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Abstract

Virtual  operating system is a  computer  operating system which instead  of on 

real  hardware  only  runs  on  a  simulated  virtual  computer.  Virtual  operating 

systems  can  be  used  for  educational  purposes  but  they  also  have  their 

advantages  compared  to  traditional  operating  systems,  namely  the  improved 

security  gained  from separating  the  virtual  processes  from the  real  operating 

system  and  other  processes running  on  the  real  hardware.  Virtual  computers 

also tend to have very simplistic design which sometimes allows us to prove the 

correctness of an operating system running on such computer.

In this paper I will introduce the Comenius Operating System (ComOS) and the 

virtual computer it runs on – ComOS Virtual Machine. The goal of the ComOS 

project  is  to  create  an  environment  in  which  students  of Operating  Systems 

classes can design their own operating systems and learn how to solve problems 

commonly  encountered  in  system  programming.  Both  ComOS  and  ComOS 

Virtual  Machine  are  writ ten  in  the  C #  programming  language  and  post-

compiled by PostSharp.

Keywords: ComOS, virtual operating system, PostSharp
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Preface

Computers are devices designed to  perform the same number of mathematical 

operations as would take an average human his lifetime to do, in just  a fraction 

of  a  second  and  without  single  error.  Early  computers  were  used  to  break 

military codes, calculate rocket trajectories and simulate nuclear chain reactions. 

Even  though  most  of  the  present  day  computers  are  used  merely  for  word 

processing and browsing the Internet, it  doesn' t  mean that  computers have lost 

their  importance.  Quite  on the  contrary,  the  world as we know it  could never 

exist without them.

But  computers by themselves are just  big metal and plastic boxes – they would 

be  useless without  software  to  run  on  them.  And  in  turn  all  of the  software 

would  be  useless  too  without  the  most  important  part  of it  – the  operating 

system.  Now  a  knowledgeable  reader  could  object  that  the  concept  of  an 

operating system didn' t  even exists at  the time when first computers were built.  

But  this  reader  should  keep  in  mind  that  the  early  computers  were  very 

specialized devices that  could often execute only a single program or had to be 

mechanically reprogrammed before every use. At  that  time there was no need 

for an operating system because the computers were very simple and only used 

for  one  and  the  same  task.  However,  as  the  technology advanced,  computers 

became mass produced and  became one the  most  versatile and  most  complex 

devices man has ever created. Nowadays you can use the same piece of hardware 

for creating a  short  animated movie or for running a  nuclear power plant.  You 

could  even do both  at  the  same time! (Don' t  try  this  at  home.)  The  original 

specialized  programs  were  replaced  by  one  general  purpose  program  –  the 

operating system, a program that  allows you to run other programs rather than 

being useful by itself.

Since operating systems affect all other programs run on the computer, they are 
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designed with speed and performance in mind. For this reason the programming 

language  of  choice  for  a  system  programmer  has  always  been  the  assembly 

language or  language C.  But  as  modern  computers  become increasingly more 

powerful, the performance of an operating system is not  as important  as it  was 

in  the  past.  The  emphasis  is now more  on  stability  and  security  rather  than 

efficiency and  memory  usage.  And  since  the  complexity  of modern  operating 

systems makes their development  in low-level programming languages also very 

impractical, a simple solution comes to mind – using a high-level object oriented 

language.  Engineers at  Microsoft  Research  have already started  exploring this 

idea in their managed operating system called Singularity, a research operating 

system writ ten in C #  (see [Sin]). This project takes advantage of provability of 

certain subset of the Microsoft Instruction Language to prove the correctness of 

parts of the operating system. Other community based projects exist that  try to 

implement  an  operating  system  in  the  C #  or  Java  languages,  most  notably 

SharpOS written in C #  and JNode writ ten in Java.

With all these new and exciting technologies in our hands, a high-level language 

operating system could soon become a reality. Most of the software development 

is already shifting from C and C + +  to Java or the .NET framework and many 

young programmers learn Java as their first programming language. This is the 

reason why I decided to write ComOS in a managed language – not only to keep 

up  with  the  latest  technologies  but  also  to  contrast  the  modern  high-level 

programming languages with  the crude workings of actual computer  hardware, 

to bring these two different  concepts together and let the programmer see “how 

stuff works”.

Michal Burger
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Chapter 1

1 Introduction

In  modern  personal  computers,  operating  system  is  the  most  important  piece  of 

software. It  is the link between computer  hardware and  computer software. Operating 

system allows other programs to use computer resources and peripherals in a hardware-

independent  way,  without  worrying about  the  low-level implementation  details.  Most 

modern operating systems also allow execution of multiple programs at  the same time 

while making this process completely transparent to the application programmer.

A  virtual  operating  system  accomplishes  the  same  tasks  as  a  regular 

operating system, only it doesn' t  run on a real hardware but  rather on a virtual 

computer  often  called  the  virtual  machine.  Comenius  Operating  System 

(ComOS)  is a  project  of writing an  operating system for  the  ComOS Virtual 

Machine.  In  the  following  sections,  I  will  present  the  rationale  behind  the 

ComOS project and provide a brief summary of the chapters to follow.

1.1 Motivation

The purpose of Comenius Operating System is to  serve as an educational tool. It  was 

specifically  designed  for  the  1-INF-170  Operating  Systems  course  at  the  Faculty  of 

Mathematics,  Physics  and  Informatics  of Comenius  University.  There  were  only two 

requirements given for this project:

• It  should  allow students  to  implement  the  basic  synchronization  mechanisms, 

scheduling algorithms and virtual memory paging.

• Students  should  be  able  to  write  their  code  in  a  modern  object-oriented 

language – specifically the language C #.
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The reason for choosing the C #  programming language in the second requirement was 

very pragmatical – to allow the shift from Java to C #  in the 1-INF-225 Programming 3 

course.

Since writing our own virtual operating system is a complicated task, the first  

thing we should do is to consider existing alternatives. As it turns out, there are 

many different  systems used around the world for teaching Operating Systems 

courses that  would fulfill out  needs, had they not  shared one common feature – 

the  system code always has  to  be  writ ten  in assembly or  the  C  programming 

language.  One  particular  project  stands  out  from  the  rest  in  respect  to  this 

common  property.  Its  name  is  NACHOS  (Not  Another  Completely  Heuristic 

Operating  System)  and  it  was originally written  in  C + +  but  later  ported  to 

Java  as  Nachos  5.0j  at  the  University  of  California,  Berkeley.  (For  more 

information  about  this  project,  see [HC01].)  The  Java  version  of Nachos  has 

been successfully tested in the 1-INF-170 Operating Systems course and was the 

basis for Comenius Operating System.

However,  it  is  important  to  note  that  the  ComOS  project  doesn't  copy 

Nachos in any way. The structure of Nachos virtual machine (if we may call it  

so)  was merely an  inspiration  in  the  process of designing the  ComOS Virtual 

Machine. Some of the flaws in Nachos were taken into account  when designing 

ComOS and were fixed; we will compare some aspects of these two systems later 

on.

1.2 Structure of this document

In  the  following chapters,  we will  explore  the  workings  of a  real-life computers  and 

compare them to the ComOS project.  In Chapter  2, the concept  of a  virtual machine 

will be explained and the ComOS Virtual Machine will be compared and contrasted to  

the  traditional virtual  machines. Chapter  3 will deal with  the  architecture of modern 

computers and  describe the simplified model used in ComOS Virtual Machine. It  will 

also  contain  implementation  details  of  some  parts  of  the  virtual  machine.  We  will 

discuss the realization of ComOS software in Chapter 4 and study possible alternative 

uses for the ComOS project. Chapter 5 will conclude this paper.
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Chapter 2

2 Virtualization

Virtualization  is  a  broad  term  used  for  many  different  techniques  in  software 

development. In this chapter it will refer to the process of moving from a real computer 

hardware to a virtual machine.

2.1 The concept of a virtual machine

Virtual machine is a software implementation of a computer.  It  can run programs just 

like  a  real  computer  but  it 's  not  made  of  electronic  circuits  –  it 's  just  a  software 

simulation,  a  program which in reality has to  be  run  on another  computer  called the 

host  machine. This host  machine could in turn be again virtual – we shall shortly see 

that  this in fact is the case of ComOS – but  every such chain of virtual machines must  

ultimately end at  a  piece of real computer  hardware where the  actual code execution 

takes place.

The  most  important  requirement  put  on  a  virtual  machine  is  that  the 

processes running inside of it must be limited to the abstraction provided by the 

virtual machine and  won't  be able to  break out  to  the host  operating system. 

This  is  often  easily  achieved  by  having  the  architecture,  instruction  set  and 

binary format  used  in  the  virtual  machine completely different  to  that  of the 

host  machine, thus making the  virtual processes completely incompatible with 

the  host  operating  system.  This  property  of virtual  machines  is  one  of their  

greatest  strengths – you can run potentially unsafe programs inside of a virtual 

machine  without  worrying  about  the  stability  or  any  other  undesirable  side 

effects to the host operating system.
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Currently available virtual machines can  be divided into two fundamentally 

different  categories.  The  first  one  contains  virtual  machines  which  simulate 

existing real-world hardware with  the purpose of running multiple instances of 

an  operating  system  on  one  computer,  possibly  for  security,  compatibility  or 

development  reasons.  A  well  known  example  of such  virtual  computer  is  the 

VMware  Player.  In  the  second  category  are  the  so  called  application  virtual 

machines  such  as  Java  virtual  machine  and  the  Common  Language Runtime. 

They don' t  emulate  existing computer  hardware but  rather  take advantage of 

the  virtualization  concept  and  define  their  own  specification  of  a  virtual 

computer.  Their  goal  is  to  provide  a  highly  abstract  and  portable  runtime 

environment  and they usually only allow to run one process per instance of the 

virtual machine.

2.2 Specifics of the ComOS Virtual Machine

The ComOS Virtual Machine falls somewhere between the two categories mentioned at  

the end of the previous section. It  doesn' t  emulate any existing computer systems but  

provides  it 's  own  unique  architecture,  a  very  simplified  model  of what  could  a  real 

computer  hardware look like. It 's  purpose though is not  to  serve as a  simple runtime 

environment. ComOS Virtual Machine needs to start  an operating system before it can 

run any complicated applications. In fact writing any sort of application targeted at the 

ComOS Virtual  Machine is not  meant  to  be  particularly easy.  It 's  meant  to  be  hard. 

The  ComOS programmer  will have to  deal  with  many low-level aspects  of computer 

hardware – probably not as many as would a real system programmer have to deal with  

but  still  enough  to  have  to  realize  what  is  going  on  under  the  hood  of an  average 

personal computer.

There  is one important  difference between a  real  virtual  computer  and  the 

ComOS  Virtual  Machine.  A  virtual  computer  should  be  capable  of taking  a 

program  compiled  into  the  virtual  computer's  machine  code  and  execute  it  

instruction by instruction. If we wanted the ComOS Virtual Machine to do the 

same thing, we would have to do one of the following:
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• Specify our  own instruction set,  write a  compiler  to  translate  C #  source code 

into machine code and also write an interpreter to  read the machine code back 

and execute it.

• Use the Microsoft  Intermediate Language (MSIL) as our machine language. We 

could  then  use existing C #  compilers to  compile code targeted  at  our  virtual 

machine but  we would still need to write an interpreter for the machine code (in 

this case for the MSIL).

As you can see, both options involve writing a machine code interpreter for a language 

with  features  such  as  automatic  memory  management,  inheritance,  polymorphism, 

function  delegates  and  many others.  This  would  certainly be  a  very difficult  task  to 

accomplish. For this reason I have decided to follow a different path. Since the ComOS 

Virtual Machine is itself written in the C #  language, its host  machine is the Common 

Language Runtime,  a  virtual  machine capable of interpreting compiled C #  code.  All 

software  written  for  the  ComOS  Virtual  Machine  is  in  fact  a  stand  alone  software 

written  for  the  Common  Language  Runtime,  it  executes  in  the  Common  Language 

Runtime  and  only  references  the  ComOS  Virtual  Machine  as  a  library  to  utilize 

functionality provided by the machine. ComOS Virtual Machine only pretends that  the 

code is executed inside the machine.

So what  entitles us to say that  this code really runs on our virtual machine? 

It 's  the  restrictions  that  are  put  on  the  code.  First  of  all  the  code  cannot 

contain any system calls that  would allow it to access the file system, console or 

other devices of the Common Language Runtime virtual machine. It also cannot 

create  or  manipulate  threads  and  use synchronization  primitives by any other 

means  than  the  calls  provided  in  the  ComOS Virtual  Machine.  Secondly  the 

virtual  machine  can  directly  control  which  ComOS  threads  are  currently 

executing. It  can also semi-preemptively switch the currently executing threads 

and  it  can  keep  track  of  how  many  instructions  of  certain  kind  have  the 

individual  threads  executed.  ComOS Virtual  Machine  in  fact  provides  a  very 

convenient  way  to  control  the  code  a  ComOS  programmer  may  write  –  for 

example, it  allows him to use C #  language features such as automatic memory 

management, events and exceptions but  it won't  allow him to print the result of 
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his computation to  the screen by any other means than  through the simulated 

ComOS console.

The question which comes to mind is how do we convince the programmer to 

not use any of the restricted calls that  are otherwise an integral part  of the C #  

programming language? And after playing with the code for a little while, even 

more  complicated  question  arises:  is  it  possible  to  preemptively  control  the 

execution  of  a  managed  thread  at  the  MSIL  instruction  level?  It  wouldn' t  

surprise me a bit  if the answer was no. Fortunately there are other methods to 

work around this which we will talk about in Chapter 4.
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Chapter 3

3 Designing a virtual computer

The  purpose  of the  ComOS  Virtual  Machine  is  to  simulate  the  functions  of  a  real 

computer.  For this reason we will first  look at  how modern computers work and then 

propose a simple computer model to be implemented in the ComOS Virtual Machine.

3.1 Architecture of modern computers

3.1.1 Von Neumann architecture

Design of most of the present day computers is based on the Von Neumann architecture 

of electronic computer as seen in Figure 3.1. Central part  of this design is the processor 
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which consists of the Control Unit and the Arithmetic Logic Unit (ALU). Control Unit  

is  a  part  of  the  processor  which  directs  the  flow  of  its  operation.  It  fetches  the 

instructions,  decodes them,  sends them for  execution  to  other  parts  of the  processor 

and  then  stores the  results.  Arithmetic Control Unit  is a  part  of the processor which 

executes arithmetic operations. It  uses the accumulator to store operands and results of 

these operations as well as data  read from the input  devices or data  to  be written to 

the  output  devices.  Since the  internal  accumulator  can  only have a  limited  capacity,  

external  memory  is  used  for  storing  processed  data.  The  memory  also  contains  the 

program of the computer stored as a sequence of machine instructions.

3.1.2 Personal computer architecture

Although  a  typical  personal  computer  (PC)  may  be  based  on  the  Von  Neumann 

architecture,  the  actual  implementation  of this  architecture  can  be  many times more 

complicated. In Figure 3.2 we see the schematics of AMD-760™ MPX Chipset from the 

year 2000 [AMD01]. The features shared with Von Neumann model are the presence of 

processor (possibly more than one), memory and input /  output  devices. All these parts 

communicate through electric connections called buses, in the  picture shown as black 

lines and arrows. Individual buses are then connected by bridges – the northbridge, in 

the diagram labeled as AMD-762™ System Controller,  and the southbridge, labeled as 

AMD-768™ Peripheral Bus Controller.

If we carefully examine all the different  buses and slots, we will notice that  

most  of  them  serve  the  same  basic  purpose  –  to  communicate  data  from 

processor to the peripheral devices and back. Why do we need such a big variety 

of device  interfaces  and  buses?  The  reason  is  partly  backward  compatibility, 

partly different speed and throughput requirements. For example, we may notice 

that  a  graphics  card  in  the  AGP  4X  Slot  has  a  dedicated  bus  connecting 

directly to  the  northbridge because it  needs to  transfer  huge amounts  of data  

from  the  system  memory.  The  system  memory  too  is  connected  to  the 

northbridge by a  dedicated  bus rather  than  sharing the same bus for example 

with  a  network card or a  keyboard.  Since the typical amount  of data  a  device 

needs to  process varies greatly with different  types of devices, we need to  have 

many different buses to accommodate the particular needs of all of them.
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3.2 Components of a personal computer

We will now examine the fundamental components of a modern PC and try to estimate 

their importance for a virtual computer.

3.2.1 Central processing unit

Central  processing  unit  (CPU)  or  processor  is  the  heart  of every  computer.  This  is 

where all the computer programs are executed and from where instructions are given to 

all  other  parts  of  the  computer.  Typical  operations  that  a  processor  performs  are 

reading and  writing data  from memory or a  device, performing arithmetic and logical 

operations and reading the next  program instruction from a memory location given by 

the  results  of  the  previous  operations.  In  our  virtual  machine,  we  won't  need  to 

implement  an  actual  processor that  would know how to  execute machine instructions 

for reasons given in Chapter  2, though we will still need to  have some sort  of control 

over the  flow of the  instruction execution.  Specifically we will need to  implement  the 

interrupts feature of a processor.

Interrupts  are signals that  devices send to  processor to  inform him about  a 

change  of  state  of  the  device.  For  example,  an  input  device  may  raise  an 

interrupt  to tell the processor that  there is new data waiting in the input  buffer 

of  this  device.  Interrupts  may  also  be  raised  by  the  processor  itself  if  an 

arithmetic  exception  occurs  or  if  the  program  directly  requests  it.  Processor 

checks its  internal  interrupt  flags before every executed  instruction  and  if the 

flags  are  set,  it  pauses  the  execution  of  the  current  process  and  starts  the 

interrupt  service  routine.  The  interrupts  mechanism  allows  the  processor  to 

respond  to  various  events  when  they  really  occur  instead  of  having  to  

periodically check the state of all the devices to find out if they happen to need 

its at tention.

3.2.2 Random access memory

Memory is a device that  stores all the data and machine instructions to be executed on 

the processor.  It  is principally a very simple device – it  stores bytes of information at  

consecutive memory addresses and  when requested,  it  drives the  data  on  the  bus  or 

writes the data from bus to the specified memory location.
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Although  memory  is  one  of  the  most  important  parts  of  a  computer 

architecture, we won't  really need it in our virtual machine. The reason for this 

is  that  we  already  have  a  memory  given  to  us  by  the  Common  Language 

Runtime where all of our processes will execute.

3.2.3 Input and output devices

Every computer  needs to  communicate  with  the  outside world so that  it  can  receive 

instruction about  what  to  do next  and  display results of its work. The most  common 

type of input  device is the  computer  keyboard  and  the most  common type of output  

device is the computer screen also called the monitor.

In  past  these two devices used to  be combined in a  single device called the 

computer  terminal.  Terminals  were  used  to  access  mainframe  computers  and 

usually more than  one terminal  was connected  to  a  single computer,  allowing 

multiple users to work on mainframe computer at the same time.

For the sake of simplicity, instead of implementing two devices in our virtual 

machine we will only implement  one – a  dumb  terminal  which will allow the 

user  to  send  characters  to  the  computer  and  receive  characters  back  from 

computer printed on the screen.

3.2.4 Timer

An important input device is the system timer. It generates signals or “ticks” in periodic 

intervals and usually can be programmed to raise an interrupt after a certain number of 

ticks have occurred. System timer is used by an operating system to measure time and 

do periodic tasks such as thread scheduling.

3.2.5 PCI bus

All components of a computer are connected by devices called buses. Although modern 

computer  buses  can  be  very  complicated,  we  can  somewhat  abstract  from  these 

concrete implementations and look at  a bus as just a set of electric wires that  can carry 

information.  Buses operate  in  periodic cycles.  In  each  cycle,  only one device can  be 

allowed  to  write  data  to  the  bus  –  the  wires  cannot  carry  more  than  one   bit  of 

information at  the same time. The data travels along the whole bus so every device on 
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the bus could potentially read this data.

One of the most  widely used bus architectures is the Peripheral Component  

Interconnect  or  PCI.  It  is  used  for  connecting  many  common  computer 

expansion cards  and  numerous internal  computer  buses are  based  on the  PCI 

specification. Three features of the PCI bus will be of particular interest  to  us. 

First  one is the presence of dedicated interrupt  lines. If a device needs to signal 

an interrupt, it  can use these dedicated lines which connect directly to the PCI 

bridge and  then  they are routed  to  the interrupt  controller.  This design has a 

couple of flaws though  from which the  most  important  one in  relation  to  our 

virtual machine implementation is that  the interrupts are signaled out-of-band, 

meaning they are not  synchronized with the bus cycles. A solution proposed in 

later revisions of PCI and a one that  has fully replaced the dedicated interrupt 

lines in the PCI  Express specification is to  use message-signaled interrupts.  In 

this  scheme,  a  device  signals  interrupt  by  performing  a  write  operation  to  a 

specific memory address. This also allows the device to at tach an extra word of 

information to the signaled interrupt.

Second feature is the addressing mode – all devices connected to the PCI bus 

are at  startup  time assigned address spaces to  be used when requesting a  read 

or write operation. For example, a network card may indicate at  startup that  it  

needs a 1 kB block of memory for its internal buffer. The PCI bus will assign a 

set  of 1024 consecutive memory addresses to  the  network card.  When another 

device will request  a read or write operation to one of these memory addresses, 

the address will be  mapped to  the network card  buffer and  the device will be 

able to read or write directly to the buffer.

The  last  feature  we will talk  about  is the  bus  access protocol.  A PCI  bus 

includes features that  allow it to control access to the bus. Since the bus can be 

only used by one device at  a  time, the PCI bus collects information before the 

beginning of a cycle about  which devices want to access the bus. It  then selects 

one  of  these  devices  and  only  this  device  will  be  allowed  to  perform  bus 

operations in the next cycle.
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3.3 ComOS Virtual Machine

The design of ComOS Virtual Machine incorporates all of the basic concepts we have 

encountered  in  the  previous  two section.  Architecture  of ComOS Virtual  Machine is 

more unified than that  of a common personal computer. The virtual computer contains 

only one bus to which all other devices are connected. In this design even the processor 

is treated  as  regular  devices with  almost  no special  status.  For  this  reason,  multiple 

processors can be connected to any of the device slots without  causing any trouble but 

at  the same time being fully capable of running an extra process on them.

In the following sections we will go through the design and implementation of 

individual  components  and  devices of the  ComOS Virtual  Machine as  well as 

the machine itself.

3.3.1 Bus

All the devices in ComOS Virtual Machine are connected by a  single bus. The bus is 

controlled by a chip called the bus controller which decides which device will be allowed 

to take control of the bus in the next cycle. It also assigns memory addresses to devices 

on the bus and resolves these addresses when devices try to  read or write data  to  the 

memory. The functionality provided by the bus is reading memory, writing to memory, 

raising a hardware interrupt, raising a hardware exception, assigning memory resources 

to a device and enumerating devices connected to the bus.

Every bus cycle is divided into three phases. First  is the signaling phase in 

which all the devices tell the bus whether they want to access the bus and what  
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I /O  operation  would  they  like  to  perform.  In  the  second  phase  called 

arbitration, bus controller decides which device will be granted the ownership of 

the bus. Finally in the third phase the requested operation is performed.

The bus is capable of transferring only one byte every cycle, therefore reading 

and writing more than one byte will take multiple cycles. In such situations the 

bus controller may give ownership of the bus to one device for a longer period of 

time, but  it  will never be for more than 16 cycles to prevent  monopolization of 

the bus. For this reason all read and write operations always return the number 

of bytes that  was actually read or written.

Finally  the  bus  contains  dedicated  channels  for  communicating  memory 

mapping  information.  Devices  can  use  these  channels  to  request  blocks  of 

memory to be assigned to them as well as query the bus controller for a list  of 

devices currently connected to the bus and the list of memory blocks assigned to  

these  devices.  Since  the  bus  is  designed  with  plug  and  play  functionality  in 

mind, a device can request a new memory mapping at  any time, not only when 

the  machine  starts  up.  All  this  information  is  communicated  by  dedicated 

channels and out-of-bound in respect  to the bus cycles, therefore no arbitration 

for the bus ownership needs to take place.

The bus with its controller is represented by an instance of BusController 
class which provides the following public functions:

public DeviceInfo[] EnumerateDevices();
public bool Interrupt(int source, int interruptInfo);
public void Nop(int source);
public void Read(int source, int address, int length, 
out

byte[] result);
public void RegisterDevice(IDevice device, int index);
public MemoryBlockInfo[] RequestIoMemory(int source, 
int[]

lengths);
public void SetInteractiveMode(int source);
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public void SetPassiveMode(int source);
public void SignalException(int source, Exception ex);
public void UnregisterDevice(int index);
public void Write(int source, int address, byte[] data, 
out

int numWritten);

Functions  RegisterDevice and  UnregisterDevice are  called  when  a  device  is 

connected  or  disconnected  from the  bus,  argument  index identifies which slot  is the 

device  connected  or  disconnected  from  and  argument  device is  a  reference  to  the 

object representing the device.

Functions  SetInteractiveMode and  SetPassiveMode switch  the  device 

connected to slot identified by argument index into interactive or passive mode. 

Device which is in interactive mode must  signal in every cycle whether it  wants 

to  gain control of the bus by calling one of the reading or writing methods, or 

call  function  Nop to  tell  the  bus  that  it  doesn't  want  to  access the  bus.  The 

BusController object  waits  for all devices in interactive mode to  call one of 

the I /O functions before it ends the signaling phase of the current cycle. Devices 

which are in passive mode and don' t  call any of the I /O  operations before the 

end of the signaling phase are treated as if they called the Nop function.

The reason for implementing the passive and interactive modes is that  unlike 

real hardware, the ComOS virtual devices operate as C #  threads and therefore 

are unable to call the BusController functions in precise intervals every cycle. 

Therefore  the  BusController has  to  wait  for  all  the  devices to  signal  what 

they want  to  do and only then  end the signaling phase. Devices are given the 

option  to  switch  into  passive mode  so that  they  won't  have  to  call  the  Nop 
function in a loop until they need to access the bus again. All devices default to  

interactive mode so that  they won't  lose the first couple of cycles after they are 

connected to the bus.

Function  RequestIoMemory allows the  device to  request  blocks of memory 

given by the array lengths. Each element of this array is said to correspond to 

15



one function of the device. Each function will be assigned a continuous block of 

memory  addresses.  Bus  controller  may  not  be  able  to  satisfy  all  the 

requirements due to  the limited address space (31 bits)  or because of memory 

fragmentation.  The  return  value  of  the  function  contains  information  about 

blocks  actually  allocated  for  the  device.  Every  call  to  the  RequestIoMemory 
function frees all memory blocks assigned to the device by previous calls to this 

function.

Function  EnumerateDevices returns  an  array of  DeviceInfo objects  that  

correspond  to  devices  connected  to  the  bus.  DeviceInfo objects  contain  the 

type of the device (literally the runtime type of object  that  corresponds to  the 

device) and array of memory mappings for the given device.

Function  Interrupt tries  to  raise  a  message-signaled  interrupt  with 

interruptInfo as  extra  information  carried with  the  interrupt.  The  function 

returns  a  boolean  value  indicating  whether  the  bus  was successfully acquired 

and interrupt  request  could be processed, or either the bus was not  available or 

no  processor  was  able  to  accept  the  request  which  means  that  no  data  was 

writ ten  and  the  device  will  have  to  try  again  in  the  next  cycle.  Function 

SignalException is similar to the Interrupt function with the one difference 

that  it always succeeds. This is because the exception is pushed to the exception 

stack in the interrupt  controller  and  forwarded to  the processor the next  time 

bus  is  available.  SignalException cannot  be  directly  called  by  a  ComOS 

device. It is called automatically when an exception occurs in one of the threads 

simulating the device.

Finally the Read and Write functions send requests to the bus controller that  

a  device  wants  to  access  the  bus  for  reading  or  writing.  Argument  source 
indicates  which  device requested  the  operation  and  argument  address is  the 

memory address to  or from which the operation is to  be performed. In case of 

the  Read function, argument  length indicated how many bytes should be read 

from the  destination  address  and  argument  data will  contain  the  bytes  that  

were actually read. The length  of this array indicates how many bytes was the 

16



bus able to transfer. The Write function's argument  data contains the array of 

bytes that  are to be writ ten to the destination address and the output argument 

numWritten will contain the number of bytes that  were successfully transferred.

3.3.2 Interrupt controller

The  interrupt  controller  is  an  integral  part  of  bus  controller.  All  message-signaled 

interrupt  requests and all hardware exceptions are forwarded to it  and the controller's 

task is to send them to the processor. Since ComOS architecture allows more than one 

processor in the virtual machine, interrupt  controller checks all the processors in round-

robin  fashion and  forwards  any pending interrupts  to  processors which can  currently 

accept  new interrupt  requests. Hardware interrupts that  could not  be processed fail to 

be raised. Hardware exceptions that  could not  be processed are kept  in the exception 

queue and will be examined again in the next bus cycle.

ComOS  interrupt  controller  is  represented  by  an  instance  of 

InterruptController class which is a private member of the BusController 
class.

3.3.3 Device interface

ComOS bus allows a wide variety of devices to connect to the ComOS Virtual Machine. 

The  ComOS bus is designed in such a  way that  all devices can  be  theoretically hot-

plugged and  hot-unplugged from the  bus  at  any time.  The  unified interface through 

which the devices connect to the bus puts certain restrictions on them though.

All  ComOS  devices  must  be  represented  by  instances  of  classes  that  

implement  the  IDevice interface.  They  have  to  implement  the  following 

functions:

void NotifyConnected(Machine.BusAccessor busAccessor);
void NotifyDisconnected(Machine.BusAccesor busAccessor);
bool Read(int function, int offset, out byte data);
bool Write(int function, int offset, byte data);

Function NotifyConnected is called when the device is connected to the bus. This call 

is  asynchronous  therefore  the  device  doesn' t  have  to  return  from  the  call  to  this 

function in any given time interval. In particular, the device programmer could use the 

17



body of this function to  execute an  infinite loop in which the  device will simulate its 

functioning.  The  argument  busAccessor serves  for  communication  with  the  bus.  It  

provides all the functions of BusController that  should be visible to the device but  it 

will stop functioning as soon as the device is disconnected from the bus.

Function  NotifyDisconnected is called asynchronously when the  device is 

disconnected from the bus. Argument  busAccessor is a  reference to  the same 

object as was passed to the corresponding NotifyConnected call.

Read and  Write functions  are  called  by  the  BusControler object  when 

another  device  tries  to  read  or  write  to  a  memory  address  assigned  to  this 

device. Argument  function is the index of the function to which the requested 

memory address was mapped, offset is the offset  within the assigned memory 

block and  argument  data contains the data  to  be written  or serves as output  

argument  for  the  read  data.  Return  value indicates whether  this  device could 

process  the  call  or  not.  If  the  call  was  not  processed,  the  Read or  Write 
operation fails in the same manner as if the bus was busy,

3.3.4 Processor

Although  processor  is just  another  device connected  to  the  ComOS Virtual  Machine 

bus,  it  has  a  certain  special status.  For  example,  the  ComOS Virtual  Machine won't  

start  up  if there  are  no  processors  present  on  the  bus.  This  is  because the  ComOS 

Virtual  Machine  tries  to  access  the  first  processor  in  the  machine  to  give  it  the 

information necessary for booting. Also the interrupt controller treats the processor in a  

special way – it only forwards interrupts to processor and no other devices.

The  purpose  of  processor  is  to  execute  code  of  individual  processes.  It  

contains  registers  which  among  other  things  store  the  address  of  the  next 

machine  instruction  of  the  currently  executing  process  and  other  contextual 

information such as address of the stack. Processor supports an operation called 

context switch in which the complete state of execution of the current process is 

stored in the memory and another  process which was previously stored is now 

loaded into the processor to  continue execution. Since all relevant  registers are 

restored to the same state as they were in before this process was swapped out  
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to  the  memory,  the  process  has  no  way of telling  that  it  was  for  some time 

actually suspended.

Context  switch  can  be  caused  by  software  or  by  the  processor  itself  if  it  

encounters an interrupt. The processor contains a flag which is set whenever an 

interrupt  occurs  and  all  information  about  the  interrupt  is  stored  in  the 

interrupt  registers.  As  long as  the  interrupt  flag  is  set,  the  processor  cannot 

accept  any new interrupt  requests.  The  interrupt  flag is examined after  every 

executed instruction. If it  is set  then the current  process is swapped out  and a 

new thread is started which will handle the interrupt.  This thread will execute 

the code of interrupt  servicing routine, a  routine whose location is stored in a 

specific memory address and  is therefore common to  all the  processors in  the 

given virtual machine. After the routine exits, the interrupt  flag is cleared and 

execution continues from the last point before the context switch.

ComOS processor  supports  five types of interrupts.  First  two are  hardware 

interrupts and hardware exceptions which were already explained in the section 

about ComOS bus. Another two are software interrupts and software exceptions 

– the  interrupts  can  be  raised by software by special machine instruction,  the 

exceptions are raised automatically whenever an unhandled exception occurs in 

the  currently  executing  Common  Language Runtime thread.  The  last  type  of 

interrupt  is the  direct  write  interrupt.  Every processor  implements  function  0 

which is mapped to  a  memory block 1 byte  long. Every write to  this memory 

block  will  cause  the  processor  to  raise  a  direct  write  interrupt  in  case  the 

interrupt  flag is not  set  or  fail otherwise. Direct  write  interrupts  are  the  only 

way  to  signal  an  interrupt  to  a  specific  processor  in  a  multiprocessor 

environment  and  are  essential  in  operating  systems  supporting  multiple 

processors.

ComOS processor is implemented as instance of the Processor class. As I've 

already mentioned in Chapter  2, ComOS processes are in fact  implemented as 

Common Language Runtime threads and  therefore are not  physically executed 

on  the  ComOS  processor.  The  processor  though  still  provides  the  following 
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functions that can be accessed by all ComOS threads:

public static DeviceInfo[] EnumerateDevices();
public static void Halt();
public static void Nop();
public static void RaiseInterrupt(int interruptInfo);
public static void Read(int address, int length, out 
byte[]

result);
public static Thread ScheduledThread { get; set; };
public static void SetInterruptHandler(InterruptHandler

handler);
public static Thread StartManagedThread(MethodDelegate

entryPoint);
public static void Write(int address, byte[] data, out 
int

numWritten);

All  these  functions  are  static,  which  means  that  the  thread  doesn' t  need  to  have  a 

reference to any particular Processor object. It  would be hard to keep track of it – in 

a  multiprocessor  scenario,  thread  could  be  at  different  times  executed  on  different 

processors.  For that  reason the  Processor class itself keeps track of which thread  is 

currently executing on which processor or if it  is not  executing on any processor at  all 

but is rather swapped out in the memory.

Functions  EnumerateDevices,  Nop,  Read and  Write are  really  calls  to 

functions  of the  same name in  the  BusController class and  don' t  need  any 

further  explanation.  Function  RaiseInterrupt has  the  same  purpose  as  the 

Interrupt function  in  BusController class  but  with  a  slight  difference.  It 

doesn' t  cause the processor to send interrupt request to the bus but only sets its 

own interrupt  flag,  if possible.  The  interrupt  will also be  marked  as  software 

interrupt  rather  than  hardware  interrupt.  If  the  interrupt  request  can' t  be 

delivered because the interrupt flag is already set, call to this method throws an 

exception of type SoftwareInterruptException.

20



Function StartManagedThread creates a new managed thread and returns a 

reference to it.  Argument  entryPoint is a delegate to the function this thread 

should execute. The call to this delegate will be decorated by an try-catch block 

which will raise a  software exception  interrupt  in  case the  function  throws an 

exception.

The  ScheduledThread property  can  be  used  to  examine  the  currently 

scheduled thread or to schedule a new thread for execution. If it is set outside of 

an  interrupt  servicing routine, a  context  switch will occur  immediately. If it  is 

accessed from an  interrupt  servicing routine,  the  value of this  property is not  

equal to the currently running thread but  rather to the thread which ran before 

the ISR was invoked. Setting this property will not cause a context switch until 

after  the  current  ISR  has  exited.  This  property  is  initialized  at  the  machine 

startup  to  an  idle thread that  executes the  Nop instruction in an infinite loop. 

Setting this  property  will fail with  a  ConcurrencyException if the  specified 

thread is already scheduled on another processor.

Interrupt  servicing  routines  have  a  special  behavior  regarding  unhandled 

exceptions. When an unhandled exception occurs, current  routine is exited and 

a new software exception interrupt  is raised. The  exception parameter to this 

interrupt  though  is  not  the  original  exception  but  an  instance  of 

DoubleFaultException class.  Throwing  another  unhandled  exception  from 

within an ISR servicing a double fault exception will cause the machine to halt.  

That 's also what happens when the Halt function is called.

Calling  any  of these functions  from a  thread  that  was  not  created  by  the 

StartManagedThread function  (and  therefore  is  not  part  of  the  ComOS 

simulated software) will cause an exception. The only case when this is not so is 

an  overloaded  version  of  the  SetInterruptHandler function.  This  can  be 

called  by  the  ComOS  Virtual  Machine  at  the  startup  to  simulate  the  boot 

process – selecting the first function to execute after the machine starts.

The last  function that  ComOS processor offers is not  part  of the Processor 
class but rather a separate class by itself, the HardwareMutex class. Instances of 
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this class represent  words in the managed memory that  can only have values 1 

(locked)  or  0 (unlocked).  The  HardwareMutex class provides two functions to 

manipulate this memory:

public bool Tsl();
public void Unlock();

Function Unlock only sets the value of the word to unlocked. Function Tsl emulates a 

Test  and  Set  Lock instruction  – it  atomically checks the  value of the  word  which  it  

returns as the return value and then sets the value to locked. This instruction can be 

used for synchronizing processes as described in [Ham03]. This method is preferable to 

enabling  and  disabling  interrupts  because  the  latter  technique  doesn' t  work  in 

multiprocessor configurations.

3.3.5 System timer

Every  computer  needs  a  timer  to  schedule  certain  periodic  actions  such  as  thread 

switching  or  just  to  keep  track  of  time.  Timer  in  ComOS  Virtual  Machine  is 

implemented as a ComOS device in class SystemTimer. It 's a rather simple device – in 

contrast  to  modern  computer  timers  it  cannot  be  programmed  but  only  generates 

interrupts  at  a  fixed  rate.  This  rate  is  on  average every 100 bus  cycles  but  can  be 

anywhere  from 90 to  110 cycles  as  decided  by  the  random  number  generator.  This 

variation is supposed to  simulate imprecisions in real computer  timers, although on a  

very  exaggerated  scale.  Random  seed  can  be  passed  to  the  constructor  of  the 

SystemTimer device if we want the machine to behave deterministically.

ComOS timer doesn' t  implement any I /O functions.

3.3.6 Terminal

In this chapter I have mentioned a device called dumb terminal. It is a computer screen 

combined  with  a  computer  keyboard  that  sends  encoded  keyboard  strokes  to  the 

computer and prints received characters on the screen. ComOS implements this device 

in class DumbTerminal. When connected to the bus, it creates a new graphical window 

derived from the  System.Windows.Forms.Form. Keyboard strokes are captured in its 

KeyPress event  and  output  is  printed  into  a  System.Window.Forms.Label object 

that  fills the entire window. All characters are encoded and decoded using the UTF-8 
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encoding. Return key is encoded as the \n character and both \r and \n characters are 

treated  as  beginnings  of  a  new  line.  This  device  implements  the  function  0  with 

memory  block  1  byte  long  for  both  reading  from  the  keyboard  and  writing  to  the 

screen.  All  characters  pressed  on  the  keyboard  are  stored  in  an  internal  buffer  of 

unlimited length.  The devices raises an  interrupt  every time there are new characters 

waiting in the buffer with  the  interruptInfo argument  equal to  the number  of new 

bytes in the buffer.

3.3.7 Unmanaged memory

All  the  memory  that  ComOS  threads  need  is  managed  by  the  Common  Language 

Runtime. What  would a simulated memory be good for? Well, we need to  have one if 

we want  to deal with paging and virtual memory. The ways how to exploit  this device 

will  be  mentioned  in  the  next  chapter.  Its  implementation  is  rather  simple  –  it  is 

represented by an instance of class RandomAccessMemory and it implements single I /O 

function  with  memory  block  of  the  same  size  as  its  capacity.  The  content  of  the 

memory is stored in an array of bytes and reading or writing to this device modifies the 

corresponding entries in this array.

3.3.8 Machine

Finally,  all  the  components  we've  talked  about  are  members  of the  ComOS  Virtual 

Machine  implemented  in  class  Machine.  The  class  provides  the  following  public 

functions:

public event MethodDelegate Started;
public event MethodDelegate Stopped;
public Processor.InterruptHandler BootHandler { get;

set; };
public PortCollection Ports { get; };
public bool Running { get; };
public void Start();
public void Stop();

Functions Start and  Stop do exactly what  they say – they start  or stop the machine. 

Started and  Stopped are  events  that  are  asynchronously raised  when  the  machine 

starts  or  stops,  and  Running is  a  property  that  indicates  whether  the  machine 
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currently runs  or  not.  BootHandler property gets or  sets  the  value of the  machine's 

boot  handler.  This  is  the  delegate  which  will  be  set  as  machine's  interrupt  handler  

when  the  machine  starts.  Property  Ports returns  the  collection  of  ports  to  which 

devices can be connected or disconnected from. These devices are in fact  conected to 

the  internal  bus  but  we don' t  want  to  expose  the  reference to  the  BusController 
object itself.
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Chapter 4

4 ComOS software

ComOS Virtual Machine is a  complete computer simulation capable of running native 

Common  Language  Runtime  threads.  Well,  actually  we should  really  say  “running”. 

Software that  runs on the ComOS Virtual Machine is in fact  executing in the CLR as 

we saw in Figure 2.1 and only has the convenience of also being able to call the static 

methods of the Processor class. How do we convince it to use these methods? How are 

we going to enforce the restrictions we defined in Chapter 2?

4.1 Isolating the software from CLR

Surprisingly  there  are  quite  a  few  possibilities  to  achieve  this.  All  of  them  take 

advantage of the fact  that  we have full control over how the ComOS software will be 

compiled – remember that  the primary use of ComOS is to have students program the 

ComOS  Virtual  Machine.  Why  not  have  them  submit  their  source  code  and  then 

compile it at  our machine?

Let's state again the problems we would like to solve:

• ComOS software  should  not  access certain  features of the  Common  Language 

Runtime such as reflections, threading and synchronization primitives.

• Threads  simulated  on  the  ComOS Virtual  Machine should  only execute  when 

they are scheduled on the processor. We also need a mechanism for interrupting 

currently running threads. In particular, inserting a call to Processor.Nop after 

every MSIL instruction of ComOS software would solve these problems.

We  will  now explore  the  options  we have and  assess  their  usefulness.  Unfortunately 

most of them will turn out to be very complicated and impractical.
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4.1.1 Ignoring the problem

Now this option is really not very complicated at all but it also doesn' t  solve any of our  

problems.  A  slight  modification  of  this  approach  would  be  telling  the  ComOS 

programmers to  follow the given rules and then check that  their source code complies 

with them. Sounds easy, but  do we really want every second line of their source code to 

be a call to  Processor.Nop? Probably no. We will only resort  to this if we can' t  find 

any other reasonable approach.

4.1.2 Code processing

If we'll think about  the previous proposed solution a lit tle more, we will realize that  it 

could be automated. What  we need to do is to write a program that  will receive a C #  

source code  as  an  input,  inspect  it  and  tell  us  if  it  contains  any  restricted  calls  or 

language constructs.  It  will then  insert  the  Processor.Nop calls to  all  places in the 

source code where function  calls are permitted,  such as  function  bodies.  It  would  be 

very easy to  incorporate  this  program into  compilation  with  Microsoft  Visual  Studio 

pre-build events.

Sounds  easy?  It  sounded  doable  to  me,  until  I  saw  the  C #  Language 

Specification [Ms07]. It  is 493 pages long. Of course you could wonder if there 

are possibly some existing C #  code processors. Maybe there are, but  none that  

I know of. And frankly, this approach can' t  really appeal to anyone.

4.1.3 Debugger API

If  you've  ever  worked  with  one  of the  Microsoft  Visual  Studio  IDEs  you  may  have 

wondered how it allows you to step your program line by line. You can now find out by 

yourself because Microsoft  made the  debugger API  that  Visual Studio (perhaps) uses 

publicly available. Unfortunately, it  is not  easy to learn and there exists only a poorly 

documented  semi-functional  C #  version  of  it.  (The  debugger  API  is  for  the  C + +  

language.)  I  haven't  even  been  able  to  find  out  what  functionality  does  it  exactly 

provide so I can' t  honestly tell if mastering this API would solve our problems.

4.1.4 Post-compilation

The  best  option  by far  turned  out  to  be  post-compiling  our  code.  Post-compilation 

means editing the binary after it 's compiled into MSIL code. It 's pretty much the same 
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approach as code processing but  in MSIL instead of C #.  How could that  be bet ter? In 

fact,  the  MSIL language is much  simpler  than  C #!  And  for  this  reason,  there  exist  

many  nice  and  freely  available  post-compilation  libraries.  The  one  I've  chosen  for 

ComOS is PostSharp, an aspect weaver for the .NET platform. It 's greatest  advantage 

is that  it integrates into the Microsoft Visual Studio and allows you to control the post-

compilation directly in your C #  code. All that  needs to  be done is to write a  custom 

at tribute which will be then applied to  the  target  assembly, in our case the assembly 

Comos.Software.  This will tell the  PostSharp  platform to  post-compile the assembly 

according to the rules defined in our custom at tribute.

So what  will  PostSharp  allow us  to  do?  First  of all,  it  allows us  to  issue 

compile time warnings or errors if it  finds calls to restricted functions anywhere 

in the  post-compiled code.  This solves problem number  one. Secondly,  we can 

use PostSharp to transform certain parts of MSIL code which in our case means 

adding a  call to  Processor.Nop after  these parts.  What  parts  are we talking 

about? PostSharp allows us to modify all of the following:

• function calls

• constructor calls

• reading an array element

• writing an array element

• reading a field

• writing a field

• getting a pointer to a field

That 's  a  lot  of  possibilities  but  these  certainly  aren' t  all of  the  MSIL instruction. 

However, what are the real reasons why we want to insert the Nop calls? First of all, we 

are only able to interrupt the thread and start  simulating the next clock cycle when the 

thread calls the Nop function (or one of the other I /O functions). Inserting the Nop call 

after  every MSIL instruction would mean that  one clock cycle of our processor would 

correspond to one executed MSIL instruction. But  since the options PostSharp gives us 

cover almost  all of the common instruction, we wouldn' t  really lose that  much. A code 
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like this:

while (true) { /* do nothing */ };

would still put  our processor in an infinite loop but  as soon as there's a  single call to 

any function whatsoever or access of any class field or even local array, we're safe again.

A more important  reason why we want  to  periodically interrupt  our code is 

to  force the ComOS software programmers to  synchronize their code. Consider 

the following code:

if (this.obj != null) {
this.obj.DoSomething();

}

If the field  obj was shared among multiple threads, the previous block of code would 

have to  be synchronized to  avoid a  situation where object  obj is a  non-null reference 

during the evaluation of the if condition but  becomes a  null reference right  before the 

DoSomething method  is  called,  this  resulting  in  a  NullReferenceException. 

However,  if  the  ComOS  programmer  knew  that  the  thread  cannot  be  interrupted 

between these two calls, he wouldn't  have to synchronize anything.

What  I  will  try  to  do  now  is  to  examine  situations  where  such 

synchronization issues could occur.  First  of all,  there needs to  be some shared 

resource in use by more than one thread. This resource must be either an object 

to which we have a reference or a variable that  holds a certain value. (Note that  

the  above  example  classifies  as  a  value  and  not  an  object,  because  we  are 

sharing a reference to some object  (i.e. its address in memory), not  that  object 

itself.) In the case of object,  all is well. This is because the only way to  access 

an object is to either call one of its functions or access its public fields, both of 

which are cases where the post-compilation occurs. There is one special kind of 

an object though – an array. Arrays can be accessed in a third way, by reading 

or writing their elements. Luckily for us, this again is one of the post-compiled 

case. 

Now let's consider variables. If the variables are fields of a class or structure, 

we  are  again  covered  by  PostSharp.  We  can  do  nothing  if  they  are  local 

28



variables but  fortunately,  there is no way that  local variables could be  shared 

among threads because they only exists during the scope of the current  block. 

(Static variable don' t  exist  in C #  or  MSIL.)  There is one tricky situation  we 

haven' t  thought  of though – pointers to  variables. How can you have a  pointer 

to local variable? Easily:

int localVariable;
obj.Function(ref localVariable);

When  variables  are  passed  by  reference,  only  pointers  to  them  are  passed  to  the 

function. If the target function was executed on a new thread, variable localVariable 
would become a shared resource. PostSharp allows us to post-compile the piece of code 

where the reference is created, but it won't  allow us to control any further access to this 

reference. For this reason, we will not  allow to pass variables to functions by reference 

but generate a compile time error instead.

Of course, there are many other cases we haven' t  thought of where PostSharp 

cannot  handle the threat  of shared variables such as anonymous delegates that  

use local variables. We will have to live with the fact that  our post-compilation 

mechanism is not perfect.

4.2 Using the ComOS project

So what is it that  we can actually do with ComOS? The purpose of the ComOS project  

is to  allow students to  write their  own operating system in the  C #  language. This is 

quite  possible  but  unfortunately also a  bit  complicated  task  to  accomplish.  ComOS 

comes  with  a  simple  software  demo  which  includes  a  driver  for  the  DumbTerminal 
device and an implementation of an interrupt  servicing routine that  prints any software 

exceptions to  the  screen.  There  is clearly room for  improvement  – a  basic operating 

system framework  needs  to  be  set  up  so that  students  will  only need  to  implement  

small  parts  of  code.  It  would  also  be  nice  if the  machine  was  in  future  capable  of 

executing  unmanaged  code  – for  example  programs  compiled  for  some  simple  RISC 

processor such as MIPS. This would allow students  to  use the  RandomAccessMemory 
device for some useful purpose and see how virtual memory really works. Adding a hard 

drive device would then also be necessary.
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What the project can readily be used for is the following:

• writing  implementations  of  basic  synchronization  mechanisms  such  as 

semaphores and locks

• writing methods for communication between threads and thread scheduling such 

as join, sleep, wait and pulse methods

• designing a thread scheduler

ComOS Virtual Machine can also be used in multiprocessor setup to  experiment  with 

multiprocessor  thread  schedulers.  It  is  not  entirely  clear  though  whether  the  direct 

write  interrupt  mechanism  is  sufficient  to  allow  an  efficient  implementation  of 

multiprocessor operating system.

The  modular  architecture  of  ComOS  Virtual  Machine  is  quite  versatile. 

ComOS  Virtual  Machine  could  be  possibly  used  for  any  of  the  following 

educational purposes:

• implementing an operating system (the original goal)

• designing and  testing efficient  parallel  algorithms  on  a  multiprocessor  ComOS 

Virtual Machine

• implementing  a  network  protocol  or  network  card  driver  and  simulating  a 

computer network using multiple instances of the Machine class

• implementing distributed algorithms in an environment with multiple networked 

ComOS Virtual Machines
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Chapter 5

5 Conclusion

In  this  paper  I  have  studied  the  architecture  of modern  computers  and  proposed  a  

model of a virtual computer that  would closely simulate the most  important  parts of a  

real-world computer. I have implemented this virtual computer in the C #  language and 

I  have also proposed a  use of this computer  as an  educational tool in the  1-INF-170 

Operating Systems course.

Although the virtual computer  still lacks software that  will be needed if we 

were to put it in real use in the classes, writing the software is only a minor task 

in  comparison  to  the  hardware  implementation  of  the  virtual  machine.  The 

ComOS project  can already be used to  demonstrate parts of the curriculum of 

the Operating Systems course and it requires only relatively small modifications 

to be used for demonstrating most of the concepts. Though only time will show 

how successful will it be.
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Abstrakt

Virtuálny  operačný  systém  je  operačný  systém  ktorý  miesto  skutočného 

počítača beží na simulovanom virtuálnom počítači. Môže byť použitý na výuku 

ale  taktiež  môže  mať  uplatnenie  aj  v  bežnom  svete.  Výhodou  virtuálnych 

operačných systémov je zvýšená bezpečnosť, ktorá vyplýva z toho, že programy 

bežiace  na  virtuálnom  operačnom  systéme  sú  striktne  oddelené  od  zvyšku 

počítača.  Virtuálne  počítače majú  tiež často  dostatočne jednoduchú  štruktúru 

na to,  aby nám dovolili uskutočniť dôkaz korektnosti programov, ktoré na nich 

bežia.

V  tejto  práci  predstavím  virtuálny  operačný  systém  Comenius  (ComOS)  a 

virtuálny  počítač  na  ktorom  pracuje  –  ComOS  Virtual  Machine.  Operačný 

systém  ako  aj  virtuálny  stroj  ComOS  sú  napísané  v  jazyku  C #  a 

postkompilované knižnicami PostSharp,  čím spolu tak  tvoria  jednotný projekt. 

Cieľom  tohto  projektu  je  vytvoriť  prostredie,  v  ktorom  budú  môcť  študenti 

operačných  systémov  navrhovať časti  svojho  vlastného  operačného  systému  a 

riešiť  problémy  s  ktorými  sa  bežne  stretávajú  programátori  skutočných 

operačných systémov.

Kľúčové slová: ComOS, virtuálny operačný systém, PostSharp
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