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Abstract
Graph G is said to be equimatchable, if every matching in G extends to (i.e., is a sub-
set of) a maximum matching. In the paper [K. Kawarabayashi and M. D. Plummer.
Bounding the size of equimatchable graphs of fixed genus. Graphs and Combinatorics,
25(1):91–99, 2009.] it is showed that for any fixed g, there are only finitely many
3-connected equimatchable graphs G embeddable in the surface of genus g with the
property that either G is non-bipartite or the embedding has representativity at least
three. The proof is based on a result that the maximum size of such a graph is at most
c · g3/2, where c is a constant. In this thesis we show that the upper bound on the
number of vertices of a 2-connected, non-bipartite, equimatchable graph embeddable
in the surface of genus g is between 5√g + 6 and 4√g + 17 for any g ≤ 2, between
5√g + 6 and 12√g + 5 for any g ≥ 3, and between 5√g + 6 and 8√g + 5 for g ≥ 63.
Our methods are based on and refine the concept of isolating matchings used in the
aforementioned paper. Moreover, we provide additional results concerning the struc-
ture of factor-critical equimatchable graphs and graphs embeddable in a fixed surface.

KEYWORDS: graph, graph embedding, genus, matching, equimatchable graph, sur-
face.
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Abstrakt
Graf G sa nazýva equimatchable, ak sa každé jeho párenie dá rozšíriť na najväčšie páre-
nie v G; teda každé párenie je podmnožinou nejakého najväčšieho párenia. V článku
[K. Kawarabayashi and M. D. Plummer. Bounding the size of equimatchable graphs
of fixed genus. Graphs and Combinatorics, 25(1):91–99, 2009.] je dokázané, že pre
ľubovoľné fixné g existuje iba konečne veľa trojsúvislých equimatchable grafov G vno-
riteľných do plochy rodu g s vlastnosťou, že G je nebipartitný, alebo vnorenie má
reprezentativitu aspoň tri. Dôkaz je založený na výsledku hovoriacom, že maximálny
počet vrcholov takéhoto grafu je c · g3/2 pre nejakú konštantu c. Hlavným výsledkom
tejto práce je tvrdenie, že maximálny počet vrcholov dvojsúvislého, nebipartitného,
equimatchable grafu vnoriteľného do plochy rodu g je medzi 5√g + 6 and 4√g + 17
pre g ≤ 2, medzi 5√g + 6 a 12√g + 5 pre ľubovoľné g ≥ 3 a medzi 5√g + 6 a 8√g + 5
pre g ≥ 63. Naše metódy sú založené na a ďalej spresňujú koncept izolujúcich párení
využitých v uvedenej práci. Medzi ďalšie výsledky patrí štrukturálny popis faktorovo-
kritických equimatchable grafov a grafov vnoriteľných do daných plôch.

KĽÚČOVÉ SLOVÁ: graf, párenie, vnorenie grafu, rod plochy, equimatchable graf.

vii



Contents

Introduction 1

1 Definitions and Preliminaries 2

1.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Equimatchable graphs . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Surfaces and Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Rotantion systems . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Previous work 13

2 Vertex-isolating Matchings in Embedded Graphs . . . . . . . . . . . . 14

2.2 Equimatchable graphs of fixed genus . . . . . . . . . . . . . . . . . . . 15

3 Equimatchable factor-critical graphs of fixed genus 18

Bibliography 30

viii



Introduction

In this thesis we investigate equimatchable graph that can be embedded in a surface of a
fixed genus. Equimatchable graphs are exactly the graphs in which one can always find
maximum matching in linear time using greedy algorithm. Formally, a graph is called
equimatchable if every its matching is a subset of a maximum matching. Equimatchable
graphs with a perfect matching were characterized by Summer in [Sum79] and all
such graphs are isomorphic to K2n or Kn,n. A polynomial algorithm for verifying
membership and non-membership in the class of equimatchable graphs can be found
in [LPP84]. In the paper [KPS03] it is showed that there are precisely twenty-three
3-connected equimatchable planar graphs. Later, Kawarabayashi and Plummer in
paper [KP09] showed that for any fixed g, there are only finitely many 3-connected
equimatchable graphs G embeddable in the surface of genus g with the property that
either G is non-bipartite or the embedding has representativity at least three. The
proof is based on a result that the maximum size of such a graph is at most c · g3/2,
where c is a constant.

In this thesis we focus mostly on equimatchable factor-critical graphs. We should note
that every 2-connected equimatchable graph that is not bipartite is factor-critical.
We provide several results characterizing the structure of 2-connected factor-critical
equimatchable graphs that allow us to prove our main result:

Theorem. Let f(g) be function that gives the maximum number of vertices of a 2-
connected factor-critical equimatchable graph embeddable in the surface of orientable
genus g. Then:
i) If g ≤ 2, then 5√g + 6 ≤ f(g) ≤ 4√g + 17.
ii) If g ≥ 3, then 5√g + 6 ≤ f(g) ≤ 12√g + 5.
iii) If g ≥ 63, then 5√g + 6 ≤ f(g) ≤ 8√g + 5.

Additionally, we extend the results from [KPS03] by showing that when we allow graphs
that are not 2-connected, there are infinitely many equimatchable planar connected
graphs, both factor critical and bipartite.
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1
Definitions and Preliminaries

This chapter is devoted to a presentation of the basic concepts used in this thesis. We
start with a summary of used graph-theoretic notation. In the second part of this chap-
ter we define matching, equimatchable graph, and related concepts, present Edmonds-
Gallai decomposition theorem and a characterization of equimatchable graphs based
on this decomposition. The rest of this chapter consists from a short foundation of
topology and topological graph theory.

1.1 Graphs

First we present some basic notation and definitions used throughout the text, for the
concepts not defined the reader is referred to [Die05].

A graph is a pair G = (V,E) of sets such such that E ⊆ [V ]2; thus the elements of E
are 2-elements subsets of V . The elements of V are the vertices (or node, or points)
of the graph G, the elements of E are its edges (or lines). The usual way to picture
graph is by drawing a dot for each vertex and joining two vertices by a line if the
corresponding two vertices form an edge. The vertex and edge set of a graph G are
also denoted by V (G) and E(G), respectively. Graphs in topological graph theory are
usually with loops and multiple edges. Since, in our thesis we work exclusively with
matchings, we could excludes loops and multiple edges in graphs (see Note 1.2 on page
4).

The number of vertices of a graph G is its order, written as |G|. The number of edges

2
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of graph G is denoted by ||G||. A vertex v is incident with an edge e if v ∈ e; then
e is an edge at v. The two vertices incident with an edge are its endvertices or ends.
An edge {x, y} is usually written as xy (or yx). Two vertices x, y are adjacent, or
neighbours, if xy is an edge of G. Two edges e 6= f are adjacent if they have a common
vertex as their end. If all vertices of graph are pairwisely adjacent, then G is complete.
A complete graph on n vertices is Kn. The degree deg(v) of a vertex v is the number of
edges incident with vertex v. By our definition the degree of a vertex v is equal to the
number of neighbours of v. Set of neighbours of v is called neighbourhood (of v) and
is denoted by N(v). Let U be a set of vertices such that U ⊆ V . Then N(U) denotes
union of neighbourhoods of all vertices of U . If every vertex of the graph G has the
same degree k, then G is said to be k-regular. A set of vertices or edges is said to be
independent if no two of its elements are adjacent.

A graph is said to be connected if for any vertices a, b of G there is a sequence
(v0, v1, . . . , vn) of vertices of graph such that a = v0, b = vn, and for each i the ver-
tices vi, vi+1 are adjacent. The maximal connected subgraphs of a graph G are called
(connected) components of G. A graph is k-edge-connected for k ≥ 2 if G is connected
and for any set S of k − 1 edges of G, the graph G \ S is connected. Similarly, G is
k-vertex-connected, or just k-connected, if it is connected and for every set S of k − 1
vertices of G, the graph G \ S is connected and it is not an isolated vertex. An edge
e is a bridge if G is connected but G \ e is not. Similarly, a vertex v is cut-vertex (or
articulation) of G if G is connected but G \ v is not.

Let G = (V,E) and G′ = (V ′, E ′) be two graphs. If V ′ ⊆ V and E ′ ⊆ E, then G′ is
said to be a subgraph of graph G. If G′ is a subgraph of a graph G such that V ′ = V

then G′ is spanning subgraph of G. Subgraph H = (V ′, E ′) of a graph G = (V,E) is
said to be induced by V ′ if for every edge e ∈ E holds: if both ends of e are in V ′, then
e ∈ E ′. We denote the subgraph of graph G induced by vertex set U as G[U ], or just
U , when it is clear that we mean a subgraph, not a vertex set.

Let r ≥ 2 be an integer. A graph G = (V,E) is said to be r-partite if V admits a
partition into r classes such that every edge has its ends in different classes: vertices
in the same partition class must be independent. Instead of ’2-partite’ one usually
says bipartite. An r-partite graph in which every two vertices from different partition
classes are adjacent is called complete (multipartite). Complete r-partite graph with
partitions of sizes n1, . . . , nr is denoted by Kn1,...,nr . Bipartite graphs are characterized
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by the following well-known property:

Proposition 1.1.1. A graph is bipartite if and only if it contains no odd cycle.

1.2 Matchings

A set M of independent edges in a graph G = (V,E) is called a matching. Matching
M is a matching of U ⊆ V if every vertex of U is incident with an edge in M . The
vertices in U are then called matched or covered (by M). Vertices not incident with
an edge of M are unmatched or uncovered.

Note. In multigraphs, since a loop is considered to be adjacent to itself, they are
banned to be in any matching. Only one edge between vertices u, v of graph G can be
in matching. Therefore, for matchings it is important only if u and v are adjacent, and
not how many edges are between them. Let a graph G be formed from a multigraph H
by removing loops and replacing multi-edges by single edge. Then G has a matching
M if and only if there exists a matching M ′ of H such that edge xy ∈ M if and only
if there is edge between vertices x and y in M ′.

For a matching M , |M | denotes the number of edges of M . A matching M in a graph
G = (V,E) is said to be maximal if any set M ′ ⊆ E, with M ′ ⊃ M is not a matching
in G. A matching M in G is maximum if, among all matchings in G, it is one with
largest cardinality.

A k-regular spanning subgraph is called k-factor. Thus, a subgraph H ⊆ G is a 1-factor
of G if and only if E(H) is a matching of V (G). A non-empty graph G = (V,E) is said
to be factor-critical if G ha no 1-factor but for every vertex v ∈ V the graph G\{v} has
an 1-factor. A matching M that is an 1-factor is called perfect matching. If matching
M leaves uncovered just one vertex, then M is said to be near-perfect matching.

The following theorem shows a necessary condition for bipartite graphs to have match-
ing that saturates one partition.

Theorem 1.2.1 ([Hal35]). Let G be bipartite graph with partitions A and B. Then G
contains a matching of A if and only if |N(S)| ≥ |S| for all S ⊆ A.
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1.2.1 Equimatchable graphs

A graph in which every matching extends to (i.e., is a subset of) a perfect matching
is said to be randomly matchable. More generally, a graph in which every matching
extends to (i.e., is a subset of) a maximum matching is called equimatchable.

Randomly matchable graphs were already characterized by Summer in [Sum79].

Theorem 1.2.2 ([Sum79]). A connected graph is randomly matchable if and only if
G = Kn,n or G = K2n.

Now we are ready to present Gallai-Edmonds (D,A,C) decomposition, which is very
useful in the study of matchings in graphs, in particular in the study of equimatchable
graphs.

For a graph G = (V,E) denote by D the set of all vertices of G which are not saturated
by at least one matching of G. Let A be the neighbor set of D, i.e., the set of vertices in
V −D adjacent to at least one vertex in D. Finally C = (V −D)−A. Then (D,A,C)
is called Gallai-Edmonds decomposition of the graph G. Using Gallai-Edmonds de-
composition the following theorem describes the structure of all maximum matchings
in graph G. The theorem was proved independently by Gallai ([Gal63], [Gal64]) and
Edmonds ([Edm65]).

Theorem 1.2.3 (Gallai-Edmonds Structure Theorem [Gal63, Gal64, Edm65]). Let G
be a graph and (D,A,C) its Gallai-Edmonds decomposition. Then all the following
conditions hold:

(i) the components of the subgraph induced by D are factor-critical;

(ii) the subgraph induced by C has an 1-factor;

(iii) if M is a maximum matching of G, it contains a near-perfect matching of each
component of D, a 1-factor of each component of C, and matches all vertices of
A with vertices in distinct components of D;

(iv) the bipartite graph obtained from G by deleting the vertices of C and edges spanned
by A and by contracting each component of D to a single vertex has a matching
that saturates A.
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(v) The size of any maximum matching is 1
2(|V | − ω(D) + |A|), where ω(D) is the

number of componenents of G[D].

Using the previous theorem it is easy to prove the next lemma stated as Lemma 1 in
[LPP84].

Lemma 1.2.4. Let G be a connected equimatchable graph with no perfect matching,
having Gallai-Edmonds decomposition (D,A,C). Then C = ∅ and A is an independent
set in G.

The following characterization of equimatchable graphs was proved in [LPP84].

Theorem 1.2.5 ([LPP84]). Let G be a connected equimatchable graph without a perfect
matching. Let (D,A,C) be its Gallai-Edmonds decomposition and suppose A 6= ∅. Let
Di denote any component of D with |Di| ≥ 3. Then all of the following conditions
hold:

(1) Component Di must be one of following types of graphs:

I. Di
∼= K2m+1 for some m ≥ 2 and every point of Di is joined to exactly one

common point a ∈ A.

II. Di contains a cut-vertex di of G (called hook of Di) which is the only vertex of Di

adjacent to a point of A. Let H1
i , . . . , H

r
i be the components of Di− di. Consider

any one of these, say Hj
i . There are two possibilities: (a) Hj

i
∼= K2m for some

m ≥ 1 and at least two edges join di to Hj
i , or (b) Hj

i
∼= Km,m for some m ≥ 1

and if (U,W ) is the bipartition of Hj
i , at least one edge joins di to a vertex u of

U and at least one edge joins di to a vertex w of W .

III. At least two vertices of Di are adjacent to points of A and at least one vertex of
Di is adjacent to no point of A. In this case there is a vertex a ∈ A such that
a separates Di from rest of graph. Here we have four subcases. If Di contains
exactly two vertices y1 and y2 of attachment to a, then Di must be one of following
three types: (a) Di is K3; (b) (Di−y1−y2) is a complete bipartite graph Kr, r − 1
where r ≥ 2, and if (U,W ) is the bipartition of Di − y1 − y2 where |U | = r, then
y1 and y2 are both adjacent to all points of U and to each other; (c) (Di−y1−y2)
is K2r−1, r ≥ 2, y1 and y2 are both adjacent to all vertices of Di − y1 − y2 and
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y1 and y2 may or may not be adjacent to each other. The fourth subcase may be
stated as follow: (d) if Di has between 3 and |Di| − 1 points of attachment to a,
then Di is K2r−1 for some r ≥ 3.

(2) Suppose we delete all type II and type III components of D from G and contract
all type I components to single points. Then there is a matching of resulting (bipartite)
graph G′ which covers all vertices of A and G′ is equimatchable.

The next theorem, converse of Theorem 1.2.5 was proved in [LPP84].

Theorem 1.2.6. Let G be connected graph without a perfect matching, which is not
factor-critical and which has Gallai-Edmonds decomposition (D,A,C). Suppose
(1) C = ∅; and
(2) A is independent set.; and
(3) All components of D are singletons or of types I, II, or III as described in Theo-
rem 1.2.5.; and
Let G1 be the bipartite graph obtained from G by shrinking (contracting) all compo-
nents of D to singletons and let G′1 be the graph obtained from G1 by deleting all points
corresponding to type II and III components of D. Suppose:
(4) G′1 is equimatchable graph and |A| ≤ 1

2 |V (G′1)|.

Then G is equimatchable.

1.3 Surfaces and Embeddings

In this part we briefly introduce basic concepts of topological graph theory - topological
surfaces and embeddings of graphs in surfaces. Most of definitions and theorems in
this section is from [GT87] and from [Whi01]. For a deeper account of topology, the
reader is referred to [Cro05].

An embedding of a graph in a surface generalizes the concept of an embedding of a
graph in the plane. From a visual point of view, we can imagine embedding as a
drawing of the graph on a sphere, torus, double-torus or a similar surface.

Formally, any graph can be presented by a topological space in following sense. Each
vertex is represented by a distinct point and each edge by a distinct arc, homeomorphic
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to a closed interval [0, 1]. Naturally, the boundary points of an arc represent the ends
of the corresponding edge. (Of course, interiors of arcs are mutually disjoint and do not
meet the points representing vertices.) Such a space is called topological representation
of the graph G.

Graphs G and H are said to be homeomorphic if they have respective subdivisions G′

and H ′ such that G′ and H ′ are isomorphic.

The central concern of topological graph theory is the placement of graphs on surfaces.
A topological space M is called n-manifold if M is Hausdorff(see [Cro05]) and can be
covered by countably many open sets, each of which is homeomorphic either to the
n-dimensional open ball

{(x1, . . . , xn)|x2
1 + · · ·+ x2

n < 1}

or the n-dimensional half-ball

{(x1, . . . , xn)|x2
1 + · · ·+ x2

n < 1, xn ≥ 0}.

A manifold is closed if it is compact and its boundary is empty. By surface we usually
mean closed, connected 2-manifold, such as the sphere, the torus, or the Klein bottle.

We define an embedding of a graph in a surface. Let G be a graph and S a surface.
An embedding is a continous one-to-one function Π : G→ S. Usually, we consider our
graphs to be subsets of the surface S, and the function Π : G → S is inclusion map.
The embedding is then denoted simply G→ S.

Given an embedding G→ S, the components of S −G are called regions. Regions are
also called faces of embedding. If each region is homeomorphic to an open disc, the
embedding is said to be 2-cell (or cellular) embedding. The closure in surface S of a
region in the 2-cell embedding G → S need not be homeomorphic to closed disc. If
there exists a boundary walk containing vertices x and y, then we say that vertices x
and y are on same face of embedding G→ S.

Each face of an embedding G→ S has two possible directions for its boundary walk. A
face is assigned an orientation by choosing one of these two directions. An orientation
of embedding G → S is an assigment of orientations to all faces so that adjacent
regions induce opposite direction on every common edge. If a graph G is 1-skeleton of
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a triangulation of surface S, then orientation of embedding G→ S is called orientation
of triangulation. A surface is orientable if for every graph G there exists an embedding
G→ S with an orientation. If every embedding of a graph to a surface does not have
an orientation, then the surface is said to be non-orientable. In this work, we will deal
exclusively with orientable surfaces.

Given an orientable surface, we can add handle to it in such a way that the resulting
object is an orientable surface. For example, we can obtain the torus by adding a
handle to the sphere. In general, starting with the sphere S0 we can add g handles
to it. The resulting surface is called a sphere with g handles and it is denoted Sg .
The number g is then called the orientable genus of the surface. The following crucial
theorem asserts that these are essentially the only orientable surfaces.

Theorem 1.3.1. The surfaces Sg, g = 0, 1, 2, . . . are pairwise non-homeorphic and
every closed orientable surface is homeomorphic to one of them.

The minimum g such that there exists embedding G→ Sg is called genus of graph and
is denoted γ(G). The maximum such g that there exists cellular embedding G → Sg

is denoted γM(G).

Theorem 1.3.2 ([Duk66]). A connected graph G has a 2-cell embedding in Sg if and
only if γ(G) ≤ g ≤ γM(G).

In our thesis we will use the following theorems about genus of complete and complete
bipartite graphs frequently. All theorems can be found in chapter 6 of [Whi01].

Theorem 1.3.3 ([Rin65]). Let G = Km,n, with m,n ≥ 2. Then

γ(G) =
⌈

(m− 2)(n− 2)
4

⌉
.

Theorem 1.3.4 ([RY68]). Let G = Kn, with n ≥ 3. Then

γ(G) =
⌈

(n− 3)(n− 4)
12

⌉
.

In addition, we mention the next theorems about the maximum genus of complete and
complete bipartite graphs.
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Theorem 1.3.5 ([NSW71]). Let G = Km,n. Then

γM(G) =
⌊

(m− 1)(n− 1)
2

⌋
.

Theorem 1.3.6 ([Rin72]). Let G = Kn. Then

γM(G) =
⌊

(n− 1)(n− 2)
4

⌋
.

Let Π : G→ S be an embedding. Denote number of vertices of G p, nubmer of edges
q and number of faces in embeding Π as r. From this time forth in this section we will
be using former denotation for number of vertices, edges and faces in Π.

Let Π be an embedding of a connected graph into a closed, connected surface. The
Euler characteristic of Π is the value p− q + r, and it is denoted χ(Π). The following
famous formula shows that for every standard surface the value of Euler characteristic
is independent from the choice of graph and of a cellular embedding.

Theorem 1.3.7 (The Euler-Pointcaré formula). Let G→ S be a 2-cell embedding, for
any g = 0, 1, 2, . . . . Then χ(G→ S) = 2− 2g.

The Euler-Pointcaré formula is often used in conjuction with relationship between the
numbers of edges and faces to prove that certain graphs cannot be embedded into the
surface Sg.

Theorem 1.3.8. Let Π : G → S be an embedding of connected simple graph with at
least three vertices into any surface. Then 2q ≥ 3r.

Proof. The sum ∑
f∈F sf , where sf is number of sides of region f , counts every edge

exactly twice. Thus, 2q = ∑
f∈F sf . Since there are no loops or multiple edges in

simple graph G, there are no monogons or digons in the embedding. Therefore, for
every region f , sf ≥ 3. It follows that 2p ≥ 3r.

Actualy, if we have a graph with given girth then following theorem holds:

Theorem 1.3.9. Let G be connected graph that is not a tree and let Π : G→ S be an
embedding. Then 2q ≥ girth(G) · r.
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1.3.1 Rotantion systems

Define a 1-band to be a topological space b together with homeomorphism h : I×I → b,
where I denotes the unit interval [0, 1]. The arcs h(I×{j}) for j = 0, 1 are called ends
of band b and the arcs h({j} × I) for j = 0, 1 are called sides of band b. A 0-band
and a 2-band are simply homeomorphs of the unit disc. A band decomposition of the
surface S is collection B of 0-bands, 1-bands, 2-bands satysfying these conditions:

(1) Different bands intersect only along arcs in their boudaries.
(2) The union of all the bands is S
(3) Each end of each 1-band is contained in a 0-band.
(4) Each side of each 1-band is contained in a 2-band.
(5) The 0-bands are pairwise disjoint and the 2-bands are pairwise disjoint.

Corresponding reduced band decomposition B omits the 2-bands. Note that, in embed-
ding G→ S 0-bands represents vertices of G, 1-bands represents its edges and 2-bands
represents regions of embedding. To describe a embedding G → S or equivalently its
band decomposition are 2-bands not really needed to define, since the union of 1.bands
and 0-bands is surface with boundary, and since is essenitally only one way how to fill
in the faces to complete to closed surface.

A band decomposition is called locally oriented if each 0-band is assigned an orientan-
tion. Then 1-band is called orientation-preserving if direction induced on its ends by
adjoining 0-bands are the same as those induced by one of two possible orientation of
1-band; otherwise 1-band is called orientation-reversing. An edge e in graph embed-
ding associated with localy oriented band decomposition is said to have (orientation)
type 0 if its corresponding 1-band is orientation-preserving and (orientation) type 1
otherwise.

To describe a graph embedding G → S or equivalently its band decomposition, we
need to specify only how the ends of 1-bands are attached to the 0-bands. We define
rotation at a vertex v of graph to be ordered list, unique up to cyclic permutation, of
the edges incident on that vertex. Let a rotation system on a graph be an assigment
of a rotation to each vertex and a designation of orientation type for each edge. Then
the preceding discusion can be summarized by following theorem.

Theorem 1.3.10. Every rotation system on a graph G defines (up to equivalence of
embeddings) a unique localy oriented graph embedding G→ S. Conversely, every locally
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oriented graph embedding G→ S defines a rotation system for G.

From now on we will use the terms embedding and rotation system interchangeably.

Given a rotation system for a graph, one frequently needs to obtain a listing or enu-
meration of boundary walks of the reduced faces. We first introduce some helpfull
terminology. If rotation at vertex v is . . . de . . . , then we say d is the edge before e at
v, that e is the edge after d at v, and that edge pair (d, e) is corner at v with second
edge e.

To enumerate boudary walks of reduced faces we use following algorithn Face Tracing
Algorithm.

Face Tracing Algorithm
Assume that given graph G has not any vertex of degree two.
(1) Choose an inicial vertex v0 of G and a first edge e1 incident on v0. Let v1 be the
other endpoint of e1.
(2) If the walk traced so far ends with edge ei at vertex vi then the next edge ei+1 in
the boundary walk is the edge after (resp., before) ei at vi if ei is type 0 (resp., type
1).
If the next two edges in the walk would not be e1 and e2 then
(3) Go to step (2).
Else
(4) The boundry walk is finished at edge en.
(5) If there is a corner at any vertex v that does not appear in any previously traced
faces, then choose as initial vertex v and as the first edge second edge of this corner at
v, and go to step (2)
(6) If there are not unused corners, then all faces have been traced.

Suppose graph G has some vertices with degree 2. Then we just find the graph H,
without valent 2 vertices, such that G is subdivision of H. Then we use face-tracing
algorithm on H and subdivide edges to correspond with graph G.



2
Previous work

In the paper [KP09] showed that for surface Σ of any fixed genus (orientable or non-
orientable), there are only finitely many 3-connected equimatchable graphs embeddable
in Σ that are non-bipartite or have a minimum-genus embedding of representativity at
least three. In this chapter we provide a brief summarization of their proof.

First, we define the Euler contribution φ(v) of vertex v to be

φ(v) = 1− deg(v)
2 +

deg(v)∑
i=1

1
fi

,

where the sum is taken over all the face angles (corners, as defined on page 12) at
vertex v and fi denotes the size of the i-th face at v. Note that a face may contribute
more than one face angle at a vertex v.

Lemma 2.1. If a connected graph G is cellularly embedded in the surface of orientable
genus g (resp. non-orientable genus ḡ), then ∑v φ(v) = 2− 2g (resp. 2− ḡ).

Proof. Denote number of vertices of G by p, number of edges by q and number of faces
by r. Clearly,

∑
v

φ(v) =
∑

v

1− deg(v)
2 +

deg(v)∑
i=1

1
fi

 = p− q +
∑

v

deg(v)∑
i=1

1
fi

.

Since, every face has fi face angles and every face angle is at exactly one vertex. There-
fore, in sum ∑

v

∑deg(v)
i=1

1
fi

is ith face counted exactly fi times. Hence, ∑v

∑deg(v)
i=1

1
fi

= r

13
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and ∑
v

φ(v) = p− q + r.

The lemma follows from Euler-Pointcaré formula (see Theorem 1.3.7 on page 10).

2 Vertex-isolating Matchings in Embedded Graphs

Given a vertex v ∈ V (G), a matching M ⊆ E(G) is said to isolate v if M covers N(v),
but not v. In particular, we also say that M isolates v if G \ ({v} ∪ V (M)) is empty.

The following was proved as Theorem 2.1 in [KP09].

Theorem 2.1.1 ([KP09]). Suppose G is a 3-connected graph of orientable genus g with
|V (G)| > max{8, 24g − 24} or of non-orientable genus ḡ with |V (G)| > max{8, 12ḡ −
24}. Then all the following conditions holds:

(i) 3 ≤ δ(G) ≤ 6; and

(ii) if δ(G) = 3, for every vertex v ∈ V (G) with deg(v) = 3 there is a matching
Mv ⊂ E(G) with |Mv| ≤ 3 which isolates v; and

(iii) if 4 ≤ δ(G) ≤ 6, then for every vertex v ∈ V (G) such that deg(v) = δ(G), there
is either a matching Mv ⊆ E(G) with |Mv| ≤ 4 which isolates v or a neighbour
of v.

Sketch of a proof. We follow the proof in [KP09]. Since orientable and nonorientable
cases are analogous we present a proof of only the orientable case.

(i) Since G is 3-connected, we have δ(G) ≥ 3. The fact that δ(G) ≤ 6 follows from
Euler’s theorem (see Theorem 1.3.7 on page 10) and fact that |V (G)| > max{8, 24g −
24}.

To show (ii) and (iii) we will show that either there is vertex v in G and match-
ing Mv with |Mv| ≤ 4 isolating v or a neighbour of v or else we get contradiction
with Lemma 2.1. The proof in [KP09] is by case-analysis, we list all cases and provide
the proof of the first case.

Case 1: δ(G) = 3 and v is a vertex of degree 3.
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Case 2: δ(G) = 4 and v is a vertex of degree 4. Case 2 has following subcases. Case
2.1: There are at least three triangles at v (i.e., there are at least three edges between
neighbours of v). Case 2.2: There are exactly two triangles at v. Case 2.3: There are
exactly one triangle face at v. Case 2.4: There are no triangles at v.

Case 3: δ(G) = 5 and v is a vertex of degree 5. Let the neighbours of v be x1, . . . , x5.
Suppose there is a triangle at v, say without loss of generality, vx1x2v. Case 3.1: There
is edge between vertices x3, x4, and x5; or Case 3.1: There is not edge between vertices
x3, x4, and x5.

Case 4: δ(G) = 6 and v is a vertex of degree six and every face incident with vertex v
is triangular.

Case 5: δ(G) = 5 and no vertex of degree 5 there is incident with a triangle; or
δ(G) = 6 and every vertex of degree 6 is incident with non-triangular face.

Proof of the Case 1: Let the three neighbours of v be x1 , x2 and x3.

Case 1.1: First, assume that there is at least one triangle at v. WLOG, denote this
triangle by vx1x2v. If x3 has a neighbor y /∈ {v, x1, x2}, then Mv = {x1x2, x3y} is a
matching of size 2 which isolates vertex v. So suppose there is no such y. Then either
G ∼= K4 or x1, x2 is 2-cut. Since G is 3-connected and has at least max{8, 24g − 24}
vertices, both situations lead into a contradiction.

Case 1.2: Suppose that there is no triangle at v. Since δ(G) ≥ 3, there is a vertex
x4 /∈ {v, x1, x2, x3} which is adjacent to x1. Since x2 is adjacent to neither x1 nor x3,
choose a vertex x5 ∈ N(x2) \ {v, x1, x3, x4}. If x3 has a neighbor y /∈ {v, x1, x2, x4, x5},
then Mv = {x1x4, x2x5, x3y} is a 3-matching (i.e., |Mv| = 3) isolating vertex v. So
suppose that N(x3) = {v, x4, x5}. If N(x1) = N(x2) = {v, x4, x5}, then either {x4, x5}
is 2-cut or |V (G)| = 6. Both of these situation result in a contradiction. Without loss of
generality, let x2 has a neighbor y /∈ {v, x1, x3, x4, x5}. But thenMv = {x1x4, x2y, x3x5}
is a 3-matching isolating v.

2.2 Equimatchable graphs of fixed genus

In this section we present a brief summary of the the main result from [KP09]. We
start with a lemma needed in the proof.
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Lemma 2.2.1 (Property 2. of [Fav86]). Let G be a connected, equimatchable, non-
bipartite graph that is neither factor-critical, nor randomly matchable. Then G has at
least one cut-vertex.

Proof. Let G be not factor-critical, non-bipartite graph with Gallai-Edmonds decom-
position (D,A,C). The fact that G is not factor critical and does not have a perfect
matching imply that A 6= ∅. From Theorem 1.2.6 on page 7 follows that D has at least
one component of type I, II, or III, as described in Theorem 1.2.5 on page 6. Clearly,
any component of type II has a cut-vertex. There is at least one singleton or type I
component adjacent to vertex a ∈ A separating component of type III from the rest
of graph. Therefore, if there is a component of type III, then G has a cut-vertex. Any
component of Type I is K2n−1 and, by Theorem 1.2.5, has all vertices connected to
exactly one vertex a of A. Since G is not randomly matchable, a is cut-vertex.

Using Theorem 2.1.1 from the previous section we present a proof of main result in
[KP09].

Theorem 2.2.2 ([KP09]). Let G be a 3-connected equimatchable graph of genus g
(respectively, non-orientable genus ḡ). Then if G is non-bipartite or if G is bipartite
and the representativity of the embedding is at least three, then
|V (G)| ≤ max{f1(g), f2(g), f3(ḡ), f4(ḡ)}, where

f1(g) =
(

7 +
√

1 + 48g
2

)(
8
3

)
(4g + 3) + 9,

�� ��2.1

f2(g) = 4 (1 +√g)
(

8
3

)
(4g + 3) + 9,

�� ��2.2

f3(g) =
(

7 +
√

1 + 24ḡ
2

)(
8
3

)
(2ḡ + 3) + 9

�� ��2.3

and

f4(g) =
(
4 + 2

√
2ḡ
)(8

3

)
(2ḡ + 3) + 9.

�� ��2.4

Sketch of a proof. Similarly as for Theorem 2.1.1, orientable and nonorientable cases
are analogous and we present only the orientable case.
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Randomly matchable graphs are Kn,n and K2n. For any graph G from these classes,
if G is embeddable in the surface of genus g then the number of vertices of G is lower
than the maximum of functions f1(g) and f2(g) (see Theorem 1.3.3 and Theorem 1.3.4
on page 9).

From Lemma 2.2.1 follows that any 3-connected equimatchable graph without a perfect
matching is either factor-critical or bipartite. Since a factor-critical graph cannot be
bipartite, these cases are disjoint.

First, suppose G is bipartite. Since G is connected, from Edmonds-Gallai decomposi-
tion of G follows that the bipartition of G is (A,D). Clearly, every component of D is
singleton. Since G has representativity at least three and G is 3-connected by Propo-
sition 5.5.12 of [MT01] there is a cycle Ca in G covering N(a), but not a. Moreover,
cycle Ca has even length since G is bipartite. Choose every second edge of the cycle Ca

to form a matching Ma isolating a. Extend Ma to maximal matching M . We have a
maximal matching that that leaves a uncovered. This contradicts the fact that a is in
A. Therefore, A is empty and G cannot be bipartite, implying there is no 3-connected
bipartite equimatchable graph embedded with representativity at least three.

Second, suppose G is factor-critical. If |V (G)| ≤ max{8, 24g − 24}, then the theorem
clearly holds. Therefore, suppose |V (G)| > max{8, 24g − 24}. From Theorem 2.1.1
there exists a vertex v such that deg(v) ≤ 6 and there exists a matching Mv with
at most 4 edges that isolates vertex v from the rest of graph. Let G′ be defined by
G′ = G \ (V (Mv) ∪ {v}). Clearly, Mv has at most 8 vertices. Suppose G′ has more
than

(
8
3

)
(4g + 3) components. Since G is 3-connected, using Pidgeon-hole principle

it is easy to show that G contains a minor isomorphic to K3,4g+3 and thus G is not
embeddable in the surface of genus g. Therefore, G′ has at most

(
8
3

)
(4g+3) components.

Since G is equimatchable and factor-critical, G′ is randomly matchable. Clearly, every
component of G′ is randomly matchable, hence every component of G′ is K2n or Kn,n

and the theorem holds.



3
Equimatchable factor-critical graphs of

fixed genus

This chapter is devoted to the study of equimatchable graphs embeddable to the surface
with focus on 2-connected factor-critical equimatchable graphs. We provide several
results characterizing the structure of factor-critical equimatchable graphs and graphs
embeddable to the surface of fixed genus that allow us bound the number of vertices
of 2-connected factor-critical equimatchable graphs embeddable to the surface of fixed
genus.

Lemma 3.1. Let N be a nonnegative integer.

i) There is a connected planar factor-critical equimatchable graph with at least N
vertices.

ii) There is a connected planar equimatchable graph with at least N vertices that is
not factor-critical.

Proof. i) Let G be a graph formed from N triangles, choosing one vertex from every
triangle and identifying the chosen vertices into one vertex. It is easy to see that graph
G has exactly 2N + 1 vertices, is equimatchable and factor-critical planar graph.

ii)We construct the desired graphG as follows. The set of vertices V (G) is {x1, . . . , xN}∪
{y1, . . . , y2N+1} and only edges in E(G) are the edges xiy2i−1, xiy2i, and xiy2i+1 for
i = 1, . . . , N . It is easy to see that graph G has exactly 3N + 1 vertices, is equimatch-
able and bipartite, hence not factor-critical, planar graph.

18



3. EQUIMATCHABLE FACTOR-CRITICAL GRAPHS OF FIXED GENUS 19

Lemma 3.2. Let G be a factor-critical graph. For every vertex v ∈ V (G) there is a
matching Mv ⊂ E(G) with |Mv| ≤ deg(v) which isolates v.

Proof. Since G is factor critical, the graph G′ = G \ {v} has a perfect matching M ′.
As long as G is simple, vertex v has deg(v) neighbours. Clearly, every neighbour of v
is incident to exactly one edge of matching M ′. Consider a set N ⊆ M ′ such that N
contains precisely those edges from M ′ that are incident with at least one neighbor of
v. Then N is desired matching Mv with at most deg(v) edges that isolates v.

When we say that a subgraph H1 (such as a vertex, edge, or component) of a graph
G is linked with other subgraph H2 of same graph G we mean that there are vertices
k1 ∈ H1 and k2 ∈ H2 such that k1k1 ∈ E(G).

Theorem 3.3. Let G be a 2-connected, factor-critical equimatchable graph. Let v ∈
V (G) be a vertex of G andMv minimal matching that isolates v. Let G′ = G\(V (Mv)∪
{v}). Then G′ is isomorphic with K2n or Kn,n for some nonnegative integer n.

Proof. We prove the theorem by a series of claims.

Claim 1. Every component of G′ is either K2n or Kn,n.

Proof of Claim 1. Let M ′ be a maximal matching of G′. Clearly, M = M ′ ∪Mv is
a maximal matching of G. But G is factor-critical and equimatchable, therefore M
leaves only vertex v uncovered andM ′ must be a perfect matching ofG′. Since arbitrary
maximal matching M ′ of G′ is perfect matching of G′, G′ is randomly matchable and
all of its components are either K2n or Kn,n.

Claim 2. If xy is an arbitrary edge of matching Mv, then x and y cannot be linked to
different components of G′.

Proof of Claim 2. We prove the claim by contradiction. Let C1 and C2 be different
components of G′ and suppose that x is adjacent to x′ ∈ C1 and y is adjacent to
y′ ∈ C2. Let M be matching defined by M = (Mv \ {xy}) (∪{xx′} ∪ {yy′}). Clearly,
every maximal matching M ′ ⊇ M leaves uncovered vertex v (because every vertex
linked to v is already in matching). From Claim 1 follows that C1 and C2 have even
number of vertices and therefore C1 \ {x′} and C2 \ {y′} have odd number of vertices.
Therefore, M ′ leaves also one vertex of C1 and C2 uncovered. This is contradiction to
the fact that G is equimatchable and factor-critical.
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Claim 3. Let C be a component of G′ and xy be an edge of matching Mv, such that
x is linked to some vertex x′ ∈ C then y is linked either to v or to some vertex y′ ∈ C,
with y′ 6= x′.

Proof of Claim 3. We prove the claim by contradiction. Let y be not linked to either
C or v. Let M be a matching defined by M = (Mv \ {xy}) ∪ {xx′}. Clearly, every
maximal matching M ′ ⊇ M leaves uncovered vertex v. Since by Claim 2 y cannot
be linked to any other component of G′, y is not linked to v or C and matching M
has yet covered every other vertex of Mv then M ′ leaves also y uncovered. Therefore,
M ′ leaves at least two vertices uncovered and it is contradiction to the fact that G is
equimatchable and factor-critical.

For every component C of G′ linked to edge xy of matching Mv we can say that x is
vertex which is linked to vertex v and y is linked to component C. Conversely, if y is
not linked to C then x is linked to C. From Claim 3 follows that y is linked to vertex
v and we can label x as y and vice versa.

Claim 4. Let G′ has at least two components. Then the following statement holds for
every edge xy of matching Mv. If x is linked to x′ ∈ C where C is a component of G′,
then y is linked to y′ ∈ C, y′ 6= x′.

Proof of Claim 4. We prove the claim by contradiction. Suppose y is not linked with any
vertex of C. Let C1 be a component of G′ other than C. Let x1y1 ∈Mv be an edge, with
xy 6= x1y1 and let y′1, resp. v, be linked with y1, resp. x1. Since, G is 2-connected and
from structure ofG, C1 is connected to at least two vertices ofMv. From Claim 2 follows
that one of them is not vertex incident with edge xy, hence such edge x1y1 exists. Let
M be a matching defined by M = (Mv \ {{xy}) ∪ ({x1y1}} ∪ {xx′} ∪ {y1y

′
1}). Every

maximal matching M ′ ⊇ M leaves uncovered one vertex of C, one vertex of C1 (both
C \ {x′} and C1 \ {y′1} are odd and not linked to any other uncovered vertex) and y.
This is a contradiction with the fact that G is equimatchable and factor-critical.

Claim 5. Let x1y1, x2y2 be edges in Mv and C1, C2 two different components of G′

such that x1 is adjacent to vertex x′1 ∈ C1 and x2 is adjacent to x′2 ∈ C2. Then there
does not exist an edge between {x1, y1} and {x2, y2}.

Proof of Claim 5. We prove the claim by contradiction. Let e be such an edge. Due
to Claim 4 y1 is adjacent to y′1 ∈ C1 and y2 is adjacent to y′2 ∈ C2. WLOG let the
desired edge e be x1x2. Consequently, every maximal matching M ′ which is a superset
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of matching M defined by M = (Mv \ ({x1y1} ∪ {x2y2}))∪ ({x1x2} ∪ {y1y
′
1} ∪ {y2y

′
2})

leaves unmatched at least one vertex of C1, one vertex of C2, and vertex v. This is a
contradiction with the fact that G is equimatchable and factor-critical.

Claim 6. Let x1y1, x2y2, x3y3, x4y4 be edges in Mv and let C1, C2 be two different
components of G′ such that x1 is adjacent to x′1 ∈ C1, x2 is adjacent to x′2 ∈ C2.
Suppose x3y3 is not linked to C1 and x4y4 is not linked to C2. If there is an edge
between {x1, y1} and {x3, y3}, then there is not an edge between {x2, y2} and {x4, y4}.

Proof of Claim 6. We prove the claim by contradiction. Let e, f be such edges. Due
to Claim 4 y1 is adjacent to y′1 ∈ C1 and y2 is adjacent to y′2 ∈ C2. From Claim 5 and
the fact that x3y3 is not linked to C1 but is linked by e to x1y1 follows that x3y3 is not
linked to any component of G′. Analogously x4y4 is not linked to any component of G′.
WLOG let e be x1x3 and f be x2x4. Consequently, every maximal matching M ′ which
is superset of matching M defined by M = Mv \ ({x1y1} ∪ {x2y2} ∪ {x3y3} ∪ {x4y4})∪
({x1x3} ∪ {x2x4} ∪ {y1y

′
1} ∪ {y2y

′
2}) leaves unmatched at least one vertex of C1, one

vertex of C2 and one of vertices v, y3, y4. This is a contradiction with the fact that G
is equimatchable and factor-critical.

Claim 7. Let x1y1, x2y2, x3y3 be edges in Mv and let C1, C2 be two different compo-
nents of G′ such that x1 is adjacent to x′1 ∈ C1, x2 is adjacent to x′2 ∈ C2. Suppose
that x3y3 is not linked to C1. If there is an edge between {x1, y1} and {x3}, then there
is not an edge between {x2, y2} and {y3}.

Proof of Claim 7. We prove the claim by contradiction. Let e, f be such edges. Due
to Claim 4 y1 is adjacent to y′1 ∈ C1 and y2 is adjacent to y′2 ∈ C2. From Claim 5
and the fact that x3y3 is not linked to C1 but is linked by e to x1y1 follows that
x3y3 is not linked to any component of G′. WLOG let e be edge x1x3 and f be edge
y2y3. Consequently, every maximal matching M ′ which is superset of matching M

defined byM = Mv \({x1y1} ∪ {x2y2} ∪ {x3y3})∪({x1x3} ∪ {y2y3} ∪ {y1y
′
1} ∪ {x2x

′
2})

leaves unmatched at least one vertex of C1, one vertex of C2 and vertex v. This is a
contradiction with the fact that G is equimatchable and factor-critical.

Claim 8. Let x1y1, x2y2, x3y3 be edges inMv. Let C1, C2 be two different components
of G′ such that x1 is adjacent to x′1 ∈ C1, x2 is adjacent to x′2 ∈ C2. Suppose that x3y3

is not linked to C1. If there is an edge between {x1, y1} and {x3}, then there is not an
edge between {x2, y2} and {x3}.
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Proof of Claim 8. We prove the claim by contradiction. Let e, f be such edges. Due
to Claim 4 y1 is adjacent to y′1 ∈ C1 and y2 is adjacent to y′2 ∈ C2. From Claim 5
and the fact that x3y3 is not linked to C1 but is linked by e to x1y1 follows that
x3y3 is not linked to any component of G′. WLOG let edge e be x1x3 and f be edge
y2y3 and x2 be linked to vertex v (if x2 is not linked to v, then y2 is and we change
x2 for y2 and x′2 for y′2 and vice versa). Consequently, every maximal matching M ′

which is superset of matching M defined by M = Mv \ ({x1y1} ∪ {x2y2} ∪ {x3y3}) ∪
({x1x3} ∪ {y2y

′
2} ∪ {y1y

′
1} ∪ {x2v}) leaves unmatched at least one vertex of C1, one ver-

tex of C2, and vertex y3. This is a contradiction with the fact that G is equimatchable
and factor-critical.

Claim 9. If G′ has at least two components C1 and C2, then v is a cutvertex.

Proof of Claim 9. WLOG C1 is linked to x1y1 and C2 is linked to x2y2 where x1y1

and x2y2 are two different edges of Mv. Clearly, C1 is not linked to C2 since they are
different components of G′. From claims Claim 4 and Claim 2 follows that C1 cannot
be linked to edge x2y2. Let x2y2 be linked to edge e of Mv. Then in spite of Claim 5
C1 cannot be linked directly to e. From claims Claim 6, Claim 7, Claim 8 follows that
x1y1 cannot be linked to e or to another edge f which is not linked to C1 and therefore
there could be path between f and e, x2y2, or C2, that does not contains v. This is
true for arbitrary x1y1 linked to C1 and x2y2 linked to C2 therefore every path from C1

to C2 goes through v and v is a cutvertex.

Using Claim 9 and the fact that G is 2-connected, it is easy to show that G′ has only
one component. From Claim 1 follows that this component is either K2n or Kn,n.

Lemma 3.4. Let G be a graph of orientable genus g. If G is either K2n or Kn,n then
|V (G)| ≤ 4 + 4√g.

Proof. If G is K2n then |V (G)| ≤ (1/2)(7 +
√

1 + 48q). If G is Kn,n then |V (G)| ≤
4 + 4√g (see Theorems 1.3.3 and 1.3.4 on page 9). For every g ≥ 0 inequality (7 +
√

1 + 48q)/2 ≤ 4 + 4√g holds, hence |V (G)| ≤ 4 + 4√g.

Lemma 3.5. Let G be a 2-connected, factor-critical equimatchable graph of orientable
genus g. Let v ∈ V (G) be a vertex with minimal degree d in G. Then V (G) ≤
5 + 2d+ 4√g.
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Proof. Let Mv be a minimal matching that isolates v. From Lemma 3.2 Mv covers at
most 2d vertices. Let G′ = G\ (V (Mv)∪{v}). Due to Theorem 3.3 G′ has at most one
component that is either K2n or Kn,n and since Lemma 3.4 |V (G′)| ≤ 4 + 4√g. Hence
G is a union of vertex v, matching Mv, and G′,

|V (G) | ≤ 1 + 2d+ 4 + 4√g = 5 + 2d+ 4√g.

Lemma 3.6. If graph G with genus g has more than

12 (g − 1)
d− 5

vertices for some d ≥ 6, then there exists vertex v with deg(v) ≤ d.

Proof. We prove the lemma by contradiction. Let G be graph with deg(w) ≥ d+ 1 for
all w ∈ V (G) and let Π : G→ S be a 2-cell embedding in the surface of genus g. Let p
denote the number of vertices of G, q the number of edges and r the number of faces
of Π. Since deg(w) ≥ d+ 1 we have 2q ≥ (d+ 1) · p.

Since G is a simple graph, from Theorem 1.3.8 on page 10 2q ≥ 3r.

From Euler-Pointcaré formula (see Theorem 1.3.7) follows

2− 2g = p− q + r ≤ 2q
d+ 1 − q + 2q

3 = q(5− d)
3(d+ 1) .

Since d ≥ 6 and 2q ≥ (d+ 1)p we have

q(5− d)
3(d+ 1) ≤

p(d+ 1)
2 · 5− d

3(d+ 1)

so
2− 2g ≤ p(5− d)

6
which contradicts the assumption of the lemma.

Corollary 3.7. Let G be a 2-connected, factor critical, equimatchable graph with genus
g. If G has more than 12(g−1)

d−5 vertices for some d ≥ 6, then G has less than 5+2d+4√g
vertices.
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Theorem 3.8. Let G be a 2-connected, factor-critical equimatchable graph embeddable
in surface of orientable genus g. Then:
(a) If g ≤ 2, then |V (G)| ≤ 17 + 4√g.
(b) If g ≥ 3, then |V (G)| ≤ 5 + 12√g.
(c) If g ≥ 63, then |V (G)| ≤ 5 + 8√g.
(d) If g →∞, then |V (G)| ≤ 5 + 2(1 +

√
7)√g.

Proof. Let g0 denote genus of graph G. Since G is embeddable in surface of genus g,
g0 ≤ g. (a) If g ≤ 2, then the inequality 17+4√g > 12 (g − 1) holds. From Lemma 3.6
follows that graph G has either at most 12 (g0 − 1) ≤ 12 (g − 1) vertices or a vertex of
degree at most 6, and hence by Lemma 3.5 at most 17 + 4√g0 ≤ 17 + 4√g vertices.

(b) If g ≥ 3, then the inequality

5 + 12√g > 12 (g − 1)
4√g − 5

holds. From Lemma 3.6 follows that G has either at most 12 (g0 − 1) /
(
4√g − 5

)
≤

12 (g − 1) /
(
4√g − 5

)
vertices or a vertex of degree at most 4√g, and hence by Lemma 3.5

at most 5 + 2 · 4√g + 4√g0 ≤ 5 + 12√g vertices.

(c) If g ≥ 63, then the inequality

5 + 8√g > 12 (g − 1)
2√g − 5

holds. By following the proof of part (b) we get |V (G)| ≤ 5 + 8√g.

(d) From identity

lim
g→∞

2(1 +
√

7)√g = lim
g→∞

12 (g − 1)
(
√

7− 1)√g − 5

and from Lemmas 3.6 and 3.5 follows that if g →∞, then |V (G)| ≤ 5 + 2(1 +
√

7)√g.

Lemma 3.9. Let H1 be isomorphic to a Kn,n and H2 be isomorphic to a Km,m+1. Let
u and v be vertices of different partitions of H1. Let x and y be different vertices from
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the larger partition of H2. Then the graph G defined by G = H1 ∪ H2 ∪ (ux ∪ vy) is
factor-critical and equimatchable.

Proof. First, we show that G is factor-critical. That is, for any vertex w the graph
G \ {w} has a perfect matching. We distinguish three cases.

Case 1: w is a vertex of H1. WLOG w is in same partition as v. Clearly, there is a
perfect matching M1 of H1 \ {u,w} and a perfect matching M2 of C2 \ {x}. It follows
that matching M defined by M = M1 ∪M2 ∪ {ux} is perfect matching of G \ {w}.

Case 2: w is vertex of A. Similarly, there is perfect matching M1 of H1 and a perfect
matching M2 of H2 \ {w}. Therefore, matching M defined by M = M1 ∪M2 is perfect
matching of G \ {w}.

Case 3: w is vertex of B. There is a perfect matching M1 of H1 \ {u, v} and perfect
matchingM2 of H2\{x, y}. Therefore, matchingM defined byM = M1∪M2∪{ux, vy}
is perfect matching of G \ {w}.

Now we show that G is equimatchable. Any maximum matching of the graph G

covers 2(m + n) vertices. One of maximum matchings can be obtained as the union
of maximum matchings of H1 and H2. Graphs Kn,n and Kn+1,n are equimatchable for
any n. Therefore, graphs H1, H1 \ {u}, H1 \ {u, v}, H2, H2 \ {x}, and H2 \ {x, y} are
equimatchable. Every matching that does not contain neither edge ux, nor edge vy is
the union of matchings of graphs H1 and H2, hence can be extended to a maximum
matching. Similarly, every matching that contains edge ux (resp. vy) is the union of
ux (resp. vy), a matching of H1 \ {u} (resp. H1 \ {v}), and a matching of H2 \ {x}
(resp. H2 \ {y}), therefore can be extended to a maximum matching. Finally, every
matching that contains ux and vy is the union of ux, vy, a matching of H1 \{u, v}, and
a matching of H2 \ {x, y}, therefore can be extended to a maximum matching. The
fact that G is equimatchable follows.

Lemma 3.10. For any nonnegative integer g there exists a 2-connected factor-critical
equimatchable graph embeddable in the surface of orientable genus g and at least b

√
8gc+

b
√

8g + 1c+ 6 vertices.

Proof. Let H1 be a graph isomorphic to Kn,n with b
√

8gc + 4 (resp. b
√

8gc + 3)
vertices, if b

√
8gc is even (resp. odd). Let H2 be a graph isomorphic to Km+1,m with

b
√

8g + 1c + 3 (resp. b
√

8g + 1c + 4) vertices, if b
√

8g + 1c is even (resp. odd). From
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Theorem 1.3.2, Theorem 1.3.3, and Theorem 1.3.5 follows that H1 and H2 have 2-cell
embeddings in the surface of orientable genus g/2. Let u and v be vertices of different
partitions of H1. Let Π be a minimal genus embedding of H2. Every region f in Π has
length at least four. Since, H2 is bipartite, half of vertices of boundary walk of region
f is from larger partition. Let x and y be such vertices of larger partition of H2 that
are in the same face of Π. Let G be graph defined by G = H1∪H2∪(ux ∪ vy). Clearly,
graph G′ = H1 ∪H2 ∪ ux has a 2-cell embedding in the surface of orientable genus g.
Since edge uv is in E(H1), in every embedding of H1 there exists a face f such that
vertices u and v are in f . Also x and y are in the same face in Π. Therefore,there exists
embedding of graph G′ with v and y in same face. Adding edge vy to such embedding
will not increase genus of graph. The fact that G has orientable genus g follows.

Clearly, G is 2-connected. Due to Lemma 3.9 graph G is factor-critical and equimatch-
able. Therefore, the statement from the lemma holds.

Theorem 3.11. Let f(g) be function that gives the maximum number of vertices of a
2-connected factor-critical equimatchable graph embeddable in the surface of orientable
genus g. Then:
i) If g ≤ 2, then 5√g + 6 ≤ f(g) ≤ 4√g + 17.
ii) If g ≥ 3, then 5√g + 6 ≤ f(g) ≤ 12√g + 5.
iii) If g ≥ 63, then 5√g + 6 ≤ f(g) ≤ 8√g + 5.

Proof. If g ≥ 0, then 5√g ≤ b
√

8gc+ b
√

8g + 1c. Therefore, from Lemma 3.10 follows
f(g) ≥ 6 + 5√g. Upper bounds in i), ii), iii) follows respectively from Theorem 3.8
part (a), (b), (c).

Lemma 3.12. Let G be a 2-connected, factor-critical equimatchable graph embeddable
in surface of orientable genus g. Let v be a vertex of G, and suppose Mv is a matching
that isolates v. Let H1 be subgraph of G defined by H1 = G\ ({v}∪Mv). If there exists
a vertex w that is not adjacent to any vertex of Mv, then subgraph H2 of G defined
by H2 = Mv ∪ {v} is one of the following. K2n+1 (perhaps without one edge), Kn+1,n

(perhaps with one edge between edges of the (n+1)-stable set), Kn,n∪{a}, or K2n∪{a},
where a is a new vertex adjacent to at least one other vertex of the graph. Moreover,
in the last two cases, any embedding of subgraph H1 in the surface is such that every
point of H1 lies in same face.
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Proof. Since G is 2-connected, there are at least two independent paths between H2

and H1. Therefore, there exist different vertices c1, c2 ∈ H1 and a1, a2 ∈ H2 such that
there are edges a1c1 and a2c2. From Theorem 3.3 follows that H1 is isomorphic either
to K2n or to Kn,n.

Case 1: H1 is a K2n. Let w be a vertex in H1 that is not adjacent to any vertex of
H2. Clearly, w is adjacent to vertices c1 and c2. Let M be a perfect matching of H1

such that the edge wc1 is in M . Every maximal matching of G that is a superset of
matching (M \ {wc1})∪a1c1 necessarily leaves w uncovered. Since G is equimatchable
and factor critical, H2 \ a1 has to be randomly matchable. Therefore, H2 \ a1 is Km,m

or K2m for some m. Analogously, also H2 \ a2 is Km,m or K2m for some m. Therefore,
H2 could be only K2m+1, possibly without the edge a1a2, or Km,m+1, possibly without
the edge a1a2, where a1 and a2 are both in (m+ 1)-stable set.

Case 2: H1 is Kn,n. Clearly, we can choose vertices c1 and c2 such that at least one of
them (WLOG c1) is adjacent to a vertex that is not adjacent to any vertex of H2.

Case 2.1: both c1 and c2 have at least one neighbour from H1 that is not adjacent to
any vertex of H2. The proof is almost identical with the proof of Case 1.

Case 2.2: Every neighbour of c2 from H1 is adjacent to some vertex of H2. Let w be a
vertex that is adjacent to c1 without neighbours from H2 and suppose M is a perfect
matching of H1 containing edge wc1. Similarly as in Case 1 we get that H2 \ a1 is
Km,m or K2m for some m. Since every neighbour of c2 that is in H1 is adjacent to
some vertex of H2, every vertex of the partition V of H1 which does not contain c2

is adjacent to at least one vertex of H2. Therefore, V has to be whole on outer face
f of H1 in every embedding of G. None of vertices in V are adjacent and every face
in embedding of 2-connected graph H2 is cycle. Therefore, there have to be |V | next
vertices in f . Clearly, embedding of H1 is such that every point of H1 lies in same
face.

Corollary 3.13. Let G be graph with the maximum amount of vertices such that:
1) G is a 2-connected, factor-critical equimatchable graph of orientable genus g.
2) There are vertices v, w ∈ V (G) and a matching Mv isolating v such that w is not
vertex of Mv and is not adjacent to any vertex of Mv.
Then there exists k, with 4 ≤ k ≤ 9 such that |V (G)| = 4

√
2g + k.

Proof. From Lemma 3.10 there exists such a graph with b
√

8gc + b
√

8g + 1c + 6 ≥
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4
√

2g + 4 vertices.

Let v andMv be a vertex and its isolating matching as defined in 2). Let H2 = Mv∪{v}
and H1 = G \ H2. By Theorem 3.3 is H1 either K2n or Kn,n. From Lemma 3.12
follows that H2 is one of following: K2n+1 (perhaps without one edge), Kn+1,n (perhaps
with one edge between edges of the (n + 1)-stable set), Kn,n ∪ {a}, or K2n ∪ {a},
where a is a new vertex adjacent to at least one other vertex of the graph. Clearly,
if H1 has genus g1 and H2 has genus g2, then G has genus at least g1 + g2. From
Theorem 1.3.3 and Theorem 1.3.4 on page 9 follows that if H1 has genus g1, then it
has at most 4 + √g1 vertices. It is easy to see that γ(K2n+1) ≥ γ(K2n ∪ {a}) and
γ(Kn,n+1) ≥ γ(Kn,n ∪ {a}), and from Theorem 1.3.3 and Theorem 1.3.4 follows that
γ(K2n) ≥ γ(Kn,n). Therefore, if H2 has genus g2, then H2 has at most 5+√g2 vertices.
Hence, |V (G)| ≤ 9 + 4(√g1 + √g2), with g1 + g2 = g. From Jensen’s inequality (see
[Jen06]) follows |V (G)| ≤ 9 + 4

√
2g.



Conclusion

This thesis deals with the maximum size of equimatchable graphs embeddable in a fixed
surface, with the focus being on factor-critical equimatchable graphs. Thesis resulted
in the following theorem.

Theorem. Let f(g) be function that gives the maximum number of vertices of a 2-
connected factor-critical equimatchable graph embeddable in the surface of orientable
genus g. Then:
i) If g ≤ 2, then 5√g + 6 ≤ f(g) ≤ 4√g + 17.
ii) If g ≥ 3, then 5√g + 6 ≤ f(g) ≤ 12√g + 5.
iii) If g ≥ 63, then 5√g + 6 ≤ f(g) ≤ 8√g + 5.

Our proof is based on the following Theorem describing the graph obtained by a removal
of a minimal isolating matching from an equimatchable graph.

Theorem. Let G be a 2-connected, factor-critical equimatchable graph. Let v ∈ V (G)
be a vertex of G and Mv minimal matching that isolates v. Let G′ = G\(V (Mv)∪{v}).
Then G′ is isomorphic with K2n or a Kn,n for some nonnegative integer n.

We extend the results from [KPS03] by showing that when we allow graphs that are not
2-connected, there are infinitely many equimatchable planar connected graphs, both
factor critical and bipartite. In addition to these results, we provide novel structural
description of factor-critical equimatchable graphs and graphs embeddable in a fixed
surface.

Among the most prominent open problems left in the area are the following.
1) What is the exact upper bound on the number of vertices of a 2-connected, factor-
critical equimatchable graph embeddable in the surface of a fixed genus g?
2) Are there only finitely many 2-connected bipartite equimatchable graphs embeddable
in the surface of genus g with representativity at least 3?
3) Are there only finitely many 3-connected bipartite equimatchable graphs embeddable
in the surface of genus g?
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