzer, and Martin Kutrib. Hybrid extended finite au-
tomata. In Implementation and Application of Automata (CIAA 2006), pages 34–
45. Springer, 2006.

[4] Henning Bordihn, Markus Holzer, and Martin Kutrib. Hairpin finite automata. In
International Conference on Developments in Language Theory (DLT 2007), pages
108–119, 2007.

[5] Michael A Harrison. Introduction to formal language theory. Addison-Wesley Long-
man Publishing Co., Inc., 1978.

[6] Markus Holzer and Martin Kutrib. Gaining power by input operations: finite
automata and beyond. In International Conference on Implementation and Appli-
cation of Automata (CIAA 2011), pages 16–29. Springer, 2011.

[7] John E Hopcroft. Introduction to automata theory, languages, and computation.
Pearson Education India, 2008.

[8] Dexter C Kozen. Automata and computability. Springer Science & Business Media,
2012.

29

	Introduction
	Extended Finite Automata
	Notation
	Extended Finite Automata
	Automata with a Single Input Transformation
	Hybrid Finite Automata
	Hairpin Finite Automata
	Summary of Results

	Finite Input Permutation Automata
	Input Permutations
	Input Permutation Automata

	Power of Input Permutation Automata
	Permutations Not Preserving Regularity
	Regularity Preserving Permutations

	Conclusion

