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Abstrakt

Práca sa zaoberá algoritmami prenosu svetla a sledovania lúčov, pričom sa sústred’uje

najmä na Metropolis light transport. Spomı́nané sú variácie tohto algoritmu, vychádzajúce

z myšlienok pôvodného článku publikovaného v roku 1997. Predstavená je knižnica

umožňujúca interakt́ıvnu vizualizáciu algoritmov prenosu svetla v reálnom čase, ktorá

tiež umožńı použ́ıvatelovi filtrovat’ jednotlivé lúče zvoleńım oblasti ktorou má lúč

prechádzat’. Taktiež umožńı sledovat’ perturbácie zvoleného lúča podl’a pravidiel MLT-

algoritmu a jeho mutačných stratégíı.

Kl’́učové slová: Metropolis Light Transport, global illumination, vizualizácia, OpenGL
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Abstract

Thesis revolves around methods of path-tracing and light-transport in computer graphics,

with its main focus on Metropolis light transport. It lists through algorithms that

spawned from the initial idea of MLT published in 1997, then presents a library for

real-time interactive visualization of light-transport algorithms, that allows users to filter

through light paths generated by the raytracer by selecting an area through witch the

light path that he wishes to visualize must pass. The library also offers a visualization

of perturbations according to the Metropolis framework and mutation strategy of the

given algorithm.

Keywords: Metropolis Light Transport, global illumination, visualization, OpenGL
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Foreword

While never being at the forefront of computer graphics research, the idea of Metropolis

Light Transport has been kept alive since its first incarnation, with a decent number of

works improving on the original notion. Lately, the interest seems to have resurged, with

derivative works showing up on both SIGGRAPH 2012 and 2013. Yet, visualization

tools are practically non-existent, not only for MLT based algorithms, but also for ray

or path tracing as a whole (the best tool probably being a plugin for 3DS Max, designed

primarily to allow light path manipulation for 3d artists). This work aims to round

up the theory behind MLT, focusing on the original concept but also mentioning the

various improvements, and to create a basic tool for visualization of light paths, and

light path mutations. The core of this application will be relying on a tried and tested,

widely used graphics libraries, namely Assimp and Mitsuba, with real time visualization

in OpenGL. The reader should have at least a very basic background knowledge of

methods in computer graphics.
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Introduction

The concept of simulating rays of light to create physically correct, believable and

maybe even photorealistic renders of three dimensional scene is not a new one in the

computer graphics community. If we take Arthur Appels work on ray casting as a basis,

then the idea itself is almost half a century old. Over the years the concept developed

and evolved into numerous algorithms and today most of them fall under an umbrella

term of global illumination - a name indicating that these algorithms do not account

only for light coming directly from a light source (such algorithms, including the original

Appels raycasting, would be labeled under a direct illumination moniker), but also for

light reflecting off of other surfaces in a scene, whether reflective or not. These include

radiosity, photon mapping, ray tracing, path tracing, Metropolis light transport and

other.

Today, global illumination algorithms are used in a variety of fields, from design

and architecture to film industry. In this setting, every possible optimisation in terms

of required time or processing power may have a serious impact on projects budget.

And with these algorithms relying mostly on brute force, there are certainly places to

improve. Since MLT may be one of the methods that pushes the boundaries again -

and it has already successfully done so in the recent years - having tools to experiment

with it should be beneficial.

Apart from providing a round up of theoretical knowledge in the field, this work is to

provide a visualisation library for the MLT algorithm (and possibly for any other path

tracing technique). The main challenge would be to visualise the data usually produced

by an offline renderer in a real time interactive environment (OpenGL). The application

also aims to be platform independent, using only widely supported, cross-platform

libraries and methods.
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Chapter 1

Previous works

In this chapter, theoretical knowledge of Metropolis Light Transport will be presented,

independently from it’s implementation used in the visualisation application. Variants

and improvements are also discussed, presenting the path this method took after it’s

introduction in the computer graphics field.

1.1 Metropolis Light Transport

First proposed in 1997 by Eric Veach and Leonidas J. Guibas [VG97], MLT is a Monte

Carlo method for solving the light transport problem, that seeks to improve the time

complexity (which, in Monte Carlo evaluations of path-space light transport integrals,

is generally closely related to the high number of samples that is required to avoid

noise in the final render) by focusing the samples into regions of path space with high

contributions to the final image. To do so, MLT calculates the amount of light (flux)

flowing along the examined path, and uses this value in conjunction with Metropolis

framework to determine whether it accepts or rejects the path. Acceptance probability

is computed according to the Metropolis-Hastings algorithm and a new path is always

created from the last accepted one using a set of predetermined mutation strategies.

Therefore, light paths generated this way always form a Markov chain. In following

sections, we’ll attempt to explain the basic principles of this algorithm, as proposed in

the original paper, hopefully in a more accessible way.

2



CHAPTER 1. PREVIOUS WORKS 3

Metropolis Sampling

For every new path, that we get from a mutation run in the previous indentation of

our sampling loop, we need to compute the acceptance probability. This is based on

Image contribution function, which should, in theory, evaluate how visible is the effect

of sampling and recording the information from a particular light path on our final

render, so that we can accept the sample with probability proportional to its usefulness.

Of course, this is something which is not easily estimated.

Fortunately, since we would use this function only to calculate our probability

distribution in Metropolis-Hastings algorithm - which means we don’t really need an

absolute value of the function, just the distribution of it among the samples - we can

use any function that is proportional to the aforementioned one. In our case, the Image

contribution function will actually be the amount of light, or the luminous strength,

flowing along current path.

The outcome of every mutation is based solely on the previous state, and therefore

accepted states, which are in our case light paths, form a Markov chain - a random

walk in state space, with predetermined probabilities for each transition. In return, we

now know that the probability distribution, as the number of samples approach infinity,

always converges to a single - stationary - distribution. The key is to generate and

accept light paths as if they were sampled from such distribution.

To make our random walk behave like that, we will design the transition function in

a way that the system satisfies the condition of detailed balance, or reversibility. That

is, given the transition function K(x|y), denoting the probability of transitioning into

state x, when in state y, the condition K(x|y) = K(y|x) must hold for every pair of

states x and y. To achieve this balance for a particular pair of states (or samples), we

first choose an arbitrary, tentative transition function T, for both T (x|y) and T (y|x).

In MLT, T is given by a mutation strategy. To make the transition function reversible,

we must also bear acceptance probability (which we’ll define in next segment) in mind,

along with the image contribution function f of the particular sample, that we need our

probability distribution to be proportional to. To maintain equilibrium, it is sufficient

that these densities are equal:

f(x)T (y|x)a(y|x) = f(y)T (x|y)a(x|y)

It can be proven that the reversibility attribute of a Markov Chain is equal to it producing
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samples according to stationary distribution. Furthermore, using this equation we can

finally determine the acceptance probability. Since T is arbitrarily chosen and f can be

calculated for each path, the only variable left in the equation is the ration a(y|x)/a(x|y).

In order to reach equilibrium as quickly as possible, we want to maximize both a(x|y)

and a(y|x), therefore:

a(y|x) = min

{
f(y)T (x|y)

f(x)T (y|x)
, 1

}

The path integral formulation of light transport

The initial point of examination is the light transport equation between points x′ and

x′′ given by

L(x′ → x′′) = Le(x
′ → x′′) +

∫
M

L(x′ → x′′)fs(x→ x′ → x′′)G(x′ ↔ x′′)dA(x)

Here, M is the union of all surfaces, A is the area measure on M, Le(x
′ → x′′) is

the emitted radiance leaving x′ in the direction of x′′,fs is the bidirectional scattering

distribution function (BSDF, this tells us how much of the light is reflected in a particular

direction) and G represents the throughput of a differential beam between the point x

and x′. We assume a geometric model of perfectly incoherent light, travelling in straight

lines and being emitted, scattered and absorbed only at surfaces (although the formula

was later modified in [PKK00] so that it accounts for participating media).

By introducing a filter function into the equation (expressing the amount of light

that is received by a particular pixel - needless to say, this is zero for almost all light

paths, expect for the ones which have points lying on lens edge) integrating over all

points of the scene and then rewriting the formula into an integration over the path

space, we get

mj =

∫
Ω

fj(X)dµ(X)

Here, mj represents the amount of light received by pixel j , µ is the area measure and

fj the measurement contribution function, created by extracting the appropriate term

(the one regarding the subpath we’re currently examining) from the expansion of the

integration over all points in scene (which we skipped for brevity, since paraphrasing of

the original paper has already taken a large enough chunk of this work). X is a path
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from the path space Ω. Each integrand fj can be written in a form

fj(X) = wj(X)f(X)

where wj is again the filter function for pixel j and f represent other factors, same for

each pixel on the image plane. Knowing this we can compute the estimated lightness of

each pixel by sampling N samples according to some distribution p (using the acceptance

probability from the previous section) and using the identity

mj = E

[
1

N

N∑
i=1

wj(Xi)f(Xi)

p(Xi)

]
The only missing part we are now left with is the probability distribution p(Xi) or more

precisely, since

p(Xi) =
f(Xi)∫

Ω
f(Xi)dµ(Xi)

we are actually looking for a total amount of radiant power received by the image plane.

While our transition function maintains detailed balance, the samples themselves

will have desired distribution only as i→ ∞. This problem, also known as startup bias

in various kinds of importance sampling methods, is most easily avoided by starting from

an approximate equilibrium distribution computed using another sampling algorithm

(like bidirectional path tracing). The initial path in the Markov chain is then chosen from

the paths generated this way (which are called the seed), with probability proportional

to its contribution function - thus, even the first state is, statistically speaking, sampled

from the stationary distribution. In [VG97], it is suggested to restart the process multiple

times with different seeds (each time contributing to the same image).

Putting it back together

To sum up all the mathematics - we fire up the algorithm by collecting a number of

samples using a different method, like bidirectional path tracing, to get approximate

sample distribution. We then choose an initial state and continue with our Markov chain

random walk until we’re happy with the result. Path mutations are used to advance to

the next state and in each step we have all the parameters we need to calculate both

acceptance probability and expected luminance of a pixel (1.1).

It should be noted that so far the equations presented account for monochrome

images only. Yet, expanding into colour is straightforward - we simply sample for each
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Source 1.1 Pseudocode of the MLT agorithm, as specified in [VG97]

x = GenerateInitialPath()

image = EmptyImage()

for i=1 to N

y = Mutate(x)

a = AcceptationProbability(y|x)

if RandomValue() < a

x = y

RecordSample()

return image

part of the desired colour spectrum (like RGB) separately, with image contribution

function being the luminance of the sampled spectrum.

Path Mutations

The main disadvantage of MLT lies in the strong correlation of consecutive samples.

While this could be beneficial when exploring areas of path space that contribute largely

to the final render, it can also mean that the algorithm can get stuck on an unimportant

path, having trouble to move on from it. While this is already less likely than the

occurrence of the former phenomenon (since we’re sampling proportionally to paths

importance), we can minimize the chance of it by choosing a wide-enough array of

path mutations. And while the vicinity of the less luminous paths may not need as

many samples as the one of lighter paths, we still need to sample from all paths that

contribute to the final image, otherwise the render will be noisy. In this section we

present the mutation strategies used in [VG97].

Bidirectional mutations

Perhaps the most straightforward of all, bidirectional mutations allow us to make both

small changes, or to throw away the whole path and start with a completely unrelated

one. Though the chance of the later is slim in comparison to other possible mutations,

it is an important tool in ensuring of the ergodicity of a random walk - to satisfy it,

it is sufficient when for every state there is a non-zero possibility of transitioning to

any other state. That ensures that regardless of the initial sample, the random walk

converges to the same ergodic state - the stationary distribution.
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When the algorithm chooses to perform a bidirectional mutation, it first chooses a

length of the subpath that would be deleted (in terms of number of vertices). Shorter

subpaths are preferred - this ensures both high acceptance probability and low cost

of a mutation, both of which are requirements for a good mutation strategy. It then

chooses two vertices on the path, with distance (naturally, again in terms of vertices)

equal to the one previously calculated. Subpath between these two is then removed and

replaced by a new one (preferably, but not necessarily, with the same length as the

old one). This is done via bidirectional path tracing - one branch starting in first, the

other in second vertex, both reaching desired length and then finally connecting. If the

path is obstructed, i.e. the final interconnection passes through a wall, the mutation is

immediately rejected and a new one is generated.

Perturbations

Perturbations are MLTs main tool for exploring small areas of high importance. The

idea is to take some of the vertices of a light path and move them slightly, thus making

a less drastic change to the path then by most of the bidirectional mutations. Each

vertex is moved by a random distance R in a random direction φ. The angle φ is chosen

uniformly, while R is exponentially distributed between two arbitrary values r1 < r2.

If the perturbation causes any of the vertices to change the kind of surface they

are on, or the light path becomes obstructed, the mutation is automatically discarded.

Three kinds of perturbations are proposed in the original paper. We’ll use Heckbert’s

regular expression notation, for denoting surface properties - S, D, E and L stand for

specular surface, non-specular (diffuse) surface, lens edge and light source respectively,

+ and * signs for “at least one” and “zero or more”.

Lens perturbations

We delete subpath of the form (L|D)DS*E, then reconstruct it starting from lens edge,

towards the rest of the light path (whether it continues with a non-specular surface

or consists just of the final vertex on a light source). Notice we need the last vertex

that is to be modified to lie on a non-specular surface - this allows us to connect the

end of the newly generated path to the previous one, since we have more freedom with
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choosing the direction of a ray that is scattered on non-specular surface, in comparison

to specular surfaces where the BSDF is more strict.

Caustic perturbations

Because of the subpath form that is imposed on us when doing Lens perturbation,

we now need a different technique for exploring neighbourhood of light paths causing

caustics, since these are of the form LS+DE. Caustic perturbation starts off by deleting

the subpath of the form (D|L)S*DE and then reconstructs from vertex closest to the

light source. Thus, the last vertex of a new subpath lies again on a non-specular surface,

which allows for easy connection with lens edge.

Multi-chain perturbations

Neither of the aforementioned perturbations work on paths with suffix of the form

(D|L)DS*DS*DE. This can be handled by chaining perturbations, starting and ending

on non-specular surface (or lens edge or light source).

Lens subpath mutations

Lens subpath mutations help with stratification of the samples over the final render

and also with lowering of the cost of the whole algorithm. The idea is to delete the lens

subpath - (D|L)S*E - and then, with each new mutation, replace it with a subpath

aimed at a different pixel on the image plane. This way, the rest of the path is used to

it’s fullest and not thrown away at the time it could’ve still been useful.

1.2 Improvements over the original MLT

The interest in Metropolis Light Transport seems to have resurged in recent years, with

new theses expanding on the idea of statistically aided Monte Carlo light transport

solver. In this section, we will briefly introduce the more prominent ones, ordered by

the date they were published, starting from the earliest.
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Metropolis Light Transport for participating media

In 2000, MLT was extended to account for participating media. This was done by

expanding the path space to include media interactions and then alternating between

scattering and propagation events. Scattering event, just like in [VG97], chooses a new

direction at a point of interaction, while propagation event calculates the distance

travelled along a path segment passing through a participating media, before it is

scattered. This is done according to transmittance of the medium. If the segment

doesn’t interact with participating media, the propagation step always chooses the first

surface point intersecting with the ray, thus behaving like regular MLT.

The paper also introduced new kind of participating media related mutations - the

propagation perturbations - which displace the point of interaction along a certain ray

segment.

Improved and unified mutation strategy

The paper starts up by showing, how can the correlation of Markov chain path tracing

algorithms lead to increase in integration error, also showing that it’s impossible to

use a single mutation strategy in path space, without increasing the correlation. It

continues to solve this problem by performing mutations in a different, primary sample

space, which is essentially an infinite-dimensional cube, from which a point in space

in sampled, and values gathered from the vector defining this point are then used as

inputs for desired path length and BSDF functions at path vertices. Note that even

when the vector is infinite in theory, we only need a first couple of values, which are the

only ones that will be generated.

The vector is then mutated, as if we were changing the position of a point in the

sample space, and every time we need to look at an additional (not yet generated)

dimension, this one is mutated the same amount of times as the rest of the vector was.

Since this could lead to massive slowdowns in later stages of the path generation, large

steps are introduced, which are in a way equivalent to bidirectional mutations that

completely replaced the path. These sample a new point in the n-dimensional cube and

reset the mutations - so that when a new dimension is needed, it only needs to “fall

back” towards the last large step. Large steps also help in ensuring of the ergodicity of

algorithm. The method therefore uses only two kinds of mutations, instead of the usual
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array of four or five, while generally improving the efficiency.

Gradient-Domain MLT

Another global illumination algorithm, partly based on Metropolis inspired weighted

sampling was published in 2013. Contrary to Veaches implementation, samples are not

concentrated around the most luminous paths in the path space, but around areas of

largest gradient in image space. This way, the algorithm first generates a rough, noisy

image, which provides it with enough data (in from of a 2D image) to use the Poisson

solver to fill in the gaps. Furthermore, even if this technique may appear as a too big of

an approximation, it was proven that the algorithm is actually unbiased.



Chapter 2

Lvis - light transport visualisation

library

We now present a C++ library that allows for selective visualisation of light paths

generated by Metropolis Light Transport, or any other path or ray tracing algorithm.

It allows the end user to control the volume of visualized data, provides control over

the real-time scene visualisation in terms of camera positioning and lightning, supports

interaction with mouse and keyboard, provides tools for path vertex position based

filtering, mouse selection and visualisation-to-pathtracer feedback.

Since it was develop with MLT in mind, it also supports a set of features closely

related to this method, namely the capacity to visualise a sequence of paths while

highlighting mutated segments, and to provide the path tracer with a feedback in

form of a user selected light path, which can than be used as a new basis for the next

mutation. The aim of this library is to provide a tool for better understanding of existing

mutation strategies and possibly also for development and debugging of a new ones.

2.1 External libraries and requirements

The library is written in C++, with the visualisation being handled by OpenGL, using

the 3.0 standard - this being the highest OpenGL standard currently available to many

Linux distributions and graphics cards (graphics card drivers in particular are the main

issue here), or in other words, the highest version supported by the machine this library

was developed on. As with most OpenGL applications, we rely on a set of additional

11
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libraries to provide us with the more standard functionality - GLEW to allow for hassle

free use of the modern parts of OpenGL, GLM (OpenGL Mathematics) to provide

us with the usual vector and matrix operations, SFML (Simple and Fast Multimedia

Library) for context creation and input handling, DevIL (Developers Image Library)

for texture loading and finally Assimp (Open Asset Import Library) for model loading.

All of these are freeware, open source and cross-platform.

2.2 Compilation and usage

If you wish to compile and run a program using the Lvis library on your local workstation,

you’ll need all of the libraries mentioned in the previous section, along with their

respective dependencies, installed. OpenGL 3.0 along with GLSL 1.3 support is also

required. The enclosed Cmake file was tested on Ubuntu 14.04, but should work on any

Linux distribution, and may require some minimal modifications for Windows. Your

compiler must also support the C++11 standard.

In the path tracer (or other program you wish to use with Lvis), you first need

to include lvis/include/lvis.hpp and create a new instance of Lvis object (with

arguments to the constructor being path to scene file, and path to scene file textures).

Then, whenever you wish to start the visualisation, you just need to call the run()

method on your Lvis object. This creates the OpenGL rendering context in a new

window, starts the visualisation and allows you to safely access all of the other public

methods provided by Lvis. These will be explained in the subsequent sections (for

correct usage, it is recommended to read at least the sections on threading and the

section on light paths), with the example program provided in Chapter 3.

2.3 Implementation

Class Lvis

The main class provides all the interfacing, between both the Lvis library and the path

tracer, and user input and all other library classes. It holds all of the data structures

(with pointers to the instantiations of other classes), and also contains methods for
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selection and path filtering. In this subsection we provide a categorised rundown of its

functionality.

Initialization

While the constructor code only assigns paths to scene files to their respective variables,

the initialization of OpenGL and member data occurs when Lvis.run is called. Context

creation is handled by SFML, which has a rather streamlined approach towards it -

the downside is having little control over some of the more advanced OpenGL settings,

which we don’t really need anyway. All of the shader files are loaded, compiled and linked

at this point, and Assimp is used to parse every 3D model needed for the visualisation

(more on this later). If there’s an error at any stage of the initialization, program prints

a warning and exits.

Threading, flags and public methods

We take advantage of the C++11 standard and implement threading using the std::thread,

std::mutex and std::condition variable. Multithreading is used so that the user

can freely navigate and interact with the scene even while new light paths are generated.

Data modifiable by both threads (expect for some of the flags, which we’ll cover soon)

are protected by a std::unique lock on a single mutex object, and condition variable

is used to signal the path tracer thread after each draw cycle. The rest of the cycle

being again protected by the mutex - since each of the functions may require an access

to shared memory, and we’re not too concerned about the time efficiency (and in fact,

multiple lockings and unlockings may hinder it even further), it’s much clearer to simply

lock the whole block and allow path insertions only in-between renderings.

Communication between the two threads is provided by a set of public methods and

also via flags (boolean variables). The only threading-related method not associated

with these flags at all is Lvis.join, whose use in the context of threads is fairly self-

explanatory. The same can be said about the flagRunning and its related methods,

while flagSelected and flagSingle simply signalize to the second thread that a new

path was selected and should replace the current active one, or that we want to be

pushing and visualising paths one after another, using the method pushSinglePath

instead of the standard pushPath, respectively. The flagPause is a bit more interesting,
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and it’s usage is left entirely on the end user. The idea, and proposed design, behind

it is for it to be used in conjunction with Lvis.wait - which pauses the execution

of a thread it was called from until signaled by flagWaiting. Since flagWaiting is

private to prevent race conditions, we provide the user with flagPause to signal the

path tracer thread whether it should call for Lvis.wait. An example usage (but not

the only right way to do so) of this flag is show in the demonstration program (3.2),

where it also provides different behaviour in conjunction with flagSingle.

Apart from Lvis.clearX methods, which are again self-explanatory, we’ve yet to

mention a couple of functions for further control over the visualisation and a set of

methods limiting the data throughput. Lvis.setupLight allows us to position a single

point light source, to allow for a closer match between lightning in visualisation and in

the offline rendering. Lvis.setupVirtualCamera positions a camera model, facing a

certain direction with the given up-vector, to match the camera used in the rendering.

The last three of the public methods are Lvis.setLimit, Lvis.setDrawLimit and

Lvis.setThreshold. As their name imply, each of these modifies a certain parameter

- or a certain limit - of Lvis class. limit is the maximum number of paths that can

be stored inside std::vector inputPaths (those are the paths waiting to be filtered

and drawn), drawLimit is the maximum number of paths drawn in the scene at each

point in time and finally, threshold is the minimal size of inpuPaths before it can be

filtered and subsequently drawn.

Input, selection & colour picking

All of the keyboard and mouse inputs are handled by SFML. This is done in two

ways,the first one is through the sf::Event class, which polls the window class for

all mouse, keyboard and window events (including window resizing or closing). The

advantage of this approach is that only inputs that happen inside the window (or while

the window is focused) are registered, but on the other hand, the keyboard events are

triggered only when the key is pressed or released. To implement continuous camera

movement (via keyboard), we use the sf::Keyboard class, which allows for real-time

feedback, but we need to check for window focus on our own.

Left mouse button clicks triggers the selection mechanics - we need to differentiate

between clicking one of the axis of the active sphere selector, other selector, light path
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and any other place on the scene. This was implemented through the use of off-screen

rendering and colour picking. For axes it’s pretty straightforward, since we’re reading

RGB values and each axis occupies only a single channel. Each of the spheres and paths

have a unique id, which is assigned using the counter variable and Lvis.counterUp

method1. This id is then “hashed” into an RGB colour (this idea was taken from [Bub]),

which is then used to draw the object during the picking stage. Spheres are, of course,

drawn as solid objects instead of wireframes during this step. The picked colour is then

used as a key value for the relevant map structure.

Source 2.1 Encoding index into RGB color for picking.

r = index&0xFF;

g = (index>>8)&0xFF;

b = (index>>16)&0xFF;

Selector positioning and movement

Every new sphere selector is created at the position of virtual camera (defaults to scene

origin) - this seems like a good place to start since it’s also the place where all of the

paths generated by bidirectional tracers will end. While the actual translation, in terms

of modifying its Model matrix, is done inside the SphereSelect class, the values passed

to it are determined in the Lvis class, therefore we now present their calculation to

you.

When the selector is active (i.e. it has been clicked on), it displays coloured arrows

along each of the three axes of the object coordinates (we’ve actually nicknamed these

arrows as “axes” in the source code and already referenced them like that in this paper,

so might as well carry on with it). The green one is always oriented towards the positive

y-axis, while the other two switch from positive to negative depending on the camera

position (to allow for easier manipulation).

When dragging the sphere along one of the axes, the direction is decided this way

- first, we use the same Model - View - Projection (MVP) matrix that we’ve used to

1Note that this means there is no overlap in the ids of spheres and paths, and since we’re clearing
the colour buffer each time we’re selecting a new object, we could have used different counters for
different shapes, allowing us to draw slightly more paths at once. But since the number of used selectors
will always be much smaller than the number of drawn light paths (unless we choose to draw a small
number of paths, in which case this is of no concern at all), we use a single counter for convenience.
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display the sphere to get the window coordinates of our vector. This transformation

is applied to a vector of homogeneous coordinates, where the w (the fourth value) is

set to zero. This way, all of the translations contained in the MVP matrix are omitted,

and the vector we get from this transformation will have it’s origin in the center of the

screen, pointing towards one of the four quadrants. Based on this information, we either

translate along the arrow, when the mouse cursor is moving towards that quadrant, or

in the opposite direction if it’s moving away from it. This is done separately for the x

and y directions, so for example, if the transformed vector lies in the first quadrant,

dragging it both upwards and to the right side moves the sphere along the arrow. The

same applies for scaling.

Drawing

All of the actual drawing (i.e. the binding of VBOs and calling glDrawElements or

glDrawArrays) is performed in other classes, Lvis.draw simply iterates through all of

their instances and calls the appropriate methods. It is also responsible for setting the

uniforms for camera position (that is, the position of actual OpenGL camera, for use in

the Phong shader) and light position, and choosing the appropriate shader for drawing

the scene.

Camera

In modern OpenGL, we’re no longer forced to use the built in ModelView and Projection

matrices. Instead, developers are encouraged to implement these matrices by themselves,

with GLM becoming the standard library for creation and manipulation of both the

matrices and the vectors they are transforming. The primary function of Camera class is

to hold the View and Projection matrices, and provide functions for their manipulation.

Because of our grouping of these matrices in a single class, we commonly retrieve a

single ViewProjection matrix (using the Camera.getVP method), and then use the

positional attributes of the objects in scene to construct a model matrix (if needed).

Camera can operate in two different modes, the default one is always facing the

center of the scene, while the free mode, as the name suggests, allows for free movement

around the scene and rotation around the camera origin. Rotation is represented in

spherical coordinates (fig. 2.1 [Boz13], the difference being that we use xi and fi in
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Fig. 2.1: Spherical coordinates

place of θ and ϕ, respectively ). Since in Lvis class, this rotation is performed by

dragging the mouse, and only the most recent position values are sent, we need to

remember the angles set before the rotation began, which is done through the use of

Camera.memorizeSpherical.

In the default mode, the unit vector calculated from these angles is multiplied by the

desired distance from the center and then used to position the camera, while in the free

mode, the position is controlled via the keyboard input, and the unit vectors are used

to set the viewing direction. We use glm::lookAt method to compute the View matrix

in both approaches, along with glm::perspective to construct the desired Projection

matrix.

Shaders

Before introducing the drawing procedures, let us present a quick rundown of the shader

programs used by the library. lineProgram is the simplest one, only performing the

standard Model-View-Projection transformation in vertex shader, and colouring each

fragment with the colour passed as a uniform (same for each fragment in the whole

mesh). As the name indicates, it’s used primarily for drawing polylines (light paths),

but also for drawing sphere selectors and axes, since no further functionality is required

there. For scene (and virtual camera) drawing, one of the three shader programs is used

- basicProgram, noTextProgram or textOnlyProgram. They all share common vertex

shader and data structure, therefore differentiating only in fragment shader code. The

basic shader combines texture sampling with Phong model ambient,diffuse and specu-

lar contributions, noTextProgram omits the texture and similarly, textOnlyProgram

forgoes the lightning calculations. The user can switch between these three at runtime.
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Phong illumination model

Implementation of the fragment shader was taken from an online tutorial [OGL] - since

the computation is given by a single, standardized formula, no changes were needed.

This formula (in our implementation, which uses only a single light source, and we

also omits most of the material constants, using the same formula for all objects and

materials) goes as follows

Ip = ia + (L.N)id + (R.C)αis

where ia, id and is are vectors containing the ambient, diffuse and specular components

of lightning (in our case, they are set to (0.05,0.05,0.05), (0.7,0.7,0.7) and

(1.0,1.0,1.0) respectively), α is the shininess constant (again, set tu 4.0 for all the

materials) and Ip is in our case the resulting brightness of a fragment (since our ia, id

and is are all represented as intensities of white light). Rest of the equation consists

of normalized vectors and their dot products, where N is the surface normal, L is

the direction towards the light source, R is the direction that a perfectly reflected ray

of light would take and C is the direction towards the camera, all of these pointing

from the currently processed surface point. In the basicProgram, this value is then

multiplied by a value sampled from the appropriate texture at given UV coordinates.

In noTextProgram, the whole calculation is omitted.

Assimp, sceneLoader and meshes

Let us first provide you with a brief note on Assimps internal data format. After loading

the model file with desired flags - in our case, we’re flagging to triangulate (since our

OpenGL standard supports only triangulated meshes), calculate tangent space and

calculate normals (both for the use in Phong shading model) - we are left with a

aiScene object. This object contains a pointer to aiNode tree structure, with each

node containing a certain set of data, out of which we’re only concerned for an array of

meshes. Therefore, we traverse the tree structure and parse every mesh into our mesh

class format, processing all the vertices, indices, textures with its coordinates, normals

and tangents (in sceneLoader), and afterwards creating VBOs (for vertices and indices)

and binding the data to them (in mesh class). Both of these classes were again taken

from an online tutorial [OGL], and only slightly modified to our needs - i.e. the original
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file used SDL for texture loading - instead, we opted to use DevIL as a more lightweight

alternative - and we also added an option in the sceneLoader.draw and mesh.draw

functions to draw wireframe model instead of a solid one (for use in sphere selectors).

When drawing the scene, first the shader program is chosen and uniforms containing

light and camera positions are set. All of this happens in the Lvis class, which then

calls the draw function of sceneLoader, along with the shader program id and Projec-

tionView matrix gathered from the camera class. The sceneLoader class simply calls

the sceneLoader.draw function of all of the meshes associated with it, delegating the

data passed to them from the previous class. And finally, actual binding of vertex data

and drawing (call to either glDrawElements or glDrawArrays) happens in the mesh

class. We are using drawArrays insted of glDrawElements when drawing wireframe to

conserve a bit of data transfer between CPU and graphics card - since we’re already

doing a lot more of it by replacing a single call by one for every triangle. The drawing

of virtual camera, spheres and their axes looks almost exactly the same, except that we

add another step inside these classes to allow for further modifications to MVP matrix

and shader uniforms.

Sphere selectors

Already mentioned a couple of times in this paper, sphereSelector class allows us to

filter through the drawn, and about-to-be-drawn light paths. The filtering is done based

on the distance from the center of the selector, therefore they are visually represented

by a sphere (iconosphere wireframe in particular, since again, we’re only allowed for

triangulated surfaces in the newer OpenGL, and we want the model to be wireframe for

practical purposes). The spheres are all created with the radius of 1.0, which is then

(together with the actual area of effect) controlled by the variable scale.

At this point, we should explain how the scaling and translation works from in-

side of the SphereSelect class (the way that the values for these operations are

passed was already discussed in the Lvis class subsection). We use a slightly dif-

ferent system than in Camera class, but in the end, both of them are practicaly

the same thing, just taken from a different angle. While with the Camera we sa-

ved the oldXi and oldFi at the start of the operation, here we have glm::vec3

tempTrans for translation and tempScale for scaling, which are rewritten by every call
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of SphereSelect.translate and SphereSelect.scaling respectively, and are only

written into their “permanent” counterparts when SphereSelect.finishTranslate

and SphereSelect.finishScaling are called. The downside of this being that we need

to use both the temporal and the permanent variable to the transformation matrices,

to provide the user with feedback.

All of the actual filtering is done via the function pointInside, which calculates

the distance between the center of the selector and the point passed as a parameter

(usually a position of a PathVertex), and returns a boolean value based on the scale

and the result of this calculation. The library provides four basic kinds of selectors,

three of them - the green (start), red (end) and yellow (any) selector work as if all of the

selectors of the same kind made a logical statement containing only binary OR directives

- therefore, if a single path vertex lies in any one of the selectors (still talking about one

kind only), the whole statement is resolved as TRUE and the path is drawn. Similarly,

we have one more kind of selector, the white one, which works as if all of them were in

a logical statement containing only binary AND - so that path is only drawn if at least

one vertex lies in every single white selector in the scene. The implementation of this

algorithm can be found in the Lvis class (as a part of the Lvis.filterPath method).

Since spheres are to be selectable by a mouse click, this class also contains methods

for transforming index number into RGB colour and vice-versa, for the use in picking

algorithms, again located in the Lvis class.

Light paths

Each light path is represented by a single instance of its class, which in turn consists

primarily of the vector of pointers to pathVertex instances, which store a single

glm::vec3 object with vertex position. There are two reasons for having vertices as

separate classes - the primary one during the development was the ability to swiftly

create a randomized light path for debugging purposes, and the reason they’ve stayed in

the later stages of the development cycle being the delegation of PathVertex.getInfo

and the overall tidiness of the code.

The light path is set up by appending new vertices from the start towards the end

(note that sphere selector differentiates between the two boundaries). When we are

ready to visualize the path, we must first call the LightPath.finalize method, to
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generate and bind a new VBO for the path. If we’re doing this repeatedly, the previous

VBO buffers are correctly deleted. If we try to add a new vertex after finalizing the

path, it will be again marked as incomplete and won’t allow us to visualize it before

calling LightPath.finalize on it again. This method also creates an info log about

the path, that we can then retrieve as a string.

Since we’re adhering to the OpenGL 3.0 standards, where geometry shaders were

still not the part of the core specification, and glLineWidth was not yet considered

deprecated, we’re being lazy and using this function to give our paths desired width,

which can be set by the end user. Just like SphereSelect, LightPath contains methods

for determining pick colour.

Virtual Camera

The final touch to the visualisation is in adding the model of a camera to a place

where the camera of the offline renderer is positioned in the scene. This is set via the

method VirtualCamera.lookAt, which takes the same parameters as Mitsubas, and

probably also other renderers, lookat xml directive - therefore, if we’re using our library

in conjunction with such library, it is straightforward to correctly setup our virtual

camera model.

VirtualCamera.lookAt uses another method to help with the correct positioning

- VirtualCamera.faceVector - which takes two vectors as an argument, and returns

the rotation matrix, that transforms the orientation of the first one to be the same

as that of the second one. This is done by normalizing the vectors, after which their

dot product will be equal to the cosine value of the angle between them, and then

computing the cross product to get the axis perpendicular to both of them, around

which we, finally, perform the rotation.

To get the model, which was originally facing towards the positive infinity on the

z-axis, with up vector lying on the positive part of the y-axis, to look at the desired

position, we first need to obtain the direction we want it to be facing - by subtracting

the from position vector from the to vector. We can ten perform the rotation (provided

by the faceVector method) from the default facing to the new one. We also perform

the same rotation on the default up vector - to find out what will the up vector look

like after this transformation. From that we get the new tmpUp vector, and we need to
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again find a rotation matrix that transforms it to our desired up vector - which we’ll do

again by the same method as before. As a last step, we translate the camera model to

the desired position, and apply all of these operations to the ViewProjection matrix of

the OpenGL camera. Also, before any of these transformations , the whole model is

scaled down and translated so that it’s lens are at the initial model coordinates origin -

this is the place were all of the light paths will end.
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Demo program

We present a simple test program to demonstrate the functions and capabilities of Lvis

library. To do so, we’ve used Mitsuba, a physically based renderer developed by Wenzel

Jakob. Apart from LuxRenderer, it’s the only one of the larger open source renderers

which supports Metropolis Light Transport. The downside is that Mitsubas plugin

oriented program structure (described below) makes the usage of our library (which

requires access to light paths and their vertex data) rather complicated and impractical.

Instead, we opted to use it separately, utilizing it’s path space MLT algorithm together

with its built-in path print function to generate a mass of light paths, which we then

stored in a text file and later parsed into our demonstration program. This, of course,

prevents us from showing the feature of selected path feedback, but with the rest of the

visualisation qualities unaffected - and probably even a minor speed up in gathering of

each new light path - that’s just a minor setback.

3.1 Mitsuba data structure and path generation

For the purposes of our demonstration, the only segments of code from the Mitsuba

sources we were interested in were the ones regarding the light path structure. With the

core functionality split between four libraries - one of which (libbidir) was containing

the support framework for all bidirectional path tracing algorithms - it was straightfor-

ward to locate the data structures of Mitsubas internal path format. Additionally, this

class already had a method of printing it’s data into a single std::string.

Next, we needed to find the MLT mutation and rendering cycle, from which these

23
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paths are instantiated and mutated. All rendering algorithms in Mitsuba are handled

as integrator plugins - the plugin part meaning that they are loaded and compiled on

demand at runtime, and the integrator moniker implying that at heart, these algorithms

perform integration over a high-dimensional space. Each of these integrators contain a

work unit, which performs all of the heavy lifting and also allows for parallelization,

with multiple work units each solving a different subset of the integral. Therefore, the

only file we’ve needed to modify was mlt proc.cpp, containing the worker unit class

for the MLT algorithm.

Our changes were fairly minimal, only adding an output filestream, which we then

supplied with the output of print function of the current path pointer. Our program

is able to correctly read and parse any textfile consisting of data aggregated using this

function. Note that we’re visualizing only the accepted light paths, and rejection of

the proposed mutation means that subsequent light paths will be identical. This is not

viewed as a problem, since it keeps a record of rejections in our visualisation (without the

need to parse all of the proposed paths). Since we’ve only used core c++ functionality

in our modifications, there was no need to tamper with the .cmake configuration. Apart

from the light path data, Mitsuba also provides us with a nice set of statistics from the

rendering(3.1 - we have omitted the information on texturing since it’s not relevant to

this work).

3.2 Demonstration program implementation

Apart from the main loop (3.2), this quick demonstration contains only functions

for parsing the Mitsuba generated paths file. parseNext appends the vertices of the

next path in the file to the current light path, and uses parseVertex which is self

explanatory. We ignore all of the data except for the path vertex coordinate. Because

of this, we’ve managed to use a slight modification of this program to generate files

where all the unnecessary data was omitted, and only vertices and new path markers

are left. These files are still compatible with all of the previous parsing methods. Before

starting the visualisation, we parse and throw away a random number of paths, so that

we get different results when running the program multiple times.

In the main loop, after successfully parsing and finalizing a new path, the program de-

cides what to do next based upon current flags set by the Lvis library. flagSingle signali-
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Source 3.1 Statistics from the scene rendering, using the MLT algorithm

* Bidirectional mutation :

- Acceptance rate : 10.33 % (58.69 K of 567.95 K)

- Successful generation rate : 21.22 % (120.54 K of 567.95 K)

* Caustic perturbation :

- Acceptance rate : 73.91 % (435.24 K of 588.88 K)

- Successful generation rate : 83.50 % (491.72 K of 588.88 K)

* General :

- Normal rays traced : 14.987 M

- Shadow rays traced : 4.808 M

* Lens perturbation :

- Acceptance rate : 73.76 % (434.52 K of 589.09 K)

- Successful generation rate : 84.31 % (496.66 K of 589.09 K)

* Path Space MLT :

- Accepted mutations : 52.56 % (928.45 K of 1.77 M)

Source 3.2 Main loop of the demonstration program

1 current=new LightPath();

2 parseNext();

3 ...

4 //handle end of input file...

5 ...

6 current->finalize();

7 if (elvis->flagSingle) {

8 elvis->pushSinglePath(current);

9 if (elvis->flagPause) elvis->wait();

10 continue;

11 }

12 if (elvis->flagPause) {

13 elvis->flagPause=false;

14 elvis->wait();

15 }

16 elvis->pushPath(current);

zes whether we should send the generated path through the method Lvis.pushSinglePath

or the regular Lvis.pushPath. In our setup, we use the flagPause in conjunction with

flagSingle - if the latter is true, flagPause signalizes the main thread should wait

every time it pushes the new path. If we’re using pushPath instead (i.e. flagSingle is

false), flagPause indicates that the main thread should wait, even if the input buffer is
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not yet full (and the drawnLimit has not yet been reached). The loop continues either

until reaching the end of file, or until the visualisation is ended by the user.

3.3 Images and results

We present sample images, captured while using the demonstration program.

Fig. 3.1: A large mass of generated light paths.

Fig. 3.2: Path selection.

The program functions as expected. Yet, if we were to pinpoint it’s biggest weakness,

it would be in filtering of inputPaths when using selectors. Since we have to check

every path vertex, this can be very slow with a massive amount of incoming data.

Furthermore, because of the way MLT works, the light paths generated in a certain

time period tend to be centered around a single scene region, and if we need to generate

paths from a different one, it may take quite some time for the algorithm to get there.

This problem would occur in the same way if we visualised “live”, directly from the
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Fig. 3.3: Mutating a single path.

Fig. 3.4: Virtual camera.

path tracer. In fact, it would be even more severe, because path mutations can take

longer the a simple file parsing.
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Conclusion and future work

We have presented the Metropolis Light Transport algorithm, a Monte Carlo ray tracing

method for unbiased rendering, used primarily for scenes with complicated lightning.

We’ve also shown the various methods that improved on it over the years. A library

for interactive visualisation was presented, with methods for general visualisation of

light paths, and also methods specifically designed with MLT in mind. A simple demo

program followed, visualising data generated by Mitsuba renderer. We hope that the

library will be useful in the future, either in development of a new path tracer, or an

improvement of an old one, or simply for educational purposes. Possible improvements

include more user-friendly interface, or additional filtering methods.
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Manual - Lvis key bindings

Left mouse button – select path or selector

Right mouse button – rotate camera

F – switch between free camera mode

Up arrow – move camera forward

Down arrow – move camera backward

Right arrow – camera strafe right

Left arrow – camera strafe left

W – move camera up

S – move camera down

A – switch between moving and scaling of selectors

Z – add green selector (start of path)

X – add red selector (end of path)

C – add white selector (any vertex, AND)

V – add yellow selector (any vertex, OR)

Enter – select active path

Backspace – clear all paths

Delete – delete active selector

Home – delete all selectors

F1 – decrease the value of limit variable by 10

F2 – increase the value of limit variable by 10

F3 – decrease the value of drawLimit variable by 10

29
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F4 – increase the value of drawLimit variable by 10

F5 – decrease the value of threshold variable by 10

F6 – increase the value of threshold variable by 10

F8 – toggle flagSingle

F9 – toggle flagPause

F10 – toggle flagWaiting

F11 – filter drawn paths

F12 – switch shader
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[KSK01] Csaba Kelemen and László Szirmay-Kalos. Simple and robust mutation

strategy for metropolis light transport algorithm. Technical Report TR-186-

2-01-18, Institute of Computer Graphics and Algorithms, Vienna University

of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, July 2001.

human contact: technical-report@cg.tuwien.ac.at.

[LKL+13] Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand,
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