
Univerzita Komenského

Fakulta Matematiky, Fyziky a Informatiky

Using SELinux to Enforce Two-Dimensional
Labelled Security Model with Partially Trusted

Subjects

2010 Martin Jurčı́k

Using SELinux to Enforce
Two-Dimensional Labelled Security Model

with Partially Trusted Subjects

BACHELOR’S THESIS

Martin Jurčı́k

Comenius University in Bratislava
Faculty Of Mathematics, Physics And Informatics

Department Of Computer Science
9.2.1 Informatics

Advisor: RNDr. Jaroslav Janáček Bratislava 2010

Abstract

In this thesis, we try to implement a prototype model of Two-Dimensional Labelled Se-

curity Model with Partially Trusted Subjects based on PhD thesis[JJ], written by RNDr.

Jaroslav Janáček. We try to show the feasibility of using SELinux to enforce this model.

The prototype model, respectively prototype model policy, uses a NSA Security-Enhanced

Linux (SELinux) like an interpreter.

Keywords: information flow policy, security model, SELinux policy

Declaration of Authorship
I hereby declare that this thesis represents my own work and effort. Where other sources

of information have been used, they have been acknowledged.

Bratislava, 1. June 2010 Signature: .

Acknowledgements

I would like to thank my advisor RNDr. Jaroslav Janáček for his guidance, support, and

encouragement throughout writing this thesis.

Special thanks to my family for all their support.

Contents

1 Security models 5
1.1 Standard Linux Security Model . 5

1.2 SELinux Security Model . 6

1.3 Two-Dimensional Labelled Security Model with Partially Trusted Subjects 6

2 Integration into SELinux policy 8
2.1 The Information Flow policy . 8

2.1.1 Formal definition of the information flow policy 8

2.2 SELinux abilities . 16

3 Implementation 19
3.1 Prepare . 19

3.2 Making of SELinux Policy or ’Busy Days’ 20

3.2.1 Writing the policy - Yes, and which way?? 20

3.2.2 FLASK definitions . 21

3.2.3 TE Statement . 21

3.2.4 RBAC Statement . 24

3.2.5 User Declarations . 25

3.2.6 Constraint Definitions . 25

3.2.7 Security Context Specifications 26

3.3 Control Mechanism . 27

3.3.1 Problematic operations . 28

3.3.2 Interprocess and Network communications 30

3.3.3 Network communication . 30

3.3.4 Interprocess communication . 31

3.3.5 X Server . 33

2

4 Testing 34
4.1 The installation process . 34

4.2 Filesystem labelling . 35

4.3 Utilities . 36

Introduction

SELinux is an implementation of a mandatory access control architecture called Flask in

the Linux kernel. SELinux can enforce an administratively-defined security policy over

all processes and objects in the system, basing decisions on labels containing a variety of

security-relevant information. The architecture provides flexibility by cleanly separating

the policy decision-making logic from the policy enforcement logic.[NSA]

4

Chapter 1

Security models

In this chapter, we provide an overview of security models used in Linux distribution.

1.1 Standard Linux Security Model

Operating systems have two forms of access control:

• discretionary access control(DAC)

• mandatory access control(MAC)

Standard Linux security is a form of DAC. SELinux adds a flexible, configurable MAC to

Linux.

Standard Linux file permissions use the Discretionary Access Control (DAC) model. Un-

der DAC, files are owned by a user and that user has full control over them, including the

ability to grant access permissions to other users. The root account has full control over

every file on the entire system.

5

CHAPTER 1. SECURITY MODELS 6

1.2 SELinux Security Model

Current Linux kernel includes SELinux security module that implements a very flexible

security mechanism. SELinux provides a mechanism for supporting access control secu-

rity policies through the use of Linux Security Modules (LSM) in the Linux kernel. DAC

has a fundamental weakness in that, it is subject to a variety of malicious software attacks.

MAC is a way to avoid these weaknesses. Most MAC features implemented so far are a

form of multilevel security modeled after governmental classification controls.

SELinux implements a more flexible form of MAC called type enforcement and an op-

tional form of multilevel security.

SELinux access control is based on a security context associated with all system resources

including processes. The security context contains three elements: user, role, and type
identifiers. The type identifier is the primary part of the access control.

Type enforcing(TE) is the primary access control feature. Access is granted between sub-

jects(domain) and objects(object) by specifying allow rules that have the subject’s type as

the source and the object’s type as the target.

SELinux provides an optional Multi Level Security(MLS) and Multi Level Category(MLC)

access control mechanism that provides further access restrictions for a certain class of

data sensitivity applications. We used [NSA] and [MMC] to study SELinux policy.

1.3 Two-Dimensional Labelled Security Model with
Partially Trusted Subjects

In this section, we present Two-Dimensional Labelled Security Model with Partially

Trusted Subjects. All about this model you can find in [JJ].

This model contains two types of entities - subjects and objects. The subjects are ac-

tive entities of the model - they can perform operations on objects. Typical subjects are

processes. As opposed to those the Objects are passive entities - some examples are file,

directories, pipes, socket, etc.

Each entity in this model has several security attributes associated with them. The model’s

information flow policy specifies whether a subject S is allowed to perform a given opera-

tion on an object O based on the security attributes of the subject and the security attributes

of the object.

CHAPTER 1. SECURITY MODELS 7

Each object is assigned a confidentiality level, an integrity level and an identifier of a

user that is the object’s owner. The idea of this model is to prevent unintended informa-

tion flow from an object with a higher confidentiality/ lower integrity level to an object

with a lower confidentiality / higher integrity level.

The subjects in this model are divided into three categories:

A trusted subject is a subject that is trusted to enforce the information flow policy with

intended exceptions by itself.

An untrusted subject is a subject that is not trusted to enforce the information flow policy.

A partially trusted subject is

• trusted not to transfer information from a defined set of objects at a higher confi-

dentiality level to a defined set of objects at a lower confidentiality level in a way

other than the intended one, and

• trusted not to transfer information from a defined set of objects at a lower integrity

level to a defined set of objects at a higher integrity level in a way other than the

intended one, and

• not trusted to transfer information between any other objects

The most important difference between trusted and partially trusted subjects is in the level

of trust.

Chapter 2

Integration into SELinux policy

In this chapter, we provide an overview of integration Two-Dimensional Labelled Security

Model with Partially Trusted Subjects into SELinux policy.

2.1 The Information Flow policy

In this section, we present The Formal definition of the information flow policy of Two-

Dimensional Labelled Security Model with Partially Trusted Subjects security model.1

2.1.1 Formal definition of the information flow policy

Let C = {0,1, . . . ,cmax} be the set of confidentiality levels, I = {0,1, . . . , imax} be the set

of integrity levels, L be the finite set of possible labels for objects, 0 ∈ L being the default

label used for objects without an explicitly assigned label, and U be the final set of user

identifiers. Let C and I be ordered so that 0 is the least sensitive level and cmax and imax

are the most sensitive levels.

Let us assume that each object O has the following attributes:

• CO ∈C – the confidentiality level of the object,

• IO ∈ I – the integrity level of the object,

• LO ∈ L – the label of the object (used to define the input and output sets of objects

for partially trusted subjects),

1This section is a part of the [JJ]

8

CHAPTER 2. INTEGRATION INTO SELINUX POLICY 9

• UO ∈U – the user identifier of the owner of the object.

Let us assume that each subject S has the following attributes:

• CRS ∈C – the highest confidentiality level the subject can normally read from,

• CWS ∈C – the lowest confidentiality level the subject can normally write to,

• CRLS ∈C – the highest confidentiality level of a specially labelled object that the

subject can read from,

• CWLS ∈C – the lowest confidentiality level of a specially labelled object that the

subject can write to,

• CRLSS ⊆ L – the set of labels of the objects that the subject can read from as a

partially trusted subject,

• CWLSS ⊆ L – the set of labels of the objects that the subject can write to as a

partially trusted subject,

• IRS ∈ I – the lowest integrity level the subject can normally read from,

• IWS ∈ I – the highest integrity level the subject can normally write to,

• IRLS ∈ I – the lowest integrity level of a specially labelled object that the subject

can read from,

• IWLS ∈ I – the highest integrity level of a specially labelled object that the subject

can write to,

• IRLSS ⊆ L – the set of labels of the objects that the subject can read from as a

partially trusted subject,

• IWLSS ⊆ L – the set of labels of the objects that the subject can write to as a

partially trusted subject,

• CNS ∈C – the default confidentiality level of the objects created by the subject,

• INS ∈ I – the default integrity level of the objects created by the subject,

• LNS ∈ L – the label of the objects created by the subject,

• US ∈U – the user identifier of the owner of the subject,

CHAPTER 2. INTEGRATION INTO SELINUX POLICY 10

• IRUSS ⊆U – the set of additional user identifiers of the users who are trusted by S

to maintain trustworthy integrity levels on the objects they own (e.g. a special user

designated to own the shared system libraries and programs).

• CWUSS ⊆U – the set of additional user identifiers of the users who are trusted by

S to maintain trustworthy confidentiality levels on the objects they own.

Let Cappr,Cshareable, Ishareable be system-wide constants with the following meaning:

• Cappr ∈C be the highest confidentiality level for which the user may interactively

approve a request to read from an object O by a subject S when Cappr ≥CO > CRS,

• Cshareable ∈C be the highest confidentiality level of an object that may be accessed

by a subject with a different owner than the owner of the object, and

• Ishareable ∈ I be the highest integrity level of an object that that may be modified by

a subject with a different owner than the owner of the object.

Let us define the information flow policy protecting confidentiality and integrity of

data as follows:

1. A subject S may read from an object O if read(S,O) is true, where

read(S,O) def⇐⇒ [CRS ≥CO∨ (CRLS ≥CO∧LO ∈CRLSS)

∨ (Cappr ≥CO∧UserApprovedRead(S,O))]
(2.1a)

∧[IRS ≤ IO∨ (IRLS ≤ IO∧LO ∈ IRLSS)] (2.1b)

∧[US = UO∨CO ≤Cshareable] (2.1c)

∧[US = UO∨UO ∈ IRUSS∨ IRS ≤ Ishareable] (2.1d)

where UserApprovedRead(S,O) is true if and only if the user (the owner of S)

has approved the particular request to read from the object O by the subject S.

2. A subject S may write to an object O if write(S,O) is true, where

write(S,O) def⇐⇒ [CWS ≤CO∨ (CWLS ≤CO∧LO ∈CWLSS)] (2.2a)

∧[IWS ≥ IO∨ (IWLS ≥ IO∧LO ∈ IWLSS)] (2.2b)

∧[US = UO∨ IO ≤ Ishareable] (2.2c)

∧[US = UO∨UO ∈CWUSS∨CWS ≤Cshareable)] (2.2d)

CHAPTER 2. INTEGRATION INTO SELINUX POLICY 11

3. A subject S may create a new object O within (or related to) an object P if create(S,P)

is true, where

create(S,P) def⇐⇒ read(S,P) (2.3a)

∧write(S,P) (2.3b)

The attributes of the new object will be set as follows:

CO :=

CWLS if LP ∈CWLSS

CNS otherwise
(2.3c)

IO :=

IWLS if LP ∈ IWLSS

INS otherwise
(2.3d)

LO := LNS (2.3e)

UO := US (2.3f)

4. A subject S may delete an object O from (or related to) an object P if delete(S,O,P)

is true, where

delete(S,O,P) def⇐⇒ read(S,P) (2.4a)

∧write(S,P) (2.4b)

∧write(S,O) (2.4c)

5. Each untrusted subject S must satisfy:

CWS = CWLS ≥CRS = CRLS (2.5a)

IWS = IWLS ≤ IRS = IRLS (2.5b)

CWLSS = CRLSS = IWLSS = IRLSS = /0 (2.5c)

CNS ≥CWS (2.5d)

INS ≤ IWS (2.5e)

LNS = 0 (2.5f)

CHAPTER 2. INTEGRATION INTO SELINUX POLICY 12

6. Each partially trusted subject S must satisfy:

CWS ≥CRS (2.6a)

CWS ≥CRLS (2.6b)

CWLS ≥CRS (2.6c)

IWS ≤ IRS (2.6d)

IWS ≤ IRLS (2.6e)

IWLS ≤ IRS (2.6f)

CNS ≥CWS (2.6g)

INS ≤ IWS (2.6h)

The above rules fulfil the policy objectives on the condition that:

C = {0,1,2}

I = {0,1,2}

Cappr = 1

Cshareable = 1

Ishareable = 1

with the meaning of the confidentiality levels:

0−public,

1−C-normal,

2−C-sensitive,

and the meaning of the integrity levels:

0−potentially malicious,

1− I-normal,

2− I-sensitive.

CHAPTER 2. INTEGRATION INTO SELINUX POLICY 13

Additional Operations

• A subject S may set the confidentiality level of an object O to c, and the integrity

level of O to i if reclassify(S,O,c, i) is true, where

reclassify(S,O,c, i) def⇐⇒ [CO ≤CRS∧CO ≥CWS∧ c≥CWS] (2.7a)

∧[IO ≥ IRS∧ IO ≤ IWS∧ i≤ IWS] (2.7b)

∧CanRevoke(O) (2.7c)

∧UO = US (2.7d)

∧LO = LNS (2.7e)

• A subject D (the debugger) may use the debugging interface to debug a subject S if

debug(D,S) is true, where

debug(D,S) def⇐⇒CRD ≥max{CRS,CWS} (2.8a)

∧CWD ≤min{CRS,CWS} (2.8b)

∧IRD ≤min{IRS, IWS} (2.8c)

∧IWD ≥max{IRS, IWS} (2.8d)

∧UD = US (2.8e)

• A subject S may send a signal to a subject R if maysignal(S,R) is true, where

maysignal(S,R) def⇐⇒CWS ≤CRR (2.9a)

∧IWS ≥ IWR (2.9b)

∧US = UR (2.9c)

CHAPTER 2. INTEGRATION INTO SELINUX POLICY 14

Changing the subject’s security attributes

No subject may be able to modify its attributes in a way that allows it to perform more

operations. The following rules satisfy the requirement:

1. A subject S may change CNS to c if setCN(S,c) is true, where

setCN(S,c) def⇐⇒ c≥CWS (2.10)

2. A subject S may change INS to i if setIN(S, i) is true, where

setIN(S, i) def⇐⇒ i≤ IWS (2.11)

3. A subject S may change CRS to c if setCR(S,c) is true, where

setCR(S,c) def⇐⇒ c≤CRS (2.12)

4. A subject S may change CWS to c if setCW(S,c) is true, where

setCW(S,c) def⇐⇒ c≥CWS (2.13)

5. A subject S may change IRS to i if setIR(S, i) is true, where

setIR(S, i) def⇐⇒ i≥ IRS (2.14)

6. A subject S may change IWS to i if setIW(S, i) is true, where

setIW(S, i) def⇐⇒ i≤ IWS (2.15)

7. A subject S may change CRLS to c if setCRL(S,c) is true, where

setCRL(S,c) def⇐⇒ c≤CRS (2.16)

8. A subject S may change CWLS to c if setCWL(S,c) is true, where

setCWL(S,c) def⇐⇒ c≥CWS (2.17)

CHAPTER 2. INTEGRATION INTO SELINUX POLICY 15

9. A subject S may change IRLS to i if setIRL(S, i) is true, where

setIRL(S, i) def⇐⇒ i≥ IRS (2.18)

10. A subject S may change IWLS to i if setIWL(S, i) is true, where

setIWL(S, i) def⇐⇒ i≤ IWS (2.19)

11. When a subject S creates a new subject S′, the security attributes of S′ must be equal

to those of S.

CHAPTER 2. INTEGRATION INTO SELINUX POLICY 16

2.2 SELinux abilities

In this section, we present a SELinux abilities, which we use to integrate our model into

SELinux policy. We use UML diagrams for better understanding all dependencies.

From the following UML diagrams you can get an image about all necessary components

we used in the implementation process in Chapter 3 Implementation.

Figure 2.1 shows the attributes and types mapping from SELinux into the Two-Dimensional

Labelled Security Model with Partially Trusted Subjects.

Figure 2.2 shows the syntax of user identity declarations and role declaration. Here you

can see, which type category is used in the role declaration.

Figure 2.3 shows the declaration of TE Access Vector rules, concrete Allow Access Vector

rule. Here you can see all SELinux classes that have many permissions. These permis-

sions are used in Decision Making Power Control Mechanism in Section 3.3 .

Figure 2.4 shows constraints definition and dependence rules defined in previous Sec-

tion(2.1). The Constraints are the base elements of Control Mechanism.

Last Figure 2.5 shows the rules, which we can use to restrict the ability to set the arbitrary

type to an actually created object.

Object Attributes

Confidentiality level = Cx

Integrity level = Ix

Label = Lx

Subject Attributes

Confidentiality level = {CRx, CWx, CRLx, CWLx}

Integrity level = {IRx, IWx, IRLx, IWLx}

Label = {CRLSx, CWLSx, IRLSx, IWLSx}

Object Types

Confidentiality level = {Cx}

Integrity level = {Ix}

Label = {Lx}

Default Label = 0

Subject Types (Domains)

Confidentiality level = {CRx, CWx, CRLx, CWLx}

Integrity level = {IRx, IWx, IRLx, IWLx}

Label = {CRLSx, CWLSx, IRLSx, IWLSx}

Untrusted

subjects

Partially trusted

subjects

Trusted

subjects

Attributes for SELinux

domain

object

unlabeled_t

Figure 2.1: Types & Attributes definition

CHAPTER 2. INTEGRATION INTO SELINUX POLICY 17

USER’S IDENTITIES

user_id_u

root

ROLES

user_r

object_r

root_r

system_r

The set of authorized types for role

role my_role types {set_of_types}

Subject Types

Confidentiality level = {CRx, CWx, CRLx, CWLx}

Integrity level = {IRx, IWx, IRLx, IWLx}

Label = {CRLSx, CWLSx, IRLSx, IWLSx}

The set of authorized roles for user

user user_identity roles {set_of_roles}

Figure 2.2: Role and User Identity declarations

Allow Access Vector

allow input_type target_type : class {set_of_perm}

File classes

blk_file

chr_file

dir

fd

fifo_file

file

filesystem

lnk_file

sock_file

Interprocess

communication classes

ipc

msg

msgq

sem

shm

Network Classes

key_socket

netif

netlink_socket

node

packet_socket

rawip_socket

socket

tcp_socket

udp_socket

unix_dgram_socket

unix_stream_socket

Object classes

passwd

System classes

capability

process

security

system

SELinux_object_Classes

All_SELinux_Classes

Attributes for SELinux

domain

object

Figure 2.3: Allow Access Vector definition

CHAPTER 2. INTEGRATION INTO SELINUX POLICY 18

READ(S, P)

WRITE(S, P)

CREATE(S, P)

DELETE(S, O, P)

WRITE(S, O)

DEBUG(D, S)

MAYSIGNAL(S, R)

Basic operations permissions

Constraints

constrain {set_of_classes} {set_of_perms} (conditions)

Monolithic

model

File classes

blk_file

chr_file

dir

fd

fifo_file

file

filesystem

lnk_filesock_file

Interprocess

communication classes

ipc

msg

msgq

sem

shm

Network Classes

key_socket

netif

netlink_socket

node

packet_socket

rawip_socket

socket

tcp_socket

udp_socket

unix_dgram_socket

unix_stream_socket

Object classes

passwd

System classes

capability

process

security

system

RECLASSIFY(S, O, c, i)

Figure 2.4: Constraints definition

Rules to label new objects upon creation

General syntax of a transition

type_transition <source_type(s)> <target_type(s)> : <class(es)> <new_type>

Domain transition syntax

type_transition <domain> <Object_type_for_program> : process <program_exec_t>

New object labeling syntax

type_transition <creating_domain> <parent_object_type> : { file dir } <new_type>

Object Types

Confidentiality level = {Cx}

Integrity level = {Ix}

Label = {Lx}

Default Label = 0

Subject Types (Domains)

Confidentiality level = {CRx, CWx, CRLx, CWLx}

Integrity level = {IRx, IWx, IRLx, IWLx}

Label = {CRLSx, CWLSx, IRLSx, IWLSx}

Figure 2.5: Definition of new type for created object

Chapter 3

Implementation

In this chapter, we provide an overview of our implementation process.

3.1 Prepare

We decided to use a virtual machine in VMware Player for quick ”back-up and restore”

agility. In process of writing this policy we killed ca. 20 or 25 virtual machines.

We decided to use a Fedora12 virtual machine from [Virtual Machine], but in original

version was is unable to log as root. We had to edit the core settings to enable to log as

root.

This distribution contains an older version of SELinux. We had to update to the latest

version for kernel, specifically 2.6.31.5-127.fc12.i686.

[root@root ˜]# yum update libselinux selinux-policy-targeted

and

[root@root ˜]# yum install selinux-policy-devel \

selinux-policy-strict policycoreutils-newrole selinux-policy-mls

But all of these policy versions (strict, targeted or mls) don’t contain the policy source

files, only the compilated version.

Then we decided to use SELinux Reference Policy[refpolicy]. The policy source file

’policy.conf’ has cca 2,9∗106 lines of code and it uses lots of macros.

19

CHAPTER 3. IMPLEMENTATION 20

3.2 Making of SELinux Policy or ’Busy Days’

The policy for SELinux is a binary representation that can be loaded into the kernel.

A program checkpolicy is a compiler for SELinux policy. A source for checkpolicy is

policy.conf. Each policy for SELinux must consist of the following top-level components:

1. FLASK definitions

2. Type Enforcement(TE) and Role-Based Access Control (RBAC) declarations and

rules

3. User declarations

4. Constraint declarations

5. Security context specification

The TE model provides fine-grained control over processes and objects in the system and

the RBAC model provides a higher level of abstraction to simplify user management.

3.2.1 Writing the policy - Yes, and which way??

We took the policy.conf file from the refpolicy. Then we had to decide which way we

should go. We had three options:

1. To write a minimalistic monolithic policy,

2. To use the refpolicy and adapt it for our model,

3. To use MLS and MLC in refpolicy and adapt them for our model

It would be difficult to modify the refpolicy. Therefore we decided to apply the first op-

tion. Using two other options would require to edit all 2,9∗106 lines of code.

CHAPTER 3. IMPLEMENTATION 21

3.2.2 FLASK definitions

In this subsection, we present all components that we use for configuring of SELinux. All

what we need to implement is in the Part 2.1.1.

First of all, we must gain a FLASK definitions. We extract it from the refpolicy pol-

icy.conf file. The FLASK definitions consist of the security object classes, initial security

identifiers, and common prefixes for access vectors. In our case, the FLASK definitions

from the refpolicy was not complete. We must add module request to the class ”sys-

tem”, and acceptfrom, newconn and, connectto to the class ”dccp socket”. Now, the Flask

classes are compatible with our current Fedora12 kernel 2.6.31.5-127.fc12.i686.

3.2.3 TE Statement

In this part of policy.conf we declare attributes and types for our policy.

A type attribute is a name that can be used to identify a set of types with a similar prop-

erty. Each type can have any number of attributes, and each attribute can be associated

with any number of types.

We use specialty attribute object for Object types and specialty attribute domain for Sub-

ject types.

Objects

Our model uses four security attributes for objects - the confidentiality and integrity levels,

the owner user identifier, and the label used to describe the sets of designated inputs

and outputs for partially trusted subjects. We use SELinux user field in object labels

to represent object owners. Firstly, we define a type attribute for each confidentiality

level (specifically: C0, C1 and C2). Then, we define a type attribute for each integrity

level(specifically: I0, I1 and I2) and finally we define a type attribute for each used label

(Lx for label x, we have actually only one Label - default label - L0).

CHAPTER 3. IMPLEMENTATION 22

Example:

##type attribute for confidentiality level

attribute C0;

attribute C1;

attribute C2;

Now, if we have a complete type attribute, we can define a types for object. We define

a type for every possible pair of confidentiality and integrity levels, and tag it with two

type attributes as follows:

For every c,i ∈ {0,1,2} add a type tagged with the attributes Cc and Ii. Then, we add new

object types for every combination of the confidentiality, integrity levels and labels and

tag them with the three type attributes - Cc, Ii, Ll where c and i are the same as above and

l is its label.

Example:

##OBJECT##

#confidentiality x integrity

type Obj_C1I1, object, C1, I1;

#confidentiality x integrity x Label

% #standard case for default label

type Obj_L0C1I1, object, C1, I1, L0;

The Partially Trusted Subject (see below) has access to the Obj L0C1I1, only if has the

required attributes, but not to the Obj C1I1.

Subjects

Firstly, we define a type attribute for each confidentiality level for subjects (specifically:

CRx, CWx, CRLx, CWLx) for x ∈ {0,1,2}. Then, we define a type attribute for each

integrity level for subjects (specifically: IRx, IWx, IRLx, IWLx) for x ∈ {0,1,2}, and

finally we define a type attributes CRLSx, CWLSx, IRLSx and IWLSx for x ∈ L, where L

is the set of needed labels.

CHAPTER 3. IMPLEMENTATION 23

Example:

##ATTRIBUTES FOR SUBJECTS

#CRx

attribute CR0;

#CWx

attribute CW0;

#CRLx

attribute CRL0;

#CWLx

attribute CWL0;

Our model distinguishes trusted, untrusted, and partially trusted subjects. The full set

of needed types for trusted and untrusted subjects contains 81 types. These types are to be

tagged with the attributes CR〈CRS〉,CW 〈CWS〉, IR〈IRS〉 and CR〈CRS〉, where 〈x〉 denotes

the value of x.

We add a new type with a unique name for every used combination of the par-

tially trusted subject attributes, and tag it with the following type attributes: CR〈CRS〉,
CW 〈CWS〉, IR〈IRS〉 and CR〈CRS〉, where 〈x〉 denotes the value of x, and CRLSy for

y ∈ CRLSS, CWLSy for y ∈ CWLSS, IRLSy for y ∈ IRLSS and IWLSy for y ∈ IWLSS.

Example:

##TRUSTED SUBJECTS##

type trS_0_0_0_1, domain, CR0, CW0, IR0, IW1;

##UNTRUSTED SUBJECTS##

type unS_0_0, domain, CR0, CW0, IR0, IW0;

##PARTIALLY TRUSTED SUBJECTS##

ptS_C1102_I2110_L0000, domain, CR1, CW1, CRL0, \

CWL2, IR2, IW1, IRL1, IWL0, CRLS0, CWLS0, IRLS0, IWLS0;

CHAPTER 3. IMPLEMENTATION 24

TE Access Vector Rules

A TE access vector rule specifies a set of permissions based on the type pair and object

security class. These rules can be specified for each kind of access vector, including the

allowed, auditallow, and auditdeny vectors. The first rule is very important to us. The

auditallow(auditdeny) vectors we can use to audit (record avc messages into audit.log

file) all allowed (denied) operations.

Access control rules are specified using the following syntax:

allow source types target types : classes permissions ; . In our case, the source types is a

set of subjects(attribute domain) and the target types is a set of objects(attribute object),

and subjects(attribute domain). The permissions represent a set of operations. The classes

is a set of classes that the rule applies to. Classes are used in SELinux to distinguish

between different sorts of objects, such as directories, file, fifo file, socket, process, etc.

Example:

allow {domain} {domain object}:dir { getattr relabelto \

unlink ioctl execute append read setattr swapon write \

lock create rename mounton quotaon relabelfrom link \

search rmdir remove_name reparent add_name open };

3.2.4 RBAC Statement

We use a role declaration from the refpolicy. A role declaration specifies the name of the

role and the set of subject types for which the role is authorized. We don’t use all abilities

of RBAC, we only declare the basic set of roles. In other words, all roles in our policy are

authorized to use all subject types(domains). In policy we have these roles: system r for

all system processes, object r for all system files, user r for all users, and staff r specially

for root. We have declared sysadm r and unconfined r too, but now they are not used.

Example:

role system_r types { abrtd_exec_t avahi-daemon_exec_t \

browser_exec_t canberra-gtk-play_exec_t dbus-daemon_exec_t \

evolution_exec_t gnome-settings-daemon_exec_t \

Launcher_exec_t nautilus_exec_t xorg_exec_t Loading_boot_t \

NetworkManager_exec_t ps_exec_t unS_0_0 unS_0_1 unS_0_2 \

unS_1_0 unS_1_1 unS_1_2 unS_2_0 unS_2_1 unS_2_2 };

CHAPTER 3. IMPLEMENTATION 25

3.2.5 User Declarations

The user declarations define each user recognized by the policy and specify the set of

authorized roles for each of these users. In policy we have these users: root is user identity

for root, system u is defined for system processes and objects, and user id u is defined for

every unprivileged users in the system, where id is an user id in system. In our case, it

would be user 500 u. We didn’t use only user u identity for all users in system with more

then one user, because this user field we use to represent owner.

Example:

user root roles { object_r staff_r system_r }

user user_u roles { object_r user_r };

user test_u roles { object_r user_r };

An user identity user u is defined, because in our system we have only one real user(without

root). An user identity test u is defined only for testing the functionality.

Each SELinux policy(strict, targeted, mls, or our policy) contains in its root directory

a special file - seusers, that is used to mapping system user onto SELinux user identity

and role. For testing the functionality we can use command ‘id -Z‘.

Example:

[root@root ˜]# id -Z

root:staff_r:Loading_boot_t

Our security context is: user− root;role− sta f f r; type(domain)− Loading boot t

3.2.6 Constraint Definitions

The constraint definitions specify additional constraints on permissions in the form of

boolean expressions that must be satisfied. The set boolean expressions based on the

user identity, role, or type attributes in the pair of security contexts. The same constraint

can be imposed on multiple classes and permissions. Now, we can create the SELinux

constraints corresponding to the rules of our model’s information flow policy(Section

2.1). More about concrete constraints you can find in the next Section 3.3

CHAPTER 3. IMPLEMENTATION 26

3.2.7 Security Context Specifications

The security contexts specifications provide security context for various entities such as

initial SIDs, filesystem entries, and network objects.

Initial SID Contexts

Initial SIDs are SID value that are reserved for system initialization or predefined objects.

The initial SID contexts configuration specifies a security context for each initial SID.

This security context consists of a user identity, a role and a type.

Here is an example:

sid port system_u:object_r:Obj_L0C1I1

sid devnull system_u:object_r:Obj_L0C1I1

sid kernel system_u:system_r:Loading_boot_t

sid unlabeled system_u:object_r:unlabeled_t

Filesystem Labeling Behaviors

The labeling behavior for a filesystem type can be specified using the fs use or using

the genfs contexts configuration. For disk-based filesystem types that support extended

attributes and the security xattr namespace, we use fs use xattr. For pseudo filesystem

types representing pipe and socket objects, we use fs use task. For pseudo filesystem re-

presenting pseudo terminals and shared memory or temporary objects we use fs use trans.

Here is an example:

fs_use_xattr ext3 system_u:object_r:Obj_C1I1;

fs_use_task pipefs system_u:object_r:Obj_C1I1;

fs_use_trans tmpfs system_u:object_r:Obj_C1I1;

Genfs Contexts

The genfs contexts configuration is consulted to determine a security context based on the

filesystem type, the file pathname, and optionally the file type.

Here is an example:

genfscon ntfs / system_u:object_r:Obj_L0C1I1

genfscon proc /net system_u:object_r:Obj_L0C1I1

genfscon selinuxfs / system_u:object_r:Obj_L0C1I1

CHAPTER 3. IMPLEMENTATION 27

3.3 Control Mechanism

The Task of Control Mechanism is to restrict the information flow using the SELinux

constraints corresponding to the rules of our model’s information flow policy defined in

Section 2.1.

The SELinux Constraint

The constraint statement has three elements: a set of object classes to which the constraint

applies, a set of permissions for those classes that are being constrained, and a Boolean ex-

pression of the constraint. The constraint statement enables us to restrict specified permis-

sions for specified object classes by defining constraints based on relationships between

source and target security contexts.

constrain class_set perm_set expression;

All permissions must be valid for all object classes in the class set. An expression is a

Boolean expression of the constraint. The Boolean expression syntax supports the follow-

ing keywords:

• t1, r1, u1 - Source type, role and user, respectively

• t2, r2, u2 - Target type, role and user

We use only following Constraint expression operators:

• == - Set member of or equivalent

• != - Set not member of or not equivalent

In general, the constraint expressions can be very complex. But we usually use only com-

plex constraint expressions, because 4 is the maximal depth, which the compiler allows

us to use for constraint rules.

We defined the constraints for all operations like read(S,O), write(S,O), create(S,O),

debug(D,S) and maysignal(S,R). The operation get object’s attributes getattr(S,O) is

equivalent to operation read(S,O) and the operation set object’s attributes setattr(S,O)

is equivalent to operation write(S,O). The corresponding permission in SELinux for

read(S,O) and getattr(S,O) is read, for write(S,O) and setattr(S,O) is write, for create(S,O)

are create and link, for debug(D,S) is ptrace and for maysignal(S,R) is correponding

class process and permissions sigkill, sigstop and signal. For all Changing the subject’s
security attributes operations is corresponding permission class process and permissions

transition.

CHAPTER 3. IMPLEMENTATION 28

constrain { blk_file chr_file sock_file } { read } (

(T2 == C2 and T1 == CR2) or (T2 == C1 and T1 == {CR1 CR2}) or (T2 == C0)

or

(T2 == L0 and T1 == CRLS0 and T2 == C2 and T1 == CRL2)

or

(T2 == L0 and T1 == CRLS0 and T2 == C1 and T1 == {CRL1 CRL2})

);

constrain { blk_file chr_file sock_file } { read } (

(T2 == I0 and T1 == IR0) or (T2 == I1 and T1 == {IR1 IR0}) or (T2 == I2)

or

(T2 == L0 and T1 == IRLS0 and T2 == I0 and T1 == IRL0)

or

(T2 == L0 and T1 == IRLS0 and T2 == I1 and T1 == {IRL1 IRL0})

);

constrain { blk_file chr_file sock_file } { read } (

[U1 == U2 or T2 == {C0 C1}]

and

[U1 == U2 or T2 == {I0 I1} or U2 == {root system_u}]

);

Figure 3.1: SELinux constraints for read(S,O)

3.3.1 Problematic operations

A subject S may delete an object O from (or related to) an object P if delete(S,O,P) is

true. In one constraint we don’t have expression keywords for Source type, Target types

and for Parent type of Target. Fortunately, the operation delete(S,O,P) can be imple-

mented as permission unlink.

A subject S may set the confidentiality level of an object O to c, and the integrity level of O

to i if reclassify(S,O,c, i) is true. For this operation we don’t have to control only Source

type and Target type. We have to control Source type, Old type of Target, and New type

of Target. Here are constrains probably useless. But SELinux supports a special second

constraint statement called validatetrans. This statement was added as a part of modified

multilevel security features. With the validatetrans we can further control the ability to

change the security context of supported objects class.

CHAPTER 3. IMPLEMENTATION 29

The SELinux Constraint - Validatetrans

The validatetrans statement restricts the ability to change the security context of specified

supported objects by defining constraints-based relationships with old and new security

context and the security context of the process(subject[domain]).

validatetrans class_set expression;

In contrast with constraints, the perm set is missing here. The Boolean expression syntax

supports the following keywords:

• t1, r1, u1 - Old type, role and user, respectively

• t2, r2, u2 - New type, role and user, respectively

• t3, r3, u3 - Process type, role and user

We use only following Validatetrans expression operators:

• == - Set member of or equivalent

• != - Set not member of or not equivalent

But the validatetrans cannot control, whether the Old type user is equivalent to Process

type user. Therefore, we have to use constraints with permission relabelto to control

this equality. Thus, the operation reclassify(S,O,c, i) is implemented as combination of

constraint with permission relabelto and validatetrans constraint for supported classes.

CHAPTER 3. IMPLEMENTATION 30

3.3.2 Interprocess and Network communications

The Two-Dimensional Labelled Security Model with Partially Trusted Subjects contains

the rules for information flow only between subjects(domains) - source and objects - tar-

get. When we are trying to implement these rules for Interprocess and Network commu-

nications into our prototype policy, we found some problems.

3.3.3 Network communication

The first problem was a method ”How to implement Network communication”. Firstly,

we tried to use a SELinux abilities to set a Network Object Contexts, which permits the

specification of security contexts for ports, network interfaces, and nodes. But in current

version of SELinux we can only control the access to ports. On the other hand, in current

SELinux version, we can use an IPtables to set a security context for each packet. You

can find a basic principles in [JB] and [JM].

Solution

The Internet is a potentially malicious environment. It means, we use a IPtables to label

each packet from the Internet with the label for public and potentially malicious object.

In our case, the corresponding label is Obj C0I0. If we want to have Internet access, we

have to use a specific browser that is authorized to work with this object type. In our

point of view, if we want to connect to the Internet banking provider(IB provider), then

this communication is trusted and the packets that are sending to/from IB provider aren’t
public and potentially malicious. Therefore, these packets are labeled with confidentiality-

normal(C1) and integrity-normal(I1) attributes. In our case, the corresponding label is

Obj C1I1. In prototype policy directory the directory ”script” contains a file ”selinux-

network.sh” that contains all commands for IPtables. To control the packet flow we use

the constraints again, i.e. constraint for class packet, and permissions send, and recv. The

permission send is defined like write and the permission recv is defined like read in 2.1.1.

A real example of this situation is described in Chapter ”Testing”, specifically Section

4.3.

CHAPTER 3. IMPLEMENTATION 31

3.3.4 Interprocess communication

The second problem was a method ”How to implement Interprocess communication”.

Linux and SElinux use for interprocess communication AF UNIX datagram Sockets, re-

spectively AF UNIX stream Sockets. These correspond to class unix dgram socket, re-

spectively to unix stream socket. SELinux contains also classes like socket and sock file.

Which class and permissions we have to use to control interprocess communication?

Neither from the source code has not been clearly about, what SELinux really doing

during the interprocess communication. The method ”Trial and error” was not useful. We

used [BSD Sockets Interface Programmer’s Guide] to study the Interprocess communica-

tion. We wrote a simple client and server application using AF UNIX datagram socket

and AF UNIX stream socket. With these applications we mapped all interprocess activi-

ties.

AF UNIX datagram

In case of using AF UNIX datagram socket:

The server application process creates a socket(constraint class unix dgram socket). As

follow, the server application performs bind, write, add name operations. Then, it creates

a object(constraint class sock file). The created socket inherits the security context from

parent(the server application). We cannot control this inheritance. Finally, the server

application performs read on the created socket.

The client application process performs the same operations like the server application

with the difference, that the last operation is not read but write on the created socket.

The interprocess communication between client and server applications is then made with

calling operation sendto(constraint class unix dgram socket) from the client side.

AF UNIX stream

In case of using AF UNIX stream socket:

The server application process creates a socket(constraint class unix stream socket). As

follow, the server application performs bind, write, add name operations. Then, it creates

an object(constraint class sock file). The created socket inherits the security context from

parent(the server application). Also, we cannot control this inheritance. Finally, the server

application performs listen and accept on the created socket.

The client application process performs only connectto(constraint class unix stream socket).

CHAPTER 3. IMPLEMENTATION 32

Solution

As mentioned above, the Two-Dimensional Labelled Security Model with Partially Trusted

Subjects doesn’t contain the rules for information flow between subjects(domains) - source

and subjects(domains) - target (without debug(D,S) and maysignal(S,R)). We have to

therefore define the rules for the information flow between subjects and subject.

Idea: The source subject(client) must be able to write a file and then, the target sub-

ject(server) must be able to read this file.

Formal definition:

A subject S1 may sendto or connectto to a subject S2 if sendto(S1,S2) is true, where

sendto(S1,S2)
def⇐⇒ [CWS1 ≤CRS2 ∨ [CWLS1 ≤CRLS2 ∧ (CRLSS2 ∩CWLSS1 6= /0)]

(3.1a)

∧[IRS2 ≤ IWS1 ∨ [IRLS2 ≤ IWLS1 ∧ (IWLS1 ∩ IRLSS2 6= /0)] (3.1b)

∧[(US1 = US2)∨ (CWS1 ≤ 1∧ IWS2 ≤ 1)] (3.1c)

∧[(US1 = US2)∨ (CWUSS1 ∩ IRUSS2 6= /0)] (3.1d)

Implementation:

We can use this rule for definition of the constraint for class unix dgram socket and per-

mission sendto and the constraint for class unix stream socket and permission connectto.

Example:

(3.1a)

constrain { unix_dgram_socket } { sendto } (

[(T1 == CW0) or (T1 == CW1 and T2 == { CR1 CR2 })

or (T1 == CW2 and T2 == CR2))]

or [

[(T1 == CWL0) or (T1 == CWL1 and T2 == { CRL1 CRL2 })

or (T1 == CWL2 and T2 == CRL2)]

and

(T1 == { CWLS0 } and T2 == { CRLS0 })

]);

CHAPTER 3. IMPLEMENTATION 33

(3.1b)

constrain { unix_dgram_socket } { sendto } (

[(T1 == IW2) or (T1 == IW1 and T2 == { IR1 IR0 })

or (T1 == IW0 and T2 == IR0)]

or [

[(T1 == IWL2) or (T1 == IWL1 and T2 == { IRL1 IRL0 })

or (T1 == IWL0 and T2 == IRL0)]

and

(T1 == { IWLS0 } and T2 == { IRLS0 })

]);

(3.1c and 3.1d)

constrain { unix_dgram_socket } { sendto } (

[(U1 == U2)or (T1 == { CW0 CW1 } and T2 == { IR0 IR1 })]

and

[(U1 == U2) or (U2 == { system_u })]

);

3.3.5 X Server

The graphical user interface in Linux is implemented using X11 protocol(X server). It

controls output devices and input devices. The applications connect to the X server, send

their requests to display windows, and receive events. SELinux contains the specific X

Server Object Classes. With these classes, we can restrict e.g. access to the Cursor object,

Drawable object, Keyboard Device Object, Screen Device Object, etc. But now, they are

not used in prototype. We defined only one type, specifically xorg exec t. All subjects

can work with this subject type.

Chapter 4

Testing

In this chapter, we present a tutorial for installation our policy into SELinux and some

example of its using.

4.1 The installation process

This section describes the installation process.

1. Copy the contain of the archive to ”/etc/selinux/”.

2. Open ”/etc/selinux/config”.

3. Set ‘SELINUX=permissive‘ and ‘SELINUXTYPE=bakalarka‘.

4. Open ”/etc/rc.local” and add this code

#

SELinux policy scripts

#

sh /etc/selinux/bakalarka/script/selinux-label.sh

sh /etc/selinux/bakalarka/script/selinux-network.sh

If you don’t want to allow our model controlling your network, then remove the

line containing ’selinux-network.sh’ from ”rc.local”.

34

CHAPTER 4. TESTING 35

5. Open the terminal and type ”touch /.autorelabel” - this command sets a new label

for each entity after the reboot.

6. Then restart the computer. After that, check ”/var/log/audit/audit.log”

7. If you don’t see any ‘denied‘ AVC message, then you can open ”/etc.selinux/config”

and set ‘SELINUX=enforcing‘.

4.2 Filesystem labelling

In this section, we present a filesystem labelling.

Firstly, any changes of security context(file label) are dangerous. Any changes we must

do only in permissive mode - command ”setenforce 0” and in ”/etc.selinux/config” to set

‘SELINUX=permissive‘. Then, to change a label of specific file, we have to edit

”/etc/selinux/bakalarka/contexts/files/file contexts.local”.

Example:

/usr/sbin/NetworkManager system_u:system_r:NetworkManager_t

/root/sensitiveData/private_key root:staff_r:Obj_L0C2I2

Finally, command ”touch /.autorelabel” sets a new label for each entity after the reboot.

We use this command to view all dependencies.

With this method we discovered the problem, when we tried to relabel the file ”/etc/resolv.conf”,

but nothing happened. The security context of resolv.conf was same as before. The

problem - browser, type Obj C0I0, tried to read resolv.conf, but it couldn’t. Effective

solution was to create a new type, not for browser, for subject - DHCP NetworkMan-

ager(NetworkManager exec t). Then, we defined the new type transition rule for class

file. Finally, the browser worked correctly.

All system directories should have the label Obj C0I2. All user directories should have

the label Obj C1I1. But, the download directory for data from the Internet, should have

the label Obj C0I0.

The shared directories should have this security context system u:system r:Obj C1I1.

The all sensitive data(files) can have the label Obj C2I1, Obj C1I2, or Obj C2I2.

CHAPTER 4. TESTING 36

4.3 Utilities

In directory ”..bakalarka/util/” you can find our utility called launcher, that allows you to

test various security context.

Example of an unsecured browser:

1. Create a new launcher with the name ’unsecured browser’

2. Type into command field

etc/selinux/bakalarka/util/launcher -x /usr/bin/firefox \

-t browser_exec_t

3. Launch

4. Now, only if the network ability of our model is enabled, you can connect to the

Internet, but you cannot connect to any Slovak bank portal.

In ”/var/log/audit/audit.log” you will find some ”denied messages” as shown below:

type=AVC msg=audit(1272638399.968:35): avc: denied \

{ send } for pid=1687 comm="firefox" saddr=192.168.26.147 \

src=57064 daddr=213.215.88.244 dest=80 netif=eth5 \

scontext=root:staff_r:browser_exec_t \

tcontext=system_u:object_r:Obj_C1I1 tclass=packet

type=AVC msg=audit(1272638400.005:36): avc: denied \

{ recv } for pid=1708 comm="firefox" saddr=213.215.88.244 \

src=80 daddr=192.168.26.147 dest=57064 netif=eth5 \

scontext=root:staff_r:browser_exec_t \

tcontext=system_u:object_r:Obj_C1I1 tclass=packet

Is it correct if we can’t connect to an Internet banking? No, of course not.

And here is the solution:

Example of secured browser:

1. Create a new launcher with name ’secured browser’

2. Type into command field

CHAPTER 4. TESTING 37

etc/selinux/bakalarka/util/launcher -x /usr/bin/firefox \

-t unS_1_1

3. Launch

4. Now, only if the network ability of our model is enabled, you can as usual connect

to your favorite Slovak bank, but not to the whole Internet world.

Example of a partially trusted e-mail client:

We use the e-mail client called Evolution. For electronic e-mail signature, the e-mail

client needs access to a private key, in our case Obj L0C2I2, and certificates, in our case

Obj C0I2.

type evolution_exec_t, domain, CR0, CW2, CRL2, CWL0, IR1, \

IW1, IRL1, IWL2, CRLS0, CWLS0, IRLS0, IWLS0;

Conclusions

The objective of this thesis was to create a prototype SELinux policy. We have created a

prototype Selinux policy and we can demonstrate the basic principles of Two-Dimensional

Labelled Security Model with Partially Trusted Subjects in practice. We have shown that

the using SELinux to enforce this model is feasible. We have presented several concrete

applications examples used in this environment. In the future, we want to continue in our

work. We want to do the fully-fledged SELinux policy without any exception in constrain

rules.

We can see the following tasks that might follow this thesis:

1. X Server - to include all SELinux X Server Classes into constraint rules

2. Labelling - to assign to each entity the right label with corresponding attributes

3. Software Development Tools - to create tools set, allowing easily configure SELinux

policy

4. Modular policy - to allow working with modules from targeted policy

38

Bibliography

[JJ] JANÁČEK, J.: General Purpose Operating System for Security-Critical Applica-

tions : PhD. thesis. Bratislava : Univerzita Komenského, 2010

[JJ1] JANÁČEK, J.: Two Dimensional Labelled Security Model with Partially Trusted

Subjects and Its Enforcement Using SELinux DTE Mechanism. In: Communica-

tions in Computer and Information Science : Proceedings of The Second Interna-

tional Conference on Networked Digital Technologies. Springer, 2010 (to appear).

[JJ2] JANÁČEK, J.: Mandatory Access Control for Small Office and Home Environ-

ment. In: VOJTÁŠ, P. (ed.): Informačné Technológie – Aplikácie a Teória : Zbornı́k

prı́spevkov prezentovaných na pracovnom seminári ITAT. Seňa : PONT s.r.o., 2009,

pp. 27-34.

[NSA] SMALLEY, S.: Configuring the SELinux Policy - Last revised: Feb 2005

http://www.nsa.gov/research/ files/publications/selinux configuring policy.pd f

[MMC] MAYER, F. - MACMILLAN, K. - CAPLAN, D.: SELinux by Example: Using

Security Enhanced Linux, Prentice Hall, 2006. ISBN-10: 0-131-96369-4

[Virtual Machine] Fedora12 virtual machine:

http://wwvv.quotrader.org/system/software/fedora/12/

[JM] MORRIS, J.: New secmark-based network controls for SELinux

http://blog.namei.org/2006/05/23/new-secmark-based-network-controls-for-

selinux/

[2.5.2010]

[JB] BRINDLE, J.: Secure Networking with SELinux

http://securityblog.org/brindle/2007/05/28/secure-networking-with-selinux/

[2.5.2010]

39

BIBLIOGRAPHY 40

[BSD Sockets Interface Programmer’s Guide] HP 9000 Networking: BSD Sockets Inter-

face Programmer’s Guide

http://docs.hp.com/en/B2355-90136/B2355-90136.pdf

[2.5.2010]

[SELinux OC & P Reference] SELinux Object Classes and Permissions Reference

http://selinuxproject.org/page/ObjectClassesPermsg

[refpolicy] http://oss.tresys.com/projects/refpolicy

Note: The SELinux Reference Policy project (refpolicy) is a complete SELinux

policy that can be used as the system policy for a variety of systems and used as the

basis for creating other policies. Reference Policy was originally based on the NSA

example policy, but aims to accomplish many additional goals.

Abstrakt

V tejto práci sa snažı́me implementovať prototyp ”Two-Dimensional Labelled Security

Model with Partially Trusted Subjects” modelu, ktorý navrhol vo svojej dizertačnej práci

RNDr. Jaroslav Janáček [JJ]. Snažı́me sa preukázať použiteľnosť SELinuxu pre uplatnenie

tohto modelu. Prototyp, resp. prototyp politiky, využı́va NSA Security-Enhanced Linux

(SELinux).

Kľúčové slová: politika toku informáciı́, bezpečnostný model, SELinux politika

	Security models
	Standard Linux Security Model
	SELinux Security Model
	Two-Dimensional Labelled Security Model with Partially Trusted Subjects

	Integration into SELinux policy
	The Information Flow policy
	Formal definition of the information flow policy

	SELinux abilities

	Implementation
	Prepare
	Making of SELinux Policy or 'Busy Days'
	Writing the policy - Yes, and which way??
	FLASK definitions
	TE Statement
	RBAC Statement
	User Declarations
	Constraint Definitions
	Security Context Specifications

	Control Mechanism
	Problematic operations
	Interprocess and Network communications
	Network communication
	Interprocess communication
	X Server

	Testing
	The installation process
	Filesystem labelling
	Utilities

