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Bratislava, 2013

Boris Vida



20934890

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT 

Name and Surname: Boris Vida
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: 9.2.1. Computer Science, Informatics
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Multi-head automata

Aim: The main aim is to elaborate a review on computational power of various types
of multi-head automata focused on data-independent ones.
The second aim is to compare computational power of some kinds of automata
mentioned above and/or to elaborate alternative proofs for some known results
concerning such types of automata.

Supervisor: prof. RNDr. Pavol Ďuriš, CSc.
Department: FMFI.KI - Department of Computer Science
Head of
department:

doc. RNDr. Daniel Olejár, PhD.

Assigned: 17.10.2012

Approved: 24.10.2012 doc. RNDr. Daniel Olejár, PhD.
Guarantor of Study Programme

Student Supervisor



20934890

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE 

Meno a priezvisko študenta: Boris Vida
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: 9.2.1. informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Mnohohlavové automaty

Cieľ: Hlavným cieľom je vypracovať prehľad výsledkov o výpočtovej sile rôznych
typov mnohohlavových automatov so zameraním na tzv. data-independent
automaty.
Druhým cieľom je porovnať výpočtovú silu niektorých z vyššie uvedených
typov automatov, prípadne vypracovať alternatívlne dôkazy pre niektoré známe
výsledky týkajúce sa takýchto typov automatov.

Vedúci: prof. RNDr. Pavol Ďuriš, CSc.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: doc. RNDr. Daniel Olejár, PhD.

Spôsob sprístupnenia elektronickej verzie práce:
bez obmedzenia

Dátum zadania: 17.10.2012

Dátum schválenia: 24.10.2012 doc. RNDr. Daniel Olejár, PhD.
garant študijného programu

študent vedúci práce



Acknowledgement

I would like to express gratitude to my supervisor Prof. RNDr. Pavol Ďuriš, CSc. for his
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Abstrakt

V práci sa zaoberáme všeobecnými mnohohlavovými konečnými automatmi a predkladáme

stručné zrhnutie doterajších výsledkov v oblasti ich výpočtovej zložitosti, s prihliadnutím na

nedeterminizmus, dvojsmerný pohybu a počet hláv. Okrem toho poukazujeme na ekvivalen-

ciu tohto modelu s logaritmicky pamät’ovo ohraničenými Turingovými strojmi a prinášame

vzt’ah zložitosi mnohohlavových konečných automatov s inými otázkami v teórii výpočtovej

zložitosti formálnych jazykov.

Podobné otázky skúmame aj vo vzt’ahu k dátovo-nezávislým mnohohlavovým konečným

automatom, pričom prinášame aj dva vlastné výsledky, ktoré porovnávajú ich výpočtovú silu

s inými známymi modelmi, ktorými sú všeobecné mnohohlavové konečné automaty a čias-

točne slepé konečné automaty. Taktiež spomíname ekvivalenciu nimi akceptovanej triedy

jazykov s triedou NC1. Navyše prezentujeme aj niekol’ko otvorených problémov týkajúcich

sa tohto modelu.

K ’lúčové slová: mnohohlavové automaty, výpočtová zložitost’, jazykové triedy, dátová nezávis-

lost’
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Abstract

In our thesis we concern ourselves with general multihead finite automata and we offer a brief

summary of existing results in the area of their computational complexity, with considering

of non-determinism, head movement and head count. Beside this, we show the equivalence

of this model with logarithmic space bounded Turing machines and we bring the relation

of multihead finite automata complexity to another question in the theory of computational

complexity of formal languages.

We examine similar questions about data-independent multihead finite automata, whereby

we bring two own results, that compare their computational power to another well-known

models, namely general multihead finite automata and partially blind finite automata. We

also mention the equivalence of the language family accepted by this model to the class

NC1. Moreover, we present few open problems regarding this model, too.

Keywords: multihead automata, computational complexity, language classes, data-independence
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Introduction

The field of complexity of formal languages is one of the most interesting, but also most

difficult parts of computer science. On the one hand, it needs strong theoretical and mathe-

matical foundations, because it deals with most abstract computational models, strict formal

definitions of algorithms and many non-trivial concepts from combinatorics and discrete

mathematics.

On the other hand, there are far-reaching consequences of the theory of complexity in

the "real world" applications of computer science. One can surely agree, that it is not in-

significant, how long an algorithm e. g. for searching of string in a text file runs, and how

much memory it needs. Although this example is oversimplified and any "practical-oriented"

programmer could come up with an effective algorithm for this purpose, the theory of com-

plexity gives us useful tools for production of evidence of effectivity and for optimization of

computational patterns.

Because of aforementioned (and other) reasons, this field was very "lucrative" for research

and many results were accomplished. But despite all effort, there are still few (and quite

a bit) open problems, that resist to all attempts to find a solution. We believe, that P - NP

problem, so the question, if language classes accepted by deterministic and non-deterministic

polynomial time-bounded Turing machines are equivalent, is well-known to the reader.

Similar open problems can be found in parallel computing. Probably the most important,

still unresolved question is the relation between NC and P class. Informally, it is the question,

if every problem, that can be solved effectively (in polynomial time) on a sequential model,

such as Turing machine, can be solved effectively (that is, in poly-logarithmic time with

polynomial number of processors) on a parallel model, e. g. Boolean circuit. The formal

definition of NC is given in chapter 2.

In this thesis we would like to introduce some aspects and questions of complexity theory

related to multihead automata, with emphasis on data-independent ones. Our main aim is

to provide a brief review on computational power of these models. We will present several

1
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known results, that has been achieved so far. Part of these results will be provided with own

alternative proofs.

The second ambition is to bring out some open problems in this field, with their relation

to other well known unresolved questions. We will try to present existing progress in the

search for answers and with a bit of luck, bring few own results in this area.

The first chapter gives definitions and basic results about multihead automata in general.

We examine the language class accepted by this model, relations to other language classes

and computational models. We would also like to inspect complexity classes belonging to

multihead automata with special restrictions (determinism, number of heads, etc.).

The topic of the second chapter are data-independent multihead automata. After necessary

definitions and basic properties, we will present own research regarding this model.

We assume, that the reader is acknowledged with basic concepts of formal languages. If

this is not the case, we recommend to obtain this understanding from [1].

We believe, that this thesis will provide the reader with an interesting insight in the topic

of multihead automata.



Chapter 1

Multi-head finite automata

1.1 Definitions

Finite state machines (or finite automata) are probably the first and simplest computational

model to meet in the formal languages theory. It is the most commonly used computational

formalization of regular languages R and one can easily come up with a constructional proof

of its equivalence with type 3 grammar, i. e. grammar with just one non-terminal symbol at

the end of each sentential form. A natural extension of finite state machine is adding more

reading heads. This is exactly the model called multihead finite automaton. More formally:

Definition 1. A multihead finite automaton is a sextuplet A = (Q,Σ ∪ {|c, $}, k, δ, s0, F),

where

1. Q is the finite set of states,

2. Σ is the input alphabet; |c, $ < Σ is left, respectively right endmarker

3. k is number of heads,

4. δ is a partial transition function δ : Q × (Σ ∪ {|c, $})k → 2Q×{−1,0,1}k , where -1 on (i + 1)-

th position means, that i-th head will move one field left, 0 means no movement a 1

stands for one step right. If the input symbol on i-th position is |c (resp. $), i-th head

cannot move left (right).

5. s0 ∈ Σ is initial state,

6. F ⊆ Q is set of accepting states.

For given k, such automaton is called k-head. If δ : Q × (Σ ∪ {|c, $}) → (Q × {−1, 0, 1}k)

(i. e. for each combination of state and input symbol, there is only one - or none - possible

3
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resulting state and head movement), automaton is called deterministic. If the second element

of all right sides of δ function is 0 or 1, machine is called one-way.

We abbreviate two-way non-deterministic k-head automaton as 2NFA(k). Similarly, we

write 2DFA(k), 1NFA(k) and 1DFA(k).

Under configuration of 2NFA(k) we understand a (k+2)-plet C = (w, q, z1, ..., zk), where

w ∈ Σ∗ is string written on the input tape, q ∈ Q is current internal state and ∀i ∈ {1, ..., k} : zi

denotes position of the i-th head, zi ∈ {0, ..., |w| + 1} (zi = 0 means, that i-th head is on |c,

|w|+1 stands for $ ). The starting (or initial) configuration is (w, s0, 1, ..., 1).

Computational step ` is a relation on configurations defined as follows: (w, q, z1, ..., zk) `

(w, p, z1 + d1, ..., zk + dk) ↔ (p, d1, ..., dk) ∈ δ(q, a1, ..., ak) and ∀i ∈ {1, ..., k}, symbol on zi-th

position of w is ai.

The language accepted by 2NFA(k) A is set L(A) = {w ∈ Σ∗|(w, s0, 1, ..., 1) `∗ (w, q, z1, ..., zk), q ∈

F and A halts on (w, q, z1, ..., zk)}.

1.2 Language family accepted by multihead finite automata

The first question, that will interest us, is to define language class accepted by multihead

finite automata. Following theorem shows the equivalence with another natural model.

Definition 2. By L we denote the family of languages accepted by deterministic logarith-

mic space bounded Turing machines.

By NL we denote the family of languages accepted by non-deterministic logarithmic space

bounded Turing machines.

Theorem 1. L =
⋃

k∈NL(2DFA(k)) and NL =
⋃

k∈NL(2NFA(k))

Proof. We will prove only the first part of theorem, i. e. the deterministic case. The

reader could surely transform our proof for the latter. Also, we will leave out some technical

details, that are not important for the idea of proof.

1. L ⊇
⋃

k∈NL(2DFA(k))
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In this part, we will use multitape Turing machines. In [2] it was shown, that multi-

tape machines can be transformed into one-tape with quadratic increase of time com-

plexity, but the same computational power and space complexity.

Let (w, q, z1, ..., zk) ` (w, p, z1 + d1, ..., zk + dk) be a computational step of 2NFA(k)

A. Then 2k-tape Turing machine M will simulate this step as follows:

(a) The position of i-th head is written in binary on 2i-th and (2i − 1)-th tape of M.

(b) For each head of A, M reads corresponding field of input tape: First, the input

tape head of M relocates to the left border of input tape. Then, input tape head

travels right, for each step the number on 2i-th tape is decremented by one. Input

tape head stops, when the value written on 2i-th tape is null. Then it reads symbol

on input tape and saves it in the internal state of M (there is a finite number of

combinations of k input symbols, so the state set will be finite).

(c) When the input tape for all of k heads is complete, M changes its internal state to

p and starts a procedure for changing the positions of heads - M increments the

value on (2i − 1)-th tape by di and copies its value on 2i-th.

M accepts, if (w, p, z1 + d1, ..., zk + dk) is an accepting configuration of A.

2. L ⊆
⋃

k∈NL(2DFA(k))

Proof of this inclusion uses principle similar to simulation of Turing machines on a

two counter machine - the maximal number written on m fields is km, where k = |Γ|, Γ

is the tape alphabet of the Turing machine. Like in the first part of our proof, we will

omit exact technical details.

Let M = (Q,Σ,Γ, δ, s0, F) be a Turing machine with one input tape and one working

tape (since M is logarithmic bounded, it can use only log n fields, where n is the length

of the input string). We will simulate M on a multihead finite automaton A.

First, we describe the representation of the configuration of M on multihead automa-

ton A: We consider base-l numeral system, which numerals are letters of Γ. Let the

number written in this numeral system on the part of working tape from the left end-

marker to working tape head be α. Hence α can not be bigger than llog n (represented

in our Γ-numeral system), position of each of k heads of A (in fact, we use just around

a half, that is k1 heads of A) can be seen as a coefficient in polynomial - if we denote
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the position of i-th head on the input tape of A as ri, then the value of polynomial∑k1
j=0 r j ∗ l j = α.

In a similar way, we can remember the number written from input head to the right

endmarker β (for some technical reasons, we will look at this number as it was re-

versed, i. e. with least significant literal on the left), using remaining k2 heads. The

symbol under the input head, as well as current state of M, can be written in the internal

state of A.

The computational step of M is simulated as follows:

(a) A reads the symbol under the input tape head of M. This symbol is, as mentioned

above, written in the internal state of A.

(b) A changes corresponding ordinate in its internal state, according to its current

state, symbol under the input head and δ-function of M.

(c) Now, the input tape head of M can move to the left, to the right, or it can stand

still.

• If it stands still, A just changes proper coordinate of its internal state.

• If it moves right, A starts procedure for incrementing the value of α (see

above) by moving its heads. In fact, it has to multiplicate α by k and add the

value of letter read in this step.

Next, A has to estimate the symbol under the input head of M in its new

position. Now, A starts a similar procedure for division of β. Modulo of this

division will be the new symbol to read, while its integral part will be the

new number β.

We believe, that the reader could come up with exact description of this

two procedures (having in mind, that k is a constant).

• If the input tape head of M moves left, the process is very similar, besides

we have to divide α and multiplicate and add to β.

(d) We have memorized the state of M and symbol under the input tape head in the

internal state of A, as well as values on the left and right part of the input tape,

hence the computational step is complete and we may continue.

(e) If the state of M, memorized in internal state of A is accepting, automaton A

accepts.



CHAPTER 1. MULTI-HEAD FINITE AUTOMATA 7

Thus, we have shown, that logarithmic space bounded Turing machines are equivalent (in

terms of computational power) to multihead finite automata. ut

Whether L = NL, or not, is an open problem. In fact, one of reasons to examine the

relationship shown in previous theorem was to separate classes L and NL.

Although we can not separate deterministic and non-deterministic multihead finite au-

tomata for now (and that means, we can not separate L and NL), some other, more specific

relations between this problem and power of non-determinism in multihead finite automata

were shown. In [3], following theorem was introduced:

Theorem 2. L = NL if and only if L(2NFA(3)) ⊆
⋃

k∈NL(2DFA(k)).

This result was further enhanced in [4] to work with one-way two-head non-deterministic

multihead finite automata:

Theorem 3. L = NL if and only if L(1NFA(2)) ⊆
⋃

k∈NL(2DFA(k)).

As we will see further, these results are interesting and non-trivial, because one-way, just

like two-way automata provide a strict hierarchy of computational power regarding to num-

ber of heads (that means, L(2NFA(3)) (
⋃

k∈NL(2NFA(k))).

1.3 Relations of subclasses

In this part of our thesis, we would like to present some known results, that provide class

hierarchies of multihead finite automata in respect of non-determinism, number of heads and

one-way versus two-way movement.

1.3.1 Number of heads

Natural question, when we are handling with multihead finite automata, is, whether num-

ber of input heads affects the computational power. And if so, is this sequence infinite, or

collapses to some constant number?

It is easy to see, that for one-way deterministic finite automata, two heads are better than

one (seeing that L(1DFA(1)) = R and non-regular language L = {anbn} can be accepted by

very simple 1DFA(2)).
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By well-known powerset construction one can show the equivalence of 1DFA(1) and

1NFA(1). Furthermore, in [5] was presented, that two-way deterministic finite automa-

ton is no stronger than one-way deterministic one and similar result was achieved for non-

deterministic automata too.

Using these assumptions, it is clear, that two heads are more than one for every finite

automaton, regardless of use of non-determinism or two way movement.

Can be similar result accomplished for any k ≥ 1? This question was resolved by Yao and

Rivest in [6] with following theorem:

Theorem 4. The language Lb = {w1 ∗ w2 ∗ ... ∗ w2b|(wi ∈ {0, 1}∗) ∧ (wi = w2b+1−i) for

1 ≤ i ≤ 2b} is recognizable by a 1NFA(k) if and only if b ≤
(

k
2

)
.

Proof. We present just the outline of the proof. The implication from right to left

was proved by Rosenberg in [7] by full mathematical induction. The correctness of basis

of the induction (e. g. for k = 2) is easy to see. Now, we want to show, that a word

w1 ∗ w2 ∗ ... ∗ w2b ∈ Lb.

Let us assume, that b ≤
(

k
2

)
. While first head traverses words w2b−k+2 to w2b, remaining

k − 1 heads are comparing these substrings to wk−1, wk−2, ..., w1, respectively. When the

comparison is finished, our k − 1 heads can be positioned at beginning of wk (first head is

now at the right endmarker, so we can not use it anymore) and used to detect, if wk∗wk+1∗ ...∗

w2b−k+1 ∈ Lb−k+1. Taking into account, that b ≤
(

k
2

)
, we can see, that b−k +1 ≤ k(k−1)

2 −k +1 =

k2

2 −
3
2k + 1 ≤

(
k−1

2

)
, ergo Lb−k+1 can be accepted with k − 1 heads by induction hypothesis.

The proof of the other implication can be achieved by a contradiction. We define a new

language Ln
b = {w1 ∗ w2 ∗ ... ∗ w2b|(wi ∈ {0, 1}n) ∧ (wi = w2b+1−i) for 1 ≤ i ≤ 2b}. Note, that

Ln
b ⊆ Lb, substrings wi have some fixed length n. Let A be a 1NFA(k), that accepts language

Ln
b (for some large constant n). Yao and Rivest have shown, that A has then to accept some

word w < Lb.

Now, the main notion of the proof is, that for w = w1 ∗w2 ∗ ... ∗w2b ∈ Ln
b and b >

(
k
2

)
, there

always exists such an index i, that subwords wi and w2b−i+q are never scanned simultaneously.

If a pair of heads reads wi0 and w2b−i0+1 at the same time, it can not read any such pair for

i1 , i0 (because the automaton is one-way). Thus, we can cover only
(

k
2

)
of substring pairs

and since b >
(

k
2

)
, such an index i exists.
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The proof follows with showing, that if x = x1 ∗ x2 ∗ ... ∗ xi ∗ ... ∗ x2b−i+1 ∗ ... ∗ x2b and

y = y1 ∗ y2 ∗ ... ∗ yi ∗ ... ∗ y2b−i+1 ∗ ... ∗ y2b are two distinct words in Ln
b with similar heads

movement, then A accepts word x1 ∗ x2 ∗ ... ∗ xi ∗ ... ∗ x2b−i ∗ y2b−i+1 ∗ x2b−i+2 ∗ ... ∗ x2b < Lb.

The contradiction now follows. ut

Seeing that the procedure for accepting Lb is deterministic and proof of the second part

holds for deterministic, as for non-deterministic automata, we may state following corollary:

Corollary 4.1. Let k ≥ 1. Then

1. L(1DFA(k)) ( L(1DFA(k + 1))

2. L(1NFA(k)) ( L(1NFA(k + 1))

The same question for two-way automata was resolved few years later in [8], where fol-

lowing theorem was presented:

Theorem 5.

1. L(2DFA(k)) ( L(2DFA(k + 1))

2. L(2NFA(k)) ( L(2NFA(k + 1))

The proof of this theorem uses the characterization of logarithmic space shown in section

1.2, but it’s precise form goes beyond the content of our thesis. We note, that the witness

languages are unary (over a one-letter alphabet) - this fact will be interesting in chapter 2.

1.3.2 Determinism and non-determinism

As we have mentioned before, by one-headed finite automata non-determinism is no stronger

than determinism. But in case of multihead finite automata, standard powerset construction

can not be used, because the non-determinism concerns not only changes of state, but also

the heads movement. Does this mean, that non-deterministic multihead finite automata have

more computational power? The answer for one-way case was also brought by Yao and

Rivest in [6]. We will show two of their theorems, but first, we induce a helpful lemma:

Lemma 6. L(1DFA(k)) is closed under complementation.

Proof. The proof of this lemma is the same as for one-head deterministic automata, i.

e. since the computation of automaton A on a word w is deterministic (ergo just one) and it

ends, when A halts, we just invert the set of accepting states. ut
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Now, first theorem about the relation of non-deterministic and deterministic automata,

with proof:

Theorem 7. For every k ≥ 1, there is a language Mk recognized by 1NFA(2) but by no

1DFA(k).

Proof. Let Mk be the complement of Lb from theorem 4, where b =
(

k
2

)
. By this theorem

and lemma 6, it is not recognized by any 1DFA(k). Automaton 1NFA(2), that accepts Mk,

can guess the matched pair wi, w2b−i+1, which is not equal and then verify its inequality. ut

The second result is more general, but once again, we provide just the main idea of the

proof:

Theorem 8. The language L = {w1 ∗ w2 ∗ ... ∗ w2b|(∀i, 1 ≤ i ≤ 2b)((wi ∈ {0, 1}∗#{0, 1}∗) ∧

[(∃ j, k)(w j = x#y ∧ wk = x#z ∧ y , z)] for any b ≥ 1} can be recognized by 1NFA(2) but by

no 1DFA(k), for any k.

The language can be seen as a dictionary with 2b entries in form of key#value. Word w is

in language L, if and only if there are two words with the same key, but different value.

Proof. The technique of the proof is very similar to proof of Theorem 4. We create a

subset L̄ ⊆ L, such that the key of each wi is binary representation of min(i, 2b − i + 1).

Now, it is possible to show, that if an 1DFA(k) automaton A accepts every word in L̄, then it

accepts some word w < L. ut

So, as we could see, for one-way case the following corollary can be derived:

Corollary 8.1. For every k ≥ 2, L(1DFA(k)) ( L(1NFA(k))

And what is the situation by two-way multihead finite automata? In section 1.2 we have

seen, that the relation of L(2DFA(k)) and L(2NFA(k)), thus the question, if L = NL, is still

open.

1.3.3 One-way and two-way movement

The last question, with that we will deal in this chapter, is, whether two-way automata are

computationally stronger than one-way. Once again, we have already mentioned, that for

one-head automata, two way movement does not give any advantage (the proof of this claim

uses the idea of transitional sequences [5]).
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In multihead finite automata, the situation is different. It is easy to see, that the mirror

language L = {w|w ∈ {a, b}∗ ∧ w = wR} is not recognized by any 1NFA(k). However, it is

accepted by trivial 2DFA(2) - the first head reads a word w from left to right, while second

head reads it from right to left.

From this simple train of thought, following corollary can be derived:

Theorem 9. Let k ≥ 2. Then

1. L(1DFA(k)) ( L(2DFA(k))

2. L(1NFA(k)) ( L(2NFA(k))

With this theorem, we end our little insight in the world of multihead finite automata

in general. The next chapter concerns with a special class of this model, namely data-

independent multihead finite automata.



Chapter 2

Data-independence

2.1 Definitions

In this chapter, we will occupy with the notion of data-independence, in relation to mul-

tihead automata. This model was first introduced in [9], although the concept of data-

independence (also called obliviousness) was examined before, e. g. on Turing machines.

In this part of our thesis, we would like to digest current knowledge and present two own

results concerning this area.

Definition 3. Let A be a multihead finite automaton. If the position of the i-th input

head after t steps of computation on a word w depends only on i, t and |w|, A is called a

data-independent (oblivious) multihead finite automaton.

We abbreviate a two-way non-deterministic k-head data-independent finite automaton as

2DiNFA(k). The language class accepted by this automaton is denoted as L(2DiNFA(k)).

In a similar way, we will use abbreviations 1DiNFA(k) (for one-way non-deterministic au-

tomata), 1DiDFA(k) (one-way deterministic), 2DiDFA(k) (two-way deterministic) etc.

The configuration, computational step and language accepted by a data-independent mul-

tihead finite automaton are defined in the same way, as for the data-dependent ones.

As one can see, data-independence is a semantic restriction, which bounds the movement

of input heads of an automaton - the head movement has to be identical for all words of the

same length (that means, for words not belonging to accepted language, too).

Having this in mind, it is easy to see, that every deterministic multihead finite automaton

over a one letter alphabet is data-independent, since there is only one word for each given

12
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length. Ergo, we can state the following lemma:

Lemma 10. Let L be any unary language in L. Then L ∈
⋃

k∈NL(2DiDFA(k))

However, we do not know, if this is true also for the non-deterministic case, because

a non-deterministic multihead finite automaton can have more various computations with

different head movement on a single input. Thus, it does not fulfill the definition of data-

independence. The relation between classes unary-NL and L(2DiNFA(k)) is still an open

problem.

2.2 Language class accepted by data-independent multi-

head finite automata

As we have seen, general multihead finite automata characterize a very well known lan-

guage class L (resp. NL ). Is the case similar with data-independent automata, too? The

answer is, yes. Data-independent multihead finite automata accept a class, that is quite

important in word of parallel computing, namely NC1, the class of problems, that can be

solved efficient on parallel computing devices (such as Boolean circuits, alternating Turing

machines etc.)

Definition 4. By NC1 we denote the language class accepted by uniform Boolean cir-

cuits with polynomial size and logarithmic depth.

The proof of the equivalence of NC1 and
⋃

k∈NL(2DiNFA(k)) was presented in [9], using

another model, namely log-space uniform leveled branching program families of constant

width and polynomial depth. As shown by Barrington in [10], this model is equivalent to

aforementioned Boolean circuits.

Definition 5. A branching program is a finite directed acyclic graph with one source

node and few sink nodes. Non-sink nodes are called testing nodes. A sink node can be

accepting or rejecting. Each of test nodes is labelled with one input variable xi and has two

output edges marked 0 and 1. An input x ∈ {0, 1}∗ is accepted iff the computation starting in

source node and then traversing test nodes (following output edge with the value of xi) ends

in an accepting sink node.

A level is a set of nodes with equal distance from the source node.
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Width of the branching program is maximal number of nodes in one level, its depth is

maximal number of levels.

The family of branching programs is a sequence {Bn}, where ∀i, Bi is a branching program,

that operates on inputs of length i.

The family of branching programs {Bn} is called log-space uniform, if there is a log-space

bounded Touring machines, that can compute the code of the branching program Bi from

input 1i for all i.

Theorem 11. NC1 =
⋃

k∈NL(2DiNFA(k))

Proof. The proof of this theorem ([9]) is constructional and we present just outline of

the simulation of a data-independent multihead finite automaton on a branching program.

Let A be a 2DiNFA(k). Since A is data-independent, the positions of input heads of A

depends only on length of the input, ergo the levels of the branching program B can be

seen as computational steps of A. Now, we know, which fields of the input tape will be

read in step t, so in B, we test corresponding input nodes in level t. The width of this

program is constant, because there is only constant number of input combinations. Since

A has polynomial number of configurations, we can reduce the length of computation to

polynomial time (if the computation runs longer, it will be circular). For these reasons, B has

only polynomial depth. ut

The natural question comes out, if the restriction of data-independence has any effect on

the computational power. And if so, can we compensate it by adding more input heads, non-

determinism, etc.? We will occupy with this question later, when we become familiar with

basic concepts of data-independent multihead finite automata.

2.3 Relation of subclasses

Just like in the first chapter, we will occupy with class hierarchies and explore, if also for

data-independent multihead finite automata, non-determinism is stronger than determinism,

two-way movement than one-way and if more heads brings greater computational power.

2.3.1 Determinism and non-determinism

We have seen, that for general multihead finite automata, there is a language, that is ac-

cepted by a two-head one-way non-deterministic automaton, but by no k-head one-way de-
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terministic automaton. Moreover, we have stated, that this question for two-way setting is

still open and has important place in the theory of complexity.

The problem for determinism was, that it could not simulate the possibility of differences

in head movement. However, data-independent multihead finite automata, even the non-

deterministic ones, have the head movement fixed for all words of the same length - that

means, that also for different computations on the same input w, the head movement has to

be identical.

Now, it is easy to see, that the following theorem holds:

Theorem 12. For every k ∈ N:

1. L(1DiDFA(k)) = L(1DiNFA(k))

2. L(2DiDFA(k)) = L(2DiNFA(k))

Proof. Since the only power of non-determinism is in the choice of the next state, classic

powerset construction, well known from one-head finite automata, can be used for one-way,

as for two-way setting. ut

So, the situation with data-independent multihead finite automata is (in this concern)

simpler and in our latter sections, we will not distinguish between deterministic and non-

deterministic automata. Also, in proofs of other theorems, we will consider deterministic

automata only, unless otherwise stated.

2.3.2 One-way and two-way movement

We have seen, that non-determinism does not give any more computational power for data-

independent multihead finite automata, which was quite unexpected, since the situation is

different than with data-dependent ones. However, such a surprising result does not awaits us,

when occupying with one-way versus two-way head movement. In [9], following relations

were shown:

Theorem 13. Let k ≥ 2. Then L(1DiDFA(k)) ( L(2DiDFA(k)).

Moreover,
⋃

k∈NL(1DiDFA(k)) (
⋃

k∈NL(2DiNFA(k)).
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Proof. To prove this inclusions, we will once again use the mirror language L = {w|w ∈

{a, b}∗ ∧ w = wR}. As stated before, this language cannot be accepted by any one-way multi-

head automaton, but is easy to construct a appropriate two-way data-independent automaton

with two heads - the first head travels to the right endmarker and then, the comparison starts

- the first head traverses the word from right to left, while the second goes from left to right

and the automaton compares the equality of corresponding input symbols. ut

The same relation obviously holds also for non-deterministic data-independent automata,

since they are equivalent with deterministic ones.

2.3.3 Number of heads

Now we would like to inspect the hierarchies of data-independent multihead finite au-

tomata in relation to number of input heads. We have seen by data-dependent automata,

that k + 1 heads do give us more computational power than k heads. Moreover, in two-

way deterministic setting, the witness language was unary, as stated by Theorem 5. Since

every multihead deterministic automaton is data-independent by Lemma 10, we can derive

following result:

Theorem 14. For every k ∈ N:

1. L(2DiDFA(k)) ( L(2DiDFA(k + 1))

2. L(2DiNFA(k)) ( L(2DiNFA(k + 1))

And what is the situation like with one-way automata? The automaton for language used

in [6], which shows the head hierarchy of one-way multihead finite automata (deterministic

as well as non-deterministic), is not data-independent, so it can not be used for our proof.

It turned out, that this question is not easy to solve and the problem of head hierarchy of

one-way data-independent multihead automata is probably the most important open problem

in this area. Although, some partial solutions have been found.

It is easy to see, that the language class accepted by one-head data-independent automata is

exactly the class of regular languages, since every one-head deterministic one-way finite au-

tomaton is data-independent. Clearly, there is an one-way two-head data-independent finite

automaton accepting non-regular language L = {0n10n|n ≥ 0}, therefore L(1DiDFA(1)) (

L(1DiDFA(2)).
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Next few levels were separated in [11], where following theorem was proved:

Theorem 15. L(1DiDFA(2)) ( L(1DiDFA(3)) ( L(1DiDFA(4)).

The breakthrough occurred in [13], where following bound was estimated:

Theorem 16. Let k ≥ 1. Then L(1DiDFA(k)) ( L(1DiDFA( k.(k+1)
2 + 4)).

Proof. The witness language is a modification of language from Theorem 4, so that the

subwords wi have fixed length. Formally, let Ln
b = {w1 ∗ w2 ∗ ... ∗ w2b|(wi ∈ {0, 1}n) ∧ (wi =

w2b+1−i) for 1 ≤ i ≤ 2b}. This modification was also used in proof of Theorem 4, where it

was also shown, that Ln
b can be accepted by an one-way k-head finite automaton if and only

if b ≤ k.(k+1)
2 .

Therefore, there is no one-way k-head data-independent automaton, which accepts lan-

guage Ln
b for b =

(
k
2

)
+1. Now, we would like to show the working of one-way ( k.(k+1)

2 +4)-head

data-independent automaton A for this language.

Similarly to proof of Theorem 4, first head traverses the second half of input, i. e. words

w k.(k+1)
2 +2, w k.(k+1)

2 +2, etc. to wk.(k+1)+2. Next k.(k+1)
2 + 1 heads read corresponding substrings

w1 to w k.(k+1)
2 +1 in the first half on the input. Since A is data-independent, the positioning of

heads to start of the substrings cannot be done by looking for symbols *, so we will need one

additional "positional" head - then, the positioning of heads will be achieved by sending them

with different speeds and stopping, when the "positional" head finds the right endmarker (we

believe, that this technique is well known to the reader).

Now, the comparison of the corresponding substrings starts. First, w k.(k+1)
2 +1 is compared

to w k.(k+1)
2 +2. For correct position of the input head on the second half, one additional head is

required. When the comparison is finished, the head from w k.(k+1)
2 +1 is used to reposition the

second head on the next separator. Then, words w k.(k+1)
2

and w k.(k+1)
2 +3 are compared and so on.

Thus, we have shown, that for b =
(

k
2

)
+ 1, language Ln

b ∈ L(1DiDFA( k.(k+1)
2 + 4)) −

L(1DiDFA(k)) and therefore our theorem is proven. ut

This result was later improved in [12], where the bound was enhanced from circa-quadratic

to approximately linear growth of input heads. To be specific, following result was intro-

duced, in our thesis, we present it without proof:
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Theorem 17. Let k ≥ 1. Then L(1DiDFA(
√

2.k)) ( L(1DiDFA(2k + 2)).

So, we have inspected the hierarchies of subclasses of data-independent multihead finite

automata and we also believe, that the reader was given a basic insight in this model. In the

next section, we would like to present two own results in this area.

2.4 Relation to other models

Now its time to resolve the question, if the restriction of data-independence has any influ-

ence on computational power. Although the natural intuition is, that data-dependent multi-

head automata should be computationally stronger, this assumption has not been confirmed

by any formal proof.

Actually this question is closely related to a very important complexity theory question

- the relation of classes NC1 and L. Profiting from aforementioned simulations of L and

NC1 on data-dependent and data-independent multihead automata, respectively, it is easy to

see, that NC1
⊆ L. If the inclusion is proper, is an open problem, but since in [14] it was

shown, that there is a L-complete language in L(1DFA(2)) and a NL-complete language in

L(1NFA(2)), Holzer in [9] has presented following:

Theorem 18.

1. NC1 = L if and only if L(1DFA(2)) ⊆ L(2DiDFA(k))

2. NC1 = NL if and only if L(1NFA(2)) ⊆ L(2DiDFA(k))

Although this question was not solved yet in general, for one-way setting, it turned out,

that data-dependent multihead automata really have more computational power than data-

independent ones, even when restricted to determinism and two heads.

Theorem 19. L(1DFA(2)) −
⋃

k∈NL(1DiDFA(k)) , ∅.

Proof. As a witness language, we use L = {w#+w#+|w ∈ {a, b}+}.

It is easy to see, that this language can be accepted by an 1DFA(2) - the first head looks for

the second occurrence of the string w, while the second waits at the beginning of the input.

Then, the words are compared.
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The remaining task is to show, that L cannot be accepted by 1DiDFA(k) for any k. To

accomplish this, we use similar technique as in the proof of Theorem 4. Ergo, we assume,

that there is a 1DiDFA(k) for L and this assumption will lead to a contradiction.

Let A = (Q,Σ∪{|c, $}, k, δ, q0, F) be a k-head deterministic data-independent finite automa-

ton, which accepts L. Let p be an integer sufficiently large in relation to |Q| (later we will

see, why is this important). Let h = 4.k2 +1. Now, let Lh be a subset of L, in which the length

of substrings w is h.p and total number of separators # is a multiple of 2.h.p, whereby they

are separated in multiples of p. Formally, Lh = {w#i.pw# j.p|w ∈ {a, b}h.p ∧ i + j = 2.h}. Since

A accepts L, it has to accepted every word in Lh.

Now, we divide the input x in blocks of p characters. This way, we can write the input x

as x1x2...xh#i.px′1x′2...x
′
h# j.p � u1u2...u4.h. We state, that for every input from Lh, there always

is a pair (xs, x′s), which is never scanned simultaneously during the computation. We argue

as follows:

We say, that a couple of blocks (ua, ub) is covered by a pair of heads, if there is a point

of the computation, in which one of the heads reads the block ua and at the same time, the

second head scans the block ub.

We want to determine the number of couples (ua, ub), that can be covered by one pair of

input heads. The input x consists of p blocks. We denote the sequence of covered block pairs

by (i1, j1), (i2, j2), ..., (il, jl). Since for every m it holds, that im ≤ im+1 ∧ jm ≤ jm+1 ∧ ¬(im =

im+1 ∧ jm = jm+1), the number of couples (ua, ub) covered by one pair of heads is 8.h − 1. We

have
(

k
2

)
pairs of heads and therefore, k-head finite automaton can in one computation cover

less than k2.8.h couples (ua, ub).

Now, the question is, how much possible relative positions can a pair (xs, x′s) have. Since

the number of blocks of # is i + j, for fixed xt, there are i + j = 2.h possible positions of x′t .

For h different values of s, we have h.2.h possible relative positions of a couple (xs, x′s). As

we have stated before, h = 4.k2 + 1, so the claim, that there always is a pair (xs, x′s) never

scanned simultaneously is proven right. Since A is data-independent, the couple is the same

in every word with the same structure (under structure, we understand integers i, j).

Now, we define the subclasses of words from Lh according to the internal state of au-

tomaton A, when the scanning of subword x′s is started. Since the language Lh is "dense"

(there are 2ph words of length 4.p.h), there surely are two words y = y1...yh#i.py′1...y
′
h# j.p,

z = z1...zh#i.pz′1...z
′
h# j.p, which belong to the same class (this can be proven using Dirichlet’s
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principle). This means that automaton A cannot know, if it scans input y or z. Since they are

both accepted by A, we may construct an input y1...ys−1zsys+1...yh#i.py′1...y
′
s−1y′sy

′
s+1...y

′
h, which

is also accepted by A, although v < L.

We have completed the contradiction and therefore, L cannot be accepted by 1DiDFA(k)

for any k. ut

So, the relation for one-way multihead finite automata is can be summed up as follows:

Corollary 19.1.
⋃

k∈NL(1DiDFA(k)) (
⋃

k∈NL(1DFA(k)).

Finally, we would like to compare data-independent multihead finite automata to one more

model, which is a partially blind finite automaton. We bring just one result for one-way two-

head case to give a quick insight in this relation. We denote the family of languages accepted

by a one-way deterministic finite automaton with one blind and one normal input head by

L(1DPBFA(2)).

Theorem 20. L(1DPBFA(2)) − L(1DiDFA(2)) , ∅.

Proof. We prove this theorem using language L = {aib jci|i, j ≥ 0}. Note, that this lan-

guage can also be accepted by a finite counter automaton (a pushdown automaton with unary

working alphabet) and therefore, it is context-free.

The partially blind finite automaton works as follows: while the normal head reads sym-

bols a, the blind one moves with double speed. Then, when the sighted head finds first

symbol b, the blind head changes its speed to normal (i. e. the speed of sighted head). The

blind head should find the right endmarker at the same time, when the normal head arrives

at first symbol c. Then, the normal head finishes checking the structure of the input word.

Now, we want to show, that L cannot be accepted by any two-head one-way data-independent

deterministic finite automaton. Once again, we prove this by contradiction.

Let A be 1DiDFA(2), which accepts language L. First, we would like to analyze the head

movement on a word of length n, for n sufficiently large in relation to |Q| (Q is the state set

of automaton A). To accomplish this, let us look at a computation on input an. Since A is

data-independent, the head movement on all other inputs of length n will be the same.
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Since A is deterministic, A on an enters a loop P during the first |Q| steps of the computa-

tion, and A remains in that loop till one of the heads reaches the end of the input. There are,

in facts, just two possibilities.

1. Just one of the heads moves in the loop P. Now, replace the input an with the word

aib jci, where 2.i + j = n.

As we have stated before, after maximum |Q| steps of computation, automaton A

works in a loop P, while the second heads stands still. The movement of the second

head starts, when the first one has reached the end of the input.

But, such a computation can be simulated by a proper one-head two-way automaton

B, which works as follows: B simulates the "moving head" of A (so the one, that moves

in cycle P). Since the second head of A does not move in this part of the computation,

the simulation is correct. When the "moving head" reaches the right endmarker, B

stops the simulation of the loop P and its reading head travels to the left end of the

input string. Then, the simulation of the second head of A is done (with corresponding

state changes). Once again, only one head of A moves in this part of the computation,

so also this simulation is proper.

As we have stated in Subsection 1.3.3, one-head two-way automata recognize ex-

actly the classR. Hovewer, the language L clearly is not regular, and therefore it cannot

be accepted by automaton B and consequently, nor it can be accepted by automaton A

with such a head movement pattern.

2. The second possibility is, that both heads are moving in the loop P. Again, what does

it mean on an input word aib jci, where 2.i + j = n?

Consider the input aib jci with i = |Q| and j = |Q|2. Now, we claim, that there is a

point t of the computation, where both heads are scanning symbols b.

By h we denote the "slower" head, by g the "faster" one. Let t be the first step of

computation, when g reads the rightmost character of the prefix aib j (i. e. t ≥ i + j =

|Q| + |Q|2) and h also reads the prefix aib j. We state, that also h reads the part of the

input with symbols b, since both heads move in the cycle P of maximum length |Q| and
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therefore, both heads have to make at least 1 step right every |Q| steps of computation

(every loop iteration). We remind, that the head movemnt on input words an and aib jci

is identical, so it has to be the same in first t steps of computation, too.

Now, for k = 1, 2, ..., |Q| + 1, let sk denote the internal state of automaton A af-

ter t steps of computation on the input ai−kb j+2kci−k. Clearly, according to Dirich-

let’s principle, ther are two unequal indexes m, l, for which sm = sl. This means,

that after t steps of computation, the internal state of A (and also the head positions,

since A is data-independent) will be the same for input strings w1 = ai−mb j+2mci−m and

w2 = ai−lb j+2lci−n. Hovewer, this also means, that automaton A will be in the state sm

on the input w3 = ai−mb j+m+lci−l - and also the head position will be the same. Finally,

the computation will continue in the same way as on input w2, ergo it will be accepting.

Nevertheless, w3 < L and the contradiction follows.

As we have seen, L cannot be accepted by any 1DiDFA(2), but is accepted by a quite

simple 1DPBFA(2). ut

We believe, that this two theorems have shown a bit about the restriction of data-independence

on multihead finite automata.



Conclusion

In our thesis, we were concerned with multihead finite automata, with emphasis on the

subclass of data-independent multihead finite automata. Our main aim was to present a

brief summary of their computational power and the computational complexity in relation to

determinism, one-way or two-way movement and number of input heads.

The first chapter digests known results about multihead finite automata in general, while

the main result, namely the equivalence with logarithmic space bounded Turing machines,

was provided with our own proof. We have also presented few other theorems from var-

ious authors, some of them were provided with outlines of their proofs. We believe, that

this chapter has given some basic insight in the computational power of multihead finite

automata.

Also in the first chapter, there were mentioned few open problems concerning the compu-

tational complexity of multihead finite automata, probably the most important one was the

relation of classes L and NL. Similar question in this area, which has not been resolved so

far, is the separation of classes L and P, respectively NL and P.

The second chapter presents current state of the research in the area of data-independent

multihead finite automata. Again, we have investigated determinism, head movement and

number of heads from the complexity point of view. Moreover, we have completed our

intention to compare the computational power of one-way deterministic multihead automata

with one-way data-independent multihead automata, whereby we have brought an own result

concerning this problem. Also, we have examined the relation of partially blind automata

with our model, presenting our own result, too.

Nevertheless, data-independent multihead finite automata still provide a wide variety of

open problems, primarily the question, if they really are computationally weaker than general

multihead finite automata in two way setting. This would resolve the question, whether

NC1 = L or not. Also, there still is an unresolved relation of one-way data-independent

multihead finite automata concerning the head count.

23
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Another problem, worth further research is the relation between partially blind finite au-

tomata and data-independent multihead finite automata in general (since our results regards

only one-way setting and two heads).

We close our thesis with a constatation, that the research in the field of complexity of

multihead finite automata and specifically data-independent ones, is worthwhile, since it has

wide implications in theory of formal languages.
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