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Abstract

This thesis is a part of the research on various aspects of the notion of information.
Supplementary information (advice) may reduce the complexity of solving a problem
in some cases. The notion of usefulness of supplementary information was studied in
the finite automata setting and in the deterministic push-down automata setting. In
this thesis, we study the possibility of exploiting supplementary information in finite
transducers setting. The notion of advice is formalized as a regular language which
the transducer transforms to a different regular language. We consider the advice to
be useful if the transducer requires fewer states than it would require to transform the
language of all strings over the input alphabet. This approach can be used with either
deterministic or nondeterministic transducer as a computational model. We define
families of languages for which useful advice exists and show particular languages
that belong to these families. We compare these families to the families defined by
decomposability of automata studied earlier and study their closure properties. We
show that some modifications of the advice can affect its usefulness. We also study the
families defined by a fixed advice language.

Keywords: supplementary information, transducers, state complexity, regular lan-
guages
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Abstrakt

Táto práca je súčasťou výskumu rôznych aspektov informácie. Prídavná informácia
(rada) môže v niektorých prípadoch zjednodušiť riešenie problému. Koncept uži-
točnosti prídavnej informácie bol už skúmaný v súvislosti s konečnými automatmi a
deterministickými zásobníkovými automatmi. V tejto práci skúmame možnosť využitia
dodatočnej informácie v súvislosti s prekladačmi. Prídavná informácia formalizujeme
ako regulárny jazyk, ktorý prekladač transformuje na iný jazyk. Informáciu považujeme
za užitočnú ak nový prekladač bude potrebovať menej stavov než by bolo potrebných na
transformovanie jazyka všetkých slov nad danou abecedou. Tento prístup je použiteľný
pre deterministické aj nedeterministické prekladače. V práci definujeme triedy jazykov,
pre ktoré existuje užitočná rada a ukazujeme konkrétne jazyky patriace do týchto tried.
Porovnávame tieto triedy s už skúmanými triedami určenými rozložiteľnosťou automa-
tov a skúmame ich uzáverové vlastnosti. Ukazujeme, ako niektoré modifikácie môžu
ovplyvniť užitočnosť rady. Skúmame tiež triedy jazykov, pre ktoré je radou jeden
konkrétny jazyk.

Kľúčové slová: prídavná informácia, prekladače, stavová zložitosť, regulárne jayzky
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Introduction

The notion of supplementary information and its usefulness has been studied in the
setting of deterministic finite automata [1], nondeterministic finite automata [7] and
deterministic pushdown automata [3]. In these settings, advice was formalized as a
regular language Ladv. In a computation with advice, it was assumed that every input
word shall belong to the advice language. Without any supplementary information,
any word can appear as input. Standard computations without advice are therefore
equivalent to computations with the advice Σ∗L. In finite automata setting, the advice
Ladv was considered useful for the language L if the minimal automaton accepting the
language L using the advice required fewer states than the minimal automaton accept-
ing L without advice. Moreover, the state complexity of Ladv was required to be lower
than the state complexity of L. This approach is equivalent to finding two simpler
regular languages such that L1 ∩L2 = L. However, the intersection operation is rather
limiting. Most importantly, it must hold that L ⊆ Ladv. For example, the language
{a4} can not be used as advice for the language {a8}, although they can be intuitively
seen as similar.
Finite state transducer is a computational model which can be viewed as a finite state
automaton augmented with an output function. Besides intersection with a regular
language, transducers can also realize homomorphisms and inverse homomorphisms.
[6] The possibility of using them to transform the advice was already studied [8]. In
this thesis, we shall study the use of transducers in a different way. Since they can
realize an intersection with a regular language, it can be easily seen that for every
regular language L there is a transducer M that can transform Σ∗L into L. We shall
consider the language Ladv to be a useful supplementary information if a transducer
that transforms it to L having fewer states than the one with no advice exists.
First, we shall provide necessary preliminaries and definitions. Next, we shall show par-
ticular examples of languages for which useful advice exists and for which it does not.
We shall also study the relationship between the families LDTA,LNTA, deterministi-
cally decomposable and nondeterministically decomposable languages. Then, we shall
study closure properties of the families LDTA and LNTA. Finally, we shall study the
families generated by a fixed advice language and the effects of advice modifications.
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Chapter 1

Preliminaries

In this chapter, we shall provide necessary definitions and present the relevant results
in the area of automata and language decompositions. We shall also present known
techniques for calculating the minimal number of states necessary to recognize a regular
language by a deterministic and a nondeterministic finite state automaton. However, it
is assumed that the reader already has some elementary knowledge of automata theory.

1.1 Definitions

In this section, we shall present formal definitions of models and concepts used through-
out this thesis.

Transducers are models of computation used to transform languages. In general, they
can be viewed as finite automata augmented by an output function. The models we
shall use are modifications of the sequential transducer defined by Ginsburg. [2]

Definition 1. A deterministic sequential transducer is a 6-tuple
M = (K,Σ1,Σ2, H, q0, F ) where K is a finite set of states, Σ1 is the input alphabet,
Σ2 is the output alphabet, q0 is the initial state, F is the set of accepting states and
H ⊆ K × (Σ1 ∪ {ε})× (Σ2 ∪ {ε})×K is a transition relation. H must also fulfil the
following conditions:

1. If (q, c1, c2, p1) ∈ H and (q, c1, c3, p2) ∈ H, then c2 = c3 and p1 = p2

2. If (q, ε, c1, p1) ∈ H and (q, c2, c3, p2) ∈ H, then c2 = ε, c1 = c3 and p1 = p2

3. There does not exist a sequence of states q1, . . . , qn and a sequence of symbols
c1, . . . , cn−1 such that q1 ∈ F, qn ∈ F and ∀i ∈ {1, . . . n− 1} : (qi, ε, ci, qi+1) ∈ H

If ε can be read in some state, no alphabet symbol may be read in this state.
Moreover, for every state and input symbol, the next state and the output are

2



CHAPTER 1. PRELIMINARIES 3

uniquely determined. This is comparable to the way determinism is achieved for
deterministic pushdown automata, which is described in [6]. Without rules of the
form (q, ε, c, p), it would be impossible to produce an output word longer than the
input word. The condition 3. is required to guarantee there shall be at most one
accepting computation for any input word. Due to this condition, it can be assumed
that the computation shall halt once the entire input is read and an accepting state is
reached. At most one symbol can be read and written at a time in order to achieve
state complexity comparable to that of finite state automata.

Definition 2. A configuration of a transducer is a 3-tuple (q, u, v), where q is a state,
u ∈ Σ∗1 is the remaining input and v ∈ Σ∗2 is the content of the output tape.

Definition 3. A computation step of a transducer is a relation ` on the set of
configurations such that (q1, cu, v) ` (q2, u, vd) iff (q1, c, d, q2) ∈ H.

We shall also consider the nondeterministic variant of transducers.

Definition 4. A nondeterministic sequential transducer is a 6-tuple
M = (K,Σ1,Σ2, H, q0, F ) where K,Σ1,Σ2, q0 and F are interpreted the same way as
for deterministic transducers and H is a subset of K × (Σ1 ∪ {ε})× (Σ2 ∪ {ε})×K
without any further restrictions. A configuration and a computation step are defined
the same way as for deterministic transducers.

Definition 5. The image of a language L is defined as
M(L) = {w | ∃qF ∈ F ∃u ∈ L : (q0, u, ε) `∗ (qF , ε, w)}.

Notation 1. We shall denote the number of states of a transducer M by #S(M).
The same notation shall be used to denote the number of states of a finite automaton.

As noted in [6], the transducers defined this way are a normal form of transducers
with rules of the form H ⊆ K × Σ∗1 × Σ∗2 ×K. This normal form was chosen to keep
the number of states comparable to the number of states of finite automata without
limiting the model’s computational power. Thus, regular languages are closed under
sequential transduction and for every pair of regular languages L1 and L2 where
L1 6= ∅, there is a nondeterministic transducer M such that M(L1) = L2. However,
we shall show that there exist languages L1 and L2 such that L1 can not be
transformed into L2 by any deterministic transducer in Chapter 2.

The concept of supplementary information in the finite automata setting is closely
related to automata decompositions. These areas were studied by Gaži [1] and
Sádovský [7].
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Definition 6. Deterministic state complexity of a regular language L, denoted by
sc(L), is defined as min{#S(A) | L(A) = L} where A is a finite state automaton.
Nondeterministic state complexity is defined similarly and denoted by nsc(L).

Definition 7. A regular language L is decomposable if there exist languages L1 and
L2 such that L = L1 ∩ L2, sc(L1) < sc(L) and sc(L2) < sc(L).

Definition 8. A regular language L is nondeterministically decomposable if there
exist languages L1 and L2 such that L = L1 ∩ L2, nsc(L1) < nsc(L) and
nsc(L2) < nsc(L).

With advice Ladv, it can be assumed that every input shall belong to Ladv. Using a
suitable advice may allow us to construct an automaton accepting L with fewer states
than would be necessary without any advice. However, the state complexity of the
advice must also be strictly lower than the state complexity of L. It can be easily
seen that the acceptance of the language L can be simplified by some supplementary
information iff it is decomposable. In this thesis, we shall be using the supplementary
information in a different way. Given a regular language L and advice Ladv, we shall
be interested in whether there exists a simpler (in terms of state complexity)
transducer that can transform Ladv into L.

Definition 9. Transducer state complexity of language L, denoted by tsc(L), is
defined as min{#S(M) | M(Σ∗1) = L} where M is a deterministic sequential
transducer. For nondeterministic sequential transducers, state complexity of language
L is defined the same way and denoted by ntsc(L).

Next, we shall formally define the notion of usefulness of information in the sequential
transducer setting.

Definition 10. Let Ladv be a regular language. The family LD(Ladv) is defined as
LD(Ladv) = {L | sc(Ladv) < tsc(L),∃M : M is a deterministic sequential transducer,
M(Ladv) = L, |ΣLadv

| ≤ |ΣL|, #S(M) < tsc(L)} and the family LN(Ladv) is defined
as LN(Ladv) = {L | nsc(Ladv) < ntsc(L),∃M : M is a nondeterministic sequential
transducer, M(Ladv) = L, |ΣLadv

| ≤ |ΣL|, #S(M) < ntsc(L)}.

Note that we are only interested in cases where the state complexity of both the
automaton and the new transducer is strictly lower than the state complexity of the
original transducer. Any language could be used as advice for itself, but we shall
consider such advice to be trivial. Also note that the advice alphabet must not
contain more symbols than the original one does. It would also be possible to omit
this requirement. Later. we shall show that these two definitions would not be
equivalent.

Definition 11. The family LDTA is defined as LDTA = {L | ∃Ladv : L ∈ LD(Ladv)}.
The family LNTA is defined as LNTA = {L | ∃Ladv : L ∈ LN(Ladv)}.
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1.2 Previous results and existing techniques

In this section, we shall present previous results that we shall refer to later and
existing techniques for computing the state complexity of languages.

We shall use the following lemmas to study the relationship between the family LNTA

and nondeterministically decomposable languages. They are taken from the article [7].

Lemma 1. Let L be a language containing a single word w. The language L is
nondeterministically decomposable if and only if w contains at least two distinct
symbols.

Lemma 2. Let L = {akn | n ∈ N}. The language L is nondeterministically
decomposable if and only if n is not a power of a prime.

The following lemma is a corollary of the Myhill–Nerode theorem. The
Myhill–Nerode theorem itself and its proof can be found in [6].

Lemma 3. Let L be a regular language, let R be a relation on Σ∗L such that
∀u, v ∈ Σ∗L : uRv ⇔ (∀w ∈ Σ∗L : uw ∈ L⇔ vw ∈ L). Let n be the number of
equivalence classes of R. Then sc(L) = n.

The Myhill–Nerode theorem can not be used to compute the state complexity of
nondeterministic automata. The extended fooling set technique can be used instead.
The definition is taken from Palioudakis [5]. However, the lower bound of the state
complexity computed in this way is not necessarily tight.

Definition 12. An extended fooling set for language L is a set
P = {(xi, yi) | 1 ≤ i ≤ n} such that xiyi ∈ L and if i 6= j, then xiyj 6∈ L or xjyi 6∈ L.

Theorem 1. Let P be an extended fooling set for language L. Then nsc(L) ≥ |P |.

Proof. By contradiction. Let P be an extended fooling set for L, let |P | > nsc(L).
Let A be the minimal automaton accepting L. Using the pigeonhole principle, it can
be shown that there exist two distinct indices i, j such that δ(q0, xi) = δ(q0, xj) = q

for some state q. Since xiyi ∈ L and xjyj ∈ L, it must hold that xiyj ∈ L and
xjyi ∈ L. This contradicts the definition of an extended fooling set.

The following simple observation allows us to compute a lower bound of sc(L) based
on the value of nsc(L).

Lemma 4. For every regular language L, sc(L) ≥ nsc(L).

Proof. Let A = (K,Σ, δ, q0, F ) be a minimal DFA accepting L and let
A′ = (K,Σ, δ

′
, q0, F ) be an NFA. Let ∀q ∈ K ∀c ∈ Σ : δ

′
(q, c) = {δ(q, c)}. Obviously,

#S(A) = #S(A′) and L(A′) = L.



Chapter 2

Supplementary information for
transducers

In this chapter, we shall present examples of languages both in and outside of the
families LDTA and LNTA. Afterwards, we shall combine our results with existing
ones to study the relationship of families LDTA and LNTA to the families of
deterministically and nondeterministically decomposable languages. We shall also
study the effects of modifying the advice language.

2.1 Languages in LDTA

The following simple lemma allows us to use the extended fooling set technique to
reason about the state complexity of deterministic transducers.

Lemma 5. Transducer state complexity of a language is greater than or equal to its
nondeterministic state complexity.

Proof. For the sake of contradiction, let L be a regular language such that
tsc(L) < nsc(L) and let M be a transducer such that M(Σ∗1) = L. Let A be a
nondeterministic automaton such that KA = KM , q0A = q0M , FA = FM ,ΣA = Σ2 and
δA(q1, c) = q2 if and only if there is d ∈ Σ1 such that δM(q1, d) = (q2, c). The
automaton A accepts the language L and its state complexity is equal to that of the
transducer M .

Languages consisting of a single word were studied in the finite automata setting. In
the following theorem, we shall show that with transducer as a computational model,
the existence of advice depends only on the length of the word, not the number of
different symbols.

Theorem 2. If |w| ≥ 3, the singleton language L = {w} is in LDTA.

6
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Proof. Let w = c1c2 . . . cn, let P = {(c1 . . . ci, ci+1 . . . cn) | 0 ≤ i ≤ n}. Then P is a
fooling set for {w} and therefore nsc({w}) ≥ n+ 1. By Lemma 5, it also holds that
tsc({an}) ≥ n+ 1. Let Ladv = {cn}. The following diagrams show an automaton
accepting Ladv and the transducer Mnew.

q0 q1 q2

cn

c ∈ ΣL \ {cn}

c ∈ ΣL

c ∈ ΣL

Figure 2.1: The automaton accepting Ladv

q0 q1 . . . qn−1

ε, c1
ε, c2 ε, cn−1

cn, cn

Figure 2.2: The transducer Mnew

First, Mnew writes the prefix c1 . . . cn−1 to the output without reading the input at
all. Then, an accepting state is reached and the input is copied to the output. Since
the input is not empty, the computation must continue. After reading the symbol cn,
the computation shall halt in an accepting state with the word c1 . . . cn = w written
on the output tape. Thus, Mnew(Ladv) = {w}. Since #S(Mnew) = n < n+ 1 and
sc(Ladv) = 3 ≤ n < n+ 1, the advice is useful.

Theorem 3. Let Ln = {akn | k ∈ N}. If n is not a prime, Ln is in LDTA.

Proof. Since n is not a prime, there exist integers p1 and p2 such that n = p1p2. Let
Ladv = {akp1 | k ∈ N}. The transducer Mnew is shown in the diagram.

q1 q2 . . . qp2
a,a a,a a,a

a,a

Figure 2.3: The transducer Mnew that realizes the intersection of Ladv and {akp2 | k ∈
N}.
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It can be easily seen that the state complexity of both the advice language and the
new transducer is lower than the state complexity of the original transducer.

2.2 Languages not in LDTA

We shall use the following lemma to reason about the cardinality and finiteness of the
advice language.

Lemma 6. If L ∈ LDTA and Mnew(Ladv) = L, the cardinality of Ladv must be greater
than or equal to the cardinality of L.

Proof. For every word w in L, there must exist a word v in Ladv such that
Mnew(v) = w. Since Mnew is deterministic, there is only one possible accepting run
for every word. Thus, Mnew represents a surjective mapping.

For every deterministic transducer, there exists an equivalent nondeterministic
transducer. It can be easily seen that there exists a nondeterministic transducer M1

such that M({ε}) = {ε, a}. By Lemma 6, no deterministic transducer M2 such that
M2({ε}) = {ε, a} exists. Thus, deterministic transducers are a less powerful
computational model.
In the following theorem, we shall prove that if the state complexity of a language is
already low enough, no useful advice can exist.

Theorem 4. If tsc(L) ≤ 2, L is not in LDTA.

Proof. The theorem trivially holds when tsc(L) = 1. If tsc(L) = 2, then there must
exist a transducer Mnew such that #S(Mnew) = 1 and a regular language Ladv such
that sc(Ladv) = 1 and Mnew(Ladv) = L. The only languages with deterministic state
complexity equal to 1 are Σ∗1 and ∅. It holds that Mnew(∅) = ∅. Thus, it must also
hold that L = ∅. However, tsc(∅) = 1. If Ladv = Σ∗1, a contradiction with the
assumption that tsc(L) = 2 is reached as well.

Corollary 1. The languages Σ∗2,Σ
+
2 , ∅, {ε} and {a} are not in LDTA.

We have shown that the languages of unary-coded multiples of composite numbers
are in the family LDTA. Now, we shall show that this does not hold for the multiples
of primes.

Theorem 5. Let Lp = {akp | k ∈ N} where p is a prime. Then L is not in LDTA.

Proof. The language Ladv must contain some word ax such that x ≥ p by Lemma 6
and the fact that Lp is infinite. Since tsc(Lp) = p, the automaton that accepts Ladv

must have fewer than p states. Thus, a part of ax of length r1 can be pumped and
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∀k ∈ N : ax+kr1 ∈ Ladv. Since Mnew must also have fewer than p states, a cycle where
r2 symbols are read and r3 symbols are written must be reached during the run on
ax; 0 < r2 < p, 0 < r3 < p. Let w = ax+r1r2 . During the run on w, the cycle must be
reached additional r1 times and the output shall be aqp+r1r3 for some q. Both r1 and
r3 are less than p and p is a prime, therefore p - r1r3 and Lp can not contain aqp+r1r3 .
If n ≥ 2, let Ladv = {akpn−1 | k ∈ N}. Then, sc(Ladv) = pn−1. The transducer Mnew is
shown in the diagram.

q1 q2 . . . qp
a,a ε,a ε,a

ε,a

Figure 2.4: The transducer Mnew that applies the homomorphism h(a) = ap.

Note that Lpn = {akpn | k ∈ N} was shown to be nondeterminstically undecomposable
for arbitrary prime p and positive integer n by Rovan and Sádovský [7]. Also note
that we assumed that the alphabet of Ladv contained only one symbol. However,
using a larger alphabet would allow us to find useful advice (if p ≥ 3).
Let Ladv = {ab}∗. The transducer Mnew is shown in the following diagram.

q1 q2 . . . qp−1

a,a

b,a ε,a ε,a

ε,a

Figure 2.5: The transducer Mnew that applies the homomorphism h(a) = a, h(b) =

ap−1.

Clearly Mnew(Ladv) = Lp. Since tsc(L) = p ≥ 3, sc(Ladv) = 2 < 3 ≤ tsc(L). It also
holds that #S(Mnew) < tsc(L). Thus, Ladv would be useful advice if not for the fact
that |ΣLadv

| > |ΣLp|,

2.3 Languages in LNTA

In this section, we shall study the nondeterministic transducer state complexity and
particular languages in the family LNTA.
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In the following lemma, we shall show that nondeterministic state complexity of a
regular language is equal to its nondeterministic transducer state complexity.

Lemma 7. If L is a regular language, then nsc(L) = ntsc(L).

Proof. If A = (K,Σ, δ, q0, F ) is a minimal NFA such that L(A) = L and
M = (K,Σ,Σ, H, q0, F ) where H = {(q, c, c, p) | q, p ∈ K, c ∈ Σ ∪ {ε}, p ∈ δ(q, c), then
M(Σ∗) = L. Therefore nsc(L) ≥ ntsc(L) for every regular language L.
For the sake of contradiction, let M = (K,Σ1,Σ, H, q0, F ) be such a transducer that
M(Σ∗1) = L and #S(M) < nsc(L). Then a NFA A = (K,Σ, δ, q0, F ) where
∀p, q ∈ K∀c ∈ Σ ∪ {ε} : p ∈ δ(q, c)⇔ ∃c′ ∈ Σ1 ∪ {ε} : (q, c′, c, p) ∈ H accepts the
language L and at the same time, #S(A) < nsc(L) holds, which is a
contradiction.

In the following theorems, we shall show that the languages consisting of one word of
length at least 2 and the languages of unary-coded multiples of composite numbers
belong to the family LNTA.

Theorem 6. Let L = {w}, let |w| ≥ 2. Then L ∈ LNTA.

Proof. Let w = a1 . . . an for symbols a1, . . . , an. Let P =

{(a1 . . . ak, ak+1 . . . an) | 0 ≤ k ≤ n}. It can be easily seen that P is an extended
fooling set for L and therefore ntsc(L) ≥ n+ 1. Let Ladv = {an}. Clearly
nsc(Ladv) = 2. The transducer Mnew is shown in the following diagram.

q1 q2 . . . qn
ε, a1 ε, a2 ε, an−1

an, an

Figure 2.6: The transducer Mnew that adds a prefix to the input word

Since #S(Mnew) = n and Mnew(Ladv) = L, L ∈ LNTA.

Theorem 7. Let n be a composite number, let L = {akn | k ∈ N}. Then L ∈ LNTA.

Proof. The proof is analogous to the proof of Theorem 3.

2.4 Languages not in LNTA

In this section, we shall show examples of languages not in the family LNTA.

Theorem 8. If nsc(L) ≤ 2, then L is not in LNTA.

Proof. The proof is analogous to the proof of Theorem 4.
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Theorem 9. Let Lp = {akp | k ∈ N} where p is a prime. Then Lp is not in LNTA.

Proof. The proof is similar to the proof of Theorem 5. For the sake of contradiction,
let Ladv be a useful advice language. If the transducer contains a reachable cycle
where ε is read and ar1 (1 ≤ r1 < p) is written to the output tape, ar1 can be written
to the output tape one more time and the resulting output shall no longer belong to
Lp. Now, let us suppose that Mnew contains no ε-cycle. If Ladv is infinite, the
automaton for Ladv must contain a cycle. The transducer Mnew has to contain some
cycle as well, otherwise the output language would be finite. Thus, there exist
constants s and r2 such that ∀k ∈ N : as+kr2 ∈ Ladv and constants r3 and r4 such that
Mnew contains a cycle where r3 symbols are read and r4 symbols are written. It must
also hold that 1 ≤ r2, r3, r4 < p and that there is some n such that anp ∈Mnew(as).
During the run on as+r2r3 , Mnew can enter the cycle additional r2 times and thus add
ar2r4 to the output. Neither r2 nor r4 is divisible by p, therefore r2r4 is not divisible
by p either. Thus, anp+r2r4 ∈Mnew(as+r2r3)). Since as+r2r3 ∈ Ladv but anp+r2r4 6∈ Lp,
Ladv is not a useful advice language. If Ladv is finite there exists a constant c such
that for every c symbols written, the transducer has to read at least one. Thus,
Mnew(Ladv) is finite and Ladv is not a useful advice language.

Analogously to the note after Theorem 5, adding an additional symbol to the input
alphabet would allow us to find a useful advice language.

2.5 Relationship to deterministically decomposable

languages

In this section, we shall study the relationship of the family LDTA to
deterministically decomposable languages.

Theorem 10. There exists a language in LDTA that is not deterministically
decomposable.

Proof. Let L = {a94}. By Theorem 2, L ∈ LDTA. However, it was shown by Gaži
and Rovan that L is not deterministically decomposable. [1]

Theorem 11. If the language L is deterministically decomposable and
sc(L) = tsc(L), then L ∈ LDTA.

Proof. Since L is deterministically decomposable, there must exist languages L1, L2

such that sc(L1) < sc(L), sc(L2) < sc(L) and L1 ∩ L2 = L. Then sc(L1) < tsc(L). It
is trivial to construct a transducer Mnew with sc(L2) states that realizes the
intersection of the input language with L2. Thus, Mnew(L1) = L and L ∈ LDTA.
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However, it does not always hold that sc(L) = tsc(L). Since a transducer may halt
without processing the entire input, a trash state is not neeeded. Moreover, there
exist languages such that sc(L)− tsc(L) > 1. An example of such language is
L = c(a2{b}∗{a, b})∗. Using the Myhill–Nerode theorem, it can be shown that
sc(L) ≥ 7 - the automaton has to finish reading the words ε, c, ca, caa, caab, caaba and
cc in pairwise distinct states. The following table contains a suffix w for every
distinct pair of words u, v such that uw ∈ L and vw 6∈ L or uw 6∈ L and vw ∈ L.

ε c ca caa caab caaba cc
ε - ε aa a ε ε c
c - - ε a b aa ε

ca - - - a ε ε aa
caa - - - - ε ε a
caab - - - - - aa ε

caaba - - - - - - ε

cc - - - - - - -

However, tsc(L) ≤ 4. The transducer is shown in the following diagram.

q0 q1

q2q3

a,a
c,c

a,a

a,a
b,b

c,b

Figure 2.7: The transducer M which transforms {a, b, c}∗ into L

In general, the reason for this inequality is that there may exist words
w1, w2, u ∈ Σ∗Ladv

, a word v ∈ Σ∗L and distinct states p and q such that
(q0, w1u, ε) `∗ (p, u, v) and (q0, w2u, ε) `∗ (q, u, v) - in other words, a deterministic
transducer may reach two different states with the same remaining input and with
the same content of the output tape based on the processed part of the input.
The language L is deterministically decomposable. Informally, the input word can be
split into two parts separated by the first occurence of the symbol b. The new
automata shall ensure the correct structure of the first and the second part,
respectively. The formal proof of correctness of this decomposition would be
analogous to the proof of decomposability of Li = (ai−1b∗{a, b})∗ in [7]. The
decomposition is shown in Figure 2.8. For clarity, the trash states are omitted.
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q0 q1

q2

q3 q4
c

a a

a b
b

a

c

q0 q1 q2 q3

q4

c

a

c

b

b

a

a
b

a

Figure 2.8: The automata A1 and A2

Our conjecture is that L 6∈ LDTA, which would mean that deterministically
decomposable languages and the family LDTA are uncomparable. However, we were
not able to formally prove this conjecture. In the following theorems, we shall show
that many problems related to regular supplementary information are decidable.

Theorem 12. Let L and Ladv be regular languages. It is decidable whether
L ∈ LD(Ladv) and whether L ∈ LN(Ladv).

Proof. Since we consider obly transducers where
H ⊆ K × (Σ1 ∪ {ε})× (Σ2 ∪ {ε})×K, there are only finitely many (up to
isomorphism) transducers Mnew = (K,ΣLadv

,ΣL, H, q0, F ) such that
#S(Mnew) < (n)tsc(L). Transduction can also be viewed as the application of an
inverse homomorphism, intersection with a regular language and a homomorphism.
The family of regular languages is closed under these operations and it is decidable
whether two finite state automata accept the same language [6]. Thus, it can be
verified in finite time whether a suitable transducer such that Mnew(Ladv) = L

exists.

Theorem 13. Let L be a regular language. It is decidable whether L ∈ LDTA and
whether L ∈ LNTA.

Proof. Without loss of generality, let ΣLadv
= ΣL. Then, there are only finitely many

automata A (up to isomorphism) such that #S(A) < (n)tsc(L) and thus only finitely
many possible advice languages Ladv. By Theorem 12, it is decidable whether
L ∈ LD(Ladv) and whether L ∈ LN(Ladv) for all such advice languages.
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Theorem 14. Let L be a regular language. It is decidable whether L is
deterministically decomposable.

Proof. There are only finitely many (up to isomorphism) automata A where ΣA = ΣL

such that #S(A) < sc(L). The family of regular languages is closed under
intersection and thus for every pair of such automata A1, A2 there is an automaton A′

such that L(A′) = L(A1) ∩ L(A2). It is also decidable whether L(A′) = L.

Thus, it is possible to computationally verify whether L 6∈ LDTA and either confirm
our conjecture or show that the proposed counterexample is not valid. However, we
were merely concerned with the decidability of the considered problems and did not
take the time complexity into account. The actual computation could take a
significant amount of time.

2.6 Relationship to nondeterministically

decomposable languages

In this section, we shall prove that nondeterministically decomposable languages are
a strict subset of the family LNTA.

Theorem 15. The family of nondeterministically decomposable languages is a subset
of LNTA.

Proof. Let L1, L2 be regular languages such that nsc(L1) < nsc(L), nsc(L2) < nsc(L)

and L1 ∩ L2 = L. Let A1 = (K,Σ, δ, q0, F ) be an NFA such that L(A) = L1 and
#S(A1) < nsc(L). Let M = (K,Σ,Σ, H, q0, F ) where
H = {(q, c, c, p) | q, p ∈ K, c ∈ Σ ∪ {ε}, p ∈ δ(q, c)}, Then M(L2) = L,
nsc(L2) < ntsc(L) and #S(M) < ntsc(L).

Theorem 16. There exists a language in LNTA that is not nondeterministically
decomposable.

Proof. As shown by Rovan and Sádovský [7], the language {a94} is
nondeterministically undecomposable. However, it can be easily seen that if
Ladv = {a47}, there exists a nondeterministic transducer Mnew such that
Mnew(Ladv) = {a94}.

Corollary 2. The family of nondeterministically decomposable languages is a strict
subset of LNTA.
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2.7 Relationship between LDTA and LNTA

The relationship between deterministically and nondeterministically decomposable
languages was studied by Rovan and Sádovský [7]. It was shown that some languages
are deterministically decomposable but nondeterministically undecomposable. Such
languages include L = (a{a, b}a{a, b})∗. Since sc(L) = 5 but nsc(L) = 4, more
complex advice can be used in the deterministic setting. However, the acceptance of
the language L can not be simplified in the nondeterministic setting. In the following
theorem, we shall show that a different situation may arise in the transducers setting:
advice that is useful for a nondeterministic transducer may be too complex for a
deterministic transducer.

Theorem 17. There exists a language L such that L ∈ LNTA but L 6∈ LDTA.

Proof. One such language is L = {a2}. By Theorem 6, L ∈ LNTA. For the sake of
contradiction, let Ladv be useful advice. Since tsc(L) = 3, sc(Ladv) ≤ 2. Neither {a}∗

nor ∅ can be used as advice, therefore sc(Ladv) = 2. Without loss of generality, let
Aadv = {{q0, q1}, {a}, δ, q0, F} and let Ladv = L(Aadv). If F = {q0, q1}, then
Ladv = {a}∗ and if F = ∅, then Ladv = ∅, neither of which is useful advice. Therefore,
exactly one state is accepting. If δ(q0, a) = q0, the state q1 would never be reached.
Thus, it must hold that δ(q0, a) = q1.
There are only 4 possible languages Ladv. If F = {q0} and δ(q1, a) = q1, then
Ladv = {ε}. If F = {q0} and δ(q1, a) = q0, then Ladv = {a2n | n ∈ N}. If F = {q1} and
δ(q1, a) = q1, then Ladv = {a}+. If F = {q1} and δ(q1, a) = q0, then
Ladv = {a2n+1 | n ∈ N}.
First, we shall analyze the case when Ladv = {ε}. The transducer Mnew must have at
most 2 states, at least one of them has to be accepting and Mnew(ε) = a2. If the
initial state q0 is accepting, the computation must halt immediately without any
output being written. If the initial state q0 is not accepting, then the state q1 clearly
has to be. If the state q1 is ever to be reached, it must be reached after the first step
of the computation. Otherwise, it would never be reached due to the transducer’s
determinism. Then, the computation must halt since an accepting state is reached
and there is no remaining input. However, the output can contain at most one
symbol at that point. Thus, Ladv 6= {ε}.
In the other cases, Ladv is infinite and it holds that if ak ∈ Ladv, then ak+2 ∈ Ladv.
Since Mnew must write at least two symbols to the output, it must contain some cycle
where ε, a or a2 is read and at least one symbol is written to the output. It must also
hold that Mnew(ak) = a2 for some k. During the run on ak+2, the cycle shall be
reached again and some additional symbol shall be written to the output.
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2.8 Advice modifications

To acquire a better understanding of what makes the advice language useful, we shall
study whether some common modifications preserve the usefulness of the advice.
In Theorem 18, only deterministic transducers are considered. In the remaining
theorems, either deterministic or nondeterministic transducer may be used as a
model.

Theorem 18. There exists a pair of languages L, Ladv such that Ladv is useful advice
for L but LR

adv is not.

Proof. Let L = {ba3n | n ∈ N}, let Ladv = {b}{a}∗. It can be easily seen that
{(ε, b), (b, aaa), (ba, aa), (baa, a)} is a fooling set for L and therefore tsc(L) ≥ 4. The
transducer Mnew is shown in the diagram.

q0 q1 q2
a,a
b,b

a,a

a,a

Figure 2.9: The transducer Mnew.

Since Mnew(Ladv) = L, #S(Mnew) = 3 and sc(Ladv) < 4, Ladv is useful advice for L.
If {a}∗{b} is used as advice, there must exist a state q where a or ε is read and b is
written to the output. If b could be written only while reading b, b could be written
only after the entire input was read. However, since the run where ba6 is written
must end in an accepting state and it must stop once the input is read and an
accepting state is reached, it would be impossible to write a6 after reading the entire
input. At least 6 steps are needed and by the pigeonhole principle, some state has to
be reached twice. If it is an accepting state, a contradiction is reached since the run
would have to stop after reaching such a state for the first time. If only a
non-accepting state is reached twice, the part of the run in between shall be repeated
indefinitely due to the transducer’s determinism and the fact that no input is read
during any of the steps. Thus, an accepting state shall never be reached.
Once b is written, q can not be reached again unless q is accepting and the entire
input is read, thus only the two remaining states can be used while writing the a6

part. Then, some state has to be reached twice with a or aa read and a or aa written
in between. The necessary number of a′s can be added to the input to produce a
word that does not belong to L.

Theorem 19. There exist languages L,Ladv1 , Ladv2 such that Ladv1 and Ladv2 are
useful advice for L but Ladv1 ∪ Ladv2 is not.
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Proof. Let L = {a10n | n ∈ N}, Ladv1 = {a2n | n ∈ N}, Ladv2 = {a2n+1 | n ∈ N}. The
advice Ladv1 can be transformed into L by applying the homomorphism h(a) = a5.
The advice Ladv2 can be transformed into L by ignoring the first symbol and applying
the same homomorphism to the rest of the input. However, Ladv1 ∪ Ladv2 = a∗. By
the definition of transducer state complexity, a∗ can not be useful advice.

Theorem 20. There exist languages L,Ladv1 , Ladv2 such that Ladv1 and Ladv2 are
useful advice for L but Ladv1 ∩ Ladv2 is not.

Proof. Let L = {a24}, Ladv1 = {a3}, Ladv2 = {a4}. Then Ladv1 ∩ Ladv2 = ∅. By the
definition of transducers, M(∅) = ∅.

Theorem 21. There exist languages L and Ladv and a homomorphism h such that
Ladv is useful advice for L but h(Ladv) is not.

Proof. Let L = {a4n | n ∈ N}, Ladv = {a2n | n ∈ N}, h(a) = ε. Then h(Ladv) = {ε}. In
case a transducer M with fewer than 4 states such that M(ε) = L existed, an NFA
accepting L with fewer than 4 states could be constructed and a contradiction with
the nondeterministic complexity of L (which is obviously 4) would be reached.

None of the considered operations preserved the usefulness of advice. In the following
theorem, we shall show that supplementary information shall remain useful even if
the symbols are renamed.

Theorem 22. Let h : Σ1 → Σ3 be a bijective homomorphism. If Ladv is useful advice
for L, then h(Ladv) is useful advice as well.

Proof. Let Mnew = (K,Σ1,Σ2, H, q0, F ) be the transducer used to transform Ladv into
L. Let H ′ = {(p, h(c), d, q) | (p, c, d, q) ∈ H}. It can be easily seen that the transducer
M ′

new = (K,Σ3,Σ2, H
′, q0, F ) transforms h(Ladv) into L.



Chapter 3

Properties of the families LDTA and
LNTA

In this chapter, we shall study the closure properties of the families LDTA and LNTA.

3.1 Properties of the family LDTA

In this section, we shall show that for every typical operation, the family LDTA is
either not closed under it or the closure property remains open.

Theorem 23. The family LDTA is not closed under homomorphism.

Proof. Let h be a homomorphism. For every c in Σ2, let h(c) = ε. Therefore,
h(L) = {ε} for any language L. The language {ε} is not in LDTA by Theorem 4

Theorem 24. The family LDTA is not closed under ε-free homomorphism.

Proof. Let L = {abb}∗, let Ladv = {ab}∗. It is easy to see that Ladv is useful advice for
L and thus L ∈ LDTA. Let h(a) = a and h(b) = a. Then h(L) = {a3n | n ∈ N}.
However, the language {a3n | n ∈ N} is not in LDTA by Theorem 5.

Theorem 25. The family LDTA is not closed under inverse homomorphism.

Proof. Let h be the homomorphism from the proof of Theorem 23. Let L = {a94}.
By Theorem 2, L ∈ LDTA. However, h−1(L) = {w | h(w) = a94} = ∅, which is not in
LDTA by Theorem 4.

Theorem 26. The family LDTA is not closed under intersection.

Proof. Let L1 = {a94} and L2 = {a96}. It can be easily seen that both L1 and L2

belong to the family LDTA. However, L1 ∩ L2 = ∅, which is not in LDTA by Theorem
4.

18
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Theorem 27. The family LDTA is not closed under the Kleene star.

Proof. Let L = {ε, a2, a4}. Then tsc(L) = 5. Let Ladv = {ε, a, a2}. Since the
homomorphism h(a) = a2 can be applied by a transducer, L ∈ LD(Ladv) and
therefore L ∈ LDTA. However, L∗ = {a2n | n ∈ N}. Thus, L∗ is not in LDTA by
Theorem 4.

Theorem 28. The family LDTA is not closed under the Kleene plus.

Proof. Let L = {ε, a2, a4}. As shown in the proof of the previous theorem,
L ∈ LDTA. Since L+ = {a2n | n ∈ N}, L+ is not in LDTA by Theorem 4.

Theorem 29. The family LDTA is not closed under union.

Proof. Let L1 = {a4n | n ∈ N}, let L2 = {a4n+2 | n ∈ N}. Let
Ladv,2 = {a2n+1 | n ∈ N}. The transducer Mnew2 applies the homomorphism
h(a) = a2, therefore Ladv,2 is useful advice for L2 and L2 ∈ LDTA. However,
L1 ∪ L2 = {a2n | n ∈ N}, which is not in LDTA by Theorem 4.

Theorem 30. The family LDTA is not closed under concatenation.

Proof. Let L1 = {a4n | n ∈ N}, L2 = {a, a3, a5} and Ladv2 = {a, a2, a3}. The
transducer Mnew2 is shown in the diagram:

q0 q1 q2

a,a

ε,a

a,a

Figure 3.1: The transducer Mnew2

Since tsc(L2) = 6 and sc(Ladv2) ≤ 5, L2 ∈ LDTA. However, L1L2 = {a2n+1 | n ∈ N},
which is not in LDTA by Theorem 4.

Theorem 31. The family LDTA is closed under bijective homomorphism.

Proof. Let L ∈ LDTA, let Mnew = (K,Σ1,Σ2, H, q0, F ) be the transducer that
transforms the advice Ladv into L. Let h : Σ2 → Σ3 be a bijective homomorphism. If
H ′ = {(p, c, h(d), q) | (p, c, d, q) ∈ H}, then the transducer
M ′

new = (K,Σ1,Σ3, H
′, q0, F ) transforms Ladv into h(L).
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3.2 Properties of the family LNTA

Counterexamples similar to those used for the family LDTA can be used to show that
the family LNTA is not closed under the considered operations either.

Theorem 32. The family LNTA is not closed under ε-free homomorphism.

Proof. Let L = {ab2}∗. It can be easily seen that the language Ladv = {ab}∗ can be
used as advice and therefore L ∈ LNTA. Let h(a) = h(b) = a. Then
h(L) = {a3n | n ∈ N}. By Theorem 9, h(L) 6∈ LNTA.

Theorem 33. The family LNTA is not closed under inverse homomorphism.

Proof. Let L = {a94}, let h(a) = ε. By Theorem 6, L ∈ LNTA. However, h(L) = ∅.
By Theorem 8, ∅ 6∈ LNTA.

Theorem 34. The family LNTA is not closed under union.

Proof. Let L1 = {a4n | n ∈ N}, let L2 = {a4n+2 | n ∈ N}. It can be easily seen that
the languages Ladv,1 = {a2n | n ∈ N} and Ladv,2 = {a2n+1 | n ∈ N} can be used as
advice. However, L1 ∪ L2 = {a2n | n ∈ N}. By Theorem 8, L1 ∪ L2 6∈ LNTA.

Theorem 35. The family LNTA is not closed under intersection.

Proof. Let L1 = {a94}, let L2 = {a96}. By Theorem 6, L1 ∈ LNTA and L2 ∈ LNTA.
However, L1 ∩ L2 = ∅ and by Theorem 8, ∅ 6∈ LNTA.

Theorem 36. The family LNTA is not closed under concatenation.

Proof. Let L1 = {a4n | n ∈ N}, let L2 = {a, a3, a5}. By Theorem 7, L1 ∈ LNTA. The
language Ladv = {ε, a, a2} can be used as advice for L2 by writing the symbol a to the
output tape and subsequently applying the homomorphism h(a) = a2. Thus,
L2 ∈ LNTA as well. However, L1L2 = {a2n+1 | n ∈ N}. By Theorem 8,
L1L2 6∈ LNTA.

Theorem 37. The family LNTA is not closed under the Kleene star.

Proof. Let L = {ε, a2, a4}. Since Ladv = {ε, a, a2} can be used as advice, L ∈ LNTA.
However, L∗ = {a2n | n ∈ N}. By Theorem 8, L∗ 6∈ LNTA.

Theorem 38. The family LNTA is not closed under the Kleene plus.

Proof. Let L = {ε, a2, a4}. Then L+ = {a2n | n ∈ N}. By Theorem 8,
L+ 6∈ LNTA.

Similarly to the family LDTA, the family LNTA is closed under bijective
homomorphism.

Theorem 39. The family LNTA is closed under bijective homomorphism.

Proof. The proof is analogous to the proof of Theorem 31.



Chapter 4

Fixed advice

In the thesis by Martiš [4], the families generated by a fixed advice language in the
context of deterministic automata were studied. Such family was defined as
L (Ladv) = {L | Ladv is useful advice for L}. In this chapter, we shall study such
families in the context of deterministic and nondeterministic transducers.

4.1 Fixed deterministic advice

In this section, we shall show that the family LD(Ladv) is not necessarily closed under
common operations. We shall also show that it is always closed under bijective
homomorphism.

Theorem 40. There exists a language Ladv such that LD(Ladv) is not closed under
complement, union, intersection, Kleene star and Kleene plus.

Proof. By Lemma 6, if L ∈ LD(Ladv), then |L| ≤ |Ladv|. Let Ladv = {a8}, let
L1 = {a16} and let L2 = {a24}. Clearly, Ladv is useful for L1 and L2 but not for
LC
1 , L

+
1 , L∗1 or L1 ∪ L2 since their cardinality is greater than that of Ladv. It can also

be easily seen that LD(Ladv) is not closed under intersection, since L1 ∩ L2 = ∅. By
Theorem 4, no useful advice exists for ∅.

Theorem 41. There exists a language Ladv such that LD(Ladv) is not closed under
concatenation.

Proof. Let Ladv = {a4, a8}, let L1 = {a8, a16} and let L2 = {a16, a32}. Clearly, Ladv is
useful for both L1 and L2. However, L1L2 = {a24, a32, a40, a48} and by Lemma 6, Ladv

is not useful for L1L2.

Theorem 42. There exists a language Ladv such that LD(Ladv) is not closed under
homomorphism and inverse homomorphism.

21
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Proof. Let Ladv = {a4}, let L = {a8}. Clearly L ∈ LD(Ladv). Let h(a) = ε. Then
h(L) = {ε} and h−1(L) = ∅. By Theorem 4, neither h(L) nor h−1(L) is in
LD(Ladv).

Theorem 43. For every language Ladv, the family LD(Ladv) is closed under
bijective homomorphism.

Proof. Follows from the proof of Theorem 31.

4.2 Fixed nondeterministic advice

In this section, we shall show that the family LN(Ladv) does not have to be closed
under common operations either and that it is also always closed under bijective
homomorphism.

Lemma 8. If LNTA is not closed under an unary operation f , then there exists a
language Ladv such that LN(Ladv) is not closed under that operation.

Proof. Since LNTA is not closed under the operation, there must exist a language L
such that advice Ladv exists for L but no advice exists for f(L). Thus, L ∈ LN(Ladv)

but f(L) 6∈ LN(Ladv).

Corollary 3. By Lemma 8 and the results in Chapter 3, there exist languages Ladv

such that LN(Ladv) is not closed under homomorphism, inverse homomorphism,
ε-free homomorphism, Kleene star and Kleene plus.

Theorem 44. There exists a language Ladv such that LN(Ladv) is not closed under
intersection.

Proof. Let Ladv = {a4}, let L1 = {a8}, let L2 = {a12}. Then L1 ∈ LN(Ladv) and
L2 ∈ LN(Ladv), but L1 ∩ L2 = ∅ 6∈ LN(Ladv).

Theorem 45. There exists a language Ladv such that LN(Ladv) is not closed under
union.

Proof. Let Ladv = {a2n+1 | n ∈ N}, let L1 = {a4n+2 | n ∈ N}, let L2 = {a4n | n ∈ N}.
Then L1 ∈ LN(Ladv) and L2 ∈ LN(Ladv), but
L1 ∪ L2 = {a2n | n ∈ N} 6∈ LN(Ladv).

Theorem 46. There exists a language Ladv such that LN(Ladv) is not closed under
concatenation.
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Proof. Let Ladv = {b(ab)n | n ∈ N} ∪ {ε}, let L1 = {(ab)2n | n ∈ N}, and let
L2 = {ε, ab}. It can be easily seen that nsc(Ladv) = 2. Since
P1 = {(abab, ε), (aba, b), (ab, ab), (a, bab)} is an extended fooling set for L1,
ntsc(L1) ≥ 4 and since P2 = {(ε, ab), (a.b), (ab, ε)} is an extended fooling set for L2,
ntsc(L2) ≥ 3. The following figures show how Ladv can be used as advice.

q0 q1 q2

b,ε a,a

b,a

ε,b

Figure 4.1: The transducer Mnew1

q0 q1
b,a

ε,b

Figure 4.2: The transducer Mnew2

The transducer Mnew1 shall ignore the initial symbol b and then apply the
homomorphism h(a) = h(b) = ab. Since the length of the remaining input is
guaranteed to be even, Mnew1(Ladv) = L1. It can be easily seen that
Mnew2({ε}) = {ε},Mnew2({b}) = {ab} and Mnew2({b(ab)n+1 | n ∈ N}) = ∅, since the
computation shall halt once the symbol a appears on the input. Thus,
Mnew2(Ladv) = L2.
We have shown that L1 ∈ LN(Ladv) and L2 ∈ LN(Ladv). However,
L1L2 = {(ab)n | n ∈ N} and therefore ntsc(L1L2) = 2. By Theorem 8, no advice
exists for L1L2 and thus L1L2 6∈ LN(Ladv).

Theorem 47. For every language Ladv, the family LN(Ladv) is closed under
bijective homomorphism.

Proof. Follows from the proof of Theorem 39.

4.3 Relationships

In this section, we shall investigate whether some relations between advice languages
Ladv,1 and Ladv,2 imply such relations between the families LD(Ladv,1) and LD(Ladv,2).
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Lemma 9. There exist languages L1 and L2 such that L1 ⊆ L2 and
LD(L1) 6⊆ LD(L2)

Proof. Let L1 = {a3n | n ∈ N}, let L2 = {a}∗. By the definition of deterministic
transducer state complexity LD(L2) = ∅. However, it can be easily seen that
LD(L1) 6= ∅.

Lemma 10. There exist languages L1 and L2 such that L1 6⊆ L2 and
LD(L1) 6⊆ LD(L2)

Proof. Let L1 = {a3n | n ∈ N}, let L2 = {a3}. Then L1 can be used as advice for the
language {a6n | n ∈ N}. By Lemma 6, L2 can only be used as advice for finite
languages.

By Theorem 20, there exist languages L1 and L2 such that
LD(L1) ∩LD(L2) 6⊆ LD(L1 ∩ L2). We shall show that it may also hold that
LD(L1) ∩LD(L2) ⊆ LD(L1 ∩ L2).

Lemma 11. There exist languages L1 and L2 such that
LD(L1) ∩LD(L2) ⊆ LD(L1 ∩ L2).

Proof. Let L1 = {a4}, let L2 = {a}∗. Then LD(L2) = ∅ and thus
LD(L1) ∩LD(L2) = ∅. However, L1 ∩ L2 = L1 and it can be easily seen that
LD(L1) 6= ∅.

Lemma 12. There exist languages L1 and L2 such that
LD(L1) ∪LD(L2) 6⊆ LD(L1 ∪ L2).

Proof. Let L1 = {a2n | n ∈ N}, let L2 = {a2n+1 | n ∈ N}. Then L1 ∪ L2 = a∗ and
LD(a∗) = ∅. It can be easily seen that LD(L1) ∪LD(L2) 6= ∅.

Lemma 13. There exist languages L1 and L2 such that
LD(L1 ∩ L2) 6⊆ LD(L1) ∩LD(L2).

Proof. Let L1 = {a4}, let L2 = {a}∗. Then {a8} ∈ LD(L1) = LD(L1 ∩ L2) 6= ∅. By
the definition of transducer state complexity, LD(L2) = ∅ and therefore
LD(L1) ∩LD(L2) = ∅. As a result, LD(L1 ∩ L2) 6⊆ LD(L1) ∩LD(L2).

Lemma 14. There exist languages L1 and L2 such that
LD(L1 ∪ L2) 6⊆ LD(L1) ∪LD(L2).

Proof. Let L1 = a∗, let L2 = b∗ and let L = {a4n | n ∈ N} ∪ {b6n | n ∈ N}. Neither L1

nor L2 can be used as advice for any language, therefore LD(L1)∪LD(L2) = ∅. Since
P = {(ε, b6), (b, b5), (b2, b4), (b3, b3), (a, a3), (a2, a2)} is an extended fooling set for L,
tsc(L) ≥ 7. The transducer Mnew such that Mnew(L1∪L2) = L is shown in Figure 4.3.
Thus, LD(L1 ∪ L2) 6= ∅.



CHAPTER 4. FIXED ADVICE 25

q0 q1 q2

q3q4q5

a,a a,a

a,a

a,a

b,b b,b

b,b

b,bb,b

b,b

Figure 4.3: The transducer Mnew

We have shown that some relationships may or may not hold depending on the choice
of languages. This is in part caused by the fact that LD(∅) = LD(Σ∗) = ∅. Note that
with the exception of Lemma 10, the same examples could be used to prove the same
propositions in the nondeterministic transducers setting.



Conclusion

In this thesis, we have formalized and studied the use of supplementary information
in finite transducers setting. We have found some particular examples of languages
for which useful advice exists. Using these examples, we have shown that some types
of advice that can be intuitively seen as useful, such as homomorphic images, can be
useful in our setting but not necessarily useful in the finite automata setting.
Furthermore, we have shown that the family LNTA is a proper superset of
nondeterministically decomposable languages and that the family LDTA is not a
subset of deterministically decomposable languages. Our conjecture is that
deterministically decomposable languages are not a subset of LDTA either. We were
unable to formally prove this conjecture, but we have presented a possible
counterexample and shown that it is decidable whether the counterexample is valid.
We have also shown that using advice over an alphabet with more symbols than there
are in ΣL may allow us to find advice for more languages.. Using counterexamples,
we have shown that the families defined by our approach are not closed under any of
the considered operations with the exception of bijective homomorphism. This is in
part due to the fact that they do not contain languages such as Σ∗, ∅ and {ε}.
However, we did not find an efficient way to decide whether a language is useful
advice for another. The closure under reversal and concatenation remains open. Note
that these problems are still open in the nondeterministic finite automata setting as
well. We have also studied the families generated by a fixed advice language and we
have shown that they do not have to be closed under standard operations. Finally, we
have studied the effects of advice modifications and shown that, with the exception of
bijective homomorphism, they do not necessarily preserve the usefulness of the
information.
In our work, we were focused on whether any advice exists. A possible continuation
of our research could focus on how many states can be saved by using particular
advice. The remaining open problems regarding closure properties can be studied as
well. Other possibilities for further study include a full characterization of the
families LDTA and LNTA and a generalization of the use of supplementary
information using concepts from promise problems.
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