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Abstrakt

Práca pokrýva aplikáciu základných techník z oblasti spracovania obrazu, akými sú pra-
hovanie a detekcia hrán. Cieľom je lokalizácia pozície užívateľom vytvorenej snímky
vo videu. Tieto techniky sú kombinované s rôznymi perceptuálnymi hešovacími algo-
ritmami. Neskôr je v práci používaná metóda lineárnej regresie pri riešení podobného
problému. V tomto postupe sa snažíme lokalizovať pozíciu kratšieho videa v dlhšom.
Práca je tiež zameraná na výber vhodných vlastností potrebných pre lokalizáciu videa
a postup, v ktorom je video rozdelené na menšie časti.

Kľúčové slová:

Spracovanie obrazu, lineárna regresia, metóda najmenších štvorcov, opencv
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Abstract

The thesis covers usage of the basic image processing techniques like thresholding and
edge detection. The goal is to locate a user taken snapshot in a video with an emphasis
on accuracy. It combines these techniques with perceptual hashes algorithms. Next we
use a linear regression technique to solve similar problem by locating a shorter video in
a longer video. We also discuss various properties used for locating the video. Finally,
we introduce a strategy, where the video is being divided into parts.

Key words:

Image processing, linear regression, ordinary least-squares, opencv
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Introduction

Nowadays mobile applications are responsible for enormous amount of work. Their
usage ranges from entertainment to bank transfers. The main goal of this thesis is to
create an algorithm, that can be used and integrated into a mobile application. The
application will be targeted mainly at entertainment. The main idea is to show user a
frame which will appear in a specific video. The videos should be television advertise-
ments. The user will be challenged to capture the frame in the real advertisement, the
most accurate he can, using his mobile phone. The application will offer a camera or
a video recording to do so. The accuracy, with which the user captures the frame, will
define user score or other user profits. Exact details are not important for the content
of this thesis. What makes the task difficult to implement, is that the user should be
able to capture the frame from a comfortable distance e.g his sofa. It means, that the
data we will receive will also contain unnecessary information, for example a living
room background.
In the thesis we expect, that the algorithm will be used on a server side, so we would
not consider client side details. Our main focus is on the algorithm. We will mention
some basic image processing techniques which may help us to develop the solution.
For example various thresholding techniques or the Canny edge detection. We will
also mention some perceptual hash algorithms which help us to recognize how pairs
of images are similar. Linear regression technique is also involved in our experiments.
In the thesis we consider two approaches. In the first approach, the user is challenged
to take a photo of his television, when he thinks he sees the right frame. We then
determine the accuracy from the original video and the frame the user sends. In the
second approach, the user is forced to record a video and label the frame, he thinks is
the correct one.
The experiments we made are programmed in Python. We chose Python programming
language mainly because of its simplicity and currently available binding of opencv
library, that we also use. The library offers many methods for image processing tech-
niques. There are many articles about various usage of detection techniques, but we
consider our problem to be quite unique. Our goal is not necessary the image extrac-
tion. It is just one of the possibilities to solve the problem. Generally we are looking

1
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for anything that can detect the image the most accurate way. It is accuracy that is
our main goal.
All the resources can be found on the attached DVD and in our Github repository
https://github.com/rizip1/Image-processing.



Chapter 1

Image processing tools

In this chapter we will describe what is an image processing, introduce fundamental
terms, color spaces, and some basic image processing techniques that we use in our
thesis. We will consider those which are already implemented in opencv library. We
will shortly cover their details.

1.1 Fundamentals

It is difficult to properly define where image processing starts and where it ends. Gon-
zalez (et. al) [13] confirm that statement.

There is no general agreement among authors regarding where image pro-
cessing stops and other related areas, such as image analysis and computer
vision, start. Sometimes a distinction is made by defining image processing
as a discipline in which both the input and output of a process are images.

As it can be seen from the statement above, image processing may be defined as a
discipline where input and output are images. On the other hand, if the definition
would be that strict, it would mean that a simple operation such as computing an
average intensity of an image would not belong to image processing.
For the purpose of this thesis, we consider image processing to be a discipline where
input is always an image and output is an image or an information related to the
input image, describing the structure of the image. Image processing does not analyse
a meaning of a given picture, that is what distinguishes it from image analysis or
computer vision.
When referencing to term image, we usually consider a matrix of size M ∗ N where
M represents image width and N it’s height. Both width and height are measured in

3



CHAPTER 1. IMAGE PROCESSING TOOLS 4

Figure 1.1: Example of a grayscale image.

pixels. However, for better illustration, we often display image in a non-matrix form.
Each element of that matrix is represented by a finite number of items. These items
represent various image properties (hue, intensity, etc). Usually we consider one item
for grayscale images (representing intensity) or three items representing entries from
HSV or RGB color space. There is more about color spaces in section 1.2. An example
of a grayscale image is shown in Figure 1.1.

Intensity represents total amount of lightness. It can be computed as 1
3
(R + B + G)

where R, G, B values are values taken from the RGB color space. It is in range from
0 to 255. Where 255 stands for white color and 0 for black. Other values from that
interval represent different shades of grey.

Grayscale image is an image whose pixels express intensity values in range 0 to 255.

1.2 Color spaces

Color space describes how a color appears. We divide color spaces into additive and
subtractive. In additive color space, combining colors results in lighter color (higher
values) what is an opposite to subtractive models. We do not mention subtractive
models in our thesis because we do not use them.

1.2.1 RGB

RGB color space has its application in electronic systems (television, monitors) or in
photography. It is an abbreviation for red, green and blue color. These colors are called
primary. Primary colors are the root of any other colors, therefore from primary colors
any existing color can be constructed. Values of R, G, B are usually integers in range
[0,255], but in so called normalized form, they can be decimals in range from zero to
one [6]. When consider the normalized form, we can imagine a cube (normalized rgb
cube) which vertices are in a form of V [x, y, z] where x, y and z are bits. Diagonal values
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Figure 1.2: Cube representation of RGB color space [1].

(a) Single cone HSV representation [1]. (b) Double cone HSL representation [1].

Figure 1.3: HSV and HSL color spaces.

are shades of grey (all coordinates have the same value). Example of the normalized
rgb cube is shown in Figure 1.2.

1.2.2 HSL, HSV

These color spaces are more intuitive for human perception than RGB. They are often
used in color pickers, image editing software or image analysis. They are all just a
mapping of RGB. HSV color space is visualized by a single cone and HSL by a double
cone as shown in Figure 1.3a and 1.3b. H in both color spaces represents hue, S
represents saturation, L stands for lightness and V for value. Hue is an angle around a
vertical axis of a cone. In color pickers it is usually represented by a wheel containing
basic colors (red, orange, yellow, green, blue and magenta). Definition of saturation
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differs in these spaces. To simplify, we can define it as an amount of chroma in a color.
In cone representation, it is the distance from the vertical axis. Intensity is an average
of R, G, B values. Value is the largest component of a color.
In image processing we often need to convert images from RGB to HSV or HSL.

V = max(R,G,B) (1.1)

S =


V−min(R,G,B)

V
if V 6= 0

0 otherwise
(1.2)

H =


60(G−B)

V−min(R,G,B)
if V = R

120 + 60(B−R)
V−min(R,G,B)

if V = G

240 + 60(R−G)
V−min(R,G,B)

if V = B

(1.3)

Formulas 1.1 to 1.3 describes converting from RGB to HSV implemented in opencv
[11].

Vmax = max(R,G,B) (1.4)

Vmin = min(R,G,B) (1.5)

L =
Vmax + Vmin

2
(1.6)

S =

Vmax−Vmin
Vmax+Vmin

if L < 0.5 6= 0

Vmax−Vmin
2−(Vmax+Vmin)

if L >= 0.5 6= 0
(1.7)

H =


60(G−B)

S
if Vmax = R

120 + 60(B−R)
S

if Vmax = G

240 + 60(R−G)
S

if Vmax = B

(1.8)

Formulas 1.4 to 1.8 describes converting from RGB to HSL implemented in opencv [11].
All properties may be normalized to fit required ranges of values. There are more
color spaces we have not mentioned. More on this topic can be found in Ibraheem’s
article [6].
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1.3 Filtering

Before applying various image processing methods, we usually need to smooth or blur
the given image. This is achieved by using various filters. Opencv offers many filtering
methods. We have used these filters:

• Average blurring

• Median blurring

• Gaussian blurring

1.3.1 Average blurring

Average filter is probably the simplest filter. Average filtering uses a convolution kernel
1 which it moves along all the pixels in the image. The kernel might be arbitrary size,
but it’s width and height should be odd. Otherwise central pixel would not be in the
middle of the kernel. The kernel is filled with ones what means, that all pixels in the
kernel have same weights. If we choose a pixel which is on the edge of the kernel, we
can compute missing pixels as an average of known pixels. The effect after averaging
is a blurred image. Kernel of size 3 ∗ 3 can be described as in Formula 1.9.

K =
1

width ∗ height

1 1 1

1 1 1

1 1 1

 (1.9)

1.3.2 Median blurring

In median blurring an idea is also simple. Create a grid as in the average filtering,
but instead of averaging pixels values, take their median value. Unlike using average
or Gaussian kernel, pixel is always assigned a value that exists in the kernel. Kernel
size has to be odd. Median blurring is highly used in removing salt and pepper noise
[11].

1.3.3 Gaussian blurring

More sophisticated approach than an average or a median filter is a Gaussian blurring.
Is uses a weighted Gaussian kernel. Gaussian kernel is computed from the Gaussian

1Kernel can be understood as a matrix
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function for the two dimensional space [4].

G(x, y) =
1√

2πσ2
e

−x2+y2

2σ2 (1.10)

Formula (1.10) shows two dimensional Gaussian function where x and y are distances
from the origin in horizontal and vertical direction, σ is a standard deviation of Gaus-
sian distribution. Smaller value of σ implies thinner peak of the Gaussian function.
Values we get from the Gaussian function are used to construct a kernel which is ap-
plied to the image. Of course the kernel dimensions has to be odd. For each pixel we
compute it’s value as the weighted average of it’s pixels neighbourhood. The original
pixel has the highest weight and the further the neighbour pixel is from that pixel the
smaller weight it is assigned. Gaussian function of every pixel is positive (non-zero).
Gaussian filter preserves edges better than the averaging filter and it is usually used
before edge detection.

K =
1

ksum


1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1

 (1.11)

Formula (1.11) shows kernel made from discrete approximation to Gaussian function
with σ = 1.0 [12]. Variable ksum refers to the sum of all pixels inside the kernel. In
this case it is 273.

1.4 Image segmentation

Image segmentation is the process of partitioning a digital image into multiple areas
(set of pixels) that cover it. These areas are called segments. The main aim is to
simplify image representation into something that is easier to analyse. Image segmen-
tation is usually used to locate object boundaries.

1.5 Thresholding

Thresholding is basic image processing method and simplest method of image segmen-
tation. Output of thresholding is a binary image. Binary image is an image which has
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Figure 1.4: Simple thresholding applied to Figure 1.1

only two possible values for each pixel. The idea of thresholding is to establish threshold
value such that if the pixel has greater value than the threshold it is assigned foreground
value (usually white) otherwise it is assigned background value (usually black). It’s
example shows Figure 1.4. Opencv offers three thresholding methods [11].

• Simple thresholding

• Adaptive thresholding

• Otsu’s binarization

All of these methods expect input image to be 8-bit single channel. Usually grayscale.

1.5.1 Simple thresholding

As title indicates, this is the simplest and the quickest thresholding method. Threshold
value is global for all pixels in an image. If the pixel value is higher than the given
threshold it is assigned one value otherwise second.

1.5.2 Adaptive thresholding

When using simple thresholding, we have to set threshold value globally. It might
be good enough when applied to specific picture however, when dealing with images
from different spectrum it might not work well. The threshold which may suit to one
picture may fail for very simple picture, but with different lightness intensity. For more
global purpose adaptive thresholding can be used. In adaptive thresholding, threshold
is calculated for small regions of an image. More thresholds for different regions of the
image give’s us better results for images, where illumination varies. It can be computed
using a grid which represents pixel’s neighbourhood. Threshold is then computed either
as an average, median or using similar approach, using values from the local grid. The
size of the grid is important because if it was too small or too large, it would not work
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Figure 1.5: Sample histogram representing amount of intensity for Figure 1.1.

as desired. If it was too large, it would behave similarly to the global thresholding. If
it was too small, the information about the pixel area would be inadequate.

1.5.3 Otsu’s binarization

Stronger technique than the simple thresholding is the Otsu’s binarization. It is named
after Nobuyuki Otsu [5]. When using simple thresholding, it is difficult to guess the best
threshold value. When performing Otsu’s binarization we consider bimodal images.
Bimodal image is the image whose intensity histogram has two ’peaks’. Gonzalez (et.
al) [13] define histogram as:

The histogram of a digital image with gray levels in the range [0, L− 1] is
a discrete function h(rk) = nk , where rk is the kth gray level and nk is the
number of pixels in the image having gray level rk.

Intensity histogram can be imagined as a plot, which supports an overall information
about the intensity distribution in the image. On X-axis there are values from 0 to 255
which represent intensity. Y-axis corresponds to the number of pixels of the concrete
intensity. Values on Y-axis indicate shape of ’peaks’. Despite the above definition
which considers only intensity, histogram might be constructed for arbitrary property
not only intensity. Example of histogram is shown in Figure 1.5.

When using Otsu’s method the threshold is found as a value in the middle of the
histogram’s ’peaks’ such that the within-class variance is minimal for both classes.
Although Otsu’s binarization works well for bimodal images, it does not work fine for
other images. Image is usually not bimodal when it consist a lot of noise. Fortunately,
we can usually get rid of it using filters. Gaussian filter might work well and minimizing
the noise, it often converts an image into bimodal.
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1.6 Edge detection

Edge detection is a technique used to identify points in the image with significant in-
tensity contrast. Result of the edge detection is a binary image. The selected points
are grouped into edges. It reduces the amount of data however still keeps useful infor-
mation. To have better idea how output of the edge detection looks like, we include
Figure 1.6.

1.6.1 Canny edge detection

Canny edge detection is an implementation of the edge detection technique. It was
developed by John F. Canny in 1986 [11]. The algorithm is known as an optimal
edge detector [3]. Implementation of Canny’s algorithm in opencv can be described in
four separate steps according to opencv documentaion [11] and Bill Green’s tutorial
[3].

Step 1 First we need to filter out the noise. Opencv uses 5 ∗ 5 Gaussian kernel for
that purpose.

Step 2 After blurring we need to find intensity gradient. Sobel kernel is used to
perform this operation. The image is filtered with that kernel along horizontal and
vertical axis. The outputs we get are two new images Gx and Gy. Gx is the result of
the horizontal and Gy of the vertical filtering. Sobel kernel behaves as a simplification
of a derivative. Formula 1.12 displays horizontal and formula 1.13 vertical Sobel kernel.
From these two picture we can determine edge gradient (Formula 1.14) and each pixel’s
direction (Formula 1.15).

−1 0 1

−2 0 2

−1 0 1

 (1.12)

 1 2 1

0 0 0

−1 −2 −1

 (1.13)

Edgegradient(G) =
√
G2

x +G2
y (1.14)

angle(Θ) = tan−1(
Gy

Gx

) (1.15)
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Figure 1.6: Sample output of canny edge detection method. As an input image we
used figure 1.1

We have to fix the case when Gx is equal zero. If Gy was zero, we set direction to be 0
degrees. Otherwise we set it to be 90 degrees. After we know the direction, we round
it to one of the four angles. D in Formula 1.16 represents direction.

D =



0◦ if ∈ [0, 22.5) ∪ [157.5, 180]

45◦ if ∈ [22.5, 67.5)

90◦ if ∈ [67.5, 112.5)

135◦ if ∈ [112.5, 157.5) ∪ (157.5, 180]

(1.16)

Step 3 In this step we need to remove pixels which do not form any edge. If a pixel
value is not a local maximum in it’s neighbourhood, it is set to zero. Otherwise it is
set to one. The scan is performed in the gradient direction. Output is a binary image
which simply determines if the pixel belongs to some edge or not.

Step 4 At last, edges are reduced even more. Two threshold values are required for
this stage. They decides if an edge will be preserved. Let’s call them mint and maxt.
If edge intensity gradient is more than maxt we can call it true edge an we preserve it.
If the edge intensity is below mint we no longer consider it to be edge. If it lies below
these values we determine it’s affiliation based on the fact, if it is connected to some
true edge. If it is we preserve it, otherwise we discard it.

1.7 Contours

After usage of segmentation method we usually need to extract some part of a resulting
binary image. This is what contours are used for. Contour is a curve connecting con-
tinuous points with the same color or intensity. Because segmentation techniques often
use grayscale images, more often we assume intensity to be the point of interest.
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1.7.1 Contour approximation

We hardly get perfect shape of desired object after image segmentation. Consider we
want to extract a rectangle, but there are some holes along it’s boundary. We may
want to extract the rectangle with those holes rather than having a different shape.
To achieve this we may use contour approximation. It approximates the contour shape
to a similar shape with less vertices. In opencv a user chooses a shape he wishes to
approximate and a value (ε) that determines precision. Opencv uses implementation of
Douglas-Peucker algorithm [9]. The algorithm starts with the first and the last point
on the curve and imagines a straight line between them. Then from the points between
the first and the last point, it chooses a point whose distance from the imaginary line is
the farthest. If that distance is smaller than ε, it removes all the points from the start
point up to the current point. Otherwise the curve is divided into two parts.

1. From the first point up to the current point.
2. From the current point up to the end point.

After the division, the procedure is recursively called on both the curves. Finally, the
two divided curves are joined.



Chapter 2

Recognition techniques

In this chapter we will describe recognition techniques which we have used in our
work. We will describe various perceptual hashes algorithms and a method of ordinary
least-squares.

2.1 Perceptual hashes

The goal of perceptual hashes is to identify a similarity of two images. For humans, it
is a trivial task to look at the pictures and decide whether they are similar (one is just
slightly modified copy of another) or not. For computers, the problem is not that easy.
When constructing cryptographic hash, the hash is randomized. It means that two
hashes for the same user, using exactly the same cryptographic algorithm, would hardly
be the same.
The situation changes for perceptual hashes. Perceptual hash is constructed with
respect to the given entity (in our understanding it is a picture) properties. Perceptual
hash algorithm may use arbitrary approach to construct the hash, but with respect to
certain relations (in our case it might be relation between pixels values). When two
hash strings, constructed from the two different pictures using the same perceptual
hash algorithm, are the same or differs just in one or very few bits, we may suppose
that the pictures are very similar. However their size or brightness may vary. The
distance between these hashes is known as a Hamming distance. It represents the
number of the positions at which the two given hashes varies.
Basic step in perceptual hashes it to shrink an image to very small size and convert
each pixel’s value from RGB into grayscale. We do it to get rid of high frequencies
and use intensity as a single attribute for each pixel. High frequencies describes detail
in the image and low frequencies describes image’s structure. Pictures with many

14
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details has lot of high frequencies, but very small pictures have only low frequencies.
There simply is not enough space to capture the detail. If we take some string which
represents intensity values for the given image, then the places where the intensity
values between the neighbour pixels changes rapidly are high frequencies. For example
edges are high frequency content.
Grayscale is used because it is not as prone to luminance changes as RGB. After the
image is shrunk, chosen algorithm constructs a hash with regard to given criteria. The
shrunk dimensions may differ from implementation to implementation.

2.1.1 aHash

The aHash algorithm calculates intensity average for the given image [8]. Then it
iterates all the pixels and for every pixel appends one bit to a hash string. The bit
value is determined according to if a pixel’s value is higher or lower than the image’s
average. The image is usually shrunk to 8 ∗ 8 pixels.

2.1.2 dHash

The dHash algorithm constructs the hash with regard to an intensity difference between
pixels [7]. Instead of shrinking the image into n∗n dimension it shrinks it to (n+1)∗n
dimension. The value of n is usually 8 . Then it iterates all the pixels from top-left to
bottom-right and set the corresponding bit in the hash string to zero or one depending
on whether p[i][j] < p[i][j + 1]. The p[i][j] is the intensity value for the pixel on ith
row from the top and jth column from the left. After the procedure ends the hash is
n ∗ n long.

2.1.3 pHash

This algorithm is more robust than the two mentioned above. To reduce high frequen-
cies it uses discrete cosine transformation (DCT) [8]. DCT converts image into cosine
waves which oscillate on different frequencies. It is the transformation from spatial to
frequency domain. The comprehensive explanation of DCT is beyond the scope of this
thesis.
The algorithm shrinks image into 32 ∗ 32 pixels. Then it computes the average DCT
value using top-left 8∗8 pixels and ignoring the first item. The top-left square represents
the lowest frequencies. First item (DC term) is not counted because it corresponds to
zero frequency, that represents the average brightness across the whole image and may
be very different.
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Then it iterates pixels in the top-left square and set hash string values depending on
whether iterated DCT value is above or below the average value.

Implementation of all the above algorithms can be found on Github or on the attached
DVD in the hashes module.

2.2 Linear regression and least-squares solution

To describe the method of ordinary least-squares (OLS) which we use later in our
experiments it makes sense to first briefly introduce a linear regression technique which
goes hand by hand with it. Linear regression is the technique used to describe relations
between predictor variables (X1, X2, ..., Xn where n ∈ 1, 2, ...) and response variable
Y . The predictor variables are also called independent variables and the response is
dependent variable. The predictor variables can be understood as properties using
which we can predict the value of Y . The predictor X is a vector consisting from these
variables. We will call them properties. Assume we want to predict person’s age based
on amount of water he drinks per day and amount of sleep. Then the properties are
drunk water per day and amount of sleep. The response is age. Consider we have m
tuples of these properties. These tuples are predictors.

2.2.1 Mean function

Relationships are described using mean function. The function depends on it’s pre-
dictors. First we introduce it’s definition for predictor with single property and one
response. Formula 2.1 shows that definition.

E(Y |X = x) = β0 + β1x (2.1)

Y is a response when the predictor’s value is equal x. The β0 parameter stands for
intercept and β1 for slope [14]. These parameters need to be estimated from given
data set. Consider Figure 2.1. Every response Y has a single property predictor X.
For simplicity we do not mark it as a vector but as a scalar. Also consider that there
are known responses for X = 0, 1, 2, 3 respectively. Imagine we want to estimate value
of Y for X = 4. There is no linear function which crosses all these points. So we
want to find a linear (mean) function which has the lowest distance from these points.
One function which tries to minimize the distances from all the points is drawn using
dashed line. The distances are drawn using solid, vertical lines. Distances represent
errors (how much real value differs from the estimated value). For predictor Xi we
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Figure 2.1: Mean function example.

define corresponding error ei = (Yi −E(Yi, Xi))
2 where Yi is the response for Xi and i

is in the range of predictors count. The best fitted linear function is the function with
the lowest sum of these errors for all predictors. Determine searched function using
that idea is known as a least-squares solution.
More practical example would be to estimate a price of a house according to it’s age.
In that case the single predictor’s property will be the house’s age and the response
will be the house’s price. It might be drawn similarly to Figure 2.1 except that the x
axis would contain the house’s age and y axis it’s corresponding price. We may again
fit the line with least distances from all the points and predict new values from it.
We have defined mean function for single property predictor but usually we have more
than just one property. General mean function for n properties shows Formula 2.2. X
is the predictor and X1, ..., Xn are it’s properties.

E(Y |X) = β0 + β1X1 + ...+ βnXn (2.2)

So for n properties we have n + 1 beta terms to estimate including intercept. It is
however not possible to draw or imagine a plot with more than two properties (two
properties and one response can be drawn in 3D). On the other hand we may capture all
the predictors properties and responses with matrices as is shown in Figure 2.3.
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Y =
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X =
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. . . .

. . . .

. . . .
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β1

.

.

.

βm


e =



e1

e2

.

.

.

en


(2.3)

Y is the vector of n items. X is the n ∗ (m + 1) matrix for predictors properties. We
add a column full of ones because of the intercept (β0). β is a vector of m+ 1 items of
βs values estimated from the data where s ∈ [0,m]. And finally e is a error vector of n
values containing squared distances from the estimated linear function. The count of
predictors is n and m is the count of their properties.
Regression model using above notation can be written as Y = Xβ + e [14]. When
written for single rows Yi = Xiβ + ei. Xi = Xi1, ..., Xim and β = β0, β1, ..., βm.

2.2.2 OLS calculation

Now when we know the idea behind OLS we need to know how to calculate it. We need
to estimate β values such that

∑n
i=1(Yi−Xiβ)2 =

∑n
i=1(Yi−(β0+β1Xi1+...+βmXim))2

is minimal. The predictors count is n and m is the count of the predictors properties.
Calculation of beta values shows formula 2.4 [14] where XT is a transposed matrix to
matrix X and X−1 is a inverse matrix to X.

β = (XTX)−1XTY. (2.4)

OLS is very handy when used for prediction but it has also other usage. We may have
two data sets represented by multidimensional matrices and we may want to know how
are they similar. In other words we want to know if one is a linear combination of
other. However in complex models this is almost impossible to achieve. So we would
rather know their similarity error which describes the difference. Now if we have more
of these models we can determine which are the most similar.



Chapter 3

Implementation

In this chapter we describe our implementation approach and review the results. We
consider two different approaches that we used. Segmentation techniques in combina-
tion with perceptual hashes algorithms, for single snapshot, and a solution with two
videos using least-squares calculation.

3.1 Perceptual hash approach

Firstly, we will describe our solution for image extraction using segmentation tech-
niques. One of the possible solutions to solve our problem was to use edge detection or
thresholding to extract a part of the picture we need. In this case the application could
work the way, that the user will be requested to take a snapshot, when we thinks he sees
the desired frame in his television. It is the lightweight solution to our problem when
consider the data transfer between the client and the server. The snapshot does not
have large size (in comparison to an approach that we use later). The most straight-
forward solution would be, to force the user, to take the photo containing only his
television and a very little of other information. However, that approach would be too
restrictive. The advantage we would get from this approach is, that we could skip the
object extraction and immediately apply some perceptual hash algorithm technique.
To have a better user experience, we allow the user to take a snapshot from a comfort-
able place e.g it’s sofa. Our only constraint is that the television has to cover at least
1
20

from the total space in the photo.
We want to create a solution which would work during arbitrary lightness conditions.
Therefore we do not restrict the user to take the snapshot only during a specific part
of a day or amount of a light in the room.

19



CHAPTER 3. IMPLEMENTATION 20

Figure 3.1: Data structure for testing script.

3.1.1 Data set

To determine the best solution, we needed to test our ideas against a meaningful
data set. We created the data set containing one hundred of photos, from which
fifty have dark and fifty have bright background. We also took these photos from
different distances and different angles, but with respect to the fact, that a television
covers at least 1

20
of the whole picture. To collect the photos we downloaded sample

advertisements from youtube using youtube_dl utility. Then we parsed these videos
into single frames using our frame_parser function from the utils module. We displayed
chosen frames on our laptop’s fullscreen and connected it to a television. Then we took
the photos using a mobile device. To be able to test our results, we wrote the chosen
frame numbers to text files. That way we got our data set for our future experiments.
To test our approaches effectively, we needed to create a testing script which would
automate the process. But before we did it, we needed to create an exact structure for
our data set, so the script could iterate it easily.
The data set structure is shown in Figure 3.1. For each advertisement we created a
folder with it’s name. The folder contains a folder with the same name and a folder
named frames. The frames folder contains advertisement’s frames with jpg extension.
The folder with the same name as the advertisement contains ten folders named 1,2 ...
10. Each of these folders contains img.jpg and target_frame.txt files. A snapshot is in
the img.jpg file and it’s position in the advertisement is in the target_frame.txt file. To
speed up the process of creating the structure a little, we created create_hash_structure
method. It’s arguments are a folder where to create the structure and a count of
directories to be created in each advertisement folder. We used ten as a count. It also
creates target_frame.txt in all of these folders. The functions are located in the utils
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module.

3.1.2 Testing script

Once we had our data set in the specific structure, we could create a testing script. The
idea is to iterate the advertisements folders and repeatedly apply chosen algorithm to
every snapshot. The algorithm can be passed as a command line argument. We named
the testing script screen_detector. The first CLI argument is a source folder with the
data structure described above. Before running the algorithm, the script creates a
destination folder where it will save extracted pictures. It is created in cwd/src/screen
_detector/ directory, where cwd is the current working directory. If the folder exists
and is not empty, we clean it’s content. If the second argument is passed to the script,
we pass it as the algorithm name otherwise we choose a default algorithm and run the
tests. The third argument which can be passed is a perceptual hash algorithm. The
options are d for dHash, a for aHash and the default perceptual hash used is pHash.
All the testing stuff is handled by a class called ScreenDetector which is located in the
screen_detector.py file.
The script invokes find_screen method which only argument is a recognition technique
to be used. Simplified method body is shown below. In it’s beginning we first initialize
error variable to zero. Then we iterate all the img.jpg files. For every file we also read
it’s position in the advertising and use it to load the original frame from the frames
folder. To perform this we wrote _get _original _image _data method which returns
a dictionary containing a position in the advertisement and a snapshot image read by
the imread opencv method.
To find the snapshot position in the advertisement, we first create a perceptual hash
from the snapshot image (img.jpg) and save it into hash_original property. To get the
hash we use a_hash, d_hash and p_hash functions from the hashes module we wrote.
They are used in the _get_original_hash method which has an image as an argument
and returns a hash from that image. We also set convert flag to False, to do not use
image as a path, but as a real source in the perceptual hash methods.
In _call _recognition _method we call one of the image extraction methods. After the
chosen method is finished, we have the best extracted image saved in the best_image
property. We will introduce the recognition methods later in Section 3.1.4.
In _get _position_accuracy method we iterate a fixed amount of the original frames
before and after the img.jpg file in the advertising. We set the value to be 50, so
we iterate 50 frames before and after the desired frame. These are the frames from
the frames directory. For all these files, we create a perceptual hash and compare it
with the hash for img.jpg file using compare_hashes function from the hashes module.
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We choose the frame with the least difference from the snapshot image (img.jpg) and
return it’s absolute distance from the correct position. The correct position is loaded
from the (target_frame.txt) file. After we get the accuracy, we increment the error
variable. We also add accuracy to stats dictionary which keys are the advertisements
names postfixed with an underscore and the number of the snapshot. In our case the
number is in range from one to ten. It is because for each advertising we have ten
snapshots.
Finally, we call _put_stats_into_file and create_hist methods. The first method saves
the results in the cwd/src/results/results.txt file using the stats property values and the
second creates a histogram in the cwd/src/results/histogram.png file. The histogram
describes the distances from the original frame. These two methods give as quite a
good view about the algorithm accuracy before it’s usage in the application. In the
end of the method, we divide the error variable by the length of the stats and return
that value as an average error.
To check only the success of extracting the television, we looked manually at the images
in the destination folder (cwd/src/screen_detector). This could of course be done by
remembering all the corner points of the television in a specific file and perform other
checks. However, to create the data set it would take much longer. We first needed
to know if the approach had sense to be used in the application, so this solution was
enough for us. We could also iterate all the frames, when finding the best hash score,
but it would make our testing script run longer. Our main aim in this stage was to find
out if the solution makes sense therefore iterating only fifty frames was both sufficient
and quick.

1 def find_screen(self, method):

2 self._clean_or_create_dest_dir()

3 error = 0

4 os.chdir(self.source)

5

6 for advertising in os.listdir(os.getcwd()):

7 os.chdir(advertising)

8 os.chdir(advertising)

9 for sample in os.listdir(os.getcwd()):

10 self.best_score = 1

11 os.chdir(sample)

12 image_name = ... # here we combine advertisement and sample names

13

14 # Read and convert into grayscale

15 img = cv2.imread(’img.jpg’, 0)

16 image_data = self._get_original_image_data()
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17 self.hash_original = self._get_original_hash(image_data[’img’])

18 self._call_recognition_method(img, method)

19

20 cv2.imwrite(os.path.join(self.dest, image_name), self.best_image)

21 accuracy_error = self._get_position_accuracy(image_data[’position’])

22 error += accuracy_error

23 self.stats[image_name] = accuracy_error

24

25 os.chdir(’../’)

26 os.chdir(’../’)

27 os.chdir(’../’)

28

29 average_error = float(error) / len(self.stats)
30 y_max = self._put_stats_into_file(average_error)

31 self._create_hist(y_max)

32 return average_error

find_screen

3.1.3 Extracting contours

Before we describe approaches, that we used in our work, we have to explain contours
extraction. We use it in the end of every method called by the _call _recognition
_method which applies chosen segmentation technique. After applying segmentation
technique, we need to extract the television from the picture. Opencv offers findCon-
tours method. The method takes the binary image as it’s first argument, but it also
modifies that image. To preserve the binary image we can copy it. Next two parame-
ters are a retrieval structure and an approximation method. Their description can be
found in opencv documentation [11]. The method finds all contours in the image. We
are interested only in one contour (the television contour), so we sort the contours by
their area size and pick only the four largest. Then we find a perimeter of the current
contour using opencv arcLength method. We use it to approximate a polygonal curve
with the given accuracy value. This is performed by opencv approxPolyDP method.
If the contour has more than four edges, we expect to be a television in it. Then we
check if it is at least 1

20
from the total area in the original image. If the condition is

met, we use given perceptual hash algorithm to determine, if it is more similar to the
original picture than the previous best extracted picture (contour). If it is, we set it to
be the best extracted picture (self.best_image) for the currently processed image. The
_find_contours method code is shown below.
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1 def _find_contours(self, img, filtered):

2 _, cnts, _ = cv2.findContours(filtered, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

3 cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:4]

4

5 for contour in cnts:

6 perimeter = cv2.arcLength(contour, True)

7 approx = cv2.approxPolyDP(contour, 0.04 ∗ perimeter, True)

8

9 if len(approx) >= 4:

10 x, y, w, h = cv2.boundingRect(approx)

11 if (self._is_big_enough(img, w, h)):

12 extract = img[y:y+h, x:x+w]

13 if (self._has_best_score(extract)):

14 self.best_image = extract

_find_contours

3.1.4 Approaches

We have skipped the _call _recognition _method description. The function calls next
function based on the method which it gets as a parameter. We will shortly cover the
idea of the methods it can call.

Canny edge detection

The first approach was the Canny edge detection technique. The idea was straight-
forward. The television has a rectangular shape so we expected, that after the edge
detection applied, there would be a continuous rectangle. The solution worked when
tested against pictures with significant contrast between a television’s display and a
background. However, when applied to more images we got non applicable results.
The biggest problem was that even the small gap in a rectangular outline, made it
impossible to extract television area as a contour. The gap usually happened when
the color at the edge of the frame was similar to the color of the television frame. The
usage of more filters or smoothing also did not improved the results.
To perform edge detection we used Canny() function from the opencv library. The
function takes image and two thresholds (described earlier in the chapter one) as it’s
arguments. We were inspired by Adrian Rosebrock’s article [2], to determine these
threshold values for an arbitrary picture. We set variable sigma to 0.33 and calculated
median intensity for the given picture using median method from numpy library. Then
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we set the threshold based on these values as described in Rosebrock’s article [2]. In
the end we call _find_contours method to find contours and pick the best image from
them.

1 def _canny_edge(self, img):

2 sigma = 0.33

3 med = np.median(img)

4 l_bound = int(max(0, (1.0 − sigma) ∗ med))

5 u_bound = int(min(255, (1.0 + sigma) ∗ med))

6 canny = cv2.Canny(img, l_bound, u_bound)

7 self._find_contours(img, canny)

_canny_edge

Thresholdings

Next we have tried thresholding techniques. The main advantage is that we could
extract the contours easier. It does not make sense to use global thresholding when
looking for a general solution, so we tried the Otsu’s technique. We get significantly
better results compared to non working edge detection. We used opencv threshold
method with OTSU’s flag and we blurred the image using the Gaussian kernel.

1 def _otsu(self, img):

2 blur = cv2.GaussianBlur(img, (5, 5), 0)

3 ret, thresh = cv2.threshold(blur, 0, 255,

4 cv2.THRESH_BINARY+cv2.THRESH_OTSU)

5 self._find_contours(img, thresh)

_otsu

We have also tried an adaptive thresholding technique, but it did not gave us very good
results. The only difference to _otsu method is that we have used adaptiveThreshold
function withADAPTIVE_THRESH_MEAN _C andADAPTIVE_THRESH_GAUSSIAN
_C flags. On the other hand, the adaptive thresholding was still better than the edge
detection approach. Finally, we tried an approach which iterates the list of numbers
representing chosen global thresholds. The used thresholds values were 50, 70, 90, 110,
130, 150, 170, 190 and 210. So what we did was a global thresholding for each value
and then we picked the best result. The best result was again determined by chosen
perceptual hash algorithm. We named this approach an iterative solution.
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3.1.5 Observation

The best results gave us our iterative solution in combination with the pHash algorithm.
Average error was 11.68 frames (maximum error could be 50 because we iterated fifty
frames before and after the desired frame). When we considered images with well
extracted television, we got 10.94 frames error. The second best results gave us the
Otsu’s method in combination with the dHash. We had 14.14 error on all frames and
13.31 on only well extracted frames. When we considered only extraction success,
the best approach was the Otsu’s method with the aHash. We got 89 well extracted
pictures and only 11 went wrong. When using the iterative approach, the smallest
extraction error gave us the aHash also. It was 15 wrong images. The extraction worked
much better for images with a dark background. Using the pHash with the iterative
method we got 15 wrong extracted images from 50 images with bright background and
only 2 wrong extracted from 50 images with dark background. Adaptive thresholding
worked best with the dHash using ADAPTIVE_THRESH_MEAN flag. The error
was 18.8 frames error. Using the Canny edge detection we could not even extract
the television. After all these experiments with the segmentation techniques and the
perceptual hashes, we found out that the accuracy we got was not good enough for the
further usage. So we had to look for more precise approach.

3.1.6 Histograms and results

More results can be found on attached DVD. Table 3.1 shows the most relevant. The
error axis shows distance from the desired position and the advertising count axis
shows number of frames with this error.
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Results
Method Error Bad extracted

Iterate and pHash 11.68 17
Iterate and aHash 13.71 15
Iterate and dHash 12.04 16

Iterate and pHash (only good) 10.94 0
Otsu and pHash 17.68 14
Otsu and aHash 17.63 11
Otsu and dHash 14.14 12

Otsu and dHash (only good) 13.31 0
Adaptive mean and dHash (only good) 18.8 44

Table 3.1: Results for segmenation and percuptual hashes approach.

Figure 3.2: Iterative and pHash. Error was 11.68 frames.

Figure 3.3: Otsu and dHash. Error was 14.14 frames.
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Figure 3.4: Results for frames with bright background.

Figure 3.5: Results for frames with dark background.



CHAPTER 3. IMPLEMENTATION 29

3.2 Regression approach

After the basic segmentation techniques did not gave us enough accuracy, we decided
to try a different approach. Until now we expected the user to take a snapshot when
he thinks he sees the desired frame. Now we will expect the user to send a whole
video with an original advertisement, containing a piece of a previous and a next
advertisement. We also expect the user, to send the time he pressed a button, detecting
the desired frame occurrence. The new approach idea is to detect a position of the
original advertisement in the user’s video. From this information we can easily compute
a user’s accuracy error.
To solve the problem we will imagine both videos as matrices. We know that a video
consist of a number of frames. Let’s call this number n for the original video which we
will call O. Also let m be the count of frames in the video taken by the user and let’s
call this video U . Every row in the matrix represents a single frame. It is important
to wisely chose columns properties. We will later chose them as a frame properties.
For now, let’s think of R, G and B properties, from the RGB color space, for every
column.
We expect that the original video (O) is shorter than the video taken by the user
(U) because the user’s video contains piece from a previous and a next advertisement.
Of course, it might have more frames because the fps (frames per second) value may
vary, but using fps values for both the videos, we can edit the videos to the shape we
want. Then we iterate all the possible beginnings of O in U . So we take n frames
from the current beginning in the video U and make matrix from them. Let’s call the
matrix C. We also have matrix for video O of the same rows and columns size. Then
we use least-squares calculation (mentioned in Section 2.2.2) to determine the linear
coefficients matrix (X), such that the value ((CX) − O)2, which represents an error,
is the lowest. In other words, we try to map C matrix to O the best we can using X.
The position which gave us the smallest error is the searched position.

3.2.1 Data set and testing script

Again we needed to create a data set to test the approach accuracy. We also needed
to create another testing script. We collected one hundred user videos, taken from
four mobile devices, during different lightness conditions and distances, keeping the
condition, that the television covers at least 1

20
in the screen. We collected them from

three different televisions and one laptop. As the original videos, we used the videos
from youtube. The folder structure we made has the following format. We created
a couple of directories named by a chosen advertisement. In each of these folders we
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Figure 3.6: Data structure for testing script.

created couple of folders for users videos. They are named the same as the current ad-
vertisement postfixed with an identifier. The folder also contains original advertising
video, in the mp4 format, named same as the folder. All the folders with users videos,
contain a user video advertisement, in the mp4 format, named same as the folder they
are placed in. They also contain a text file with the same name as the user video. The
file contains two integers on the first line separated by a dash. The numbers represent
the position of the original video in the user video. The structure is shown in Figure
3.6. The testing script structure is very similar to the testing script used for the previ-
ous approach. We therefore only explain how it works. The script again expect exact
folder structure that we have described. Then it iterates all the advertisements and
for each it computes the accuracy. In the end, it saves a histogram and a text file with
results into a destination folder.
The drawback of this approach is, that it is much slower and more CPU demanding.
It takes about twenty minutes to run the testing script for one hundred videos on a
basic laptop. We have therefore rewrote the script a little to create more processes.
We could then run it on a remote server with more CPUs. We used a python multipro-
cessing module to run an evaluating function as a new process for every advertisement.
On a personal computer it is however safer to run one process version because the
multiprocess version can freeze the computer until it is finished.

3.2.2 Choosing properties and sections usage

To get the mapping error we use numpy.linalg.lstsq function. It’s second return ar-
gument is a sum of residuals. We provide two matrices (multi dimensional arrays) as
it’s arguments. Our first idea was to chose red, green and blue components. For every



CHAPTER 3. IMPLEMENTATION 31

frames we took a mean of these components which gave us three columns in a matrix
and we added next column of ones. Why we add one to every row is explained in the
Section 2.2.1.

Figure 3.7: Video detection using R,G,B values. 24 videos were mapped with an error
bigger than twenty frames. 66 videos were mapped with an error lower than 5 frames.

When we first run the script using R, G, B values we could map 76 videos with an
error less than 20 frames. We could map 66 videos with an error less than 5 frames.
We considered the count of the videos mapped with an error bigger than 20 frames to
be unsatisfying.
Firstly, we found out that there might be a problem with outliers (values which are far
away from a regression line when compared to the rest of data). These values occurs
when the user shakes the video or there is some sudden change in lightness. To solve
this we determined to map videos after sections. Consider an original video of length
700 frames and an user video of length 900 frames. For simplicity we would omit FPS
correction. Using mapping of the whole video we would have 200 possible beginnings
of the original video in the user video and would map 700 frames to 700 frames for each
possible beginning. Now imagine we would map the videos after parts. Let one part
be 100 frames. Then we would again iterate all the possible beginnings but instead of
mapping all the frames at once we would map first 100 frames of the original video to
the first 100 frames of the user video from the current position. Then we map second
100 frames and so on until we reach the end. For each couple of mapped frames, we get
some mapping error. In the end, we sum up these errors what give us a final error for
all sections. If some unexpected event, for example shaking, happens in some part of
the video, it reflects only one or two sections. Figure 3.9 shows the idea of dividing into
sections. After applying this strategy the results got better. Only seven videos were
mapped with an error bigger than twenty frames and 89 were mapped with an error
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less than five frames. However, there were still videos where we obtained wrong results.

Figure 3.8: Video detection using R,G,B values with division to sections applied. Only
7 videos were mapped with an error bigger than twenty frames and 89 videos were
mapped with an error less than five frames.

Red, green and blue channels seemed to be prone to wrong mapping. When looking
at a linear combination matrix determined by the OLS the combination coefficients
seemed unexpected. It was difficult to determine reasonable relationship between the
channels. After trying various normalisations on these channels and not getting better
results we determined to try other colour spaces. The next candidates were HSL and
HSV. When mapped with HSL or HSV properties we got better results. Then we
have started to experiment with selecting the best mapping distance (the length of
the sections). We found 70 frames to be the best length for our purpose. There was
no big difference between 30-80 frames. We then tried various combinations of color
properties.
We were sceptic about the hue property because of it’s shape. The hue is circular so the
distance between the values is meaningful unless we cross origin (0 angles). Consider
hue values to be 50 and 70 for two frames. Then their distance is 20 frames. But if
we chose two frames which hue mean is 10 and 350 (we consider the hue to be in a
range from 0 to 359) then their distance should be only 20, but in fact is 340. This is
why we have though that when we substitute the hue with some of it’s transformation,
we could get even better results. We have tried using sin and cos transformations.
However, the results did not improved. Soon we found out that using sin or cos we
just move the hue property problem to different position. On one hand we have nice
transit between end points (0, 359), but from sin and cos nature opposite values, which
should have the greatest distance, are considered the same. When we found out that
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sin and cos do not improve the results, we have tried to divide the hue into three values.
First described distance from 0 point in the hue, second distance from 120 point and
the last distance from 240. We have combined these properties with the saturation
and the value/lightness property from HSV or HSL. Actually, this solution gave as the
worst results, what was quite unexpected. The last boost we tried, was usage of a
kernel regression instead of the linear. However, the computation was even longer and
the results did not improved, so we dropped this approach. Finally, we have realised
that the results which we had with the hue were good enough and terminated the
experiments. The best working properties were the hue, intensity, saturation and the
value from the HSV color space. For these properties we had only three videos mapped
with an error bigger than twenty frames and 94 videos were mapped with an error
lower than five frames. Compared to the results achieved with the same properties,
but without dividing into sections, we got 13 frames mapped with an error more than
twenty frames.

Figure 3.9: Figure shows a process of mapping two videos when using dividing into
sections. Rectangles represent these sections and dashed lines represents mapping.
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3.2.3 Algorithm integration

This section deals with integrating the algorithm into the application. The algorithm
code with a tester script code is located on the server. We provide two methods for
later calculations. They are resolve and preprocess methods. The first method gets
an original video and an output folder as it’s arguments. It decomposes the video into
JSON data, that it stores in the output folder. The JSON contains fps field and props
field. In the fps field there is a single float which represents the fps rate. In the props
field there is a matrix containing the video properties used for later mapping. We get
those properties by iterating the frames and for each frame taking the mean of it’s
pixels properties.
More complicated work is performed by the resolve function. It gets an user video,
path to the original preprocessed video and a string array of times as it’s arguments.
The times represents the times when the user pressed the button detecting the desired
frame. We allow to pass more values in this array because the user may potentially
label more than one frame. What we do in this method, is that we get the preprocessed
JSON file. Then we process our current video the same way as we did for the original
video. We have to normalise these videos because they potentially differ in the fps
rate. We rescale one of those videos so both the videos behave like they had same fps
rate. If the video being rescaled had lower fps rate than the other video we duplicate
some frames, otherwise we remove some. Then we try all the possible positions of the
original video in the user video, pick the best position and calculate distances from the
desired position for each time and send those values back.
In this point, we have all our basic tools ready to be used in the application. We have
also created REST like API to be used by mobile devices to communicate with the
server. Our functions can be used the way, that before the user has a possibility to
send the videos to the server, we preprocess all the original videos. Later we call resolve
on each valid request we get. We also set some time intervals when user can or can
not post videos. The application expects many requests in the same time so we have
integrated Celery in it. The Celery is an asynchronous task queue job manager. Using
it we can process many request in same time and after they all ends we have results
stored in the database. For testing purposes we have only used SQLite database.
Django REST Framework was used on the server. Details of these approaches are
beyond the scope of the thesis.



CHAPTER 3. IMPLEMENTATION 35

3.2.4 Histograms and results

The best results we got when combining hue, saturation and value properties from the
HSV color space and the intensity. We set sections to be 70 frames. Other results can
be found in the Table 3.2. We reduced the scale of an error from fifty to twenty frames
when compared to the segmentation technique approach. We consider every video
with an error more than twenty frames to be mapped absolutely wrong. Therefore
we wanted all the videos with the error more that twenty frames to have the same
weights. Average error was calculated as a maximum distance from start and end
values of an original video in a user video, compared to values which were determined
by our algorithm. So for example if the original video occurred from 20 to 700 frame
in the user video and our algorithm determined it to be from 15 to 702 frame, then
the maximum distance would be 5 frames. This value is divided by two and rounded
down. We divide it by two because usually there was some fps rounding error and even
if the videos were mapped properly, the beginning and the end positions determined
by the algorithm, form a little shorter or a little longer interval than the original video
does. Therefore the error varies as we iterate this interval. It is the smallest it the
middle and the largest at the interval edges. The example we used above shows this
situation. Because this small rounding error happens in many cases and we do not
have many videos mapped wrong, we can divide the maximum distance by two, so the
error should better reflect the reality.
Below is a comparison of the best results for the segmentation and the regression
approach with the same error scale set to twenty frames. The regression approach
gave us an average error of 1.81 frames while the iterative solution with pHash had the
error 10.6 frames for the same scale. We run the iterative solution on the whole video
length, divided the errors by two and then rounded down so it can be fully comparable
with the regression approach. Both histograms are made for data set of one hundred
samples. From these values it is clear, that the regression approach, focused on the
video in video detection, is much more accurate than our first approach.
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Figure 3.10: Best image processing approach results with an error scale of twenty
frames. All frames in videos were iterated (not only 50), the error was divided by two
and rounded down to be fully comparable with the linear regression approach. Average
error was 10.6 frames.

Figure 3.11: Best linear regression approach results. Average error was 1.81 frames.
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Results
Properties Average error
h, i, s, v 1.81

r, g, b, s, v 1.92
cos(h), i, s, l 2.01

i, s, v 2.25
h, i, s, l 2.28
h, s, l 2.29

cos(h), i, s, v 2.29
cos(h), s, v 2.37
cos(h), s, l 2.42
h, s, v 2.47
r, g, b 2.77

sin(h), cos(h), s, v 3.1
sin(h), s, v 3.19

s, l 3.5
s, v 3.63

h1, h2, h3, s, v (abs) 18.33
h1, h2, h3, s, v 19.02

Table 3.2: Results for the linear regression approach.

Figure 3.12: H,I,S,V without dividing into sections. Average error was 4.35 frames.



Conclusion

We have found that applying basic image processing techniques like thresholding and
edge detection, in combination with perceptual hashes, might not always be the best
approach for recognition purposes. Mostly in the cases where accuracy is the most
important aspect. From our experiments, it seems that using Canny edge detection
for extraction of an object, during arbitrary conditions, almost always leads to failure.
On the other hand, thresholding gave us better results. Especially Otsu’s and self con-
structed iterative approach. It may be useful to try iterative method with perceptual
hash to locate a desired object.
After obtaining unsatisfying results with segmentation techniques, we have tried to
solve the problem using ordinary least-squares calculation. Even if linear regression is
the basic machine learning technique, we got better results with it. We have shown
that using only red, green and blue channels might not be desirable and that the al-
ternative models (HSL, HSV), and more models combinations, are better for matching
purposes. We have also found that division into sections boosted the accuracy.
We believe that a summary of the approaches we tried, with their accuracy results,
can be used as a basis for similar works. Details about various combinations of color
properties, can be handy when choosing correct color properties for arbitrary problem
using regression. Division into sections may also be a useful approach to try later
because it can improve the linear regression results.
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Appendix A

Other chosen histograms for image processing approach. Scale for an error is from zero
to fifty frames. Advertising count is a number of frames with the given error. Good flag
means, that the error was measured only on images with well extracted television.

Figure 3.13: Error was 10.94.

Figure 3.14: Error was 13.31.
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Figure 3.15: Error was 16.04.

Figure 3.16: Error was 12.24.

Figure 3.17: Error was 18.8.



Appendix B

Other chosen histograms for linear regression approach. Scale for an average error is
from zero to twenty frames. Every error which was more than twenty frames was set to
be twenty. Ad count is a count of an advertisements with the given average error.

Figure 3.18: Average error was 1.92 frames.

Figure 3.19: Average error was 2.25 frames.
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Figure 3.20: Average error was 2.47 frames.

Figure 3.21: Average error was 2.77 frames.

Figure 3.22: Average error was 3.1 frames.



Appendix C

Attached DVD contains application source code for the perceptual hash approach, data
sets and results for both approaches.

45


