
DEPARTMENT OF COMPUTER SCIENCE

FACULTY OF MATHEMATICS, P HYSICS AND

INFORMATICS

COMENIUS UNIVERSITY

VIRTUAL OPERATING SYSTEM IN C #
Bachelor's Thesis

MICHAL BURGER

Informatics 9.2.1

Advisor:
RNDr. Richard Ostertág Bratislava, 2008

DEPARTMENT OF COMPUTER SCIENCE

FACULTY OF MATHEMATICS, P HYSICS AND

INFORMATICS

COMENIUS UNIVERSITY

VIRTUAL OPERATING SYSTEM IN C #
Bachelor's Thesis

MICHAL BURGER

Informatics 9.2.1

Advisor:
RNDr. Richard Ostertág Bratislava, 2008

I hereby declare that I wrote this thesis by myself, only with the help of
referenced literature, under the careful supervision of my thesis advisor.

...

ii

ACK NO WLED G ME N TS

I would like to thank my advisor RNDr. Richard Ostertág for the help and

guidance he provided me with while I was writing my thesis. I would also like to

thank him for suggesting the topic of this thesis and for everything he taught

me during our Programming and Operating Systems classes.

Secondly I would like to thank Mgr. Vladimír Koutný for unknowingly sparkling

in my mind the idea of writing a virtual operating system and for sharing with

me all the materials he used while instructing us on the Nachos project in the

Operating Systems class.

iii

Abstract

Virtual operating system is a computer operating system which instead of on

real hardware only runs on a simulated virtual computer. Virtual operating

systems can be used for educational purposes but they also have their

advantages compared to traditional operating systems, namely the improved

security gained from separating the virtual processes from the real operating

system and other processes running on the real hardware. Virtual computers

also tend to have very simplistic design which sometimes allows us to prove the

correctness of an operating system running on such computer.

In this paper I will introduce the Comenius Operating System (ComOS) and the

virtual computer it runs on – ComOS Virtual Machine. The goal of the ComOS

project is to create an environment in which students of Operating Systems

classes can design their own operating systems and learn how to solve problems

commonly encountered in system programming. Both ComOS and ComOS

Virtual Machine are writ ten in the C # programming language and post-

compiled by PostSharp.

Keywords: ComOS, virtual operating system, PostSharp

iv

Preface

Computers are devices designed to perform the same number of mathematical

operations as would take an average human his lifetime to do, in just a fraction

of a second and without single error. Early computers were used to break

military codes, calculate rocket trajectories and simulate nuclear chain reactions.

Even though most of the present day computers are used merely for word

processing and browsing the Internet, it doesn' t mean that computers have lost

their importance. Quite on the contrary, the world as we know it could never

exist without them.

But computers by themselves are just big metal and plastic boxes – they would

be useless without software to run on them. And in turn all of the software

would be useless too without the most important part of it – the operating

system. Now a knowledgeable reader could object that the concept of an

operating system didn' t even exists at the time when first computers were built.

But this reader should keep in mind that the early computers were very

specialized devices that could often execute only a single program or had to be

mechanically reprogrammed before every use. At that time there was no need

for an operating system because the computers were very simple and only used

for one and the same task. However, as the technology advanced, computers

became mass produced and became one the most versatile and most complex

devices man has ever created. Nowadays you can use the same piece of hardware

for creating a short animated movie or for running a nuclear power plant. You

could even do both at the same time! (Don' t try this at home.) The original

specialized programs were replaced by one general purpose program – the

operating system, a program that allows you to run other programs rather than

being useful by itself.

Since operating systems affect all other programs run on the computer, they are

v

designed with speed and performance in mind. For this reason the programming

language of choice for a system programmer has always been the assembly

language or language C. But as modern computers become increasingly more

powerful, the performance of an operating system is not as important as it was

in the past. The emphasis is now more on stability and security rather than

efficiency and memory usage. And since the complexity of modern operating

systems makes their development in low-level programming languages also very

impractical, a simple solution comes to mind – using a high-level object oriented

language. Engineers at Microsoft Research have already started exploring this

idea in their managed operating system called Singularity, a research operating

system writ ten in C # (see [Sin]). This project takes advantage of provability of

certain subset of the Microsoft Instruction Language to prove the correctness of

parts of the operating system. Other community based projects exist that try to

implement an operating system in the C # or Java languages, most notably

SharpOS written in C # and JNode writ ten in Java.

With all these new and exciting technologies in our hands, a high-level language

operating system could soon become a reality. Most of the software development

is already shifting from C and C + + to Java or the .NET framework and many

young programmers learn Java as their first programming language. This is the

reason why I decided to write ComOS in a managed language – not only to keep

up with the latest technologies but also to contrast the modern high-level

programming languages with the crude workings of actual computer hardware,

to bring these two different concepts together and let the programmer see “how

stuff works”.

Michal Burger

vi

Contents

1 Introduction 1
1.1 Motivation..1
1.2 Structure of this document..2

2 Virtualization 3
2.1 The concept of a virtual machine...3
2.2 Specifics of the ComOS Virtual Machine..4

3 Designing a virtual computer 7
3.1 Architecture of modern computers...7

3.1.1 Von Neumann architecture..7
3.1.2 Personal computer architecture...8

3.2 Components of a personal computer..10
3.2.1 Central processing unit...10
3.2.2 Random access memory..10
3.2.3 Input and output devices...11
3.2.4 Timer...11
3.2.5 PCI bus...11

3.3 ComOS Virtual Machine..13
3.3.1 Bus...13
3.3.2 Interrupt controller..17
3.3.3 Device interface..17
3.3.4 Processor...18
3.3.5 System timer..22
3.3.6 Terminal..22
3.3.7 Unmanaged memory...23
3.3.8 Machine...23

4 ComOS software 25
4.1 Isolating the software from CLR...25

4.1.1 Ignoring the problem...26

vii

4.1.2 Code processing...26
4.1.3 Debugger API..26
4.1.4 Post-compilation..26

4.2 Using the ComOS project..29

5 Conclusion 31

viii

Chapter 1

1 Introduction

In modern personal computers, operating system is the most important piece of

software. It is the link between computer hardware and computer software. Operating

system allows other programs to use computer resources and peripherals in a hardware-

independent way, without worrying about the low-level implementation details. Most

modern operating systems also allow execution of multiple programs at the same time

while making this process completely transparent to the application programmer.

A virtual operating system accomplishes the same tasks as a regular

operating system, only it doesn' t run on a real hardware but rather on a virtual

computer often called the virtual machine. Comenius Operating System

(ComOS) is a project of writing an operating system for the ComOS Virtual

Machine. In the following sections, I will present the rationale behind the

ComOS project and provide a brief summary of the chapters to follow.

1.1 Motivation

The purpose of Comenius Operating System is to serve as an educational tool. It was

specifically designed for the 1-INF-170 Operating Systems course at the Faculty of

Mathematics, Physics and Informatics of Comenius University. There were only two

requirements given for this project:

• It should allow students to implement the basic synchronization mechanisms,

scheduling algorithms and virtual memory paging.

• Students should be able to write their code in a modern object-oriented

language – specifically the language C #.

1

The reason for choosing the C # programming language in the second requirement was

very pragmatical – to allow the shift from Java to C # in the 1-INF-225 Programming 3

course.

Since writing our own virtual operating system is a complicated task, the first

thing we should do is to consider existing alternatives. As it turns out, there are

many different systems used around the world for teaching Operating Systems

courses that would fulfill out needs, had they not shared one common feature –

the system code always has to be writ ten in assembly or the C programming

language. One particular project stands out from the rest in respect to this

common property. Its name is NACHOS (Not Another Completely Heuristic

Operating System) and it was originally written in C + + but later ported to

Java as Nachos 5.0j at the University of California, Berkeley. (For more

information about this project, see [HC01].) The Java version of Nachos has

been successfully tested in the 1-INF-170 Operating Systems course and was the

basis for Comenius Operating System.

However, it is important to note that the ComOS project doesn't copy

Nachos in any way. The structure of Nachos virtual machine (if we may call it

so) was merely an inspiration in the process of designing the ComOS Virtual

Machine. Some of the flaws in Nachos were taken into account when designing

ComOS and were fixed; we will compare some aspects of these two systems later

on.

1.2 Structure of this document

In the following chapters, we will explore the workings of a real-life computers and

compare them to the ComOS project. In Chapter 2, the concept of a virtual machine

will be explained and the ComOS Virtual Machine will be compared and contrasted to

the traditional virtual machines. Chapter 3 will deal with the architecture of modern

computers and describe the simplified model used in ComOS Virtual Machine. It will

also contain implementation details of some parts of the virtual machine. We will

discuss the realization of ComOS software in Chapter 4 and study possible alternative

uses for the ComOS project. Chapter 5 will conclude this paper.

2

Chapter 2

2 Virtualization

Virtualization is a broad term used for many different techniques in software

development. In this chapter it will refer to the process of moving from a real computer

hardware to a virtual machine.

2.1 The concept of a virtual machine

Virtual machine is a software implementation of a computer. It can run programs just

like a real computer but it 's not made of electronic circuits – it 's just a software

simulation, a program which in reality has to be run on another computer called the

host machine. This host machine could in turn be again virtual – we shall shortly see

that this in fact is the case of ComOS – but every such chain of virtual machines must

ultimately end at a piece of real computer hardware where the actual code execution

takes place.

The most important requirement put on a virtual machine is that the

processes running inside of it must be limited to the abstraction provided by the

virtual machine and won't be able to break out to the host operating system.

This is often easily achieved by having the architecture, instruction set and

binary format used in the virtual machine completely different to that of the

host machine, thus making the virtual processes completely incompatible with

the host operating system. This property of virtual machines is one of their

greatest strengths – you can run potentially unsafe programs inside of a virtual

machine without worrying about the stability or any other undesirable side

effects to the host operating system.

3

Currently available virtual machines can be divided into two fundamentally

different categories. The first one contains virtual machines which simulate

existing real-world hardware with the purpose of running multiple instances of

an operating system on one computer, possibly for security, compatibility or

development reasons. A well known example of such virtual computer is the

VMware Player. In the second category are the so called application virtual

machines such as Java virtual machine and the Common Language Runtime.

They don' t emulate existing computer hardware but rather take advantage of

the virtualization concept and define their own specification of a virtual

computer. Their goal is to provide a highly abstract and portable runtime

environment and they usually only allow to run one process per instance of the

virtual machine.

2.2 Specifics of the ComOS Virtual Machine

The ComOS Virtual Machine falls somewhere between the two categories mentioned at

the end of the previous section. It doesn' t emulate any existing computer systems but

provides it 's own unique architecture, a very simplified model of what could a real

computer hardware look like. It 's purpose though is not to serve as a simple runtime

environment. ComOS Virtual Machine needs to start an operating system before it can

run any complicated applications. In fact writing any sort of application targeted at the

ComOS Virtual Machine is not meant to be particularly easy. It 's meant to be hard.

The ComOS programmer will have to deal with many low-level aspects of computer

hardware – probably not as many as would a real system programmer have to deal with

but still enough to have to realize what is going on under the hood of an average

personal computer.

There is one important difference between a real virtual computer and the

ComOS Virtual Machine. A virtual computer should be capable of taking a

program compiled into the virtual computer's machine code and execute it

instruction by instruction. If we wanted the ComOS Virtual Machine to do the

same thing, we would have to do one of the following:

4

• Specify our own instruction set, write a compiler to translate C # source code

into machine code and also write an interpreter to read the machine code back

and execute it.

• Use the Microsoft Intermediate Language (MSIL) as our machine language. We

could then use existing C # compilers to compile code targeted at our virtual

machine but we would still need to write an interpreter for the machine code (in

this case for the MSIL).

As you can see, both options involve writing a machine code interpreter for a language

with features such as automatic memory management, inheritance, polymorphism,

function delegates and many others. This would certainly be a very difficult task to

accomplish. For this reason I have decided to follow a different path. Since the ComOS

Virtual Machine is itself written in the C # language, its host machine is the Common

Language Runtime, a virtual machine capable of interpreting compiled C # code. All

software written for the ComOS Virtual Machine is in fact a stand alone software

written for the Common Language Runtime, it executes in the Common Language

Runtime and only references the ComOS Virtual Machine as a library to utilize

functionality provided by the machine. ComOS Virtual Machine only pretends that the

code is executed inside the machine.

So what entitles us to say that this code really runs on our virtual machine?

It 's the restrictions that are put on the code. First of all the code cannot

contain any system calls that would allow it to access the file system, console or

other devices of the Common Language Runtime virtual machine. It also cannot

create or manipulate threads and use synchronization primitives by any other

means than the calls provided in the ComOS Virtual Machine. Secondly the

virtual machine can directly control which ComOS threads are currently

executing. It can also semi-preemptively switch the currently executing threads

and it can keep track of how many instructions of certain kind have the

individual threads executed. ComOS Virtual Machine in fact provides a very

convenient way to control the code a ComOS programmer may write – for

example, it allows him to use C # language features such as automatic memory

management, events and exceptions but it won't allow him to print the result of

5

his computation to the screen by any other means than through the simulated

ComOS console.

The question which comes to mind is how do we convince the programmer to

not use any of the restricted calls that are otherwise an integral part of the C #

programming language? And after playing with the code for a little while, even

more complicated question arises: is it possible to preemptively control the

execution of a managed thread at the MSIL instruction level? It wouldn' t

surprise me a bit if the answer was no. Fortunately there are other methods to

work around this which we will talk about in Chapter 4.

6

Figure 2.1: Relation between ComOS software and ComOS hardware

Host operating system

Common Language Runtime

ComOS software ComOS Virtual Machine

Chapter 3

3 Designing a virtual computer

The purpose of the ComOS Virtual Machine is to simulate the functions of a real

computer. For this reason we will first look at how modern computers work and then

propose a simple computer model to be implemented in the ComOS Virtual Machine.

3.1 Architecture of modern computers

3.1.1 Von Neumann architecture

Design of most of the present day computers is based on the Von Neumann architecture

of electronic computer as seen in Figure 3.1. Central part of this design is the processor

7

Figure 3.1: Von Neumann architecture

Memory

Control Unit Arithmetic Logic
Unit

Accumulator Output

Input

Processor

which consists of the Control Unit and the Arithmetic Logic Unit (ALU). Control Unit

is a part of the processor which directs the flow of its operation. It fetches the

instructions, decodes them, sends them for execution to other parts of the processor

and then stores the results. Arithmetic Control Unit is a part of the processor which

executes arithmetic operations. It uses the accumulator to store operands and results of

these operations as well as data read from the input devices or data to be written to

the output devices. Since the internal accumulator can only have a limited capacity,

external memory is used for storing processed data. The memory also contains the

program of the computer stored as a sequence of machine instructions.

3.1.2 Personal computer architecture

Although a typical personal computer (PC) may be based on the Von Neumann

architecture, the actual implementation of this architecture can be many times more

complicated. In Figure 3.2 we see the schematics of AMD-760™ MPX Chipset from the

year 2000 [AMD01]. The features shared with Von Neumann model are the presence of

processor (possibly more than one), memory and input / output devices. All these parts

communicate through electric connections called buses, in the picture shown as black

lines and arrows. Individual buses are then connected by bridges – the northbridge, in

the diagram labeled as AMD-762™ System Controller, and the southbridge, labeled as

AMD-768™ Peripheral Bus Controller.

If we carefully examine all the different buses and slots, we will notice that

most of them serve the same basic purpose – to communicate data from

processor to the peripheral devices and back. Why do we need such a big variety

of device interfaces and buses? The reason is partly backward compatibility,

partly different speed and throughput requirements. For example, we may notice

that a graphics card in the AGP 4X Slot has a dedicated bus connecting

directly to the northbridge because it needs to transfer huge amounts of data

from the system memory. The system memory too is connected to the

northbridge by a dedicated bus rather than sharing the same bus for example

with a network card or a keyboard. Since the typical amount of data a device

needs to process varies greatly with different types of devices, we need to have

many different buses to accommodate the particular needs of all of them.

8

9

Figure 3.2: AMD-760™ MPX Chipset

3.2 Components of a personal computer

We will now examine the fundamental components of a modern PC and try to estimate

their importance for a virtual computer.

3.2.1 Central processing unit

Central processing unit (CPU) or processor is the heart of every computer. This is

where all the computer programs are executed and from where instructions are given to

all other parts of the computer. Typical operations that a processor performs are

reading and writing data from memory or a device, performing arithmetic and logical

operations and reading the next program instruction from a memory location given by

the results of the previous operations. In our virtual machine, we won't need to

implement an actual processor that would know how to execute machine instructions

for reasons given in Chapter 2, though we will still need to have some sort of control

over the flow of the instruction execution. Specifically we will need to implement the

interrupts feature of a processor.

Interrupts are signals that devices send to processor to inform him about a

change of state of the device. For example, an input device may raise an

interrupt to tell the processor that there is new data waiting in the input buffer

of this device. Interrupts may also be raised by the processor itself if an

arithmetic exception occurs or if the program directly requests it. Processor

checks its internal interrupt flags before every executed instruction and if the

flags are set, it pauses the execution of the current process and starts the

interrupt service routine. The interrupts mechanism allows the processor to

respond to various events when they really occur instead of having to

periodically check the state of all the devices to find out if they happen to need

its at tention.

3.2.2 Random access memory

Memory is a device that stores all the data and machine instructions to be executed on

the processor. It is principally a very simple device – it stores bytes of information at

consecutive memory addresses and when requested, it drives the data on the bus or

writes the data from bus to the specified memory location.

10

Although memory is one of the most important parts of a computer

architecture, we won't really need it in our virtual machine. The reason for this

is that we already have a memory given to us by the Common Language

Runtime where all of our processes will execute.

3.2.3 Input and output devices

Every computer needs to communicate with the outside world so that it can receive

instruction about what to do next and display results of its work. The most common

type of input device is the computer keyboard and the most common type of output

device is the computer screen also called the monitor.

In past these two devices used to be combined in a single device called the

computer terminal. Terminals were used to access mainframe computers and

usually more than one terminal was connected to a single computer, allowing

multiple users to work on mainframe computer at the same time.

For the sake of simplicity, instead of implementing two devices in our virtual

machine we will only implement one – a dumb terminal which will allow the

user to send characters to the computer and receive characters back from

computer printed on the screen.

3.2.4 Timer

An important input device is the system timer. It generates signals or “ticks” in periodic

intervals and usually can be programmed to raise an interrupt after a certain number of

ticks have occurred. System timer is used by an operating system to measure time and

do periodic tasks such as thread scheduling.

3.2.5 PCI bus

All components of a computer are connected by devices called buses. Although modern

computer buses can be very complicated, we can somewhat abstract from these

concrete implementations and look at a bus as just a set of electric wires that can carry

information. Buses operate in periodic cycles. In each cycle, only one device can be

allowed to write data to the bus – the wires cannot carry more than one bit of

information at the same time. The data travels along the whole bus so every device on

11

the bus could potentially read this data.

One of the most widely used bus architectures is the Peripheral Component

Interconnect or PCI. It is used for connecting many common computer

expansion cards and numerous internal computer buses are based on the PCI

specification. Three features of the PCI bus will be of particular interest to us.

First one is the presence of dedicated interrupt lines. If a device needs to signal

an interrupt, it can use these dedicated lines which connect directly to the PCI

bridge and then they are routed to the interrupt controller. This design has a

couple of flaws though from which the most important one in relation to our

virtual machine implementation is that the interrupts are signaled out-of-band,

meaning they are not synchronized with the bus cycles. A solution proposed in

later revisions of PCI and a one that has fully replaced the dedicated interrupt

lines in the PCI Express specification is to use message-signaled interrupts. In

this scheme, a device signals interrupt by performing a write operation to a

specific memory address. This also allows the device to at tach an extra word of

information to the signaled interrupt.

Second feature is the addressing mode – all devices connected to the PCI bus

are at startup time assigned address spaces to be used when requesting a read

or write operation. For example, a network card may indicate at startup that it

needs a 1 kB block of memory for its internal buffer. The PCI bus will assign a

set of 1024 consecutive memory addresses to the network card. When another

device will request a read or write operation to one of these memory addresses,

the address will be mapped to the network card buffer and the device will be

able to read or write directly to the buffer.

The last feature we will talk about is the bus access protocol. A PCI bus

includes features that allow it to control access to the bus. Since the bus can be

only used by one device at a time, the PCI bus collects information before the

beginning of a cycle about which devices want to access the bus. It then selects

one of these devices and only this device will be allowed to perform bus

operations in the next cycle.

12

3.3 ComOS Virtual Machine

The design of ComOS Virtual Machine incorporates all of the basic concepts we have

encountered in the previous two section. Architecture of ComOS Virtual Machine is

more unified than that of a common personal computer. The virtual computer contains

only one bus to which all other devices are connected. In this design even the processor

is treated as regular devices with almost no special status. For this reason, multiple

processors can be connected to any of the device slots without causing any trouble but

at the same time being fully capable of running an extra process on them.

In the following sections we will go through the design and implementation of

individual components and devices of the ComOS Virtual Machine as well as

the machine itself.

3.3.1 Bus

All the devices in ComOS Virtual Machine are connected by a single bus. The bus is

controlled by a chip called the bus controller which decides which device will be allowed

to take control of the bus in the next cycle. It also assigns memory addresses to devices

on the bus and resolves these addresses when devices try to read or write data to the

memory. The functionality provided by the bus is reading memory, writing to memory,

raising a hardware interrupt, raising a hardware exception, assigning memory resources

to a device and enumerating devices connected to the bus.

Every bus cycle is divided into three phases. First is the signaling phase in

which all the devices tell the bus whether they want to access the bus and what

13

Figure 3.3: Single bus architecture of ComOS Virtual Machine

Device 0 Device 1 Device 2 Device 3 Device 4

I /O operation would they like to perform. In the second phase called

arbitration, bus controller decides which device will be granted the ownership of

the bus. Finally in the third phase the requested operation is performed.

The bus is capable of transferring only one byte every cycle, therefore reading

and writing more than one byte will take multiple cycles. In such situations the

bus controller may give ownership of the bus to one device for a longer period of

time, but it will never be for more than 16 cycles to prevent monopolization of

the bus. For this reason all read and write operations always return the number

of bytes that was actually read or written.

Finally the bus contains dedicated channels for communicating memory

mapping information. Devices can use these channels to request blocks of

memory to be assigned to them as well as query the bus controller for a list of

devices currently connected to the bus and the list of memory blocks assigned to

these devices. Since the bus is designed with plug and play functionality in

mind, a device can request a new memory mapping at any time, not only when

the machine starts up. All this information is communicated by dedicated

channels and out-of-bound in respect to the bus cycles, therefore no arbitration

for the bus ownership needs to take place.

The bus with its controller is represented by an instance of BusController
class which provides the following public functions:

public DeviceInfo[] EnumerateDevices();
public bool Interrupt(int source, int interruptInfo);
public void Nop(int source);
public void Read(int source, int address, int length,
out

byte[] result);
public void RegisterDevice(IDevice device, int index);
public MemoryBlockInfo[] RequestIoMemory(int source,
int[]

lengths);
public void SetInteractiveMode(int source);

14

public void SetPassiveMode(int source);
public void SignalException(int source, Exception ex);
public void UnregisterDevice(int index);
public void Write(int source, int address, byte[] data,
out

int numWritten);

Functions RegisterDevice and UnregisterDevice are called when a device is

connected or disconnected from the bus, argument index identifies which slot is the

device connected or disconnected from and argument device is a reference to the

object representing the device.

Functions SetInteractiveMode and SetPassiveMode switch the device

connected to slot identified by argument index into interactive or passive mode.

Device which is in interactive mode must signal in every cycle whether it wants

to gain control of the bus by calling one of the reading or writing methods, or

call function Nop to tell the bus that it doesn't want to access the bus. The

BusController object waits for all devices in interactive mode to call one of

the I /O functions before it ends the signaling phase of the current cycle. Devices

which are in passive mode and don' t call any of the I /O operations before the

end of the signaling phase are treated as if they called the Nop function.

The reason for implementing the passive and interactive modes is that unlike

real hardware, the ComOS virtual devices operate as C # threads and therefore

are unable to call the BusController functions in precise intervals every cycle.

Therefore the BusController has to wait for all the devices to signal what

they want to do and only then end the signaling phase. Devices are given the

option to switch into passive mode so that they won't have to call the Nop
function in a loop until they need to access the bus again. All devices default to

interactive mode so that they won't lose the first couple of cycles after they are

connected to the bus.

Function RequestIoMemory allows the device to request blocks of memory

given by the array lengths. Each element of this array is said to correspond to

15

one function of the device. Each function will be assigned a continuous block of

memory addresses. Bus controller may not be able to satisfy all the

requirements due to the limited address space (31 bits) or because of memory

fragmentation. The return value of the function contains information about

blocks actually allocated for the device. Every call to the RequestIoMemory
function frees all memory blocks assigned to the device by previous calls to this

function.

Function EnumerateDevices returns an array of DeviceInfo objects that

correspond to devices connected to the bus. DeviceInfo objects contain the

type of the device (literally the runtime type of object that corresponds to the

device) and array of memory mappings for the given device.

Function Interrupt tries to raise a message-signaled interrupt with

interruptInfo as extra information carried with the interrupt. The function

returns a boolean value indicating whether the bus was successfully acquired

and interrupt request could be processed, or either the bus was not available or

no processor was able to accept the request which means that no data was

writ ten and the device will have to try again in the next cycle. Function

SignalException is similar to the Interrupt function with the one difference

that it always succeeds. This is because the exception is pushed to the exception

stack in the interrupt controller and forwarded to the processor the next time

bus is available. SignalException cannot be directly called by a ComOS

device. It is called automatically when an exception occurs in one of the threads

simulating the device.

Finally the Read and Write functions send requests to the bus controller that

a device wants to access the bus for reading or writing. Argument source
indicates which device requested the operation and argument address is the

memory address to or from which the operation is to be performed. In case of

the Read function, argument length indicated how many bytes should be read

from the destination address and argument data will contain the bytes that

were actually read. The length of this array indicates how many bytes was the

16

bus able to transfer. The Write function's argument data contains the array of

bytes that are to be writ ten to the destination address and the output argument

numWritten will contain the number of bytes that were successfully transferred.

3.3.2 Interrupt controller

The interrupt controller is an integral part of bus controller. All message-signaled

interrupt requests and all hardware exceptions are forwarded to it and the controller's

task is to send them to the processor. Since ComOS architecture allows more than one

processor in the virtual machine, interrupt controller checks all the processors in round-

robin fashion and forwards any pending interrupts to processors which can currently

accept new interrupt requests. Hardware interrupts that could not be processed fail to

be raised. Hardware exceptions that could not be processed are kept in the exception

queue and will be examined again in the next bus cycle.

ComOS interrupt controller is represented by an instance of

InterruptController class which is a private member of the BusController
class.

3.3.3 Device interface

ComOS bus allows a wide variety of devices to connect to the ComOS Virtual Machine.

The ComOS bus is designed in such a way that all devices can be theoretically hot-

plugged and hot-unplugged from the bus at any time. The unified interface through

which the devices connect to the bus puts certain restrictions on them though.

All ComOS devices must be represented by instances of classes that

implement the IDevice interface. They have to implement the following

functions:

void NotifyConnected(Machine.BusAccessor busAccessor);
void NotifyDisconnected(Machine.BusAccesor busAccessor);
bool Read(int function, int offset, out byte data);
bool Write(int function, int offset, byte data);

Function NotifyConnected is called when the device is connected to the bus. This call

is asynchronous therefore the device doesn' t have to return from the call to this

function in any given time interval. In particular, the device programmer could use the

17

body of this function to execute an infinite loop in which the device will simulate its

functioning. The argument busAccessor serves for communication with the bus. It

provides all the functions of BusController that should be visible to the device but it

will stop functioning as soon as the device is disconnected from the bus.

Function NotifyDisconnected is called asynchronously when the device is

disconnected from the bus. Argument busAccessor is a reference to the same

object as was passed to the corresponding NotifyConnected call.

Read and Write functions are called by the BusControler object when

another device tries to read or write to a memory address assigned to this

device. Argument function is the index of the function to which the requested

memory address was mapped, offset is the offset within the assigned memory

block and argument data contains the data to be written or serves as output

argument for the read data. Return value indicates whether this device could

process the call or not. If the call was not processed, the Read or Write
operation fails in the same manner as if the bus was busy,

3.3.4 Processor

Although processor is just another device connected to the ComOS Virtual Machine

bus, it has a certain special status. For example, the ComOS Virtual Machine won't

start up if there are no processors present on the bus. This is because the ComOS

Virtual Machine tries to access the first processor in the machine to give it the

information necessary for booting. Also the interrupt controller treats the processor in a

special way – it only forwards interrupts to processor and no other devices.

The purpose of processor is to execute code of individual processes. It

contains registers which among other things store the address of the next

machine instruction of the currently executing process and other contextual

information such as address of the stack. Processor supports an operation called

context switch in which the complete state of execution of the current process is

stored in the memory and another process which was previously stored is now

loaded into the processor to continue execution. Since all relevant registers are

restored to the same state as they were in before this process was swapped out

18

to the memory, the process has no way of telling that it was for some time

actually suspended.

Context switch can be caused by software or by the processor itself if it

encounters an interrupt. The processor contains a flag which is set whenever an

interrupt occurs and all information about the interrupt is stored in the

interrupt registers. As long as the interrupt flag is set, the processor cannot

accept any new interrupt requests. The interrupt flag is examined after every

executed instruction. If it is set then the current process is swapped out and a

new thread is started which will handle the interrupt. This thread will execute

the code of interrupt servicing routine, a routine whose location is stored in a

specific memory address and is therefore common to all the processors in the

given virtual machine. After the routine exits, the interrupt flag is cleared and

execution continues from the last point before the context switch.

ComOS processor supports five types of interrupts. First two are hardware

interrupts and hardware exceptions which were already explained in the section

about ComOS bus. Another two are software interrupts and software exceptions

– the interrupts can be raised by software by special machine instruction, the

exceptions are raised automatically whenever an unhandled exception occurs in

the currently executing Common Language Runtime thread. The last type of

interrupt is the direct write interrupt. Every processor implements function 0

which is mapped to a memory block 1 byte long. Every write to this memory

block will cause the processor to raise a direct write interrupt in case the

interrupt flag is not set or fail otherwise. Direct write interrupts are the only

way to signal an interrupt to a specific processor in a multiprocessor

environment and are essential in operating systems supporting multiple

processors.

ComOS processor is implemented as instance of the Processor class. As I've

already mentioned in Chapter 2, ComOS processes are in fact implemented as

Common Language Runtime threads and therefore are not physically executed

on the ComOS processor. The processor though still provides the following

19

functions that can be accessed by all ComOS threads:

public static DeviceInfo[] EnumerateDevices();
public static void Halt();
public static void Nop();
public static void RaiseInterrupt(int interruptInfo);
public static void Read(int address, int length, out
byte[]

result);
public static Thread ScheduledThread { get; set; };
public static void SetInterruptHandler(InterruptHandler

handler);
public static Thread StartManagedThread(MethodDelegate

entryPoint);
public static void Write(int address, byte[] data, out
int

numWritten);

All these functions are static, which means that the thread doesn' t need to have a

reference to any particular Processor object. It would be hard to keep track of it – in

a multiprocessor scenario, thread could be at different times executed on different

processors. For that reason the Processor class itself keeps track of which thread is

currently executing on which processor or if it is not executing on any processor at all

but is rather swapped out in the memory.

Functions EnumerateDevices, Nop, Read and Write are really calls to

functions of the same name in the BusController class and don' t need any

further explanation. Function RaiseInterrupt has the same purpose as the

Interrupt function in BusController class but with a slight difference. It

doesn' t cause the processor to send interrupt request to the bus but only sets its

own interrupt flag, if possible. The interrupt will also be marked as software

interrupt rather than hardware interrupt. If the interrupt request can' t be

delivered because the interrupt flag is already set, call to this method throws an

exception of type SoftwareInterruptException.

20

Function StartManagedThread creates a new managed thread and returns a

reference to it. Argument entryPoint is a delegate to the function this thread

should execute. The call to this delegate will be decorated by an try-catch block

which will raise a software exception interrupt in case the function throws an

exception.

The ScheduledThread property can be used to examine the currently

scheduled thread or to schedule a new thread for execution. If it is set outside of

an interrupt servicing routine, a context switch will occur immediately. If it is

accessed from an interrupt servicing routine, the value of this property is not

equal to the currently running thread but rather to the thread which ran before

the ISR was invoked. Setting this property will not cause a context switch until

after the current ISR has exited. This property is initialized at the machine

startup to an idle thread that executes the Nop instruction in an infinite loop.

Setting this property will fail with a ConcurrencyException if the specified

thread is already scheduled on another processor.

Interrupt servicing routines have a special behavior regarding unhandled

exceptions. When an unhandled exception occurs, current routine is exited and

a new software exception interrupt is raised. The exception parameter to this

interrupt though is not the original exception but an instance of

DoubleFaultException class. Throwing another unhandled exception from

within an ISR servicing a double fault exception will cause the machine to halt.

That 's also what happens when the Halt function is called.

Calling any of these functions from a thread that was not created by the

StartManagedThread function (and therefore is not part of the ComOS

simulated software) will cause an exception. The only case when this is not so is

an overloaded version of the SetInterruptHandler function. This can be

called by the ComOS Virtual Machine at the startup to simulate the boot

process – selecting the first function to execute after the machine starts.

The last function that ComOS processor offers is not part of the Processor
class but rather a separate class by itself, the HardwareMutex class. Instances of

21

this class represent words in the managed memory that can only have values 1

(locked) or 0 (unlocked). The HardwareMutex class provides two functions to

manipulate this memory:

public bool Tsl();
public void Unlock();

Function Unlock only sets the value of the word to unlocked. Function Tsl emulates a

Test and Set Lock instruction – it atomically checks the value of the word which it

returns as the return value and then sets the value to locked. This instruction can be

used for synchronizing processes as described in [Ham03]. This method is preferable to

enabling and disabling interrupts because the latter technique doesn' t work in

multiprocessor configurations.

3.3.5 System timer

Every computer needs a timer to schedule certain periodic actions such as thread

switching or just to keep track of time. Timer in ComOS Virtual Machine is

implemented as a ComOS device in class SystemTimer. It 's a rather simple device – in

contrast to modern computer timers it cannot be programmed but only generates

interrupts at a fixed rate. This rate is on average every 100 bus cycles but can be

anywhere from 90 to 110 cycles as decided by the random number generator. This

variation is supposed to simulate imprecisions in real computer timers, although on a

very exaggerated scale. Random seed can be passed to the constructor of the

SystemTimer device if we want the machine to behave deterministically.

ComOS timer doesn' t implement any I /O functions.

3.3.6 Terminal

In this chapter I have mentioned a device called dumb terminal. It is a computer screen

combined with a computer keyboard that sends encoded keyboard strokes to the

computer and prints received characters on the screen. ComOS implements this device

in class DumbTerminal. When connected to the bus, it creates a new graphical window

derived from the System.Windows.Forms.Form. Keyboard strokes are captured in its

KeyPress event and output is printed into a System.Window.Forms.Label object

that fills the entire window. All characters are encoded and decoded using the UTF-8

22

encoding. Return key is encoded as the \n character and both \r and \n characters are

treated as beginnings of a new line. This device implements the function 0 with

memory block 1 byte long for both reading from the keyboard and writing to the

screen. All characters pressed on the keyboard are stored in an internal buffer of

unlimited length. The devices raises an interrupt every time there are new characters

waiting in the buffer with the interruptInfo argument equal to the number of new

bytes in the buffer.

3.3.7 Unmanaged memory

All the memory that ComOS threads need is managed by the Common Language

Runtime. What would a simulated memory be good for? Well, we need to have one if

we want to deal with paging and virtual memory. The ways how to exploit this device

will be mentioned in the next chapter. Its implementation is rather simple – it is

represented by an instance of class RandomAccessMemory and it implements single I /O

function with memory block of the same size as its capacity. The content of the

memory is stored in an array of bytes and reading or writing to this device modifies the

corresponding entries in this array.

3.3.8 Machine

Finally, all the components we've talked about are members of the ComOS Virtual

Machine implemented in class Machine. The class provides the following public

functions:

public event MethodDelegate Started;
public event MethodDelegate Stopped;
public Processor.InterruptHandler BootHandler { get;

set; };
public PortCollection Ports { get; };
public bool Running { get; };
public void Start();
public void Stop();

Functions Start and Stop do exactly what they say – they start or stop the machine.

Started and Stopped are events that are asynchronously raised when the machine

starts or stops, and Running is a property that indicates whether the machine

23

currently runs or not. BootHandler property gets or sets the value of the machine's

boot handler. This is the delegate which will be set as machine's interrupt handler

when the machine starts. Property Ports returns the collection of ports to which

devices can be connected or disconnected from. These devices are in fact conected to

the internal bus but we don' t want to expose the reference to the BusController
object itself.

24

Chapter 4

4 ComOS software

ComOS Virtual Machine is a complete computer simulation capable of running native

Common Language Runtime threads. Well, actually we should really say “running”.

Software that runs on the ComOS Virtual Machine is in fact executing in the CLR as

we saw in Figure 2.1 and only has the convenience of also being able to call the static

methods of the Processor class. How do we convince it to use these methods? How are

we going to enforce the restrictions we defined in Chapter 2?

4.1 Isolating the software from CLR

Surprisingly there are quite a few possibilities to achieve this. All of them take

advantage of the fact that we have full control over how the ComOS software will be

compiled – remember that the primary use of ComOS is to have students program the

ComOS Virtual Machine. Why not have them submit their source code and then

compile it at our machine?

Let's state again the problems we would like to solve:

• ComOS software should not access certain features of the Common Language

Runtime such as reflections, threading and synchronization primitives.

• Threads simulated on the ComOS Virtual Machine should only execute when

they are scheduled on the processor. We also need a mechanism for interrupting

currently running threads. In particular, inserting a call to Processor.Nop after

every MSIL instruction of ComOS software would solve these problems.

We will now explore the options we have and assess their usefulness. Unfortunately

most of them will turn out to be very complicated and impractical.

25

4.1.1 Ignoring the problem

Now this option is really not very complicated at all but it also doesn' t solve any of our

problems. A slight modification of this approach would be telling the ComOS

programmers to follow the given rules and then check that their source code complies

with them. Sounds easy, but do we really want every second line of their source code to

be a call to Processor.Nop? Probably no. We will only resort to this if we can' t find

any other reasonable approach.

4.1.2 Code processing

If we'll think about the previous proposed solution a lit tle more, we will realize that it

could be automated. What we need to do is to write a program that will receive a C #

source code as an input, inspect it and tell us if it contains any restricted calls or

language constructs. It will then insert the Processor.Nop calls to all places in the

source code where function calls are permitted, such as function bodies. It would be

very easy to incorporate this program into compilation with Microsoft Visual Studio

pre-build events.

Sounds easy? It sounded doable to me, until I saw the C # Language

Specification [Ms07]. It is 493 pages long. Of course you could wonder if there

are possibly some existing C # code processors. Maybe there are, but none that

I know of. And frankly, this approach can' t really appeal to anyone.

4.1.3 Debugger API

If you've ever worked with one of the Microsoft Visual Studio IDEs you may have

wondered how it allows you to step your program line by line. You can now find out by

yourself because Microsoft made the debugger API that Visual Studio (perhaps) uses

publicly available. Unfortunately, it is not easy to learn and there exists only a poorly

documented semi-functional C # version of it. (The debugger API is for the C + +

language.) I haven't even been able to find out what functionality does it exactly

provide so I can' t honestly tell if mastering this API would solve our problems.

4.1.4 Post-compilation

The best option by far turned out to be post-compiling our code. Post-compilation

means editing the binary after it 's compiled into MSIL code. It 's pretty much the same

26

approach as code processing but in MSIL instead of C #. How could that be bet ter? In

fact, the MSIL language is much simpler than C #! And for this reason, there exist

many nice and freely available post-compilation libraries. The one I've chosen for

ComOS is PostSharp, an aspect weaver for the .NET platform. It 's greatest advantage

is that it integrates into the Microsoft Visual Studio and allows you to control the post-

compilation directly in your C # code. All that needs to be done is to write a custom

at tribute which will be then applied to the target assembly, in our case the assembly

Comos.Software. This will tell the PostSharp platform to post-compile the assembly

according to the rules defined in our custom at tribute.

So what will PostSharp allow us to do? First of all, it allows us to issue

compile time warnings or errors if it finds calls to restricted functions anywhere

in the post-compiled code. This solves problem number one. Secondly, we can

use PostSharp to transform certain parts of MSIL code which in our case means

adding a call to Processor.Nop after these parts. What parts are we talking

about? PostSharp allows us to modify all of the following:

• function calls

• constructor calls

• reading an array element

• writing an array element

• reading a field

• writing a field

• getting a pointer to a field

That 's a lot of possibilities but these certainly aren' t all of the MSIL instruction.

However, what are the real reasons why we want to insert the Nop calls? First of all, we

are only able to interrupt the thread and start simulating the next clock cycle when the

thread calls the Nop function (or one of the other I /O functions). Inserting the Nop call

after every MSIL instruction would mean that one clock cycle of our processor would

correspond to one executed MSIL instruction. But since the options PostSharp gives us

cover almost all of the common instruction, we wouldn' t really lose that much. A code

27

like this:

while (true) { /* do nothing */ };

would still put our processor in an infinite loop but as soon as there's a single call to

any function whatsoever or access of any class field or even local array, we're safe again.

A more important reason why we want to periodically interrupt our code is

to force the ComOS software programmers to synchronize their code. Consider

the following code:

if (this.obj != null) {
this.obj.DoSomething();

}

If the field obj was shared among multiple threads, the previous block of code would

have to be synchronized to avoid a situation where object obj is a non-null reference

during the evaluation of the if condition but becomes a null reference right before the

DoSomething method is called, this resulting in a NullReferenceException.

However, if the ComOS programmer knew that the thread cannot be interrupted

between these two calls, he wouldn't have to synchronize anything.

What I will try to do now is to examine situations where such

synchronization issues could occur. First of all, there needs to be some shared

resource in use by more than one thread. This resource must be either an object

to which we have a reference or a variable that holds a certain value. (Note that

the above example classifies as a value and not an object, because we are

sharing a reference to some object (i.e. its address in memory), not that object

itself.) In the case of object, all is well. This is because the only way to access

an object is to either call one of its functions or access its public fields, both of

which are cases where the post-compilation occurs. There is one special kind of

an object though – an array. Arrays can be accessed in a third way, by reading

or writing their elements. Luckily for us, this again is one of the post-compiled

case.

Now let's consider variables. If the variables are fields of a class or structure,

we are again covered by PostSharp. We can do nothing if they are local

28

variables but fortunately, there is no way that local variables could be shared

among threads because they only exists during the scope of the current block.

(Static variable don' t exist in C # or MSIL.) There is one tricky situation we

haven' t thought of though – pointers to variables. How can you have a pointer

to local variable? Easily:

int localVariable;
obj.Function(ref localVariable);

When variables are passed by reference, only pointers to them are passed to the

function. If the target function was executed on a new thread, variable localVariable
would become a shared resource. PostSharp allows us to post-compile the piece of code

where the reference is created, but it won't allow us to control any further access to this

reference. For this reason, we will not allow to pass variables to functions by reference

but generate a compile time error instead.

Of course, there are many other cases we haven' t thought of where PostSharp

cannot handle the threat of shared variables such as anonymous delegates that

use local variables. We will have to live with the fact that our post-compilation

mechanism is not perfect.

4.2 Using the ComOS project

So what is it that we can actually do with ComOS? The purpose of the ComOS project

is to allow students to write their own operating system in the C # language. This is

quite possible but unfortunately also a bit complicated task to accomplish. ComOS

comes with a simple software demo which includes a driver for the DumbTerminal
device and an implementation of an interrupt servicing routine that prints any software

exceptions to the screen. There is clearly room for improvement – a basic operating

system framework needs to be set up so that students will only need to implement

small parts of code. It would also be nice if the machine was in future capable of

executing unmanaged code – for example programs compiled for some simple RISC

processor such as MIPS. This would allow students to use the RandomAccessMemory
device for some useful purpose and see how virtual memory really works. Adding a hard

drive device would then also be necessary.

29

What the project can readily be used for is the following:

• writing implementations of basic synchronization mechanisms such as

semaphores and locks

• writing methods for communication between threads and thread scheduling such

as join, sleep, wait and pulse methods

• designing a thread scheduler

ComOS Virtual Machine can also be used in multiprocessor setup to experiment with

multiprocessor thread schedulers. It is not entirely clear though whether the direct

write interrupt mechanism is sufficient to allow an efficient implementation of

multiprocessor operating system.

The modular architecture of ComOS Virtual Machine is quite versatile.

ComOS Virtual Machine could be possibly used for any of the following

educational purposes:

• implementing an operating system (the original goal)

• designing and testing efficient parallel algorithms on a multiprocessor ComOS

Virtual Machine

• implementing a network protocol or network card driver and simulating a

computer network using multiple instances of the Machine class

• implementing distributed algorithms in an environment with multiple networked

ComOS Virtual Machines

30

Chapter 5

5 Conclusion

In this paper I have studied the architecture of modern computers and proposed a

model of a virtual computer that would closely simulate the most important parts of a

real-world computer. I have implemented this virtual computer in the C # language and

I have also proposed a use of this computer as an educational tool in the 1-INF-170

Operating Systems course.

Although the virtual computer still lacks software that will be needed if we

were to put it in real use in the classes, writing the software is only a minor task

in comparison to the hardware implementation of the virtual machine. The

ComOS project can already be used to demonstrate parts of the curriculum of

the Operating Systems course and it requires only relatively small modifications

to be used for demonstrating most of the concepts. Though only time will show

how successful will it be.

31

List of figures

Figure 2.1: Relation between ComOS software and ComOS hardware...............................6
Figure 3.1: Von Neumann architecture...7
Figure 3.2: AMD-760™ MPX Chipset...9
Figure 3.3: Single bus architecture of ComOS Virtual Machine..13

32

Bibliography

[AW02] Archer, T., Whitechapel, A., Inside C # , Second Edition, Microsoft
Press, 2002

[Ham03] Hambálková, V., Operačné systémy, Comenius University, 2003

[Sin] Microsoft Research Singularity Project
http://research.microsoft.com/os/Singularity/

[HC01] Hettena, D., Cox, R., A guide to Nachos 5.0j, 2001
http://www.cs.berkeley.edu/~kubitron/courses/cs162-F05/Nachos
/walk/walk.html

[AMD01] AMD-760™ MPX Chipset Overview, Advanced Micro Devices, Inc., 2001
http://www.amd.com/us-en/assets/content_type/
white_papers_and_tech_docs/24494.pdf

[MS07] C # Language Specification, Ver. 3.0, Microsoft Corporation, 2007
http://download.microsoft.com/download/3/8/8/388e7205-bc10-
4226-b2a8-75351c669b09/CSharp%20Language%20Specification.doc

[Fra08] Fraiteur, G., PostSharp 1.0 User Guide, 2008
http://doc.postsharp.org/1.0/

33

Abstrakt

Virtuálny operačný systém je operačný systém ktorý miesto skutočného

počítača beží na simulovanom virtuálnom počítači. Môže byť použitý na výuku

ale taktiež môže mať uplatnenie aj v bežnom svete. Výhodou virtuálnych

operačných systémov je zvýšená bezpečnosť, ktorá vyplýva z toho, že programy

bežiace na virtuálnom operačnom systéme sú striktne oddelené od zvyšku

počítača. Virtuálne počítače majú tiež často dostatočne jednoduchú štruktúru

na to, aby nám dovolili uskutočniť dôkaz korektnosti programov, ktoré na nich

bežia.

V tejto práci predstavím virtuálny operačný systém Comenius (ComOS) a

virtuálny počítač na ktorom pracuje – ComOS Virtual Machine. Operačný

systém ako aj virtuálny stroj ComOS sú napísané v jazyku C # a

postkompilované knižnicami PostSharp, čím spolu tak tvoria jednotný projekt.

Cieľom tohto projektu je vytvoriť prostredie, v ktorom budú môcť študenti

operačných systémov navrhovať časti svojho vlastného operačného systému a

riešiť problémy s ktorými sa bežne stretávajú programátori skutočných

operačných systémov.

Kľúčové slová: ComOS, virtuálny operačný systém, PostSharp

34

	1Introduction
	1.1Motivation
	1.2Structure of this document

	2Virtualization
	2.1The concept of a virtual machine
	2.2Specifics of the ComOS Virtual Machine

	3Designing a virtual computer
	3.1Architecture of modern computers
	3.1.1Von Neumann architecture
	3.1.2Personal computer architecture

	3.2Components of a personal computer
	3.2.1Central processing unit
	3.2.2Random access memory
	3.2.3Input and output devices
	3.2.4Timer
	3.2.5PCI bus

	3.3ComOS Virtual Machine
	3.3.1Bus
	3.3.2Interrupt controller
	3.3.3Device interface
	3.3.4Processor
	3.3.5System timer
	3.3.6Terminal
	3.3.7Unmanaged memory
	3.3.8Machine

	4ComOS software
	4.1Isolating the software from CLR
	4.1.1Ignoring the problem
	4.1.2Code processing
	4.1.3Debugger API
	4.1.4Post-compilation

	4.2Using the ComOS project

	5Conclusion

