
Univerzita Komenského v Bratislave

Fakulta matematiky, fyziky a informatiky

A functional programming language
(suitable for education of functional

programming)
Bakalárska práca

2018
Michal Štrba

Univerzita Komenského v Bratislave

Fakulta matematiky, fyziky a informatiky

A functional programming language
(suitable for education of functional

programming)
Bakalárska práca

Študijný program: Informatika
Študijný odbor: 2508 Informatika
Školiace pracovisko: Katedra informatiky
Školiteľ: RNDr. Richard Ostertág PhD.

Bratislava, 2018
Michal Štrba

55322415

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Michal Štrba
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: Computer Science, Informatics
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: A functional programming language (suitable for education of functional
programming)

Annotation: Design and implementation of a simple statically typed pure functional language
with built-in types for Char, Int (with arbitrary-precision) and Float with support
of function overloading. Implementation of multiple „external“ side effect
interpreters for this pure functional language.

Supervisor: RNDr. Richard Ostertág, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 08.11.2017

Approved: 08.11.2017 doc. RNDr. Daniel Olejár, PhD.
Guarantor of Study Programme

Student Supervisor

55322415

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Michal Štrba
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: A functional programming language (suitable for education of functional
programming)
Funkcionálny programovací jazyk (vhodný pre výučbu funkcionálneho
programovania)

Anotácia: Návrh a implementácia jednoduchého staticky typovaného čistého (pure)
funkcionálneho jazyka so vstavanými typmi pre Char, Int (bez obmedzenia
veľkosti) a Float s podporou preťaženia funkcií. Implementácia viacerých
„externých“ interpreterov vedľajších efektov pre tento čistý funkcionálny jazyk.

Vedúci: RNDr. Richard Ostertág, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Spôsob sprístupnenia elektronickej verzie práce:
bez obmedzenia

Dátum zadania: 08.11.2017

Dátum schválenia: 08.11.2017 doc. RNDr. Daniel Olejár, PhD.
garant študijného programu

študent vedúci práce

Acknowledgement

I'd like to thank my supervisor for always promptly spraying my pages with red ink.

v

Abstract

In this thesis, we introduce a new purely functional programming language called

Funky. The motivation for its creation arose from the joy experienced when playing

with the pure �-calculus and from the frustration with other functional languages.

The result is a fairly unique language. It's simple enough to be learned in a matter

of hours, while its subtle design choices make it very expressive. Most importantly,

Funky's syntax makes it possible to write vertical code � code that reads top to bottom,

without introducing any major syntactic sugar (like Haskell's do notation), or violating

functional purity. Funky's approach to side-e�ects is also one of its most distinguishing

features. Instead of building side-e�ects into the language, Funky makes it possible to

write custom side-e�ect interpreters, that take the Funky code as a data structure and

interpret is in some way. This makes it possible to easily penetrate any programming

domain simply by creating appropriate side-e�ect interpreters.

Keywords: programming language, functional programming, vertical code, side-

e�ects, side-e�ect interpreters, function overloading, �-calculus

vii

Abstrakt

V tejto práci predstavujeme nový £istý (pure) funkcionálny programovací jazyk Funky.

Motivácia na jeho tvorbu pri²la z pôºitku preºítého pri hraní sa s £istým �-kalkulom a

tieº z frustrácie z ostatných funkcionálnych jazykov. Výsledkom je pomerne jedine£ný

jazyk. Je dostato£ne jednoduchý, aby sa ho £lovek zvládol nau£i´ za pár hodín, pri£om,

na prvý poh©ad nenápadné, £rty jeho dizajnu ho robia ve©mi expresívnym. Asi ich

najdôleºitej²ím dôsledkom je moºnos´ písania vertikálneho kódu - kódu, ktorý sa £íta

zhora dole, a to bez zavedenia akéhoko©vek vä£²ieho syntaktického cukru (ako napríklad

do notácia v Haskelli), alebo poru²enia funkcionálnej £istoty. Prístup k ved©aj²ím

efektom je tieº jednou z najjedine£nej²ích vlastností jazyka Funky. Namiesto vsta-

vania ved©aj²ích efektov priamo do jazyka, Funky umoº¬uje vytváranie vlastných

interpreterov ved©aj²ích efektov, ktoré zoberú kód Funky ako dátovú ²truktúru a inter-

pretujú ju nejakým spôsobom. Toto umoº¬uje ©ahké vniknutie Funky do akejko©vek

sféry programovania � jediné, £o treba spravi´ je naprogramova´ vhodný interpreter

ved©aj²ích efektov.

K©ú£ové slová: programovací jazyk, funkcionálne programovanie, verikálny kód,

ved©aj²ie efekty, interpretery ved©aj²ích efektov, pre´aºenie funkcií, �-kalkulus

ix

Table of contents

Acknowledgement . v

Abstract . vii

Abstrakt . ix

Introduction . 1

1 The Funky Programming Language . 3

1.1 Top-level code structure . 4

1.2 General syntax rules . 5

1.2.1 Kinds of tokens . 6

1.3 Functions . 7

1.3.1 Function body � expressions . 8

1.3.1.1 Literals . 10

1.3.1.2 Semicolon . 11

1.3.1.3 In�x functions . 12

1.3.1.4 Variable shadowing . 13

1.3.2 Type of a function . 13

1.3.2.1 Built-in types . 14

1.3.2.2 Function types . 15

1.3.2.3 Type variables . 16

1.3.2.4 Higher-order types . 18

1.3.2.5 Type inference . 19

1.3.3 Function de�nition . 20

1.3.4 Overloading . 21

1.3.4.1 Colliding types . 22

1.3.4.2 Ambiguity . 23

1.4 Records . 24

1.4.1 Composing accessors . 26

1.5 Unions . 27

1.5.1 Switch/case . 30

1.6 Aliases . 32

xi

2 Code that reads top to bottom . 35

2.1 If and let . 36

2.2 Aiding verticality . 38

2.3 Lists as generators . 39

2.4 Function when . 42

2.5 Inline recursion with fix . 45

2.6 �Non-determinism� . 48

3 Side-e�ects and interpreters . 53

3.1 Interpreters . 54

3.2 Interactive command-line programs . 58

3.2.1 print, println, scanln . 61

3.2.2 ungetc, skip-whitespace, scan . 64

3.2.3 Chaining . 68

3.2.4 when, for, when++, for++ . 70

3.2.5 Grand transformations . 72

3.3 Complete minimal transparent representation 78

Conclusion . 81

Bibliography . 83

Appendix A . 85

xii Table of contents

Introduction

In the beginning God created �-calculus... or at least Church did.

We took note of that and started experimenting. That was the beginning of this

project. We implemented many �-calculus interpreters, played with numerous algo-

rithms and data structures in it, and that gave us insights. The most important one

is here:

Pure �-calculus extended with the ability to create global, recursive de�nitions makes

for a very decent programming language .

The key is that creating global de�nitions � assigning names to expressions � in

combination with �-calculus' substitution semantics, makes it possible to easily elevate

abstractions to a nearly arbitrary level, all in a very natural, human-friendly way.

But, the pure �-calculus has its downsides. No type system, no built-in numbers, no

obvious way to implement side-e�ects, and so on. We were aware of the existing purely

functional programming languages, most notably Haskell. However, we found that all

of them introduce many complicated features, that ruin the experience of harmony we

enjoyed in pure �-calculus.

Hence, we set forth to build a language that stays true to those feelings. A question

arised:

What's the minimum amount of features we need to add to �-calculus to make it usable

for real-world problems?

After many design iterations, a lot of trying and failing, we believe we �gured it out.

In this work, we present the Funky programming language � the result of our e�orts.

The design process of Funky was one without a strict set of features, or goals to

reach. In fact, we believe that such an approach would be detrimental to the �nal result.

Instead, we tried to discover the language, in a way. Starting from pure �-calculus,

adding features that seemed right, one by one, exploring them as deeply as possible to

�nd all of their uses. This led to a simple, yet powerful language, with a small number

of features that �nd a wide range of use.

In the �rst chapter, the language is described. Many of its design decisions are

rationalized in this chapter. The most important design decisions are, however, very

subtle and hard to appreciate at the �rst sight. The second and the third chapter try

to do them justice.

1

Chapter 1

The Funky Programming Language

In short, Funky is vanilla �-calculus with a type system on top, one special

switch/case control structure, and three magical built-in types: Char, Int, and Float.

Three aspects distinguish it most from other functional languages:

� Side-e�ects are handled by special programs called interpreters. An interpreter

takes your program expressed as a transparent (no hidden information) data

structure describing what should be done.

� Few clever syntax tweaks that enable writing code that reads top to bottom,

without any use of a special do notation, as seen in Haskell.

� Type system, which allows function overloading (having multiple functions of

the same name but di�erent types), but disallows higher-kinded (not the same

as higher-order) types.

The �rst two of these aspects each has a dedicated chapter discussing their impact in

its full extent. In this chapter, we will describe the Funky programming language in

general, its syntax, semantics, and how we can use them.

3

1.1 Top-level code structure

record Point = x : Int, y : Int

union Line = blank | Point -- Line # -- is an infix constructor

length^2 calculates total squared length of a line

func length^2 : Line -> Int =

\line

switch line

case blank 0

case (--) length^2-from

func length^2-from : Point -> Line -> Int =

\pt0 \line

switch line

case blank

0

case (--) \pt1 \rest

let (x pt0 - x pt1) \dx

let (y pt0 - y pt1) \dy

let ((dx ^ 2) + (dy ^ 2)) \delta

delta + length^2-from pt1 rest

func main : IO =

let (Point 1 2 -- Point 7 8 -- Point -4 0 -- blank) \line

println (string (length^2 line)); # prints 257

done

Here's a nice, short, example of Funky code. Just looking at it, we can already discern

something about the language. Comments start with #, identi�ers may contain non-

alphanumeric symbols, there are some backslashes that seem to introduce variables,

and the top level consists of a set of de�nitions, either of types or functions, each of

which starts with a keyword (record, union, func, ...).

4 The Funky Programming Language

In total, there are four keywords that signify a top-level de�nition, three of which

were used in the example above:

� func � a function de�nition with a mandatory type and a body

� record � a compound data type, similar to structs from C or records from Pascal

� union � a type consisting of several alternative forms, similar to data from

Haskell

� alias � a name taken as an alias for another type

Nothing, but these four kinds of de�nitions, is allowed on the top level.

The order of de�nitions is irrelevant. All de�nitions �see� each other.

In the future, two more top-level keywords will be added: package and import.

They will be used for package and dependency management, which is currently dealt

with in a particularly spartan way by simply listing all the needed �les to the compiler.

Before we examine each of the top-level keywords individually, we'll brie�y describe

general syntax rules.

1.2 General syntax rules

In every programming language, the source code, represented by characters, is �rst split

into the smallest, semantically indivisible units called tokens. Examples of tokens are:

func, IO, length^2, 42, "Hello, world!", '%', (, +, =, |, \

In Funky, tokens are generally separated by whitespace characters, except for a few

special characters that are always parsed as individual tokens, even when not separated

from their surroundings by whitespace. These characters are:

() [] { } , ; \ #

String and character literals are one more thing that does not follow splitting by

whitespace. Although the " and ' characters can be found inside other tokens, when a

token starts with a quote (single or double), everything until the closing quote is taken

as a single token.

1.2 General syntax rules 5

For example, the following (not idiomatically formatted) sequence of characters:

println("Length: " ++ (string;length^2 line))

gets split into these tokens:

println

(

"Length: "

++

(

string

;

length^2

line

)

)

Comments start with # and continue until the end of line. Everything inside a comment

is completely ignored by the language and has no semantics.

Funky's syntax is not layout or indentation sensitive. Every time a whitespace is

needed, one space is always equivalent to any sequence of whitespace characters.

1.2.1 Kinds of tokens

Some tokens have special meaning in Funky. Others can be used as names for variables,

functions and types.

Here's a list of tokens that act as keywords in Funky and can't be used as identi�ers:

() [] { } , ; \ # : | = record union alias func switch case

However, except for the underlined ones, you can use them inside your identi�ers. For

example, the function for prepending an element to a list is called :: and a logical �or�

is ||. Also, there's a function called |>, and so on. The underlined can't be used inside

identi�ers, because they are always parsed as separate tokens.

The other class of special tokens is literals. From the total of �ve kinds of literals,

instances of four are represented by single tokens. These are: integers, �oating-point

6 The Funky Programming Language

reals, characters, and strings. The �fth kinds of a literal is a list literal, but these are

represented by multiple tokens, so they don't concern us here.

The parser splits tokens into their respective categories by the rules described below.

In the description of the rules, <digit> stands for any decimal digit, ... stands for

any sequence of non-whitespace characters, | separates multiple alternatives.

� <digit>... | +<digit>... | -<digit>... � tokens of this form are consid-

ered numbers. If the ... consists solely of digits, the token is taken as an integer

literal. Otherwise it's taken as a �oating-point literal. Floating-point literal may

contain digits, a single decimal point, and an exponential notation. If the token

can't be understood as a �oating-point literal, a compilation error is raised.

� '...' � character literals. The content between quotes may be escaped using

back-slash characters, just as expected. If the content consists of multiple or

zero characters, a compilation error is raised.

� "..." � string literals. Same as character literals, except they can contain

arbitrarily many characters.

All tokens that are not keywords, nor literals, can be used as identi�ers.

1.3 Functions

Every righteous guide of a functional programming language has to include the factorial

function, so we start with that.

func n! : Int -> Int =

\n

if (n == 0)

1;

n * n! (n - 1)

This is the classical recursive de�nition of the factorial function. We named the function

n!, because we can, although, too short and cryptic names are generally discouraged

in Funky. The type of the function is Int -> Int, which means that this is a function

which takes an argument of type Int and returns a value of type Int. The = symbol

1.3 Functions 7

is followed by the body of the function, which is simply an expression in the Funky

language which must conform to the type of the function.

The backslash on the �rst line of the body is supposed to look like a lambda: �. This

is a legacy from the ingenious �-calculus formal system created by Alonzo Church[4].

What it means is: this expression is a function which takes an argument called n and

returns everything that follows after.

The next line contains an if. In Funky, if is a regular function with three argu-

ments: condition, then-value, else-value. Its type is: Bool -> a -> a -> a. If the

condition is true, if returns its �rst argument (then-value), otherwise it returns its

second argument (else-value). In our case, the condition is the expression (n == 0),

which does the obvious. The then-value argument is 1.

Now, there's a semicolon. Semicolon is very simple � all it does is it puts everything

that follows after it inside parentheses. If we put the last line in parentheses and

removed the semicolon, the result would be the same. Thus, the else-value argument

is the whole last line: n * n! (n - 1), a recursive evaluation of the n! function mul-

tiplied by n.

The whole expression looks similar to what an imperative program in C would look

like:

if (n == 0)

return 1;

return n * fac(n - 1);

Of course, we're not trying to look like C. We're trying to write code that reads top

to bottom. This is something that imperative languages do very well, but as it turns

out, functional programming can do it just as �ne. We'll discuss this topic in a great

detail in a dedicated chapter.

1.3.1 Function body � expressions

In our describing of functions, we'll �rst focus on the function bodies � expressions.

We'll intentionally omit the switch/case construct, and leave for the section about

unions.

The expression syntax adds very little to the pure �-calculus. All that's added is

the literals, the switch/case structure, the semicolon, and type annotations.

8 The Funky Programming Language

Here's the complete expression grammar:

<expression> ::= <literal> |

<identifier> | reference

<expression> <expression> | application

\ <simple-variable> <expression> | abstraction

<switch-expression> |

(<expression>) |

<expression> ; <expression> |

<expression> : <type>

Three non-terminals from the above de�nition are not yet de�ned. These are: <simple-

variable> , <switch-expression> , and <type> . Both <switch-expression> and

<type> will be de�ned in later sections.

The <simple-variable> non-terminal is an <expression> that only makes use of

the rules underlined in the de�nition, and none others. This non-terminal will be used

a few more times in the de�nitions, so it's good to remember it.

The three rules with the names on the right (reference, application, abstraction)

will be referenced by these names later in the text.

Now we'll clarify some ambiguities with the grammar, because it's quite ambiguous

in itself. We'll clarify it by showing examples of expressions without parentheses, then

putting parentheses in a wrong and in the right way. I believe this is easier to under-

stand than a rigorous formal de�nition.

The �rst source of ambiguity is the application syntax used more than once. As

with all examples here, the �rst line is without parentheses, the second line shows an

expression that's semantically di�erent from the expression without parentheses, and

the third line shows an expression that's semantically same:

<expression> <expression> <expression>

<expression> (<expression> <expression>) di�erent

(<expression> <expression>) <expression> same

Another ambiguity comes with abstractions:

\ <simple-variable> <expression> <expression>

(\ <simple-variable> <expression>) <expression> di�erent

\ <simple-variable> (<expression> <expression>) same

1.3 Functions 9

A few come with the semicolon:

<expression> ; <expression> <expression>

(<expression> ; <expression>) <expression> di�erent

<expression> ; (<expression> <expression>) same

<expression> <expression> ; <expression>

<expression> (<expression> ; <expression>) di�erent

(<expression> <expression>) ; <expression> same

And the last one with type annotations:

<expression> <expression> : <type>

<expression> (<expression> : <type>) di�erent

(<expression> <expression>) : <type> same

That'll do for ambiguities.

We will not describe the expression evaluation process in Funky, because it's the

same as any other purely functional language. The main evaluation mechanism is �-

reduction. All we need to know is that Funky is lazy, with implicit support for tail-

recursion, and call-by-name, just like Haskell.

Now we'll move on to describe some of the expression syntax peculiarities in a

greater detail and answer some semantics questions, like �what does the semicolon do?�.

1.3.1.1 Literals

As we've learned already, some tokens can be used as identi�ers, others act as special

syntax symbols, while the rest represent literals � direct values of built-in types and

strings (String is not a built-in type). String literals are each a single token, although

they can contain whitespace. There's one more kind of literals � list literals. They are

composed of more tokens, though � initial [, list of values separated by , and a closing].

Let's examine all kinds of literals, one by one:

� Character literals � these are enclosed in single quotes (') and represent a

single Unicode character. Their type is Char. Escaping special characters with

backslash works as expected. Examples: 'a', '\n', '£', ' ', '\'', etc.

� Integer literals � start with a digit or a +/- sign followed by a digit sub-

sequently only contain digits (no decimal point or scienti�c notation). They

represent integers of arbitrary precision. Their type is Int. Examples: 42, -

1, +1, 19237489124398124891324, etc.

10 The Funky Programming Language

� Floating-point literals � start with a digit or a +/- sign followed by a digit

and are distinguished from integer literals by containing a decimal point or

the exponential scienti�c notation. They represent 64-bit precision �oating-

point numbers. Their type is Float. Examples: 4.0, -1.5, 1e-9, 7.14e5,

3.14159265358979, etc.

� String literals � are enclosed in double quotes (") and represent a string of

Unicode characters. It's worth noting that the type String is just an alias for

List Char � a list of characters. String literals are thus just a syntactic sugar

for a list of characters constructed by using the (::) and empty functions. We'll

learn more about those later. Here are a few examples:

"hello" # ('h' :: 'e' :: 'l' :: 'l' :: 'o' :: empty)

"\n\"\n" # ('\n' :: '"' :: '\n' :: empty)

� List literals � are enclosed in square brackets, with list elements separated by

commas. Just as strings, list literals are just a syntactic sugar that expands to

a series of (::) and empty applications. Examples:

[1, 2, 3, 4, 5] # (1 :: 2 :: 3 :: 4 :: 5 :: empty)

[[a, b], [c]] # ((a :: b :: empty) :: (c :: empty) :: empty)

1.3.1.2 Semicolon

Oftentimes, an argument to a function is a non-trivial expression itself and has to be

put inside parentheses. But too many parentheses can harm readability and make

programs less fun to write. This is where the semicolon comes handy:

extract (int (strip-whitespace number))

can be instead written as:

extract; int; strip-whitespace number

All semicolon does is it puts everything that follows after it into one big pair of paren-

theses. It's very similar to Haskell's $ operator, except, the semicolon is more concise.

That's very important. Semicolon is used all the time in Funky. It's one of the two

crucial features that make it possible to write code that reads top to bottom. The other

crucial feature is the syntax of abstractions. We'll discuss this advantage of Funky in

a dedicated chapter.

1.3 Functions 11

1.3.1.3 In�x functions

We've seen use of +, -, ^, and other operators in previous code examples and you

might've wondered if those receive special treatment from the compiler or they're just

regular functions. The truth is, they're just regular functions. The only special thing

about them is that they're composed solely of special symbols (no letters or numbers)

and that makes them in�x , as opposed to pre�x. Pre�x functions come before their

argument, in�x functions come after it instead.

In�x functions have lower precedence than pre�x function application and are all

right-associative. Among themselves, all in�x functions have the same precedence.

x * y + z

is equivalent to:

x * (y + z)

Similarly:

sqrt x + log y ^ n ^ 2

is equivalent to:

(sqrt x) + ((log y) ^ (n ^ 2))

And lastly:

"your number is: " ++ string; n * 2

is same as:

"your number is: " ++ (string (n * 2))

The reason for making all in�x functions same precedence and same associativity is

consistency and simplicity. We could add a possibility of specifying the precedence

index and associativity of in�x functions, but this adds burden on programmers, and

only resulting in little bene�t. Alternatively, we could hard-wire precedence and asso-

ciativity for speci�c operators known to the compiler. This approach would however

diminish seamless extensibility of the language � functions de�ned by the programmer

would be inferior to the built-in ones in this regard. The last option is to go for

maximum consistency at the cost of �looking less like math�. I believe this cost is not

severe enough to rule out this option, and so it has been chosen.

12 The Funky Programming Language

1.3.1.4 Variable shadowing

Introducing a local variable in an abstraction �shadows� all other uses of that name.

Let's say there's a global function called reality. The expression

reality exists

applies that global function with an argument named exists. However, if this expres-

sion is located inside an abstraction which binds the name reality, the result is

di�erent:

\reality

reality exists

This time, the name reality on the second line no longer refers to a global function,

instead it refers to the local variable introduced by the abstraction. In general, if there

is a local variable of the referenced name, it will be used every time, all global functions

of that name are automatically ruled out.

A nested abstraction can overshadow a previous binding:

let (just you) \reality

let nothing \reality

explain reality

Introducing a second variable of the same name shadows the previous instance, which

is no longer accessible. The reality reference on the line 3 refers to the variable

introduced on the line 2.

1.3.2 Type of a function

Funky is a strongly typed language. Everything has a known type at compile-time,

no implicit conversions between types occur to confuse programmers. However, Funky

o�ers a convenient type inference mechanism, so programmers rarely need to type-

annotate variables.

Explicitly stating types of global functions is required, though. This is because, in

contrast to most purely functional languages, Funky supports function overloading.

There may exist multiple functions of the same name with di�erent types. Without

explicit type information, selecting the right version to use based on context would be

impossible, or at least very confusing.

Funky bases its type system on the standard Hindley-Milner model[1], which

enables all the properties described above. The system is extended only by the sup-

port for function overloading (ad-hoc polymorphism), and recursive aliases.

1.3 Functions 13

Function types are speci�ed using this grammar:

<type> ::= <type-variable> |

<type-application> |

<type> -> <type> |

(<type>)

<type-application> ::= <type-name> | <type-application> <type>

Two non-terminal from the above grammar aren't de�ned yet: <type-variable> and

<type-name> . Type variables, as we'll learn soon, stand for an arbitrary other type.

They are just identi�ers, that additionally must start with a lower-case letter. Type

names, on the other hand, stand for de�ned types, possibly higher-order types. They

are also just identi�ers, but contrary to type variables, these must start with an upper-

case letter.

We need to clear up some ambiguities, just as we did with the expression grammar.

The only ambiguities are introduced by the arrow, which is used to express function

types:

<type> -> <type> -> <type>

(<type> -> <type>) -> <type> di�erent

<type> -> (<type> -> <type>) same

<type-application> <type> -> <type>

<type-application> (<type> -> <type>) di�erent

(<type-application> <type>) -> <type> same

<type> -> <type-application> <type>

(<type> -> <type-application>) <type> error

<type> -> (<type-application> <type>) same

Now we'll walk through the Funky's type system, starting from the easiest � the built-

in types � and �nishing with the hardest, but still very easy � the higher-order types.

1.3.2.1 Built-in types

Funky has three built-in types: Char, Int and Float. Char represents all Unicode

characters. Int represents arbitrary-precision integers. Float represents 64-bit preci-

sion �oating-point decimal numbers. Literals and built-in functions are used to create

values of these types.

14 The Funky Programming Language

Here are a few examples of functions that have a built-in type:

func newline : Char = '\n'

func seconds-in-a-day : Int = 86400

func pi : Float = 3.14159265358979

func one-plus-two : Int = 1 + 2

func ln-of-pi : Float = ln pi

As these functions don't take any arguments, they simply represent a single value of a

built-in type. Functions like these are called constants.

Note, that Float literals must contain a decimal point. Number 42 is an Int literal,

not a Float literal. To make it a Float literal, we need to add the point: 42.0.

1.3.2.2 Function types

A function that takes an argument of type A and returns a value of type B has type A

-> B. For example:

func double : Int -> Int = \x 2 * x

func round : Float -> Int =

\x

int (x + 0.5)

If a function takes multiple arguments, we simply make a function taking the �rst

argument that returns a function taking the second argument, like this:

gcd returns the greatest common divisor of numbers x and y

func gcd : Int -> (Int -> Int) =

\x \y

if (x < y)

(gcd y x);

if (y == 0)

x;

gcd y (x % y) # % is modulo

1.3 Functions 15

And, since the -> operator is right-associative (as all in�x operators are), we can omit

the parentheses:

gcd returns the greatest common divisor of numbers x and y

func gcd : Int -> Int -> Int =

\x \y

if (x < y)

(gcd y x);

if (y == 0)

x;

gcd y (x % y) # % is modulo

Function can take functions as arguments:

differentiate returns approximate derivative of a function f in x

func differentiate : (Float -> Float) -> Float -> Float =

\f \x

let 1e-8 \eps

((f (x + eps) - f (x - eps)) / (2.0 * eps)

func linear-2x : Float -> Float = differentiate (^ 2.0)

The last line may be di�cult to understand for those unfamiliar with functional pro-

gramming. Remember, a function accepting two arguments is actually a function

accepting one argument and returning another function that accepts the second argu-

ment. Exploiting this property by supplying some, but not all, arguments to a function

is called partial application. In the last line, we use it twice. For better understanding:

differentiate (^ 2.0)

is equivalent to:

\x differentiate (\y y ^ 2.0) x

1.3.2.3 Type variables

Red roses, red sofa, red shoes, red car. The word �red� is not owned by roses, nor sofa,

nor shoes, nor car. �Red� is used with many words, and will be used with words that

don't yet exist. �Red� is a naturally general concept. Not as general as, say, �good�

16 The Funky Programming Language

or �bad�, but quite general.

Many words in programming � functions � are similarly general by nature. We,

humans, are easily capable of conceiving such words and if we were prevented from

de�ning them, we'd feel trapped. The language could not grow[7] as well.

Type variables are a way to de�ne such general functions in Funky. As a rule, all

concrete types, such as Char, Int, and so on, must start with an upper-case letter. On

the other hand, identi�ers starting with a lower-case letter stand for type variables (all

identi�ers in types must start with a letter).

Let's look at the simplest example:

func id : a -> a = \x x

Here's the de�nition of the id function from the standard library. The name id stands

for �identity�. It takes one argument and returns it back. Looking at its type, we can

see the lower-case a there. That is a type variable.

A type variable means that a function works for any type substituted for that

variable. Therefore, the id function actually has all kinds of types: Int -> Int, Float

-> Float, (Char -> Int) -> (Char -> Int), and so on. In fact, it has an in�nite

number of types. And, whenever we de�ne a new type, it works with that one, too.

Note, though, that all occurences of the type variable must be replaced by the same

type. The id function does not have the type Int -> Char, or anything similar.

Type variables introduce a lot of expressive power. Let's examine a few more general

functions from the standard library.

func let : a -> (a -> b) -> b = \x \f f x

Here's the let function. It takes a value and a function accepting that value and simply

returns what the function returns.

func if : Bool -> a -> a -> a =

\bool \then \else

switch bool

case true then

case false else

The body of if contains the switch/case structure, which we haven't discussed yet,

but notice the type. It accepts a Bool and two values of any, but the same, type and

returns one of them.

1.3 Functions 17

Here's an interesting function from the standard library:

func flip : (a -> b -> c) -> b -> a -> c =

\f \x \y

f y x

What flip does is it takes a function of (at least) two arguments and swaps them �

the second argument becomes the �rst and the �rst becomes the second. For example:

(flip (-)) 3 5 # results in 2, because 5 - 3 = 2

One of the most useful general functions is . � function composition.

(f . g) x = f (g x)

func (.) : (b -> c) -> (a -> b) -> a -> c =

\f \g \x

f (g x)

It's especially useful when applied partially:

map ((* 2) . (+ 1)) [1, 2, 3] # => [4, 6, 8]

Function composition operator has a wide-spread application in functional program-

ming.

1.3.2.4 Higher-order types

Just as some functions happily operate on many types, some types are more general,

too. A good example of such a type is a list. We can have a list of integers, a list of

characters (a string, in fact), a list of apples, or a shopping list. We'll learn how to

create such types later, here's how we use them.

Types that can be parametrized by other types are called higher-order types. Each

high-order type has a speci�c number of type arguments, partial application doesn't

work here. For example, the List type from the standard library takes one type argu-

ment, while the Dict type (a key-value storage) takes two � one for keys, one for values.

Here's how it looks like in code:

func some-numbers : List Int = [1, 2, 3, 4, 5, 6, 7]

The function some-numbers is a constant of type List Int, which is a list of integers.

Here's a list constant for any type, the empty list from the standard library:

func empty : List a = []

18 The Funky Programming Language

The function empty is not de�ned this way in the standard library. We'll see how it's

de�ned in the section about unions.

func sum : List Int -> Int =

\numbers

if (empty? numbers)

0;

first numbers + sum (rest numbers)

Here's a recursive function sum that takes a list of integers and adds them up. It uses

several list functions from the standard library, here are their types (we'll omit the

bodies this time):

func empty? : List a -> Bool # checks if a list is empty

func first : List a -> a # the first element in a list

func rest : List a -> List a # the list without its first element

Type variables cannot have arguments, so something like m a -> (a -> m b) -> m b

is not a valid type (this is how Funky prevents generalization of monads...). Of course,

it's possible to substitute a higher-order type (with all of its arguments) for a type

variable, so id [1, 2, 3] works just �ne.

1.3.2.5 Type inference

Functional languages tend to lie in a sweet spot by being statically typed and thus safe,

yet avoiding verbosity by providing type inference � automatically deducing types of

variables and expressions.

Type inference is a non-trivial algorithmic task, especially when function over-

loading is supported, as it is in Funky. It's fairly easy to understand it on an intuitive

level, though.

In this short explanation, we will use the term �expression E can have a type A �,

meaning that A is one of the possible types of E .

If a variable expression x refers to a global function and there is a global de�nition of

x with type A , then x can have type A . If x refers to a variable bound by an abstraction,

then x can have type of that bound variable.

An application f x can have type B if f can have type A -> B and x can have

type A .

An abstraction \x expr can have type A -> B if x can have type A and expr can

have type B .

The switch/case structure will be discussed in the section about unions.

This description of type inference is not complete, but is su�cient for reasoning.

1.3 Functions 19

Sometimes, as will be discussed shortly in the section on ambiguity, type inference

algorithm can't uniquely infer types of all expressions. In such cases, the programmer

must manually supply type information in form of type annotations.

Any expression in Funky can be enriched with a type annotation using the : symbol:

<expression> : <type>

Everything to the left side of : is an expression and everything to the right of : is the

intended type. Parentheses are often required when type annotating expressions:

g . (f : Int -> Float)

map (\(x : Int) x * 2) [1, 2, 3, 4]

With in�x functions, the situation is more peculiar.

< : a -> a -> Bool

The : symbol gets parsed as the right argument to the < function, which is not what

we meant, and we get a compilation error. With in�x functions, we need to put the

name inside parentheses:

(<) : a -> a -> Bool

The type inference algorithm is implemented in the compiler. The source that helped

the most during the implementation was the paper �Algorithm W Step by Step�[2].

1.3.3 Function de�nition

Now, after describing function bodies and types in a great detail, it's time to put that

all together in actual, fully working, function de�nitions.

Here's the grammar:

<function> ::= func <simple-variable> = <expression>

Where's the type? Well, the simple variable right after the func must have a type

annotation.

Why choose this definition over a simple func <identifier> : <type> =

<expression>? For consistency regarding in�x functions. When we have an abstrac-

tion that binds an in�x variable and we want to type annotate it, we have to put

the variable name inside parentheses, like this: \((<) : a -> a -> Bool), otherwise,

the : symbol would be parsed as the right argument to the < function and we'd

get a compilation error.

20 The Funky Programming Language

The same now holds when de�ning in�x functions:

func < : Int -> Int -> Bool = ... # compilation error

func (<) : Int -> Int -> Bool = ... # OK

Functions can only be de�ned at the top level. Functions can't be de�ned inside other

functions, except by a use of the let function and often with a help of the fix com-

binator (�x-point combinator function for inline recursion, more on it later).

1.3.4 Overloading

For some reason, there are almost no functional languages with full support for function

overloading, otherwise known as ad-hoc polymorphism. With all its bene�ts, this is

a mysterious phenomenon. Haskell supports restricted form of overloading, through

the mechanism of type classes[9]. The Idris programming language supports function

overloading with the restriction that di�erent overloaded versions must be de�ned in

di�erent namespaces[3].

Funky supports nearly unrestricted function overloading. The word nearly is impor-

tant here: functions with colliding types are forbidden. The precise meaning of the

word colliding will be explained shortly.

To overload a function, we simply de�ne multiple functions with the same name:

func zero : Int = 0

func zero : Float = 0.0

Now, when we use the name zero in another function, compiler will automatically

select the right version to use, based on context:

5 + zero # the Int version is used

5.0 + zero # the Float version is used

1.3 Functions 21

Here's a more complex example:

map applies a function to all elements of a list

func map : (a -> b) -> List a -> List b =

\f

fold< ((::) . f) []

map applies a function to the potential content of a maybe

func map : (a -> b) -> Maybe a -> Maybe b =

\f \maybe

switch maybe

case nothing nothing

case just \x just (f x)

useless converts a list of maybe floats to a list of maybe ints

^ that's a useless comment

func useless : List (Maybe Float) -> List (Maybe Int) =

map (map int)

In the useless function, the �rst map occurence refers to the �rst version of map that

operates on lists. The second occurence, however, refers to the version operating on

maybe's. Compiler, with the help of type inference, easily �gures out the right version

to use.

1.3.4.1 Colliding types

Consider these two functions:

func repeat : a -> List a = \x x :: repeat x

func repeat : Int -> List Int = \x x :: repeat (x + 1)

A defective individual who created the second repeat function clearly has no idea what

the word �repeat� means. But that's not our concern. Here's the concern:

repeat 5

Which version of the function repeat should be selected? Both �t the context. Someone

might argue that the second version is clearly the right one, because it's more speci�c.

Alright, let's see how this intuition scales:

func repeat' : a -> List a = repeat

We've just created a �copy� of the repeat function called repeat'. Which version

should be selected in the body? The second version doesn't �t this time, so the answer

is clear: the �rst one.

22 The Funky Programming Language

Now, we can do this:

repeat' 5

And we get the �rst version of the repeat function do the job, instead of the second,

as someone might expect.

Confusion doesn't end here, though. Let's consider these two functions:

func weirdo : a -> List Int = \x [1, 2, 3]

func weirdo : Int -> List a = \x []

And say we have a sum function that adds up a list of integers. Which version of the

weirdo function should be selected here?

sum (weirdo 5)

Neither version can be said to be more speci�c, because both have to specialize their

type variable to �t the context.

What we've seen in the examples were functions with colliding types. Two types

are colliding if and only if we can substitute their type variables in such a way that

they end up being precisely the same type. In other words, types are colliding if there

exists a context of arguments/result type without any type variables (all arguments

and result type have concrete types), such that both types �t the context.

Funky avoids all of the confusion of colliding types by forbidding them. If we

attempt to de�ne two functions of the same name with colliding types, we get a com-

pilation error.

1.3.4.2 Ambiguity

Even though forbidding colliding types prevents vast majority of ambiguities, we're

still not entirely spared of them. Here's the (only kind of) way to still be ambiguous:

func f : Int -> Float = float

func f : Int -> String = string

func g : Float -> String = string

func g : String -> String = id

func h : Int -> String = g . f

No types are colliding here. Yet, there are two ways of selecting f and g for the body

of h. One is here: f : Int -> Float, g : Float -> String. And the other one is

here: f : Int -> String, g : String -> String. The place of ambiguity is hidden

in the tunnel of composition.

1.3 Functions 23

When this happens, we get a compilation error complaing about the ambiguity. To

�x the error, we must add some type annotations:

func h : Int -> String = g . (f : Int -> Float)

Ambiguities like this are very rare, though.

1.4 Records

Now that we've mastered de�ning and using functions, it's time to start creating our

own types. The simplest kind of type is a record � a compound data type. A record

is a single value that contains multiple values inside of it called �elds. The number,

names, and types of �elds are known beforehand, they are speci�ed in the record type

de�nition.

It's fascinating that such a simple concept as a record is so poorly implemented

in Haskell. Anyone familiar with Haskell knows exactly what it's about[6]. Function

name collisions force the users of Haskell to put records into separate modules, while

the poor accessing and updating mechanisms motivated the creation of a whole, huge,

Lens library[5].

Funky avoids the �rst problem by supporting function overloading and avoids the

second one by o�ering composable functions for accessing and updating record �elds.

Here's the grammar of record de�nitions:

<record> ::= record <type-name> <variables> = <fields>

<variables> ::= <nothing> | <variables> <type-variable>

<fields> ::= <nothing> | <simple-variable> | <fields> , <fields>

The simple variables standing for record �elds must have type annotations. The type

name, again, must start with an upper-case letter, while all the type variables must

start with a lower-case one.

Here's an example that shows all the things present in the general form:

record Pair a b = first : a, second : b

We can split the de�nition into multiple lines, trailing comma is allowed:

record Pair a b =

first : a,

second : b,

24 The Funky Programming Language

So, what happens when we de�ne a record and how do we use one? Let's consider a

more associable record:

record Person =

name : String,

age : Int,

Whenever we de�ne a record, Funky generates a set of functions for using the record. In

case of Person, Funky generates these �ve functions (bodies omited, they are internal

to the compiler/runtime):

func Person : String -> Int -> Person # constructor

func name : Person -> String # getter

func name : (String -> String) -> Person -> Person # updater

func age : Person -> Int # getter

func age : (Int -> Int) -> Person -> Person # updater

Funky generated a constructor, which simply takes a value for each �eld in order and

returns the record, and also generated a pair of overloaded functions per �eld � a getter

and an updater. A getter is very simple, it just takes the record and returns the value

of a �eld. Updater is more nuanced, though. It always takes this general form: a �eld

f of type A in a record R has an updater f : (A -> A) -> R -> R. The main reason

for this form is composability, which will be discussed shortly.

Here's what the updater does: it takes a function, takes a record, gets the current

value of the �eld, applies the function to that value, and returns a copy of the record

where the value of the �eld is replaced by the result of the function. In short, it maps

the �eld through the function. This is very useful � usually we want to update the

value of a �eld according to its previous value, not just set it to some �xed constant.

Here's an example usage (the IO here is not important, but real nonetheless):

func main : IO =

let (Person "Michal" 22) \me # constructs the record

println (name me); # Michal

println (string (age me)); # 22

let (age (+ 1) me) \me # cake day!

println (string (age me)); # 23

let (name (++ " �trba") me) \me # appends " �trba" to the name

println (name me); # Michal �trba

1.4 Records 25

let (name (const "Mi²o") me) \me # sets the name to "Mi²o"

println (name me); # Mi²o

done

The const function from the standard library on the third line from the bottom makes

a function that takes one argument and always returns "Mi²o". Its de�nition is simply:

\x \y x. It's the idiomatic way to set a �eld to a value independent from the previous

value.

For completeness, it's possible to de�ne a record with no �elds:

record Unit =

In such a case, we can drop the = sign:

record Unit

This record has a single possible value, obtained through the constructor with no

arguments: Unit. This is not particularly useful, but it's possible.

There's nothing more to records. However, there's a little more to know about how

we can use them � especially, how we can compose accessors (getters and updaters) to

get or update nested records and data structures.

1.4.1 Composing accessors

Notice how the right side (return type) of the type of an updater looks similar to its left

side (argument type) and precisely matches the left side of another suitable updater.

Similarly, the right side (return type) of one getter matches the left side (argument

type) of a suitable getter. This property of getters and updaters can be exploided for

composition. Let's de�ne two records:

record Point = x : Int, y : Int

record Segment =

start : Point,

end : Point,

The �elds of the Segment record are records themselves. Say we have a variable called

seg, which contains the value Segment (Point 1 2) (Point 3 4). We could access

the X coordinate of the starting point like this:

x (start seg)

26 The Funky Programming Language

And this is su�cient for many cases. However, imagine a scenario where instead of a

single segment we deal with a list of segments, let's call this list segs. Say we want to

map this list to a list of the X coordinates of the starting points of the segments. The

above method is no longer so convenient. Instead, we can compose the getters:

map (x . start) segs

How about updaters? Can we compose them as well? Say we want to increase the Y

coordinate of the end point of a segment by 4. We could do this:

end (\pt y (+ 4) pt) seg

Which can be shortened to:

end (y (+ 4)) seg

And that can be rearranged by composition:

(end . y) (+ 4) seg

Notice that updaters compose in the opposite order compared to getters.

The composition can, again, be used to update all segments in a list:

map ((end . y) (+ 4)) segs

Things go deeper, though. Notice, that the type of the map function resembles an

updater: (a -> b) -> List a -> List b. In fact, it works like an updater on a list.

Let's make one more record, which contains a list of segments:

record Plan = segments : List Segment

Using composition, we can easily update all segments in a plan and get the updated

plan:

(segments . map . start . y) (* 2) plan

I think this is pretty remarkable.

1.5 Unions

A boolean may be true or false, a list may be empty or not, a Peano integer may be

zero or a successor of another Peano integer, a tree may be empty or a node. Some

things are naturally represented by several alternative forms. The whole type is then

the union of all these forms.

1.5 Unions 27

In Funky, these types are de�ned using the union keyword. Here's the grammar:

<union> ::= union <type-name> <variables> = <alternatives>

<variables> ::= <nothing> | <variables> <type-variable>

<alternatives> ::= <nothing> |

<alternative> |

<alternatives> "|" <alternatives>

<alternative> ::= <prefix-identifier> <arguments> |

(<infix-identifier>) <arguments> |

<type> <infix-identifier> <type>

<arguments> ::= <nothing> | <arguments> <type>

The | symbol in the de�nition of <alternatives> is inside quotes to signify that it's

an actual symbol in the form and doesn't mark another alternative in the grammar.

Let's get into real examples.

union Bool = true | false

This is precisely how the Bool is actually de�ned in the standard library. Note, that

in Funky it's idiomatic to start the names of the alternatives with a lower-case letter

instead of upper-case, as is idiomatic in Haskell. This is because the union alternatives

are often used just as regular functions and this way they blend in much better.

union Peano = zero | succ Peano

Here's a de�nition of Peano integers, which are just natural numbers represented in a

unary notation. A Peano integer may be either zero, or a successor of another Peano

integer.

Whenever we de�ne a union, Funky automatically generates a set of functions for

constructing the alternative forms. In case of Peano, these particular functions are

generated (bodies are omited and internal to the compiler/runtime):

func zero : Peano

func succ : Peano -> Peano

Generally, Funky generates a constructor for each alternative � this function takes all

the arguments speci�ed by the alternative and returns the union in question.

28 The Funky Programming Language

Now we can construct Peano integers:

zero # 0

succ zero # 1

succ (succ zero) # 2

succ (succ (succ (succ (succ (succ zero))))) # 6

Let's take another example, the classical Maybe:

union Maybe a = nothing | just a

These functions get generated:

func nothing : Maybe a

func just : a -> Maybe a

Another classical example:

union List a = empty | elem a (List a)

Actually, that's not how it's de�ned in the standard library. The elem form is called

(::) there.

union List a = empty | (::) a (List a)

Or we can use the nice in�x form:

union List a = empty | a :: List a

These functions get generated by Funky:

func empty : List a

func (::) : a -> List a -> List a

And for completeness, yes, we can de�ne a union with no alternatives, and just as with

records, we can drop the = sign in such a case:

union Bottom

A union with no alternatives has precisely zero possible values. A function returning it

can never halt, and a function taking it as an argument can never be called. It's fairly

useless.

Now, we have records and we have unions, but why have both? Why not have them

merged, like Haskell does? After all, any record, such as:

record Person = name : String, age : Int

can be made into a union:

union Person = Person String Int

1.5 Unions 29

All that's missing are the accessor functions.

Haskell solves this by adding a special �record syntax� to data (union in Haskell),

which looks like this:

data Person = Person { name :: String, age :: Int }

The �record syntax� automatically generates all the needed accessor functions, and

everything is �ne. Why not take the same approach?

Three reasons.

First of all, anytime we de�ne a record this way, we need to repeat the name of the

record twice: once as the type name, the other time as the name of the constructor.

The second reason is that nothing prevents us to add more alternatives/construc-

tors. The accessor functions will simply crash if applied to the other alternatives. This

possibility makes no sense and has no use. A record has, logically, only one alternative.

And the last reason is that records are very useful. They might be a special case

of unions, but an extremely common one. Singling them out does no injustice to anyone.

1.5.1 Switch/case
Now, we know how to construct union values, so how do we get any information out

of them? The obvious thing that we'd like to do is to check the alternative, get the

arguments, and do something with them.

In the early conceptions of the Funky language, this task used to be accomplished

by, yet another, compiler generated function. At the time it was acceptable, because

the language featured anonymous records, so the �rst argument to the function was the

union and the second was an anonymous record, where each �eld represented one of

the union's alternatives. It wasn't very aestetic, though. The support for anonymous

records was eventually dropped and so had to be the abovementioned function.

The task of getting information out of a union was, of course, still needed, and so

a new, special switch/case structure was introduced.

<switch-expression> ::= switch <expression> <cases>

<cases> ::= <nothing> | <cases> <case>

<case> ::= case <simple-variable> <expression>

The structure starts with the switch keyword followed by an expression we want to

examine. The expression must evaluate to a value of a union type. It's followed by a

list of cases. Each case starts with the case keyword and is immediately followed by

the name of one of the union's alternatives. If the name is an in�x identi�er, it must

be enclosed in parentheses. The name is a simple variable, but must not have a type

annotation. The name of the alternative is followed by the case body, which must be

a function that takes all the alternative's arguments and returns some result. All case

bodies in a single switch must return a result of the same type.

30 The Funky Programming Language

All union's alternatives must be listed, each must be listed exactly once, and they

must be listed in the same order as they are mentioned in the union's de�nition. The

last condition might get dropped if it's shown that it brings some drawbacks, though

none have been observed so far.

Let's take a look at some examples.

let false \axiom-of-choice

switch axiom-of-choice

case true false

case false true

The above example manifests a disbelief in the axiom of choice. That's not important,

though. The whole expression evaluates to true, because axiom-of-choice is false

and the false case in the switch evaluates to true.

How about a union with arguments in alternatives? Here's a recursive function that

counts the length of a list:

func length : List a -> Int =

\list

switch list

case empty

0

case (::) \x \xs

1 + length xs

In the case the list is empty, zero is simply returned. In the other case, when the list

was formed using the (::) constructor, the case body is a function of two arguments.

Say, the list was constructed with this expression: 1 :: 2 :: empty, which can be

parenthesized like this: 1 :: (2 :: empty). The �rst argument to the (::) function

is 1 and the second argument is 2 :: empty. Thus, when evaluating the switch, the

case body of the (::) case gets passed the values used to construct the list, namely,

the x argument gets the value of 1 and the xs argument gets the value of 2 :: empty.

Note, that in the case, we can't put the :: identi�er in-between x and xs, that would

be nonsensical.

The case body of the (::) could've been written like this:

case (::)

const ((1 +) . length)

But that's a bit harder to read. What's important to realize, though, is that the case

body doesn't need to explicitly name the arguments, it just has to be a function that

�ts the context, expressed in any viable way.

1.5 Unions 31

Here's how we could make functions for Peano arithmetics:

union Peano = zero | succ Peano

func pred : Peano -> Peano =

\p

switch p

case zero

zero

case succ \p-1

p-1

func (+) : Peano -> Peano -> Peano =

\p \q

switch p

case zero

q

case succ \p-1

p-1 + succ q

func (-) : Peano -> Peano -> Peano =

\p \q

switch q

case zero

p

case succ \q-1

pred p - q-1

Similarly, we could de�ne *, /, and many other functions.

1.6 Aliases

Admittedly, aliases are the simplest type de�nition mechanism. They merely establish

a rule that one type name stands for another type, albeit possibly more complex one.

However, surprising typing power comes with recursive aliases, that is, aliases that refer

to themselves, which we, unfortunately, won't discuss.

The grammar for aliases is this:

<alias> ::= alias <type-name> <variables> = <type>

<variables> ::= <nothing> | <variables> <type-variable>

32 The Funky Programming Language

All type variables listed between the name and the = sign can be used in the type on

the right side.

The way to think about aliases is that whenever an alias is used in a type, it simply

gets replaced by the right side of the de�nition with all the type variables rightly

substituted.

The String type from the standard library is de�ned as an alias:

alias String = List Char

This choice may be retracted in the future and String may end up implemented

internally in a more e�cient manner.

1.6 Aliases 33

Chapter 2

Code that reads top to bottom

Imperative languages, which feature structured programming paradigm (blocks of code,

conditions, loops, etc.), have this incredibly useful property of vertical composability.

Structured, imperative code can be read top to bottom, blocks of code understood

independently of each other. Programmer scans the �rst part of the code, remembers

invariants it imposes, proceeds to the next part of the code, and so on. This way of

thinking comes very natural to Homo sapiens.

Functional languages tend to compose rather di�erently. A functional program,

being an expression, has to be understood arguments �rst, function application second,

which forms kind of an inside-out way of reading code. Unfortunately, this way is less

natural and more di�cult for humans. Functional languages compensate this de�cit by

introducing various syntactic features that make it possible to structure the code par-

tially vertically. Features like pattern matching, let bindings, where bindings, guards,

and Haskell's do notation all belong to this category. However, they don't solve the

problem fully, because none of them nests very well.

Funky has two features that make it possible to omit pattern matching, let bindings

built into the language, guards, or do notation, and still be able to write code that

composes vertically, nests very well, and in many respects, resembles imperative code,

yet is just a big, purely functional expression.

These two features are: trailing lambdas and the semicolon. In this chapter, we'll

discuss the full extent of impact of these two features. In the next chapter, we'll see

how these features scale to express intentions of side-e�ects, and allow constructing

new, powerful functions that transform programs in ways impossible in other languages

beknown to me.

Because seeing speci�c examples makes things easier to understand, we'll use list

generators as our modus operandi. The techniques presented here on lists are just

as well applicable to any substance suitable for vertical code. For example, the next

chapter uses the same techniques in the context of expressing side-e�ects.

35

2.1 If and let

Let's start with two most common code structuring primitives � if and let. In most

functional languages, these are built-in language constructs. Not in Funky. In Funky,

if and let are just regular functions from the standard library and we'll soon see advan-

tages of this approach. They're de�ned like this:

func if : Bool -> a -> a -> a =

\cond \then \else

switch cond

case true then

case false else

func let : a -> (a -> b) -> b =

\x \f

f x

Let's examine if �rst. We can use it as a short conditional expression, like the ternary

operator (b ? t : e) in C:

func string : Bool -> String = \bool if bool "true" "false"

That's simple.

Now, here comes the verticality. With the help of the semicolon, we can put the

whole else-branch under the if expression. This makes it possible, and aesthetically

pleasing, to put an arbitrarily large and vertical expression in place of the else-branch.

func fizzbuzz : Int -> String =

\number

if ((number % 15) == 0)

"fizzbuzz";

if ((number % 3) == 0)

"fizz";

if ((number % 5) == 0)

"buzz";

string number

Here's the infamous FizzBuzz problem. The then-branch of the �rst if is the string

"fizzbuzz". Notice, that we put a semicolon after "fizzbuzz". This causes the whole

36 Code that reads top to bottom

rest of the function take the role of the else-branch. The last line is the else-branch of the

last if and thus acts as a �catch-all� � gets returned when all the conditions above fail.

In Haskell, if expression is composed of three keywords: if b then t else e .

This, coupled with Haskell's whitespace semantics make it awkward to use the if expres-

sion for anything other than short conditional expressions. Use-cases like above are

instead handled by guards, or pattern-matching in other cases. The shortcoming of

these features, however, is that they can only be used at the top-level of a function,

and don't nest.

Funky's if function nests very well. In the previous example, each then-branch was

just a very simple short expression. That doesn't need to be the case. A then-branch

can just as well be an arbitrarily large, vertical expression. Here's how:

if condition (

then-branch

...

);

else-branch

...

We'll see concrete examples of this form later.

We can already see, though, that the if function in Funky can be used equally well

for binary branching, series of cases, or simple ternary expressions. There's no need for

guards.

Now we'll examine the let function. This function is di�erent from if, because it

doesn't exploit the semicolon in order to achieve code verticality, instead, it utilizes

the notion of a trailing lambda instead.

The let function is used to assign a value to a variable to be used later in the code.

For example:

let "me stay by your" \side

reverse side ++ " " ++ side

This expression evaluates to: "ruoy yb yats em me stay by your". What's really

happening here is an application of the let function with two arguments: "me stay by

your" and the function \side reverse side ++ " " ++ side. But, we can instead

think of it as a vertical composition of the two lines, where the �rst line assigns the

side variable, while the second line returns the result of the whole expression. This

kind of thinking is the key bene�t of code that reads top to bottom.

2.1 If and let 37

In general, this is how we use let:

let value \variable

next-code

...

The �reversed order� of the assignment (value �rst, variable second) may seem weird

at �rst, but takes no time getting used to.

If we want to assign multiple variables, we just stack them up:

let (filter prime? (count 2)) \primes

let (take-while (< 100) primes) \small-primes

let (length small-primes) \num-small-primes

"there are " ++ string num-small-primes ++ " small primes (< 100)"

This expression evaluates to: "there are 25 small primes (< 100)", which is true.

The count function returns an in�nite list of integers starting from the given number

and increasing by one.

Each variable introduced by let can refer to all variables introduced above it, but it

can't refer to itself � it's not possible to straightforwardly de�ne a variable recursively.

This can be �xed with the fix function, and we'll talk about it more later in this

chapter.

2.2 Aiding verticality

There are two kinds of functions that help us write code that reads top to bottom. The

�rst kind exploits the semicolon, while the second kind makes use of trailing lambdas.

We'll call these functions vertical functions . If and let are prime examples of the two

kinds of vertical functions.

The �rst kind is: semicolon kind vertical functions. They are characterized by their

signature, which has this general form (V is an arbitrary type):

... -> V -> V

They take some arguments, these arguments are put before the semicolon, then they

take a �continuation� after the semicolon, and they return some transformation of the

continuation based on the arguments. �If� is an example of a semicolon kind vertical

function.

38 Code that reads top to bottom

The second kind is: trailing lambda kind vertical functions. They are also charac-

terized by their signature, this is their general form (V is, again, an arbitrary type):

... -> (... -> V) -> V

The signature is similar to the �rst kind of vertical functions, except the �continuation�

takes some arguments, which get supplied by the vertical function. Semicolon is no

longer needed as the trailing lambda does the job. �Let� is an example of a trailing

lambda kind vertical function.

Most functions are not vertical, nor they ought to be. Instead, authors of libraries

should carefully craft a set of vertical functions for use-cases when it makes sense. Some

libraries need not provide any vertical functions at all, while others are built around

them (such as libraries for expressing side-e�ects).

2.3 Lists as generators

Let's recall the de�nition of the standard List type:

union List a = empty | a :: (List a)

The type of the (::) constructor is a -> List a -> List a. However unintuitive it

may seem at �rst, this type perfectly �ts the semicolon kind vertical function schema.

Being in�x makes it hard to use vertically, though, so let's give it an alternative name:

func yield : a -> List a -> List a = (::)

The name �yield� is intentionally reminiscent of Python's generator syntax. Generators

in Python are basically lazy lists in an otherwise strict and imperative language. Since

lists in Funky are lazy anyway, we can treat them just like generators in Python.

Now that we have yield, we can start constructing lists vertically:

func counting-on-fingers : List Int =

yield 1;

yield 2;

yield 3;

yield 4;

yield 5;

empty

The count function counts natural numbers starting from a given number. It simply

takes an integer n and returns an in�nite list [n, n + 1, n + 2, ...].

2.3 Lists as generators 39

Here's how it looks vertical:

func count : Int -> List Int =

\from

yield from;

count (from + 1)

It yields the �rst number and recursively continues counting from the next integer,

which produces the desired result.

A slightly less trivial function is range, which is similar to count, except it also

takes the upper-bound as an argument. It takes two numbers � from and to � and

returns a �nite list [from, from + 1, ..., to - 1, to].

func range : Int -> Int -> List Int =

\from \to

if (from > to)

empty;

yield from;

range (from + 1) to

A vertical use of if is involved as well, which shows how vertical functions can be

(usually, but not always) seamlessly combined.

Here's another relatively trivial function, which duplicates each element in a list,

producing a new, twice as long, list.

func dup-elements : List a -> List a =

\list

if (empty? list)

empty;

let (first list) \x

yield x;

yield x;

dup-elements (rest list)

For example, dup-elements [1, 2, 3] returns [1, 1, 2, 2, 3, 3]. In this func-

tion, we see a seamless simultaneous use of if, let, and yield.

The Collatz conjecture says that if we take any natural number and repeatedly

apply a simple procedure to it, which will be described immediately, we'll eventually

reach the number one. The procedure is as follows: if the number is even, divide it by

40 Code that reads top to bottom

2, otherwise multiply it by 3 and add 1. For example, let's start with 6. It's even, so

we need to divide it by 2 and we get 3. That's odd, so the next number is 3 �3+1= 10.

Next is 5, then 16, then 8, 4, 2, and �nally 1.

Here's a function that takes a number and returns a list containing successive

applications of the procedure described in the Collatz conjecture, including the �rst

number and the �nal 1:

func collatz : Int -> List Int =

\number

yield number;

if (number == 1)

empty; # reached one, we're done

if ((number % 2) == 0)

(collatz (number / 2)); # divide by 2

collatz (1 + number * 3) # multiply by 3 and add 1

For example, collatz 6 returns [6, 3, 10, 5, 16, 8, 4, 2, 1]. Starting from

another number, collatz 7 returns [7, 22, 11, 34, 17, 52, 26, 13, 40, 20,

10, 5, 16, 8, 4, 2, 1].

Notice how we use if to eliminate cases one by one. This makes it very readable

and understandable.

As a last example in this section, we'll implement the merge sort algorithm. The

algorithm works in the following manner: if we've got a list of length one or less, return

the list; otherwise, divide it into two halves, recursively sort those, and �nally merge

them using the merge function. Merge function takes two sorted lists and merges them

into one sorted list by sequentially picking the next smallest element from their fronts.

For simplicity, we'll sort a list of integers. General sorting would simply add one more

argument: the comparison function.

Here's a nice vertical implementation of the merge function:

func merge : List Int -> List Int -> List Int =

\left \right

if (empty? left)

right;

if (empty? right)

left;

if (first left <= first right) (

yield (first left);

2.3 Lists as generators 41

merge (rest left) right

);

yield (first right);

merge left (rest right)

For example, merge [1, 3, 5] [2, 5, 6] returns [1, 2, 3, 4, 5, 6]. Now we

put the merge function to use in the complete merge sort algorithm:

func merge-sort : List Int -> List Int =

\numbers

if (length numbers <= 1)

numbers;

let (length numbers / 2) \half

let (take half numbers) \left

let (drop half numbers) \right

merge (merge-sort left) (merge-sort right)

Here we use both if and a series of let assignments, once again, demostrating the vertical

composability.

2.4 Function when

Sometimes it's desirable conditionally �execute� one piece of vertical code and then

have it followed by another piece of code that is to be �executed� unconditionally, no

matter what. The word �execution� is rightfuly put inside quotes here: vertical code

intentionally looks imperative, but in reality it's just a declarative way of constructing

a data structure, or composing functions.

As a primitive example, say we want to make a function that given an integer

returns a singleton list containing just that integer if the integer is even, or it returns

a list containing that integer prepended by the previous integer if the integer is odd.

We might write such function like this:

func useless : Int -> List Int =

\number

if ((number % 2) == 1)

[number - 1, number];

[number]

42 Code that reads top to bottom

Using the yield function, we can rewrite the function as follows, which is longer, but

serves our purpose better:

func useless : Int -> List Int =

\number

if ((number % 2) == 1) (

yield (number - 1);

yield number;

empty

);

yield number;

empty

We see, that in both cases, we want to yield the given number, but in the case that the

number is odd, we also want to yield the previous number. There's a function called

when in the standard library for these situations. Here's the de�nition:

func when : Bool -> (a -> a) -> a -> a =

\cond \then \next

if cond (then next) next

If the condition is true, when evaluates to then next (or then; next for better under-

standing), while in the other case it evaluates to just next.

In our case of the useless function, we want to evaluate to:

yield (number - 1);

yield number;

empty

in the case the condition is true, and otherwise we just want to evaluate to:

yield number;

empty

2.4 Function when 43

Clearly then, we can make good use of when:

func useless : Int -> List Int =

\number

when ((number % 2) == 1)

(yield (number - 1));

yield number;

empty

The code is now clearer, shorter, and no longer repetitive.

Another good example is the filter function, which takes a predicate and a list

and returns the same list with all the elements that don't pass the predicate left out.

Here's a common way to de�ne it:

func filter : (a -> Bool) -> List a -> List a =

\p \list

if (empty? list)

empty;

if (p (first list)) (

yield (first list);

filter p (rest list)

);

filter p (rest list)

As we can see, both branches in the second if expression end with the same line. This

can be improved with the when function:

func filter : (a -> Bool) -> List a -> List a =

\p \list

if (empty? list)

empty;

when (p (first list))

(yield (first list));

filter p (rest list)

Now we've ended up with a very clear and concise filter implementation.

44 Code that reads top to bottom

How about nesting more �commands� inside the body of when? It's not so straight-

forward: this doesn't type check, because yield expects a list as its second argument,

not a List a -> List a function:

when true (

yield 1; # => List a -> List a, i.e. expected arg is List a

yield 2 # => List a -> List a, cannot be argument to above

);

yield 3;

yield 4;

empty

The problem is solvable, and the solution �nds wide use in many other situations. The

trick is to include an explicit argument marking the code after the when function, like

this:

when true (

\next

yield 1;

yield 2;

next

);

yield 3;

yield 4;

done

Another solution to the problem would be to utilize function composition instead of

the semicolon:

when true

(yield 1 . yield 2);

yield 3;

yield 4;

done

This solution is �ne for yielding, however, it doesn't scale well for certain trailing

lambda kind vertical functions, as we'll see in the next chapter.

2.5 Inline recursion with fix

Another thing that's sometimes desirable to do inside a function is to spin up a recur-

sive computation that needs to remember more values than what's provided in the

function's arguments, which prevents making the function straightforwardly recursive.

2.5 Inline recursion with fix 45

A prime example of this phenomenon is the list reverse function. The idea is, that

we start with an empty list and we successively prepend elements of the input list to it

until we drain the input list, at which point we get the input list reversed. The recursive

computation here needs to remember two lists: the accumulated reversed pre�x of the

input list, and the remaining su�x of the input list. However, the reverse function itself

only takes one argument and thus simple recursion is out of the question.

The �rst solution is to de�ne a helper function with the accumulator:

func reverse : List a -> List a = reverse-helper []

func reverse-helper : List a -> List a -> List a =

\left \right # reversed prefix, remaining suffix

if (empty? right)

left;

reverse-helper (first right :: left) (rest right)

This works, but isn't nice. The reverse-helper function has only a single use: to

be called by the reverse function. That's not enough reason to make it a top-level

function.

What we'd really like to do is to somehowwire the reverse-helper recursion inside

reverse. That's where the fix function comes in. The name ��x� stands for ��x-point

combinator�, which is notoriously di�cult to understand how it really works. We'll

explain what fix does in a very understandable and useful way � understanding why

it does that is another challenge that we won't attempt here. Although, in the end,

it's not actually that hard. Here's the de�nition of fix:

func fix : (a -> a) -> a = \f f (fix f)

As we've said, we'll make no attempts at understanding this de�nition. Instead, here's

how we'll think about the fix function. Whenever we write:

fix \f expression

we think of it as a function de�ned by this formula:

f = expression

The trick is that the identi�er f may occur in expression , which makes it possible to

de�ne f recursively.

46 Code that reads top to bottom

For example, here's the factorial function expressed using the fix combinator:

fix \fac \n

if (n <= 0)

1;

n * fac (n - 1)

In this case, the fix functions gets specialized to this type:

((Int -> Int) -> Int -> Int) -> Int -> Int

And since we're passing the argument of type (Int -> Int) -> Int -> Int, the

type of the whole expression is Int -> Int. This whole expression can be put into

parentheses and called as a function:

(fix \fac \n

if (n <= 0)

1;

n * fac (n - 1)) 5

The result of the above expression is 120, which is the 5!. This works, but is not partic-

ularly aestetically pleasing. The whole recursive expression needs to be in parentheses

and the argument comes at the end which makes it easily missed when skimming over

the code.

Instead, we can utilize the |> function from the standard library to �insert� an

argument from the left side. The |> function is de�ned like this (there a few more

overloaded versions in the standard library):

func (|>) : a -> (a -> b) -> b = \x \f f x

Notice that its type and de�nition are identical the those of let. The main di�erence

is that |> is in�x and used in di�erent situations.

Utilizing |>, we can rewrite the above expression as follows:

5 |> fix \fac \n

if (n <= 0)

1;

n * fac (n - 1)

The result is, once again, 120, but the expression is more readable.

2.5 Inline recursion with fix 47

With the acquired knowledge, let's free reverse from its extra helper function:

func reverse : List a -> List a =

[] |> fix \loop \left \right

if (empty? right)

left;

loop (first right :: left) (rest right)

Using the fix combinator to express loops and inline recursion may seem a little

awkward at �rst, but getting used to it is not a big deal.

Let's take a few more examples. Here's a function that lists all natural numbers,

including 0:

func naturals : List Int =

0 |> fix \loop \n

yield n;

loop (n + 1)

Given a prime? function, which takes an integer, checks whether it's a prime or not,

and returns a boolean accordingly, here's a function that lists all primes:

func primes : List Int =

2 |> fix \loop \n

when (prime? n)

(yield n);

loop (n + 1)

And here's a linear-time function that lists the Fibonacci sequence:

func fibonacci : List Int =

1 |> 0 |> fix \loop \x \y

yield x;

loop y (x + y)

Here we pass two arguments to the loop. Because |> passes arguments from the left

side, we need to pass them in a seemingly reverse order. This is another thing that

might seem initially awkward when using fix.

2.6 �Non-determinism�

The idea of non-determinism in programming comes with a little misleading name �

computers are deterministic, after all. It is, however, possible to express a determin-

istic program in the �language of non-determinism�. This approach gives an incredible

expressive power for certain kinds of problems.

48 Code that reads top to bottom

Here's the core idea of non-determinism we're going to use: there's a list of options

� pick one of them (randomly/non-deterministically), and produce some results based

on the choice. What are all the possible results we can produce?

For example, here's the list of options: [1, 2, 3, 4, 5]. We pick one of them, and

we produce a number one greater. So, in case we picked 3, we produce 4. What are

all the possible results? They're [2, 3, 4, 5, 6]. Here's another example: we'll use

the same list of options. We pick one of them, and if we picked an odd one, we don't

produce anything. If we, however, picked an even one, we produce it as it is. This time,

all the possible results are these: [2, 4].

One of the most beautiful problems demostrating the power of non-determinism is

the task of �nding all permutations of a list. Using the language of non-determinism,

we can express the solution very clearly. In case we've got an empty list, we produce

one permutation: that empty list. Otherwise, a pick one of the permutations of the rest

of the list (the list without its �rst element). Then we pick a place in the permutation

and insert the �rst element of the original list there. Then we produce what we've

got. Clearly, all the possible results produced by this function are precisely all the

permutations of the original list. As we'll see, the actual expression in code is no more

complicated than what we've just described.

To express non-determinism, we need to make a pick function, which �picks� from

the a list of options and accumulates all the produced results. Here's how it looks like:

func pick : List a -> (a -> List b) -> List b =

\list \f

if (empty? list)

[];

f (first list) ++ pick (rest list) f

The pick function simply runs each element of the list through the given function. The

function returns a list of produced results per element. Finally, pick concatenates all

the obtained results into the �nal list.

Conveniently, pick is a trailing lambda kind vertical function. And that's exactly

how we're going to use it.

Here's the �rst mentioned example:

pick [1, 2, 3, 4, 5] \x

yield (x + 1);

empty

The above expression evaluates, as expected, to [2, 3, 4, 5, 6]. Here's the next

mentioned example:

2.6 �Non-determinism� 49

pick [1, 2, 3, 4, 5] \x

when ((x % 2) == 0)

(yield x);

empty

In this example, we've vertically combined the pick function and the when function in

a seamless manner. The result is [2, 4].

In fact, the filter function can be implemented using pick:

func filter : (a -> Bool) -> List a -> List a =

\p \list

pick list \x

when (p x)

(yield x);

empty

And the map function, too:

func map : (a -> b) -> List a -> List b =

\f \list

pick list \x

yield (f x);

empty

This, however, is not the forte of non-determinism. To see its full power, let's implement

the permutations.

The �rst function that we need will be called insert. This function takes an element

and a list and returns all possible �insertions� of the element into that list. Here's an

example: insert 3 [1, 2] evaluates to [[3, 1, 2], [1, 3, 2], [1, 2, 3]]. The

original list remained in order, all we did is we inserted the extra element in all possible

places. So, here's how we implement insert:

func insert : a -> List a -> List (List a) =

\x \list

yield (x :: list);

if (empty? list) empty;

pick (insert x (rest list)) \tail

yield (first list :: tail);

empty

50 Code that reads top to bottom

First, we need to produce the case when we insert the element at the beginning of the

list. Then, if the list is actually empty, we don't want to do anything more. If it's not

empty, we non-deterministically pick one of the ways we can insert the element into

the rest of the list and we produce all these possibilities, except we also prepend the

missing �rst element of the original list.

Now it's time to make the permutations function. This function gets a list and

returns a list of all permutations of the list. For example: permutations [1, 2, 3]

should return [[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3,

2, 1]].

Here's how we implement permutations with the help of insert:

func permutations : List a -> List (List a) =

\list

if (empty? list)

(yield []; empty);

pick (permutations (rest list)) \tail

pick (insert (first list) tail) \perm

yield perm;

empty

First, if we're dealing with an empty list, we just produce one result: that empty list.

Otherwise, we pick one of the permutations of the rest of the list. Then we pick one

of the possible insertions of the �rst element to that permutation and we produce the

result. That's all.

The idea of non-determinism is not suitable for all problems. The situations where it

shines usually involve exploring some space of possibilities. In those situations, however,

the expressiveness of non-determinism shows to be mesmerizing.

2.6 �Non-determinism� 51

Chapter 3
Side-e�ects and interpreters

Pure functional languages de�ne functions that transform data structures. It's data in,

data out. At no point is there a place for an action, a side-e�ect. However, we need to

do side-e�ects or else our programs are just useless declarations of computation.

The topic of side-e�ects has been one of the most discussed in the �eld of func-

tional languages. Many languages, such as LISP solve the problem of side-e�ects by

introducing impurity. In pure and lazy languages, such as Funky, introduction of side-

e�ects usually requires some kind of trickery proven to not be too harmful. Two most

prominent techniques for managing side-e�ects in pure functional programs happen to

be monads and uniqueness types. Monads[10] are used by Haskell, Idris, and others,

while uniqueness types[8] are used by languages such as Clean.

Both monads and uniqueness types are approching the problem of side-effects

by attempting to solve a rather di�erent problem: how to make sure that a certain

sequence of expressions gets evaluated in a certain order? In a lazy languages, such

thing is not straightforwardly guaranteed by the runtime and instead has to be made

guaranteed by some kind of data structure or a limitation imposed by the type system.

Monads make the evaluation order guaranteed by composing atomic monadic

actions in such a way that the next monadic action cannot be evaluated before the

previous one, because it requires the result of the previous action for its evaluation.

Uniqueness types make the same guarantee by imposing a type system limitation,

that at one point, there may only exist a single reference to a value of a uniqueness

type. This guarantees that all function applied to a value of a uniqueness type must

be evaluated in a predictable sequential order.

Once the guarantee of evaluation order is established, runtime may insert side-

e�ecting operations to evaluations of certain runtime-supported functions. The lan-

guage gains side-e�ects while keeping all the bene�ts of purity and laziness.

We believe that both monads and uniqueness types are tackling the wrong problem.

We don't believe that guaranteeing the evaluation order is the key to solving side-e�ects

in pure and lazy functional languages.

In this chapter, we'll explore Funky's approach to side-e�ects. The approach is very

comprehensible: it doesn't introduce any concepts to the language, aside from those

already discussed. Of course, enforcement of evaluation order sometimes emerges, but

53

it's more of an accident, rather than an intention. The approach is also extremely

�exible: it allows performing arbitrary transformations of the whole program � for

example, encoding the whole I/O with AES is just one function application away. The

approach taken by Funky is so obvious, that it's quite curious that no other language,

to our knowledge, has adopted it before.

3.1 Interpreters

A program in Funky is just a value. There's no built-in type for side-e�ects, like IO

in Haskell, in fact, nothing regarding side-e�ects is built-in. Everything is a value of

either built-in or user-created types.

The thing is, that a value may become a subject of interpretation. A value of a

particular type may be viewed as recipe for side-e�ects. Then, a specialized program,

an interpreter , takes this value, examines it, and actually executes the side-e�ects

described by the value. This is the approach taken by Funky.

At this day, Funky's compiler and runtime is written in the Go programming

language. Since interpreters interact with the runtime, they too have to be written in

Go. In future, this may be expanded to other languages as well (if so, it will be possible

to write interpreters in C++, for example).

This section doesn't assume much familiarity with Go, but it assumes familiarity

with imperative programming and ability to intuitively understand programs written

in an unfamiliar, but not alien programming language.

Now we'll walk through the tools Funky provides to create interpreters. An inter-

preter is usually a simple program. The �rst thing that an interpreter does is it calls

the funky.Run function from the "github.com/faiface/funky" package. Here's how

it looks in Go:

package main

import "github.com/faiface/funky"

func main() {

program := funky.Run("main")

}

This program wouldn't compile, yet, because the program variable is unused, and Go

disallows unused variables.

The funky.Run function does a lot of things. It's the powerhouse of any Funky

interpreter. It reads command-line �ags, loads Funky �les supplied in command-line

arguments, parses them, type-checks them, and compiles them into the internal runtime

54 Side-effects and interpreters

representation. If an error occurs during any of the mentioned steps, funky.Run reports

the error to the standard error output and terminates the program.

As we can see, funky.Run takes one argument. This argument is the name of the

function we'd like to interpret in our interpreter. It's usually called main, but doesn't

have to be. There mustn't be multiple overloaded versions of this function, only one is

allowed, funky.Run will report an error and terminate otherwise.

The value returned from funky.Run is of type *runtime.Value (the * symbol

means pointer), which is a type from the "github.com/faiface/funky/runtime"

package. This value is the compiled representation of the main function from the source

�les supplied on the command-line, that we can interact with.

The *runtime.Value type has these methods (bodies omited):

func (*runtime.Value) Char() rune

func (*runtime.Value) Int() *big.Int

func (*runtime.Value) Float() float64

func (*runtime.Value) Field(i int) *runtime.Value

func (*runtime.Value) Alternative() int

func (*runtime.Value) Apply(arg *runtime.Value) *runtime.Value

// these three are implemented using the above six

func (*runtime.Value) Bool() bool

func (*runtime.Value) List() []*runtime.Value

func (*runtime.Value) String() string

The syntax of method in Go starts with the func keyword, which is followed by the

receiver argument (the value before the �dot� in a method call), then we see the method

name followed by the list of arguments in parentheses, and �nally the return type.

All of the above method are used to interact with a runtime value. Each method

only works with certain types of values. If a method is used with a wrong type of

value, it simply panics (crashes the program). However, Funky's type system always

makes sure that types are used consistently in a program, and so the programmer of

an interpreter can, with absolute certainty, expect the types of runtime values without

any runtime examination. Runtime examination of types is not possible anyway, not

yet, at least.

The �rst three methods � Char, Int, and Float � return the actual value of a

runtime value of one of the primitive, built-in, types. Note, that the return type of Int

is *big.Int, an arbitrary precision integer, and not just int, which would be either

32-bit or 64-bit integer.

3.1 Interpreters 55

The next method � Field � is used to retrieve record and union �elds. Of course,

if the runtime value is not a record or a union, Field panics. If the runtime value

is a record, Field returns the i-th �eld of the record, in the order mentioned in the

record's de�nition, starting from 0. If the runtime value is a union, Field returns the

i-th argument in the current union's alternative, again, indexing from 0.

The Alternative method works only on unions, and returns the number of the

alternative the union value has. For example, in union List a = empty | a ::

(List a), empty is the alternative number 0, and :: is the alternative number 1.

And �nally, the Apply method works on functions, it takes another runtime value

and passes it as an argument to the function, returning the result.

There are three more methods, but they are simply implemented using the above

six, and it's clear what they do.

We also need to be able to create new runtime values, mostly for passing them as

arguments to functions. The "github.com/faiface/funky/runtime" package o�ers

these functions for that purpose:

func MkChar(c rune) *runtime.Value

func MkInt(i *big.Int) *runtime.Value

func MkFloat(f float64) *runtime.Value

func MkRecord(fields ...*runtime.Value) *runtime.Value

func MkUnion(alt int, fields ...*runtime.Value) *runtime.Value

// these three are, again, implemented using the above five

func MkBool(b bool) *runtime.Value

func MkList(elems ...*runtime.Value) *runtime.Value

func MkString(s string) *runtime.Value

The three dots (...) are Go's syntax for variadic arguments.

As we might have noticed, there's no MkFunc function, an interpreter can't create

functions on it's own, just values. There a few reasons, �rst, it would be rather com-

plicated. It would also require some kind of runtime compilation, which would be

expensive. Overall, the costs and trouble associated with adding this feature largely

outweights the marginal bene�ts it brings.

With the acquired knowledge, we are ready to built a simple interpreter. Our �rst

interpreter will interpret a main function of type Int -> Int, very simple. It wil simply

read a number from the standard input, pass it to the function, and print the result

back out.

56 Side-effects and interpreters

Here's the code of the interpreter, let's call it intfunc:

// intfunc.go

package main

import (

"fmt"

"math/big"

"github.com/faiface/funky"

"github.com/faiface/funky/runtime"

)

func main() {

program := funky.Run("main")

number := new(big.Int)

fmt.Scan(number)

result := program.Apply(runtime.MkInt(number))

fmt.Println(result.Int())

}

Now we compile the interpreter to an executable called intfunc and we're ready to

use it. Here's the Funky program we're going to test it on, the classic factorial function:

factorial.fn

func n! : Int -> Int =

\n

if (n <= 0)

1;

n * n! (n - 1)

func main : Int -> Int = n!

Since Funky has no support for packages and imports yet, we need to include all the

�les of the standard library in the command-line arguments to the interpreter. Say all

the �les of the standard library are in the stdlib directory.

3.1 Interpreters 57

Now, we can run the program (user input is emphasized, $ signifies the shell

prompt):

$ intfunc stdlib/*.fn factorial.fn

5

120

It worked!

This gave us an idea of interpreters, how they work and interact with Funky's

runtime.

3.2 Interactive command-line programs

Now we'll move on to implement a more serious, albeit still very simple, interpreter for

interactive command-line programs. Then we'll see how we can put the techniques for

vertical code, described in the previous chapter, to use when writing programs for this

interpreter. All the ideas described in this section are generally applicable in virtually

any other interpreter.

The capabilities of the interpreter we'll be studying in this section are rather simple:

printing characters to the standard output, reading characters from the standard input,

and ending the program. The data structure to be interpreted by this interpreter is

strikingly simple. We'll call it IO:

union IO = done | putc Char IO | getc (Char -> IO)

It's a union with three alternatives. The �rst one signi�es that the program is �nished

and nothing more is to be done. The second one has two arguments. The �rst argument

is a character to be printed to the standard output. The second argument is what's to

be done next, it's the rest of the program. The third alternatives has a single argument:

a function. This function takes a character from the standard input and returns the

rest of the program.

This simple union is capable of representing all possible command-line programs of

this kind. All of them somehow alternative between printing and reading characters,

until they eventually �nish.

At the �rst sight, it might seem that expressing actual command-line programs

using this data structure will be hard. The opposite is true. Function putc is a semi-

colon kind vertical function. Likewise, getc is a trailing lambda kind vertical function.

These can be combined into more complex, more expressive functions, like print, scan,

and a lot more, as we'll see later in this chapter.

58 Side-effects and interpreters

Before we dive into programming command-line programs, we need the interpreter.

Here it is:

package main

import (

"bufio"

"io"

"os"

"github.com/faiface/funky"

"github.com/faiface/funky/runtime"

)

func main() {

program := funky.Run("main")

in, out := bufio.NewReader(os.Stdin), bufio.NewWriter(os.Stdout)

defer out.Flush()

loop:

for {

switch program.Alternative() {

case 0: // done

break loop

case 1: // putc

out.WriteRune(program.Field(0).Char())

program = program.Field(1)

case 2: // getc

out.Flush()

r, _, err := in.ReadRune()

if err == io.EOF {

break loop

}

program = program.Field(0).Apply(runtime.MkChar(r))

}

}

}

The real interpreter for the IO data structure in the Funky's repository, called funkycmd

(located at interpreters/funkycmd/ in the Funky's repository tree), is nearly iden-

3.2 Interactive command-line programs 59

tical to this one, except it also adds proper error handling of edge conditions. We've

omited those here, for simplicity.

Here's how the interpreter functions. First it sets up bu�ered input and output,

for better performance. Then it enters a loop, where in each iteration it either prints

a character, reads a character, or ends the program. Inside the loop, we check the

program's alternative, so we know what to do.

If the alternative is 0, we end the program.

If the alternative is 1, we're supposed to print a character in the �rst argument of

the putc alternative. We retrieve the �eld using the Field method and get its value

using the Char method. Then we print it. After printing the character, we move on to

the rest of the program, which is in the second argument of the putc alternative.

And lastly, if the alternative is 2, we're supposed to read a character. First, we

�ush all that we've bu�ered for printing, user needs to see it now. Then, we read the

character. If we've encountered EOF, we abruptly end the program. Otherwise, we

pass the character as an argument to the function in the �rst and only argument of

the getc alternative, and we continue executing the result of this application.

Let's see if our interpreter works.

test.fn

union IO = done | putc Char IO | getc (Char -> IO)

func main : IO =

putc 'a';

putc 'b';

putc 'c';

putc '\n';

done

And we run it:

$ funkycmd stdlib/*.fn test.fn

abc

$

The program printed abc, including a newline, just as expected.

From now on, we'll assume that the de�nition of the IO data structure is in a �le

inside stdlib/funkycmd directory and so we'll be running our programs using this

command:

60 Side-effects and interpreters

$ funkycmd stdlib/*.fn stdlib/funkycmd/*.fn test.fn

Also, from now on, we'll not mention this command, and we'll simply show the inter-

action that follows.

Here's a �cat� program, a program that copies the standard input to the standard

output:

func main : IO =

getc \c

putc c;

main

It's an in�nite recursive de�nition of the IO data structure, but we can just think of

it as a recursive function that reads a character, prints it back, and repeats over and

over. Here's an example of its running:

hello, cat!

hello, cat!

do you cat?

do you cat?

you do cat!

you do cat!

^D

At the end, user pressed the Ctrl+D combination which causes the end of �le and so

the program stopped.

Nothing much interesting can be achieved in a reasonable manner using just putc,

getc, and done. In the following sections, we'll explore all kinds of ways we can abstract

high-level functions on top of these basic three. And it's going to be much more

powerful than monads, uniqueness types, or imperative languages.

3.2.1 print, println, scanln

The putc function prints a character. It doesn't technically print it, the interpreter

does, but we can think about it that way. A string is a list of characters. It should

be easy to write a recursive function that transforms a string into a series of putc

applications. Additionally, we'd like this function to be vertical. Here's that function:

func print : String -> IO -> IO =

\s \next

3.2 Interactive command-line programs 61

if (empty? s)

next;

putc (first s);

print (rest s);

next

Alternatively, we can use the right fold:

func print : String -> IO -> IO = \s \next fold< putc next s

What print does is it transforms a string into a series of putc applications, where

the last putc application is followed by the next argument, i.e. what the print was

followed by.

For example: both print "ab"; done, and print "a"; print "b"; done eval-

uate to putc 'a'; putc 'b'; done.

Now that we have print, we can easily make a convenience function println, which

is same as print, except it additionally prints a newline:

func println : String -> IO -> IO = print . (++ "\n")

A simple function composition does the job.

Finally, we can write the �Hello, world!� program in Funky!

func main : IO =

println "Hello, world!";

done

It runs:

Hello, world!

Now that we can print lines, reading lines is the logical next step. Reading the input

character by character is rather inconvenient, and making a function for reading whole

lines is easy. Here it is:

func scanln : (String -> IO) -> IO =

\f

"" |> fix \loop \s

getc \c

if (c == '\n')

(f (reverse s));

loop (c :: s)

62 Side-effects and interpreters

The scanln function makes use of the inline recursion for looping, as we've learned it in

the previous chapter. The loop has a single variable to remember: a line accumulator.

Each iteration reads a character, and checks if it's a newline. If it is, then the line has

been successfully scanned and needs to be passed to the lambda. We need to reverse

it, though, because we're accumulating the line by sequentially prepending characters

to the accumulator. If the read character is not a new line, we simply prepend it to

the accumulator and continue the loop.

Functions print, println, and scanln are already a good toolbox for creating all

kinds of interactive programs. Here's a simple greeting program:

func main : IO =

print "What's your name? ";

scanln \name

println ("Hello, " ++ name ++ "!");

done

Here's what it does:

What's your name? Michal

Hello, Michal!

Here's a more complex program. This program plays a game with the user. The user

chooses a number between 1 and 100, and the program proceeds to guess the number.

With each guess, the user has to respond, whether the guess is correct, or whether the

number he chose is less or more than the guessed one. The program uses binary search

to e�ciently guess the number:

func main : IO =

println "Think of a number between 1 and 100.";

100 |> 1 |> fix \loop \min \max

let ((min + max) / 2) \mid

print ("Is your number " ++ string mid ++ "? ");

scanln \response

if (response == "less")

(loop min (mid - 1));

if (response == "more")

(loop (mid + 1) max);

if (response == "yes")

(println "Yay!"; done);

println "You have to respond one of less/more/yes.";

3.2 Interactive command-line programs 63

loop min max

The program starts a loop in which it remembers the lower and the upper bound of

the number it's guessing. Then it prints out a guess and asks the user for a response.

Depending on the response, it either proceeds with updated bounds, or it ends the

program proclaiming happiness. If the response wasn't a valid one, it says so, and

continues the loop with unchanged bounds.

A sample running of the program:

Think of a number between 1 and 100.

Is your number 50? no

You have to respond one of less/more/yes.

Is your number 50? less

Is your number 25? more

Is your number 37? more

Is your number 43? less

Is your number 40? more

Is your number 41? more

Is your number 42? yes

Yay!

This program combines various verical functions. It has a loop, series of cases, both

semicolon and trailing lambda kind vertical functions, all nesting and combining seam-

lessly. A similar program in Haskell would have to be split to multiple functions, or

it'd look quite messy.

The di�erence here isn't in the approach to side-e�ects. Instead, the whole di�er-

ence is in syntax. Funky makes it easy to use vertical functions, while Haskell makes it

messy and verbose. In Haskell, the equivalent of Funky's concise semicolon is the eye-

catching $ function. Anonymous lambda abstractions take more space, because their

arguments need to be followed by an arrow: ->. Small syntactic di�erences can have a

huge impact on viability of constructs.

3.2.2 ungetc, skip-whitespace, scan

One very useful input function reads whitespace-delimited words of text, that is, when-

ever used, it �rst skips all the whitespace until it reaches a non-whitespace character.

Then proceeds to accumulate all non-whitespace characters until it reaches a white-

space character again, at which point it hands over the accumulated result and stops

reading. We'd like to make such a function, and call it scan. White scanln reads whole

lines, scan reads words.

64 Side-effects and interpreters

For example:

func main : IO =

print "Type two words: ";

scan \word-1

scan \word-2

println (word-1 ++ ", " ++ word-2);

done

This program runs like this:

Type two words: uptown

funk

uptown, funk

As you can see, the user inserted a fair amount of whitespace around both words,

including newlines, but scan read the words correctly anyway.

As we've already described, scan needs to �rst skip all the whitespace in the input.

Could we make a general IO function for skipping whitespace? Something with this

signature?

func skip-whitespace : IO -> IO

How would such a function work? It would �rst read a character, then check if it's a

whitespace character. If it is, it would just recursively continue the same routine. In

the other case, though, the character isn't a whitespace and thus isn't supposed to be

skipped. But we've already read it. We'd need to somehow put it back on the input,

so the following reading procedures can pick it back up.

This wouldn't be possible with an imperative language, or even with monadic IO in

Haskell, without some kind of explicit access to the inner-workings of the input system,

or without special support from the I/O library.

In C, such a function exists, it's called ungetc. It's a 100 line function, deals directly

with the input bu�ers, sometimes creates its own �ungetc bu�er�, and touches a lot

of �ags. In short, it's nothing we'd be able to just make on a request. In Haskell, we

found no equivalent, and to our knowledge, no equivalent can be made by the user of

Haskell, as it would require a direct support from the IO monad.

In Funky, the situation is di�erent. What makes the di�erence? IO is not a low-level

imperative mechanims. IO is not an opaque, compiler-speci�c, data structure. IO is a

data structure like any other. Most importantly, it's fully transparent. This makes it

possible to make functions that not only prepend putc/getc operations, but transform

it arbitrarily. The �rst demonstration of this power is the ungetc function.

3.2 Interactive command-line programs 65

Here's how we'll implement it:

func ungetc : Char -> IO -> IO =

\c \io

switch io

case done

done

case putc \d \jo

putc d;

ungetc c;

jo

case getc \f

f c

The idea is, that ungetc takes a character and an IO, and it searches through that

IO until it �nds the �rst getc command. When it does, it passes the character to

the function following getc and replaces the original getc with the result of this

application. In the implementation, we can see exactly this happening.

Now that we have ungetc, we can implement skip-whitespace. First, we'll make

a utility function to check if a character is a whitespace:

func whitespace? : Char -> Bool =

\c

any (c ==) [' ', '\t', '\n', '\r']

The any function takes a predicate and a list and checks if any element in the list

satis�es the predicate. Now, back to skip-whitespace:

func skip-whitespace : IO -> IO =

\next

getc \c

if (whitespace? c) (

skip-whitespace;

next

);

ungetc c;

next

It gets a character, check if it's a whitespace, if it is it recursively continues, otherwise

it puts it back on the input (using ungetc) and follows with next.

Finally, we can implement the scan function, which uses both skip-whitespace,

and ungetc (to put the �nal whitespace character, marking the end of the word, back):

66 Side-effects and interpreters

func scan : (String -> IO) -> IO =

\f

skip-whitespace;

"" |> fix \loop \s

getc \c

if (whitespace? c) (

ungetc c;

f (reverse s)

);

loop (c :: s)

The scan function is a trailing lambda kind vertical function by its type. It skips the

whitespace, and then it enters a loop to accumulate the word. Each iteraction reads

a character, and checks if it's a whitespace. In the case it's not a whitespace, we just

continue accumulating. If it is, we've reached the end of the word and so we need to

�rst ungetc the �unintentionally� read whitespace character, then pass the accumulated

word to the follow-up function.

Here's a simple calculator program that uses scan:

func main : IO =

print "> ";

scan \x-str

scan \op

scan \y-str

let (extract (float x-str)) \x

let (extract (float y-str)) \y

println (

if (op == "+") (string (x + y));

if (op == "-") (string (x - y));

if (op == "*") (string (x * y));

if (op == "/") (string (x / y));

"invalid operation: " ++ op

);

main

The built-in float function takes a string and returns Maybe Float, to properly

account for cases when the string doesn't contain a correct �oating-point number.

For simplicity, we don't handle this case, and simply extract the value out. If the

number was, indeed, invalid, our program just crashes.

3.2 Interactive command-line programs 67

Here's a sample run:

> 2 + 3

5

> 44 * 44

1936

> 10 / 3

3.3333333333333335

> ^D

3.2.3 Chaining

Sometimes it's desirable to chain two or more IO objects to be �executed� one after

another. This is especially useful when we want to apply some transformations to the

�rst IO object that we don't want to apply to the other ones.

The operation of chaining IOs is in character similar to the list concatenation, by

no accident. Hence, we'll give it the same name, we'll overload the ++ function for

chaining IOs.

The actual implementation of ++ is surprisingly simple:

func (++) : IO -> IO -> IO =

\io \jo

switch io

case done

jo

case putc \c \io

putc c;

io ++ jo

case getc \f

getc \c

f c ++ jo

If the �rst IO �nished, the second one continues. Otherwise we just propagate the

chaining down the structure until we eventually �nish the �rst IO.

The type of the chaining function conforms to the schema of semicolon kind vertical

functions. However, in its in�x form, ++ isn't usable as a vertical function. In the cases

we actually do want to use it as a vertical function, we can easily overcome this problem

68 Side-effects and interpreters

by using it in its pre�x form, and thereby creating a �(++) block�:

func main : IO =

println "before the (++) block";

(++) (

println "inside the (++) block";

done

);

println "after the (++) block";

done

The above program prints:

before the (++) block

inside the (++) block

after the (++) block

As we've already mentioned, the most important property of chaining is that all trans-

formation functions applied inside the block have no e�ect outside of it. The only real

transformation function that we've seen so far is ungetc (and the ones that use it,

all the other ones just prepend putc/getc), and here's how it's e�ect gets lost when

reaching the end of a (++) block:

func main : IO =

ungetc 'a';

ungetc 'b';

(++) (

getc \c

putc c; # prints 'b'

ungetc 'x';

done

);

getc \c

putc c; # prints 'a', not 'x'

putc '\n';

done

This program prints:

ba

3.2 Interactive command-line programs 69

This property of canceling e�ect of transformations comes especially handy with other,

more advanced transformations. We'll see some examples of those later in this chapter.

3.2.4 when, for, when++, for++

Now we'll shortly cover some control structures.

The when function works exactly as with lists:

func main : IO =

print "Do you like oranges? ";

scanln \answer

when (answer == "yes")

(println "That's awesome!");

println "We're selling kilogram / 1 euro. How much? ";

scanln \amount-str

let (extract (int amount-str)) \amount

when (amount < 5)

(println "(You cheap.)");

println "Thank you for your order.";

done

Sample running:

Do you like oranges? no

We're selling kilogram / 1 euro. How much? 0

(You cheap.)

Thank you for your order.

Aside from when, we can make a general for-each looping construct, which made no

sense with lists, but makes a lot of sense with IO. The function will take a list and

basically �execute� a block of code per element. Here it is:

func for : List a -> (a -> b -> b) -> b -> b =

\list \body \next

if (empty? list)

next;

body (first list);

for (rest list) body;

next

The implementation should be self-descriptive.

70 Side-effects and interpreters

Here's how we can use it:

func main : IO =

for [1, 2, 3, 4, 5, 6, 7, 8, 9] (

\x \next

println (string x);

next

);

println "finished";

done

This program can be alternatively written with function composition:

func main : IO =

for [1, 2, 3, 4, 5, 6, 7, 8, 9]

(println . string);

println "finished";

done

Sometimes, we want to apply some transformations inside the bodies of when and for

that we don't want to have an e�ect outside. We could put a (++) block inside the body,

but we can also make ourselves alternative versions of when and for that do this for us

automatically. We'll call them when++ and for++. These functions are not needed as

often, as when and for, but occasionally they come very handy. Their de�nitions are

almost identical to the de�nitions of when and for, except that the simple application

of the body to the next argument is replaced by chaining. Here they are:

func when++ : Bool -> IO -> IO -> IO =

\cond \then \next

if cond (then ++ next) next

func for++ : List a -> (a -> IO) -> IO -> IO =

\list \body \next

if (empty? list)

next;

body (first list) ++ for++ (rest list) body next

We're not going to show any example of their usage as they're easily conceivable

3.2 Interactive command-line programs 71

Instead, we'll move on to a way more interesting topic: grand transformations.

3.2.5 Grand transformations

Being just an ordinary, transparent data structure, IO is �tted for arbitrary, com-

putable transformations. So far, we've only witnessed a glimpse of what this really

means. Mere two examples, ungetc and ++, are not enough to convey the full extent of

the consequences. Arbitrary, computable transformations means exactly what it says.

Practically any conceivable transformation is possible.

In this section, we'll take a look at a few examples, that incrementally show more

and more powerful transformations. Of course, we'll still stick to contrived examples,

but they should carry the ideas nonetheless.

As the �rst example, say the program responding to the user is using a typewriter

with a disfunctional 'h' key. The objective of our transformation will be to replace all

letters 'h' in the output with spaces. Then we'll apply this tranformation to the �cat�

program and see what happens.

The transformation is very simple:

func no-letter-h : IO -> IO =

\io

switch io

case done

done

case putc \c \io

if (c == 'h')

(putc ' ')

(putc c); # this is the else branch

no-letter-h;

io

case getc \f

getc \c

no-letter-h;

f c

The code is easy, what's important is to propagate the no-letter-h applications down

the IO data structure.

Now we'll apply the transformation to the �cat� program. This could be our �rst

72 Side-effects and interpreters

attempt:

func main : IO =

no-letter-h;

getc \c

putc c;

main

However, there's a subtle problem. The no-letter-h transformation gets applied in

every recursive application, eventually creating an ever-growing stack of transforma-

tions that progressively slow down the program with each read/written character. This

is better:

func main : IO =

no-letter-h;

fix \loop

getc \c

putc c;

loop

Running this program, we'll get something like this?

hi!

i!

how are you?

ow are you?

what the hell?

w at t e ell?

Seems to work �ne.

Our next example will reverse the lines in the output. What does that mean? There

are two situations when a line is �nishes and needs to be shown to the user: 1. on the

newline character, 2. when requesting user input, i.e. on getc. So, our transformation

will accumulate characters in the output until one of the two abovementioned situations

arises. When that happens, it prints out the accumulated string, but reversed. Thus,

all lines in the output will appear reversed to the user.

3.2 Interactive command-line programs 73

Here's how we'll do it:

func reverse-lines : IO -> IO =

\io

io |> "" |> fix \loop \s \(io : IO)

switch io

case done

done

case putc \c \jo

if (c == '\n') (

println s;

loop "";

jo

);

loop (c :: s);

jo

case getc \f

print s;

getc \c

loop "";

f c

At the beginning, we enter a loop, that remembers two things: the line accumulator

s, and the current IO. Then it examines the latter. When printing, two cases may

occur. Either we've reached the newline, in that case we print the accumulated string

reversed (it's already reversed, because we're accumulating it by prepending), or it's

not a newline, in which case we simply accumulate a new character. When reading a

character, we always need to print the accumulated string, then proceed to actually

read the character, and then continue the loop with an empty accumulator.

Let's see how this works. We could use �cat� again, but that doesn't demonstrate

the case, when we need to print before getting user input. Here's out example:

func main : IO =

reverse-lines;

print " What's your name? ";

scan \name

println ("Hello, " ++ name ++ "!");

done

74 Side-effects and interpreters

And here's its sample run:

?eman ruoy s'tahW Michal

!lahciM ,olleH

Notice how we've put an extra space at the beginning of the name question. This is so

that we get a space at the end of the prompt when reversed.

And now for the last example. This one is a funny one. It scans the output, looking

for numbers. When it �nds a space-delimited integer number, it attaches a little note

to it telling us what the factorial of that number is. Speci�cally, say the output of a

program is this single line:

I have 2 hands with 5 fingers.

Our transformation makes the output to be this instead:

I have 2 (2! = 2) hands with 5 (5! = 120) fingers.

We'll approach this problem as follows. We'll use a loop with a string accumulator.

This accumulator will be used for storing space-delimited words. Every time a program

prints a character, we either accumulate it, or we reset the accumulator in the case the

character is a whitespace. When encountering a whitespace, we'll also do one other

thing. At that point, the accumulator contains the whole space-delimited word. We'll

check if this word is a valid number. This is easy, simply convert the string to Maybe

Int using the built-in int function and check if the result is not nothing. If it is a

valid number, we'll print the note.

3.2 Interactive command-line programs 75

It's all fairly easy. Assuming we have an implementation of the factorial function

called n!, here's how it's done:

func tell-factorial : IO -> IO =

\io

io |> "" |> fix \loop \word \(io : IO)

switch io

case done

done

case putc \c \jo

when (whitespace? c && word != "") (

\next

let (int (reverse word)) \(maybe-number : Maybe Int)

switch maybe-number

case nothing

next

case just \x

print (

" (" ++

string x ++

"! = " ++

string (n! x) ++

")"

);

next

);

putc c;

loop (if (whitespace? c) "" (c :: word)) jo

case getc \f

getc \c

loop word (f c)

You can see some type annotations in the code. This is because the type checker is

sometimes not smart enough to know that a variable is a union before entering the

switch structure. This will eventually get �xed.

76 Side-effects and interpreters

Let's see if it works. We'll use it to transform the �cat� program, once again:

func main : IO =

tell-factorial;

fix \loop

getc \c

putc c;

loop

And we run it:

ready 2 go?

ready 2 (2! = 2) go?

I am 22 years old.

I am 22 (22! = 1124000727777607680000) years old.

I'll sell you a T-shirt for 13 dollars.

I'll sell you a T-shirt for 13 (13! = 6227020800) dollars.

1 2 3 4 5

1 (1! = 1) 2 (2! = 2) 3 (3! = 6) 4 (4! = 24) 5 (5! = 120)

This example is, in itself, useless. However, it beautifully demonstrates the kind of

power grand transformations give to us. This power brings many bene�ts, the most

important one of which is: separation of concerns. In most languages, many program

features have to be, more or less, tied together. In Funky, separating them into multiple

independent functions is possible to an unprecedented degree.

What's even more important, this separation is possible without the need of

any �abstraction framework�. In most, especially imperative, languages, creating an

abstraction infrastructure (abstract classes, interfaces, ...) is a necessary precondition

for separating concerns. In Funky, separation comes naturally, without the need for

an infrastructure. This makes it possible for code to grow naturally and without much

bureaucracy.

3.2 Interactive command-line programs 77

3.3 Complete minimal transparent representation

In this last section, we want to describe an idea that we believe is important in making

all of the things above possible.

Let us introduce it by a metaphor. Ink and paper. These two substances are all

that's needed to make a book (exluding the cover). Ink may be put on the paper by the

means of a pen, a typewriter, or a printer. However, neither the pen, the typewriter,

nor the printer are a part of the book.

What we're talking about here is the principle of separating data and behavior. The

book is the data. The pen, the typewriter, and the printer are behaviour. And here's

my point: once the form of the data is set and good, arbitrarily abstract behavior over

the data can be added any time . There's no need to attach behaviour to data.

However, this statement really only holds in a pure functional, and, at least option-

ally, lazy language. Why is that? Often, we want to model our program partially

concurrently: we want some part of the computation to pause termporarily, until we

request it to continue again. A good example of this are iterators. Iterators are basically

loops, that pause and run on demand, giving us values. But, in order to implement

iterators in a strict and imperative language, one needs to remember the state of the

iterator in some variable, then mutate this variable any time the iterator progresses.

With laziness, this is never needed. Behavior is instead embedded in the thunks of lazy

evaluation. Data structures � instead of being just data � remember paused computa-

tions that are run on demand. This ultimate abstraction makes it possible to completely

avoid storing behavioral state in data and thus makes the above statement true.

But given some requirements of data, how do we �nd a form that's good? I propose

this form should satisfy these three characteristics:

1. Completeness � all possible instances of the data should be representable.

2. Minimality � there should be one and only one way of representing each logically

distinguished instance of the data.

3. Transparency � given that all parts of the form are necessary and none are

redundant, there's no need to encapsulate anything, the form should be fully

transparent.

A data structure that satis�es all these conditions is called complete minimal trans-

parent representation.

Satisfying the �rst and the third condition makes it possible to leverage arbitrarily

abstract, high-level operations and transformations on the data � functions. Satisfying

the second condition makes it convenient.

78 Side-effects and interpreters

All the data structures that we've dealt with in this work satisfy the three conditions

� List and Maybe are easy examples. Given their extremely simple de�nitions, just

think about what kinds of stu� we were able to do with them. Furthermore, literally

any computable transformation is possible on them. They don't need to adapt for any

additional behaviour. They represent their data fully, minimally, and transparently.

All we ever need to add is more functions.

The IO data structure we used to represent side-e�ects is another example. All

possible programs that interact on the standard input and ouput are representable

by this data structure. Each one is representable in one unique way (in terms of

putc/getc/done, not in terms of high-level functions). The structure is fully trans-

parent, there's nothing to hide. All the behavioral information is perfectly hidden in

the lazy thunks/closures/to-be-evaluated function applications.

That is why we've been able to build functions that elevate the way we work with

IO to such a high-level of abstraction. And we've hardly came the whole way.

Now, consider that these complete, minimal, transparent representations exist for

all kinds of things. Web servers, video games, GUI applications, the list goes on. Just

imagine what kinds of things we'd be able to do to them. Take the games example.

We have a game done, but now we'd like to add an intro sequence to each level. In an

imperative languages, this would possible have an in�uence on the base structure of the

game. With our representation, we could build the intro separately, then just combine

it with the rest of the game using an appropriate combinator function. Similarly, adding

or removing a physics feature could be a matter of applying or not applying a single

function.

This, in our view, is a genuinely good vision of programming. We hope we'll get

there someday.

3.3 Complete minimal transparent representation 79

Conclusion
In this work we described the Funky programming language in its entirety, as well

as outlined many use cases of its major innovative features, most notably the idea of

vertical code and side-e�ect interpreters.

The initial step in the design of the language is seamingly backwards: omition of

many features traditionally included in purely functional languages, such as pattern

matching, or guards. But, we argue that this step backwards made it possible to see

the bigger picture, and to eventually design a language that's better.

Funky has the consistency and seamless extensibility of LISP: built-in functions

look and feel just like the ones created by the programmer, and the ones created by

the programmer feel just like the built-in ones. However, Funky also features the

readability and familiarity of more traditional languages. Features like the semicolon

and trailing lambdas prevent the myriad of parentheses found in LISP, while in�x

functions make mathematical expressions � and others where it makes sense � look

familiar and immediately understood.

The type system allows expressing most kinds of interesting types. We believe that

it supports expressing all kinds of types of actual interest in practical programming,

but this is arguable. Most notably, Funky's type system lacks higher-kinded types. In

our view, this comes with a bene�t: the madness of category theory is categorically

prevented. While beautiful and useful in theoretical sciences, no one missed the cate-

gory theory in actual practical programming until Haskell started claiming otherwise.

As we've seen, all the things achieved by monads in Haskell are easily achievable in

Funky, albeit not so generally. This generality, however, more often than not clutters

intentions and meaning instead of clarifying them.

There still are a few features that are planned, but haven't made it yet into the

language. The main one is package management and imports. The other one is a not-

yet-mentioned with keyword that will allow de�ning functions based on the existence

of other functions. For example: if an == function exists for a type a, de�ne the !=

function based on it. This feature is the one missing feature in the expressiveness of

Funky's type system � after its addition, the expressiveness will match, and in many

cases exceed, the expressiveness of Haskell's type system.

What's the future of Funky? At the point of writing this thesis, the language is

virtually unkown. But, the language was not invented for the purposes of this thesis,

it was vice-versa. We will make all the e�orts to get the word out there, because we

believe we've got something worthy in our hands.

81

Bibliography

[1] Luis Damas and Robin Milner. Principal type-schemes for functional programs. Proceedings

of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages -

POPL '82 , (October):207�212, 1982.

[2] Martin Grabm. Algorithm W Step by Step. Stat , 2006:1�7, 2006.

[3] Idris - Modules and Namespaces - Explicit Namespaces, http://docs.idris-

lang.org/en/latest/tutorial/modules.html#explicit-namespaces.

[4] Achim Jung. A short introduction to the Lambda Calculus. , :1�10, 2004.

[5] Haskell/Lenses and functional references,

https://en.wikibooks.org/wiki/Haskell/Lenses_and_functional_references.

[6] Records in Haskell, https://ghc.haskell.org/trac/ghc/wiki/Records.

[7] Guy L. Steele. Growing a language. 1999.

[8] Edsko De Vries, Rinus Plasmeijer and David M Abrahamson. Equality-Based Uniqueness

Typing. , 0:1�16.

[9] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. Proceedings of the 16th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages - POPL '89 ,

(October):60�76, 1989.

[10] Philip Wadler. Monads for functional programming. , (May 1995):233�264, 1993.

83

Appendix A
The attached CD contains the source code of the compiler and the runtime,

the small standard library for the Funky programming language, and a short

usage manual. The same can also be found on the GitHub page of the project:

https://github.com/faiface/funky

85

