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Abstrakt

Hlavnú kostru práce tvorý program na generovanie nezafarbiteľných kubických grafov
(snarkov). K týmto grafom sa ešte pridávajú veľké snarky z už existujúcej databázy.
Kedže vytváranie grafov hrubou silou je časovo veľmi neefektívne, musí sa použiť rých-
lejší spôsob generovania.Tento spôsob je inšpirovaný teóriou o dekompozícii snarkov.
Pre výsledné grafy sa počítajú jadrá, ktoré môžu poslúžiť pri následných overovani-
ach hypotéz z oblasti teórie grafov. V tejto práci tiež nahliadneme do zložitostných
vlastností.

Kľúčové slová: nezafarbiteľný kubický graf, jadro grafu, snark
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Abstract

The main frame of this work consists a program for generating uncolourable cubic
graphs (snarks). To these graphs we add larger snarks from an already existing
database. Since generating graphs with brute force has a large time complexity, a
more effective way is needed for creating the graphs. This method is inspired by the
theory about the decomposition of snarks. For the resulting graphs we compute their
cores, which can be later used for the verification of conjectures from the field of graph
theory. In this paper we also gain some insight into complexity properties.

Key words: uncolourable cubic graph, core of a graphs, snark
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Introduction

The aim of this work is to get a database of the cores of uncolourable cubic graph which
we take as the definition of simple snarks in this paper. For this we create a generator
which produces these graphs and stores them in a database. The program also enables
us to compute the cores of larger snarks which we import from an existing database
called House of Graphs on the internet. Under the term core we understand a minimal
(regarding the edges and nodes) graph that is still uncolourable. It means, that if we
delete any of the edges of the core, it becomes colourable. It is also important to note
that by colourable we mean that a graphs chromatic index is 4. (i.e. it cannot be
properly edge-coloured using 3 colours). Having these graphs in a database we enable
others to investigate some of their general properties, verify already existing conjec-
tures, or refute them. In this paper we learn some information about the complexity of
this task which also reveals some interesting informations about these types of graphs.
In the first chapter we introduce some notation and show how we use the SAT for
solving this problem. Then we introduce some details of the program, and some of its
technical details. Then we investigate the properties of the generation process itself.
Then we say some words about the result storage and draw some conclusions.

1



Chapter 1

Definitions

1.1 Basic notions

Before dealing with the given problem, we look at the basic definitions and concepts
in this chapter. We mention them, since the definitions may differ in some sources. By
doing so we can avoid possible misunderstandings when reading this work.

In graph theory graphs are defined as abstract objects specified by a set of vertices
(or nodes) V and a set of edges E which are pairs of vertices. Graphs are mostly
divided into directed and undirected ones. Undirected graphs are those, where we do
not assign a direction to the edges. In other words, we do not distinguish between
edges connecting vertices a,b based on their order. They are represented as unordered
pairs {a,b}. We are interested in the undirected graphs when dealing with our problem
of uncolourable graphs.

Undirected graph is an ordered pair G = (V, E), where:

• V is the vertex set. It is a non empty finite set of vertices (nodes) of the graph.
This set is often denoted V(G) or just V.

• E is the edge set. A set of unordered pairs {u, v}, the edges, where u and v are
vertices in V. For the sake of brevity sometimes written as uv. If u = v, then we
talk about self-loop, or simply loops.

When multiple edges connect two vertices, we talk about multigraphs. In this paper
we consider multiple edges having no own identity, meaning that these edges are defined
solely by the two vertices they connect. Graph G0 = (V0, E0) is the subgraph of graph
G = (V,E), if V0⊆ V and E0 ⊆ E. Then we can write G0 ⊆ G.

2
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Let G = (V, E) be a graph, v ∈ V and e ∈ E. If e = {u, v}, u and v are called
adjacent. If d = {u, w} ∈ E, e and d are called incident, also if v ∈ e, e and v are
incident.

The degree of vertex v is the number of edges incident to it. Also denoted deg(u).
deg(u) = |{e ∈ E | u ∈ e}|

Regular graph G is a graph which has all its vertices of the same degree. A regular
graph with vertices of degree k is called k-regular. A 3-regular graph is also called
cubic.

A u-v walk of length n in graph G is an alternating sequence of vertices xi and edges
hi of the graph G = x0, h1, x1, h2, ..., xn−1, hn, xn where the edge hi and the vertices
xi−1, and also xi are incident (for i=1,2,...,n), while if hi is not a loop, then xi 6= xi−1.
A walk, where x0 = xn is called closed, otherwise it is called open.

A trail in graph G is a walk in graph G, such that every edge appears in it at most
only once. A trail, where x0 = xn is called closed (or simply a circuit), otherwise it is
called open.

A path in graph G = (V, E) denotes a sequence P = (v0, e1, v1, ..., ek, vk) where
ei={vi−1,vi} and vi−1 6= vj−1 for i 6= j. With other words the path is a trail, where no
vertex is repeated. Its length is k.

A connected graph G is a graph, where for every vertex v, u ∈ G exists a path
from v to u.

A cycle is a sequence of vertices and edges P = (v0, e1, v1, ..., en, vn), where v0 = vn

and vertices v0,..., vn−1 are mutually distinct vertices of G and for every i = 1,2,...,n is
ei = {vi−1, vi} from E.

A cycle graph (or circular graph) denotes a graph, which consists of a single cycle,
in other words, vertices connected in a closed chain (a path, which starts and ends in
the same vertex).

A graph having a subgraph, which is a cycle graph, is called cyclic. Otherwise it
is said to be acyclic.

A graph G = {V, E} is called edge-weighted, if every edge e ∈ E has a number w ∈
R assigned to it.
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Edge colouring of a graph G = {V, E} is a function c: E → S, where (e1) 6= (e2) if
e1 and e2 are parallel edges. The elements of S are called colours.

A graph G = (V,H) is said to be k-edge-colourable, if we can assign k colours
to its edges in a way, when no two incident edges have the same colour. We call a
colouring which does not colour incident edges with the same colour acceptable. We
often use the therm uncolourable graph in this paper, by which we mean that the given
graph is not 3-edge-colourable.

The chromatic index of graph G is the smallest natural number k such that the
graph G is k-edge-colourable.

Graph G is said to be connected, if for every pair of its vertices, u and v , exists a
path starting with the vertex u and ending in vertex v. If the graph is not connected,
we call its largest connected parts connected components, or simply components. In
a component all the vertices are connected via a path. A connected graph consists of
only a single component, which is the graph itself.

A bridge (isthmus, cut-edge) of a graph is an edge which does not belong to any
cycle in the given graph. The deletion of the bridge increases the number of connected
components by one. This follows right from the definition, therefore we do not write
the proof here.

A simple graph, or strict graph, is an unweighted, undirected graph without self-
loops or multiple edges.

Snarks are simple, connected cubic graphs with a chromatic index 4. They are often
defined as bridgeless, but we do not require this property strictly as we mention it later
in this text. A simple example of a snark is the Petersen graph [pic. 1.1]. We can note
here that these graphs may contain multiple edges and self-loops.

The distance d(u,v) between vertices u and v of a finite graph is the minimum
length of the paths connecting them. If no such path exists (if the vertices lie in
different connected components), then the distance is set to ∞ [4].

The length maxu,v)d(u,v) of the "longest shortest path" between any two graph
vertices (u,v) of a graph, where d(u,v) is a graph distance. In other words, a graphs
diameter is the largest number of vertices which must be traversed in order to travel
from one vertex to another [17].
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Figure 1.1: Petersen graph [2]

A graph is called cyclically k-edge-connected, if minimally k edges must be
deleted to disconnect it into two components,where each of them contains a cycle.
Such a set of k edges is called a cyclic k-edge cutset.
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1.2 Transformation to the SAT problem

Valuation of atomic formulas of a language Lp is every function v: P → 0,1, which
assigns to every atomic formula p ∈ P a value: 0 (false) or 1 (true).

• With induction on the length of a formula we define the extension v of function
n for the domain of the set of all formulas of language Lp:

v(A) = v(A) if A is an atomic formula
v(¬A) = 0 if v(A) = 1 else v(¬A) = 1

v(A∧B) = 1 if v(A) = v(B) = 1 else v(A∧B) = 0

v(A∨B) = 0 if v(A) = v(B) = 0 else v(A∨B) = 1

v(A→) = 0 if v(A) = 1 a v(B) = 0 else v(A→B) = 1

v(A↔B) = 0 if v(A) = v(B) else v(A↔B) = 0

• We say, that v(A) is the truth value of a formula A at valuation v. The formula
A is true at valuation v, if v(A) = 1, otherwise the formula A is false.

The problem of graph colourability is transformable to the SAT problem. It is
convenient, because doing so it is enough solve the right SAT problem. With this
method we achieve some level of abstraction. In this section follows the description of
this process also based on the diploma thesis [10] from our sources.

SAT

On SAT we can look as the set of all satisfiable bool expressions. A formula is in
conjunctive normal form (CNF), if it is a conjunction of clause, where every clause is
a disjunction of literals. A literal is a variable or its negation. A formula is satisfiable,
if exists a valuation of variables such that the formula evaluates to true.

The SAT is a language over the alphabet ∧, ∨, ¬ ,(,), 0, 1, where every word belongs
to the language, if the corresponding formula in CNF is satisfiable. We can formulate
the SAT-problem in the following way: There is a given formula with n variables and
it has to be decided weather there exists a valuation of variables, when it is satisfied.
We can summarize the reason we use a SAT-solver with this quote [9]:

We are interested in CNF, because the most of modern SAT-solvers works
with expressions in CNF. It has the benefit that it is a simple form, where
all the clauses has to be satisfied, what is easier to control, and the first
algorithms created use this.

It is proved that the SAT problem is NP-complete. The proof for this statement
is in Cook-Levin theorem, which is named after Stephen Cook and Leonid Levin, who
independently on each other proved the NP-completeness of the SAT problem.
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Examples for the SAT problem:

φ1 = (x1 ∨ x2) ∧ (x1) ∧ (¬ x1)
φ2 = (x1 ∨ x2) ∧ (x2 ∨ x3)

φ1 consists of three clauses (a formula containing literals which evaluates to true, if
at least one literal is evaluates to true). The first one has two literals, the second has
one and the third one contains the negation of one literal. A formula is not satisfiable,
because it contains the conjunction of literals x1 and its negation. Therefore there
exists no valuation at which this formula would evaluate to true.

φ2 is obviously satisfiable. It is enough for x2 to have valuation 1. If the clauses
are restricted to have maximally k literals in one clause, then we talk about k-SAT
problem.

DIMACS CNF file format

If we transform our problem to one of a SAT type, then the SAT-evaluator can evaluate,
weather the given graph is k-colourable. In our case k = 3.The input format for the SAT
solver we use is the DIMACS file format. It allows us to represent boolean formulas
in conjunctive normal form as described in [1]. The CNF file format is an ASCII file
format.

1. The file may begin with comment lines. The first character of each comment line
must be a lower case letter "c". Comment lines typically occur in one section at
the beginning of the file, but are allowed to appear throughout the file.

2. The comment lines are followed by the "problem" line. This begins with a lower
case "p" followed by a space, followed by the problem type, which for CNF files
is "cnf", followed by the number of variables followed by the number of clauses.

3. The remainder of the file contains lines defining the clauses, one by one.

4. A clause is defined by listing the index of each positive literal, and the negative
index of each negative literal. Indices are 1-based, and for obvious reasons the
index 0 is not allowed.

5. The definition of a clause may extend beyond a single line of text.

6. The definition of a clause is terminated by a final value of "0".

7. The file terminates after the last clause is defined.
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p cnf 2 3
1 2 0
1 0 0
-1 0

Table 1.1: (x1 ∨ x2) ∧ (x1) ∧ (¬ x1) in DIMACS CNF format

We can show how is the CNF formula φ1 represented in DIMACS:

For the effective calculation we transform graph colourability into a SAT problem in
the following way: the number of variables in the formula is the triple of the number
of edges in the graph. The reason for this is that we can assign 3 colours to every
edge. Evaluating one of these variables as True means colouring the edge with the
colour this variable represents. For every edge we add a clause containing the three
possible colours of the given edges. This secures that every edge is coloured with
one colour minimally. The variables are considered to represent the same colour
on different edges if their numeral representations are congruent mod 3. Apart from
this, we have to make sure that only one colour can be chosen for a given edge. For
this we add three clauses containing all the three possible pairs of the negations of
the variables assigned to the given edge. This is done for all the edges and ensures
that every edge is coloured with one colour maximally. The last thing is to make
sure that neighbouring edges have a different colour assigned to them. For this we
add clauses containing the disjunction of negations of variables congruent 3 for every
incident edge: if e1 has variables 1, 2, 3 and e2 has 4, 5, 6, and e1 is incident to e2,
then we add (¬1∨¬4) ∧ (¬2∨¬5) ∧ (¬3∨¬6). Here we show it on a simple example of
graph G, where EG = (1,2),(1,4),(2,3),(3,4) [1.2].

1 2

34

Figure 1.2: Simple sub-cubic graph
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p cnf 12 28
1 2 3 0
-2 -3 0 -1 -3 0 -1 -2 0
4 5 6 0
-5 -6 0 -4 -6 0 -4 -5 0
-1 -4 0 -2 -5 0 -3 -6 0
7 8 9 0
-8 -9 0 -7 -9 0 -7 -8 0
-1 -7 0 -2 -8 0 -3 -9 0
10 11 12 0
-11 -12 0 -10 -12 0 -10 -11 0
-7 -10 0 -8 -11 0 -9 -12 0
-4 -10 0 -5 -11 0 -6 -12 0

Table 1.2: DIMACS CNF format for [1.2]

Graph6 Format

The graphs are represented in Graph6 format. The graph is represented as the pair
N(n) R(x), where n is the number of vertices and x is the bit vector representing the
upper triangle of the adjacency matrix [1.4]. R(x) is the representation of the bytes of
x in a decimal form.

Number n is an integer from the interval 0 - 68719476735 (=236-1).

If 0 <= n <= 62, then N(n) is one byte having the value n+63.

If 63 <= n <= 258047, define N(n) to be the four bytes 126 R(x), where x is the
bigendian 18-bit binary form of n.

Examples:
N(30) = 93
N(12345) = N(000011 000000 111001) = 126 66 63 120
N(460175067) = N(000000 011011 011011 011011 011011 011011) =
= 126 126 63 90 90 90 90 90

The vector x is interpreted in the following way: ( 0/1 on the i-th position in x →
vertices x y are connected/unconnected):

The following table shows how are the particular bits assigned to the positions in the
vector x for n=4:
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i x y
0 0 1
1 0 2
2 1 3
... ... ...

n(n−3)−2
2

0 n-1
... ... ...

n(n−1)
2

n-1 n-1

Table 1.3: Edges assigned to the bits according to their positions

x/y 0 1 2 3
0 . 1 2 4
1 . . 3 5
2 . . . 6
3 . . . .

Table 1.4: Adjacency matrix and the order of edges in x

Example:
Let n=5 and G have 0-2, 0-4, 1-3 a 3-4.

x = 0 10 010 1001
Then N(n) = 68 a R(x) = R(010010 100100) = 81 99.

The resulting encoding is 68 81 99.



Chapter 2

Generating the graphs

In this chapter we are going to describe the process of generating the required cubic
graphs. In the first section we talk about the motivation for the construction of this
database and its usability. In the next section we describe the main functions used in
the program. After that show the main algorithm and we look at the generation of an
auxiliary set of graphs used in the main process. This is followed by a brief argument
on behalf of the correctness of the whole process. Then we introduce some additional
non-trivial snarks by which we enrich our database, mention complexity issues and
finish with some technical description.

2.1 Motivation

Cubic graphs constitute an important part of graph theory, especially the snarks. As
mentioned in [16]:

"Snarks are quintessential to many important problems and conjectures in graph
theory including the 4-colour theorem, Tutte’s 5-flow conjecture, the cycle double cover
conjecture, and many others. While most of these problems are trivial for 3-edge-
colourable graphs, they are exceedingly difficult for snarks in general. On the other
hand, for those which are close to being colourable they are usually tractable."

Also described in [7]: "For many of the unsolved problems concerning cycles and
matchings in graphs it is known that it is sufficient to prove them for snarks". Many
conjectures can be investigated if having a proper database, what is a motivational
factor for creating our generator program. As showed in [7], some conjectures can be
refuted when having a proper database at disposal.

11
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2.2 Graph functions

Graph generation with some brute force method would have too large complexity so
another method is needed. Our approach is therefore to iteratively generate graphs.
In this chapter we describe this method. We start the generation from some small
cubic graphs and new graphs are generated with the functions we define later in this
chapter. Having the process for graph generation it is important to have a proof of
correction. We prove that by using these functions we get the set of all uncolourable
cubic graphs up to the desired number of vertices. In the process of generation we also
use an external graph generator program [13] producing colourable cubic graphs since
we need them in our process.

In the section below we describe the functions we use in the process of graph gen-
eration. In the description of these functions we use the letters of the English alphabet
as vertex labels, in the program however the vertices are labelled with numbers from
1 to n, where n is the number of vertices in the given graph. For the graphs generated
by the functions a canonical form is computed, so we can easily avoid generating iso-
morphic graphs.

• f1 = AddTwoNodesOnEdge
input: graph G, edge uv, where uv ∈ EG

output: graph G’

Figure 2.1: Expanding edge with multi edge pair

• f2 = addTwoLoopsInsteadEdge input: graph G, edge uv, where uv ∈ EG

output: graph G’

Figure 2.2: Replace edge with edges incident with self-loops
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• f3 = addTriangle
input: graph G, vertex v, where v ∈ VG
output: graph G’

• f4 = addSquare
input: graph G, edges u1u2, v1v2, where u1u2, v1v2 ∈ EG

output: graph G’

Figure 2.3: Replace vertex with a triangular formation

• f5 = joinGraphsOnNodes
input: graphs G1, G2, vertices v1, v2, where v1 ∈ VG1 and v2 ∈ VG2

output: graph G’

G1 G2

G1

G2

Figure 2.4: 1. version: join graphs on self-loops

G1 G2

G1

G2

Figure 2.5: 2. version: join graphs on vertices

• f6 = joinGraphsOnEdges
input: graphs G1, G2, edges u1v1, u2v2,where u1v1 ∈ EG1 and u2v2 ∈ EG2

output: graph G’
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G1 G2

G1

G2

Figure 2.6: Join graphs on edges

• insertGraph
input: graph container S, canonic graph container Sc, graph G
No return value. Inserts graphs to S they meet the criteria and have no isomorphic
equivalents there. Simpler version for colourable graphs in the auxiliary container.

f1 Adding two vertices on an edge
Adding two vertices on an edge in this function we choose two vertices (v1v2) connected
with an edge. We remove the edge connecting them and add two other vertices (u1,
u2) to the graph. Then these additional vertices are connected with the graph in this
manner: add edges u1u2 two times, v1u1 and v2u2. In this way the resulting graph
is also cubic if the input graph was cubic too. The degree of the vertices v1 and v2

stays unchanged since we remove one of their incident edges (v1v2), but we also add
two other incident edges. Namely v1u1 and v2u2. We can easily see, that the degree of
the added vertices is also 3.

f2 Adding two vertices with self-loops
An edge v1u1 is chosen. It is removed and two vertices, v2 and u2 are added to the
graph. Then v1 and u1 are connected with v2 and u2 respectively. Two self-loops, v2v2
and u2u2 are also added to the graph to preserve 3-regularity of the graph. Before
saving the resulting graph whether its connected or not, because it has the potential
of creating an unconnected graph if the original graph G contained a bridge. If the
resulting graph is not connected, the return value is None.

f3 Replacing a vertex with a triangle
Two vertices are added to the graph (v1, v2). A triangular formation is created by
mutually connecting the vertices v, v1 and v2 with edges (vv1), (vv2),(vv2). The function
then works differently according to three cases:

1. The vertex v is originally connected to three different vertices (u1, u2, u3): the
edges vu1, vu2, vu3 are removed and are replaced by new edges (vu1),(vu2),(vu2).
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2. The vertex v is originally connected with one other vertex u and EG contains a
loop on v. (vv) is removed and a second edge (v1v2) is added to the triangle.

3. v is connected with only one vertex , namely u with three parallel edges edges.
Two of them are replaced with edges (v1u) and (v2u). This case is relevant only
at the start of the generation process, where is G has two vertices connected with
a triple edge. In other cases this situation is not present, since a graph can not
have more than two vertices, a triple edge and be connected simultaneously.

f4 Adding a square on two edges
These edges are removed and four new vertices are added (w1,w2,w3,w4). A square like
formation is made by adding edges w1w2,w2w3,w3w4. This square is then connected to
the graph with edges v1w1, v2w2, u1w3 and u2w4. We can note here that the vertices
v1, v2, u1, u2 are not necessarily distinct.

f5 Join two graphs on two vertices
Graphs G1 and G2 are connected on vertices v1 and v2. In this function we distinguish
two different cases:

1. The vertices have self-loops. There are two edges in both graphs that contain
one of these vertices. In G1 we have u1v1 and (v1v1) In G2 (u2v2) and (v2v2).
We remove the vertices with the loops and connect the two graphs with an edge
(u1u2). The result is G’ containing a bridge.

2. The vertices have no self-loops. The graphs are connected on v1 and v2 having 3
neighbours (v11, v12, v13 for v1 and v21, v22, v23 for v2), not necessarily all distinct.
Vertices v1 and v2 are removed and the graphs are connected with three edges:
(v11, v21),(v12, v22),(v13, v23).

In some marginal cases this function may return None too. A case like this is when on
eof the input graphs is the one having three parallel edges.

f6 Joining two graphs on an edge pair
The edges (u1v1) and (u2v2) are removed from the graphs. The graphs are then con-
nected with two edges (v1v2) and (u1u2). G’ is at most 2-connected. If G1 or G2 is
uncolorable, than G3 will be uncolorable too. Proof: let the color of the previously
mentioned vertices be: c1 for v1, d1 for u1, c2 for v2, d2 for u2. When we connect v1
with v2, and u1 with u2, we can recolour G2 in a way where the colors c2, d2 in G’
are replaced with d1 and c1 respectively. In case one of the edges is self-loop, None is
returned. This is because in this case we would get a graph with a bridge (the vertex
having the loop has to be connected to the rest of the graph by one edge only), which
we can get in f5.
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insertGraph
This function is responsible for the insertion of graphs into the graph container. When
we are inserting graphs to the standard database, they should be uncolourbale. When
we use this function for the creation of the auxiliary database, we need to store only
the colourable ones. The function has two versions. The one for the auxiliary container
does not controll the colourability, because only colourable graphs are generated there.
The graph containers (S and Sc) are lists of lists, where on the 0-th position are graphs
having two vertices, on the first 4 vertices and so on. From the next steps only the
canonic check is used in the simple form:

• At first, the function controls, weather the graph G is not equal to None. This
may be the case at scenarios, when the functions responsible for the graph cre-
ation return None. For example, when we use f2 and the graph ceases to be
connected, it returns None.

• The next step is the graphs relabelling and the creation of its canonic form.
Relabelling means that its vertices are labelled again from 1 to n, where n is
the number of vertices of the graph G. The edges of the graphs are changed
accordingly. Then the canonic form of the graph is looked up in Sc. If G /∈ Sc

and G satisfies the colourability requirements, it is inserted into S to a position
determined by the size of the graph.

2.3 The algorithm

First of all, we define four containers for the graphs as lists of lists. In one we store
the generated graph. In the second one we store the canonic forms derived from the
graphs to prevent duplicity. We describe this canonic form later in this chapter in more
details. The other two containers are similar to the first one except for that they store
the cores of the graphs.

1. The next step we define the initial graph, from which the generator generates the
other ones.

After that we enter the main loop, where i goes from with a pace of two from
0 until (n/2)-1. n is the number of vertices we want to generate and is given
as a parameter of the generating function. At each step of the iteration we are
generating the graphs from the ones having the number of vertices corresponding
to the current value of i. The value 0 corresponds to the first graphs which have
2 vertices, the next ones for i = 1 have 4 vertices and so on.

2. At each level of iteration we apply the functions we described in the previous
chapter on the existing graphs. The insertion function provides some checks
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before inserting the newly generated graphs. It controls the colourability proper-
ties and prevents storing duplicate graphs by searching for the canonic forms of
the graphs in the given container. Null pointers are also filtered out since some
functions do not necessarily return a graph when not meeting some criteria.

3. The first three functions generate new graphs from those that have less vertices by
two. In case of the first two functions, f1 and f2 we iterate through all the edges of
the current graph and apply both functions on them. Then an iteration is made
on all the nodes of the current graph where we apply f3. Since f4 increases the
vertex number by 4, we have to take all graphs having a vertex number smaller
by 4 as the ones currently generated. Having those graphs we iterate through all
the edge pairs and apply f4 on them.

4. The next functions require two graphs as input parameters. Therefore we iterate
through all the appropriate graph size combinations when creating the new ones
of the desired vertex number. For example, when we want to create graphs having
10 vertices with the function f5, we take all the graph pairs G1 and G2, where the
vertex number of G1 and G2 is s1 and s2 respectively, s1, s2 ∈ {(2,10),(4,8),(6,6)}.
This is because f5 reduces the overall vertex number by two. When applying f6,
the sum of vertices can be lower by two because f6 does not delete any vertices.
These functions may also generate correct graphs when one of the input graphs is
colourable, so we repeat the previous process with the difference that on graph is
from the auxiliary set we describe further below. In summary we iterate through
every graph set containing graphs with the desired vertex number, then we iterate
those sets on the graphs and finally we iterate through the vertices (for f5) and
edges (for f6) of those graphs.

2.4 Description of auxiliary graph set

During the generation process we need an auxiliary set of every colourable cubic graphs.
For this purpose we use an external program called genreg [13] for generating connected
k-regular graphs on n vertices. In our case k equals to 3.

This external program generates only simple graphs. In order to get all the colourable
graphs we also need graphs with multi edges too. More precisely, graphs containing
double edges. For this we use the function f2 to expand the simple graphs we already
have. It is easy to see, that f2 does not change the colourability properties of a graph.
If we insert u1 and u2 on an edge v1v2 in a way where we get the edges v1u1, two times
u1u2 and u2v2, than we can assign the colour of v1 to u2 and the colour of v2 to u1.
After this process the colourability of the graph does not change. A different case is
when the initial graph is uncolourable. In this case the colourability of the graphss in
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Figure 2.7: Three parallel edges

this auxiliary database is secured by the colourability check in the insertion function
made for this database.

To assure the auxiliary database is correct, two main aspects have to be considered.
First of all it has to be complete, which means it has to contain all the colourable cubic
graphs up to the given degree. Secondly, it should not contain isomorphic graphs for
the sake of effectiveness.

The completeness is achieved through the method of generation. The simple graphs
are generated and then we iterate through these graphs by their size. The smallest ones
are taken one by one and we apply f2 on all the edges of all the graphs. The resulting
graphs are stored in the set of graphs that have two more vertices. During the next step
all the simple graphs having two more vertices and the ones generated in the previous
step are chosen. Again we apply f2 on all their edges. This process is repeated until
we have the database of graphs up to the required number of vertices. There is one
extreme case. It is the graph having a triple multi edge between two vertices [2.7]. No
other cubic graph can have a triple edge that is also connected. This is also the only
colourable cubic graph with two vertices. Since it is a special case, we just insert it
manually to the database before we start the expanding process with f2. The reason
the database is complete is that we generate all the simple graphs, take care of the
special case and add the double edges to every graph in all the possible ways.

We can consider isomorphic graphs as same. For this reason we try avoid storing
graphs that are isomorphic. This is done by comparing the canonic form of graphs. We
also save the canonic formats of graphs during insertion, and if a new graph is being
inserted, we search for the same canonic graph as is the one derived from the one being
inserted. If we find a same one, we do not save the graph, since we already stored one
isomorphic with it. We describe this process later in this paper.

2.5 Proof of correctness

In this section we describe the basic logical concept of this method of generation of
graphs. We rely on the “Decompositions and Reductions of Snarks” by Roman Nedela
and Martin Škoviera [14]. In this proof we use the term snark as described in the
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above mentioned text: “it is convenient to keep the basic notion of a snark as broad as
possible. Therefore we allow a cubic graph to have both multiple edges and loops, and
understand the term “snark’ merely as a synonym for a cubic graph that has no 3-edge-
coloring.” In addition we are considering only connected graphs. As mentioned in the
paper, we can put the operation reducing snarks into two categories: “The first type
starts with a snark G, identifies an uncolorable part in it, removes the complement, and
replaces it by a small subgraph that is stuck to the remainder to get a snark G’ with
fewer vertices than G. The resulting snark G’ is a reduction of G. The second type of
operation splits G into two subgraphs, adds a small number of vertices and edges to each
to get two snarks G1 and G2, each having a smaller order than G. The pair G1, G2 is a
decomposition of G.” Here we can mention that in case of some decompositions where
we get two separate graphs after the decomposition, in some cases one of them can be
colourable and for that reason we also generate the auxiliary set of some colourable
cubic graphs. We want to generate graphs, therefore we implemented our functions
doing the opposite operations as are described in the paper. Our functions f1, f2, f3, f4
are based on the first type of operations while f5, f6 on the second type. When using the
later group of functions, we need the set of colourable cubic graphs too, because we need
them for the reverse of those reductions, where two graphs are created and one of them
is colourable . The proof of that the graphs we create have the desired properties can
be divided into more logical steps. The first is their uncolourability and connectedness.
These properties are controlled before insertion to the set of graphs. The second step
is the proof of completeness, where we need to reason why does our program generate
all the graphs cubic graphs we need. This can be done inductively. Here we see from
the article, that every uncolorable, cubic, connected graph is generated from a smaller
one having similar properties, or two smaller ones with the same properties except that
one of those two may be colourable. For the base of induction it is enough to have
the smallest cubic graphs, which is G, where EG = uu, uv, vv [2.8], and a set of all
colourable cubic graphs to the desired vertex size. For the inductive step we need all the
possible ways in which a graph with correct properties is generated from the previous
graphs. These are implemented in our functions that are based on the decomposition
operations described in article [14]. As described in 2.3 at number [3.] and [4.], the
generating functions are applied on every graph or graph-pair, on every vertex, edge or
edge pair according to their specification. This ensures that every graph is generated
that could be with the methods based on [14]. After the process the resulting database
is expanded by cyclically 4-connected graphs with diameter 5 from [TODO -source].
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Figure 2.8: Smallest uncolourable cubic graph

2.6 Adding larger snarks

To have larger snarks that are non-trivial, we include some from a web database of
graphs called House of graphs [6]. We import them up to 20 vertices. There is nine of
them in total. The first is the Petersens graph which has 10 vertices. There are 2 graphs
in this set having 18 vertices and 6 with 20 vertices. On the current hardware the core
decomposition has finished only for the Petersens graph. Some statistical details are
mentioned in a later chapter of this paper. On the previously mentioned website the
graphs were in Graph6 format, which we parsed with the NetworkX Python library
used in our program.

2.7 Complexity of the program

During the computation of the complexity of the program, we can proceed in three
steps:

1. At first we can look at the complexity of our auxiliary programs used during
the graph generation. One of these programs is "nauty", which uses a SAT
solver called "lingeling" [5]. We know that the SAT-problem is is NP-complete
(nondeterministic polynomial time) [15]. As well as the program for creating
canonical labels for graphs works with NP complexity. The formal definition of
NP is the set of all decision problems that can be solved in polynomial time by
a non-deterministic Turing machine.

2. The next issue is the set of functions used in the program. The first are f1 and
f2 which have linear complexity depending on the number of edges in the graph,
denoted O(E). The amount how many times is f3 called on a graph depends on
the number of its vertices - denoted O(V). f5 operates with two graphs on their
nodes, therefore the complexity class is O(V 2). f6 is similar, where the induced
complexity is O(E2), since it operates on the edges of the graphs.

3. The last, but the most important factor is the number of generated graphs in
the previous iteration in every round of iteration. Here we prove it having a
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lower boundary. As we described previously, some uncolourable graphs can be
generated from on colourable and one uncolourable with a specific operation. If
we take a core of the Peterson graph, we can join it with any colourable graph,
what implies an overall exponential complexity.

Some numeric results about the generation:
2 nodes -> 1 graph -> added manually
4 nodes -> 3 graphs -> 0.16416 seconds
6 nodes -> 15 graphs -> 1.53660 seconds
8 nodes -> 74 graphs -> 14.60413 seconds
10 nodes -> 436 graphs -> 150.02060 seconds

2.8 Technical features

Python 3
In this section we mention some of the technical detail of the program generating
uncolourable cubic graphs. The main part of the program was written in Python 3 [3],
but used some external programs written in c programming language too. The Python
part of the program uses mainly the library called NetworkX [8]. It has implementations
of many structures and functions regarding graph theory, which provides a comfortable
framework for a user working with graphs.

Nauty
Nauty and Traces [12] are programs written in C for computing automorphism groups of
graphs. They can also produce canonical labels for graphs, what we use in our program.
The input is a simple graph in Graph6 format and the output is the canonical label
for the given graph.

There is a small suite of programs called gtools included in the package. Another
program, created by Ján Mazák [11], also using gtools, provides functions for controlling
graph colourability. Our generator uses it too for checking colourability properties. It
transforms the colourability problem into a SAT problem and solves it with a program
called Lingeling [5]. The C functions from these programs we use are accessed via
the ctypes Python library. Ctypes allows the user calling functions in DLLs or shared
libraries of C programs.

Genreg
Genreg is a graph generator [13] which we used for the generation of simple cubic
graphs for the auxiliary database.



Chapter 3

Reduction to cores (minimal
uncolourable subgraphs)

We define the core of a graph (a snark) as a minimal sub-graph which is still un-
colourable. It means that removing an edge from the graph makes colourable (reduces
its chromatic index).

3.1 Description of the algorithm producing cores

The input of the function generating the cores of a graph is a container where are the
cores stored, another container for the canonic labels of the graph for evade redun-
dancy and a graph G. We remove those nodes from G which have a self-loop on them,
because loops are trivial cores (they are uncolourable). Then we try to remove every
edge recursively (a recursion on all edges). If a graph is uncolourable and all its sub-
graphs are colourable, we save the given graph. If it has uncolourable sub-graphs, we
continue the recursion on them. If the graph is colourable, we return from the recur-
sion. This implies exponentioal complexity in terms of the number of edges. However,
the recursion is usually 4 calls deep, what makes it feasible to compute the cores for a
reasonable amount of graphs as we show some numeric results later.

3.2 Possible improvement

To make the program more effective, we could use some more low level programming ,
like C, A better synchronisation of the used software could also reduce the time needed
for the generation. Some hardware with bigger capacity could help us to generate a
bigger database as well. We could also replace the SAT solver with some back-track
algorithm unless we do not exceed some specific vertex number in the graph.
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Chapter 4

Analysis of the results

4.1 Statistical data

In this chapter we show some statistical data resulting from the generation of the graph.

Vertex number amount of graphs time needed
2 1 added manually
4 3 0.16416072845458984 seconds
6 15 1.5365965366363525 seconds
8 74 14.604133605957031 seconds
10 436 150.02060294151306 seconds

Table 4.1: Basic generation of small snarks

Vertex number of original graphs amount of cores time needed
2 0 added manually
4 1 0.16416072845458984 seconds
6 6 1.5365965366363525 seconds

Table 4.2: Generating cores

The Petersen graph is the first large snark with 10 vertices. It has 3 non-isomorphic
cores: 1 with 8 vertices and 2 with 10 vertices. The measured computation time for
these cores is 75.59278 seconds.
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Chapter 5

Storage of the results

In this chapter we are describing how the graphs are stored. After that we show a
possible method to reduce the required storage space for cubic graph by creating a
transformation to simple graphs.

5.1 Format of the stored graphs

The graphs, when generated, are stored in a list of lists by size. In the main list, on
the first position with index 0, are the smallest possible cubic graphs having only two
vertices. With increasing index in the graph container, increases the number of vertices
of the graphs on that given position. At the k-th index is the list of graphs having 2k+2
vertices. When we insert a graph to the container, the "insertGraph" function appends
the new graph to the end of the proper list. Since the number of generated graphs is
relatively small, they are stored in a text file, each of them represented by their edges
written as pairs of numbers, where the numbers represent the vertices. An example for
a graph G, where VG = {1,2,3}, EG = {12, 12, 23, 33}, the text representation of this
graph will be [(1, 2), (1, 2), (2, 3), (3, 3)].

5.2 Cubic to simple transformation

In case we would have to deal with significantly more cubic graphs, we could represent
them in Graph6 format too. As we know, Graph6 format does not support multi-
graphs, however cubic graphs can be transformed to simple graphs bijectively (except
for the ones having two vertices as we show later). The problematic parts are the dual
edges and self-loops. The process of transformation of cubic graphs to simple ones is
the following: removing self-loops and replacing parallel edges with single ones. The
transformation in the opposite direction is a bit more complicated. If we encounter
an edge that is connected to the rest of the graph only at one of its vertices, we put
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a self-loop on its other vertex, because no other way exists to expand the graph to
make the loose node cubic. Here we can note, that a self-loop increases a degree of a
vertex, it is incident with, by two. A more complex case is when we have an edge e,
that is connected to the graph with both of its vertices which are not cubic. In this
case there are two possibilities. Either we have to insert to this graph a parallel edge
with e, or a parallel to one of its incident edges. Lets call a path consisting only such
ambiguous edges an ambiguity chain. Let us consider only those ambiguity chains that
are maximal regarding their length (their first and last edge is incident with a non
"ambiguous" edge). Since we can not add a parallel edge to those incident with the list
(because one of their vertices is already cubic), we have to add it to the next edge. In
this way the chain gets shorter by two edges (unless it was the last edge in the chain).
It is important to note here, that such chains always have an odd number of edges.
With this method we manage to retrieve the original form of the graph. Another case
is when the ambiguous edges are in a cycle. It this situation there is an even number of
edges and two possibilities for expanding such a cycle. This, however, is not a problem,
since the two possible resulting graphs of the expansion are isomorphic. Here we can
avoid this ambiguity by always adding the parallel edge to the first possible place. By
first we mean edge uv, where the sum of the numerical representations of u and v is
minimal.

During the conversion of cubic graphs to simple ones ambiguity occurs when dealing
with graphs having two vertices as mentioned before. This is because transformation
from cubic graphs produces the same result for both graphs with two vertices: [2.8]
and [2.7]. Therefore we can handle this situation as a special case and save storage
capacity on every other graph.



Conclusion

We gained some insight into the generation of small snarks in this paper. We see that
there are some complexity issues that make the process slower. We also see some room
for improvement, which could increase the feasible amount of graphs we can generate.
Future research may rely on some of these experiences.

26



Bibliography

[1] Cnf files. http://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html. (On-
line; accessed 15-May-2018).

[2] Petersen graph. https://en.wikipedia.org/wiki/Petersen_graph. (Online;
accessed 15-May-2018).

[3] Python Software Foundation. Python Language Reference, version 3.4 edition.

[4] Barile, Margherita. "from mathworld–a wolfram web resource, created by eric w.
weisstein. http://mathworld.wolfram.com/GraphDistance.html.

[5] Armin Biere. Lingeling, plingeling and treengeling entering the sat competition
2013.

[6] J. Goedgebeur H. Mélot Brinkmann, K. Coolsaet. House of graphs: a database
of interesting graphs, discrete applied mathematics. Journal of Graph Theory,
161:311–314, 2013. (Available at http://hog.grinvin.org).

[7] JonasHägglund Klas Markström Gunnar Brinkmann, Jan Goedgebeur. Genera-
tion and properties of snarks. 103:468–488, July 2013.

[8] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network struc-
ture, dynamics, and function using networkx. In Gaël Varoquaux, Travis Vaught,
and Jarrod Millman, editors, Proceedings of the 7th Python in Science Conference,
pages 11 – 15, Pasadena, CA USA, 2008.

[9] Matúš Kukan. Využitie sat-solverov pri riešení ťažkých úloh. Bakalárska práca,
Univerzita Komenského v Bratislave, 2017.

[10] Olívia Kunertová. Circular chromatic index of small snarks. Diplomová práca,
Univerzita Komenského v Bratislave, 2017.

[11] Ján Mazák. personal communication, 2017-2018.

[12] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, {II}. Jour-
nal of Symbolic Computation, 60(0):94 – 112, 2014.

27

http://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html
https://en.wikipedia.org/wiki/Petersen_graph
http://mathworld.wolfram.com/GraphDistance.html


BIBLIOGRAPHY 28

[13] M. Meringer. Fast generation of regular graphs and construction of cages. 30:137–
146, 1999.

[14] Roman Nedela and Martin Škoviera. Decompositions and reductions of snarks.
Journal of Graph Theory, 22(No. 3):253–279, 1996.

[15] Ohrimenko, Olga; Stuckey, Peter J.; Codish, Michael. "propagation = lazy clause
generation", principles and practice of constraint programming. Lecture Notes in
Computer Science, 2007.

[16] Ján Mazák Martin Škoviera Robert Lukoťka, Edita Máčcajová. Small snarks with
large oddness. 22:2, 2015.

[17] Weisstein, Eric W. "graph diameter." from mathworld–a wolfram web resource.
http://mathworld.wolfram.com/GraphDiameter.html.

http://mathworld.wolfram.com/GraphDiameter.html

	Introduction
	Definitions
	Basic notions
	Transformation to the SAT problem

	Generating the graphs
	Motivation
	Graph functions
	The algorithm
	Description of auxiliary graph set
	Proof of correctness
	Adding larger snarks
	Complexity of the program
	Technical features

	Reduction to cores (minimal uncolourable subgraphs)
	Description of the algorithm producing cores
	Possible improvement

	Analysis of the results
	Statistical data

	Storage of the results
	Format of the stored graphs
	Cubic to simple transformation

	Conclusion

