
Comenius University, Bratislava

Faculty of Mathematics, Physics and Informatics

Gradient-based learning in Deep Neural
Networks

Bachelor Thesis

2018
Truc Lam Bui



Comenius University, Bratislava

Faculty of Mathematics, Physics and Informatics

Gradient-based learning in Deep Neural
Networks

Bachelor Thesis

Study programme: Informatics
Study field: 2508 Informatics
Department: Department of Computer Science
Supervisor: RNDr. Kristína Malinovská, PhD.

Bratislava, 2018
Truc Lam Bui



65819573

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT 

Name and Surname: Truc Lam Bui
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: Computer Science, Informatics
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Gradient-based learning in Deep Neural Networks

Annotation: Deep neural networks (DNN) [1] are currently one of the most popular
techniques in machine learning. Deep learning models, such as the
convolutional neural networks, are very powerful in classification tasks, such
as image recognition. DNNs are most commonly trained using backpropagation
[2] with various variants of gradient descent, which is very effective, but suffers
from problems such as the vanishing and exploding gradient.

Aim: 1. Study the theory on DNN, and the most common problems in deep learning.
2. Based on your studies explore various ways of improving learning in deep
networks (through new activation functions, weight adaptation, ...).
3. Experimentally evaluate proposed solutions and compare them with the
canonical models.

Literature: [1] LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. nature,
521(7553), p.436.
[2] Rumelhart, D.E., Hinton, G.E. and Williams, R.J., 1985. Learning internal
representations by error propagation (No. ICS-8506). California Univ San
Diego La Jolla Inst for Cognitive Science.

Keywords: artificial neural networks, deep learning, machine learning

Supervisor: RNDr. Kristína Malinovská, PhD.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

prof. Ing. Igor Farkaš, Dr.

Assigned: 06.10.2017

Approved: 26.10.2017 doc. RNDr. Daniel Olejár, PhD.
Guarantor of Study Programme

Student Supervisor



65819573

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Truc Lam Bui
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Gradient-based learning in Deep Neural Networks
Gradientové učenie hlbokých neurónových sietí

Anotácia: Hlboké neurónové siete [1] sú v súčasnosti jednou z najpoužívanejších metód
v strojovom učení. Hlbokým modelom, akými sú napríklad konvolučné siete,
sa veľmi darí v klasifikačných úlohách, ako je napríklad rozpoznávanie
obrazu. Najčastejšie sú trénované pomocou algoritmu spätnej propagácie chýb
[2] s rôznymi variantmi metódy najstrmšieho spádu (gradient descent). To
je efektívne, ale má to svoje problémy, ako napríklad problém miznúceho
a vybuchujúceho gradientu.

Cieľ: 1. Naštudovať teóriu hlbokých neurónových sietí a najčastejšie problémy
hlbokého učenia, ako napríklad problém miznúceho gradientu.
2. Na základe štúdia preskúmať rôzne spôsoby vylepšenia učenia v hlbokých
sieťach (napr. aktivačné funkcie, adaptáciu váh, ...).
3. Experimentálne vyhodnotiť navrhované riešenia a porovnať ich
s kanonickými modelmi.

Literatúra: [1] LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. nature,
521(7553), p.436.
[2] Rumelhart, D.E., Hinton, G.E. and Williams, R.J., 1985. Learning internal
representations by error propagation (No. ICS-8506). California Univ San
Diego La Jolla Inst for Cognitive Science.

Kľúčové
slová: umelé neurónové siete, hlboké učenie, strojové učenie

Vedúci: RNDr. Kristína Malinovská, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 06.10.2017

Dátum schválenia: 26.10.2017 doc. RNDr. Daniel Olejár, PhD.
garant študijného programu

študent vedúci práce



iii

Acknowledgement: I would like to thank my supervisor RNDr. Kristína Malin-
vská, PhD. for her countless advice, even if it was the same over and over again. I would
also like to thank my sister Mgr. Phuong Bui Thi Mai for numerous conversations on
the topic of deep learning.. Last but not least, I would like to thank the other family
members for taking up the chores for me, as I would not have been able to finish the
thesis on time otherwise.



iv

Abstrakt

Hlboké neurónové siete sú aktuálne jeden z najsilnejších nástrojov strojového ucěnie.
Oproti plytkým neurónovým sieťam, ich hĺbka im umožňuje modelovať dáta na rôznych
úrovniach abstrakcie. Hlboké neurónové siete majú uplatnenie vo veľa rôznych oblas-
tiach, ako napríklad samojazdiace autá, diagnostické metódy v medicíne, a strojový
preklad. Tieto siete ale môžu byť veľmi veľké a ich trénovanie môže trvať aj niekoľko
týždňov, v závislosti od hardvéru.

V našej bakalárskej práci skúmame rôzne nepreskúmané spôsoby, akými by sa dal
proces učenia v hlbokých neurónových sieťach urýchliť. Navrhneme dve nové typy
vrstiev: posuvnú vrstvu a škálovaciu vrstvu, ktoré už sú v podstate vo väčšine ar-
chitektúrach neurónových sietí, ale nie na tých správnych miestach. Domnievali sme
sa, že tieto dve vrstvy umožnia hlbokým sieťam sa rýchlejšie učiť, a túto hypotézu
sme experimentálne overili. Výsledky našich experimentov naznačujú, že tieto vrstvy
skutočne dokážu urýchliť učenie v porovnaní so sieťou bez nich.

Kľúčové slová: umelé neurónové siete, hlboké učenie, strojové učenie
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Abstract

Deep neural networks are currently one of the most powerful machine learning methods.
Unlike shallow neural networks, their depth allows them to model the input data at
various levels of abstraction. They find application in diverse fields, such as self-driving
cars, medical diagnostics, and machine translation. However, such networks can be very
large and training them can take several weeks, depending on the hardware.

In our thesis, we explored various novel ways of improving learning in deep neural
networks, without increasing the computational cost of doing so. We propose two novel
types of layers, called shifting and scaling layers, which are essentially already present
in most neural network architectures, but not at the right places. We hypothesised that
putting them in a different position would enable the network to learn faster, and we
evaluated this in a series of experiments. The results of our experiments suggest that
our shifting and scaling layers innovations can indeed improve the pace of learning,
compared to networks that do not utilize them.

Keywords: artificial neural networks, deep learning, machine learning
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Introduction

Computers give great power to humans. Unlike previous forms of automation, which
were in the form of other (un)willing human beings, industrial robots and complex
machinery, a computer can be relatively easily programmed to do the task.

With such automation, the question of whether intelligence could be automated
had emerged. Thus, the field of artificial intelligence was born. In the early days of
computers, researchers were severely limited by the low processing power and the lack
of data from which an artificial intelligence could learn. These constraints caused the
field to largely abandon the idea of learning from data. Instead, the systems usually
obtained knowledge in the form of rules and heuristics programmed into the system by
humans.

With the processing power exponentially increasing, the limitation slowly faded
away. The field of machine learning had been established, with the goal of using ad-
vanced statistical methods to make predictions based on data. The attention of AI re-
searchers shifted from symbolic approaches to long-abandoned connectionist ones, most
importantly artificial neural networks—simplified models of biological neural networks
that were capable of learning.

Raw processing power on its own, however, would not be enough to enable these
fields to flourish. Appropriate learning algorithms for the models had to be devised.
It was not until relatively recently that we became capable of training deep neural
networks, and this advance came from the discovery of a technique called unsupervised
pretraining, not from the increase in processing power.

Deep neural networks are currently one of the most powerful tools of machine learn-
ing. They find application almost everywhere, especially with the increasing amounts of
data that is being tracked, stored and processed. Such applications include self-driving
cars, medical diagnostics, machine translation, speech recognition, image recognition
and many others.

In our thesis, we explored various ways of increasing the pace at which deep neural
networks can learn, without increasing the computational cost of doing so. These
systems can be very large and they can take several weeks to train. Improving their
learning speed by only a few percent could significantly decrease their training time.
We also hope to obtain a better understanding of learning in deep neural networks.

1



Introduction 2

In chapter one, we review some basic concepts from machine learning, which will
provide us with a mathematical foundation for what learning from data, is and how it
can be formalized.

In chapter two, we start with the history of artificial neural networks. We then
present the core ideas behind this computational paradigm, such as how an artificial
neural network performs computation, training with gradient descent and the back-
propagation algorithm.

Chapter three takes a more modern approach towards neural networks, explaining
them in terms of a more general structure called computational network. We look at
the building blocks that make up such graphs, and how they can be put together into
various architectures.

In chapter four, we review deep neural networks. We first show motivation behind
their use by describing their advantages over shallow networks. We then explain the
vanishing and exploding gradient problems, which contribute to difficulties in training
them. We conclude with the methods commonly employed for training these networks.

Further chapters are dedicated to our solutions and enhancements. In chapter
five, we present the solutions, and we take a look at how they can be integrated
into networks. Chapter six contains the general informations about the performed
experiments, and explains elements that are common among them. The seventh chapter
contains the details and results of individual experiments.

Chapter eights concludes the thesis. It summarizes the results, and gives directions
for further work that there is to be done.



Chapter 1

Machine Learning

Machine learning is a field of computer science. It studies and uses methods from vari-
ous disciplines, such as statistics and mathematical optimization, that enable machines
to “learn” from data, as opposed to programming the solution explicitly.

We will focus on the task of supervised learning, where we are given example input-
output pairs, and we want to generalize to unseen situations.

1.1 Example 1: regression

Consider the following problem: we are given the areas x1, . . . , xt (in squared meters)
of t houses and their respective prices y1, . . . , yt (in euros). Based on this data, which
is generally called training data, we would like to predict the prices of other houses
based on their area.

This is an example of a regression task, where the task is to predict some numerical
value, and the closer we get, the better.

Suppose we came up with a magical formula for predicting house prices. This
formula has the form of a function f : R+ → R+. How can we determine whether it is
good or bad? We can measure its performance on the training data: for each house i,
we compare the predicted value f(xi) with its real price yi. The closer these two values
are, the better.

Formally, we have a loss function L that takes two arguments: the predicted value
and the real value, and returns a number representing the error. Our choice of the loss
function determines what we see as “good” and how good it is. Common choices are
the squared error L(y′, y) = (y − y′)2 and the absolute error L(y′, y) = |y − y′|.

The training error is the sum of errors over the training data:

J(f) =
t∑

i=1

L(f(xi), yi). (1.1)

3



CHAPTER 1. MACHINE LEARNING 4

However, simply finding a function f that minimizes the training error is not
enough. Consider the following formula for price prediction: we check if the input
area x is in the provided data. If it is, return the corresponding y. If it is not, return
a random value.

Such a solution would achieve 0 training error in the case that all xi are distinct, and
would therefore be considered perfect by the aforementioned metric. However, it is not
useful, because it fails to generalize to unseen data. A good solution should not have
low training error, but it should have low generalization error, that is, error on unseen
data. It should come with an appropriate inductive bias [22]: a set of assumptions that
it uses to predict outputs on novel inputs.

Suppose that we visualize the data, and there is an almost linear relationship
between house areas and house prices. Then, it would be reasonable to model the
relationship as a linear one, and consider only such functions when minimizing the
training error. Hence we restrict the set of functions to consider to those of the form
fa,b(x) = ax+ b for some parameters a, b.

We are thus interested in

arg min
a,b

(
t∑

i=1

L(axi + b, yi)

)
, (1.2)

and this problem can be approached by methods from mathematical optimization.
We can expect the solution to generalize well to unseen data, since we have observed
that the relationship is almost linear.

Note that we could have easily decided to model the relationship as a quadratic
one, that is, we would consider functions of the form f(x) = ax2 + bx+ c. This would
lead to a larger set of functions we consider. We call this set the set of hypotheses and
denote it H.

A larger set of hypotheses leads to lower training error, but it could model some
of the noise in the data instead of the underlying relationship, leading to higher gen-
eralization error. This phenomenon is called overfitting [9]. It can be resolved by
a smaller set of hypotheses, more training data, or methods specifically designed to
combat overfitting, called regularization. Common regularization techniques include:

• L2 regularization, which introduces an additional term to the training error. The
term is λ · ‖w‖2

2, where w is the vector of weights that determines the function,
and λ determines the amount of regularization. It uses the L2 norm, defined as

‖w‖2 =

√√√√ |w|∑
i=1

w2
i (1.3)

It essentially penalizes large weights.
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• Lasso regularization, which introduces the term λ · ‖w‖1 to the training error. It
uses the L1 norm, defined as

‖w‖2 =

|w|∑
i=1

|wi|. (1.4)

A too small set of hypotheses might not contain functions complex enough to cap-
ture the relationships in the data. This leads to both high training error and generaliza-
tion error. The phenomenon is called underfitting, and can be resolved by considering
a larger set of hypotheses.

1.2 Example 2: classification

Consider the following problem: we are given a grayscale image of a handwritten digit,
and we are to determine which digit from 0 to 9 is depicted.

This is an example of a classification task, where we want to predict the class the
input belongs to.

When is the image that of a zero? When is it that of a nine? We may come up
with various descriptions, such as “zero is round and divides the plane in two regions”
and “nine is a circle with a leg appended on the bottom right”. But what if the image
is that of an incomplete zero, which does not separate the plane into two parts? What
if the nine is dashed, or even composed of other objects? Such descriptions often fail
to capture edge cases that we had not thought of during design. And this all assumes
that we have been able to put our intuitions into computer code, but for tasks of this
nature, it is rather difficult.

Humans learn to recognize digits differently. Instead of learning from such descrip-
tions, we learn from seeing many examples, and such descriptions are only a byproduct
of our experience. This yields a different approach: predict the digit based on past
data. We teach a computer program to recognize digits by providing it with many
labelled images, that is, image-digit pairs.

The task can formalized as follows.

An image is an r × c array of pixels, where each pixel consists of one real number
from 〈0, 1〉: its brightness.

An algorithm for digit recognition is a function f that maps from the set of all
possible images I = 〈0, 1〉r·c to the set of all classes C = {0, 1, . . . , 9}.

Given are t labelled examples (x1, y1), . . . , (xt, yt): the training data. We can mea-
sure an algorithm’s error on it. The number of incorrect classifications is

J(f) =
t∑

i=1

L(f(xi), yi),
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where L is the 0–1 loss function:

L(y′, y) =

{
1, if y′ 6= y

0 otherwise

Find the function f which minimizes the training error while considering only func-
tions from the set of hypotheses H. This can be approached using methods from
mathematical optimization.

The 0–1 loss function does not have nice properties. For many optimization meth-
ods, it is important for the optimized function to be differentiable with respect to
the parameters θ that determine the function f , but this loss function is not even
continuous.

However, if the output of the algorithm is only the predicted class, there is no degree
of how good or bad our prediction is. It is either correct or incorrect. To illustrate, if
the prediction is 3 and the correct answer is 6, we did as badly as if we had predicted
4, thus the associated losses should be the same. Hence it makes no sense to use other
loss functions, such as squared error or absolute error.

We will consider a different formalization of an algorithm, where it is possible to
say how close its output is to the correct output.

The output of an algorithm will not only be the guessed class. Instead, for each
class, it returns the “probability” with which it believes the input image belongs to
this class. The guessed class is then the one with the highest probability. Formally,
the output of an algorithm is a tuple y′ = (y′[1], . . . , y′[|C|]) such that y[i] ≥ 0 for all
i ∈ {1, . . . , |C|}, and

|C|∑
i=1

y′[i] = 1. (1.5)

If the correct class is y, the target that our function should aim at is

one-hot(y) = (0, . . . , 0︸ ︷︷ ︸
y

, 1, 0, . . . , 0︸ ︷︷ ︸
|C|−y−1

), (1.6)

where one-hot(y) is the so called one-hot encoding of y. The training error of our
algorithm f is

J(f) =
t∑

i=1

L(f(xi), one-hot(yi)), (1.7)

where L is the loss function of our choice. Since we are comparing two real valued
vectors, it is possible to use the squared error loss function,

L(y′, y) =

|C|∑
i=1

(y[i]− y′[i])2, (1.8)
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or the absolute error loss function,

L(y, y′) =

|C|∑
i=1

|y[i]− y′[i]|. (1.9)

In practice, the best results are obtained using the cross-entropy loss [8]:

L(y, y′) =

|C|∑
i=1

y′[i] · log y[i]. (1.10)

If we decide to go with the cross entropy loss, we must restrict the output proba-
bilities to be positive, since log does not behave well at 0.

1.3 Fitting a model in general

In supervised learning, we are given t input-output pairs (x1, y1), . . . , (xt, yt), and we
want to train an algorithm f that will be able to generalize well, that is, perform well
on unseen data from the same distribution.

First, we restrict the set of functions to consider, the set of hypotheses, to some set
H. In our thesis, the set of hypotheses will be a certain class of neural networks.

If the task is a classification task, it may be necessary to transform the data before
searching for f . Denote the set of classes C. We can encode the outputs in the data
using one-hot encoding :

one-hot(y) = (0, . . . , 0︸ ︷︷ ︸
y

, 1, 0, . . . , 0︸ ︷︷ ︸
|C|−y−1

). (1.11)

Using methods from mathematical optimization, we look for as good f ∈ H as
possible. How “good” a solution is is measured by performance on the training data,
and performance is measured as the sum of errors over the training data:

J(f) =
t∑

i=1

L(f(xi), yi), (1.12)

where L is a loss function of our choice. Common choices are the squared loss and
absolute loss for regression tasks, and cross entropy loss for classification tasks. In our
thesis, we will focus on the latter. The cross entropy loss is defined as

L(y, y′) =

|C|∑
i=1

y′[i] · log y[i].

The function J that we are minimizing is in general called the objective function. In
principle, it can include terms other than error on training data, such as regularization
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terms that reduce the amount of overfitting, thus helping the model generalize outside
of the training data.

This way, we can find the best solution with the chosen hyperparameters (set of
hypotheses, used regularization technique, optimization algorithm, ...). We are inter-
ested in the solution’s ability to generalize, that is, its expected error on data that
was not used during training (generalization error). An estimate can be obtained by
calculating the mean error on some data that was not used during training, commonly
called validation data.

A different choice of hyperparameters could have lead to a better solution, that is,
a solution with lower generalization error. Thus, in order to find as good a solution
as possible, many hyperparameter choices are tried out. Each choice yields a differ-
ent solution, and we take the best solution, where “best” is measured by its error on
validation data.

Finally, once we are done with tuning the hyperparameters of the model, we can
calculate an estimate of the solution’s generalization error on some data that was
used neither during training, nor during validation. This data is called test data, and
provides an unbiased estimate of the real generalization error, since there is no way
information from it could have leaked into the solution.



Chapter 2

Artificial Neural Networks

In this chapter, we explain artificial neural networks, computing systems which are
inspired by biological neural networks such as the human brain. We first take a look
at their history, explain the computation performed by such networks, and conclude
with the basic learning algorithms.

2.1 History

The first attempt at mathematically modeling a biological neuron is the McCulloch–
Pitts neuron [20].

The neuron is thought of as a function—it takes several inputs and computes a
function of those inputs. To model the synaptic connections between biological neu-
rons, inputs can be either excitatory or inhibitory. The neuron is either firing or not,
represented by its output being 1 or 0, respectively.

If any of the inhibitory inputs is 1, the output is 0. Otherwise, the output is
determined by the number of excitatory inputs that are set to 1. If this number is
below some threshold t, the output is 0, otherwise it is 1.

Such artificial neurons can be connected to form networks. The networks are re-
quired to be acyclic, that is, no neuron’s output depends on itself. The reason is that
the McCulloch–Pitts neuron does not model the biological neuron in time.

By forming networks and setting the thresholds of individual neurons appropriately,
it is possible to realize the logical AND, OR and NOT operations. Thus any boolean
function can be realized. However, there were no known algorithms for training such
networks.

Further research led to the development of Rosenblatt’s model of biological neuron,
called the perceptron [25]. It models inhibitory and excitatory connections through
real-valued weights associated with inputs. The output of a neuron is 1 if the sum of
its weighted inputs is greater than or equal to the neuron’s threshold t, otherwise it is

9
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0. Formally,

output =

{
1, if

∑n
i=1wixi ≥ t

0 otherwise
,

where n is the number of inputs, x1, . . . , xn are the inputs and w1, . . . , wn are their
respective weights.

Note that McCulloch–Pitts neuron is a special case of the perceptron, where exci-
tatory inputs have weight 1 and inhibitory inputs have weight −∞. Thus, networks of
perceptrons can realize arbitrary boolean functions, too.

Rosenblatt also came with a learning algorithm for perceptrons. This learning is,
however, restricted to the case of a single layer network, where there is only a single
layer of inputs, and single layer of perceptrons representing the output of the network.
There can be no intermediate neurons.

Also, there are limitations to what a perceptron can compute. One can look at the
perceptron as a classifier: based on its output, the input is classified as either 0 or 1.
Minsky and Rupert have shown that the perceptron is unable to implement the logical
XOR [21]. More generally, it cannot fit data where the two classes of inputs are not
linearly separable.

Networks of perceptrons do not have this limitation, but the learning algorithm is
not applicable to them. Nevertheless, the perceptron represented a significant advance-
ment in the field of artificial neural networks.

2.2 Multilayer perceptron

It was becoming clear to researchers that the way to go is to go deeper. Thus, they
focused on networks with intermediate neurons, where not all the processing is done by
the output neurons. The simplest of such networks are called multilayer perceptrons.

A multilayer perceptron is organized into multiple layers.
The first layer, called the input layer, contained neurons through which input data

is fed into the network. At the beginning of computation, their output is determined
by input data. These neurons are called input neurons, even though they are not really
neurons, since they do not perform any processing of their own.

For example, if the input data is a 32× 32 grayscale image, we would have 32 · 32

input neurons in the network, each representing a specific pixel.
In further layers, the inputs to a neuron are all of the outputs from the previous

layer. Hence, the layers are called dense or fully connected, because all the connections
between adjacent layers that can be there are there.

The last layer is composed of all the neurons that are parts of the output of the
network. The layer is called the output layer.
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For example, if the task is to determine which digit is depicted in the image, there
would be one output neuron for each digit. Their outputs would represent whether the
network believes the digit to be present in the image or not.

The layers between the first and the last are called hidden layers. If only a single
hidden layer is included, the network is called shallow, as opposed to deep networks,
which have more than one hidden layer.

Since the learning algorithm for the perceptron was not applicable to neurons in
hidden layers, the parameters of those neurons were usually hand-engineered so that
they would detect meaningful features. Only the output layer’s neurons were trained
with the perceptron learning algorithm. This was, of course, not the desired state of
the matter, and researchers were looking for other ways to train multilayer perceptrons.

2.3 Learning with gradient descent

There was the idea of training artificial neural networks using the method of gradient
descent from mathematical optimization. Gradient descent, also known as the method
of steepest descent, works as follows:

Suppose we want to find the vector w = (w1, . . . , wn) which minimizes the function
J . In the context of artificial neural networks, w would represent the vector of all the
network’s parameters, and J is the objective function, usually the error on the training
data.

If the function is continuously differentiable, the geometry of J in a sufficiently
small neighbourhood of w can be approximated by a hyperplane. This hyperplane’s
slope is determined by the gradient of J :

∇J(w) =

(
∂J

∂w1

, . . . ,
∂J

∂wn

)
. (2.1)

If we move a small distance ∆w from w, the difference between the new value of J
and the previous value of J can be approximated as follows:

J(w + ∆w)− J(w) ≈ ∆w · ∇J(w) (2.2)

We are looking for the direction in which J decreases the fastest in the Euclidean
metric space. That is, we want to find some nonzero vector u that minimizes the change
per distance:

u · ∇J(w)

‖u‖2

. (2.3)

Note that only the direction of u matters, since rescaling the vector u by scalar k
yields

ku · ∇J(w)

‖ku‖2

=
ku · ∇J(w)

k‖u‖2

=
u · ∇J(w)

‖u‖2

. (2.4)
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By simple application of the Cauchy–Schwarz inequality, we see that the optimal
direction is in the direction opposite to the gradient:

u = −∇J(w). (2.5)

However, since the geometry of J at w can be approximated only on a small neigh-
bourhood, we cannot move arbitrarily far in that direction. A small gradient could
mean that w is close to the global minimum, and it could be detrimental to move too
far away. Thus, we choose a small learning rate α and we adjust w as follows:

w := w − α · ∇J(w). (2.6)

2.4 Sigmoid neuron

There are a few obstacles on the path to training artificial neural networks with gradient
descent. The first is: what model of a neuron do we use? The perceptron is not a good
choice, because it is not continuous, thus it also is not differentiable with respect to its
weights.

We will now define the sigmoid neuron, which can be arrived at by searching for a
differentiable approximation of the perceptron.

Note that the perceptron can be formulated differently. Let x1, . . . , xn be the in-
puts to the perceptron and let w1, . . . , wn be their respective weights. Instead of the
threshold t, we consider its bias b = −t, which represents how easy it is to make the
neuron fire. Then,

output = H

(
n∑

i=1

wixi + b

)
, (2.7)

where H is the Heaviside step function, defined as follows:

H(x) =

{
1, if x ≥ 0

0, if x < 0
(2.8)

In this formulation, it is easy to replace the step function with any other function.
The used function is in general called the activation function. Its role in the artificial
neural network is to introduce nonlinearity. Without them, the network would only be
able to realize linear functions.

The sigmoid function, defined as

σ(x) =
1

1 + e−x
, (2.9)

is an approximation to the step function, in the following sense: If we multiply all
the incoming weights w1, . . . , wn and the neuron’s bias by a positive value c, then in
the limit c→∞, we obtain behaviour identical to that of the step function.
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The sigmoid function is also continuously differentiable. Its derivative is

σ′(x) =
e−x

(1 + e−x)2
= σ(x) · (1− σ(x)). (2.10)

If we compose the network out of neurons using the sigmoid activation, we ensure
that the output of the network is continuously differentiable with respect to its weights.
The output is then used to compute the training error, and this operation is also
continuously differentiable. Thus gradient descent can be, in principle, applied.

2.5 Backpropagation

There is another obstacle. Gradient descent assumes that we are able to compute the
partial derivatives of the objective J with respect to the weights and biases of the
network. So far, we only know that they exist.

This was overcome with the introduction of the backpropagation algorithm [26].
Before we get into the details of the algorithm, we first take a look at the notation and
conventions we will be using.

First, note that the objective function satisfies

J =
t∑

i=1

Ei, (2.11)

where Ei denotes the error in the i-th training example. Then, the partial derivative
of J with respect to a network’s parameter p is

∂J

∂p
=

t∑
i=1

∂Ei

∂p
. (2.12)

It is thus enough to compute the derivative of the error on a single training example,
and we will focus on this.

We will denote the weighted sum of inputs to the i-th neuron, including bias, as
neti. We will call this sum the net input to the neuron. The output of the i-th neuron
will be denoted outi, and its activation function will be denoted fi. The weight from
neuron i to neuron j, in the case that connection from i to j exists, will be denoted
wi,j. The bias of neuron i will be denoted bi.

Suppose we want to calculate the partial derivative of the error E with respect to
wi,j, the weight from neuron i to neuron j. The only value that directly depends on
this weight is the net input of neuron j:

netj = wi,jouti +
∑

k∈I−{i}

wk,joutk, (2.13)
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where I is the set of neurons that are inputs to neuron j. By application of the
chain rule, we obtain

∂E

∂wi,j

=
∂netj
∂wi,j

· ∂E

∂netj
= outi ·

∂E

∂netj
. (2.14)

A similar equation can be derived for derivative with respect to bias bj:

∂E

∂bj
=
∂netj
∂bj

· ∂E

∂netj
=

∂E

∂netj
(2.15)

In both cases, it is enough to know the partial derivative of J with respect to netj.
For that, we again use the chain rule. The only value that directly depends on netj is
outj = fj(netj). Thus,

∂E

∂netj
=
∂outj
∂netj

· ∂E

∂outj
= f ′j(netj) ·

∂E

∂outj
. (2.16)

Now, we would like to express the partial derivative of E with respect to outj.
There are two cases, based on whether the neuron is an output neuron or not.

If it is, the error E directly depends on outj, thus we can compute the partial
derivative based on the exact form of E. For example, if we are minimizing the sum
of squared errors on the training data, the partial derivative would be

∂E

∂outj
= 2 · (dj − outj), (2.17)

where dj is the desired value of the neuron.
If there are other neurons that directly depend on this neuron’s output, denote the

set of those neurons O. For each neuron i ∈ O,

neti = wj,ioutj +
∑

k∈I−{j}

wk,ioutk. (2.18)

where I is the set of inputs to neuron i. Then, by the chain rule,

∂E

∂outj
=
∑
i∈O

(
∂neti
∂outj

· ∂E
∂neti

)
=
∑
i∈O

(
wj,i ·

∂E

∂neti

)
. (2.19)

In general, in order to calculate the derivative with respect to some value, we need to
calculate derivatives with respect to some other values that occur later in the network.
Occasionally, we also need the net input and output of a neuron.

We will compute the latter two in the forward pass of the algorithm, where we
simply compute all the net inputs and outputs of all the neurons. We do so in the
topological ordering of the network, so that whenever we are processing a neuron, the
neurons it depends on have already been processed. We store both the net inputs and
outputs for later use.
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After the forward pass, we compute the partial derivatives in the backward pass.
For each neuron, we first calculate the partial derivative with respect to its output,
using equations 2.17 and 2.19. Then, we do the same with respect to its net input,
using equation 2.16. We conclude with the neuron’s bias, using equation 2.15, and all
weights that lead to the neuron, using equation 2.14.

We process the neurons in the reverse topological ordering of the network. This
ensures that whenever we are processing a neuron, the required partial derivatives
have already been computed.

The time complexity of the algorithm on a single example is O(n + m), where n
is the number of neurons in the network and m is the number of connections between
them. Thus, it is linear with respect to the size of the network. Taking into account
all the t training examples, the time complexity is O(t · (n+m)).

The space complexity is O(n), because for each neuron, we have to remember its
net input and output from the forward pass, so that we can use this information during
the backward pass.

The algorithm is called backpropagation because whenever we are processing a
neuron, we “propagate” its gradient back to its inputs. Based on the exact relationship
between the input and the neuron, the gradient is adjusted prior to being propagated
backward. These gradients are in literature commonly called errors, and we will also
adopt this terminology.



Chapter 3

Computational Networks

This chapter is dedicated to computational networks, general structures that can be
used to implement artificial neural networks. They can be seen as a generalization of
artificial neural networks. First, we define them. Then we take a look at commonly
used neural network architectures, how they can be expressed in terms of computational
networks and what building blocks they are made of.

3.1 Introduction

A computational network consists of nodes, where each node represents a function
application on its inputs. These functions can be parametrized, in the same way that
artificial neurons have weights and biases. Note that nodes can represent very simple
computations, such as adding its inputs or multiplying them. The output of a node
can then be used in further computation.

Some nodes are designated as input nodes. Through these nodes, we provide input
data to the network. They have no inputs. Nodes can also be designated as output
nodes. The output nodes make up the output of the network.

Computational networks can be trained in a similar fashion to artificial neural
networks. Gradient descent is used, with the backpropagation algorithm to calculate
the partial derivatives with respect to the network’s parameters. The only prerequisite
is that the network output must be differentiable with respect to all the parameters.
Thus if an input to a node is affected by any network parameter, the node must be
differentiable with respect to that input, so that we can propagate the error back to
that input. This is crucial for backpropagation to be applicable.

In general, nodes in the network need not work with single real-valued variables
only, but they can also work with vectors, matrices and tensors. This has the benefit
that many operations on these more complex objects, such as matrix multiplication,
can be performed faster than their counterparts working with only single value at a

16
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time. Operations on tensors are a standard part of most neural network frameworks,
such as PyTorch [24] and TensorFlow [2].

An important application of tensors is evaluation of a network on multiple inputs.
Instead of running the network t times, the inputs are stacked along a new dimension,
called batch dimension, into a single tensor. For example, if the inputs are the (column)
vectors ~x1, . . . , ~xt, the resulting tensor is the matrix

~x1
T

...
~xt

T

 . (3.1)

In further mathematical text, we will also assume that all vectors are column vec-
tors.

3.2 Feedforward neural networks

In feedforward networks, the connections between nodes do not form a cycle. There is
no notion of time, the output of each node is calculated only once.

The nodes of a feedforward network are usually arranged in multiple layers, in
fashion similar to that of a multilayer perceptron. The first layer is the input layer,
through which we provide input data to the network. Nodes in further layers can
have inputs only among outputs from the previous layer. Thus, a layer is essentially a
function that transforms the vector of previous layer’s outputs. The last layer is the
output layer, which contains all the network’s outputs.

3.2.1 Multilayer perceptron

(Note that the name “multilayer perceptron” is a misnomer, since in general, the neu-
rons in the network need not be perceptrons.)

In a multilayer perceptron, each neuron takes input from all neurons from the
previous layer, performs a linear combination of them, and finally passes them through
an activation function. This can be implemented as an alternating series of two types of
layers: dense layers and activation layers. The former performs the linear combination,
and the latter performs the activation. We now describe both of these layers in greater
detail.

Dense layer

The input to a dense layer is a vector ~x = (x1, . . . , xn) of size n. The i-th component
of the vector corresponds to the output of the i-th neuron from the previous layer.
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The output is a vector ~y = (y1, . . . , ym) of size m, where the i-th component of the
vector corresponds to the net input of the i-th neuron in this layer. The outputs are
related to the inputs in the following way:

yi = bi +
n∑

j=1

wj,ixi, (3.2)

where bi is the bias of neuron i in this layer, and wj,i is the weight between the
previous layer’s neuron j and this neuron. In terms of vectors and matrices,

~y = ~b+ W~x, (3.3)

where ~b = (b1, . . . , bm) is the vector of biases and W is the matrix of weights, both
of which are learnable parameters of the layer. The weight matrix is given by

Wi,j = wj,i. (3.4)

Activation layer

The activation layer is parametrized by a function f . The input to the layer is a vector
~x = (x1, . . . , xn), and it represents the net inputs to the neurons on this layer. The
output vector ~y = (y1, . . . , yn) has the same size, and is obtained by applying f to the
input.

We will now go over some common choices for the function f .
First, we take a look at functions f that perform an elementwise transformation on

the input, that is, where each input dimension is transformed separately by the same
function g. Common choices for g are:

• The sigmoid function:

σ(x) =
1

1 + e−x

• The hyperbolic tangent function:

tanh(x) =
ex − e−x

ex + e−x

Note that tanh(x) = 2σ(2x)−1, thus the two functions are related, and networks
using one can be transformed into networks using the other. However, tanh has
better properties when it comes to learning, and is preferred over the sigmoid.

• The rectified linear unit, ReLU:

ReLU(x) = max(0, x)

Even though its derivative is not continuous, in practice, networks utilizing ReLU
learn many times faster than networks utilizing any of the above two activation
functions. It is the current go-to activation function for most applications.
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From among other activation functions, we mention the softmax activation. It is
defined as follows:

yi =
exi∑n
j=1 e

xj
(3.5)

The outputs are all from the interval (0, 1) and can be interpreted as probabilities
of some events occuring. Moreover, the sum of outputs is equal to 1, which corresponds
to exactly one event occuring. Each yi is increasing with respect to the aligned input
xi, and decreasing with respect to other inputs xj. Thus, the larger the input, the
more likely the corresponding event becomes.

Due to its unique properties, softmax is used mainly in classification tasks as the
last layer of a network. The outputs from the softmax layer are interpreted as the
“probabilities” of the input data belonging to the respective classes.

3.2.2 Convolutional neural networks

Convolutional neural networks are inspired by the way cells are organized in the animal
visual cortex. Individual neurons respond only to a local region of the visual field, called
their receptive field.

They are widely used in image processing tasks. One of their earliest applications
was recognizing handwritten characters in documents [19]. Modern applications include
self-driving cars, medical diagnostics, artificial intelligence for playing Go [28], and
many others.

The input to a convolutional neural network is a tensor of shape c×w×h, where c
is the number of channels, w is the width of the image and h is its height. The channel
dimension is referred to as the depth of the input, and each individual channel can also
be referred to as the depth slice.

Two types of layers are introduced: convolution layers and pooling layers.

Convolution layer

Convolution layers serve as filters that detect specific features in the input. They are
based on two principles: locality and weight sharing.

First, locality means that small connected patches of the input generally make sense
on their own, without having to look at the entire input. Thus, connecting a neuron
only to a small patch of the input could lead to better generalization, since the neuron
would not try to make sense out of distant, possibly unrelated, parts of the image.

Second, if it is worth detecting something in a specific region of the image, it may
be useful to detect it in other regions as well. Objects can appear anywhere on the
image, they are not constrained to a specific position, such as “in the lower left corner”.
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We thus force all neurons in the layer to detect the same feature, by restricting their
weights to be the same. The weights are thus shared among all neurons in the layer.

Let us formalize it. Denote the input tensor X. Each neuron is connected to a
rectangular region of the input along its width and height, and is connected to all cells
located there along the depth.

Each neuron in the layer thus sits on top of a small rectangular region of the input.
Denote its upper left corner’s coordinates i0, j0, and its width and height as wk, hk.
The neuron performs a linear combination of values in this region:

y = b+

wk−1∑
i=0

hk−1∑
j=0

c∑
k=1

wi,j,kXi0+i,j0+j,k, (3.6)

where wi,j,k is the weight towards the input value at (i, j, k), and b is the bias of the
neuron.

The matrix of weights, defined by Wi,j,k = wi,j,k, is called the kernel and the size
of the rectangular region is called the kernel size.

Only rectangular regions which are completely inside the input are well defined.
This forces the output to be smaller than the input, which may be undesirable. It can
be resolved by padding the input beforehand, by expanding the input at the borders.
The new input dimensions are usually set to zeros.

The neurons are usually laid on a grid. The amount of horizontal and vertical space
between adjacent neurons, called stride, determines the sparsity of the convolution
operation. With larger stride, the rectangular regions overlap less. This shrinks the
output width and height to

wo =

⌈
w + 2wp − wk + 1

ws

⌉
, ho =

⌈
h+ 2hp − hk + 1

hs

⌉
, (3.7)

where wp and hp are the amounts of padding along the width and height, respec-
tively. (The input is padded by these amounts on both borders.)

Commonly, convolution layers with the same stride, padding and kernel sizes are
stacked on top of each other. Each sublayer detects a different feature and collectively,
they create an output of shape k×wo×ho, where k is the number of kernels. This stack
of layers is then usually called the convolution layer, instead of individual sublayers.

Pooling layer

Sometimes, the exact position of a certain feature in the image is not important. For
example, to detect whether the image contains a boy playing frisbee, it is enough
to detect the boy and the frisbee. The relative locations of one to another are not
important.
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This is accomplished by a pooling layer. The pooling layer considers each input
feature individually, thus it operates on depth slices. Similar to a convolution layer, it
also consider rectangular regions, parametrized by the kernel size, stride and padding.
The difference is in the operation that is performed.

Pooling layer computes a predetermined function f on all values in the region.
Common choices for the function f include the average of the region, called average
pooling, and the maximum of the region, called max pooling. The latter been shown to
perform better than average pooling [27], and is most commonly used.

Nowadays, pooling layers can be replaced by convolution layers with the same stride,
kernel size and padding, as this has been shown to perform equally well if not better
[29].

3.3 Recurrent neural networks

In a recurrent neural network, the neuron outputs evolve in time. Due to this, they
are widely used in applications dealing with arbitrary sequences, such as time series
prediction, natural language processing, speech recognition, and many others.

The values for input neurons are supplied from outside of the network at each
time step. The remaining neurons are called hidden, and any hidden neuron can be
designated as an output of the network. Such a network can output a value at each
time step, or it can first process the entire input sequence and then output some final
answer.

In the simplest recurrent neural networks, the output of a hidden node at time
step t depends on the state of the network at the previous time step t − 1 and the
current input to the network, for t > 0. If there is not previous time step (t = 0), an
initialization procedure sets the outputs of the nodes.

For example, consider a simple recurrent network with n hidden nodes and m input
nodes. Let U be the set of input nodes, V be the set of hidden nodes, and denote yi(t)
the output of node i at time t. Then,

yi(t) = bi +
∑
u∈U

wu,iyu(t) +
∑
v∈V

wv,iyv(t− 1),

where bi is the bias of node i, and wj,i is the weight of connection from node j to
node i.

We will call a connection between two nodes ∆t-delayed if the second node’s value
at time t directly depends on the first node’s value at some earlier time t − ∆t. In
general, a recurrent neural network can include connections of arbitrary time delay.
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The only condition that must hold is that connections with no delay must form an
acyclic graph, that is, no value must depend on itself.

The backpropagation algorithm is extended to such networks by “unfolding them in
time”—we decouple node outputs at individual time steps into separate nodes, and use
backpropagation on the resulting computational network. This variant of backpropa-
gation is known as backpropagation through time.

Formally, let M∆t be the set of all nodes such that there is a ∆t-delayed connection
from node i to that node. Then, we can calculate the error for neuron i at time t as
follows:

∂J

∂yi(t)
=

∞∑
∆t=0

∑
j∈M∆t

∂yj(t+ ∆t)

∂yi(t)
· ∂J

∂yj(t+ ∆t)
(3.8)

The first factor in each summand can be calculated based on the exact relationship
between yjt+ ∆t and yi(t). It is determined by the function that yj computes and the
values of its other inputs. Also, in the case that neuron i is an output neuron, there is
an additional term that measures the direct impact on the objective J .

Recurrent networks can be implemented simply by reusing layers, that is, by apply-
ing the same layer with the same set of weights multiple times. For example, consider
the simple recurrent network from the beginning of the section. Denote ~yU(t) and ~yV (t)

outputs of input and hidden nodes, respectively, at time t. Then,

~yV (t) = ~b+ WU ~yU(t) + WV ~yV (t− 1), (3.9)

where~b is the vector of biases of hidden nodes, WU is the matrix of weights between
input nodes and hidden nodes, and WV is the matrix of weights between hidden nodes.
Both of the matrix multiplications and adding the bias can be carried out by a dense
layer.



Chapter 4

Learning in Deep Neural Networks

This chapter is about deep neural networks. We present the advantages they have over
shallow networks and the obstacles on the path towards their efficient training. We
then take a look at some of the state of the art methods for efficient deep learning.

Deep networks are networks that contain more than one hidden layer. They may
contain tens, hundreds or even thousands of layers. However, even shallow networks
are able to approximate any continuous function to arbitrary precision [13]. What
is the benefit of introducing additional hidden layers? Intuitively, their depth allows
them to learn features at various levels of abstraction. For example, in an image
processing application, an early layer could detect the presence of an edge oriented in
a specific direciton, the next layer would be able to detect simple shapes, ... From a
mathematical point of view, it turns out that for most functions, deep networks are
able to approximate them using exponentially fewer nodes than shallow networks [23]
[5].

Recurrent networks can be considered the deepest type of networks. One can see
why once they are unfolded in time. The depth of the resulting network is propor-
tional to the number of time steps, thus it can be much larger than the depth of any
feedforward network.

4.1 Optimization algorithms

In this section, we take a closer look at the algorithm of gradient descent. We then
mention other optimization algorithms that are, in some way, better performing vari-
ants of gradient descent. We go into greater detail for two specific variants that we will
use during our experiments: momentum and stochastic gradient descent.

23
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4.1.1 Geometry of the problem

Recall that in gradient descent, in each step, we calculate the gradient of the objective
function J with respect to the network’s weights. Then, for each weight w, we update
its value based on the formula

w := w − α · ∂J
∂w

, (4.1)

where α is the learning rate.
The idea behind gradient descent is that we move a small amount in the direction

in which J decreases the fastest. This direction is opposite to the direction of the
gradient.

However, this assumes that the Euclidean metric space, where distance is measured
by the L2-norm, is the right choice for the metric. In such a metric, all parameters
have the same scale. This may not be the case, for example, consider the two following
cases.

In the first, the task is to find x1, y1 that minimize f1(x1, y1) = x2
1+y2

1. The gradient
of f1 with respect to x1, y1 is

∂f1

∂x1

= 2x1,
∂f1

∂y1

= 2y1. (4.2)

In the second case, the task is to find x2, y2 that minimize f2(x2, y2) = x2
2 + (ay2)2,

for some fixed a.
This is related to the first case by a simple reparametrization: x2 = x1 and y2 = y1

a
.

The scale of y2 is a times smaller than the scale of y1. Thus if we change y1 by ε in the
first case, the same effect is achieved in the second case by changing y2 by ε

a
.

However, the change made to y2 by gradient descent is a times larger, not a times
smaller:

∂f2

∂y2

= 2y2 = 2ay1 = a · ∂f1

∂y1

. (4.3)

This is because we have not altered the metric in the second case, even though
y was made a times smaller. To compensate for this, we should have considered the
metric where distance between two points ~p = (p1, p2) and ~q = (q1, q2) is measured as

d(~p, ~q) =

√
(p1 − p2)2 +

(
q1 − q2

a

)2

. (4.4)

With this metric, we are looking for the vector ~u = (∆x2,∆y2) that minimizes the
change per distance, where distance is measured by d. Thus we are minimizing

~u · ∇f2(x2, y2)√
∆x2

2 +
(

∆y2

a

)2
(4.5)
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which, by the Cauchy–Schwarz inequality, yields

u =

(
−2x2,−

2y2

a

)
= −∇f2 ·

(
1, a−1

)
. (4.6)

In general, the effect of a different metric is that prior to adjusting the weights,
we rescale the components of the gradient. This is implemented by setting different
learning rates for different network weights.

The chosen metric can have a very large impact on learning performance. Various
algorithms for determining the “optimal” metric for learning have been devised, such
as Adadelta [33], RMSProp [31] and Adam [16]. We only mention them, as we did not
utilize them in our thesis.

4.1.2 Stochastic gradient descent

In machine learning applications, the objective function J consists of the training error
E and possibly some other terms, such as regularization terms.

The training error is the mean of errors on individual examples, E1, . . . , Et. Thus,
if we took only a smaller set of training errors and computed the mean error on that
set, we would obtain an approximation of the true training error. The benefit is that
calculating the gradient on a smaller set of examples takes less time to compute. This
is the idea behind stochastic gradient descent.

Instead of considering all training data, we consider only a small randomly chosen
sample of the data, and calculate the gradient based on this sample. Denote the set of
the chosen examples as M . The mean error on this sample is

J =
1

|M |
·
∑
i∈M

Ei. (4.7)

The calculated derivative with respect to some network parameter p is then

∂J

∂p
=

1

|M |
·
∑
i∈M

∂Ei

∂p
. (4.8)

The gradient calculated this way is an unbiased estimator of the true gradient.
To ensure even contribution of all training data, the following approach is usually

taken. The training proceeds in epochs. At the beginning of each epoch, the training
data are randomly shuffled and divided into minibatches of size b (except for the last
minibatch, which may be smaller). Then, we proceed in steps. In each step, we consider
the next minibatch. We approximate the gradient based on it, and adjust the network
parameters using this estimate.

The time complexity of one step is thus reduced to O(b · (n+m)).
The case when b = 1 is called online learning, where the training examples are

provided one at a time. At first, it may seem best to choose b = 1 to provide the
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maximum speed-up. However, to make use of fast operations on tensors, parallel
processing and GPUs, the batch size is usually set to a larger value, suc as 32.

4.1.3 Momentum

Momentum is an enhancement that can be coupled with any gradient-based optimiza-
tion method. It was first mentioned in the paper on backpropagation [26].

It works as follows. We do not adjust network parameters directly based on the
gradient. Instead, for each parameter, we maintain its velocity, which is recalculated at
each step based on the gradient. Afterwards, each parameter is adjusted by its velocity.

Formally, denote v the velocity of the parameter and g the gradient with respect
to it. At each step, we first adjust the velocity based on the formula

v := ρv − g, (4.9)

where ρ is the momentum coefficient. The coefficient is the same for all parameters.
Then, we adjust the parameter p:

p := p+ αv, (4.10)

where α is the learning rate of the parameter.
With momentum, directions in which the derivative has consistently one sign will

have high velocity, whereas directions with fluctuating derivative will not build up
high velocity. This accelerates the passage through saddle points, where the gradient
is almost zero, but there is a direction in which the objective slowly but steadily
decreases. Another benefit is that with high velocity, it is possible to overcome small
local minima (small “valleys” in the objective landscape), though these do not occur
as often as saddle points [6].

4.2 Vanishing and exploding gradient problem

With great depth comes great difficulty with learning. The most common problems are
the vanishing gradient and the exploding gradient problems. They were first observed
by Bengio et al. [4] in recurrent neural networks, but the problems apply to deep
feedforward networks as well.

If a network experiences the former, it means that earlier layers of the network are
not learning as effectively as the later layers, because gradients in those earlier layers
are smaller than the gradients in later layers. In other words, changes in weights in
the later layers have a much bigger impact on the output than changes in the earlier
layers.
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If a network experiences the latter, the effect is reversed. Later layers are learning
slower than the earlier layers, because gradients in earlier layers are larger.

Note that in the case of feedforward neural networks, the problem might be tied to
some gradient descent variants only. If the scales of parameters were such that earlier
weights had a larger scale than later weights, we could afford to change the earlier
weights more. The two effects, the vanishing gradient and different scales, would cancel
each other, and the layers would be learning evenly.

Determining the scales is a nontrivial task though, and even if we could deter-
mine them, there are no guarantees they would actually compensate for the vanishing
gradient.

In the case of recurrent neural networks, changing a weight influences both the early
and the later layers. Thus it is impossible to have a larger scale for parameters “only
in the early layers”.

Let us take a closer look at the problem. The following analysis is based on Hochre-
iter et al. [12]

Consider a multilayer perceptron with layers L1, L2, . . . , Lk. Each Li is a set of
neurons in that layer. Denote the output of neuron i as outi and the net input to
neuron i as neti. Denote the weight from neuron i to neuron j as wi,j. For simplicity,
we will assume that all neurons use the same activation function f .

Let us take a neuron a0 from the layer l. The gradient with respect to its output is

∂J

∂outa0

=
∑

a1∈Ll+1

∂outa1

∂outa0

· ∂J

∂outa1

(4.11)

=
∑

a1∈Ll+1

wa0,a1f
′(neta1) · ∂J

∂outa1

(4.12)

=
∑

a1∈Ll+1

. . .
∑

ak−l∈Lk

(
∂J

∂outak−l

·
k−l∏
i=1

(
wai−1,aif

′(netai)
))

(4.13)

We can thus see that, assuming the same set of weights, activation functions with
smaller derivatives will tend to experience vanishing gradient more often. On the other
hand, activation functions with larger derivatives will tend to experience exploding
gradient more often.

During training, a node can become saturated, meaning that inputs to the node are
mostly such that the derivative is small. This causes training to slow down, because no
errors are flowing back through the node. ReLU alleviates the problem a bit, because
its derivative is small only on one side.
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4.3 Weight initialization

One aspect of training a network is often overlooked, and that is, how do we initialize
the weights of the network?

From the aforementioned analysis, we can see that large weights lead to explod-
ing gradients and small weights lead to vanishing gradients. Thus weights should be
initialized in such a way that these two aspects are balanced.

The initialization procedure should introduce some variability into the network. To
illustrate why, consider the extreme case of a multilayer perceptron where all weights
are set to the same value. Weights going out from the same neuron will be receiving
the same errors during backpropagation, thus they will stay the same forever, which
severely limits the capabilities of the network.

4.3.1 Xavier initialization

In this section, we describe the Xavier initialization [7], also known as the Glorot
initialization.

We will consider a multilayer perceptron for simplicity, and assume that the acti-
vations in the network can be approximated by the identity, f(x) = x. This is true for
some activation functions when x is sufficiently close to 0, such as for tanh. For other
functions, the reasoning has to be refined.

Let us take the perspective of a single neuron. We can measure the information
that comes to us during backpropagation as the variance of the backpropagated error.
To ensure that different layers are learning evenly, we want to ensure that this variance
is the same for all neurons.

Suppose we have m outgoing connections with weights w1, . . . , wm. We will sample
each of these weights from the normal distribution with mean 0 and variance σ2, for
some σ. Our goal is to choose appropriate σ.

Let us take a look at the errors of neurons in the next layer:

∂J

∂out1

, . . . ,
∂J

∂outm
. (4.14)

Consider the probability distribution of each of them, and assume that they are
independent and with variance 1. The error flowing to us is

∂J

∂out
=

m∑
i=1

wi ·
∂outi
∂neti

· ∂J

∂outi
=

m∑
i=1

wi · f ′(neti) ·
∂J

∂outi
. (4.15)

Since the neuron is in the linear regime of the activation function, we can approxi-
mate f ′(neti) as 1, obtaining

∂J

∂out
=

m∑
i=1

wi ·
∂J

∂outi
. (4.16)
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Each summand is the product of two independent random variables with mean 0,
this the variance of each summand is simply the product of its factors variances. When
we also take into account that these m summands are independent of each other, we
can calculate the variance of our error as

∂J

∂out
=

m∑
i=1

σ2 = m · σ2.

Thus, the optimal choice for σ is

σ =

√
1

m
.

Alternatively, we can measure the information contained in a neuron’s output in-
stead of information contained in errors that arrive at it. In this case, our goal is to
ensure that the variance of all neurons is the same. The reasoning is very similar, and
yields

σ =

√
1

n
,

where n is the number of inputs to the node. By combining these two intializations,
we obtain the Xavier intialization (also known as Glorot initialization), where a neuron
with n inputs and m outputs is initialized from the normal distribution with mean 0

and variance

σ =

√
2

n+m
.

Even though the derivation makes many assumptions which are not generally true,
the Xavier initialization works well in practice.

4.3.2 He initialization

The derivation of Xavier initialization is only sound for activations that approximate
the identity near 0. The rectified linear unit does not have this property. He et al.
[10] have subsequently adapted the Xavier initialization for the ReLU, Leaky ReLU,
Parametric ReLU and similar activations.

Here, we will derive the initialization only for the ReLU activations. We will follow
the same path as in the derivation of Xavier initialization, except for a few differences.

Let us, again, take the perspective of a single neuron. The variance of the error
that arrives at us is

∂J

∂out
=

m∑
i=1

wi · f ′(neti) ·
∂J

∂outi
. (4.17)

This time, we cannot assume that f ′(neti) = 1, since f is the rectified linear unit.
We will have to proceed differently.
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Let us take a look at each summand. Suppose that neti and outi are independent,
and that the probability of neti being positive is 1

2
. Then,

wi · f ′(neti) ·
∂J

∂outi
=

{
wi · ∂J

∂outi
, with probability 1

2

0, otherwise
(4.18)

Note that the first value is centered around 0 (its expected value is 0), which is
exactly the value of the second option. Thus, the effect of the ReLU activation is
essentially that with probability 0.5, it replaces the error with the mean. Since the
definition of variance is

Var [X] = E
[
(X − E [X])2] , (4.19)

the result is that in half of the cases, the value under expectation is 0, and in the
other half of the cases, it is left unchanged. Thus, the variance is halved:

Var

[
wi · f ′(neti) ·

∂J

∂outi

]
=

1

2
· Var

[
wi ·

∂J

∂outi

]
=

1

2
·m · σ2. (4.20)

By setting it to 1, we obtain the He initialization (also known as Kaiming initial-
ization) for ReLU:

σ =

√
1

m
·
√

2, (4.21)

where m is the number of output connections from this neuron.
We could also consider the forward propagation case, where information is measured

by the variance of the neuron outputs. In that case, we would obtain

σ =

√
1

n
·
√

2, (4.22)

where n is the number of input connections to this neuron. Taking a compromise
between the forward and backward propagation cases, we obtain

σ =

√
2

n+m
·
√

2. (4.23)

Thus, we obtain He initialization simply by appropriately rescaling the weights
initialized by Xavier initialization.

4.4 Normalization

Suppose we are given a probability distribution. We sample one value from it, and
obtain 100 000. Is that a large value, or a small value? Generally, it is impossible to
tell without having further information about the distribution, such as its mean and
variance.
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In a similar way, machine learning algorithm have to first learn the rough distribu-
tion of the input data. However, this can be done prior to employing the algorithm, in
a process called normalization, which significantly increases the pace of learning.

In this process, we consider the attributes of the input data independently. We
adjust the distribution of each attribute so that the values are relative and have well
defined meaning. Commonly, the input data is first shifted and then rescaled, so that
the resulting distribution has mean 0 and variance 1. This is done in two steps:

1. First, we calculate the mean of the attribute. We subtract this mean from all
datapoints to obtain data centered around 0.

2. Second, we calculate the variance v of the attribute. We divide all datapoints by
√
v to obtain data with variance 1. To ensure numerical stability, it is common

to instead divide by
√
v + ε for some small ε > 0.

In the resulting distribution, the sign of a value represents whether the (original)
value is greater than or less than the average, and the magnitude tells us how much
larger it is.

This can be taken one step further. Note that when the input features are correlated,
having information about one attribute can change our expectations of other attributes.
To illustrate, suppose we have two attributes: price and quality, with means 1 000 and
4.83. A high quality is indicative of high price and vice versa. Thus, if we already know
that the quality is 8.74, a price of 1 000 would be very much below the expectation.

Thus, it is common practice to decorrelate the input data, in addition to ensuring
mean 0 and variance 1. The process through which this is done is called whitening.
We do not describe it here, as we do not utilize it in our thesis.

The idea behind normalization—bringing inputs into a more specific distribution—
can also be used in the intermediate layers of a network, though it is not trivial to see
how. This yielded various normalization layers, such as batch normalization [15], layer
normalization [3] and local response normalization.

We take a more detailed look at batch normalization only.

4.4.1 Batch normalization

In a feedforward neural network, the network is consists of a sequence of layers. Each
layer, except the input layer, takes its inputs from the previous layer. Thus, if we
separated the network into the early stages and the later stages, the outputs from the
early stages are essentially the input data for the later stages. Normalizing this data
could improve learning.

However, it changes whenever any parameter of the network is adjusted, which
happens after each optimization step. Computing its mean and variance over all train-
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ing data after each step would be computationally infeasible: we would first have to
compute the data by running the early stages of the network, and then calculate the
means and variances on this large dataset.

There is also another problem. Gradient descent does not take into account that the
data are being continually normalized. Thus, its estimates of how parameter adjust-
ments affect the output would be generally incorrect, and would need to be adjusted.

Both of these issues can be resolved as follows. A new layer, called batch normal-
ization layer, is introduced, whose goal is to normalize its inputs. Unlike other layers
in a neural network, it takes advantage of the fact that we are operating on a batch of
training data, instead of considering them one by one.

For simplicity, consider the case where there is a single input to the layer. In the
general case, when the input is an arbitrary tensor, the transformation is carried out
independently for each input dimension.

Let x1, . . . , xb be its values on the training cases in the batch, where b is the batch
size. They are stacked along the batch dimension and together make up the input
tensor to this layer: 

x1

...
xb

 . (4.24)

We can obtain an estimate of the real mean of the input by calculating the mean
on the current set of training cases:

µB =
1

b

(
b∑

i=1

xi

)
(4.25)

Similarly, we can estimate the real variance by calculating the variance on this
batch:

σ2
B =

1

b

(
b∑

i=1

(xi − µB)2

)
(4.26)

This way, we can calculate an estimate of the mean and variance during the forward
pass of backpropagation. The estimate is much faster to compute than the real values,
which would require going over the entire training data. This resolves the first problem.

The output of the layer on the i-th training case is then

xi − µB√
σ2
B + ε

. (4.27)

Note that all performed operations (calculating the mean, the variance, shifting the
inputs and rescaling them) are differentiable with respect to the input tensor. Thus, the
layer is compatible with backpropagation, and by propagating errors properly through
all these operations, the second problem is resolved.
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The normalized values are then rescaled and shifted. This is so that the introduction
of the layer does not restrict the network’s representational abilities. Thus, there are
two learnable parameters per input dimension: β that shifts, and γ that scales. The
output from the layer is then

γ · xi − µB√
σ2
B + ε

+ β. (4.28)

During evaluation, when we are no longer training the network, we use the real
means and variances instead of the batch estimates. Hence, batch normalization de-
generates to a simple rescale and shift operation.

The procedure is slightly altered when the preceding layer (the layer to be normal-
ized) is a convolution layer. We want the normalization to normalize neurons in the
same channel equally, so that they still detect the same feature, but at a different posi-
tion. Hence, instead of estimating the mean and variance for each neuron individually,
we estimate the mean and variance for each channel, and these are then used for all
neurons in the channel. We also utilize per channel β and γ, instead of per neuron.

When we apply batch normalization to a layer, we essentially decouple some of the
layer characteristics from the underlying process that calculates the layer’s output. It
causes the distribution of the layer to be more stable, since no matter what happens
during the earlier stages of the network, the resulting value will have mean β and
variance γ2. This stability enables the next layer to learn faster, since it does not have
to adapt as much to the changing distribution of the previous layer.

With batch normalization, one can usually set much larger learning rates during
training, and the learning is significantly faster. Other than improving the learning
speed, it also makes the network more robust to initialization, and has a small reg-
ularizing effect. The latter is due to the random nature of the estimates of batch
mean and batch variance. Thus, batch normalization is commonly not used with other
regularization techniques, or when it is used, they are reduced in strength.

There are however cases where batch normalization is not applicable. In online
learning, the batch size is 1, making it impossible to estimate the means and variances.
In recurrent neural networks, the distribution of the preceding layer changes after each
step, and finding a single β and γ that would normalize the input dimension is generally
impossible.

4.5 Regularization

The role of reularization in neural networks is to decrease overfitting. Since the net-
works are usually very large and have a large number of parameters, overfitting is
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a serious problem. We present two regularization methods that are commonly used
alongside neural networks.

4.5.1 Dropout

Neurons in neural networks often adapt together. In such adaptations, one neuron
depends on a very specific set of other neurons. Such adaptations are very precise,
thus they allow the network to detect very specific features. This allows them to
remember the training data very well while not being able to generalize outside of it.

Dropout [11] [30] effectively solves this problem by randomly “dropping” neurons
from the network during training. A neuron that is dropped has its output set to zero.
The probability p of dropping a neuron is usually set to 0.5.

During testing, all neurons are active. This causes the input to each neuron to be
roughly 1

1−p times larger than the corresponding input during training. To compensate
for this, either the output of each neuron is scaled down during testing, or the outputs
are scaled up during training. The latter approach is usually taken.

The introduction of dropout slows down learning, but can improve the final gener-
alization error.

It was noted by Tompson et al. [32] that in the setting of convolutional networks,
standard dropout, where each neuron is considered individually, does not decrease
overfitting. They have formulated a better suited variant of dropout, called spatial
dropout, where instead of considering neurons individually, entire channels of the input
are being dropped.

4.5.2 L2 regularization (weight decay)

L2 regularization introduces an additional term to the objective function, which pe-
nalizes large weights. The intuition behind it is that large weights enable individual
neurons to have large impact on other neurons. By introducing a penalty, we force the
adaptation to take multiple neurons, as a single neuron is unable to do the job. The
exact formula is based on the L2 norm:

λ · ‖~w‖2
2 =

√√√√ |~w|∑
i=1

w2
i , (4.29)

where λ is the regularization coefficient, and ~w is the vector of all the network’s
parameters.

When the optimization algorithm used is gradient descent, the effect of L2 regu-
larization on a weight w is that at each step, the weight is also adjusted by the value
−λ · w. Thus, if we consider the regularization term only, the update to weight w is

w := (1− λ) · w (4.30)
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Hence, in the context of neural networks where variants of gradient descent are the
standard, the regularization method is also called weight decay.



Chapter 5

Proposed solutions

The goal of this thesis was to explore various ways of improving the pace at which deep
networks learn. To this end, we devised and experimented with various optimization
algorithms, activation functions, ... This chapter is dedicated to the most promising of
our inventions. We start with the motivation.

Batch normalization can be decomposed into two sublayers: normalization of in-
puts, and rescaling and shifting. We contemplated whether both sublayers are neces-
sary. Clearly, the second sublayer is necessary for the network to retain its represen-
tational ability. However, maybe the explicit normalization could be left out, and the
layer would learn to normalize the inputs on its own.

Thus, we considered various layers composed of two building blocks: the shifting
layer and the scaling layer, which we define in the next section.

5.1 Shifting layer

The shifting layer shifts the input tensor. The amount of shift for each dimension is a
learnable parameter of the layer. In line with standard ANN terminology we will call
this parameter bias.

Essentially, the layer is already present as a sublayer in many other neural network
constructions. It is present in batch normalization, where it plays the role of the mean
of the distribution, and in dense and convolution layers.

Explicitly decoupling the shifting layer from the aforementioned constructions al-
lows us to place it at arbitrary positions in the network. We will most commonly place
it after the activation layer. The reason is that before the activation, there is usually
a dense or convolution layer, which already include a shifting layer.

Another improvement can come from sharing biases. By considering various sharing
schemes, we obtain several simple variants of the layer:

• The elementwise variant, where each input dimension has its own bias. This is

36
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the case for dense layers.

• The channelwise variant, where each input channel has a separate bias that is
used by all input dimensions in that channel. This is the case for convolution
layers.

• We also consider a variant that, to our knowledge, has not been utilized before,
called the layerwise variant. All input dimensions share the same bias.

We will initialize the biases of all shifting layers to 0, as is common practice for
biases in standard constructs. Such an initialization has the benefit that the shifting
layer does not affect the initial network.

5.2 Scaling layer

The scaling layer rescales the input tensor, that is, each input dimension is multiplied by
a certain factor. These factors are a learnable parameter of the layer. We will call this
parameter weight, akin to weights in dense and convolution layers. Other than these
two, the scaling layer is also a part of batch normalization and other normalization
constructs.

We will mostly place the layer after the activation layer. The reason is that we will
be utilizing ReLU, which is invariant to rescaling of its input in the following sense:

ReLU(w · x) = w · ReLU(x) (5.1)

for nonnegative w. The initial weights will be positive, and we do not believe
that their sign is likely to change during training, especially when the weights are
shared. Such a change would require too large “coordination” between errors flowing
from separate applications of the weight. By this line of thought, it makes no difference
whether we place the layer before or after an activation. We choose the latter option.

In a similar fashion to shifting layer, we will consider three variants: the element-
wise, the channelwise, and the layerwise variant. They have separate weights per input
dimension, per channel, and per layer, respectively.

We initialize the weights to 1, so that the initial network is unaffected by the
inclusion of the shifting layer.

5.3 Combinations

The shifting and scaling layers and their variants can be composed into complex com-
binations. The number of combinations is large. This stems from the fact that each
of the layers can be either before or after an activation, each type of layer has three
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Shifting

None 3 3 3 3

Elementwise 3 3 7 7

Channelwise 3 7 3 7

Layerwise 3 7 7 3

Table 5.1: The reduced set of combinations of shifting and scaling layers, and whether
we will consider them or not.

variants, the various layer variants can be included multiple times, and then there is
the order in which they are applied.

We thus took heuristic steps toward minimizing the number of combinations con-
sidered. Some of the steps and the intuitions behind them have already been explained
in previous sections, such as that we will mostly place the layers after the activation.
We now take further steps toward reducing the number of combinations.

Experimentally, we found out that when both the shifting and scaling layers are
present, the order in which they are applied does not matter. Thus, we will place the
shifting layers first and the scaling layers second by convention.

We will also set a limit of at most one shifting layer, and at most one scaling layer.
This comes from the intuition than multiple layers of the same type, even if they are
different variants, fill the same role in the network.

This reduces the number of combinations to 16, of which 10 we will consider. They
are depicted in table 5.1.

Each activation, except for the final softmax, is turned into a sequence of layers.
First, the activation layer is applied, then the output is shifted if there is a shifting
layer, and finally it is rescaled if there is a scaling layer. Other than after the activation
layers, we also put the shifting and scaling layers immediately after the input layer.

There is one special case. If we are using a channelwise variant, it may not always
be applicable to the output of the previous layer, such as in the case when the preceding
layer is a dense layer, not a convolution layer. In such a case, we apply the elementwise
variant as a fallback.



Chapter 6

Experimental setup

In this chapter, we describe the common elements among experiments that were used
to evaluate the proposed solutions. The details of individual experiments are provided
in the next chapter.

Our goal was to evaluate how well the considered combinations perform compared
to a plain ReLU activation with no enhancements, and compared to batch normalized
networks, where each dense or linear layer is followed by batch normalization. Other
than measuring performance, we were interested in why some combinations perform
and others do not.

We test the solutions in image recognition tasks, due to their accesability and
common use as benchmarks. The input is an image that belongs to one of finitely
many classes, and the task is to determine which of the classes it is.

We try many different settings. Each setting is determined by the dataset and
the network architecture. For each architecture, we try many of the aforementioned
variants (plain network, our combinations, batch normalized).

For individual variants of networks, we adopt the abbreviations in table 6.1. We
use these abbreviations when plotting the results from experiments.

6.1 Datasets

We were primarily working with the CIFAR10 and CIFAR100 datasets [17], which are
commonly used as benchmarks for image classification models. Each of the datasets
consists of 32×32 colored images and their labels. The data is split into 50 000 training
cases and 10 000 test cases in both datasets.

In CIFAR10, each of these images depicts an object from 10 possible classes: air-
plane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. The classes are
represented equally both in the training data and test data, thus there are 5 000 in-
stances of each class in the training data and 1 000 instances of each in the test data.

39
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variant abbreviation

plain plain
batch normalized bn
elementwise shift sh
elementwise scale sc
elementwise shift and scale sh_sc
channelwise shift csh
channelwise scale csc
channelwise shift and scale csh_csc
layerwise shift lsh
layerwise scale lsc
layerwise shift and scale lsh_lsc

Table 6.1: Abbreviations of all tested variants.

Figure 6.1: Some images from the CIFAR10 dataset.



CHAPTER 6. EXPERIMENTAL SETUP 41

input size kernel size num. kernels padding stride
3× 32× 32 3× 3 96 1 1

96× 32× 32 3× 3 96 1 1

96× 32× 32 3× 3 96 1 2

96× 16× 16 (spatial dropout with p = 0.5)
96× 16× 16 3× 3 192 1 1

192× 16× 16 3× 3 192 1 1

192× 16× 16 3× 3 192 1 2

192× 8× 8 (spatial dropout with p = 0.5)
192× 8× 8 3× 3 192 0 1

192× 6× 6 1× 1 192 0 1

192× 6× 6 1× 1 10 0 1

10× 6× 6 global averaging over 6× 6 spatial dimensions
10 softmax

Table 6.2: The architecture of the all convolutional network. Computation proceeds
from top to bottom. Each convolution layer (including the last one) is followed by a
ReLU activation layer.

CIFAR100 is essentially a more difficult version of CIFAR10, with 100 classes. Each
class has 500 instances in the training data and 100 instances in the test data.

6.2 Architectures

In this section, we describe the various architectures used throughout our experiments.

6.2.1 All convolutional

The first architecture is a convolutional network by Springenberg et al. that introduces
strided convolution [29]. The description of the architecture can be found in table 6.2.
We will be using two versions of the architecture: one without dropout, and one with
dropout. Note that we use spatial dropout, whereas Springenberg et al. employed
standard dropout (since at that time, the former had not been conceived yet).

The weights in convolution layers are initialized with He initialization, since each
of those layers is followed by a ReLU nonlinearity. The biases of the layers are set to
0.
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input layer, size 3× 32× 32

flatten to size 3072

1 dense 3072× 3000

(dropout with p = 0.5)
2 dense 3000× 1000

3 dense 1000× 1000
...

...
12 dense 1000× 1000

(dropout with p = 0.5)
13 dense 1000× 300

14 dense 300× 300
...

...
23 dense 300× 300

24 dense 300× 10

softmax

Table 6.3: The multilayer perceptron. Computation proceeds from top to bottom.
Each dense layer is followed by a ReLU activation, except for the last dense layer.

6.2.2 Multilayer perceptron

The second architecture is a simple multilayer perceptron. The input to the network
is first flattened into a vector and then, 24 dense layers are applied. After each dense
layer, there is an activation layer, and all activations except for the last one are ReLU.
The last activation is softmax.

The details of the architecture are listed in table 6.3. We will be using both a
version without dropout, and a version with dropout.

Weights in all dense layers are initialized with the He initialization, except for the
last dense layer, where Xavier initialization is used instead. All biases are set to 0.

6.3 Methodology

In this section, we describe the employed methods and techniques that are common to
most of our experiments, unless stated otherwise in the experiment’s description.

Loss function We choose cross entropy as the loss function to evaluate the model’s
performance. No weight decay (L2 regularization) was used, thus the objective function
is simply the mean cross entropy over the batch of training cases.
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Data preprocessing The training data are normalized (not whitened). The same
transformation is applied to the test data. Note that this is not the same as normalizing
the test data—we shift it and scale it using the mean and variance of training data,
not test data.

One epoch of training At the beginning of each epoch, we randomly shuffle the
training data. Then, at each step, we consider the next batch of training cases. We
evaluate the model on this batch, calculate the mean cross entropy and compute the
gradients with backpropagation. We update the parameters of the model using stochas-
tic gradient descent with momentum 0.9. At the end of each step, we log the mean
cross entropy and the accuracy of the model on the batch.

After each epoch, we calculate the validation error of the model by evaluating its
performance on the test data that was not used during training.

Batch size We set the batch size to 32. We also experimented with larger batch
sizes, concretely 128 and 512. With batch size of 128, training was faster, but at the
cost of universally higher validation error. Batch size of 512 caused an even higher
validation error.

Learning rate In each experiment, we first determine an appropriate learning rate
for the plain network with no enhancements. A learning rate where the network actually
learns can be found by trying learning rates of the form 10−i. We call this learning
rate the anchor. Afterwards, we adjust the learning rate in the neighbourhood of the
anchor in smaller amounts, and observe whether this leads to faster learning.

If the only difference in the network architecture is the presence of dropout, we use
the same anchor as in the version without dropout. However, we still search in the
small neighbourhood of the anchor.

The same learning rate that is used for the plain networks is then used for all our
combinations. Thus, if a combination consistently performs better than the plain net-
work, we can expect it to perform even better if the learning rate is adjusted specifically
for that combination.

For batch normalization, we use a slightly higher anchor than what was found
for plain networks. This is because batch normalization allows the network to learn
effectively even with higher learning rates.

Initialization Once all hyperparameters are set, we train the network variant. Since
the networks are initialized randomly, to obtain more representative results, we train
it multiple times to obtain multiple runs. To ensure that these runs are comparable
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between different variants, the sequence of seeds used to initialize the random number
generator is the same for each variant.

6.4 Implementation

We estimated that we would have to try a large number of experiments before arriving
at an interesting solution, and we considered implementing each experiment individu-
ally infeasible. We thus created a library for fast prototyping, where large portions of
the code between different experiments could be reused.

The library is programmed in Python 3.5.2, utilizing PyTorch 0.4 [24] for com-
putational networks and optimization. For plotting various graphs which were later
exported and included in the thesis, we used Matplotlib [14]. The source code of the
library can be found at: https://github.com/buj/bakalarka_public

https://github.com/buj/bakalarka_public


Chapter 7

Individual experiments

7.1 Initial experiment

With this experiment, our goal was to determine which of the combinations are worth
further investigation, and which are not. We compared all of them with the batch
normalized variant and the plain variant on the CIFAR10 dataset. We chose the all
convolutional network (ch. 6.2.1) without dropout as the architecture.

After determining the anchor, the learning rate was selected from among 0.005,
0.01 and 0.02. With each of them, we trained the plain variant for 10 epochs. The
learning rate is picked based on the results.

For the batch normalized variant, we try the learning rates from among 0.02, 0.04

and 0.08. With each, we train the model for 10 epochs to see which learning rate is
the best.

Once the learning rates are determined, we train all the variants in 4 training runs.

Results and discussion The results of the experiment can be found in the plot
7.1. For clarity, we also include plots where similarly performing variants are grouped
together: 7.2, 7.3 and 7.4. In each plot, we include both the plain variant and the
batch normalized variant for comparison.

The scaling-only variants all performed similarly to the plain variant. The variants
which included the shifting layer performed better, and surprisingly, the less parameters
a shifting layer had, the better. The elementwise shifting performed the worst from
among them, then the channelwise shifting, and layerwise shifting performed the best.
We came up with a possible explanation, which is explained and tested in the next
subsection.
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(b) Validation error after each epoch.

Figure 7.1: Initial experiment (CIFAR10, all convolutional network without dropout).
All variants, see table 6.1 for abbreviations.
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(b) Validation error after each epoch.

Figure 7.2: Initial experiment (CIFAR10, all convolutional network without dropout).
Variants that did not perform significantly better than the plain variant: the element-
wise variants and the scaling-only variants.
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(b) Validation error after each epoch.

Figure 7.3: Initial experiment (CIFAR10, all convolutional network without dropout).
Variants that performed better than the plain variant: channelwise shift and channel-
wise shift + scale.
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(b) Validation error after each epoch.

Figure 7.4: Initial experiment (CIFAR10, all convolutional network without dropout).
The best performing variants: layerwise shift and layerwise shift + scale.

7.1.1 Hypothesis 1

Suppose that all instances of the biases would often receive similar errors. Since they
are all shared in the layerwise variants, they would be accumulated, and each instance
would then adapt based on this accumulated error. Thus, they would change much
faster than if the error was local for each instance, and not global. This would explain
why the channelwise variant did not perform as well, and why the elementwise variant
performed the worst.

If this explanation were true, we would obtain similar performance with channelwise
and elementwise shifts by increasing the learning speed of their biases. This was our
next experiment.

We tried the elementwise shift variant, with the learning rate of its biases multiplied
by 2, 4, 8 and 16. We give these variants the abbreviations sh2, sh4, sh8 and sh16,
respectively.

For the channelwise shift, we tried multiplying the learning rate of its biases by 2,
4 and 8. We did not try 16, as we have found that the network was already unable to
learn when the multiplier was 8. The abbreviations for the variants are csh2, csh4 and
csh8, respectively.

The global learning rate is set to 0.01. We trained each variant a single time.

Results and discussion The results can be found in the plot 7.5 and 7.6. We
observe that by increasing the learning rates for biases in the elementwise shifting
layers, we obtained better results. We did not observe this effect for the channelwise
shifting layers. Further investigation needs to be done.
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Figure 7.5: Data from hypothesis 1, the elementwise shifting layer.
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Figure 7.6: Data from hypothesis 1, the channelwise shifting layer.
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Figure 7.7: Experiment with all convolutional network without dropout, variants with
no enhancements, but where biases in dense and convolution layers learn many times
faster than weights.

7.1.2 Hypothesis 2

We were also interested whether the shifting layers were really that important. Maybe
it would be enough to increase the learning rate for all biases in the dense and convo-
lutional layers, and we would observe similar effects.

Thus in this experiment, we tested a network with no enhancements, but we mul-
tiplied the learning rates for biases in all convolutional and dense layers by a certain
coefficient. We considered multiple variants based on this coefficient, the values were
2, 4, 8 and 16. We will call these variants biased2, biased4, biased8 and biased16,
respectively.

We set the global learning rate to 0.01 (the same as for previously mentioned vari-
ants) and trained for 10 epochs. We trained for 4 runs, except for the biased16 variant,
which was trained once only, as it was unable to learn.

Results and discussion The results can be found in the plot 7.7. None of the
variants performed better than the plain variant. Thus, when it comes to learning
with gradient descent, the shifting layers have different properties than biases in dense
and convolution layers.

7.2 CIFAR10, convolutional with dropout

In this experiment, we were interested in how the best performing variants would
do with dropout. Fast learning would be useless if it would lead to overfitting only.
We tested the all layerwise variants, including the scaling-only variant, and the plain
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(b) Validation error after each epoch.

Figure 7.8: Experiment with all convolutional network with dropout. For comparison,
we include the batch normalized variant without dropout.

variant. Since batch normalization has its own regularization effect, we do not evaluate
it.

We set the learning rate to 0.01, the same as for the version of the network without
dropout. There are 4 runs, and in each run, the network is trained for 40 epochs.

Results and discussion The results can be found in the plot 7.8. We also include
the batch normalized variant (without dropout) for comparison. The layerwise shift
+ scale achieves comparable validation error, although it takes longer to achieve this
error, due to dropout.

This experiment demonstrates that it is possible to “tame” the learning speed-up,
so that it does not only lead to overfitting.

We see that the variants with the layerwise shifting layer are learning significantly
faster during the initial stages. However, without the layerwise scaling layer, the learn-
ing slows down, and the plain variant eventually gets ahead of the shifting-only variant.
The layerwise scaling layer thus somehow mitigates this effect, since the variant that
includes both of them performs the best.

The scaling-only variant does not initially lead to faster learning, but in the long
term, it gets ahead of the plain variant.

7.3 Experiments with multilayer perceptron

With the multilayer perceptron (ch. 6.2.2), we ran experiments only on the CIFAR10
dataset, as we believed it would not learn well on the more difficult CIFAR100 dataset.

First, we tried the version without dropout. We experimented with the plain,
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(b) Validation error after each epoch.

Figure 7.9: Experiment with the multilayer perceptron, both with and without dropout.

batch normalized, and the layerwise variants. The learning rate is selected from among
0.0005, 0.001, 0.002, and 0.004. We train for 10 epochs, and the best model from each
variant is trained in 8 runs.

For the batch normalized variant, the learning rate is selected from among 0.001,
0.002, 0.004. We train for 40 epochs, and with the best learning rate, we train 8 times.

For the version with dropout, the learning rate is selected from among 0.001, 0.002,
0.004. With each of these values, we train for 20 epochs to determine the best learning
rate. With the best one, we train for further 20 epochs for a total of 40 epochs. The
batch normalized variant is not considered. There are 8 training runs.

Results and discussion The results can be found in the plot 7.9. The results on the
architecture without dropout are in plot 7.10, except for the batch normalized version,
which behaved much differently. The results with dropout are in plot 7.11, and we
include the batch normalized variant here.

Without dropout, we can see that our variants, mainly those that include a shifting
layer, learn faster than the plain variant, both in terms of training error and validation
error. With dropout, the variants with shifting layer descend quickly in training error,
but overfit much more than the scaling-only variant and the plain variant, even in the
face of dropout. None of the variants performed better in terms of validation error.
Thus, stronger regularization needs to be employed with our variants.

7.4 CIFAR100

We tried another dataset, to see whether the observed speed-up in learning could be
translated to a more difficult task. On this dataset, we trained only with the convolu-
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Figure 7.10: Experiment with the multilayer perceptron, no dropout.
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(b) Validation error after each epoch.

Figure 7.11: Experiment with the multilayer perceptron with dropout.
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Figure 7.12: Experiment with the CIFAR100 dataset. The architecture is all convolu-
tional, both version with and without dropout are included.

tional architecture (ch. 6.2.1). Without dropout, we test the plain, batch normalized,
and all three layerwise variants. With dropout, we omit the batch normalized variant.

The learning rate is selected from among 0.005, 0.01, 0.02. We train for 15 epochs,
and the with the best learning rate, we do at least 2 training runs for each variant.

For the batch normalized variant, we selected the learning rate from among 0.01,
0.02, 0.04 and 0.08. We train for 20 epochs, and there are 4 training runs.

For the version with dropout, the learning rate is chosen from among 0.005, 0.01

and 0.02. We train for 50 epochs. There is at least a single training run.

Results The results for all the variants can be found in the plot 7.12. Variants
without dropout are plotted in the plot 7.13. Variants with dropout and batch nor-
malization (without dropout) are plotted in the figure 7.14.

We observe effects similar to the experiment with CIFAR10, all convolutional net-
work with dropout. The layerwise shifting layer causes the network to learn quickly
in the initial stages, but it eventually stagnates. In fact, the training error starts to
increase, suggesting that the learning rate is too high in these stages of learning.

The layerwise scaling-only initially performs worse than the plain variant, but per-
forms better in the long term. The combination of these two layers learns quickly both
in the short term, and in the long term.

With dropout, we were in able to achieve lower validation error than the batch
normalized variant. This again shows that with appropriate regularization, the method
can achieve good results in shorter amount of time.
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Figure 7.13: Experiment with the CIFAR100 dataset. The architecture is all convolu-
tional, no dropout.
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Figure 7.14: Experiment with the CIFAR100 dataset. The architecture is all convolu-
tional with dropout.
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7.5 Other experiments

We tested variants utilizing both batch normalization and our innovations. However,
we found that the inclusion of the scaling and shifting layers did not affect the training
error, and actually led to worse performance as measured by the validation error.

We also experimented with a recurrent neural network architecture, similar to the
one described by Le et al. [18] We considered the same task: we trained the recurrent
neural network to classify handwritten digits from the MNIST [1] dataset, where the
input is fed in pixel by pixel. However, in our experiments, none of the combinations
from the table 5.1 yielded better performance than the original network.

We believe this is a difficulty similar to that of batch norm—the distribution of the
state changes after each time step, and it is impossible to find one weight and one bias
that would fit in all time steps. Further research would need to be done to confirm or
disconfirm this hypothesis.



Conclusion

The goal of our thesis was to explore various ways of improving learning in deep neural
networks. To this end, we created a library for fast prototyping of models and various
other utilities which increased the pace at which we could explore new ideas.

We introduced the shifting and scaling layers. For each of these type of layers, we
introduced three variants based on parameter sharing. These variants could then be
put together into various combinations. We were interested whether their introduction
into a network would improve the network’s learning pace, and generally what effect
do these layers have on the learning dynamics.

We tested these combinations on image recognition tasks. The combinations were
tested in various settings to evaluate whether their effect is robust enough, or whether
it is specific to a certain setting. Each setting was determined by the dataset and the
network architecture.

In our initial experiment, we tested all combinations to see which of them were
worth further experimenting. We found out that the layerwise shift and layerwise
shift and scale performed well, even though they added to the network only a small
number of parameters per layer. Those were then experimented with further. We also
experimented with the layerwise scale.

We found that in all feedforward architectures, the enhancement significantly im-
proved the pace at which the network learns, compared to the network with no en-
hancement. However, it also showed a tendency to overfit the data. Thus, stronger
regularization has to be employed.

We were unable to match the batch normalized variants in terms of learning pace, as
measured on the validation set. Also, combining the layers with batch normalization
yielded to the same training errors, and the validation errors were actually worse.
However, our method can be employed in settings in which batch normalization cannot
be used, such as online learning, where the batch size is constrained to 1.

We were unable to make any of the combinations work well in the recurrent neural
network. We believe this is due to the implicit weight sharing in recurrent networks,
which constrains the transformation to be the same for each time step.

We find the layerwise shifting and scaling layers to be promising, but further work
needs to be done to understand them. We performed experiments only on relatively
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small networks, and it remains to be seen how the effects of these layers can translate
to larger networks.
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Appendix A: source code of library

The source code of the library for rapis prototyping of experiments can be found on
the attached CD. Alternatively, it can be found on this webpage: https://github.

com/buj/bakalarka_public
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