COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

A COMPUTER GAME WITH
COMPUTER-ASSISTED HUMAN PLAYERS

BACHELOR THESIS

2018
MATEJ KRALIK

COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

A COMPUTER GAME WITH
COMPUTER-ASSISTED HUMAN PLAYERS

BACHELOR THESIS

Study program: Informatics
Field of study: Informatics
Department: Department of Informatics

Supervisor: Dominik Csiba, Bc.

Bratislava, 2018
Matej Kralik

21413282

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZAVERECNEJ PRACE

Meno a priezvisko Studenta: Matej Kralik

Studijny program: informatika (Jednoodborové stidium, bakalarsky I. st., denna
forma)

Studijny odbor: informatika

Typ zaverecnej prace: bakalarska

Jazyk ziverecnej prace: anglicky

Sekundarny jazyk: slovensky

Nazov: A computer game with computer-assisted human players

Anotacia:

Veduci:
Katedra:

Pocitacova hra s ludskym hrdacom a asistujucim programom

Cielom prace je preskimat potencial pocitacovych hier hranych Tud’mi
s asistujucim programom. Hracom je v takychto hrach umoznené spolupracovat’
s programom, ktory napisali, alebo len upravili a roz§iruje ich herné moznosti.
Hlavnou vyzvou prace je otestovanie konceptu tohto druhu hier,
prostrednictvom vyvoja a implementacie jednoduchej hry s API umoziujiucim
programu asistovat’ hracovi.

Navyse, planujeme hru otestovat’ na skupine dobrovol'nikov s cielom zbierania
dat o hre, ktoré pouzijeme na overenie pouzitelnosti nasho konceptu.

Bc. Dominik Csiba
FMFIKI - Katedra informatiky

Vediici katedry: prof. RNDr. Martin Skoviera, PhD.
Datum zadania: 30.10.2017

Datum schvalenia: 30.10.2017 doc. RNDr. Daniel Olejar, PhD.

garant Studijného programu

Student

veduci prace

21413282

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT
Name and Surname: Matej Kralik
Study programme: Computer Science (Single degree study, bachelor I. deg., full
time form)
Field of Study: Computer Science, Informatics
Type of Thesis: Bachelor’s thesis
Language of Thesis: English
Secondary language: Slovak
Title: A computer game with computer-assisted human players

Annotation: The goal of this thesis is to explore the concept of computer-assisted games.
Players of such games are allowed to use a program they wrote or edited to alter
their game experience.

The main challenge is to test the proof-of-concept of such games by developing
and implementing a simple game with an API allowing computer assistance for
the human player.

Additionally, we plan to test the game on a group of volunteers to collect data
about the game in general, which we will use to test the feasibility of our

concept.
Supervisor: Bc. Dominik Csiba
Department: FMFIKI - Department of Computer Science
Head of prof. RNDr. Martin Skoviera, PhD.
department:
Assigned: 30.10.2017
Approved: 30.10.2017 doc. RNDr. Daniel Olejar, PhD.

Guarantor of Study Programme

Student Supervisor

1ii

Acknowledgment: [would like to thank Dominik for the continuous guidance,
B. Brejova for the consultations, Bui for design ideas, Sara for the support, and the 36
participants of the Spring Camp 2018 of Correspondence Seminar in Programming for

spending their day with this game.

Abstrakt

Na prelome herného priemyslu a akademickej sféry su casto porovnavané schopnosti
Iudskych hracov a umelych inteligencii. Tudia, rovnako ako umelé inteligencie maju
svoje silné aj slabé stranky. Ak by Tudsky hrac¢ spolupracoval s umelou inteligenciou,
prepojenim ich silnych stranok by mohlo dojst k zvyseniu herného vykonu. Na zaklade
historickych poznatkov mozeme konstatovat, ze vyhoda ludskych hracov spociva v ich
intuicii, zatial ¢o umela inteligencia vie vyuzit hrubtu vypoctovu silu. Cielom tejto
prace je navrhnit hru uréent na hranie pre ¢loveka spolupracujiceho s programom -
pripadnou umelou inteligenciou. Tento program bude maft pristup k rovnakym tidajom
ako ludsky hra¢ a bude schopny ovplyvnit to, ¢o hra¢ vidi na obrazovke. Nésledne
po navrhu hry, popiSeme jej implementaciu. Na zaver hru otestujeme pocas jarného
sustredenia pre stredoskoldkov so zaujmom o programovanie. Ocakavany vysledok
testovania, je zaznamenaf momenty kedy vystup z programu ovplyvnil priebeh hry,

rovnako ako momenty kedy ludska intuicia mala navrch.

Kltcové slova: hry, herny dizajn, umela inteligencia

Abstract

At the intersection of the game industry and academia, the capabilities of a human
and an artificial intelligence (AI) are often compared. Both humans and Als have
their strengths and weaknesses. If humans and Als to cooperate, their performance
in games may be even better. Based on historical examples, the strength of human
players is their intuition, while Als excel at using their raw computing power. The goal
of this thesis is to design a game dedicated to be played by a human cooperating with a
program - possibly an Al. This program will have access to the same data as the human
player and will be able to modify what a player can see in the game. After designing
the game, we will present our implementation. Finally, we will test the implemented
game during a spring camp for high school students with interest in programming. The
desired result of the testing is to capture moments where the output of the program
changed the course of the game, as well as moments where the human intuition came

out on top.

Keywords: games, game design, artificial intelligence

Contents

Introduction

1 Human-computer rivality
1.1 Historical overview of human battle against AI
1.1.1 Chess
1.1.2 Go . . o o
1.1.3 Other games where Als outperform humans
1.1.4 Games that were solved
1.1.5 Starcraft 2
1.1.6 Other undefeated games

1.2 Strengths and weaknesses oL

2 Design of our game
2.1 Design requirements
2.2 Description of therules
2.3 Key elements in therules. 0oL

2.4 Weak points of our design oo

3 Implementation of our game
3.1 Implementation requirements
3.2 Architecture overview
321 Game Servero e
322 Gameclient
3.2.3 Assisting program
3.3 Example assisting programso
3.3.1 Simple game counters
3.3.2 Previous enemy positionso

3.3.3 Least dangerous positions heuristic

4 Final testing and results

4.1 Testing environment

vi

© 0 O O ok R W W W

12
12
14
20
22

23
23
24
25
26
26
27
29
30
31

34

CONTENTS vii

4.1.1 Testing schedule. 0oL 35
4.2 Results 36
4.2.1 Testing walk-through 36
4.2.2 SUIVey TESPONSES . .« o v v v e e e e 38
4.2.3 Testing takeawayso 39

Conclusion 40

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4

Example of a game situation 14
Spawn squares and generated times L. L. 15
Created units and their properties 15
Fog of war around a unit Lo 16
Different terrain types 17
Board reduction exampleo 18
Shooting lasers on enemy units 19
Example usage of an assisting program 27
Simple game counters using the assisting program 30
Previous enemy positions using the assisting program 31
Least dangerous positions heuristic using the assisting program 33

Viil

List of Tables

2.1 All the terrain types present on the board

2.2 Key elements in the rules addressing requirements

ix

Introduction

During the last century the evolution in computing power changed our lives tremen-
dously. We changed the way we think about mathematical and logical challenges we
face. One group of those challenges are games, without closer specification - computer
games, table games, real-life role-playing games, and so on.

As mankind we naturally incline towards measuring our performance, and more
importantly, we compare it to that of other individuals. With the development in
the area of computing we began challenging ourselves by our very own devices. We
even started to teach those same devices different strategies and observed how they
performed. This led to establishing a widely used informal term - Artificial Intelligence
(AI). The term stands for device that was taught (programmed) to imitate intelligence
as we humans understand it.

Accordingly, we can distinguish multiple types of games, based on the player type,

of which the most common are:

e Human vs. Human - the traditional type of a game. Two individuals measure

their ability to find and execute a strategy given a certain set of rules to follow.

e Al vs. Al - type of a game dedicated to measuring the performance and the
ability to reach a goal under certain limitations of a computer program, which is

usually written by a human.

e Human vs. Al - comparison of the two worlds, where we try to recognize which

of the players is stronger - the human or a program written by a human.

The motivation behind our thesis lies in the underlying problem in these types of
games. The computer and a human brain are both very capable, but yet we use only
one of them, or rather use them against each other. As we will show later, the key
strengths and the critical weaknesses on both sides are distinct, thus leading us to an
assumption.

LIf both of our resources are strong in different areas, then when used in combina-
tion, their performance should vastly surpass their individual capabilities.”

An uncommon type of game which will be our point of interest therefore is:

Introduction 2

e (Human + AI) vs. (Human + AI) - when the human interacts and cooperates
with a written program in order to find an optimal strategy for the game. To-
gether they control one of the players and try to take an advantage thanks to

their individual strengths.

In the next chapter we will briefly describe the history of games where humans and
Als battled against each other. In the second chapter we put down design requirements
and the rules of our very own game. This game is of the type we mentioned above and
designed in a way that it should be challenging sufficiently for a human and an Al as
well. The third chapter provides a description of the implementation of our game. In
the last chapter we specify the methods we used to test our game on the Spring Camp

2018 of Correspondence Seminar in Programming.

Chapter 1
Human-computer rivality

Understanding the historical point of view is a prerequisite for preparing the ground
for designing our very own game in the next chapter. The following section contains
examples of games where Als did beat humans as well as examples where the opposite
is true. At the end of the chapter we summarize the various observations from the

historical examples.

1.1 Historical overview of human battle against Al

In order to properly design a game of the mentioned kind we first have to understand
how far can we go as humans and how smart are the programs we are creating. To
understand our limits, as well as the limits of our computers, let us take a quick look
back through history.

From the human perspective, one of the most known board games are chess, go,
backgammon, poker, and a few others. All of these games have a professional scene
with people dedicating their whole lives only to become the best players in the world.
Therefore it is no surprise that these games have been used to measure the performance

of humans and Als since the birth of this concept.

1.1.1 Chess

Undoubtedly Magnus Carlsen can be considered to be one of the greatest players in
chess history. He is the current holder of the World Champion title in chess, cham-
pion in World Rapid & Blitz Chess Championship more than once and he earned his
grandmaster title(currently the highest title a player can get) at the age of 13. In an
interview [7] taken in 2009 for the magazine TIME, when asked how many moves he

calculates ahead he answered:

"Sometimes 15 to 20 moves ahead. But the trick is evaluating the position

CHAPTER 1. HUMAN-COMPUTER RIVALITY 4

at the end of those calculations." -Magnus Carlsen

Thinking that much moves ahead means considering at least hundred different
resulting positions in your head. That number may sound like a lot for a computer,
but with the human brain it is different. The human brain can very easily rule out all
the impossible moves. Afterwards it can use a few simple heuristics to focus only on
those positions which make at least a little sense in the traditional understanding of
the game. For a computer, to think 15 to 20 moves ahead is a lot more work.

A famous historical example of a Human vs. Al match goes back in time more
than 20 years. In 1997 a match between Garry Kasparov and IBM’s Deep Blue took
place. Garry Kasparov was the world champion during that time and one of the best
players in the world during the following years as well. A chess-playing computer -
IBM’s Deep Blue was the result of over 11 years of development at IBM. Deep Blue
defeated Kasparov 31/2 : 21/2; making it the first Al to be better than world’s best
human player in a well known game. Even though Deep Blue was never open sourced
and IBM was even accused of cheating, we can still make a brief comparison. It claimed
to process about 200 million possible positions every second and still search only to a

similar depth than the one mentioned by Carlsen.

1.1.2 Go

The game of Go is accompanied with a similar story but in a lot more open and
less controversial version. Google’s Deepmind developed a computer program called
AlphaGo [15], which was the first program to defeat a Go world champion and arguably
the strongest Go player in history. In March 2016, AlphaGo competed against the
winner of 18 world titles and considerably the greatest go player - Lee Sedol. This
time, the match was a worldwide event with over 200 million viewers and resulted
AlphaGo’s victory 4 — 1.

But the interesting part of the AlphaGo project did not stop there. AlphaGo
was trained using thousands of amateur and professional games, leading to the next
challenge for it’s creators. A year later, another paper was released about AlphaGo Zero
[16]. AlphaGo Zero was an upgraded version of AlphaGo, which instead of learning
from human games, learned only from playing against itself. This step made it surpass

the performance of all previous versions, including those which defeated Lee Sedol.

1.1.3 Other games where Als outperform humans

Chess and go were only the most famous examples when a computer program outplayed
humans in a game. There are numerous examples of this happening among other games

as well. The problem with lesser known games is often the lack of acknowledgment.

CHAPTER 1. HUMAN-COMPUTER RIVALITY 5

This results in the lack of testing of such programs and their performance. In these
games, we may only wonder, whether these programs could really outperform the best
human players.

More than two decades ago, the game of backgammon was challenged by Als.
The zero knowledge approach (similar to the one used by AlphaGo) turned out to be
very successful and the level of play of our programs rivaled that of the best humans
[20] [19]. The interesting difference between Backgammon and chess or go is that
backgammon introduces a random factor to the game. Throwing dice creates a great
amount of possible states and an unpredictable element of the game. Despite this
difference, Als were successful in defeating humans.

Another of such games is poker [4]. The distinguishing part of poker against
previously mentioned games is that the player has only imperfect information, since the
other player’s cards or the cards in the deck are not known. This complication requires
a rather different approach from the programs. Poker has plenty of different game
variants, the simpler of which are solved by computers, whereas the most complicated
ones are not. In one of the most known poker variants - No-limit Texas Hold’em, Als
are on top of humans recently [5].

Imperfect information is also present in Scrabble, a game where the goal is to score
points by placing tiles with letters onto a board. The amount of possible turns in a
position is greater than in chess, yet Al did take the trophy from humans in this game
as well more than a decade ago [13]. Back then, the most known Scrabble AT Maven
was able to beat the best human player about two thirds of the time. One could argue
that this is not much of an achievement, because a computer can easily remember a
whole dictionary of words and abuse that in the game. But the game of scrabble is
not only about words from a dictionary. The players interact with the board and the
count of different letters in the game is limited, therefore a lot of other different factors
need to be taken into account.

A very interesting game in this sense is Arimaa' [17] which was particularly de-
signed to be hard for computers. Rules of Arimaa are very simple and it can be played
with a traditional set of chess figures. Randomness or imperfect information are not
present in this game as in the previously mentioned ones. The complexity is being
achieved rather through a non-trivial amount of starting positions and complex turn
possibilities. At the beginning of the game, each player can arrange his 16 pieces in
any way he likes on two rows of the board. In each turn a player can make up to four
moves with his pieces. The amount of unique possible moves in some positions can
even be as high as tens of thousands. In 2003 even a competition with a prize was

set out. The first Al to defeat humans shall win the prize. In 2015, after twelve years

'Rules of Arimaa available at http://arimaa.com/arimaa/

http://arimaa.com/arimaa/

CHAPTER 1. HUMAN-COMPUTER RIVALITY 6

on of unsuccessful results, a computer program called SHARP has finally defeated the

best human players [23].

1.1.4 Games that were solved

The games we mentioned in previous subsections have in common that the computer
Als are better than humans on average. In these games even a better player can
sometimes lose to a beginner due to random factors of the game or due to some kind of
luck of the beginner. But there are games where this is simply not true. If a game does
not have too many total positions or possible moves in every position it is possible to
simply check all of them for a winning strategy. Some games are solved in a way that
from any given position we can tell who will win and some games are solved only for
the starting positions.

An example of a very famous game solved for a starting position is checkers.
Checkers has been solved 2007 and if both players play perfectly the game leads to a
draw [12].

Another game of this type is Connect-Four?. The game has many variations
like poker and even little kids can understand it’s rules. On small boards, the game
presents an unsurprisingly small amount of positions. The more interesting variation
if it is played on an infinite board, where the number of possible positions are infinite.
In 2012 it was shown that both players have never-losing strategies, meaning that if
both players play perfectly the game is a draw as well [24].

Some solved games present a winning strategy for one of the players. Pentago®
is a particularly challenging game for the human brain. Humans tend to picture the
possible future positions in their minds, therefore moving and rotating parts of the
board are a great challenge for sure. In 2014 it was shown that the first player has a
winning strategy [9].

Qubic, Gomoku (also known as five-in-a-row) and many others have been solved or
partially solved as well. Several publications [1] [21] offer a comprehensive survey in

this area.

1.1.5 Starcraft 2

The situation is rather unfortunate for mankind in all the examples listed above. How-

ever, starting from this example the tables are turned. Starcraft 2 differs from the

2Rules of Connect-Four available at https://www.hasbro.com/common/instruct/ConnectFour.

PDF
3Rules of Pentago available at https://webdav.info.ucl.ac.be/webdav/ingi2261/

ProblemSet3/PentagoRulesStrategy.pdf

https://www.hasbro.com/common/instruct/ConnectFour.PDF
https://www.hasbro.com/common/instruct/ConnectFour.PDF
https://webdav.info.ucl.ac.be/webdav/ingi2261/ProblemSet3/PentagoRulesStrategy.pdf
https://webdav.info.ucl.ac.be/webdav/ingi2261/ProblemSet3/PentagoRulesStrategy.pdf

CHAPTER 1. HUMAN-COMPUTER RIVALITY 7

previous games dramatically. For starters, it is a computer game. In 2018, it is con-
sidered to be the next target for machine learning projects like AlphaGo, with a goal
to build a bot better than any human player.

In Starcraft, players build buildings and create units of their own, which they
control. They use these units to destroy other players, units, and buildings to win the
game. The game has plenty of game modes, but we will focus on the one-on-one format.
As with Go, Google’s Deepmind published a collaboration with Blizzard(company that
created Starcraft 2) [22] which provides a framework for bots as well as explains the
key challenges for computer programs in this game. As stated in the article, current
best Als for Starcraft can be defeated on a regular basis by amateur players.

An interesting measurement in this game is Actions Per Minute (APM). APM de-
notes the average number of actions (unit or building selections, movement commands,
...) the player makes during a minute of the game. Typical APM of a beginner player
is around a hundred, while professional players reach APM between 300 and 500.

Let us try to sum up some of the key differences between Starcraft 2 and the other
games we mentioned. Some of these differences are only of technical nature and some

of them are the reason for the game being a challenge for researchers. Differences:
e Players are provided only with partial(imperfect) information about the map.

e The amount of possible states is a higher than in previous examples. The player
can build tens of buildings and control hundreds of units which can take thousands

of steps.

e As the units move almost continuously, the number of turns in a typical game is

orders of magnitude higher than for turn-based games.

e Starcraft is a real-time game so the time to decide on a turn may be shorter

(fraction of a second compared to minutes in other games).

However we should also note that the game of Starcraft 2 is similar to chess or go

in several aspects:

e The short term rewards are not important, only the result of the game matters.
Simply put, sacrifices of a piece on a chess board or a unit on a map may lead to

significant advantages later in the game.

e Most of the positions are unreachable or information about them does not add
value to our strategy. This is where humans seem to be better, at evaluating

what are the interesting turns and positions to think about.

e The best humans are trained professionally, several hours a day. This can be

considered the best we can reach with current training techniques.

CHAPTER 1. HUMAN-COMPUTER RIVALITY 8

1.1.6 Other undefeated games

We presented a few examples of games where a program performs better than a human
and a single game where humans still hold the victory. Truth is, there are several
disciplines, which can be considered games, where humans have significant advantages
over computers. We just did not consider wide enough range of what can be a game

yet. Here we provide a short list of such challenges.

e Bridge is one of well known card games, where artificial intelligence has not yet
outperformed human players. The need to cooperate while having access to only
imperfect information is what makes bridge so difficult. Multiple approaches are

being tested against humans [3] [25].

e (Certain computer games involve a lot more than making turns and moving pieces.
First person shooters like Counter Strike* often involve certain level of team
play. A perfect aim may be an easy job for an Al, but top players execute team

strategies that can overwhelm individual performance.

Another non-trivial element of computer games can be their narratives. The
player is often expected to make a choice or solve a puzzle, based on his under-

standing of the environment’s narrative. Therefore game like World of Warcraft®
or The Elder Scrolls® are unchallenged by Als.

e The human language still is a great challenge for programmers and Als. Trans-
lation, correction or synonym seeking are very simple tasks that today’s Als
complete with decent quality. Yet, if we were to linguistically conceal a word,
we would effectively create a riddle. And no other game resembles riddles more
than a crossword puzzle. Crossword puzzles are still nowhere closed to be solved.

Attempts to change that can be seen in publications [§].

e Mao is what we could call an extreme game [6]. Beginner players are forbidden
to be told the rules and have to guess them by trial and error. During the
game, additional custom rules can emerge from the players. Every match can
be very different. The game is full of imperfect information. The players need
to successfully guess, cooperate, deceive, and observe to win a round. The game
can be as complex or as simple as the players make it, hence it may take a very

long time before an Al will beat the human players.

e Identifying what is on a picture. Even though computer programs are able to

distinguish between a few basic types of images or can name a few objects in a

4Official website of Counter Strike - http://www.counter-strike.net
5Official website of World of Warcraft - https://worldofwarcraft.com/
60Official website of The Elder Scrolls - https://elderscrolls.bethesda.net/

http://www.counter-strike.net
https://worldofwarcraft.com/
https://elderscrolls.bethesda.net/

CHAPTER 1. HUMAN-COMPUTER RIVALITY 9

picture, the human brain of a child can still do this better. Reading a text is a

problem of a similar kind.

e Going even further, most of the interaction with physical world is still in it’s
infancy for computers. Although these examples are not what we traditionally
perceive as games, we can consider them like ones. Driving a car, cooking a meal,
cleaning a room, changing a diaper, or a collection of other often crucial or life
endangering tasks still cannot be entrusted to a computer. These tasks simply
involve too much complexity, require a lot of sensors and have close to infinitely
many possible states. Robots can usually only repeat simple tasks in a factory.

More recently, they are also able to solve bin picking tasks using a lot of sensors.

1.2 Strengths and weaknesses

The purpose of this section is to summarize the findings from the previous section full
of historical examples. We listed several games where Als outperform humans as well
as plenty of those where humans are still on top. The observations below are mostly
linked to a few crucial terms, we are about to define. These terms are inspired by those
defined in Chapter 5 of [11]. It’s chapter 5 is mostly focused on games and a lot of it’s
concepts are very helpful in formalizing the term game and other related terms.

State space of a game is the set of all possible positions in a game. It may involve
the positions of pieces on a board, units on a map, some partial score or information
from previous turns that has impact on the rest of the game based on the rules.

Move is a transition from one state to another. A move has to be valid according
to the game rules.

Game tree is a tree where the nodes are the possible states of the game and the
edges between them are represented by moves. The size, depth, branching factor or
any other distinguishing properties of a game tree are often a consequence of the rules.

Here is a list of the strengths of an AI that come as obvious from the examples

listed above:

e [f the state space is too small, Al can explore most or even all of it. In this case
it can easily happen that the game will be solved by a computer using a brute
force search. The computer program can then find exact strategy (either winning

or never-losing) without even requiring any advanced Al techniques.

e If there is little to no variance in starting positions, by observing thousands or
more games an Al is able to look up certain opening techniques and strategies,
which are more likely to result in a winning position. The same is true for the end

of a game. Game endings can be usually classified into categories, with similar

CHAPTER 1. HUMAN-COMPUTER RIVALITY 10

strategies when the amount of possibilities is small enough. A computer can learn
a single strategy for each of these categories. For example, in chess, we call a list

of these strategies tablebases”.

Creating a set of opening or closing short-term strategies is possible by observing
a set of provided games. The same is true in the case of a zero human knowledge

Al learning only by playing against different versions of itself.

Those were the strengths of an Al, so let us turn the table and take a look at the
weaknesses. We could say that the key advantage of a human being against Al is his
intuition. Human intuition can of course be misleading or very wrong, but in most
cases it provides a healthy overview of good and bad game states or moves. Even in
complex games, like Starcraft a human can tell in a blink of an eye if the game situation
is very imbalanced for one of the players. These simple evaluations are what drives our
intuitive approach.

A more experienced professional player relies less on the simple evaluations and
rather observes a lot more parameters of the current game state to make better de-
cisions. An Al behaves in a similar way. If it is told, or has learned what are the
important parameters to observe on the current game state and how to react to them,
it can easily outperform a human professional.

In other words when it is unclear what are the important pieces of information or a
general lack of information is present, an intuitive human approach leads to plausible
results. When the opposite is true and all the information has a clear structure, an Al
can use raw computing power for better results.

Here is a list of a few examples when the raw computing power is less effective. We

could call these the strengths of humans.

e A certain amount of randomness requires preparedness for several situations, and
the required computing power can be orders of magnitude higher. This does not
necessarily imply that an intuitive approach is better, it rather remains unaffected

by this phenomenon.

From a long-term perspective proper randomness should not affect the game
excessively. But in the way it is used in traditional games, it results in spikes of

advantage which are short-term with long-term outcomes.
Forms of presence in games: throwing dice, shuffled deck, generated maps, critical

hits, ...

e Imperfect information about the game state is similar to randomness in a way

that it creates multiple magnitudes of possibilities. But conversely it is possible

"Tablebases for up to seven pieces can he found at http://tb7.chessok.com

http://tb7.chessok.com

CHAPTER 1. HUMAN-COMPUTER RIVALITY 11

to make certain predictions about the information we do not know. These pre-
dictions may come from previous observations, assumptions of certain play style

of the other player or just the premise of a worst case scenario.

Forms of presence in games: hidden cards on other player’s hand, fog of war,

partial information on enemy pieces, ...

e In certain games, the starting conditions of each player may be different. In
a very light form we see this even in games as chess and go, where one of the
players takes the first turn, while the other starts with the second turn. But this
aspect can be taken to a next level when a player can choose a fraction of his
own (strategy games), invest some points into a talent tree (role-playing games)

or choose his initial position from a given set.

This starting position variation enables players to pick up a playstyle of their

own and come up with a plenty of different strategies.

e Human beings are of deceitful nature which is often reflected in their playstyle. In
games where deception, deceit and bluff are incorporated, an Al may have to go
through a lot of trouble to predict a player. In these cases it can be very unclear
what is the best play to execute. That is again, where the human intuition kicks

in and may result in better than random gameplay.

Forms of deception are present in games like poker, bridge, mao, Starcraft 2
or rarely even in chess in several different forms. Player may try to trick the
other player into making a wrong move by persuading him about what is the
information he knows. Making a bet, playing a card, moving a unit or taking a
turn in a way that seems like a mistake at first glance is often abused by human

players to deceive their opponents.

Whether a game contains more elements from the first or the second list presented
above often decides if humans or computers hold the trophy. Nevertheless the amount
of years of human expertise or the amount of available computer resources can shift

the result one way or another.

Chapter 2
Design of our game

In this chapter, we will describe the design requirements for our game, it’s rules, and
how the requirements were projected into the rules of the game.

Firstly, we require the design to preserve the nature of the game itself. The rules
of the game should be as simple as possible, with a clear goal. One match should not
take too long to play and it should be easy to visualize all the game positions.

Secondly, our design should build on top of what we described in the previous
chapter. As a result, our game will be challenging for a human, for an Al, and for a
cooperation of both. We describe these requirements in detail in the next section.

At the end of this chapter, we will look at the designed rules of our game from a
critical point of view and list a few problems that arise. These problems are not crucial
in order to achieve the goal of this thesis, yet it is helpful to mention a few places where

improvements could be made in case of a different design.

2.1 Design requirements

As described in the previous chapter, (Human + AI) vs. (Human + AI) is the
type of game we are designing. Each player interacts and gets help from an assisting
program of his own before taking a turn. Both the human and the Al can execute the
same set of actions, but the player should determine which resources to use for each
decision. In order to make the game challenging for the cooperation of a human and
an Al, it has to meet certain requirements, which we will try to formulate based on
the conclusions we stated in the previous chapter.

For the game to be challenging for a human, not much is required. It should
just present enough possibilities and states with an unclear winner and it should not
resemble any process that humans meet in their daily lives. In the end, if a human
can fully understand and solve a game, it should not be much of a problem to program

a computer to execute a similar process. Exceptions to this rule are the simple tasks

12

CHAPTER 2. DESIGN OF OUR GAME 13

like recognizing what is on a picture, which were mentioned in the previous chapter,
however those break our requirements of no daily life resemblance we just stated.
Therefore, the interesting part of the design is to introduce a certain level of com-
plexity to the game in the interest of making it difficult enough for an Al, while still
allowing a human player to make a difference. More specifically, our game should meet

these requirements:

e The state space has to be big enough to make it very hard to do a brute force

search.

e There should be a plenty of different starting configurations, from which each

player may choose one, altering the course of the rest of the game.

e Significant amount of imperfect information needs to be present in order to engage

the power of a human player.
During the design we also need to keep in mind a few other important points:

e The rules of the game should be intuitively understandable and easily imple-
mentable on a computer. The former is a good prerequisite for a human to play

well and the latter is required for contributions from the Al

e The rules of the game should contain as few special cases as possible. They add

unwanted complexity, which does not go in hand with our goals.

e One match of the game should not take longer than a few minutes. If one match

of the game is too long, we will not be able to test it properly.

As game designers we also decided to incorporate one more requirement:

e The game should be symmetrical with respect to the players. The player should
be able to accomplish exactly the same set of moves on either side. Such asym-

metry would represent unwanted complexity.

Based on previously mentioned ideas and the typical setup of well known games,
certain aspects were chosen for the game environment. The game will be played by two
players against each other on a board consisting of squares. Each player controls several
pieces. Fog of war will be present, so that players will have imperfect information about
opposing player’s pieces. The specific board properties will change between games and
players will be able to affect their starting position.

A distinct feature we decided to use in contrast to typical board games is the fact
that players decide on their turns simultaneously within a given time frame. This
effectively reduces the game time to half and presents a new layer of player symmetry

in exchange for an increase in the complexity of the turn evaluation.

CHAPTER 2. DESIGN OF OUR GAME 14

2.2 Description of the rules

The game takes place on a (2k + 1) x (2k + 1) symmetrical board consisting of unit
squares. FEach square has a certain terrain type and some of them are marked as spawn
squares. The exact position and count of spawn squares, as well as the placement of
terrain can be different in each game. Two players will battle to defeat each other with
their units. Their units are spawned only at the beginning of the game, exactly one on

each spawn square.

Figure 2.1: The board consists of squares of different colors. Each color corresponds
to certain terrain type. Friendly units and enemy units can be are present on certain

squares.

Let s be the count of spawn squares belonging to one of the players (the total
amount of spawn squares on the board is therefore 2s). At the beginning of each game,
s positive integers are randomly generated and known to both players. Each of the
players distributes these positive integers among his spawn squares in a one to one
manner and chooses one of his spawn squares to be his king spawn square secretly. In
this phase the other player does not know the distribution of numbers, neither which
square is the king spawn square. The numbers distributed to the spawn squares will
determine the recharge time of unit spawned on that square, which will be discussed
later on. An example distribution of these recharge times is shown in figures 2.2 and
2.3.

The goal of the game is to keep one’s king alive, while slaying the opposing king.

A single game consists of several rounds, in which both players plan to move and/or
attack with their units. The plans are executed simultaneously, leading to a new
position on the board and the next round. The movement of units is affected and
limited by the type of terrain on the board and each player has only partial board

information at any given time.

CHAPTER 2. DESIGN OF OUR GAME 15

Spawn squares of a player

Set of generated
recharge times

Figure 2.2: Spawn squares are distinguished by pink color. The player is able to select

a recharge time for the unit spawned on each spawn square.

Current and total
required recharge time

Figure 2.3: After selecting all the recharge times, all units are visible and their recharge

times are displayed.

Fog of war is created on squares which are not close enough to any of the units
of a player. Both players have partial information about every square on the board,
allowing them to know the type of the terrain on that square at any given moment.
Each unit creates an area with radius of 3 in Manhattan distance around itself, which
is not affected by the fog of war. The size of this area can be changed by certain
terrain types as shown in figure 2.4. The owner of a unit has full information about
these squares - knowledge of presence (absence) of an enemy unit, as well as some other
minor information about enemy units we discuss later on.

Neighboring squares of a square are those immediately next to it in one of
the four directions - up, down, left, right (each square has at most four neighboring

squares).

CHAPTER 2. DESIGN OF OUR GAME 16

)
l HEE6GED

A HEEEEED
i HEN

Figure 2.4: The unaffected area is marked, fog of war is indicated by a question mark.

Table 2.1: All the terrain types present on the board

Type of terrain | Passable | Transparent | Slippery
Mountain No No -
Water No Yes -
Forest Yes No No
Desert Yes Yes No
Ground Yes Yes Yes

Five terrain types can be found in the game, each of them having different prop-
erties as shown in table 2.1, and different colors as shown in the figure 2.5.

Transparent type of terrain does not affect the default radius of fog of war around
units. On the contrary, opaque (opposite of transparent) type of terrain reduces the
radius of non-fogged area to 1 (fog of war is not present on these squares, only if a unit
is on one of the neighboring squares).

Passable type of terrain can house a unit of a player. Obstructed (impassable) type
of terrain can never house a unit.

Slipperiness of a terrain affects how units move on it. Details are described under
unit movement.

Unit movement: Every unit can be either currently executing a command, or
waiting to receive one (movement or a battle command). There are four possible
movement commands, corresponding to four directions - up, down, left, right. When a
unit is assigned a movement command, it moves in that direction by one square every

round, until one of the following happens:

e The unit cannot move any more in that direction because an obstructed terrain

is on the next square.

CHAPTER 2. DESIGN OF OUR GAME 17

Figure 2.5: All the terrain types are shown here.

e The unit is on a square with non-slippery type of terrain.

e The unit would end up on the same square as another unit (more details in

movement collision).
e The unit dies.

The direction of a unit’s movement cannot be changed after it is set. When the unit
finishes executing one movement command, it can receive another command (this time
with a different direction) right away.

Movement collision happens when two units (either from the same player or not)

try to execute conflicting movements. Two movements are conflicting if:
e More than one unit would end up on the same square.
e Movements are between the same pair of squares in opposing directions.

In case of a movement collision, neither of the units involved move. This may result
in additional movement collisions, and the units involved in them will not move either
(all the additional units involved are recursively calculated and will not move).

Board reduction: On the end of every 5% round (starting with the fifth) the board
is reduced. Reducing a board results in the change of terrain on it’s circumference.
The left-most column, right-most column, top row and bottom row have their terrain
type changed to Mountain. This effectively reduces the passable part of the board by
2 in each direction. Any square of Ground terrain on the new circumference of the
reduced board has it’s terrain type changed to Desert.

Any units residing in the squares whose terrain type has been changed to Mountain

are destroyed. At the beginning of the game, all squares of Ground terrain on the

CHAPTER 2. DESIGN OF OUR GAME 18

Figure 2.6: This board was reduced twice and all the ground on the third row changed

to desert.

circumference of the board have their terrain type immediately changed to Desert. A
board that was reduce twice is shown in figure 2.6.

Battle: There are four types of battle commands a unit can receive, resulting in
shooting a laser in one of the four directions - up, down, left, right. A unit can execute
a battle command only if it is charged. Once a battle command is executed the unit
is fully discharged and requires a certain amount of rounds to charge.

Every unit (or the spawn square, which it spawned on) has been assigned a number
and this determines it’s recharge time in rounds. At the beginning of the game all
of the units are fully discharged. The current and total recharge time of own units is
known to a player at any time as well as which unit was chosen to be the king. On
the contrary this information is unavailable for enemy units. A player can see enemy
units on squares he has full information about, but their current recharge time, total
recharge time or the king status are not known.

Shooting a laser means a laser beam is created on all squares in a given direction
between the unit and the next obstructed terrain. The laser beam and it’s direction
(horizontal or vertical) can be seen by players having full information on the affected
squares as in figure 2.7.

Any units (enemy or friendly) on squares affected by a laser beam are destroyed.

Order of execution During each round, multiple actions happen and their order

of execution determines the result. The order of actions every turn is as follows:
1. All units awaiting orders receive orders from players.
2. All movements are executed.

3. Movement collisions are resolved.

CHAPTER 2. DESIGN OF OUR GAME 19

Figure 2.7: Horizontal as well as vertical lasers are shown. If a friendly unit is hit, we

may even lose complete information about the squares around it, if no units are nearby.

4. Board is reduced if board reduction happens in this round.

5. Units positioned on the circumference after the reduction are destroyed.
6. If a king was destroyed by board reduction the game terminates.

7. All lasers are shot.

8. All units hit by lasers are destroyed.

9. If a king was destroyed by a laser the game terminates.

Final notes and tips:

e There is no movement command that orders a unit to stay put, but a movement
command into a neighboring square with obstructed terrain can have the same
effect.

e On every round a player is only asked to give commands to units that are not in

the middle of a movement.

e Friendly movement collision are one of the methods to position a unit on a square

that would not be reachable otherwise.

e The order of execution can cause multiple units to destroy each other simultane-

ously by their lasers.

e The game ends when one of the kings is destroyed. A king can be destroyed by

a laser or by the board reduction.

CHAPTER 2. DESIGN OF OUR GAME

20

e The map is symmetrical with respect to the player’s starting positions in spawn

points and terrain types.

e Spawn points act as Ground terrain type.

e [f a unit requiring a command was not assigned a command, a random movement

command is chosen for it.

2.3 Key elements in the rules

In this section we shall quickly take a look back at our rules and the requirements we

set for them. Each of the requirements may be addressed in multiple elements of the

rules, as well as some elements of the rules may address multiple requirements. In the

table 2.2 we provide a comprehensive overview.

Table 2.2: Key elements in the rules addressing requirements

Requirement

Addressed as

robust state space

size of the board, count of pieces

fog of war

unit recharge times

variable maps and terrain types

starting configurations

random set of unit recharge times

secret distribution of unit recharge times

variable maps

game symmetry

symmetrical map

equal set of unit recharge times for both players

simultaneous turn execution for both players

imperfect information

fog of war

recharge time of enemy units

choice of the king

simplicity & intuitiveness

unit collision resolution

simple goal

few special cases

unit collision resolution

only difference between the units is recharge time

match length

board reduction

slippery terrain

time limit for each turn in our implementation

Before we move on to the next section, one part of the rules is worth revisiting. Fach

CHAPTER 2. DESIGN OF OUR GAME 21

type of terrain has three different properties - passability, transparency and slipperiness.
The first two may seem as a natural choice when choosing differences between terrain
types and are often present in different games as well. All of their combinations give
us four terrain types - mountain, water, forest and ground/desert. From this point of
view, why would we decide to add another element of complexity in form of slipperiness
to the game?

The answer is a little surprising. We did list slippery terrain as one of the points
we use to address match length. The fact that for some units the player will not have
to choose a command every turn, will in fact reduce the game length. But this seems
rather like an overkill. The game length could be reduced in several other ways and
while we want to keep the rules as simple as possible, it does not sound like a wise rule.

The true motivation elsewhere. To understand it, let us try to look at the game
without this element from a perspective of an amateur player, who understands the
rules and played a few games. Due to the board reduction, the action in the game
will incline towards the center of the map. Keeping your king as far as you can from
the center, hidden behind a mountain, while peeking out with other units to briefly
shoot lasers at as many squares on the other half of the map as possible, seems to be a
decent strategy. At this point, the game becomes dull. It is often very obvious which
mountain to use for cover or how many steps you should take in some direction before
shooting. Picking the optimal movement direction is a short-term and non-challenging
decision for a human most of the time.

With the addition of terrain slipperiness, the dynamics of unit movement are very
different. If you want to move your unit to a certain square, it may be unclear what is
the best path to take. Some movement commands may be long-term and have great
impact on the game, so you need to think twice before executing them. Sometimes
movement commands may even take your unit into an inescapable position. As with
the game of Pentago, mentioned in the previous chapter, this kind of movement is
harder to visualize for a human.

This affects the way a human and an Al can attribute to a strategy. More and less
skilled human players can be distinguished based on how well can solve given movement
situations. An Al can use it’s raw computing power to rapidly find the quickest ways
to a square or to find the right one out of the possible positions in a few turns.

We increased the game difficulty for a human player and increased the possible
attribution of an Al in order to encourage their cooperation. Furthermore, the change
should not be too dramatic to make the game too hard for a human or too easy for an

Al leading us to a golden middle way.

CHAPTER 2. DESIGN OF OUR GAME 22

2.4 Weak points of our design

In our design, we wanted to minimize the probability of the game ending up in a tie.
Tied game does not give us any meaningful information about the skill of the two
matched players. If we were to eliminate the possibility of a tie entirely, we would need
to decide what would happen if two deterministic players were to play a game against
each other. In that case, the only remaining possibility seemed to be to add some
random factor in the game. However, leaving the result to be a flip of a coin seems as
an even worse option than allowing a tie.

Given the current set of rules, the tie can happen with non-trivial probability. Two
players can shoot each other’s kings simultaneously or the kings can be killed by board
reduction at the same time.

Another drawback of the rules may be their complexity. Although we are confident
that during the design phase we took several steps in order to eliminate the special
cases and increase the overall intuitiveness of the rules, the result is not as neat as
expected. It may require an entirely different setup than a board of squares with units
on them to create a game fulfilling our requirements with lesser complexity.

The overall verdict on the design of our game is positive, as we have met all the

presented requirements, while creating only a few minor drawbacks.

Chapter 3
Implementation of our game

After we defined the requirements for our game and it’s rules in the previous chap-
ter, in this chapter we will describe our specific implementation of the game. The
implementation is an important step to demonstrate the core concepts of this game
type.

We will have a certain set of requirements for the implementation. These differ
from the design requirements from the previous chapter in a way that they are more
of a technical nature. The challenges include playability, usability and attractiveness.
The role of the AI cooperating with the human player is represented by what we call
an assisting program. Each player can write his assisting program, which can alter the
course of the game.

The testing phase in the next chapter targets high school students, with little to
moderate algorithmic programming skills which affects the implementation heavily.
Most of the students have no former experience in the field of installing or configuring
a multi-part application. Therefore the technical setup is ought to be as simple as

possible.

3.1 Implementation requirements

We are creating a game, which is to be played by (but not necessarily only) high
school students. The participants of Spring Camp 2018 of Correspondence Program-
ming Seminary will be the first ones to test it thoroughly. Our game may serve as a
programming teaching tool and motivation resource.

It is therefore required that the setup process is minimal. Running and playing the
game, along with programming a player’s very own assisting program to guide him
through his turns should be straightforward. The following list does summarize our

requirements:
e The game has to run under Windows, Mac OS X and most of traditional Linux

23

CHAPTER 3. IMPLEMENTATION OF OUR GAME 24

distributions. The students are using different operating systems, and in 2018
this is an expectable prerequisite for any software. It is not important whether
we will create native executables or a web application, as we are going to use a

game framework which will take care of this for us.

e A player’s game client has to be able to connect to a game server, and be matched
with the desired opponent. The server will serve as an intermediary between the
clients verifying integrity of the data sent between them. For logging purposes

the server should be able to record all the game data.

e The gameplay should follow the rules described in the previous section as closely
as possible. Other than that, the server should be able to set a time limit for the

turn of a player.

e To support the benefits of using an assisting program, it should be possible to
generate random maps, meeting some basic playability requirements. If we were
to play only on a small set of maps, the players could easily adapt to their

characteristics and learn certain hardwired strategies for them.

e The protocol used to communicate with an assisting program should be available
to players. Thanks to this, it is possible to program an assisting program in any
language, that can produce some form of executable. A template with a simple
example should be provided in order to make everybody able to pick up the main

concepts easily.

Given that our implementation meets these requirements, the program should be

prepared for testing.

3.2 Architecture overview

After specifying the requirements, we will describe the specific architecture we have
decided to use and briefly go over the process behind the decisions.

On top of the game being fully functional, we also require it to be attractive for
both beginners and experienced programmers. These requirements easily rule out a
bunch of setups. For the concept itself, it would be sufficient to have a console interface
to the game, or the assisting program. However, that would hurt the attractiveness.
In order not to reinvent the wheel, writing low-level graphics library, or a decent game
management library is not an option either.

As developers we had a bunch of different framework options, from which we con-
sidered LWJGL [2], Unity3D [18], PyGame [14] and Godot [10]. We have decided to
use Unity3D, which provides the highest level of control out of the given options.

CHAPTER 3. IMPLEMENTATION OF OUR GAME 25

Unity3D can be used as a mature game engine allowing us to focus on the important
parts of the implementation. The engine supports 2D content as well as 3D content.
We implemented the game in 3D (even though it’s concept do not necessarily imply
it) in a hope that this choice will lead to an increase in attractiveness among young
beginner programmers. Thanks to Unity3D, little to no overhead is required for this
step.

The game is supposed to be multi-player, possibly over a network, which lead us to a
server — client architecture. To maintain simplicity and adhere to language paradigms,
the communication between the server and clients uses TCP sockets. We will define a
simple protocol to transfer required data.

Last part of the pipeline is the assisting program. In order to provide as much
flexibility as possible, it communicates with the client asynchronously with respect to
the game state. Communication uses standard input and output and a simple string
protocol, similar to the one used between the client and the server. This allows the
players to write an assisting program in any language as long as it supports standard
output and input streams. As part of this thesis, we provide a fully prepared python
wrapper.

In the next subsections we take a brief look at the specifications and properties of

each component of our pipeline.

3.2.1 Game server

Capabilities of the server:
e accept TCP socket connections from various clients

e allow the clients to be matched against anybody in parallel by selecting a room

name

e authenticate the clients against a user list and pass board information between
them

e keep an internal game state structure, execute the requested commands on it,

and send appropriate responses to players
e track the time limitation for a turn
e send end game responses to clients
e allow a single client to connect in a single-player test mode

The main parts of the internal game state are: board information, unit positions and

information, and board reduction information. The need for the last item emerged

CHAPTER 3. IMPLEMENTATION OF OUR GAME 26

during the testing. In our implementation, any room whose name begins with #(hash-
tag) is considered as a single-player testing room by the server, and the game is starts
immediately after a single player connects to it. There is no time limit tracking in the
testing mode and the second player mirrors the commands of the first player. Powers
selected are mirrored as well, but randomly chosen actions (in case the player does not

select a command for a unit) can be different.

3.2.2 Game client

Capabilities of the client:
e open TCP connection to the server

e allow the player to choose a game name, unit powers and assign commands to

the units

e display an appropriate visualization of the game situation including the board,

units and lasers
e allow the player to access visualization controls (e.g., camera)
e respond to the server with selected commands
e run a separate process for the assisting program and communicate with it

e appropriately react to assisting program commands

3.2.3 Assisting program

In the design phase we stated a few requirements for the assisting program in order
to make it easy to use. On top of these, we aimed to avoid making the program too
overwhelming or abstract, as that would lead to difficulties for beginner programmers.
Each player can make use of three main functions of the assisting program - displaying
a text on the screen, on a square, or displaying a prepared 3D model on a square. All
of these three functions are shown at 3.1.

Other than that, we wanted to allow the players to create fully functional automated
players - bots. For this purpose, the assisting program can set commands for units and
advance game turns.

Capabilities of the assisting program:
e receive messages from the client about the game state

e display text with given properties on the screen of the client

CHAPTER 3. IMPLEMENTATION OF OUR GAME 27

e display text with given properties on any of the squares of the game board

e place an object chosen from a predefined set of objects on any of the squares of

the game board

e set commands for the units and advance game turns

Figure 3.1: The figure shows us text printed on the screen, and one or more characters
of different sizes printed on squares. All of the sixteen objects from the predefined

collections are placed as well.

3.3 Example assisting programs

In this section we will take a closer look at the structure and demonstrate the capa-
bilities of the assisting programs. On the first look it may be hard to come up with
useful ideas to implement in an assisting program. Coming up with such ideas is one
of the challenges the players of our game will need to face.

To illustrate some of these ideas, let us take a look at some examples of usage of
the assisting program. We will accompany these ideas with examples of python code,
that can be used with very little effort and changes in our framework.

Before jumping straight into the examples, let us take a look at the code structure
of the program into which we are going to write. Examples may be specific for python,
but one should keep in mind, that any language can use standard input and output to
communicate with the client.

Listing 3.1 is a simplified version of the example code that greets a new player. We
provide the code in two python files - helper and the assisting program itself. We will

show only parts of the assisting program down below.

CHAPTER 3. IMPLEMENTATION OF OUR GAME 28

The helper contains definitions of methods used for creating and removing texts or
objects (create_text, ...), as well as parsing of the input from the client. This code
is pretty straightforward and players need to make only slight improvements to it when

needed.

Listing 3.1: Assisting program structure

... imports left out

state = GameState()

————- Write your code under this line ——-——-

- Edit this method to exzecute code every second ————-—
def everySecond(seconds_from_start):

pass

- Edit this method to ezxzecute code every turn ————-—
def everyTurn():

log(’Logging state:’)

log(str(state))

Examples of available commands

text_id = create_text(100, 100, ’Hi!’, color=’#FCF323’, size=35)
remove_ text(text id)

sqText_id = create_text_on_square(5, 6, ’X’, color=’red’, size=1.2)
remove_text_on_square(sqText_id)

sqO0bject_id = create_object_on_square(2, 3, 4, 1.3)

remove_object_on_square(sqObject_id)

- Management code under this line ————-

... management code left out

Without advanced modifications the user will be typing his code into one of the
two methods shown - everySecond and everyTurn. The provided log method will
write it’s input to a log file inside the same directory as our assisting program. This
is a useful way to debug the assisting programs, as the standard input and output are
already used for communication with the client.

Any time a python error happens in our template, it logs the precise error to the
log file and displays an indicator text in the client. If a more serious crash happens,
such that even our exception catching routine cannot handle it, the python program

crashes. The client is monitoring crashes in the assisting program and tries to restart

CHAPTER 3. IMPLEMENTATION OF OUR GAME 29

the assisting program after a given time delay.

3.3.1 Simple game counters

There are two challenges probably every new player will bump into after first few
games. It is important to keep track of when the board is going to reduce in order to
evade the death of our units. Secondly it is crucial not to exceed your given time limit
for a turn, otherwise you will be greeted with a losing message next turn.

The assisting program interface provides a simple solution to both of these problems,
as shown in figure 3.2. Every second we print the remaining turn time to our screen as
well as the current turn number. We know that board reduction happens every fifth

round, so now we can prepare for it.

Listing 3.2: Example with basic game counters

... imports and definitions left out

current_turn_time = 0

turn time_id, turn count_id = None, None

def everySecond(seconds_from_start):
global current_turn_time, turn_time_id

current_turn time += 1

if state.turn_id >= O:
if turn_time_id:
remove_text(turn_time id)
turn_time_id = create_text(-200, 200, str(state.turn_time-

— current_turn_time) + ’ seconds remaining’, ’white’, 20)

def everyTurn():
global current_turn_time, turn_count_id

current _turn time = 0

if turn_count_id:
remove_text (turn_count_id)
turn_count id = create text(-200, 150, ’Turn no.’ + str(state.

— turn_id), ’white’, 20)

... management code follows

CHAPTER 3. IMPLEMENTATION OF OUR GAME 30

20 seconds remaining

Figure 3.2: Both the remaining time for the current turn and the turn number are

shown.

3.3.2 Previous enemy positions

The fog of war is an ever changing element of the board. When a player is deciding
when and where he should shoot a laser, it may be useful to remember the previous
positions of enemy units. They may help to make a more educated guess of an enemy
position or even rule out some possibilities.

It would be certainly unfortunate to lose the ability to see where the fog of war still
is and where it is not due to this strategy. Fortunately, we can use color of the text to
differentiate between the two cases.

The last implementation simplification will be the usage of custom IDs for our
displayed texts. These IDs hash the square position so before printing out the new
numbers we can easily delete the old ones without creating a structure to remember
them. Calling object removal on a non-existent ID is expected to do nothing and is

valid.

Listing 3.3: Example with previous enemy unit positions

... imports and definitions left out

0old_enemy_positions = {}

def everySecond(seconds_from_start):

pass

def everyTurn():
for position in old_enemy_positions:

0ld_enemy positions[position] += 1

CHAPTER 3. IMPLEMENTATION OF OUR GAME 31

for position in state.enemy_units:

0old_enemy_positions[position] = 0

for position in old_enemy_positions:
remove_text (1000+position[0]*100+position[1])
create_text_on_square(position[0], position[1], str(
— old_enemy_positions[position]), color=’red’ if position
— in state.visible_squares else ’black’, id=1000+position

— [0]*100+position[1])

... management code follows

Figure 3.3: The numbers on the squares denote how many turns passed since we last
saw an enemy unit at those squares. Squares unaffected by fog of war have their
numbers colored in red. Numbers on the squares in the fog of war have black colored

text.

3.3.3 Least dangerous positions heuristic

In the last of our examples we will try to mark the current least dangerous squares
on the board. To approximate square’s danger we use a simple heuristic technique we
made up, along with the constants it uses.

For each passable square, we inspect all squares that could possibly shoot a laser
at it. Based on the terrain type of these squares, we increase the so called danger of
this square. Afterwards, the squares with the lowest danger should approximate the

least dangerous positions on the map.

CHAPTER 3. IMPLEMENTATION OF OUR GAME

Listing 3.4: Example calculating least dangerous squares

32

... imports and definitions left out

top_positions_ids = []

def everyTurn():

for id in top_positions_ids: # Remove old indicators

remove_object_on_square(id)

top_positions_ids = []

danger _storage =

for i in range(state.row_count):

[]

for j in range(state.column_count):

if state.board[i] [j] == ’M’ or state.board[i] [j] == *W’:

continue

square_danger = 0

range, rows True - columns False

ranges = [((i, state.row_count, 1), True),

(i, -1, -1), True),
((i, state.column count, 1), False),
((i, -1, -1), False)]

for r in ranges:

for k in range(*r[0]):

square = state.board[k] [j] if r[1]

if
if
if
if
if

< board[i] [k]

square
square
square
square

square

))

: break
W
P
D2
YF

square_danger
square_danger
square_danger

square_danger

else state.

7
10
11

danger_storage.append((square_danger, i, j))

danger_storage.sort(key=lambda x:x[0])

worst_danger = danger_storage[-1] [0]

Create indicat

ors

for i in range(min(10, len(danger_storage))):

b, r, ¢ = danger_storage[i]

top_positions_ids.append(create_object_on_square(r, c, 3,

— max(0.25, 2-(worst_danger-b)/50)))

CHAPTER 3. IMPLEMENTATION OF OUR GAME 33

... management code follows

The provided strategy is very simple and there are numerous things we do not
consider and can affect what we call danger of a square. The strategy serves rather as
a starting point for similar heuristics. In some situations, the marked squares really
do match the seemingly least dangerous squares, as shown in figure 3.4.

Heuristic approaches are the middle ground between very simple calculations, like
those shown earlier, and advanced algorithms. As a result, heuristics are a way, how

even an algorithmically unexperienced programmer can make an attempt for a strategy.

g = o - ? K 3
By = = = -
7> S [.
T A7 - = : g 2
Z £l = = 5"_ - By
0/3
Z — > . v 0/4) By
3
Z 2) - . - ~
7z z P * R
o i 2 ,l N
2 2 . b ? ~
. "}. ? 2 5
ol 2 2 " o =
oF ?
o/4
2 - 2

?)
Figure 3.4: The little diamonds are placed at positions that are supposed to be least

dangerous

Chapter 4
Final testing and results

After designing and implementing our game, we decided to thoroughly test it with
a group of volunteers. As mentioned in the previous chapters, we aimed to design a
game, which is challenging for a computer and for the human brain as well. During the
testing, we have expected to observe human-only players as well as some players, which
rely on their programs to do most of the work. Our main goal has been to capture mo-
ments, when an assisting program changed the course of the game in some way. These
moments serve us as examples of game positions, at which the raw computing power
could somehow help a human player to make a more educated decision. Analyzing
these moments we would try to compare them to what we proposed as strengths and
weaknesses of a human or an Al.

Testing took part during the Spring Camp 2018 of Correspondence Seminar in
Programming (CSP) '. CSP is a correspondence competition primarily aimed at high
school students in Slovakia. The competition periodically presents students with chal-
lenging problems, which they solve both theoretically and practically. CSP motivates
high school students to become proficient programmers and skilled problem solvers
with analytical and critical thinking. Semiannually the best 36 students are invited to
a camp like the one we have tested our game at. Most of the successful participants of
Slovak Olympiad in Informatics (OI) ? are trained through CSP. Moreover the best of
the students tend to participate at the International Olympiad in Informatics (IOI) 3.

In order to properly understand the testing environment, we briefly describe the
skill level of the students and their engagement in similar activities. In the following
sections we outline the schedule for the testing day and report the results of the testing.
Afterwards, we examine the student responses to our survey about the game and it’s

concept. At the end of the chapter we summarize the results.

LCorrespondence Seminar in Programming - https://ksp.sk/
2Slovak Olympiad in Informatics - http://oi.sk
3International Olympiad in Informatics - http://ioinformatics.org/

34

https://ksp.sk/
http://oi.sk
http://ioinformatics.org/

CHAPTER 4. FINAL TESTING AND RESULTS 35

4.1 Testing environment

During the camp, one whole day was reserved for the testing of our game. That is,
about 11 effective hours of time with breaks for lunch and dinner. The participating
students highly differ in their skill in programming. Most of them understand the basic
concepts of simple algorithms and time complexity. Yet, practical programming tasks,
like creating their assisting program can be very overwhelming for them at first. For
some, it might even be the first program they would try to write, that does not just
solve a given task at a competition, or a homework at school.

On the other end of our skill spectrum, we have a few well educated and prepared
programmers. They are very capable in algorithmic thinking and have previous experi-
ence in similar competitions. This experience in setting up development environments
and writing their made up programs full of heuristics makes them very well equipped
for the task.

In order to promote experience exchange and make the task more attractive, stu-
dents were allowed to form teams of up to 4 people, which participated in the final
competition. Other than that, the beginner programmers, even when teamed up, would
need a lot of support and assistance. For this purpose, most of the organizers joined
one of the beginner teams to be their member. During the day, they have helped to

motivate the students and provided them with technical support.

4.1.1 Testing schedule

Based on the previously described assumptions about the testing environment we cre-
ated a time schedule for the day. Participating teams would play two types of matches.
First, each team would play three to four best of three matches against randomly cho-
sen teams. These qualification matches would provide us with base ranking to create
a single elimination tournament bracket, which would be played after dinner.

09:00 - 10:00 - Game rules, programming and competition description

10:00 - 12:30 - Initial setup, familiarization with the game

12:30 - 13:15 - Lunch break

13:15 - 18:00 - Main coding time, qualification matches

18:00 - 18:45 - Dinner break

18:45 - 20:00 - Finalization of programs, qualification matches

20:00 - 21:30 - Tournament matches

21:30 - 22:00 - Finale

22:00 - 22:15 - Feedback collection

Approximate of 7 hours of time was planned for the participants to get to know the

game, play it a few times and try to create their own assisting programs.

CHAPTER 4. FINAL TESTING AND RESULTS 36

4.2 Results

In the end, the testing itself was not as smooth or successful as expected. We did not
capture any of the moments where a computer changed the course of the game, neither
did the students come up with impressive ideas. The students did not spend most of
the time as we originally planned, which was due to various reasons. From this point
of view, we could say our testing was not a success. During the testing, we found out a
lot of ways to improve the implementation of the game. Some moments of the testing
even indicated that our participants were not chosen very wisely. A more experienced
set of programmers might be required for our purpose. The provided time frame may
have been a bottle-neck as well.

Below, we recap the the testing day. We will take a look at it from multiple different
perspectives and try to find it’s interesting moments. In the following subsection we
cite some of the survey responses from the participants. In the last subsection we
compile a list of take away messages. These things are either implementation changes

or overall conceptual differences.

4.2.1 Testing walk-through

Multiple unprecedented factors affected our testing. They were both of technical and
personal nature. In the following paragraphs a chronological overview of the testing is
provided along with specific moments.

At nine, we started to explain the rules of the game and competition that the
participants are going to take part in during the day. It took nearly twice as much
as originally planned. A lot of the time was consumed by a seemingly never stopping
stream of questions.

The students were given a link to a website with all the necessary materials. The
website included off-line installers of handy IDEs and languages, all the required doc-
uments and compiled client binaries. Among the required documents they could find
the full description of the rules, the full description of protocols between the server
and the client as well as between the client and the assisting program. Compiled bi-
naries included versions for Windows and Linux, both 64-bit and 32-bit. Based on
the team’s choice, the binaries were incorporated with example assisting program in
Python or C++. On the website a configuration guide along with basic tips and tricks
was present.

Even though all the required materials with descriptions were provided, the students
often failed to set up their environments. This may be caused by their lack of experience
in comprehending a written configuration tutorial. The configuration was as simple

as we have managed to provide. Excluding the most experienced teams, each team

CHAPTER 4. FINAL TESTING AND RESULTS 37

had needed technical assistance. Due to lack of upfront preparation even some of the
organizers failed to help their teams in setting up their environments smoothly.

Our network architecture was not well designed either. Moments after the beginning
we started to have problems with the network being overloaded. Due to this, we were
forced to quickly edit the server code and distribute it among the students, to run
their own servers in different rooms. This stripped down version of the server did not
support logging or some other advanced features. After the lunch break, most of the
students had successfully set up their clients and proof-of-concept assisting programs.
Distributed throughout the building, groups of teams were hosting their own servers,
playing the game against each other.

The teams struggled with basic assisting program strategies for the most of the
afternoon. Most of the students did not code before in more than a single language
(for most of them - C++). Adapting themselves to Python was not something they
could do in such a short timespan. But for our assisting program purposes, python
was a very well equipped language, therefore the client - assisting program protocol did
focus around it. Parsing the strings from the client and formatting them back again
can be a problematic task in C++.

On the contrary, teams which did code in Python did lack debugging experience.
Inspecting the Unity3D client logs was a big challenge and the idea of wrapping the
whole assisting program in a try / except block was an idea suggested by one of the
students only after the competition. Without the possibility of debugging to standard
output most of the teams had a rough time making their code work.

Overall, the lack of functionality in the wrappers for both languages along with
non-trivial debugging, made the experience very unsatisfying for most teams. Before
dinner, they just finished familiarizing themselves with the core concepts of the game
and were not able to create truly helpful assisting programs.

The network problems were nearly solved by the transition to local game servers,
so the teams played quite a few matches between themselves. Playing the game itself
was entertaining, but writing an assisting program was simply too challenging. Most
of the teams did manage to write an equivalent of our game counters example from
previous chapter, but nothing more.

After dinner, each team played a few quick matches and we have determined the
best two teams using single elimination bracket. These two teams played best of three,
while their screens were projected to the wall for others to watch. The finale was a
pretty enjoyable end of the day.

Overall verdict seemed to be that the game is well designed and fun to be played
as a human player game. But given the short timespan, technical problems, and lack

of programming experience the purpose of assisting programs was not fulfilled.

CHAPTER 4. FINAL TESTING AND RESULTS 38

4.2.2 Survey responses

After the finale, the participating teams were kindly asked to fill out three questions
and give us the permission to use this data in the thesis. The questions asked about
the realization of the game, concept of a game with an assisting program and what was
the most challenging part for them. Below are a few translated excerpts from these
anonymous responses. We picked the most surprising, informative, and wise responses
to present here. All of the responses are included along with the code with the thesis.

A few of the responses were similar to this one:

What was the greatest challenge for you?
“To make up and code something that would be useful and help us in the game. And

of course to make it work.”

We tried to design the game in a way, that an assisting program could help the player
somehow. These responses question whether we were successful in achieving this goal.
Due to missing features of the Python wrapper and lack of experience, most of the

responses stated facts like this:

What was the greatest challenge for you?
“Everything. (laughter) Probably that, how is it called ... Parsing!”

In the question about the concept of a game with an assisting program, most of the

answers were positive.

How would you rate the idea of a game, where you can code some
additional functionality into your client?

“Never heard of the concept before, but I really like it. Would love to try more
similar things.”

“I believe this idea is really great, I like it and we need more such games. I can
imagine such modification in a lot of strategic games like Starcraft or MOBA 4
games. What I would need is a way of coding inside the game, so it would be
accessible for more people ...”

“...the idea is interesting and very engaging. It certainly is an excellent way how to

introduce programming to less experienced kids.”

From these responses it seems that we were on point with the design but lacked in
implementation quality. We also tried to design the game to be engaging for beginner
programmers, which has seemed to work out well. The idea of coding an assisting
program directly inside a game, could eliminate the undoubtedly most challenging

part for most participants - setup and parsing.

4MOBA stands for Multiplayer online battle arena

CHAPTER 4. FINAL TESTING AND RESULTS 39

4.2.3 Testing takeaways

After the testing, we have learned a lot. Had we known all of it in advance, we would
do a lot of things differently.

Firstly, the testing also served as a thorough bug testing for the implementation of
the game. There were no major bugs or unexpected behavior in the game itself. In
contrast, the assisting program engine and it’s wrappers contained a few bugs. The
python and C++ wrappers also lacked in features.

A very useful idea one of the participants provided was to implement a single-player
testing mode to the game, which we later did implement. Beforehand a player had to
start two instances of the game to test his assisting program, which complicated his
progress.

The Python wrapper did not contain the code to fully parse all of the input from
the client and the students had to write this part themselves. We did not consider it to
be a big of a problem and expected them to parse only the data they actually wanted
to use. Yet, most of the participating teams did not parse the data successfully, or even
got stuck in trying to parse data, they did not even want to use in the first place. The
idea to wrap the core functions of the assisting program in a try / except block also
occurred only after the testing. That, along with a simple logging interface outputting
to a file, made debugging orders of magnitude easier.

Secondly, based on the progress during the day and some feedbacks, we have de-
veloped a general feeling, that the target audience was not appropriate. Despite them
being high school students with at least moderate interest in programming, our par-
ticipants may have simply lacked the programming skill required. The testing would
have required a lot more time to achieve the goal set specified at the beginning of this
chapter. On the other hand, a long term competition usually suffers from a lack of
motivation.

As a result, we believe that testing with a more experienced group of programmers

would end up rather differently.

Conclusion

In our work, we have listed the most important historical examples of games, where
humans and Als were matched against each other. In some games, the Als can out-
perform the best human players by a large scale. In others, the best Als can barely
challenge a beginner human player. We have also included examples of games, where
raw computing power allowed us to simply search for the best strategy.

We have shown, that imperfect information, randomness, deceit, and complex rule
set make the game a lot harder for an Al. On the contrary, small state space and little
variation create the ideal environment where humans can get outperformed by Als.

With the knowledge of strengths and weaknesses of both human players and Als,
we have recapped the design requirements for our game. The design goal for our game
was to make it challenging both for the human player and an Al, while allowing them
to cooperate.

Our two-player game is a computer game, taking place on a board consisting of
squares. Each square has it’s properties and each player controls his own units. The
units are able to move across the board and shoot lasers periodically. These lasers can
eliminate the enemy units. A player wins if he eliminates the unit his opponent has
secretly chosen as his king. The players have imperfect information in the form of fog
of war. The board and unit recharge times are generated randomly, leading to a high
starting position variance and a large state space.

We have implemented the game using Unity3D for the game client and Python
for the server. Players can write their assisting programs to improve their game-play.
These assisting programs communicate with the client through standard input and
output. An assisting program is able to show text on clients screen or on one of the
board squares. Bots for the game can be programmed as well, due to assisting program
being able to assign commands for the units and advance through the game.

The possible usages of an assisting program are numerous, so we have listed a few
of them with complete code examples. Along with the thesis we provide a full fledged
Python wrapper for the assisting programs.

Our game underwent thorough testing on the Spring Camp 2018 of Correspondence
Seminar in Programming. Even though we had technical issues and the implementation

did not contain as much features as it does now, we have learned a lot. After the testing,

40

Conclusion 41

based on the feedbacks from participants, we have improved the client, as well as the
provided Python wrapper. These changes allow even a less experienced programmer
to easily play the game and write his own assisting program.

Unfortunately, due to unpolished testing methods, we were not able to fulfill our
initial testing goals. We did not capture a moment, where an assisting program would
help the human player and change the course of the game dramatically. Most of the
created assisting programs contained only basic functions such as simple game counters.

On the other side, we did prove the concept of a game where a human cooperates
with a program to be interesting. It can motivate beginner programmers to engage in
programming as well as bring a lot of experience. Altering ones own game client to his
needs during the game requires creativity and critical thinking.

Given the current state of society inclining towards information technologies, we
believe this type of a game may become a lot more popular in the future. It may be

well presented at the competitive scene as well as at educational institutions.

Bibliography

[11]

[12]

Louis Victor Allis. Searching for solutions in games and artificial intelligence,
1994.

Antonio Hernandez Bejarano. 3D Game Development with LWJGL 3. GitBook,
2017.

Paul M Bethe. The state of automated bridge play, 2009.

Darse Billings, Aaron Davidson, Jonathan Schaeffer, and Duane Szafron. The
challenge of poker. Artificial Intelligence, 134(1):201 — 240, 2002.

Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker:

Libratus beats top professionals. Science, 2017.

Public Domain. Mao - the game. https://boardgamegeek.com/boardgame/
4213/mao.

Eben Harrell. Magnus Carlsen: The 19-Year-Old King of Chess. http://content.
time.com/time/world/article/0,8599, 1948809, 00.html, 2009.

Felix Hill, Anna Korhonen, Yoshua Bengio, and Kyunghyun Cho. Learning to
understand phrases by embedding the dictionary. Transactions of the Association
for Computational Linguistics, 4:17 — 30, 2016.

Geoffrey Irving. Pentago is a first player win: Strongly solving a game using
parallel in-core retrograde analysis. CoRR, abs/1404.0743, 2014.

Juan Linietsky, Ariel Manzur, and The Godot Engine Team. The godot game
engine. https://godotengine.org/contact, 2011.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2nd edition, 2003.

Jonathan Schaeffer, Neil Burch, Yngvi Bjornsson, Akihiro Kishimoto, Martin
Miiller, Robert Lake, Paul Lu, and Steve Sutphen. Checkers is solved. Science,
317(5844):1518-1522, 2007.

42

https://boardgamegeek.com/boardgame/4213/mao
https://boardgamegeek.com/boardgame/4213/mao
http://content.time.com/time/world/article/0,8599,1948809,00.html
http://content.time.com/time/world/article/0,8599,1948809,00.html
https://godotengine.org/contact

BIBLIOGRAPHY 43

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Brian Sheppard. World-championship-caliber scrabble. Artificial Intelligence,
134(1):241 — 275, 2002.

Pete Shinners and PyGame development team. Pygame. http://pygame.org/,
2011.

D. Silver et al. Mastering the game of go with deep neural networks and tree
search. Nature, 529(7587):484-489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche,
Thore Graepel, and Demis Hassabis. Mastering the game of go without human
knowledge. Nature, 550(7676):354-359, 10 2017.

Omar Syed and Aamir Syed. Arimaa: A new game designed to be difficult for
computers. ICGA Journal, 26:138-139, 2003.

Unity Technologies. Unity 3D - Personal edition. https://store.unity.com/
products/unity-personal/, 2018.

Gerald Tesauro. Td-gammon, a self-teaching backgammon program, achieves
master-level play. Neural Computation, 6:215-219, 1994.

Gerald Tesauro. Temporal difference learning and td-gammon. Commun. ACM,
38(3):58-68, mar 1995.

H.Jaap van den Herik, Jos W.H.M. Uiterwijk, and Jack van Rijswijck. Games
solved: Now and in the future. Artificial Intelligence, 134(1):277 — 311, 2002.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Kiittler, John Agapiou,
Julian Schrittwieser, John Quan, Stephen Gaffney, Stig Petersen, Karen Si-
monyan, Tom Schaul, Hado van Hasselt, David Silver, Timothy P. Lillicrap, Kevin
Calderone, Paul Keet, Anthony Brunasso, David Lawrence, Anders Ekermo, Ja-
cob Repp, and Rodney Tsing. Starcraft II: A new challenge for reinforcement
learning. CoRR, abs/1708.04782, 2017.

David J. Wu. Designing a winning arimaa program. ICGA Journal, 38:19-40,
2015.

Yoshiaki Yamaguchi, Kazunori Yamaguchi, Tetsuro Tanaka, and Tomoyuki"
Kaneko. Infinite Connect-Four Is Solved: Draw. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

http://pygame.org/
https://store.unity.com/products/unity-personal/
https://store.unity.com/products/unity-personal/

BIBLIOGRAPHY 44

[25] Chih-Kuan Yeh and Hsuan-Tien Lin. Automatic bridge bidding using deep rein-
forcement learning. CoRR, abs/1607.03290, 2016.

	Introduction
	Human-computer rivality
	Historical overview of human battle against AI
	Chess
	Go
	Other games where AIs outperform humans
	Games that were solved
	Starcraft 2
	Other undefeated games

	Strengths and weaknesses

	Design of our game
	Design requirements
	Description of the rules
	Key elements in the rules
	Weak points of our design

	Implementation of our game
	Implementation requirements
	Architecture overview
	Game server
	Game client
	Assisting program

	Example assisting programs
	Simple game counters
	Previous enemy positions
	Least dangerous positions heuristic

	Final testing and results
	Testing environment
	Testing schedule

	Results
	Testing walk-through
	Survey responses
	Testing takeaways

	Conclusion

