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Abstrakt

Vysledkom nanopoérového sekvenovania st postupnosti signalov vytvorené na zaklade
referencnej DNA. V tychto signaloch je vysoka variabilita a kazdé pozicia je typicky
preéitané viackrat. gtandardny postup pri analyze tychto dat je prelozit kazdy preci-
tany signal na DNA sekvenciu. Tieto sekvencie st vzajomne zarovnavné pre vyhlade-
nie chyb vzniknutych pri preklade a vytvorenie vyslednej sekvencie. N&S pristup je
opacny. Najprv zarovname signédly a vytvorime z nich jeden ktory bude prelozeny na
DNA sekvenciu. V praci analyzujeme viaceré moznosti pre viacnasobné zarovnanie

signélov s cielom vytvorit jeden signél ktory vyprodukuje menej chyb pri preklade.

KTInadové slova: nanopoérové sekvenovanie, dynamic time warping, viacnasobné zarovna-
) )

vanie



Abstract

Nanopore sequencing produces signals based on the underlying reference DNA. How-
ever, there is a large variability in these signals and at the same time, each position is
typically read several times. The standard approach to analyze these data is to trans-
late each signal read into the DNA sequence. These sequences are aligned to each other
to fix mistakes introduced in process of translation and to produce consensus sequence.
Our approach is different. At first we align signals and produce one signal and then we
translate it to the DNA sequence. We analyze multiple approaches to multiple signal
alignment with the goal of producing one signal that will result in fewer translation

mistakes.

Keywords: nanopore sequencing, dynamic time warping, multiple alignment
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Introduction

DNA sequencing is a great challenge of modern science. Ten years ago, it took several
months and millions of dollars to sequence whole human genome. Modern technologies
can do so in days at cost of thousands of dollars. These technologies are very precise,
but the device is still very big and expensive.

In 2012, scientists at Oxford Nanopore Technologies developed the new portable
device called MinION that can sequence DNA and costs only several thousands. This
device allows us to sequence genomes at International space station or in extreme
conditions on demand. MinION has, however, several issues. The main problem is
precision of sequencing. This device measures a current flowing through nanopore
with DNA molecule inside. The process of translating this data into DNA sequence is
called basecalling and introduces a lot of errors due to disruptions in measured values.

Our goal is to get away from these disruptions by taking multiple reads of same
DNA sequence and producing a single signal with fewer disruptions and higher quality.
To do this we adapted approaches known from multiple alignment of DNA sequences
along with dynamic time warping used to align signals.

In the first chapter, we introduce biological motivation and aspects of a MinION
device along with standard data processing procedure for this data.

In the second chapter, we described known algorithms for sequence alignment, mul-
tiple sequence alignment, and alignment of signals.

In the third chapter, we describe our approaches to combine multiple sequence
alignment with the alignment of signals and reconstruction of a signal from this align-
ment.

The fourth chapter shows visualizations we created to analyze the outcome of our
approaches.

In the final chapter, we describe testing data and testing procedure to evaluate the

quality of our approaches.



Chapter 1

DNA sequencing and MinlON
technology

In this chapter, we provide an introduction to DNA sequencing. We describe the new
MinION sequencing technology, raw data provided by this technology and standard

procedure to process such data.

1.1 Biological background

Every living organism has all the genetic information saved in DNA inside the core of
every cell.

This genetic information helps us to find related species, discover genetic disorders
or recognize bacteria.

The information inside DNA is composed of four nitrogenous bases adenine, gua-
nine, cytosine, and thymine. We represent them with single letters A, C, T, G.

DNA sequencing is the process of determining the order of these bases within a
DNA molecule. Various technologies to sequence DNA are known but most of them

are big and expensive.

1.2 MinION technology

MinION (Fig. 1.1) is a new real-time sequencing technology developed by Oxford
Nanopore Technologies. It is based on nanopores and it is highly portable.

A nanopore is a hole so small, that only single DNA strand fits in. MinION uses a
protein nanopore set in an electrically resistant polymer membrane. An ionic current
is passed through the nanopore by setting a voltage across this membrane. If an

analyte passes through the pore or near its aperture, this event creates a characteristic
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Figure 1.1: MinlON device.
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Figure 1.2: Raw signal generated by MinION device with corresponding 5-mers [1].

disruption in the current. Measurement of that current makes it possible to identify

the molecule in question [5].

1.2.1 Processing of MinION data

Raw data produced by MinlON device consist of current measures in picoamperes.
Each measured value corresponds to five or six bases passing nanopore called 5-mers or
6-mers (Fig. 1.2). Each k-mer is measured several times as passing through a nanopore.

The MinION device typically produces many reads covering different parts of pro-
cessed DNA molecule. The process of translating current measures into a sequence of
bases (letters A, C, G, T) is called basecalling. It is slow process usually based on
hidden Markov model or recurrent neural networks.

Regular approach to analyzing MinlON data is to basecall all reads and find their

order and overlap by standard sequence aligning algorithms.



Chapter 2
Sequence Alignment

Alignment is the task of locating equivalent regions of two or more sequences to find
their similarity. The large similarity often mean the same biological function or common
ancestor in the evolutionary history. In this chapter, we formalize the problem of

alignment and present standard algorithms for solving this problem.

2.1 Pairwise alignment

Definition 2.1.1 (Alignment). Let u = u; ... Uy, v = v1 ... v, be two sequences where
u;,v; € {A,C,T,G} and M be a matrix

M= M171 MLQ ML’C
MQJ M272 P M27k

We call M an alignment of u and v if:
1. Vi,j: M, ; € {A,C,T,G, -}
2. My Myy... My is a word created by inserting dashes into u
3. My My ... My is a word created by inserting dashes into v
4. No column contains two dashes

For example

—GTACGTCCTAA
TGTACGCC—-T——

is one of many possible alignments of sequences GTACGTCCTAA and TGTACGCCT.

Another alignment of these sequences could be

————-GTACGTCCTAA
TGTACGCC ————-T——
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To find the best alignment (with most of the similarities), we define a scoring system
which assigns a numeric value to the alignment.
A basic scoring system can be +1 for each matching column, —1 for every other

column.

Definition 2.1.2 (Global alignment). Given two sequences and a scoring system, the

global alignment is the alignment with the highest score in the scoring system.

Sometimes, it is better to search for the most similar part of the two sequences. We

call this approach the local alignment

Definition 2.1.3 (Local alignment). Given two sequences u, v and a scoring system.
Let v/ and v’ be substrings of u and v such that their global alignment has the highest
score among all substrings of u and v. Local alignment of u and v is the global alignment

of v and v'.

2.2 Needleman-Wunsch algorithm

Needleman-Wunsch algorithm [7] for computing global alignment is based on dynamic
programming.

Let v = uy...u,, v = v;...v, be two sequences. We construct matrix A[n,m]
where A7, j] is the global alignment score of u; ...u; and vy ... v;.

Let s(i,j) be score of alignment of u; and v; (1 if they are equal, —1 otherwise).
Matrix A is constructed dynamically row by row, where A[i, j] is computed as the

maximum of three possibilities:
1. Ali — 1,5 — 1] + s(4, J)
2. Ali—1,4] -1
3. Ali,j—1]—1

In the first case, we align u; to v; as a match or mismatch. In the second case, we
insert dash into the first sequence. In the third case, we insert dash into the second
sequence.

The final alignment score is A[n, m| and the alignment can be reconstructed by
finding the path of computation from A[n,m] to A[l,1]. This path can be simply
found by following the highest values out of the three possibilities used to compute the
values in matrix A.

Needleman-Wunsch algorithm can be easily modified to find the local alignment in

two steps. First, we add the fourth case:

4. 0
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This allows us to change the starting point of the alignment if doing so leads to a better
solution. Second, the final score is the maximum value in the matrix, which allows us
to change ending points of the alignment. Reconstruction of the alignment is done by
following the path from the maximum value in the matrix to the closest 0, where the

local alignment begins.

2.3 Multiple alignment

If we have a large dataset of evolutionarily related DNA sequences that share a common
ancestor, we might find something about such ancestor, if we look at their overall

similarity.

Definition 2.3.1 (Multiple alignment). Let w3 = w11 ... Ut mys- - Up = Up 1 ... Upm,

be n sequences where u; ; € {A,C,T,G} and M be a matrix

Mii Mio... My
Moy May ... My,

My My My
We call M an alignment of uq,...,u, if:
1. Vi,j:M;; € {A,C,T,G,—}
2. M; 1 M;5... M,y is a word created by inserting dashes into u;
3. No column contains n dashes

We can see that the alignment of two sequences is a special case of a multiple

alignment.

2.3.1 Dynamic programming

We can modify Needleman-Wunsch algorithm to solve this problem. Matrix A would

become n-dimensional and the time complexity of computing such matrix would be
O(]] m;). Matrix A can still be constructed dynamically row by row, where Aliy, ...i,]
i=1

is cgmputed as the maximum of n + 1 possibilities:
1. Aliy — 1, — 1, .. i — 1] + (4, 7)
2. Aliy — 1,dg,d3, ...,y — 1

k1. Afig, ... ip—1,... i — 1
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nt1. Afiy,ig,ig, ... in —1] —1

To find the global optimum for n sequences has been shown to be an NP-complete
problem [10].

2.3.2 Heuristics

Since DNA sequences are usually large, exponential time complexity is unacceptable.
Several heuristic algorithms were developed, with different time complexities and ac-

curacy.

Progressive alignment

The most common heuristic approach to multiple alignment is a progressive technique
[3]. Progressive alignment builds up the final alignment by combining pairwise align-
ments. A binary tree called a guide tree with sequences as leaves decide an order of
pairwise alignments. The final alignment is built by following that tree from leaves
to root. Such tree can be composed by finding most similar pairs among all possible
pairwise alignments resulting into a quadratic number of alignments. The problematic
part of this approach is aligning two alignments which can be done in many various

ways [11].

Iterative methods

Another method is to construct the alignment by adding sequences one by one to
the final alignment. This way, we only need a linear number of alignments, but we
are aligning one sequence to an alignment, which can again be done in various ways.

Efficiency is improved at the cost of accuracy [9].



Chapter 3
Squiggle alignment

In this chapter, we describe our work. We took a different approach from standard
procedure described in 1.2.1. To compose DNA sequence, we took squiggles that corre-
spond to the same part of the reference sequence and aligned them together to produce
one signal that will be later basecalled. We designed several ways of multiple squig-
gles alignment to generate the best signal according to similarity of sequence from

basecalling and reference sequence.

3.1 Squiggles and preprocessing

MinION device produces sequences of measured values of the current passing nanopores.
We call these sequences squiggles. Typically, we have multiple squiggles covering each
part of the DNA. The raw signal contains values in pA between 0 and several hundred.
Each pore produces slightly different data. Current values are shifted and scaled by
some constant.

The best way to hide these differences is to scale the sequence so that the resulting

mean value is 0 and the standard deviation is one [2].

3.2 Squiggle alignment with dynamic time warping

To align two squiggles, we use the method called dynamic time warping (DTW). DTW
is widely used in audio processing and speech recognition [6]. It uses a similar approach
as the Needleman-Wunsch algorithm for sequence alignment, but does not specify the
score of a match or a mismatch, but instead assigns a cost function for any pair of
values.

The cost function ¢(i, j) which assigns a cost for aligning value ¢ to value j. It can
be, for example, distance abs(i — j) or square of distance abs(i — 7).

By evaluating a cost function for two sequences v and v, we calculate the cost
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matrix C, where C[i, j] = ¢(u;,v;). The best alignment of these two sequences can be
represented as a continuous path from C|1, 1] to C[n,m], with the lowest sum of costs
(Fig. 3.1). We call such a path a warping path and the sum of costs will be the cost
of the alignment. The cost of the alignment is also indicative of the similarity of those

sequemnces.

Figure 3.1: Warping path in matrix C'.

The warping path can be represented as a list of coordinates from matrix C'.

To find the best path, we will not compute matrix C' containing the costs of aligning
single values. Instead, we will calculate matrix A, where A[i,j] is the cost of the
alignment of sequences w;...w; and v;...v;, similarly as we did in the Needleman-
Wunsh algorithm. In particular, A[i, j] will be computed as min(Ali — 1, 5], Ali,j —
1], Ali —1,5—1]) +c(u;, v;). To find the warping path in A, we follow the lowest values
from A[n,m] to A[1,1].

The time complexity of this algorithm is quadratic, but can be easily reduced to
almost linear by restricting the area where the warping path is allowed to pass to a
band with a constant width (Fig. 3.2). We will define ¢(i, j) = oo for all 7,5 not in

this band. This way, the values that are not computed, will not affect the final value.
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By checking the coordinates of a chosen point while constructing the warping path, we
can find out if the chosen band covers the whole warping path. When the band is not

wide enough, we will restart the computation with a band that will be twice as wide

8].

Figure 3.2: Band restricted warping path in matrix C.

3.3 Signal reconstruction from the warping path

To facilitate an iterative alignment of the squiggles, we need to be able to create one
signal out of two. We will use the warping path created by DTW. Although the signals
are very similar, alignment still contains some insertions in both squiggles (Fig. 3.3).
When aligning DNA sequences, we had three possibilities. Match, mismatch, or
aligned to a dash. This time, we have a pairing of points. Each point from the first
sequence has the corresponding point in the second sequence and each point from the
second sequence has the corresponding point in the first sequence. This also means
that sometimes one point from the first sequence corresponds to multiple points from

the second sequence or vice versa.
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Figure 3.3: Pairing of points created by DTW.
We considered multiple ways to solve this problem.

Complete alignment

The first approach is to calculate an average of each pair of points in alignment and

concatenate them to the final signal. The signal we create in this way is slightly longer.

Alignment to sequence

The second approach is to take the first sequence as leading and to construct the final
signal by calculating an average of a point from this sequence and all points aligned
to it, in every point of this sequence. This approach puts a high weight on the first
sequence. If some part of the signal from the second sequence is missing in the first
sequence, it will never appear in the alignment. The same holds if some parts of the
first signal is unusually long. A single point from the second signal will align to it, and
the whole length of the signal will stay there. An advantage of this approach is, that
the resulting signal looks exactly like a signal that MinION produces and the basecaller

expect.

3.4 Multiple alignment

To align multiple signals, we have chosen the iterative method, as signals are much
longer than the DNA sequences, and the iterative method is faster. However if we
would just add the sequences one-by-one and each time would generate a resulting

signal, weight of the squiggles added later will be higher. We have tried multiple
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approaches to solve this problem.

Simple average

The first approach was to calculate the weighted average when aligning the i-th signal
to the consensus of © — 1 already aligned signals. The result is that at each point, every

sequence has the same weight in consensus.

Average with length adjustment

In the second approach, we remembered how many points were aligned from all se-
quences to each point of the consensus. We used this information when reconstructing
the final signal. For each point, we calculated an average number of points aligned to
it and adjusted its weight in the final sequence accordingly.

With these different ways of reconstructing the final sequence, we can afford to take
the full alignment each time. While it will result in much longer signal than expected,
it will be later reduced by realigning all sequences to it and counting points aligned to

each point in it.



Chapter 4
Visualization

To analyze the problems of different approaches we designed multiple visualizations.

4.1 Raw data

The simplest but often very helpful was to directly plot raw signals of all squiggles we
were aligning. As all our approaches start with mean value and standard deviation
preprocessing, we used these preprocessed data for visualization. We can see that this

can reveal unexpected defects in data (Fig. 4.1).

10
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Figure 4.1: Defect data found by simple visualization.
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Figure 4.2: Pairing of points created by DTW.

4.2 Alignment

To visualize single alignment of signals, we printed two signals vertically side by side
and connected aligned points between those plots (Fig. 4.2).

We also extended this visualization for iterative alignment method. After each
iteration of iterative alignment, we can generate the resulting signal and align it with
the previous resulting signal to visualize changes made by last added squiggle. This
way we can plot all interim results underneath and print lines between successive pairs
(Fig. 4.3).

To visualize all aligned squiggles in context of their consensus signal, we took the
consensus signal as leading and aligned each squiggle to it. This way we will loose
omitted parts in squiggles, but all squiggles will have the same length and can be

printed over each other with consensus signal (red) on top of them (Fig. 4.4).
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Figure 4.3: Insertions and deletions in process of iterative alignment.
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Figure 4.4: Aligned squiggles in context of consensus signal.



Chapter 5
Experiments and results

For all experiments we used data from NA12878 Oxford Nanopore Human Reference
Datasets [4]. This dataset provides a lot of basecalled reads in fast5 format aligned to
reference DNA.

For our experiments, we used 40 blocks of 1000 bases with corresponding parts of
squiggles provided by bachelor thesis by Jakub Havelka [2].

To analyze the quality of our consensus signal, we used basecaller ONT Albacore
Sequencing Pipeline Software (version 2.2.4). At first, we basecalled each aligned
squiggle and a consensus signal. Then for each DNA sequence produced, we calculated
alignment score by aligning it to the corresponding part of the reference sequence using

Needleman-Wunsch algorithm described in 2.2.

5.1 Results

We tested multiple methods of multiple alignments and signal reconstruction on all 40
datasets. Fach graph shows alignment score of squiggles (blue) and consensus signal
(red). Each column in graphs represents one dataset.

Figure 5.1 shows results of consensus signal produced by aligning to sequence and
signal reconstruction with simple average after each alignment. We can see that con-
sensus signal produced in some cases slightly better results than each squiggle but in
most cases resulted in average quality.

Figure 5.2 shows results of consensus signal produced by aligning to sequence and
final signal reconstruction by average with length adjustment. This Approach produced
best results with better alignment score in more than 25% of datasets.

Figure 5.3 shows results of consensus signal produced by aligning to sequence and
signal reconstruction by average with length adjustment after each alignment. This
approach led to bad results in all cases.

Figure 5.4 shows results of consensus signal produced by complete alignment and

16
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Figure 5.1: Aligning to sequence and signal reconstruction with simple average after

each alignment.
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Figure 5.2: Aligning to sequence and final signal reconstruction by average with length
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Figure 5.3: Aligning to sequence and signal reconstruction by average with length ad-

gustment after each alignment.
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Figure 5.4: Complete alignment and signal reconstruction by simple average.

signal reconstruction by simple average. In this case, in some datasets resulting signal
did not even pass quality filter of basecaller.

Figure 5.5 shows results of consensus signal produced by complete alignment and
final signal reconstruction by realigning all squiggles to it by aligning to sequence and

final signal reconstruction by average with length adjustment.
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Figure 5.5: Complete alignment and final signal reconstruction by realigning all squig-

gles to it.



Conclusion

The most common approach to the processing of MinION data is to basecall and align
to reference. The process of basealling is slow and introduces multiple errors. Our
goal was to develop methods of multiple signal alignment as a way to produce a better
signal that will result in the better outcome of basecalling.

To align two signals we adapted and modified dynamic time warping algorithm
known from speech recognition. A special challenge was to adapt multiple sequence
alignment techniques and modify them for use with signals and dynamic time warping.

We developed two ways of signal reconstruction from alignment produced by dy-
namic time warping. First one (alignment to sequence) was to take one sequence as
leading and in each point of this sequence calculate an average of all points aligned
to it. This approach does not change the overall structure of signal but smoothes the
signal. The second approach (complete alignment) was to concatenate average of each
pair of points produced by alignment. This approach results in a slightly longer signal
that contains more information but does not terminate outlying values. It is practically
unusable for multiple alignment as it results in longer signal after each alignment and
basecaller does not understand such signal.

According to our tests, best results are achieved by combining aligning to sequence
with final signal reconstruction by taking average with length adjustment. This ap-
proach resulted in a better signal in 27% of test cases.

The next step of MinION signals alignment would be to extend our methods for local
alignment and produce one signal covering whole DNA sequence out of all squiggles.
This could save time spent for basecalling all squiggles and also might result into more

precise DNA sequence.
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