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Abstrakt
V práci definujeme a skúmame nové rozšírenie alternujúcich konečných automatov, v ktorom
má každý prechod priradenú váhu z nejakého komutatívneho polokruhu, disjunkcie sú nahradené
súčtami a konjunkcie sú nahradené súčinmi. Takto definované automaty nazývame alternujúcimi
automatmi s váhami. Skúmame triedu formálnych mocninových radov realizovaných alternujú-
cimi automatmi s váhami a rôzne spôsoby, ktorými možno túto triedu charakterizovať. Hlavným
výsledkom dokázaným v práci je charakterizácia triedy komutatívnych polokruhov, pre ktoré sú
automaty s váhami a alternujúce automaty s váhami rovnako silné. Skúmame uzáverové vlastnosti
tried formálnych mocninových radov realizovaných alternujúcimi automatmi s váhami.

Kľúčové slová: alternujúci automat s váhami, alternácia, formálny mocninový rad, komutatívny
polokruh



Abstract
We define and begin the study of alternating weighted automata, a new extension of alternating
finite automata, in which transitions carry weights given by elements of some commutative semir-
ing. In this extension, disjunctions are replaced by sums and conjunctions are replaced by products
of the semiring in consideration. We study various different ways, in which one can characterize
formal power series realized by alternating weighted automata. We prove a characterization of the
class of commutative semirings, for which weighted automata and alternating weighted automata
are equally powerful. We also examine closure properties of the classes of formal power series
realized by alternating weighted automata under several standard operations.

Keywords: alternating weighted automaton, alternation, formal power series, commutative
semiring
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Introduction

The goal of this thesis is to define and begin the study of alternating weighted automata, a
new extension of alternating finite automata [2], in which transitions carry weights given by
elements of some commutative semiring. In our extension, disjunctions are replaced by sums,
while conjunctions are replaced by products of the semiring in consideration. Alternating weighted
automata realize formal power series and one can also view them as an extension of weighted
automata [4].

This thesis continues in the study of alternation in weighted automata initiated by Chatter-
jee, Doyen and Henzinger [3]. In their article, they introduced and studied (among some other
particular settings) weighted automata over infinite words and over the tropical semiring with
states performing both “min” and “max” operations. The usefulness of this model was justified
by its possible applications in formal verification of reactive systems. The study of alternation in
weighted automata over the tropical semiring was later continued by Almagor and Kupferman [1],
who have focused on automata over finite words. Besides automata with “min-max” alternation,
they have also studied “min-sum” alternating automata, arguing that this type of alternation is
useful for the purposes of formal verification as well. Note that in this setting, addition in the
tropical semiring alternates with multiplication in the same semiring.

Alternating weighted automata as we define them in this thesis are a generalization of weighted
automata with min-sum alternation to an arbitrary commutative semiring; in our model, addi-
tion in some commutative semiring alternates with multiplication in the same semiring. This
makes weighted automata with min-sum alternation studied by Almagor and Kupferman [1] just
a special case of our object of study. The goal of this thesis is to study alternating weighted au-
tomata in this more general setting from a theoretical point of view. Our definition of alternating
weighted automata will not incorporate min-max alternating automata of Chatterjee, Doyen and
Henzinger [3].

We shall give two alternative definitions of alternating weighted automata. To be more pre-
cise, we shall introduce two different, but equivalent models with these definitions. In one of
these models, there are two types of states: “sum” states that can only perform addition and
“product” states that can only perform multiplication. In the other model, each state can com-
bine additive and multiplicative operation. Once we state these two definitions, we shall prove
that our two models are equally powerful. As a next step, we shall prove some basic results on
alternating weighted automata. We shall present a construction that can be used to eliminate
ε-labelled transitions in alternating weighted automata. Subsequently, we shall introduce systems
of H-polynomial equations that provide a different characterization of formal power series realized
by alternating weighted automata.

After these basic considerations, we shall focus our attention on the main result of this thesis:
the comparison of power of weighted automata and alternating weighted automata. Weighted
automata are just a special case of alternating weighted automata and for this reason, alternating
weighted automata are at least as powerful as weighted automata. Almagor and Kupferman
showed that alternating weighted automata over the tropical semiring are strictly more powerful
than weighted automata over the same semiring [1]. On the other hand, it is a well known fact that
every alternating finite automaton (without weights) realizes a regular language [2]. This implies
that weighted automata over the Boolean semiring and alternating weighted automata over the
Boolean semiring are equally powerful. We conclude that commutative semirings can be divided
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into two nonempty classes: the class of commutative semirings, for which alternating weighted
automata and weighted automata are equally powerful and the class of commutative semirings,
for which alternating weighted automata are strictly more powerful than weighted automata. In
the most significant result of this thesis, we shall give a characterization of these two classes of
commutative semirings.

Finally, we shall examine some standard closure properties of classes of formal power series
realized by alternating weighted automata. For each commutative semiring S, one might examine
the class of formal power series realized by alternating weighted automata over S. We shall prove
that this class is closed under sum and Hadamard product for every commutative semiring S. On
the other hand, we shall prove that these classes are not in general closed under Cauchy product
and under reversal.



Chapter 1

Preliminaries

The aim of this thesis is to define and study alternating weighted automata, a new model that
generalizes two well known extensions of finite automata: alternating finite automata and weighted
automata. One of the goals of this chapter is to review the definitions and some of the basic
properties of these two models. We shall also give the definition of semirings and explain some
other basic notions from semiring theory that we shall need at some point in this thesis.

1.1 Semirings and Polynomials
Definition 1.1.1. A semiring is a tuple (S,+, ·, 0, 1), where S is a set, 0 and 1 are elements of
S, and +, · are binary operations on S such that

• (S,+, 0) is a commutative monoid, i.e., a + (b + c) = (a + b) + c, a + b = b + a, and
a+ 0 = 0 + a = a holds for every a, b, c in S;

• (S, ·, 1) is a monoid, i.e., a · (b · c) = (a · b) · c and a · 1 = 1 · a = a holds for every a, b, c in S;

• multiplication distributes over addition, i.e., a · (b+ c) = a · b+a · c and (a+ b) · c = a · c+ b · c
holds for every a, b, c in S;

• a · 0 = 0 · a = 0 holds for every a in S.

Definition 1.1.2. A semiring (S,+, ·, 0, 1) is commutative if the multiplication is commutative,
i.e., if a · b = b · a holds for every a, b in S.

We shall be primarily interested in commutative semirings. Some of the more important
commutative semirings are mentioned in the following list:

• The set B = {0, 1}, together with the logical disjunction as addition and the logical conjunc-
tion as multiplication forms the Boolean semiring (B,∨,∧, 0, 1).

• The set of nonnegative real numbers R+ with the standard operations of sum and product
constitutes a semiring (R+,+, ·, 0, 1).

• The set R ∪ {∞} of real numbers with positive infinity, together with minimum as addi-
tion and the standard addition of real numbers as multiplication forms a tropical semiring
(R ∪ {∞},min,+,∞, 0).

• The set R∪{−∞} of real numbers with negative infinity, together with maximum as addition
and the standard addition of real numbers as multiplication constitutes an arctic semiring
(R ∪ {−∞},max,+,−∞, 0).

• The powerset P(U) of an arbitrary set U with union as addition and intersection as multi-
plication forms the semiring (P(U),∪,∩, ∅, U).
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• The set 2{a}∗ of languages over a singleton alphabet {a}, together with union as addition
and concatenation as multiplication forms the semiring (2{a}∗ ,∪, ·, ∅, {ε}).

A subsemiring of a semiring (S,+, ·, 0, 1) is a subset T of S that contains 0, 1 and is closed
under addition and multiplication. If T is a subsemiring of S, then T forms a semiring together
with the operations + and · restricted to T . One can easily show that if U is a collection of
subsemirings of S, then

⋂
T∈U T is a subsemiring of S as well. If X is a subset of S and U is

the collection of all subsemirings of S that contain X, we say that
⋂
T∈U T is the subsemiring

generated by X. The subsemiring generated by X is the smallest subsemiring of S (with respect
to inclusion) that contains X. We say that a semiring S is finitely generated if it is generated by
some finite subset of S.

Let a be an element of a semiring S. For every nonnegative integer n, we define na :=
∑n
i=1 a

and an :=
∏n
i=1 a. In particular, 0a = 0 and a0 = 1. The use of the symbols 0 and 1 to denote

both the semiring elements and the integers may sometimes be confusing. For this reason, we
sometimes prefer to write 0S instead of 0 and 1S instead of 1 to denote the zero and the unity
element of S. More generally, we shall use the notation nS to denote the element n1S for every
nonnegative integer n.

We say that an element a of a semiring S has finite additive order if the set {na | n ∈ N} is
finite. Otherwise, we say that a has infinite additive order. Similarly, we say that a has finite
multiplicative order if the set {an | n ∈ N} is finite, and we say that a has infinite multiplicative
order otherwise. The reader can easily check that a in S has finite additive order (or finite
multiplicative order) iff there exist two distinct nonnegative integers n,m such that na = ma (or
an = am).

For every commutative semiring S, let S[x1, x2, . . . , xn] denote the set of all polynomials in
indeterminates x1, x2, . . . , xn with coefficients in S. This set, together with the operations of
addition and multiplication of polynomials derived from the operations of the semiring S in the
usual way, constitutes a commutative semiring. If m in S[x1, . . . , xn] is such that

m = cxk1
1 x

k2
2 . . . xkn

n

for some c in S and nonnegative integers k1, . . . , kn, we callm amonomial. For each such monomial
m, the coefficient c of m shall be denoted by coef(m) and the exponent ki of the indeterminate
xi shall be denoted by exp(m, i) for i = 1, . . . , n. If k1 = k2 = . . . = kn = 0, we say that m is a
constant. The whole semiring S[x1, . . . , xn] is generated by its monomials. If P in S[x1, . . . , xn]
can be written as a sum of nonconstant monomials,1 we say that P has zero constant term.
The subset of S[x1, . . . , xn] that consists of all polynomials with zero constant term is denoted by
S[x1, x2, . . . , xn]const=0. Note that although this subset is closed under addition and multiplication,
it is not a subsemiring of S[x1, . . . , xn], since it does not contain the unity of S[x1, . . . , xn].

For every commutative semiring S, we write S(x1, x2, . . . , xn) to denote the set of all polyno-
mial functions in indeterminates x1, x2, . . . , xn with coefficients in S. This set, together with the
operations of addition and multiplication of polynomial functions derived from the operations of
the semiring S in the usual way, constitutes a commutative semiring.

1.2 Alternating Finite Automata
Alternating finite automata are an extension of finite automata that combines nondeterminism and
parallelism. They were first formally defined and studied by Chandra, Kozen and Stockmeyer [2].
In one of the possible definitions, the states of an alternating finite automaton A are of two types:
“existential” states and “universal” states. If a run in A is in some state q, there might be several
transitions, which the run might follow. If q is an existential state, one of the transitions is chosen
and the run follows this chosen transition. If the state q is universal, the run splits into multiple
parallel branches and each transition is followed by one of these parallel branches.

1This is in particular true if P = 0.
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In this thesis, we shall adopt a slightly more general definition of alternating finite automata
[2], in which states are not strictly labelled as existential and universal, but nondeterminism and
parallelism might be combined in each state instead. These combinations are expressed by positive
Boolean formulae without constants. A positive Boolean formula without constants is a Boolean
formula that contains only symbols for conjunction, disjunction, and variables (as an exception,
the zero Boolean constant is also a positive Boolean formula without constants). We shall write
B[x1, x2, . . . , xn]const=0 to denote the set of all positive Boolean formulae without constants in
variables x1, x2, . . . , xn.2

Inspired by the theory of formal power series, we shall also use the following notation. If L is
a language and w is a word in L, let (L,w) be 1. If w is not in L, let (L,w) be 0. We are now
prepared to give the definition of alternating finite automata.

Definition 1.2.1. A (Boolean) alternating finite automaton is a tuple A = (Q,Σ, ψ, φ0, τ), where
Q is a finite set of states with n := |Q|; Σ is an alphabet; ψ : (Q × Σ) → B[x1, . . . , xn]const=0
is a formula assigning function; φ0 in B[x1, . . . , xn]const=0 is an initial formula; τ ⊆ Q is a set of
terminal states.

We shall always assume that the states of each alternating finite automaton are somehow
linearly ordered. Although this linear ordering is not part of the definition above, it is nevertheless
important, as we shall see in the following definition. Moreover, whenever we refer to “the i-th
state”, where i is a positive integer, we mean the i-th state with respect to the linear ordering of
the states of the automaton in consideration.

Definition 1.2.2. Let A = (Q,Σ, ψ, φ0, τ) be an alternating finite automaton, let n = |Q|. For
each p in Q, we define a language |A|p (also denoted by |A|i if p is the i-th state of A) over Σ as
follows:

1. The language |A|p contains ε iff p is in τ .

2. For each a in Σ and w in Σ∗, the language |A|p contains aw iff

ψ[p, a]
(
(|A|1, w), (|A|2, w), . . . , (|A|n, w)

)
= 1.

The behaviour of A is a language |A| over Σ defined as follows: for each w in Σ∗, the language
|A| contains w iff

φ0
(
(|A|1, w), (|A|2, w), . . . , (|A|n, w)

)
= 1.

Let us now discuss the relationship between alternating finite automata and nondeterminis-
tic finite automata. We shall say that an alternating finite automaton A = (Q,Σ, ψ, φ0, τ) is
“disjunction-only” if the formula φ0 contains no conjunction and neither does the formula ψ[p, a]
for each p in Q and a in Σ. Intuitively, a disjunction-only alternating finite automaton uses no
parallelism. Indeed, it is quite easy to see that every nondeterministic finite automaton can be
viewed as a disjunction-only alternating finite automaton and vice versa. Hence, every regular
language is accepted by some alternating finite automaton. The less obvious fact is that the con-
verse holds as well, i.e., every language accepted by an alternating finite automaton is regular.
This is already a well known fact [2], but it will also follow from a more general statement on
alternating weighted automata that we shall prove in Chapter 3.

1.3 Weighted Automata and Formal Power Series
Weighted automata, first introduced by Schützenberger [6], are an extension of nondeterministic
finite automata, in which transitions carry weights given by elements of some semiring. If a run in a

2There is an obvious correspondence between positive Boolean formulae without constants and polynomials over
the Boolean semiring with zero constant term. For this reason, we write B[x1, . . . , xn]const=0 to denote sets of both
the former and the latter.
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weighted automaton is in some state q and there are more transitions, which the run might follow,
only one of these transitions is always chosen. Weights of the transitions that the run chooses to
follow determine the weight of the run; this weight is obtained as a product over weights of all
transitions that the run passes. A weighted automaton is nondeterministic in general and hence,
multiple runs might be possible on the same word w. All these runs determine the weight of the
word w; it is obtained as a sum over weights of all possible runs on w.

The behaviour of a weighted automaton is not a language; instead, it is a map that assigns a
weight – a semiring element – to each word over its alphabet. Such maps are called formal power
series [4].
Definition 1.3.1. A formal power series over a semiring S and over an alphabet Σ is a map from
Σ∗ to S.

If r is a formal power series over S and Σ and w is in Σ∗, then the value r(w) is usually denoted
by (r, w) and we call it the coefficient of w in r. The formal power series r itself is written as

r =
∑
w∈Σ∗

(r, w)w.

The set of all formal power series over S and Σ is denoted by StΣ∗y.
We shall now define some operations on the set StΣ∗y. For every r1 and r2 in StΣ∗y, the sum

of r1 and r2 is a formal power series r1 + r2 in StΣ∗y such that (r1 + r2, w) = (r1, w) + (r2, w)
for every w in Σ∗. The Cauchy product of r1 and r2 is a formal power series r1 · r2 in StΣ∗y such
that

(r1 · r2, w) =
∑

v1,v2∈Σ∗
v1v2=w

(r1, v1)(r2, v2)

for every w in Σ∗. By r1� r2 we denote the formal power series in StΣ∗y satisfying (r1� r2, w) =
(r1, w)(r2, w) for every w in Σ∗. We say that r1 � r2 is the Hadamard product of r1 and r2. The
n-th power rn of a formal power series r is defined inductively by

r0 = 1ε,
rn = rn−1 · r, n ≥ 1.

Similarly, for every nonnegative integer n, we define a formal power series r�n inductively by

r� 0 =
∑
w∈Σ∗

1w,

r�n = r�n−1 � r, n ≥ 1.
For every finite sequence r1, r2, . . . , rn of formal power series in StΣ∗y, we define

∑n
i=1 ri,

∏n
i=1 ri,

and
⊙n

i=1 ri to denote the sum, the Cauchy product, and the Hadamard product taken over all
formal power series in the sequence r1, r2, . . . , rn.

Let us now define weighted automata.
Definition 1.3.2. Let S be a semiring. A weighted automaton over S is a tupleA = (Q,Σ, T, ν, ι, τ),
where Q is a nonempty finite set of states; Σ is an alphabet; T is a finite set of transitions, with
which we associate maps init, ter : T → Q and σ : T → Σ ∪ {ε}; ν : T → S is a transition
weighting function; ι : Q→ S is an initial weighting function; τ : Q→ S is an terminal weighting
function.

A weighted automaton can be viewed as a directed multigraph with labelled edges, where Q
is the set of vertices and T is the set of edges. The maps init and ter assign initial and terminal
vertex to each edge, while σ assigns labels.3

3Notice that the definition allows parallel edges (transitions) with the same label in the graph. This makes
our definition rather unusual in comparison with definitions of majority of the authors [4]. Soon, we shall see
that this nuance is inconsequential, meaning that it cannot change the expressive power of weighted automata.
However, parallel transitions with the same label will play a significant role in our definition of alternating weighted
automata and so we chose to allow them also in our definition of (nonalternating) weighted automata, as we want
the definitions of these two models to be as similar as possible.
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Let A = (Q,Σ, T, ν, ι, τ) be a weighted automaton, p be in Q and a be in Σ ∪ {ε}. We shall
write TA(p) to denote the set of all transitions t in T such that init(t) = p, while TA(p, a) shall be
used to denote the set of all transitions t in T satisfying init(t) = p and σ(t) = a. We shall write
T εA to denote the set of all ε-labelled transitions of A. If clear from the context, we shall often
omit the subscript denoting the automaton in consideration.

It is problematic to define the behaviour of a weighted automaton if its graph contains cycles
of ε-labelled transitions. One of the usual solutions to this problem is to define the behaviour only
for so-called cycle-free automata [5]. Under some conditions, a cycle-free weighted automaton
might still contain cycles of ε-labelled transitions. It does not seem to be straightforward to make
an analogous definition of cycle-free alternating weighted automata in such a manner that the
definition does not become awkward. Therefore, our solution is to simply consider only those
alternating weighted automata that contain no cycles of ε-labelled transitions. We shall follow the
same approach for “ordinary” weighted automata as well, since we want to view them as a special
case of alternating weighted automata.

Definition 1.3.3. Let A = (Q,Σ, T, ν, ι, τ) be a weighted automaton. We say that A is without
ε-cycles if the directed graph with vertex set Q and edge set T ε contains no cycle.

It can be shown that every cycle-free weighted automaton is equivalent to a weighted automaton
that contains no ε-labelled transitions at all [5]. This fact justifies our choice to consider only
weighted automata without ε-cycles. From now on, whenever we refer to a weighed automaton,
we shall always mean a weighted automaton without ε-cycles.

We can now finally define the behaviour of weighted automata.

Definition 1.3.4. Let S be a semiring and A = (Q,Σ, T, ν, ι, τ) be a weighted automaton over S
without ε-cycles. For each p in Q, let us define a formal power series |A|p in StΣ∗y as follows:

1. The coefficient of ε in |A|p is defined by

(|A|p, ε) = τ(p) +
∑

t∈T (p,ε)

ν(t) · (|A|ter(t), ε).

2. If a is in Σ and w is in Σ∗, then

(|A|p, aw) =
∑

t∈T (p,a)

ν(t) · (|A|ter(t), w) +
∑

t∈T (p,ε)

ν(t) · (|A|ter(t), aw).

The behaviour of A is a formal power series |A| in StΣ∗y defined for all w in Σ∗ by

(|A|, w) :=
∑
p∈Q

ι(p) · (|A|p, w).

The definition of behaviour of weighted automata given above might seem to be quite different
from the definition that we have anticipated at the beginning of this section. This difference
is only superficial, though. If A = (Q,Σ, T, ν, ι, τ) is a weighted automaton and w is a word
over Σ, we can define a run on w as a sequence q1, t1, q2, t2, . . . , tn−1, qn, such that qi is in Q for
i = 1, . . . , n, such that ti is a transition with init(ti) = qi and ter(ti) = qi+1 for i = 1, . . . , n−1, and
w = σ(t1)σ(t2) . . . σ(tn−1). For each such run, we define its weight to be ι(q1)·

(∏n−1
i=1 ν(ti)

)
·τ(qn).

The reader can check that for every word w over Σ, the coefficient of w in |A| is equal to the sum
of weights of all runs on w.

We say that a formal power series r in StΣ∗y is rational over S if it is realized by some
weighted automaton over S. The reader might have noticed that a weighted automaton over the
Boolean semiring B can actually be viewed as a nondeterministic finite automaton and vice versa.
Indeed, if r is a formal power series in BtΣ∗y and L is a language that consists of all w in Σ∗ for
which (r, w) = 1, then r is rational over B iff L is regular.
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The theory of weighted automata constitutes a rich field in automata theory. In this section,
we have only stated some definitions that are necessary for the purposes of this thesis. For
a more comprehensive source of information, we refer the reader to the Handbook of Weighted
Automata [4].



Chapter 2

Definitions and Basic Results

In this chapter, we introduce and begin the study of alternating weighted automata, a new model
that extends both alternating finite automata (without weights) and weighted automata. In
the previous chapter, we have described weighted automata as nondeterministic finite automata
that assign a weight to each word over their alphabet. We saw that a nondeterministic finite
automaton can be viewed as a weighted automaton over the Boolean semiring. In the same way,
we shall define alternating weighted automata as a weight-assigning extension of alternating finite
automata (without weights). Every state of an alternating finite automaton (without weights)
is equipped with a set of positive Boolean formulae. In our generalization, we replace these
formulae with polynomials over some commutative semiring; sums in such polynomials take the
role of disjunctions, while products take the role of conjunctions. We shall see that an alternating
finite automaton (without weights) can be viewed as an alternating weighted automaton over the
Boolean semiring; this will be guaranteed by the obvious correspondence between positive Boolean
formulae and polynomials over the Boolean semiring.

The term “alternating weighted automaton” was first used by Chatterjee, Doyen, and Hen-
zinger [3]. Most importantly, they introduced weighted finite automata over infinite words and over
the tropical semiring with states performing both “min” and “max” operations. Later, Almagor
and Kupferman [1] studied “min-max” and “min-sum” alternation, this time in automata over fi-
nite words. With some changes in the definition of the min-sum model presented by Almagor and
Kupferman, one can define alternating weighted automata with states performing operations of an
arbitrary commutative semiring. Our goal is to define and study alternating weighted automata in
this more general setting, the one defined by Almagor and Kupferman being just a special case of
our object of study. On the other hand, our more general definition will not incorporate min-max
alternating automata of Chatterjee, Doyen and Henzinger [3].

In this chapter, we shall first give a definition of alternating weighted automata as described
above. Next, we shall introduce yet another new model – two-mode alternating weighted automata.
The definition of two-mode alternating weighted automata will be very similar to the definition
of (nonalternating) weighted automata; we shall simply introduce a new type of states. We
shall prove that alternating weighted automata and two-mode alternating weighted automata are
equally powerful. Therefore, the definition of two-mode alternating weighted automata can be
viewed as an alternative definition of alternating weighted automata. Finally, we shall introduce
what we shall call systems of H-polynomial equations. This new notion will allow us to give a
different characterization of the formal power series realized by alternating weighted automata,
which goes in the same lines as the well-known characterization of rational series in terms of linear
systems [5].
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2.1 Examples
Before we give a formal definition of alternating weighted automata, let us demonstrate their
abilities on several examples. The following examples will hopefully provide the reader with a
good enough intuition about the way alternating weighted automata operate.

As we have already anticipated, we shall give two alternative definitions of alternating weighted
automata. To be more precise, these two definitions introduce two different models that are
nevertheless equivalent. The first definition is given in the next section and it introduces automata
that we shall simply call “alternating weighted automata”. The definition of the second model
is given in Section 2.4; instances of this model shall be called “two-mode alternating weighted
automata”. We chose to first give the definition of the former model, because it is simpler and
also more general. On the other hand, the advantage of two-mode alternating weighted automata
is that they are probably more intuitive and can be easily depicted by diagrams. For this reason,
all examples that we give in this section describe constructions of two-mode alternating weighted
automata.

Example 2.1.1. In Figure 2.1, we depict a two-mode alternating weighted automaton over the
alphabet Σ1 = {a, b} and over the semiring of natural numbers with standard operations of
addition and multiplication. Let us first explain the diagram in Figure 2.1. States of the automaton
A1 are depicted by circles labelled either with “+” or with “×”. If there is an arrow between two
states of the automaton A1, this means that there is a transition between these two states. Every
such arrow is labelled with a symbol from Σ1; this symbol represents the label of the transition.
The symbol of a transition might be preceded by a coefficient from the semiring (N,+, ·, 0, 1) and it
represents the weight of the transition. If the symbol of a transition is not preceded by a coefficient,
then the weight of the transition is 1 (the unity element of the semiring in consideration). In the
diagram, there are also arrows that end in a state, but do not start in one. These arrows are
always labelled with an element of the semiring (N,+, ·, 0, 1). If q is a state that has an arrow
“from nowhere” with label s entering it, this means that the initial weight of q is s. Similarly,
if q is a state that has an arrow with label s leaving it “going nowhere”, then s is the terminal
weight of q. On the other hand, if there is no arrow “from nowhere” entering q, then the initial
weight of q is 0 (the zero element of the semiring in consideration). The same holds for arrows
“going nowhere” and terminal weights. In a similar manner, we shall draw diagrams of two-mode
alternating weighted automata over an arbitrary commutative semiring.

There are two types of states in the automaton A1. The states with “+” label are called “sum
states”, while the states with “×” label are called “product states”. For every state p of A1, we
define a formal power series |A1|p. If p is a sum state, then the definition of the power series
|A1|p is the same as it was defined for (nonalternating) weighted automata; the coefficient of ε
in |A1|p is equal to the terminal weight of p and for every c in Σ1 and w in Σ∗1, the coefficient
of cw in |A1|p is

∑
t∈T (p,c) weight(t)(|A1|ter(t), w), where T (p, c) is the set of all transitions that

start at p and are labelled with c.1 If p is a product state, the power series |A1|p is defined as
follows: the coefficient of ε in |A1|p is equal to the terminal weight of p and for each c in Σ1
and w in Σ∗1, the coefficient of cw in |A1|p is

∏
t∈T (p,c) weight(t)(|A1|ter(t), w). In case T (p, c) is

empty, we define (|A1|p, w) = 0. The reason why the states of a two-mode alternating weighted
automaton are called sum states and product states is now evident: a sum state performs addition
to calculate the coefficient of a word w in |A1|, while a product state performs multiplication to do
this. The behaviour of the two-mode alternating weighted automaton A1 is defined in the same
way as it was defined for (nonalternating) weighted automata, i.e., for every w in Σ∗1, we have
(|A1|, w) =

∑
p∈Q initial-weight(p)(|A1|p, w), where Q is the set of all states of A1.

Let us finally examine the behaviour of the automaton A1. Clearly, we have (|A1|, ε) = 1
and (|A1|, b) = 0. The reader can easily check that for every w in Σ∗1, we have (|A1|, aw) =

1For simplicity, all the examples that we give in this section describe constructions of automata without ε-labelled
transitions. This makes the definition of behaviour of two-mode alternating weighted automata that much simpler
as well.
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Figure 2.1: The automaton A1.

Figure 2.2: The automaton A2.

2(|A1|, w) + 1, (|A1|, bbw) = 3(|A1|, w)2 and (|A1|, baw) = 0. These relations fully describe the
formal power series |A1|.

Example 2.1.2. In Figure 2.2, we depict a two-mode alternating weighted automaton A2 over
the alphabet Σ2 = {a} and over the semiring of natural numbers with standard operations of
addition and multiplication. For every nonnegative integer n, the coefficient of an in |A2| is n!.

Example 2.1.3. In Figure 2.3, we depict a two-mode alternating weighted automaton A3 over
the alphabet Σ3 = {1̂} and over a commutative semiring containing an element s. For every
nonnegative integer n, we have (|A3|, (1̂)n) = s2n .

Example 2.1.4. We can make the previous example more general. In Figure 2.4, we depict a
two-mode alternating weighted automaton A4 over an alphabet Σ4 = {0̂, 1̂} and over a commuta-
tive semiring containing an element s. From now on, we shall often label some arrows in diagrams

Figure 2.3: The automaton A3.



Definitions and Basic Results 12

Figure 2.4: The automaton A4.

Figure 2.5: The automaton A5.

of two-mode alternating weighted automata with a set of symbols or with a set of symbols with
coefficients. If an arrow leading from state p to state q is labelled with a set of symbols, then
there is a transition from p into q with label a and weight 1S for every symbol a in this set. If this
arrow is labelled with a set of symbols with coefficients, then there is a transition from p into q
with label a and weight s for every symbol a with coefficient s in this set. If we want to label an
arrow with a set {d1, d2, . . . , dm}, we often simply label it with elements d1, d2, . . . , dm separated
by commas, omitting the braces. We can see this practice being used also in Figure 2.4.

Every word w over Σ4 = {0̂, 1̂} can be viewed as a binary representation of some nonnegative
integer n; we shall write int(w) to denote this nonnegative integer n. The reader can check that
for every w in Σ∗4, the coefficient of w in |A4| is sint(w).

Example 2.1.5. We shall now give an example of a (nonalternating) weighted automaton, which
we shall later modify into a two-mode alternating weighted automaton. Figure 2.5 depicts a
weighted automaton A5 over a commutative semiring S and over an alphabet Σ5; for some par-
ticular elements s1, s2, . . . , sk of S, the alphabet Σ5 consists of the symbol + and symbols ŝi for
i = 1, . . . , k.

Let us examine the behaviour of the automaton A5. Let L′ consist of all words w over Σ5
such that w = ŝi1 ŝi2 . . . ŝim , where m is a nonnegative integer and i1, . . . , im are positive integers
such that ij ≤ k for j = 1, . . . ,m. For each such w, we define elem(w) to be the semiring
element

∏m
j=1 sij . Let Lelem consist of all words w over Σ5 such that w = +u1 + u2 . . . + um,

where m is a nonnegative integer and ui is in L′ for i = 1, . . . ,m. For each such w, we define
elem(w) =

∑m
i=1 elem(ui). It is easy to see that (|A5|, w) = elem(w) for every w in Lelem. The

reader might want to try to determine the coefficient of w in |A5| if w is in Σ∗5 − Lelem.

Example 2.1.6. We shall now modify the (nonalternating) weighted automaton A5 into a
two-mode alternating weighted automaton A6 over S and over the alphabet Σ6 = Σ5 ∪ {x}.
This new automaton is depicted in Figure 2.6. We can see that (|A6|, xmu) = (elem(u))m for each
nonnegative integer m and each word u in Lelem. The automaton A6 has the ability to calculate
exponents of semiring elements.

Example 2.1.7. We can go even further with the previous example. Let Σ7 = Σ6 ∪ {⊕,#}. Let
L′′ consist of all words w over Σ7 such that w = ⊕xm1 ⊕ xm2 . . . ⊕ xml for some nonnegative
integers l and m1, . . . ,ml. For each such w, let the polynomial

∑l
i=1 x

mi in S[x] be denoted by
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Figure 2.6: The automaton A6.

Figure 2.7: The automaton A7.

poly[w]. In Figure 2.7, we depict a two-mode alternating weighted automaton A7 over S and Σ7
such that (|A7|, u#v) = poly[u](elem(v)) for each u in L′′ and v in Lelem.

Example 2.1.8. To make the previous example even more general, let Σ8 = Σ7 ∪
{
〈, 〉
}
(i.e., Σ8

consists of symbols from Σ7 and symbols for angle brackets). Let Lpoly consist of all words w over
Σ8 such that w = ⊕〈u1〉xm1⊕〈u2〉xm2 . . .⊕〈ul〉xml for some nonnegative integers l andm1, . . . ,ml

and words u1, . . . , ul in Lelem. For each such w, let the polynomial
∑l
i=1 elem(ui)xmi in S[x] be

denoted by poly[w]. In Figure 2.8, we depict a two-mode alternating weighted automaton A8
over S and Σ8 such that (|A8|, u#v) = poly[u](elem(v)) for each u in Lpoly and v in Lelem. The
automaton A8 has the ability to substitute into polynomials.

2.2 Definition of Alternating Weighted Automata
We shall now state the key definition of this thesis – the definition of alternating weighted au-
tomata. We have already anticipated that we shall give two alternative definitions of alternating
weighted automata. In one of these definitions, every state is either a “sum” state or a “product”
state, where a sum state can perform addition only and a product state can perform multiplica-
tion only. We shall first give the more general definition, in which every state can perform both
addition and multiplication.

Definition 2.2.1. Let S be a commutative semiring. An alternating weighted automaton over
S is a tuple A = (Q,Σ, ψ, P0, τ), where Q is a nonempty finite set of states with n := |Q|;
Σ is an alphabet; ψ : (Q × Σ) → S[x1, . . . , xn]const=0 is a polynomial assigning function; P0 in
S[x1, . . . , xn]const=0 is an initial polynomial; τ : Q→ S is a terminal weighting function.

We shall always assume that the states of each alternating weighted automaton are somehow
linearly ordered. Although this linear ordering is not part of the definition above, it is nevertheless
important, as we shall see in the following definition. Moreover, whenever we refer to “the i-th
state”, where i is a positive integer, we mean the i-th state with respect to the linear ordering of
the states of the automaton in consideration.

For every alternating weighted automaton A = (Q,Σ, ψ, P0, τ), every p in Q, and a in Σ, the
polynomial ψ[p, a] can be denoted also by ψ[i, a] if p is the i-th state of A. In some cases, we
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Figure 2.8: The automaton A8.

shall also write τ(i) instead of τ(p). We shall shortly introduce also some other notation, in which
states are interchangeable with their numerical order.

Definition 2.2.2. Let A = (Q,Σ, ψ, P0, τ) be an alternating weighted automaton over a commu-
tative semiring S, let n = |Q|. For every p in Q, we define a formal power series |A|p (also denoted
by |A|i if p is the i-th state) in StΣ∗y as follows:

1. The coefficient of ε in |A|p is defined by

(|A|p, ε) = τ(p).

2. For each a in Σ and w in Σ∗, the coefficient of aw in |A|p is defined by

(|A|p, aw) = ψ[p, a]
(
(|A|1, w), (|A|2, w), . . . , (|A|n, w)

)
.

The behaviour of A is a formal power series |A| in StΣ∗y defined for all w in Σ∗ by

(|A|, w) = P0
(
(|A|1, w), (|A|2, w), . . . , (|A|n, w)

)
.

Let us now discuss the relationship between alternating weighted automata on the one hand,
and Boolean alternating automata and (nonalternating) weighted automata on the other hand.
First, a Boolean alternating automaton can be viewed as an alternating weighted automaton
over the Boolean semiring and vice versa. The only difference between the definitions of these
two models is that one is defined with positive Boolean formulae and the other is defined with
polynomials over the Boolean semiring. However, this difference is trivial due to the obvious
correspondence between positive Boolean formulae and polynomials over the Boolean semiring.

We shall now look at the relationship between alternating weighted automata and (nonalter-
nating) weighted automata. Let S be a commutative semiring and L be the set of all polynomials
of the form c1x1 + c2x2 + . . . + cnxn, where n is a nonnegative integer, ci is in S, and xi is an
indeterminate for i = 1, . . . n. An alternating weighted automaton A = (Q,Σ, ψ, P0, τ) over S
shall be called “sum-only” if the polynomial P0 is in L and so are the polynomials ψ[p, a] for
every p in Q and a in Σ. One can easily see that a (nonalternating) weighted automaton without
ε-labelled transitions can be viewed as a sum-only alternating weighted automaton and vice versa.
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2.3 Evaluation Polynomials
Let A = (Q,Σ, ψ, P0, τ) be an alternating weighted automaton, let n := |Q|. Assume that a word
w = a1a2 . . . am is given, where a1, . . . , am are in Σ, and that our task is to calculate the coefficient
of w in |A|. One obvious approach is the “bottom-up evaluation”. We start with the values τ(p)
for each p in Q. Substituting these values into the polynomial ψ[p, am], we can evaluate (|A|p, am)
for each p in Q. If we substitute these values into the polynomial ψ[p, am−1], we can evaluate
(|A|p, am−1am) for each p in Q. By repeating this process, we are eventually able to evaluate
(|A|p, a1a2 . . . am). If we now substitute these values into the polynomial P0, we obtain the weight
of the word w.

Another approach to calculate the weight of the word w is the “top-down” method. We start
with the polynomial P0. Substituting xi = ψ[i, a1] for i = 1, . . . , n into the polynomial P0, we
obtain a polynomial P1. In the next step, we substitute xi = ψ[i, a2] for i = 1, . . . , n into the
polynomial P1 and obtain a polynomial P2. This process is repeated, successively constructing
polynomials P3, P4, . . ., until the polynomial Pm is constructed. If we now substitute xi = τ(i) for
i = 1, . . . , n into the polynomial Pm, we obtain the weight of the word w. The same approach can
be used if one wishes to calculate the coefficient of the word w in |A|i for some i in {1, . . . , n}.
The only difference is that in this case, we start with the polynomial R0 = xi instead of the
polynomial P0, constructing polynomials R1, R2, . . . , Rm in the following steps. The polynomials
P0, P1, . . . , Pm and R0, R1, . . . , Rm shall be called evaluation polynomials.

Definition 2.3.1. Let A = (Q,Σ, ψ, P0, τ) be an alternating weighted automaton over a commu-
tative semiring S, let n = |Q|. For every p in Q and w in Σ∗, we define the evaluation polynomial
PA[p, w] (also denoted by PA[i, w] if p is the i-th state in A) in S[x1, . . . , xn] as follows:

1. If p is the i-th state of A, then
PA[p, ε] = xi.

2. If a is in Σ and w is in Σ∗, then

PA[p, wa] = PA[p, w]
(
ψ[1, a], ψ[2, a], . . . ψ[n, a]

)
.

For every w in Σ∗, we define the evaluation polynomial PA[w] in S[x1, . . . , xn] by

PA[w] = P0
(
PA[1, w], PA[2, w], . . . , PA[n,w]

)
.

The following lemma shows the usefulness of evaluation polynomials. The proof of this claim
is left to the reader.

Lemma 2.3.2. Let A = (Q,Σ, ψ, P0, τ) be an alternating weighted automaton, let n = |Q|. If
v, w are in Σ∗ and p is in Q, then

(|A|p, vw) = PA[p, v]
(
(|A|1, w), (|A|2, w), . . . , (|A|n, w)

)
,

(|A|, vw) = PA[v]
(
(|A|1, w), (|A|2, w), . . . , (|A|n, w)

)
.

2.4 Two-Mode Alternating Weighted Automata
In this section, we shall give a definition of two-mode alternating weighted automata. This definition
can also be viewed as an alternative definition of alternating weighted automata; although these
two models are not formally identical, they are the same in their essence. The main difference
between alternating weighted automata and two-mode alternating weighted automata is that the
latter has two types of states: “sum” states, which can only perform addition, and “product” states,
which can only perform multiplication. Another feature that sets two-mode alternating weighted
automata apart from alternating weighted automata is the presence of ε-labelled transitions. The
definition of two-mode alternating weighted automata is actually very similar to the definition of
(nonalternating) weighted automata given in the previous chapter.
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Definition 2.4.1. A two-mode alternating weighted automaton over a commutative semiring S
is a tuple A = (Q⊕, Q⊗,Σ, T, ν, ι, τ), where Q⊕, Q⊗ are finite sets of states with Q⊕ ∪ Q⊗ 6= ∅
and Q⊕ ∩Q⊗ = ∅; Σ is an alphabet; T is a finite set of transitions, with which we associate maps
init, ter : T → (Q⊕ ∪ Q⊗) and σ : T → Σ ∪ {ε}; ν : T → S is a transition weighting function;
ι : (Q⊕ ∪ Q⊗) → S is an initial weighting function; τ : (Q⊕ ∪ Q⊗) → S is a terminal weighting
function.

A two-mode alternating weighted automaton can be viewed as a directed multigraph with
labelled edges, where Q⊕∪Q⊗ is the set of vertices and T is the set of edges, while init, ter, and σ
are the maps that assign initial vertex, terminal vertex and label to each edge, respectively. The
elements of Q⊕ and Q⊗ shall be called sum states and product states, respectively.

Let A = (Q⊕, Q⊗,Σ, T, ν, ι, τ) be a two-mode alternating weighted automaton, let p be in
Q⊕ ∪Q⊗ and a be in Σ∪{ε}. We shall write TA(p) to denote the set of all transitions t in T such
that init(t) = p, while TA(p, a) shall be used to denote the set of all transitions t in T satisfying
init(t) = p and σ(t) = a. We shall write T εA to denote the set of all ε-labelled transitions of A. If
clear from the context, we shall often omit the subscript denoting the automaton in consideration.

The behaviour of a two-mode alternating weighted automaton will be defined only if the au-
tomaton contains no cycles of ε-labelled transitions.

Definition 2.4.2. Let A = (Q⊕, Q⊗,Σ, T, ν, ι, τ) be a two-mode alternating weighted automaton.
We say that A is without ε-cycles if the directed graph with vertex set Q⊕ ∪Q⊗ and edge set T ε
contains no cycle.

From now on, whenever we refer to a two-mode alternating weighted automaton, we shall
always mean a two-mode alternating weighted automaton without ε-cycles. We are now prepared
to define the behaviour of a two-mode alternating weighted automaton.

Definition 2.4.3. Let A = (Q⊕, Q⊗,Σ, T, ν, ι, τ) be a two-mode alternating weighted automaton
without ε-cycles over a commutative semiring S. For each p in Q⊕∪Q⊗, we define a formal power
series |A|p in StΣ∗y as follows:

1. If p is in Q⊕, then

(a) the coefficient of ε in |A|p is defined by

(|A|p, ε) = τ(p) +
∑

t∈T (p,ε)

ν(t) · (|A|ter(t), ε);

(b) for each a in Σ and w in Σ∗,

(|A|p, aw) =
∑

t∈T (p,a)

ν(t) · (|A|ter(t), w) +
∑

t∈T (p,ε)

ν(t) · (|A|ter(t), aw).

2. If p is in Q⊗, then

(a) if T (p, ε) 6= ∅, then

(|A|p, ε) = τ(p) +
∏

t∈T (p,ε)

ν(t) · (|A|ter(t), ε),

otherwise
(|A|p, ε) = τ(p);

(b) for each a in Σ and w in Σ∗, if T (p, a) ∪ T (p, ε) 6= ∅, then

(|A|p, aw) =
∏

t∈T (p,a)

(
ν(t) · (|A|ter(t), w)

)
·
∏

t∈T (p,ε)

(
ν(t) · (|A|ter(t), aw)

)
,

otherwise
(|A|p, aw) = 0.
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The behaviour of A is a formal power series |A| in StΣ∗y defined for all w ∈ Σ∗ by

(|A|, w) :=
∑

p∈Q⊕∪Q⊗
ι(p) · (|A|p, w).

Another way to describe the behaviour of a two-mode alternating weighted automaton is
through the notion of a run tree. If a run in a two-mode alternating weighted automaton is in
some state q, there might be multiple transitions, which the run might follow. If q is a sum state,
only one of these transitions is followed, but if q is a product state, all of them are followed. So
the flow of a run in a two-mode alternating weighted automaton can be viewed as a rooted tree,
which branches whenever it passes a product state. A run tree is supposed to represent the flow
of a run, capturing all states and transitions it passes.

We shall now give a formal definition. Let A = (Q⊕, Q⊗,Σ, T, ν, ι, τ) be a two-mode alternating
weighted automaton over a semiring S, let w be a word in Σ∗. We shall construct a run tree
R on the word w as a directed rooted tree with node set V and edge set E, node labelling
state : V → Q⊕ ∪Q⊗ and edge labelling transition : E → T ∪ {start, finish, terminate}. The
state and transition labels represent the current state and transition, respectively. If x and y
are two nodes in R that are connected by an edge from x to y, we shall write xy to denote this
edge. We also want to capture the start and the ends of a run in its run tree; we shall use directed
half-edges for this purpose (a half-edge is an edge with only one end). The start of a run will be
represented by a half-edge entering the root of R. To represent the ends of a run, every leaf of
R will have an half-edge leaving it. These half-edges shall be called a start-edge and finish-edges,
respectively and we shall include them in the edge set E as well. We require that each node has
at most one start-edge and at most one finish-edge. Moreover, a node x has a start-edge iff x
is a root and a finish-edge iff x is a leaf. The transition label of a start-edge is always start,
while a finish-edge is always labelled either with finish or with terminate. The finish label
symbolizes the fact that a particular branch in the run tree has successfully ended. On the other
hand, the terminate label symbolizes the fact that a particular branch in the run tree has ended
prematurely, because the automaton got “stuck”.

We shall define run trees through the notion of “partial” run trees. A partial run tree R is a
directed rooted tree with node labelling state, edge labelling transition, and finish-edges leaving
the leaves of R. It has the same structure as an “ordinary” run tree as described in the previous
paragraph with the single difference that its root has no start-edge. For each p in Q⊕ ∪ Q⊗ and
w in Σ∗, we define a class R(p, w) of partial run trees. A tree R is in R(p, ε) iff the state label of
its root x is p and one of the following conditions is satisfied:

1. The root x of R has no children and the transition label of its finish-edge is finish.

2. The state p is in Q⊕, x has exactly one child y and there exists t in T (p, ε) such that
transition(xy) = t and the subtree of R with root in y is in R(ter(t), ε).

3. The state p is in Q⊗ and there exists a 1-1 correspondence between transitions in nonempty
set T (p, ε) and the children of x such that the following is satisfied for each t in T (p, ε): if y
is the child of x that corresponds to t, then transition(xy) = t and the subtree of R with
root in y is in R(ter(t), ε).

Let w = av, where a is in Σ and v is in Σ∗. A tree R is in R(p, w) iff the state label of its root x
is p and one of the following conditions is satisfied:

1. The set T (p, a) ∪ T (p, ε) is empty, the root x has no children, and the transition label of
the finish-edge of x is terminate.

2. The state p is in Q⊕, x has exactly one child y, and there exists t in T (p, ε) ∪ T (p, a) such
that transition(xy) = t and the subtree of R with root in y is in R(ter(t), u), where u is a
word in Σ∗ such that σ(t)u = w.



Definitions and Basic Results 18

Figure 2.9: The two-mode alternating weighted automaton A from Example 2.4.1.

3. The state p is in Q⊗ and there exists a 1-1 correspondence between transitions in nonempty
set T (p, ε) ∪ T (p, a) and the children of x such that the following is satisfied for each t in
T (p, ε)∪T (p, a): if y is the child of x that corresponds to t, then transition(xy) = t and the
subtree of R with root in y is in R(ter(t), u), where u is a word in Σ∗ such that σ(t)u = w.

A tree R is a run tree on a word w in Σ∗ iff there exists a state p in Q⊕ ∪ Q⊗ such that the
following two conditions are satisfied:

1. The start edge of the root of R is labelled with start.

2. The partial run tree, which is obtained from R if we remove the start-edge entering its root,
is in R(p, w).

The set of all run trees on w shall be denoted by R(w).

Example 2.4.1. In Figure 2.9, we give an example of a two-mode alternating weighted automaton
A over the alphabet Σ = {a, b} and over the semiring R of real numbers with standard operations
of addition and multiplication. The set of states of A is {1, 2, 3, 4}.

In Figure 2.10, we depict all run trees on aab in the automaton A. In each of the depicted run
trees, each node is labelled with a number representing the state label of the node. Each node is
also labelled either with “+” or with “×” – this label indicates, whether the state corresponding
to the given node is a sum state or a product state. Each edge in the depicted run trees is labelled
with a symbol from Σ, which might be preceded by a coefficient from R – the symbol and the
coefficient represent the label and the weight of the transition of A corresponding to this edge. If
the symbol is not preceded by a coefficient, then the weight of the corresponding transition is 1.2

Every run in a two-mode alternating weighted automaton A = (Q⊕, Q⊗,Σ, T, ν, ι, τ) has a
weight that depends on the transitions it passes. For each edge e in a run tree R, we define

2By the definition above, each edge in a run tree is labelled with a transition (or with start, finish, or terminate).
In this example, we have nevertheless decided to label the edges with symbols and weights of corresponding tran-
sitions instead, because we believe that this makes the example easier to understand.
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Figure 2.10: All run trees on aab in the two-mode alternating weighted automaton A from Example 2.4.1.
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its weight weight(e) as follows. If e is an “ordinary” edge (i.e. an edge with two ends) and
transition(e) = t, where t is in T , then weight(e) = ν(t). If e is a start-edge entering the
root x of R and state(x) = p, then weight(e) = ι(p). Similarly, if e is a finish-edge leaving
a leaf y of R, transition(e) = finish, and state(y) = p, then weight(e) = τ(p). Finally, if e
is a finish-edge and its transition label is terminate, then weight(e) = 0. We now define the
weight weight(R) of a run tree R with edge set E to be the product of weights of all edges in
E, i.e., weight(R) =

∏
e∈E weight(e). Similarly, if R is a partial run tree with edge set E, we

define weight(R) =
∏
e∈E weight(e). The following theorem characterizes the behaviour of an

alternating weighted automaton through the notion of a run tree.

Theorem 2.4.4. Let A be a two-mode alternating weighted automaton over a commutative semir-
ing S and over an alphabet Σ. Then for each w in Σ∗,

(|A|, w) =
∑

R∈R(w)

weight(R).

Proof sketch. Let A = (Q⊕, Q⊗,Σ, T, ν, ι, τ) be a two-mode alternating weighted automaton over
a commutative semiring S. We shall prove that

(|A|p, w) =
∑

R∈R(p,w)

weight(R) (2.1)

for every p in Q⊕ ∪ Q⊗ and w in Σ∗. The proof shall be done by mathematical induction on
depth(p, w), which we define to be the maximal depth of all run trees in R(p, w).

Let depth(p, w) = 0 and w = ε. The set T (p, ε) is empty (for otherwise depth(p, ε) would be
greater than zero). Therefore, R(p, ε) = {R0}, where R0 is a partial run tree that consists of
a single node x and the weight of the finish-edge of x is τ(p). We have

∑
R∈R(p,ε) weight(R) =

τ(p) = (|A|p, ε).
Let depth(p, w) = 0 and w = av, where a is in Σ and v is in Σ∗. The set T (p, ε) ∪ T (p, a) is

empty (for otherwise depth(p, w) would be greater than zero). Therefore, R(p, w) = {R0}, where
R0 is a partial run tree that consists of a single node x and the weight of the finish-edge of x is 0.
We have

∑
R∈R(p,w) weight(R) = 0 = (|A|p, w).

Let depth(p, w) > 0, w = ε and p be in Q⊕. It is quite easy to see that∑
R∈R(p,ε)

weight(R) = weight(R0) +
∑

t∈T (p,ε)

(
ν(t) ·

∑
R∈R(ter(t),ε)

weight(R)
)
,

where R0 is a partial run tree that consists of a single node x and the weight of the finish-edge of
x is τ(p). By the induction hypothesis, we thus have∑

R∈R(p,ε)

weight(R) = τ(p) +
∑

t∈T (p,ε)

ν(t) · (|A|ter(t), ε) = (|A|p, ε).

Let depth(p, w) > 0, w = ε and p be in Q⊗. It is quite easy to see that∑
R∈R(p,ε)

weight(R) = weight(R0) +
∏

t∈T (p,ε)

(
ν(t) ·

∑
R∈R(ter(t),ε)

weight(R)
)
,

where R0 is a partial run tree that consists of a single node x and the weight of the finish-edge of
x is τ(p). By the induction hypothesis, we have∑

R∈R(p,w)

weight(R) = τ(p) +
∏

t∈T (p,ε)

ν(t) · (|A|ter(t), ε) = (|A|p, ε).

We are left with two more cases. The first case is when depth(p, w) > 0, w is nonempty, and
p is in Q⊕ and the second case is when depth(p, w) > 0, w is nonempty, and p is in Q⊗. One can
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deal with these cases in pretty much the same way as with the previous two cases. We leave this
for the reader.

We have thus proved that (2.1) holds for every p in Q⊕ ∪Q⊗ and w in Σ∗. For every w in Σ∗,
we have

(|A|, w) =
∑

p∈Q⊕∪Q⊗
ι(p) · (|A|p, w) =

=
∑

p∈Q⊕∪Q⊗

(
ι(p) ·

∑
R∈R(p,w)

weight(R)
)

=

=
∑

R∈R(w)

weight(R).

The theorem is proved.

Evaluation polynomials, which we have defined for alternating weighted automata, can be de-
fined for two-mode alternating weighted automata as well. The definition of evaluation polynomials
is valid only in connection with some linear ordering of the states of the automaton in considera-
tion. For this reason, we shall always assume that the set of states of each two-mode alternating
weighted automaton is already somehow linearly ordered. Whenever we refer to “the i-th state”,
we mean the i-th state with respect to this linear ordering. It is also sometimes convenient to
replace a state with its numerical order in our notation. For example, if A = (Q⊕, Q⊗,Σ, T, ν, ι, τ)
is a two-mode alternating weighted automaton and p is its i-th state, then we can write |A|i, ι(i),
and τ(i) instead of |A|p, ι(p), and τ(p), respectively.

Definition 2.4.5. Let A = (Q⊕, Q⊗,Σ, T, ν, ι, τ) be a two-mode alternating weighted automaton
over a commutative semiring S, let n = |Q⊕ ∪ Q⊗|. For each w in Σ∗ and p in Q⊕ ∪ Q⊗, we
define the evaluation polynomial PA[p, w] (also denoted by PA[i, w] if p is the i-th state of A) in
S[x1, . . . , xn] as follows:

1. If p is the i-th state in Q⊕ ∪Q⊗, then

PA[p, ε] = xi.

2. If p is in Q⊕, a is in Σ, and w is in Σ∗, then

PA[p, aw] =
∑

t∈T (p,a)

ν(t) · PA[ter(t), w] +
∑

t∈T (p,ε)

ν(t) · PA[ter(t), aw].

3. If p is in Q⊗, a is in Σ, and w is in Σ∗, then

PA[p, aw] =
∏

t∈T (p,a)

(
ν(t) · PA[ter(t), w]

)
·
∏

t∈T (p,ε)

(
ν(t) · PA[ter(t), aw]

)
,

unless T (p, a) ∪ T (p, ε) = ∅, in which case we define

PA[p, aw] = 0.

For each w in Σ∗, we define the evaluation polynomial PA[w] in S[x1, . . . , xn] by

PA[w] =
∑

p∈Q⊕∪Q⊗
ι(p) · PA[p, w].

The following lemma is an analogy to Lemma 2.3.2. We leave the proof of this fact for the
reader.
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Lemma 2.4.6. Let A = (Q⊕, Q⊗,Σ, T, ν, ι, τ) be a two-mode alternating weighted automaton, let
n = |Q⊕ ∪Q⊗|. If v, w are in Σ∗ and p is in Q⊕ ∪Q⊗, then

(|A|p, vw) = PA[p, v]
(
(|A|1, w), (|A|2, w), . . . , (|A|n, w)

)
,

(|A|, vw) = PA[v]
(
(|A|1, w), (|A|2, w), . . . , (|A|n, w)

)
.

We have already mentioned at the beginning of this section that the definition of two-mode al-
ternating weighted automata can be viewed as just an alternative definition of alternating weighted
automata. The following theorem justifies this claim.
Theorem 2.4.7. A formal power series r over a commutative semiring S and over an alphabet Σ
is realized by an alternating weighted automaton over S iff it is realized by a two-mode alternating
weighted automaton over S.
Proof. Let A = (Q,Σ, ψ, P0, τ) be an alternating weighted automaton over S. We shall con-
struct a two-mode alternating weighted automaton A′ = (Q⊕, Q⊗,Σ, T, ν, ι, τ ′) over S such that
|A′| = |A|.

For each p in Q and a in Σ, the polynomial ψ[p, a] can be written as a sum of distinct nonzero
monomials m1,m2, . . . ,mk. Let M(p, a) = {mi | i = 1, . . . , k} and M =

⋃
p∈Q,a∈ΣM(p, a).

Similarly, the polynomial P0 can be written as a sum of distinct nonzero monomialsm′1,m′2, . . . ,m′l.
Let M0 = {m′i | i = 1, . . . , l}.

First, let us construct the sets of states Q⊕ and Q⊗ by taking Q⊕ = Q and Q⊗ = M∪M0. The
set of transitions T shall be constructed with the following modus operandi (it will be followed also
in some later constructions). The set T will consist of tuples, where the first entry of each tuple is
the initial state, the second entry is the label, the third entry is the weight, and the fourth entry is
the terminal state of the transition. The fifth entry, if present, is an index. This entry is present in
the tuple representing a transition t only in case the constructed automaton contains transitions
that are parallel with t and have the same label as t. Now that we have clarified this, we can
return to the construction of T . This set will be constructed from the following two components:

• The set Tα that consists of all tuples (p, a, s,m), where p is in Q, a is in Σ, m is a monomial
in M(p, a), and s = coef(m).

• The set Tβ that consists of all tuples (m, ε, 1S , p, i), where m is in M ∪M0, p is the j-th
state in Q (with respect to the ordering of states of A) and i is a positive integer such that
i ≤ exp(m, j).

We now define T = Tα ∪ Tβ . The maps init, ter, σ and ν are defined by the corresponding entries
of the transitions.

Let us now define the initial weighting function ι. If m is a monomial in M0, we define
ι(m) = coef(m). For every other state p in Q⊕ ∪ Q⊗, we define ι(p) = 0. Finally, let us define
the terminal weighting function τ ′. If p is in Q, we define τ ′(p) = τ(p). For every other state p in
Q⊕ ∪Q⊗, we define τ ′(p) = 0.

We have now fully defined the two-mode alternating weighted automaton A′. It is not too
hard to show that |A′| = |A|. We shall omit the proof.

To prove the converse implication, let A = (Q⊕, Q⊗,Σ, T, ν, ι, τ) be a two-mode alternating
weighted automaton over S, let n = |Q⊕ ∪ Q⊗|. We shall construct an alternating weighted
automaton A′ = (Q,Σ, ψ, P0, τ

′) over S such that |A′| = |A|.
Let Q = Q⊕ ∪Q⊗ and let Q keep the linear ordering of Q⊕ ∪Q⊗. The initial polynomial P0

is defined by P0 =
∑n
i=1 ι(i)xi. For each p in Q and a in Σ, we define ψ[p, a] = PA[p, a]. The

terminal weighting function τ ′ is defined by τ ′(p) = (|A|p, ε) for each p in Q.
The reader can easily show that |A′| = |A|. We shall omit the proof of this fact as well.

2.5 Elimination of ε-Labelled Transitions
Unlike in the case of alternating weighted automata, the definition of two-mode alternating
weighted automata allows ε-labelled transitions. It would have been possible to allow ε-labelled
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transitions also in the definition of the former, but we believe that they would not be particularly
useful. On the other hand, ε-labelled transitions have already proved to be handy when construct-
ing two-mode alternating weighted automata. We shall now show that they are nevertheless not
strictly necessary in the definition of two-mode alternating weighted automata.

Definition 2.5.1. A two-mode alternating weighted automaton A is ε-free if it contains no
ε-labelled transitions.

Theorem 2.5.2. For every two-mode alternating weighted automaton A1 over a commutative
semiring S, there exists an ε-free two-mode alternating weighted automaton A2 over S such that
|A2| = |A1|.

Proof. Let A1 = (Q⊕1 , Q⊗1 ,Σ, T1, ν1, ι1, τ1) be a two-mode alternating weighted automaton over a
commutative semiring S. We shall construct an ε-free two-mode alternating weighted automaton
A2 = (Q⊕2 , Q⊗2 ,Σ, T2, ν2, ι2, τ2) over S such that |A2| = |A1|.

Let us first describe the construction informally. In a “naive” approach, one could argue as
follows. For each p in Q⊕1 ∪ Q⊗1 and each a in Σ, we need to modify the transitions in TA1(p, a)
in such a way, that p “realizes” the polynomial PA1 [p, a]. The terminal weight τ(p) then needs
to be changed to (|A1|, ε). If we manage to do this, no ε-labelled transitions are needed in the
modified A1. The problem with this approach is that it might not be possible to make the state
p realize the polynomial PA1 [p, a]. Each state in a two-mode alternating weighted automaton can
perform either addition only or multiplication only, but the polynomial PA1 [p, a] might combine
both addition and multiplication of indeterminates. This means that the polynomial PA1 [p, a]
can be realized only in two steps: in the first step, a sum state realizes the addition in PA1 [p, a]
and in the second step, a set of product states realizes the multiplication in this polynomial. The
problem is that we need to “read” only one symbol during these two steps. This is impossible in
an ε-free two-mode alternating weighted automaton.

To make the naive approach work, we need to modify each state p in Q⊕1 ∪ Q
⊗
1 in such a

way that it realizes the polynomial PA1 [p, ab] in two steps for each a, b in Σ. We shall do this as
follows. Each state p in Q⊕1 ∪ Q⊗1 is changed to a sum state and the transitions in TA1(p, a) are
changed in such a way that they realize the addition in PA1 [p, ab] when reading the symbol a. For
each monomial m in PA1 [p, ab], we add a product state qm to A1 that realizes the monomial m
on reading the symbol b. Of course, we need to deal also with the case when there is only one
symbol c left on the “input”. For this reason, we need to add a transition with label c and weight
(|A1|p, c) to T (p, c) and lead it into a new state qd that has no transitions starting in it; if there
is more than one symbol left on the input, the branch that visits this state “returns” zero.

We shall now give a formal description of the construction. For each p in Q⊕1 ∪ Q
⊗
1 and

w in Σ∗, the evaluation polynomial PA1 [p, w] can be written as a sum of distinct nonzero monomials
m1,m2, . . . ,mk in S[x1, . . . , xn] (where n = |Q⊕1 ∪Q⊗1 |). Let M(p, w) = {mi | i = 1, . . . , k}.

First, let us take Q⊕2 = Q⊕1 ∪Q
⊗
1 ∪ {qd}, where qd is a new state that is not in Q⊕1 ∪Q⊗1 , and

let Q⊗2 consist of all pairs (m, b), where b is in Σ and m is in M(p, ab) for some p in Q⊕1 ∪ Q
⊗
1

and a in Σ. Let the states of A2 be somehow linearly ordered – we require only that each state in
Q⊕1 ∪Q

⊗
1 keeps its numerical order from the ordering of states of A1.

The set of transitions T2 will be constructed from the following sets:

• Tα that consists of all tuples (p, a, s, qd), where p is in Q⊕1 ∪Q⊗1 , a is in Σ, and s = (|A1|p, a).

• Tβ that consists of all tuples (p, a, s, (m, b)), where p is in Q⊕1 ∪ Q
⊗
1 , a, b are in Σ, m is

a monomial in M(p, ab), and s = coef(m).

• Tγ that consists of all tuples ((m, a), a, 1S , p, i), where m is in S[x1, ..., xn], a is in Σ, (m, a)
is in Q⊗2 , p is the j-th state in Q⊕1 ∪Q⊗1 and i is a positive integer such that i ≤ exp(m, j).

We now define T2 = Tα ∪ Tβ ∪ Tγ . For every transition t in T2, we define init(t), σ(t), ν(t) and
ter(t) to be the first, the second, the third, and the fourth entry of t, respectively.
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Finally, the initial and the terminal weighting functions are defined by

ι2(p) :=
{
ι1(p) if p ∈ Q⊕1 ∪Q⊗1 ,
0 otherwise,

τ2(p) :=


(|A1|p, ε) if p ∈ Q⊕1 ∪Q⊗1 ,
1 if p = qd,

0 otherwise.

We shall now prove that |A2| = |A1|. First, we shall show that (|A2|p, w) = (|A1|p, w) for
every p in Q⊕1 ∪Q⊗1 and w in Σ∗. The proof will be done by induction on the length of the word w.

Assume that w = ε. Since A2 is ε-free, we have (|A2|p, ε) = τ2(p) = (|A1|p, ε). Let us now
assume that w = a, where a is in Σ. Since A2 is ε-free, we have

(|A2|p, a) =
∑

t∈TA2 (p,a)

ν2(t) · τ2(ter(t)).

There is a single transition t′ in TA2(p, a) that ends in state qd and this transition satisfies
ν2(t′) = (|A1|p, a) and τ2(ter(t′)) = 1. Every other transition t in TA2(p, a) ends in Q⊗2 and
hence τ2(ter(t)) = 0 by the definition of the terminal weighting function τ2. It follows that

(|A2|p, a) = ν2(t′) · τ2(ter(t′)) = (|A1|p, a).

Finally, let us assume that w = abv for some a, b in Σ and v in Σ∗. The reader can easily check
that PA2 [p, ab] = PA1 [p, ab] (here we use the fact that for each state q in Q⊕1 ∪Q⊗1 , the numerical
order of q in A1 and A2 is the same). By the induction hypothesis, we have (|A2|q, v) = (|A1|q, v)
for every q in Q⊕1 ∪Q⊗1 . If we put all these facts together and use Lemma 2.4.6, we obtain

(|A2|p, w) = PA2 [p, ab]((|A2|1, v), (|A2|2, v), . . . , (|A2|m, v)) =
= PA1 [p, ab]((|A1|1, v), (|A1|2, v), . . . , (|A1|n, v)) =
= (|A1|p, w),

where m = |Q⊕2 ∪Q⊗2 | and n = |Q⊕1 ∪Q⊗1 |.
It is now easy to show that |A2| = |A1|. For every w in Σ∗, we have

(|A2|, w) =
∑

p∈Q⊕2 ∪Q
⊗
2

ι2(p) · (|A2|p, w).

If p is in Q⊕1 ∪Q⊗1 , then ι2(p) = ι1(p) and (|A2|p, w) = (|A1|p, w), as we have already proven. For
every other state p in Q⊕2 ∪Q⊗2 , we have ι2(p) = 0. These facts imply

(|A2|, w) =
∑

p∈Q⊕1 ∪Q
⊗
1

ι1(p) · (|A1|p, w) = (|A1|, w).

The theorem is proven.

2.6 Systems of H-Polynomial Equations
In this section, we introduce the notion of systems of H-polynomial3 equations. We shall use this
notion to give another characterization of formal power series realized by alternating weighted
automata.

3An abbreviation for Hadamard-polynomials.
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Definition 2.6.1. A system of H-polynomial equations P over a commutative semiring S and
over an alphabet Σ in indeterminates X1, X2, . . . , Xn is a system of n equations

Xi =
li∑
j=1

(
si,jai,j ·

( n⊙
k=1

X
�mi,j,k

k

))
+ tiε, i = 1, . . . , n, (2.2)

where li is a nonnegative integer, si,j and ti are in S and ai,j is in Σ for i = 1, . . . , n and
j = 1, . . . , li (so si,jaj and tiε are power series in StΣ∗y), mi,j,k is a nonnegative integer for
i = 1, . . . , n, j = 1, . . . , li, and k = 1, . . . , n, and

∑n
k=1mi,j,k > 0 for i = 1, . . . , n and j = 1, . . . , li.

A n-tuple (r1, r2, . . . , rn) of power series in StΣ∗y is a solution to P if

ri =
li∑
j=1

(
si,jai,j ·

( n⊙
k=1

r
�mi,j,k

k

))
+ tiε

for every i = 1, . . . , n.

Proposition 2.6.2. Every system P of H-polynomial equations over a commutative semiring S
and over an alphabet Σ has exactly one solution.

Proof. Let P consist of n equations of the form (2.2). For i = 1, . . . , n, we shall inductively define
a formal power series ri in StΣ∗y. Let the coefficient of ε in ri be ti. For every a in Σ, let Ja,i be
the set of indices j, for which ai,j = a, and let us define

(ri, aw) =
∑
j∈Ja,i

(
si,j ·

n∏
k=1

(rk, w)mi,j,k

)
for each w in Σ∗. These relations define the formal power series ri for i = 1, . . . , n. Clearly, the
n-tuple (r1, r2, . . . , rn) is a solution to P. Moreover, this n-tuple is evidently the only possible
solution to P.

Let P be a system of n H-polynomial equations and (r1, r2, . . . , rn) be the solution to P. We
shall write |P|i to denote ri for i = 1, . . . , n. We claim that a power series r over a commutative
semiring S and over an alphabet Σ is realized by an alternating weighted automaton over S iff
there exists a system P of H-polynomial equations over S and Σ such that |P|1 = r. We start
the proof of this claim with the following lemma.

Lemma 2.6.3. For every alternating weighted automaton A over a commutative semiring S,
there exists an alternating weighted automaton A′ = (Q,Σ, ψ, P0, τ) over S such that P0 = x1 and
|A′| = |A|.

Proof. Let A1 = (Q1,Σ, ψ1, P0,1, τ1) be an alternating weighted automaton over S, let n = |Q1|.
We shall construct an alternating weighted automaton A2 = (Q2,Σ, ψ2, P0,2, τ2) with n+ 1 states
such that P0,2 = xn+1 and |A2| = |A1|. Once this is done, the initial polynomial P0,2 can be
changed to x1 if the states of A2 are suitably rearranged.

Let us define Q2 = Q1 ∪ {q0}, where q0 is a new state that is not in Q1. The numerical order
of q0 is n + 1, while the rest of states in Q2 keeps its ordering from Q1. For every a in Σ, let
us define ψ2[q0, a] = P0,1(ψ1[1, a], ψ1[2, a], . . . , ψ1[n, a]). The terminal weight of q0 is defined by
τ2(q0) = P0,1(τ1(1), τ1(2), . . . , τ1(n)). For every p in Q2 − {q0} and a is in Σ, the polynomial
ψ2[p, a] and the terminal weight τ2(p) does not change, i.e., ψ2[p, a] = ψ1[p, a] and τ2(p) = τ1(p).
Finally, let P0,2 = xn+1. It is easy to show that |A2| = |A1|.

The following theorem gives a characterization of formal power series realized by alternating
weighted automata in terms of systems of H-polynomial equations.

Theorem 2.6.4. Let r be a formal power series over a commutative semiring S and over an
alphabet Σ. There exists an alternating weighted automaton A over S such that |A| = r iff there
exists a system of H-polynomial equations P over S such that |P|1 = r.
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Proof. Let P be a system of H-polynomial equations over S and Σ that consist of n equations of
the form (2.2). We shall construct an alternating weighted automaton A = (Q,Σ, ψ, P0, τ) such
that |A| = |P|1.

Let us define Q = {1, 2, . . . , n}. For every i in Q and a in Σ, let Ja,i be a set of indices j for
which ai,j = a and let us define

ψ[i, a] =
∑
j∈Ja,i

si,j

n∏
k=1

x
mi,j,k

i .

We define P0 = x1 and τ(i) = ti for every i in Q. It is not too hard to show that |A| = |P|1. The
proof of this fact is left for the reader.

Let us now prove the converse implication of the theorem. Let A = (Q,Σ, ψ, P0, τ) be an
alternating weighted automaton over S. We shall construct a system of H-polynomial equations
P over S and Σ such that |P|1 = |A|.

By Lemma 2.6.3, we can assume that P0 = x1. The system of H-polynomial equations P shall
consist of n := |Q| equations. Let us construct the i-th equation of P for some positive integer i
in {1, . . . , n}. For every a in Σ, we can write

ψ[i, a] =
la∑
j=1

sa,j

n∏
k=1

x
ma,j,k

k ,

where la is a nonnegative integer, sa,j is in S for j = 1, . . . , la, the exponent ma,j,k is a nonnegative
integer for j = 1, . . . , la and k = 1, . . . , n, and

∑n
k=1ma,j,k > 0 for j = 1, . . . , la. Let the i-th

equation of P be

Xi =
∑
a∈Σ

( la∑
j=1

sa,ja ·
( n⊙
k=1

X
�ma,j,k

k

))
+ τ(i)ε.

It is easy to show that |P|1 = |A|.



Chapter 3

Series Realized by Alternating
Weighted Automata

3.1 Expressive Power
Since (nonalternating) weighted automata are just a special case of alternating weighted automata,
the expressive power of the latter is at least as big as that of the former. A natural question is
if alternating weighted automata are strictly more powerful. A positive answer to this question
was already given by Almagor and Kupferman [1], who constructed a simple alternating weighted
automaton over a tropical semiring (R ∪ {∞},min,+,∞, 0) and showed that no (nonalternating)
weighted automaton over the same semiring is equivalent to it. Therefore, alternating weighted
automata over the tropical semiring are strictly more powerful than (nonalternating) weighted
automata over the tropical semiring. However, not the same can be said about the Boolean
semiring. It is already well known that a language accepted by a Boolean alternating automaton
is necessarily regular [2]. This shows that alternating weighted automata and (nonalternating)
weighted automata over the Boolean semiring are equally powerful.

We conclude that commutative semirings can be divided into two nonempty classes: the class of
commutative semirings, for which alternating weighted automata and (nonalternating) weighted
automata are equally powerful and the class of commutative semirings, for which alternating
weighted automata are strictly more powerful than (nonalternating) weighted automata. Let S
denote the former class, i.e., let S be the class that consists of all commutative semirings S such
that the behaviour of every alternating weighted automaton over S is rational over S. For the rest
of this section, we shall be proving the following simple characterization of the class S .

Theorem 3.1.1. For every commutative semiring S, the following assertions are equivalent:

1. The semiring S is in S .

2. Every finitely generated subsemiring of S is finite.

3. Every element of S has finite multiplicative order.

As a first step, we shall prove the equivalence of assertions 2 and 3. Let us state this equivalence
once more in the following lemma and prove it.

Lemma 3.1.2. For every commutative semiring S, the following two assertions are equivalent:

1. Every finitely generated subsemiring of S is finite.

2. Every element of S has finite multiplicative order.
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Proof. Let us suppose that every finitely generated subsemiring of S is finite. In particular, this
implies that the subsemiring Ts generated by a semiring element s is finite for each s in S. The
subsemiring Ts contains si for every nonnegative integer i and therefore, there is only a finite
number of such elements. This means that s has finite multiplicative order.

For the converse implication, let us suppose that every element of S has finite multiplicative
order. First of all, let us note that every element of S has a finite additive order as well. Since
2S has finite multiplicative order, there exist two distinct nonnegative integers k1, k2 such that
(2S)k1 = (2S)k2 . We have

2k11S = (2k1)S = (2S)k1 = (2S)k2 = (2k2)S = 2k21S ,

which shows that there exist two distinct nonnegative integers l1 = 2k1 and l2 = 2k2 such that
l11S = l21S . Therefore, if t is in S, then l1t = (l11S)t = (l21S)t = l2t. We have thus shown that
l1t = l2t for two distinct nonnegative integers l1, l2, which means that t has finite additive order.

Let T be a subsemiring of S generated by elements s1, s2, . . . , sn in S. We shall show that T
is finite. Let M be a subset of S that consists of all elements

∏n
i=1 s

ki
i , where ki is a nonnegative

integer for i = 1, . . . , n. Since si has finite multiplicative order for i = 1, . . . , n, the set M is finite.
Let K be a subset of S that consists of all elements

∑
t∈M ktt, where kt is a nonnegative integer

for every t in M . Since every t in M has finite additive order, we can see that K is finite as well.
Moreover, it is quite easy to show that K is a subsemiring of S that contains s1, . . . , sn and is
contained in every subsemiring of S that contains s1, . . . , sn. This means that K is a subsemiring
generated by s1, . . . , sn and hence, K = T . This proves that T is finite.

We shall now prove the following part of Theorem 3.1.1: if every finitely generated subsemiring
of S is finite, then S is in S . First, we shall prove this claim in the case when S is itself finitely
generated and hence is finite.

Lemma 3.1.3. If S is a finite commutative semiring, then S is in S .

Proof. Let A = (Q,Σ, ψ, P0, τ) be an alternating weighted automaton over S. We shall construct
a (nonalternating) weighted automaton A′ = (Q′,Σ, T, ν, ι, τ ′) over S such that |A′| = |A|. This
construction was already done by Chandra, Kozen and Stockmeyer [2] in the special case when S
is the Boolean semiring. The construction for an arbitrary finite commutative semiring S that we
present here is a generalization of the construction by Chandra, Kozen and Stockmeyer.

Let n = |Q|. Since S is finite, there exists a finite set ρ1, ρ2, . . . , ρm of polynomial functions
in S(x1, . . . , xn) such that every polynomial function η in S(x1, . . . , xn) is a linear combination of
polynomial functions ρ1, . . . , ρm, i.e., we can write η =

∑m
i=1 ciρi, where ci is in S for i = 1, . . . ,m.

For i = 1, . . . ,m, let Ri be a polynomial in S[x1, . . . , xn] such that ρi is its corresponding polyno-
mial function.

The set of states Q′ shall be defined by Q′ = {1, 2, . . . ,m}. Let us now define the set of
transitions T and the transition weighting function ν. For every k in Q′ and every a in Σ, we
shall construct the set of transitions T (k, a) that start in k and are labelled with a. Let η be the
polynomial function that corresponds to the polynomial Rk(ψ[1, a], ψ[2, a], . . . , ψ[n, a]). We can
write η =

∑m
i=1 ciρi, where ci is in S for i = 1, . . . ,m. We define the set T (k, a) in such a way

that for every integer i, for which ci is nonzero, there is exactly one transition in T (k, a) that ends
in i; the weight of this transition is ci. In this way, we construct T (k, a) for every k in Q′ and a
in Σ. We now define T =

⋃
k∈Q′,a∈Σ T (k, a). For each transition t in T , we have also defined the

weight ν(t) of t.
Let us now define the initial weighting function ι. Let φ0 be the polynomial function that

corresponds to the polynomial P0. We can write φ0 =
∑m
i=1 ciρi, where ci is in S for i = 1, . . . ,m.

For every k in Q′, we define ι(k) = ck.
Finally, let us define the terminal weighting function τ ′. For every k in Q′, we define τ ′(k) =

ρk(τ(1), τ(2), . . . , τ(n)).
Let us now show that |A′| = |A|. First, we shall prove that

(|A′|k, w) = ρk
(
(|A|1, w), (|A|2, w), . . . , (|A|n, w)

)
(3.1)
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for every k in Q′. The proof will be done by mathematical induction on the length of the word w.
Let w = ε. We have (|A|i, ε) = τ(i) for i = 1, . . . , n. SinceA′ is ε-free, we have (|A′|k, ε) = τ ′(k)

and

(|A′|k, ε) = τ ′(k) =
= ρk(τ(1), τ(2), . . . , τ(n)) =
= ρk

(
(|A|1, ε), (|A|2, ε), . . . , (|A|n, ε)

)
.

We have thus proved (3.1) for w = ε.
Let w = av, where a is in Σ and v is in Σ∗. Let η be the polynomial function that corresponds

to the polynomial Rk(ψ[1, a], ψ[2, a], . . . , ψ[n, a]). For every i in Q′, let ci be the weight of the
transition that starts at k, ends in i, and is labelled with a. If there is no such transition,
let ci = 0. By the definition of the set of transitions T , we have η =

∑m
i=1 ciρi. Since A′

is ε-free, we also have (|A′|k, av) =
∑m
i=1 ci(|A′|i, v). Moreover, by the induction hypothesis,

(|A′|i, v) = ρi
(
(|A|1, v), . . . , (|A|n, v)

)
for i = 1, . . . ,m. These facts imply

(|A′|k, av) =
m∑
i=1

ci(|A′|i, v) =

=
m∑
i=1

ciρi
(
(|A|1, v), (|A|2, v), . . . , (|A|n, v)

)
=

= η
(
(|A|1, v), (|A|2, v), . . . , (|A|n, v)

)
=

= Rk

(
ψ[1, a]

(
(|A|1, v), (|A|2, v), . . . , (|A|n, v)

)
,

ψ[2, a]
(
(|A|1, v), (|A|2, v), . . . , (|A|n, v)

)
,

. . . ,

ψ[n, a]
(
(|A|1, v), (|A|2, v), . . . , (|A|n, v)

))
=

= ρk
(
(|A|1, av), (|A|2, av), . . . , (|A|n, av)

)
.

We have thus proved (3.1) for w = av.
We shall now prove that (|A′|, w) = (|A|, w) for every w in Σ∗. Let φ0 be the polynomial

function that corresponds to the polynomial P0. By the definition of the initial weighting function
ι, we have φ0 =

∑m
i=1 ι(i)ρi. This fact and (3.1) imply

(|A′|, w) =
m∑
i=1

ι(i)(|A′|i, w) =

=
m∑
i=1

ι(i)ρi
(
(|A|1, w), (|A|2, w), . . . , (|A|n, w)

)
=

= φ0
(
(|A|1, w), (|A|2, w), . . . , (|A|n, w)

)
=

= (|A|, w).

The lemma is proven.

We now wish to prove the more general claim: if every finitely generated subsemiring of S is
finite, then S is in S , regardless of whether the semiring S is finite or not. This claim follows
easily from the special case when S is finite. The reason is that even if S is not finite, every
alternating weighted automaton over S still “makes use” of only some finite part of it. Let us
suppose that A is some two-mode alternating weighted automaton over S. If X is the set of all
elements of S that are either carried by some transition of A or are assigned to some state as an
initial or a terminal weight, then A can be viewed as a two-mode alternating weighted automaton
over the semiring T that is generated by the elements of X. The set X is clearly finite, so the
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semiring T is finitely generated. The same reasoning stands also if A is a (general) alternating
weighted automaton. We shall now summarize these observations in the following lemma.

Lemma 3.1.4. For every alternating weighted automaton A over a commutative semiring S, there
exists a finitely generated subsemiring T of S and an alternating weighted automaton A′ over T
such that |A′| = |A|.

We are now prepared to give a proof of the following part of Theorem 3.1.1.

Lemma 3.1.5. If S is a commutative semiring such that every finitely generated subsemiring of
S is finite, then S is in S .

Proof. Let A be an alternating weighted automaton over S. We shall prove that there exists
a (nonalternating) weighted automaton B over S such that |B| = |A|. By Lemma 3.1.4, there
exists a finitely generated subsemiring T of S and an alternating weighted automaton A′ over T
such that |A′| = |A|. The semiring T is finite and so it is in S by Lemma 3.1.3. Therefore, there
exists a (nonalternating) weighted automaton B over T such that |B| = |A′| = |A|. Clearly, B can
be viewed as a (nonalternating) weighted automaton over the semiring S.

To finish the proof of Theorem 3.1.1, we shall prove the following: if a commutative semiring
S is in S , then every element of S has finite multiplicative order. This is the most difficult part
of our proof of Theorem 3.1.1 and requires some preparations.

For every nonnegative integer n, let 〈n〉 denote the binary representation of n (〈n〉 is a word
over the alphabet {0, 1}). Let X = {s1, s2, . . . , sz} be a finite subset of a commutative semiring S.
It is not too hard to construct an alternating weighted automaton A over S and over the alphabet
{0, 1,#} such that

(|A|, 〈k1〉#〈k2〉# . . .#〈kz〉) =
z∏
i=1

ski
i (3.2)

for every z-tuple of nonnegative integers k1, k2, . . . , kz.1 A diagram of one such automaton for case
z = 3 is depicted in Figure 3.1. For every finite subset X = {s1, . . . , sz} of S, let rX be a formal
power series over S and over {0, 1,#} that is realized by an alternating weighted automaton over S
and satisfies (3.2) for every z-tuple of nonnegative integers k1, . . . , kz. We claim that if the formal
power series rX is rational over S for every finite subset X of S, then every element of S has finite
multiplicative order. We shall now give some definitions that will help us to prove this.

For every finite subset X = {s1, s2, . . . , sz} of S and every nonnegative real number c, let
GX(c) be the set that consists of all elements s in S such that

s =
z∏
i=1

ski
i

for some nonnegative integers k1, k2, . . . , kz satisfying
∑z
i=1 ki ≤ c. Furthermore, for every pair

of nonnegative real numbers c, d, let HX(c, d) be the set that consists of all elements s in S such
that

s =
k∑
i=1

gi,

where k is a nonnegative integer satisfying k ≤ d and gi is in GX(c) for i = 1, . . . , k. If X contains
only one element s, we can write Gs(c) and Hs(c, d) instead of G{s}(c) and H{s}(c, d).

The sets GX(c) and HX(c, d) are clearly finite for every finite subset X of S and for every pair
of nonnegative real numbers c, d. Is is easy to see that if X consists of z elements, then the sizes

1Note that (3.2) does not specify value of rX on each word in {0, 1, #}∗, but this is not important for our
purposes.
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Figure 3.1: A two-mode alternating weighted automaton A over the alphabet {0, 1, #} and over a
commutative semiring S that contains some particular elements s1, s2, s3. The formal power series |A|
satisfies (|A|, 〈k1〉#〈k2〉#〈k3〉) = sk1

1 sk2
2 sk3

3 for every triplet of nonnegative integers k1, k2, k3.

of these sets can be estimated by

|GX(c)| ≤
(
bcc+ z

z

)
≤ (c+ z)z,

|HX(c, d)| ≤
(
bdc+ |GX(c)|
|GX(c)|

)
≤ (d+ |GX(c)|)|GX(c)| ≤ (d+ (c+ z)z)(c+z)z

.

For our purposes, we shall manage with the weaker estimates

|GX(c)| ≤ (c+ z)z, (3.3)
|HX(c, d)| ≤ (d+ (c+ z)z)(c+z)z

. (3.4)

Let us remind that our goal is to prove the following: if S is a commutative semiring in S ,
then every element of S has finite multiplicative order. In what follows, we shall state and prove
three lemmas that we need for our proof of this fact.

Lemma 3.1.6. Let S be a commutative semiring and Σ be an alphabet. If r in StΣ∗y is ra-
tional over S, then there exists a finite subset Y of S and a real number c such that (r, w) is in
HY (|w|+ 1, c|w|) for every w in Σ∗.

Proof. Let r be realized by a weighted automaton A = (Q,Σ, T, ν, ι, τ) over S. We can assume
that A is ε-free and that ι(p) = 0 for every p in Q except for some q0 in Q for which ι(q0) = 1. It
is a well known fact that every rational power series is realized by some weighted automaton that
satisfies these conditions [5]. Clearly, we can also assume that there are no parallel transitions
with the same label in A.

Let Y be the set that consists of all elements of S that are carried by some transition in T or
are assigned to some state in Q as a terminal weight, i.e.,

Y = {ν(t) | t ∈ T} ∪ {τ(p) | p ∈ Q}.

Let c = |Q|. We claim that for every p in Q and w in Σ∗, the coefficient of w in |A|p is
in HY (|w|+ 1, c|w|). Once we prove this claim, the proof of Lemma 3.1.6 is finished, because
|A| = |A|q0 . We shall prove the claim by induction on the length of w.
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If w = ε, then (|A|p, w) = τ(p). Since τ(p) is in Y , the coefficient of w in |A|p is in
HY (1, 1) = HY (|w|+ 1, c|w|). Let us now assume that w = av for some a in Σ and v in Σ∗.
We have

(|A|p, av) =
∑

t∈T (p,a)

ν(t) · (|A|ter(t), v). (3.5)

By the induction hypothesis, (|A|ter(t), v) is in HY (|v| + 1, c|v|) for every t in T (p, a) and so
ν(t) · (|A|ter(t), v) is in HY (|v| + 2, c|v|) for every t in T (p, a). Moreover, there are no more than
c = |Q| transitions in T (p, a), since A has no parallel transitions with the same label. So the
sum in (3.5) is taken over at most c elements from HY (|v| + 2, c|v|) and hence, (|A|p, w) is in
HY (|v|+ 2, c|v|+1) = HY (|w|+ 1, c|w|).

Lemma 3.1.7. Let S be a commutative semiring in S . For every finite subset X of S, there
exists a nonnegative integer n1, a real number d1 and a finite subset Y of S such that GX(n) ⊆
HY (d1 logn, nd1) for every n ≥ n1

Proof. Let X = {s1, s2, . . . , sz}. Since S is in S , the series rX is rational over S. Let Y be a
finite subset of S and c be a real number such that c ≥ 1 and

(rX , w) ∈ HY (|w|+ 1, c|w|) (3.6)

for every w over the alphabet {0, 1,#}. Existence of such Y and c is guaranteed by Lemma 3.1.6.
Let n1 be an integer and d1 be a real number such that

z(logn+ 2) + 1 ≤ d1 logn and c2znz log c ≤ nd1 (3.7)

holds for every n ≥ n1.
Let n be an integer satisfying n ≥ n1, let s be in GX(n). Our goal is to prove that s is in

HY (d1 logn, nd1). We can write

s =
z∏
i=1

ski
i ,

where
∑z
i=1 ki ≤ n. The element s is also the coefficient of the word w := 〈k1〉#〈k2〉# . . .#〈kz〉

in rX . The reader can easily check that |w| ≤ z(logn + 2). By (3.6), the element s is in
HY (z(logn+ 2) + 1, cz(logn+2)) = HY (z(logn+ 2) + 1, c2znz log c). By (3.7), this set is included in
HY (d1 logn, nd1). So s is in HY (d1 logn, nd1) and the lemma is proven.

Lemma 3.1.8. Let S be commutative semiring in S . For every s in S, there exists a nonneg-
ative integer n0, real numbers c1, c2, and a finite subset Y of S such that Gs(2n) is included in
HY (c1 logn, nc2) for every n ≥ n0.

Proof. Let n1 be an integer, d1 be a real number, and X be a finite subset of S such that

Gs(n) ⊆ HX(d1 logn, nd1) (3.8)

holds for every n ≥ n1. Existence of such n1, d1, and X is guaranteed by Lemma 3.1.7. Assume
that d1 ≥ 1. If X does not contain 2S , let us add this semiring element to X (this has no effect on
the inclusion (3.8)). Similarly, let n2 be an integer, d2 be a real number, and Y be a finite subset
of S such that

GX(n) ⊆ HY (d2 logn, nd2) (3.9)

holds for every n ≥ n2. Let us denote z = |Y |. Let n3 be an integer and c1 be a real number such
that

d2 log(2d1n) ≤ c1 logn, (3.10)

holds for every n ≥ n3. Let n4 be an integer and c2 be a real number such that

1
2 (2d1n)d2+1(d1n+ z)z ≤ nc2 (3.11)
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holds for every n ≥ n4. Finally, let n0 = max{n1, n2, n3, n4}.
Let n be an integer satisfying n ≥ n0, let t be in Gs(2n). Our goal is to prove that t is in

HY (c1 logn, nc2). By (3.8), t is in HX(d1 log 2n, (2n)d1) = HX(d1n, 2d1n). This means that we
can write

t =
∑

g∈GX(d1n)

kgg, (3.12)

where kg is a nonnegative integer satisfying

kg ≤ 2d1n (3.13)

for every g in GX(d1n). Let us pick some g from GX(d1n) and examine the semiring element
h := kgg. If we take into account the binary representation of the integer kg, we can see that

kg =
l∑
i=0

2mi

for some l ≤ log(kg) and mi ≤ log(kg) for i = 0, 1, . . . , l. We thus have

h =
l∑
i=0

hi. (3.14)

where hi := (2S)mig for i = 0, 1, . . . , l. Since g is in GX(d1n), the element hi is in GX(mi+d1n) for
i = 0, 1, . . . , l. The set GX(mi + d1n) is included in GX(2d1n), since mi ≤ log kg ≤ log 2d1n = d1n
(the second inequality follows from (3.13)). Furthermore, the inclusion (3.9) implies thatGX(2d1n)
is included in HY (d2 log(2d1n), (2d1n)d2). We conclude that hi is in HY (d2 log(2d1n), (2d1n)d2)
for i = 0, 1, . . . , l. This fact, together with (3.14), implies that h is in HY (d2 log(2d1n), (2d1n)d2 l).
Since l ≤ log(kg) ≤ log 2d1n = d1n (the second inequality follows from (3.13)), this set is
a subset of HY (d2 log(2d1n), (2d1n)d2d1n) = HY (d2 log(2d1n), 1

2 (2d1n)d2+1). Therefore, h is in
HY (d2 log(2d1n), 1

2 (2d1n)d2+1). The element h was chosen as kgg for arbitrary g in GX(d1n), so
we conclude that

kgg ∈ HY (d2 log(2d1n), 1
2 (2d1n)d2+1) (3.15)

for every g in GX(d1n).
Finally, let us return to equality (3.12). By (3.3), GX(d1n) contains no more than (d1n+ z)z

elements. Together with (3.15), this upper bound for the size of GX(d1n) implies that t is in
HY (d2 log(2d1n), 1

2 (2d1n)d2+1(d1n+ z)z). By inequalities (3.10) and (3.11), this set is included in
HY (c1 logn, nc2). We have thus shown that t is in HY (c1 logn, nc2) and the proof of Lemma 3.1.8
is complete.

In the following lemma, we prove the remaining part of Theorem 3.1.1.

Lemma 3.1.9. If a commutative semiring S is in S , then every element of S has finite multi-
plicative order.

Proof. Let s be in S. We shall prove that s has finite multiplicative order. Let n0 be an integer,
c1, c2 be real numbers and Y be a finite subset of S such that Gs(2n) is included inHY (c1 logn, nc2)
for every n ≥ n0. We have just proven in Lemma 3.1.8 that this assumption is valid. Let z = |Y |.
By (3.4), the size of HY (c1 logn, nc2) is at most

((c1 logn+ z)z + nc2)(c1 logn+z)z

= 2log((c1 logn+z)z+nc2 )(c1 logn+z)z

.

Clearly, there exists an integer n1 such that |HY (c1 logn, nc2)| < 2n for every n ≥ n1. If n =
max{n0, n1} then Gs(2n) is a subset of HY (c1 logn, nc2) and therefore also |Gs(2n)| < 2n. This
implies, that sm1 = sm2 for two distinct nonnegative integers m1,m2, which means that s has
finite multiplicative order.
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The proof of Theorem 3.1.1 is now at its end. Let us state the Theorem 3.1.1 once more.

Theorem 3.1.1. For every commutative semiring S, the following assertions are equivalent:

1. The semiring S is in S .

2. Every finitely generated subsemiring of S is finite.

3. Every element of S has finite multiplicative order.

Proof. The equivalence of assertions 2 and 3 is guaranteed by Lemma 3.1.2. By Lemma 3.1.5,
the assertion 2 implies the assertion 1. Finally, Lemma 3.1.9 shows that assertion 1 implies the
assertion 3.

Now that we have proved Theorem 3.1.1, we can use it to examine the expressive power of
alternating weighted automata over some particular commutative semirings. The class of com-
mutative semirings, for which weighted automata and alternating weighted automata are equally
powerful, includes the following semirings:

• All finite commutative semirings, e.g., the Boolean semiring (B,∨,∧, 0, 1), the semiring
(Zk,+, ·, 0, 1) of integers modulo k (for some k ≥ 2) with standard operations of addition
and multiplication, etc.

• The semiring (P(U),∪,∩, ∅, U) on the powerset P(U) of an arbitrary set U with union as
addition and intersection as multiplication.

On the contrary, we shall now list some commutative semirings, for which alternating weighted
automata are strictly more powerful than (nonalternating) weighted automata:

• The semiring (R+,+, ·, 0, 1) of nonnegative real numbers with the standard operations of
addition and multiplication.

• The tropical semiring, i.e., the semiring (R ∪ {∞},min,+,∞, 0) on the set of real numbers
with positive infinity, together with minimum as addition and the standard addition of real
numbers as multiplication.

• The arctic semiring, i.e., the semiring (R∪{−∞},max,+,−∞, 0) on the set of real numbers
with negative infinity, together with maximum as addition and the standard addition of real
numbers as multiplication.

• The semiring of polynomials S[x1, . . . , xn] for an arbitrary commutative semiring S and
positive integer n.

• The semiring (2{a}∗ ,∪, ·, ∅, {ε}) of formal languages over a singleton alphabet {a}, together
with union as addition and concatenation as multiplication.

3.2 Closure Properties
For any individual commutative semiring S, one can examine the closure properties of the class
of formal power series realized by alternating weighted automata over S. Naturally, the closure
properties of these classes might vary for different semirings. In this section, we shall examine
several standard operations on formal power series and for each one of them, we shall determine if
the following is true: for every commutative semiring S, the class of formal power series realized
by alternating weighted automata over S is closed under the operation in consideration.

We start with the examination of sum and Hadamard product of formal power series.

Theorem 3.2.1. For every commutative semiring S, the class of formal power series realized by
alternating weighted automata over S is closed under sum.
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Proof. Let A1 = (Q1,Σ1, ψ1, P0,1, τ1) and A2 = (Q2,Σ2, ψ2, P0,2, τ2) be alternating weighted
automata over S with n1 := |Q1| and n2 := |Q2|. Let us assume that Q1 ∩ Q2 = ∅. We shall
construct an alternating weighted automaton A3 = (Q3,Σ1 ∪ Σ2, ψ3, P0,3, τ3) over S such that
|A3| = |A1|+ |A2|.

First, we define Q3 = Q1 ∪ Q2. If p is the i-th state of A1, we choose it to be the i-th state
in A3. If p is the i-th state of A2, we choose it to take the (i+ n1)-th position in the ordering of
states of A3.

We shall now define the polynomial assigning function ψ3. If P is a polynomial in S[x1, . . . , xn2 ],
we shall write shift(P ) to denote the polynomial in S[xn1+1, xn1+2, . . . , xn1+n2 ] that is obtained
from P if each occurrence of the indeterminate xi in P is replaced by the indeterminate xi+n1 for
i = 1, . . . , n2. If p is in Q1, we define ψ3[p, a] = ψ1[p, a] for each a in Σ1 and ψ3[p, a] = 0 for each
a in Σ2 − Σ1. If p is in Q2, we define ψ3[p, a] = shift(ψ2[p, a]) for each a in Σ2 and ψ3[p, a] = 0
for each a in Σ1 − Σ2.

Finally, we define P0,3 = P0,1 + shift(P0,2). Every state in Q3 keeps its terminal weight from
A1 or A2. It is easy to show that |A3| = |A1|+ |A2|.

Theorem 3.2.2. For every commutative semiring S, the class of formal power series realized by
alternating weighted automata over S is closed under Hadamard product.

Proof. Let A1 = (Q1,Σ1, ψ1, P0,1, τ1) and A2 = (Q2,Σ2, ψ2, P0,2, τ2) be alternating weighted
automata over S with n1 := |Q1| and n2 := |Q2|. We shall construct an alternating weighted
automaton A3 = (Q3,Σ1 ∪ Σ2, ψ3, P0,3, τ3) over S such that |A3| = |A1| � |A2|.

In this construction, one proceeds in pretty much the same way as in the construction of
automaton realizing the sum of |A1| and |A2|. The only difference is in the construction of the
initial polynomial P0,3, where one defines P0,3 = P0,1 · shift(P0,2). It is quite easy to show that
an automaton constructed in this way realizes the Hadamard product of |A1| and |A2|.

We shall now show that there exists a commutative semiring S such that the class of formal
power series realized by alternating weighted automata over S is closed neither under reversal, nor
under Cauchy product. More specifically, we shall show this for the semiring B[y] of polynomials
in indeterminate y with coefficients in the Boolean semiring B.

We have already explained the operation of Cauchy product in Chapter 1. Let us now briefly
explain the reversal of formal power series. If w = a1a2 . . . an is a word over an alphabet Σ, where
a1, . . . , an are symbols in Σ, we write wR to denote the word anan−1 . . . a1 over Σ. If r is a formal
power series over a commutative semiring S and over an alphabet Σ, the reversal of r is a formal
power series rR in StΣ∗y such that

(rR, w) = (r, wR)

for every w in Σ∗.
Let Σ = {a, b,#} and let rB be a formal power series in B[y]tΣ∗y such that (rB , ai#bj) =

(1 + yi)j for every pair of nonnegative integers i and j and (rB , w) = 0 for every other word w in
Σ∗. For each i and j, we can equivalently write (rB , ai#bj) =

∑j
k=0 y

ki. In Figure 3.2, we depict
a two-mode alternating weighted automaton over B[y] that realizes the reversal of rB . Moreover,
the series rB can be obtained as a Cauchy product of two formal power series r1 and r2 that can
be realized by alternating weighted automata over B[y]. Let us describe one possible choice of r1
and r2. For every pair of nonnegative integers i, j, let (r1, a

i#bj) = (yi)j and for every other word
w in Σ∗, let (r1, w) = 0. For every word w in {b}∗, let (r2, w) = 1 and for every other word w in
Σ∗, let (r2, w) = 0. It is easy to see that r = r1r2. In Figure 3.3, we depict a two-mode alternating
weighted automaton over B[y] that realizes r1. Trivially, r2 is realized by an alternating weighted
automaton over B[y] as well.

We see that the series rB can be obtained as a reversal of a formal power series that is realized
by an alternating weighted automaton over B[y]. It can also be obtained as a Cauchy product of
two formal power series that are realized by an alternating weighted automaton over B[y]. We
shall now prove that the series rB is not realized by an alternating weighted automaton over B[y].
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Figure 3.2: A two-mode alternating weighted automaton realizing the reversal of rB .

Figure 3.3: A two-mode alternating weighted automaton realizing series r1 such that (r1, ai#bj) = yij

for every pair of nonnegative integers i and j and (r1, w) = 0 for every other word w in {a, b, #}∗.
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As a result, the class of formal power series realized by alternating weighted automata over B[y]
is closed neither under reversal nor under Cauchy product.

Before we prove this statement, some preparations need to be made. Let S be a commutative
semiring and X an arbitrary set. We shall define a commutative semiring on the set SX of all
functions from X to S as follows: the sum of functions f1, f2 in SX is a function f1 + f2 in SX
such that (f1 + f2)(x) = f1(x) + f2(x) for every x in X. Similarly, the product of functions f1, f2
in SX is a function f1f2 in SX such that (f1f2)(x) = f1(x)f2(x) for every x in X. The zero of
the semiring SX is a constant function h0 such that h0(x) = 0S for every x in X and the unity
of the semiring SX is a constant function h1 such that h1(x) = 1S for every x in X. In what
follows, we shall work with the semiring (B[y])N with operations of sum and product as we have
just described them.

Let S be a commutative semiring, X be an arbitrary set, and F be a set of functions from X
to S. We say that functions in F have the same support if the following is true for every f1, f2 in
F and every x in X: f1(x) = 0S iff f2(x) = 0S .

For the purposes of the proof that follows, we shall also introduce the following terminology.
Let S be a commutative semiring and P be a polynomial in S[x1, . . . , xn]. The number of terms in
a polynomial P , denoted by #terms(P ), is the number of different monomials that occur in P . To
be more precise, the number of terms in P is the smallest number k such that P can be obtained
as a sum of k monomials. If m is a monomial in S[x1, . . . , xn], we shall write Jm to denote the set
of indices i in {1, . . . , n} such that xi occurs in m.

Lemma 3.2.3. The formal power series rB is not realized by an alternating weighted automaton
over B[y].

Proof. Suppose for the purpose of contradiction that rB is realized by an alternating weighted
automaton A = (Q,Σ, ψ, P0, τ) over B[y]. Let n = |Q|. For i = 1, . . . , n, let fi be a map from N to
B[y] such that fi(k) = (|A|i, bk) for every nonnegative integer k. For every nonnegative integer i,
let gi be a map from N to B[y] such that gi(k) = (1 + yi)k for every nonnegative integer k.

For every nonnegative integer i, let Pi = PA[ai#]. We have

gi(k) = (|A|, ai#bk) =
= PA[ai#]

(
(|A|1, bk), (|A|2, bk), . . . , (|A|n, bk)

)
=

= Pi(f1(k), f2(k), . . . , fn(k)) (3.16)

for every nonnegative integer k. Let us now interpret each coefficient c in Pi as a constant
function hc from N to B[y] with hc(k) = c for every nonnegative integer k. If we do this, Pi can
be viewed as a polynomial in (B[y])N[x1, . . . , xn]. With this in mind, the equation (3.16) says that
Pi(f1, . . . , fn) = gi for every nonnegative integer i.

Let i be a nonnegative integer. The polynomial Pi can be written as a sum of some monomials
with nonzero coefficients. For each such monomial m, we would like the functions in {fj}j∈Jm

to have the same support. Of course, this might not be the case. To make this true, we shall
modify the polynomials P1, P2, P3, . . . to polynomials P ′1, P ′2, P ′3, . . . in (B[y])N[x1, . . . , xn′ ] (polyno-
mials in n′ indeterminates, where n′ is some nonnegative integer) and replace the set of functions
F := {f1, . . . , fn} with some other set of functions F ′ := {f ′1, . . . , f ′n′} in (B[y])N. This modifica-
tion needs to be done in such a way that we still have P ′i (f ′1, . . . , f ′n′) = gi for every nonnegative
integer i.

Let us first construct the set of functions F ′. For i = 1, . . . , n, let χi be a function from N to
B[y] such that χi(k) = 0 if fi(k) = 0 and χi(k) = 1 otherwise. The set of functions F ′ consists of
all functions f

∏
j∈J χj , where f is in F and J is a subset of {1, . . . , n}. Let n′ be the size of F ′.

Let the functions in F ′ be somehow linearly ordered and let the i-th function of F ′ with respect
to this ordering be denoted by f ′i .

Let i be a nonnegative integer. We shall now show how the polynomial P ′i can be constructed.
We can write Pi =

∑
m∈M cmm, where M is a finite set of monomials with coefficient 1 and cm

is a constant function in (B[y])N for each m in M . We have gi =
∑
m∈M cmm(f1, . . . , fn). Let m
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be a monomial in M and let us look at the function m(f1, . . . , fn). By its definition, this function
can be obtained as a product of some functions in F . For every j in Jm, let us replace each
occurrence of fj in this product with fj

∏
k∈Jm

χk. We obtain a product of functions in F ′ that
evaluates to m(f1, . . . , fn) and all functions in this product have the same support. It is now clear
that we can find a monomial m′ with coefficient 1 such that m′(f ′1, . . . , f ′n′) = m(f1, . . . , fn) and
functions in {f ′j}j∈Jm′ have the same support. We can do this for every monomial m in M and so
we conclude that we can construct a polynomial P ′i such that P ′i (f ′1, . . . , f ′n′) = Pi(f1, . . . , fn) = gi
and functions in {f ′j}j∈Jm′ have the same support for every monomial m′ that occurs in P ′i .

Let J∞ be the set of indices j in {1, . . . , n′} such that xj occurs in P ′i for infinitely many
indices i. We shall show that for every j in J∞ and every nonnegative integer k, the number
of terms in the polynomial f ′j(k) in B[y] is at most 1 (i.e., either f ′j(k) = yi for some positive
integer i, or f ′j(k) = 1, or f ′j(k) = 0). In order to obtain a contradiction, let us suppose that
f ′j(k) = yl1 + yl2 + B1 for some j in J∞, nonnegative integers k, l1 and l2 satisfying l1 < l2, and
B1 in B[y]. Let i be a nonnegative integer such that i > l2 − l1 and P ′i contains xj (such i exists,
since xj occurs in infinitely many polynomials in {P ′1, P ′2, P ′3, . . .}). Let m be a monomial in P ′i
that contains xj . We can write m = xjm

′, where m′ is a nonzero monomial. We thus have

m[f ′1, . . . , f ′n′ ](k) = f ′j(k)m′[f ′1, . . . , f ′n′ ](k) =
= (yl1 + yl2 +B1)m′[f ′1, . . . , f ′n′ ](k).

Since f ′j(k) is nonzero and functions in {f ′j}j∈Jm
have the same support, the value ofm′[f ′1, . . . , f ′n′ ]

at k is nonzero as well. We can write m′[f ′1, . . . , f ′n′ ](k) = yl3 + B2, where l3 is a nonnegative
integer and B2 is in B[y].2 We have

m[f ′1, . . . , f ′n′ ](k) = (yl1 + yl2 +B1)m′[f ′1, . . . , f ′n′ ](k) =
= (yl1 + yl2 +B1)(yl3 +B2) =
= yl1+l3 + yl2+l3 +B3

for some B3 in B[y]. We conclude that P ′i [f ′1, . . . , f ′n′ ](k) = yl1+l3 + yl2+l3 + B4 for some B4 in
B[y] and

k∑
j′=0

(yi)j
′

= gi(k) =

= P ′i [f ′1, . . . , f ′n′ ](k) =
= yl1+l3 + yl2+l3 +B4.

This is clearly a contradiction, since i > l2 − l1.
We have thus proved that if j is in J∞ and k is a nonnegative integer, then the number of terms

in f ′j(k) is at most 1. Let i be a nonnegative integer such that every indeterminate that occurs
in P ′i is in {xj}j∈J∞ . We can write P ′i =

∑
m∈M cmm, where M is some finite set of monomials

with coefficient 1 and cm is a constant function in (B[y])N. Let k be a nonnegative integer. We
have gi(k) =

∑
m∈M cm(k)m[f ′1, . . . , f ′n′ ](k). Since the number of terms in f ′j(k) is at most 1 for

every j in Jm, the number of terms in m[f ′1, . . . , f ′n′ ](k) is also at most 1 for every monomial m
in M . This implies that the number of terms in cm(k)m[f ′1, . . . , f ′n′ ](k) is at most the number
of terms in cm(k) = cm(0) for every monomial m in M . We conclude that the number of terms
in gi(k) =

∑
m∈M cm(k)m[f ′1, . . . , f ′n′ ](k) is at most

∑
m∈M #terms(cm(0)) for every nonnegative

integer k. This is clearly a contradiction.

We have thus proved the following two theorems.

Theorem 3.2.4. There exists a commutative semiring S such that the class of formal power series
realized by alternating weighted automata over S is not closed under reversal.

2Note that m′[f ′1, . . . , f ′
n′ ](k) might be 1 + B2 for some B2 in B[y].
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Proof. In Figure 3.2, we depicted a two-mode alternating weighted automaton over B[y] that
realizes a formal power series r such that rR = rB . By Lemma 3.2.3, series rB is not realized by
an alternating weighted automaton over B[y]. This means that the class of formal power series
realized by alternating weighted automata over B[y] is not closed under reversal.

Theorem 3.2.5. There exists a commutative semiring S such that the class of formal power series
realized by alternating weighted automata over S is not closed under Cauchy product.

Proof. In Figure 3.3, we depicted a two-mode alternating weighted automaton over B[y] that
realizes a formal power series r1 over B[y] and Σ = {a, b,#} such that (r1, a

i#bj) = (yi)j for every
pair of nonnegative integers i, j and (r1, w) = 0 for every other w in Σ∗. A formal power series
r2 over B[y] and Σ such that (r2, w) = 1 for every w in {b}∗ and (r2, w) = 0 for every other w in
Σ∗ is trivially realized by an alternating weighted automaton over B[y] as well. The reader can
easily check that r1r2 = rB . By Lemma 3.2.3, series rB is not realized by an alternating weighted
automaton over B[y]. This means that the class of formal power series realized by alternating
weighted automata over B[y] is not closed under Cauchy product.



Conclusion

We have defined and initiated the study of alternating weighted automata over an arbitrary com-
mutative semiring S. These form a new extension of alternating finite automata [2], in which
transitions carry weights given by elements of S. Moreover, disjunctions are replaced by sums and
conjunction are replaced by products of the semiring S. The behaviour of an alternating weighted
automaton is thus a formal power series. We have seen that both alternating finite automata
(without weights) [2] and (nonalternating) weighted automata [4] can be viewed as a special case
of alternating weighted automata.

Thesis partially builds on the line of research initiated by Chatterjee, Doyen and Henzinger [3]
and later continued by Almagor and Kupferman [1]. These two studies both focused on alternation
in weighted automata over the tropical semiring and were motivated by certain problems in formal
verification of reactive systems. Our goal has been to study alternating weighted automata over
general commutative semirings and from a theoretical point of view.

We have given two alternative definitions of alternating weighted automata. In the first defi-
nition, each state was equipped with a set of polynomials so that it could combine additive and
multiplicative operation. In the second definition, each state was either a sum state or a product
state: a sum state could only perform addition and a product state could only perform multiplica-
tion. To be more precise, these two definitions introduced two different models: the first definition
introduced automata simply called alternating weighted automata and the second definition intro-
duced automata called two-mode alternating weighted automata. Nevertheless, we have proved
that these two models are equivalent.

We have introduced the notion of a run tree, which allowed us to give an alternative charac-
terization of the behaviour of two-mode alternating automata. Two-mode alternating weighted
automata are allowed to contain ε-labelled transitions. Although these transitions might be quite
handy, they are not strictly necessary: we have presented a construction that can be used to
eliminate ε-labelled transitions in a two-mode alternating weighted automaton.

We have also introduced systems of H-polynomial equations, which provide us with a different
characterization of formal power series realized by alternating weighted automata: a formal power
series r is realized by an alternating weighted automaton iff it is the solution to some system
of H-polynomial equations. The characterization of formal power series realized by alternating
weighted automata in terms of systems of H-polynomial equations goes in the same lines as the
well-known characterization of rational series in terms of linear systems [5].

We have studied the relationship between the expressive power of weighted automata on the one
hand and the expressive power of alternating weighted automata on the other hand. In the most
important result of this thesis, we prove that alternating weighted automata over a commutative
semiring S have the same expressive power as (non-alternating) weighted automata over S iff the
semiring S is such that every finitely generated subsemiring of S is finite. Otherwise, alternating
weighted automata over S are strictly more powerful.

Finally, we have also examined some closure properties of the classes of formal power series
realized by alternating weighted automata. We have proved that for every commutative semiring S,
the class of formal power series realized by alternating weighted automata over S is closed under
sum and Hadamard product. We have also shown that there exists a commutative semiring S such
that the class of formal power series realized by alternating weighted automata over S is closed
neither under reversal nor under Cauchy product.
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