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guidance, Bc. Peter Lenčéš for extensive TEXnical
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Thou, nature, art my goddess; to thy laws my services are bound...
W. Shakespear, King Lear

motto of J. C. F. Gauss
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Abstract

The theory of infinite series, an old and well examined part of calculus,
gives us a powerfull tool for solving a wide range of problems such as eva-
luating important mathematical constants (e, π, ...), values of trigonometric
functions etc.

This thesis introduces the idea of infinite series with some basic theorems
necessary in the following chapters. Then building on this, it derives some
convergence tests, namely Raabe’s test, Gauss’ test, Bertrand’s test and
Kummer’s test.

It also proves that there is no universal comparison test for all series.

Keywords: Infinite series, convergence, divergence, Kummer, Gauss,
Bertrand, Raabe.

Abstrakt

Teória nekonečných radov, stará a dobre preskúmaná oblasť matema-
tickej analýzy, nám dáva silný nástroj na riešenie širokého spektra problémov,
ako napŕıklad vyč́ıslenie známych matematických konštánt (e, π, ...), hodnôt
trigonometrických funkcii atď.

Táto práca uvádza základné defińıcie a teorémy z tejto oblasti, ktoré
budú dôležité v ďaľśıch kapitolách. Potom, stavajúc na týchto základoch,
odvádza vybrané kritéria vyšetrujúce konvergenciu nekonečných radov, me-
novite Raabeho test, Gaussov test, Bertrandov test a Kummerov test.

Tiež dokážeme, že neexistuje univerzálne porovnávacie kritérium, ktoré
by vedelo rohodnúť konvergenciu/divergenciu všetkých radov.

Kľúčové slová: Nekonečné rady, konvergencia, divergencia, Kummer,
Gauss, Bertrand, Raabe.
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Chapter 1

Prologue

1.1 The historical background of infinite series

The first mention of infinite series dates back to antiquity. In those times, to
understand that a sum with infinite number of summands could have a finite
result was an important philosophical challenge. Later, the theory of infi-
nite series was thoroughly developed and used to work out many significant
problems that eluded solutions with any other approach.

Greek Archimedes (c. 287 BC − c. 212 BC) was first known mathe-
matician who applied infinite series to calculate the area under the arc of
parabola using the method of exhaustion1.

Several centuries later, Madhava (c.1350 − c.1425) from India came up
with the idea of expanding functions into infinite series. He laid down the
precursors of modern conception of power series, Taylor series, Maclaurin
series, rational approximations of infinite series and infinite continued frac-
tions.

Next important step was taken by Scotish mathematician James Gregory
(1638 − 1675). Gregory understood the differential and integral, before it
was formulated by Newton and Leibniz, on such a level that he was able
to find the infinite series of arctangent by using his own methods. Even
though this is the main result attributed to him, he discovered infinite series

1The method of exhaustion is a method of finding the area of a shape by inscribing

inside it a sequence of polygons whose areas converge to the area of the containing shape.

If the sequence is correctly constructed, the difference in area between the nth polygon

and the containing shape will become arbitrarily small as n becomes large.2

2adopted from http://en.wikipedia.org/wiki/Method of exhaustion on 2nd May, 2009
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for tangent, secant, arcsecant and some others as well.
After English Sir Isaac Newton (1642 − 1727) and German Gottfried

Wilhelm Leibniz (1646 − 1716) independently developed and published for-
mal methods of calculus, they achieved many discoveries within the theory
of infinite series. But even such a genius as Leibniz was unable to find the
sum of inverse squares

1
12

+
1
22

+
1
32

+
1
42

+ ...

This problem was eventually resolved by Swiss Leonhard Euler (1707 −
1783). Euler solved this problem using infinite series and developed new
ways to manipulate them.

With the discovery of infinite series there also came a question which of
them actually yield a finite result. Obviously, the result of series

∑∞
k=1 k

cannot be finite so how we can decide the more obscure ones? First mathe-
matician to study convergence was Madhava in 14th century. He developed
a test3, which was further developed by his followers in the Kerala school.

In Europe the development of convergence tests was started by German
Johann Carl Friedrich Gauss (1777 − 1855), but the terms of convergence
and divergence had been introduced long before by J. Gregory. French Au-
gustin Louis Cauchy (1789 − 1857) proved that a product of two convergent
series does not have to be convergent, and with him begins the discovery
of effective criterions, although his methods led to a special (applicable for
a certain range of series) rather than a general criterions. And the same
applies for Swiss Joseph Ludwig Raabe (1801 − 1859), British Augustus
De Morgan (1806 − 1871), French Joseph Louis Francois Bertrand (1822 −
1900) and others.

Development of general criterions began with German Ernst Eduard
Kummer (1810 − 1893) and later was carried on by German Karl Theodor
Wilhelm Weierstrass(1815 - 1897), German Ferdinand Eisenstein (1823 −
1852) and many others.5

3Early form of an integral test of convergence; in Europe it was later developed by

Maclaurin and Cauchy and is sometimes known as the Maclaurin - Cauchy test. 4

4adopted from http://en.wikipedia.org/wiki/Integral test for convergence on 2nd May,

2009
5text sources (on 2nd May, 2009):

http://en.wikipedia.org/wiki/Infinite series

http://www.math.wpi.edu/IQP/BVCalcHist/calc3.html
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1.2 Elementary definitions and theorems

In this section we introduce the basic definitions such as what exactly the
infinite series are, what the convergence and divergence terms mean etc.
Also we will get acquainted with a few important theorems which we will
refer to in upcoming chapters. (All definitions were adopted from [1].)

Definition 1.2.1. Let {an}∞n=k (k ∈ N ∪ {0}) be a sequence. Then we
call the symbol

∑∞
n=k an (or ak + ak+1 + ak+2 + ... + an + ...) a (infinite)

series. Moreover, as we consider the symbols
∑∞

n=k an and
∑∞

n=m an+k−m

indentical, because we can write all series
∑∞

n=k an in the form
∑∞

n=1 an+k−1,
all definitions and theorems will be formulated for the series in the form∑∞

n=1 bn.

Definition 1.2.2. Let {an}∞n=1 be a sequence. The number ak, resp.

Sk = a1 + a2 + ...+ ak, k ∈ N

is called k-th term, resp. k-th partial sum of series
∑∞

n=1 an.

Definition 1.2.3. We say that the series
∑∞

n=1 an converges (is convergent)
if there exists a finite limn→∞ Sn. We call the number limn→∞ Sn the sum
of series

∑∞
n=1 an and we denote it with the same symbol

∑∞
n=1 an (or

a1 + a2 + ...+ an + ...).
If the limn→∞ Sn is not finite then we say that the series

∑∞
n=1 an diverges

(is divergent) and we can distinguish three cases:
1) if limn→∞ Sn = +∞ we say that the series

∑∞
n=1 an diverges to +∞;

2) if limn→∞ Sn = −∞ we say that the series
∑∞

n=1 an diverges to −∞;
3) if limn→∞ Sn does not exist we say that the series

∑∞
n=1 an oscillate.

Definition 1.2.4.
∑∞

n=k+1 an is called k-th remainder of series
∑∞

n=1 an.
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Having become familiar with the most important definitions we can pro-
ceed to the formulation of some theorems. (All theorems were adopted from
[2].)

Theorem 1.2.5. The series
∑∞

n=1 an converges if and only if the following
is true:

∀ε > 0, ∃N ∈ N, ∀n ∈ N n > N, ∀p ∈ N

|an + an+1 + ...+ an+p| < ε.

Remark 1.2.6. This theorem is known as Cauchy-Bolzano’s theorem.

Corollary 1.2.7. (Necessary requirement for convergence)

If the series
∑∞

n=1 an converges then limn→∞ an = 0.

Corollary 1.2.8. If the series
∑∞

n=1 an converges then

∀ε > 0, ∃k ∈ N :

∣∣∣∣∣
∞∑

n=k+1

an

∣∣∣∣∣ < ε.

Theorem 1.2.9. Let at most finite count of numbers n fail an+1

an
≤ bn+1

bn
,

where an > 0, bn > 0, n = 0, 1, 2, .... Then the convergence of series∑∞
n=1 bn implies the convergence of series

∑∞
n=1 an and the divergence of

series
∑∞

n=1 an implies the divergence of series
∑∞

n=1 bn .

Remark 1.2.10. Known as the second comparison test.

Theorem 1.2.11. Let y = f(x) be a continuous, non-negative, non-increasing
function defined on the interval [1,∞). Let an = f(n) for n=1, 2, ... and
F (x) be a primitive function to the function f(x) on the interval [1, a], where
a > 1 is an arbitrary real number. Then:
1) if limx→∞ F (x) is finite then the series

∑∞
n=1 an converges.

2) if limx→∞ F (x) = +∞ then the series
∑∞

n=1 an diverges.

Remark 1.2.12. Known as the integral test of convergence.
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Chapter 2

Joseph Ludwig Raabe

Born on May 15th, 1801, in Brody, Galicia, J. L.
Raabe was a Swiss mathematician. He began to
study mathematics in 1820 at the Polytechnicum
in Vienna, Austria. In autumn 1831, he moved to
Zurich, where he became a professor of mathematics
in 1833. In 1855, he became a professor at the newly
founded Swiss Polytechnicum.
Joseph Ludwig Raabe died on January 22nd, 1859,
in Zurich, Switzerland.

His best known success is Raabe’s test of convergence.1

1biography source (from 2nd May, 2009):

http://en.wikipedia.org/wiki/Joseph Ludwig Raabe
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2.1 Raabe’s ratio test

Let’s consider the following sequence

an =
1
np

p > 0 n = 1, 2, ...

The first question we may ask is wether the series
∑∞

n=1 an (sometimes
called Riemann’s series) converges. At first glance we see that the necessary
requirement for convergence limn→∞ an = 0 holds, so we need something
more sophisticated.

Let’s put this sequence into the integral criterion and see what happens.
First, we define f(x) as a function

f(x) =
1
xp

on the interval [1,∞), which satisfies f(n) = an (n = 1, 2, 3, ...). We check
that the function f(x) meets all the preconditions required for this test and
we continue by finding a primitive function F (x) to the function f(x). After
some easy calculations, we have the result:

F (x) =

{
lnx if p = 1

1
(1−p)x(p−1) if p 6= 1

Now we check the limx→∞ F (x)

lim
x→∞

F (x) =

{
K <∞ if p > 1

∞ if p ∈ (0, 1]

and according to the integral test (theorem 1.2.11) we can conclude that the
series

∞∑
n=1

1
np

{
converges if p > 1

diverges if p ∈ (0, 1]
(2.1)

This was easy, but let’s go on and see what we can learn about an
an+1

. This
might tell us something about how fast an approaches zero as n tends to
infinity. Equation follows:

an
an+1

=
1
np

1
(n+1)p

=
(
n+ 1
n

)p
=
(

1 +
1
n

)p
= 1 +

p

n
+O

(
1
n2

)
(2.2)

We used here (
1 +

1
x

)p
= 1 +

p

x
+O

(
1
x2

)
13



as an asymptotic approximation valid for x → ∞. After some adjustments
we get

n

(
an
an+1

− 1
)

= p+O

(
1
n

)
where the expresion O( 1

n) becomes insignificant compared to p as n tends
to infinity. Thus for sufficiently large n we can write

n

(
an
an+1

− 1
)
→ p

Put together with (2.1), we can formulate the following theorem, which
is known as Raabe’s test:

Theorem 2.1.1. Let
∑∞

n=1 an be a series with positive terms
(∀k ∈ N : ak > 0). If

∃p > 1, ∃N ∈ N, ∀n > N : n

(
an
an+1

− 1
)
≥ p (2.3)

then the series
∑∞

n=1 an converges. If

∃N ∈ N, ∀n > N : n

(
an
an+1

− 1
)
≤ 1 (2.4)

then the series
∑∞

n=1 an diverges.

Proof. Because we can write

p = q + ε, q > 1, ε > 0

and with (2.3) (for sufficiently large n):

n

(
an
an+1

− 1
)
≥ q + ε ≥ q +O

(
1
n

)
an
an+1

≥ 1 +
q

n
+O

(
1
n2

)
=
(

1 +
1
n

)q
=

1
nq

1
(n+1)q

And since q > 1, the series
∑∞

n=1
1
nq converges. According to the second

comparison test (theorem 1.2.9) the series
∑∞

n=1 an converges as well.

On the other hand, adjusting (2.4) we get

an
an+1

≤ 1 +
1
n

=
1
n
1

n+1

Theorem 1.2.9 implies the divergence of series
∑∞

n=1 an.
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A more general version of this test is using the remainder O(n−2), (which
we formerly hid inside the constant p):

Theorem 2.1.2. Let
∑∞

n=1 an be a series with positive terms. Assume that
there exists a real bounded sequence Bn such that for all n

an
an+1

= 1 +
p

n
+
Bn
n2

Then the series
∑∞

n=1 an converges if and only if p > 1. The series diverges
if and only if p ≤ 1.

Proof. Let’s assume that the series
∑∞

n=1 an converges and p = 1. Using
Bertrand’s test (theorem 4.1.1, see chapter four)

lnn
(
n

(
an
an+1

− 1
)
− 1
)

=
Bn lnn
n

≈ lnn
n

With l’Hopital’s rule we get lnn
n → 0 (as n tends to infinity) and therefore

the series
∑∞

n=1 an diverges (according to Bertrand’s test). A contradiction.
If p < 1 then (for sufficiently large n)

n

(
an
an+1

− 1
)

= p+
Bn
n

< 1

and according to the theorem 2.1.1 the series
∑∞

n=1 an diverges. A contra-
diction. Thus p > 1.

Now we assume that p > 1. For sufficiently large n

an
an+1

= 1 +
p

n
+
Bn
n2
≤ 1 +

q

n
, q > 1

We finish the proof with theorem 2.1.1.

Divergence follows by analogy.

Theorem 2.1.3. Let
∑∞

n=1 an be a series with positive terms. Assume that
there exists a real bounded sequence Bn such that for all n

an
an+1

= 1 +
p

n
+
Bn
n2

Then the series
∑∞

n=1 an diverges if and only if p ≤ 1.

15



Proof. Let’s consider a divergent series
∑∞

n=1 an and let p > 1. Then for
sufficiently large n we get

n

(
an
an+1

− 1
)

= p+
Bn
n

= q, q > 1

which implies (according to the theorem 2.1.1), that the series
∑∞

n=1 an is
actually convergent. A contradiction (hence p ≤ 1).

Now for the part where p ≤ 1. Let us assume that p = 1, for the
divergence in case p < 1 is obvious. By using Bertrand’s test we get

lnn
(
n

(
an
an+1

− 1
)
− 1
)

= lnn
(
n

(
1 +

1
n

+
Bn
n2
− 1
)
− 1
)

=
Bn lnn
n

Because Bn is bounded
Bn lnn
n

≈ lnn
n

With l’Hopital’s rule we get lnn
n → 0 (as n tends to infinity) and therefore

the series
∑∞

n=1 an diverges.

An example. We want to determine the character of series
∑∞

n=1
(2n−1)!!
(2n)!! .

an
an+1

=
(2n−1)!!
(2n)!!

(2n+1)!!
(2n+2)!!

=
2n+ 2
2n+ 1

n

(
an
an+1

− 1
)

= n

(
2n+ 2
2n+ 1

− 1
)

=
n

2n+ 1
≤ 1

According to Raabe’s test, the series diverges.
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Chapter 3

Johann Carl Friedrich Gauss

Born on 30th April, 1777, in Braunschweig, in
the Electorate of Brunswick-Luneburg (now part
of Lower Saxony), Germany, J. C. F. Gauss was
a German mathematician. He is known as the
princeps mathematicorum which means the prince of
mathematicians. And verily this title suits him up
to the hilt. He learnt to read and count by the age
of three. At elementary school when given a task
to sum the integers from 1 to 100, he produced a
correct answer within seconds.

His prodigious mind was quickly recognized by his teachers. Supported
by his mother and by Duke of Brunswick - Wolfenbuttel, who gave him schol-
arship, Gauss entered the Brunswick Collegium Carolinum (1792 to 1795),
and subsequently he moved to the University of Gottingen(1795 to 1798).
While studying at university, he rediscovered several important theorems,
including Bode’s law, the binomial theorem, the law of quadratic reciprocity
and the prime number theorem. His breakthrough came in 1796, when he
showed that any regular polygon with a number of sides that equals a Fermat
prime can be constructed by compass and straightedge. This was the most
important advancement in this field since the time of Greek mathematicians.

In 1799, he proved fundamental theorem of algebra, that every non-
constant single-variable polynomial over the complex numbers has at least
one root. In 1801, he published a book Disquisitiones Arithmeticae (Arith-
metical Investigations). In the same year, Gauss helped astronomer Giuseppe

17



Piazzi with observation of a small planet Ceres by predicting its position.
This opened him the doors to astronomy. His brilliant work published as
Theory of Celestial Movement remains a cornerstone of astronomical com-
putation. In 1807, he was appointed Professor of Astronomy and Director
of the astronomical observatory in Gottingen.

In 1818, while carring out a geodesic survey of the state of Hanover,
he invented a heliotrope, an instrument for measuring positions by reflect-
ing sunlight over great distances. He also discovered the possibility of non-
Euclidean geometries, though he never published it because of fear of contro-
versy. In 1828, he published Disquisitiones generales circa superficies curva,
a work on differential geometry. His famous theorem Theorema Egregium
(Remarkable Theorem) from this publication states (in a broad language),
that the curvature of a surface can be determined by measuring angles and
distances on the surface only.

In his late years, Gauss collaborated with physicist professor Wilhelm
Weber investigating the theory of terrestrial magnetism. By the year 1840,
he published three important papers on this subject. Allgemeine Theorie
des Erdmagnetismus (1839) showed that there can be only two poles in the
globe and specified the location of the magnetic South pole.

Together with Weber they discovered Kirchhoff’s circuit laws in elec-
tricity and constructed electromagnetic telegraph, which was able to send a
message over 5000 feet distance. But Gauss was far more interested in mag-
netic field of Earth. This lead to establishing a world-wide net of magnetic
observation points, founding of The Magnetischer Verein (The Magnetic
Club) and publishing the atlas of geomagnetism. He developed a method of
measuring the horizontal intensity of the magnetic field which was in use for
more than one hundred following years and worked out the mathematical
theory for separating the inner (core and crust) and outer (magnetospheric)
sources of Earth’s magnetic field.

After the year 1837, his activity gradually decreased . In 1849, he pre-
sented his golden jubilee lecture, 50 years after his diploma.

Johann Carl Friedrich Gauss died on 23rd February, 1855, in Gottingen,
Hannover (now part of Lower Saxony, Germany), in his sleep.1

1biography sources (from 2nd May, 2009):

http://en.wikipedia.org/wiki/Gauss

http://www-groups.dcs.st-and.ac.uk/history/Printonly/Gauss.html

18



3.1 Gauss’ test

Theorem 3.1.1. Let
∑∞

n=1 an be a series with positive terms. Assuming
that there exist a real number p, a real number r > 1 and a real bounded
sequence {Bn}∞n=1 such that for all n

an
an+1

= 1 +
p

n
+
Bn
nr

Then the series
∑∞

n=1 an converges if and only if p > 1.2

Almost immediately we see that this test is somehow an improved version
of Raabe’s test. The only difference is the number r, which in the former
test was explicitly set to 2. So Gauss’ test is more general, allowing us to
decide convergence of more series. Not suprisingly the proof is very similar.

Proof. If we start with p > 1, then for sufficiently large n we have (for
negative terms of {Bn})

n

(
an
an+1

− 1
)

= p+
Bn
nr−1

≥ q, q ∈ (1, p)

or (for positive terms of {Bn})

n

(
an
an+1

− 1
)

= p+
Bn
nr−1

≥ p

Since in both cases
n

(
an
an+1

− 1
)
≥ q > 1

by using Raabe’s test (theorem 2.1.1) we can conclude that the series
∑∞

n=1 an

converges.

As for the other part of equivalence, we will assume that the series∑∞
n=1 an converges and p = 1. By using Bertrand’s test (theorem 4.1.1)

we get

lnn
(
n

(
an
an+1

− 1
)
− 1
)

= lnn
(
n

(
1 +

1
n

+
Bn
nr
− 1
)
− 1
)

=

=
Bn lnn
nr−1

≈ lnn
nr−1

2adopted from http://math.feld.cvut.cz/mt/txte/2/txe3ea2d.htm on 2nd May, 2009
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With l’Hopital’s rule we get lnn
nr−1 → 0 (as n tends to infinity) and therefore

the series
∑∞

n=1 an diverges. A contradiction.
If the series

∑∞
n=1 an converges and p < 1 then (for sufficiently large n)

n

(
an
an+1

− 1
)

= p+
Bn
nr−1

< 1

and according to Raabe’s test (theorem 2.1.1) the series
∑∞

n=1 an diverges.
A contradiction. Thus p > 1.

Theorem 3.1.2. Let
∑∞

n=1 an be a series with positive terms. Assuming
that there exist a real number p, a real number r > 1 and a real bounded
sequence Bn such that for all n

an
an+1

= 1 +
p

n
+
Bn
nr

(3.1)

Then the series
∑∞

n=1 an diverges if and only if p ≤ 1.

Proof. Let
∑∞

n=1 an be a divergent series and p > 1. Then for sufficiently
large n

n

(
an
an+1

− 1
)

= p+
Bn
nr−1

> q, q > 1

and by Raabe’s test (theorem 2.1.1) the series
∑∞

n=1 an converges. A con-
tradiction (hence p ≤ 1).

If p = 1 then by using Bertrand’s test (theorem 4.1.1)

lnn
(
n

(
an
an+1

− 1
)
− 1
)

=
Bn lnn
n(r−1)

With l’Hopital’s rule we get lnn
nr−1 → 0 (as n tends to infinity) and therefore

the series
∑∞

n=1 an diverges.
If p < 1 then for sufficiently large n

n

(
an
an+1

− 1
)

= p+
Bn
nr−1

< 1

We finish the proof with Raabe’s test.

Now we show how to make a good use of mysterious looking sequence
Bn (that is, how to reduce our thinking and use an algorithmic procedure
instead). Look again at (3.1). The best p can be obtained by a limit

p = lim
n→∞

n

(
an
an+1

− 1
)

(3.2)

20



Moreover, we set
An =

an
an+1

− 1− p

n
(3.3)

Now we try to find a number r such that

r > 1, Bn = Ann
r <∞ (3.4)

That is, {Bn} is a bounded sequence. If we succeed, we can apply Gauss’
test.3

An example. We want to determine the character of the series
∑∞

n=1

( (2n−1)!!
(2n)!!

)a,
a > 0.

an
an+1

=

 (2n−1)!!
(2n)!!

(2n+1)!!
(2n+2)!!

a

=
(

2n+ 2
2n+ 1

)a

n

(
an
an+1

− 1
)

= n

((
2n+ 2
2n+ 1

)a
− 1
)

= n

((
1 + 1

n

1 + 1
2n

)a
− 1

)
With (x→∞) (

1 +
1
x

)p
= 1 +

p

x
+ o

(
1
x

)
we get the final result

n

(
an
an+1

− 1
)

= n

(
1 + a

n + o
(

1
n

)
1 + a

2n +
(

1
n

) − 1

)
=
a

2
+ o(1)

According to Raabe’s test, the series converges when a > 2 and diverges
when a < 2 but we get no information when a = 2. We try Gauss’ test :

First, we try to find p (see (3.2))

p = lim
n→∞

n

 (2n−1)!!
(2n)!!

(2n+1)!!
(2n+2)!!

2

− 1

 = lim
n→∞

n

((
2n+ 2
2n+ 1

)2

− 1

)
= 1

3adopted from http://math.feld.cvut.cz/mt/txte/2/txe3ea2d.htm on 2nd May, 2009
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Second, we find An (see (3.3))

An =
an
an+1

− 1− p

n
=

 (2n−1)!!
(2n)!!

(2n+1)!!
(2n+2)!!

2

=
(

2n+ 2
2n+ 1

)2

− 1− 1
n

An =
−n− 1

4n3 + 4n2 + n

Third, we try to find r > 1 such that Bn = Ann
r is bounded (see (3.4))

An =
−n− 1

4n3 + 4n2 + n
=

1
n2

(
−n3 − n2

4n3 + 4n2 + n

)
If we set r = 2 then

Bn = Ann
2 =

−n3 − n2

4n3 + 4n2 + n
<∞

And because p = 1 the series
∑∞

n=1

( (2n−1)!!
(2n)!!

)2 diverges.

Therefore, according to Gauss and Raabe’s test, the series
∑∞

n=1

( (2n−1)!!
(2n)!!

)a
converges when a > 2 and diverges when a ≤ 2.
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Chapter 4

Joseph Louis Francois

Bertrand

Born on 11th March, 1822, in Paris, J. L. F Bertrand
was a French mathematician. He studied at Ecole
Polytechnique and at the age of 16, he was awarded
his first degree. In following year, he received his
doctorate for a thesis on thermodynamics.

In 1845, Bertrand conjectured that there is at least one prime between
n and 2n − 2 for every n > 3. The conjecture was later proved by Pafnuty
Lvovich Chebyshev and it is now known as Bertrand’s postulate. He made
major contribution to the group theory and published works on differential
geometry, on probability theory (Bertrand’s paradox1) and on game theory
(Bertrand paradox). He was also famous for writing textbooks mostly for
pupils at secondary schools but later also for more advanced students.

In 1856, Bertrand was appointed a professor at Ecole Polytechnique and
also a member of the Paris Academy of Sciences. In 1862, he was made a
professor at College de France.

Joseph Louis Francois Bertrand died on 5th April, 1900, in Paris.2

1Bertrand’s paradox concerns the probability that an arbitrary chord of a circle is

longer than a side of an equilateral triangle inscribed in the circle.
2biography sources (from 2nd May, 2009):

http://en.wikipedia.org/wiki/Joseph Louis Francois Bertrand

http://www-groups.dcs.st-and.ac.uk/history/Printonly/Bertrand.html
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4.1 Bertrand’s test

We begin with the series

∞∑
n=2

1
n(lnn)p

p > 0 (4.1)

First we want to know for which p the given series converges. To use integral
criterion (theorem 1.2.11), we define f(x) as a function

f(x) =
1

x(lnx)p

on the interval (1,∞), which satisfies f(n) = an (n = 1, 2, 3, ...). Then the
primitive function F (x) is

F (x) =
∫

1
x(lnx)p

dx =
lnx

(lnx)p
− p

∫
lnx

x(lnx)p+1
dx

After some adjustments, we have the result

F (x) =

{
ln lnx if p = 1

1
(1−p)(lnx)p−1 if p 6= 1

and from that we can conclude (owing to limx→∞ F (x)), that the series

∞∑
n=1

1
n(lnn)p

{
converges if p > 1

diverges if p ∈ (0, 1]
(4.2)

Now we analyze an
an+1

:

an
an+1

=
1

n(lnn)p

1
(n+1)(ln (n+1))p

=

=
(

1 +
1
n

)(
ln (n+ 1)

lnn

)p
=
(

1 +
1
n

)(
lnn+ ln

(
1 + 1

n

)
lnn

)p
Using little-o notation for an asymptotic approximation when x tends to
infinity:

ln
(

1 +
1
x

)
=

1
x

+ o

(
1
x

)
(

1 +
1
x

)p
= 1 +

p

x
+ o

(
1
x

)
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We put these two formulas into an
an+1

an
an+1

=
(

1 +
1
n

)(
lnn+ 1

n + o
(

1
n

)
lnn

)p
=

=
(

1 +
1
n

)(
1 +

1
n lnn

+ o

(
1

n lnn

))p
=

=
(

1 +
1
n

)(
1 +

p

n lnn
+ o

(
1

n lnn

))
=

= 1 +
1
n

+
p

n lnn
+ o

(
1

n lnn

)
(4.3)

and after some adjustments we get

lnn
(
n

(
an
an+1

− 1
)
− 1
)

= p+ o (1) → p

Putting all this together, we can formulate a new test of convergence, which
is known as Bertrand’s test:

Theorem 4.1.1. Let
∑∞

n=1 an be a series with positive terms. If

∃p > 1, ∃N ∈ N, ∀n > N : lnn
(
n

(
an
an+1

− 1
)
− 1
)
≥ p (4.4)

then the series
∑∞

n=1 an converges. If

∃N ∈ N, ∀n > N : lnn
(
n

(
an
an+1

− 1
)
− 1
)
≤ 1 (4.5)

then the series
∑∞

n=1 an diverges.

Proof. Truly, (4.4) implies the existence of two constants

q > 1, ε > 0 : q + ε = p

Therefore we can write (for sufficiently large n)

lnn
(
n

(
an
an+1

− 1
)
− 1
)
≥ q + ε ≥ q + o(1)
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with (4.3)

an
an+1

≥ 1 +
1
n

+
q

n lnn
+ o

(
1

n lnn

)
=

1
n(lnn)q

1
(n+1)(ln (n+1))q

And because q > 1 the series
∑∞

n=1
1

n(lnn)q is convergent (see (4.2)). Ac-
cording to the second comparison test (theorem 1.2.9) the series

∑∞
n=1 an

converges as well.

Now to prove divergence part. Note that we cannot directly use equation
(4.3) here (as we did in convergence part) because there can be hidden a
negative function f(n) in o

(
1

n lnn

)
, which would make Betrand’s test unus-

able:
From (4.3)

1
n lnn

1
(n+1) ln (n+1)

= 1 +
1
n

+
1

n lnn
+ o

(
1

n lnn

)
= 1 +

1
n

+
1

n lnn
− f(n)

1
n lnn

1
(n+1) ln (n+1)

≤ 1 +
1
n

+
1

n lnn

From (4.5):
an
an+1

≤ 1 +
1
n

+
1

n lnn

Because the numbers an
an+1

can possibly be found between the numbers(
1

n lnn
1

(n+1) ln (n+1)

)
and

(
1 +

1
n

+
1

n lnn

)
we do not have yet enough information to compare

an
an+1

with
1

n lnn
1

(n+1) ln (n+1)

What we need is something like equation (4.3) but without the o
(

1
n lnn

)
term.

1
n lnn

1
(n+1) ln (n+1)

=
(n+ 1) ln (n+ 1)

n lnn
=

(n+ 1)(lnn+ ln
(
1 + 1

n

)
)

n lnn
=

=
(n+ 1) lnn+ (n+ 1) ln

(
1 + 1

n

)
n lnn

= 1 +
1
n

+
(n+ 1) ln

(
1 + 1

n

)
n lnn

=
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= 1 +
1
n

+
1

n lnn
+

(n+ 1) ln
(
1 + 1

n

)
n lnn

− 1
n lnn

=

= 1 +
1
n

+
1

n lnn
+

(n+ 1) ln
(
1 + 1

n

)
− 1

n lnn
= 1 +

1
n

+
1

n lnn
+

ε(n)
n lnn

Where
ε(n) = (n+ 1) ln

(
1 +

1
n

)
− 1 ≈ 1

2n
+ o

(
1
n

)
≥ 0

Only now we have enough information to write

an
an+1

≤ 1 +
1
n

+
1

n lnn
≤ 1 +

1
n

+
1

n lnn
+

ε(n)
n lnn

=
1

n lnn
1

(n+1) ln (n+1)

The second comparison test implies the divergence of the series
∑∞

n=1 an

because the series
∑ 1

n lnn diverges (see (4.2)).

Remark 4.1.2. The reader should start to suspect that when we formulated
Bertrand’s test we commited a small imprecision. Luckily for us, this im-
precision only weakened Bertrand’s test (but formulation (4.5) is easy to
use). As a result of this flaw, Bertrand’s test cannot decide convergence of
his own series (4.1), as it will be shown in Chapter 6.

Another version of Bertrand’s test can be constructed by using the same
Gauss’ improvement as with Raabe’s test:

Theorem 4.1.3. Let
∑∞

n=1 an be a series with positive terms. Assume that
there exist a real number p, a real number r > 1 and a real bounded sequence
Bn such that for all n

an
an+1

= 1 +
1
n

+
p

n lnn
+

Bn
n(lnn)r

Then the series
∑∞

n=1 an converges if and only if p > 1.
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Proof. Let
∑∞

n=1 an be a convergent series and p = 1. According to the
theorem 7.0.5 (see the Last chapter)

ln lnn
(

lnn
(
n

(
an
an+1

− 1
)
− 1
)
− 1
)

=
Bn ln lnn
(lnn)r−1

≈ ln lnn
(lnn)r−1

(using l’Hopital’s rule) we get a contradiction with the convergence we as-
sumed.

If p < 1 then for sufficiently large n

lnn
(
n

(
an
an+1

− 1
)
− 1
)

= p+
Bn

(lnn)r−1
< 1

According to the theorem 4.1.1 we get a contradiction with the convergence
we assumed. Thus p > 1.

If p > 1 then
an
an+1

= 1 +
1
n

+
q

n lnn
, q > 1

with theorem 4.1.1 we can conclude the convergence of series
∑∞

n=1 an.

Divergence follows by analogy.

Theorem 4.1.4. Let
∑∞

n=1 an be a series with positive terms. Assume that
there exist a real number p, a real number r > 1 and a real bounded sequence
Bn such that

an
an+1

= 1 +
1
n

+
p

n lnn
+

Bn
n(lnn)r

(4.6)

Then the series
∑∞

n=1 an diverges if and only if p ≤ 1.

Proof. Let p = 1. According to the theorem 7.0.5

ln lnn
(

lnn
(
n

(
1 +

1
n

+
1

n lnn
+

Bn
n(lnn)r

− 1
)
− 1
)
− 1
)

=

=
Bn ln lnn
(lnn)(r−1)

→ 0

(using l’Hopital’s rule) we can conclude the divergence of series
∑∞

n=1 an.
If p < 1 then for sufficiently large n

lnn
(
n

(
an
an+1

− 1
)
− 1
)

= p+
Bn

(lnn)r−1
< 1
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and the theorem 4.1.1 prooves the divergence of series
∑∞

n=1 an.

Now let
∑∞

n=1 an be a divergent series. The theorem 4.1.1 with p > 1
contradicts the assumed divergence. Thus p ≤ 1.

Remark 4.1.5. Again, we can use Bn and r to algorithmize the procedure.
With

p = lim
n→∞

lnn
(
n

(
an
an+1

− 1
)
− 1
)
, An =

an
an+1

− 1− 1
n
− p

n lnn

we can try to find such r > 1, that Bn = Ann(lnn)r will be bounded. If we
succeed, we can apply this test.
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Chapter 5

On the universal criterion

In the chapters 2, 3 and 4 we dealt with various comparison tests (but
for each one of them we can construct a series, that by using this test we
get no information about the character of this series). That is, with tests
that combine the second comparison test (theorem 1.2.9) and some series,
whose convergence/divergence we know. Now we ask whether there can be
made some fixed criterion, which will resolve the character of all series (with
positive terms). Unfortunately, no such criterion can be constructed. The
following two theorems will explain why. (Both theorems were adopted from
[1].)

Theorem 5.0.6. If
∑∞

n=1 an is a convergent series with positive terms then
there exists a monotonous sequence {Bn}∞n=1 such that limn→∞Bn =∞ and
series

∑∞
n=1 anBn converges.

Proof. Let
∑∞

n=1 an be a convergent series. From the corollary 1.2.7 we have

lim
n→∞

1
an

=∞

From the corollary 1.2.8 we have the numbers ξn, where {ξn}∞n=1 is an in-
creasing subsequence of natural numbers such that∑

k>ξn

ak

 1
an

< an

Let us construct the numbers Bn this way:

Bn =

{
0 if n ∈ [1, ξ1)
1
ak

if n ∈ [ξk, ξk+1)

30



Now we only need to show that
∑∞

n=1 anBn is convergent:

∞∑
n=1

anBn =
ξ1−1∑
k=1

0ak +
∞∑
n=1

 1
an

ξn+1−1∑
k=ξn

ak

 ≤ ∞∑
n=1

an

Theorem 5.0.7. If
∑∞

n=1 an is a divergent series with positive terms then
there exists a monotonous sequence {Bn}∞n=1 such that limn→∞Bn = 0 and
the series

∑∞
n=1 anBn diverges.

Proof. Let
∑∞

n=1 an be a divergent series. Here we consider two cases. First,
if

lim sup
n→∞

an ≥ ε > 0

then by leaving out all an < ε
2 we do not change the character of series∑∞

n=1 an. We find all indices n such that an ≥ ε
2 and denote them with ξk.

Thus {ξk}∞k=1 is an increasing subsequence of natural numbers. By {Bn}∞n=1

we denote such a sequence that

Bn =

{
0 if n 6= ξk for all k
1
k if n = ξk for some k

Moreover limn→∞Bn = 0 and

∞∑
n=1

anBn ≥
∞∑
n=1

ε

2n
=∞

Second, if
lim
n→∞

an = 0

then from the divergence of
∑∞

n=1 an we have an such increasing subsequence
{ξn}∞n=1 of natural numbers that

ξn+1−1∑
k=ξn

ak > n, ξ1 = 1

If we let

Ξn =
ξn+1−1∑
k=ξn

ak
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then the series
∑∞

n=1
1
nΞn diverges. We construct the numbers Bn this way

Bn =
1
k

for n ∈ [ξk, ξk+1), k = 1, 2, ...

Now we only need to show that the series
∑∞

n=1 anBn is divergent:

∞∑
n=1

anBn =
∞∑
n=1

 1
n

ξn+1−1∑
k=ξn

ak

 =
∞∑
n=1

1
n

Ξn ≥
∞∑
n=1

1 =∞

We showed that to any convergent (resp. divergent) series
∑
an with

positive terms we can construct another positive series
∑
bn, that converges

(resp. diverges) much more slowly. In other words, for any positive con-
vergent (resp. divergent) series

∑
an, there exists some positive series

∑
bn

that converges (resp. diverges) and the second comparison test (theorem
1.2.9) does not hold (or cannot be used). This implies that there can be no
ultimate comparison test (that is, a test based on some fixed series) as all
comparison tests are based on the theorem 1.2.9.

But what we can tell from this is that for any positive series
∑
an there

can be constructed such a criterion (based on some known series
∑
bn),

which will decide convergence/divergence of series
∑
an, although finding

such series
∑
bn might be difficult. And that is how Kummer’s test works.

Again in plain language, for all positive series there exists a comparison
test which can decide its character. But there is no such fixed comparison
test that can decide the character of all positive series.
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Chapter 6

Ernst Eduard Kummer

Born on 29th January, 1810, in Sorau, Brandenburg
(then part of Prussia, now Germany), E. E. Kum-
mer was a German mathematician. He entered the
University of Halle with the intention to study philos-
ophy, but after he won a prize for his mathematical
essay in 1831, he deciced for the mathematics. In the
same year, he was awarded with a certificate enabling
him to teach in schools and, for the strength of his
essay, also a doctorate.

For ten years he was teaching mathematics and physics at the Gymna-
sium in Liegnitz, now Legnica in Poland. In 1836, he published a paper
on hypergeometric series in Crelle’s Journal and this work led Carl G. J.
Jacobi together with Peter G. L. Dirichlet to correspond with him. In 1839,
Kummer was elected to the Berlin Academy of Science.

In 1842, he was appointed a professor at the University of Breslau, now
Wroclaw in Poland, and he began his reaserch in number theory. In 1855,
Kummer became a professor of mathematics at the University of Berlin.
With Karl T. W. Weierstrass and Leopold Kronecker, Berlin became one of
the leading mathematical centres in the world.

Kummer helped to advance function theory and number theory. As for
the function theory, he extended Gauss’ work on hypergeometric functions,
giving developments that are useful in the theory of differential equations.
In number theory, he introduced the concept of ”ideal” numbers. This work
was fundamental to Fermat’s last theorem and also to the development of
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the ring theory.
In 1857, he was awarded the Grand Prix by Paris Academy of Sciences

for his work on Fermat’s last theorem and soon after that, he was given a
membership of the Paris Academy of Sciences. In 1863, he was elected a
Fellow of the Royal Society of London. A year later, he published a work on
Kummer surface, a surface that has 16 isolated conical double points and
16 singular tangent planes.

Ernst Eduard Kummer died on 14 May, 1893, in Berlin.1

1biography sources (from 2nd May, 2009):

http://en.wikipedia.org/wiki/Ernst Kummer

http://www-groups.dcs.st-and.ac.uk/history/Printonly/Kummer.html

http://fermatslasttheorem.blogspot.com/2006/01/ernst-eduard-kummer.html
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6.1 Kummer’s test

Here comes probably the most powerful test for convergence, since it applies
to all series with positive terms.2 :

Theorem 6.1.1. Let
∑∞

n=1 an be a series with positive terms. Then the se-
ries converges if and only if there exist a positive number A, positive numbers
pn and a number N ∈ N such that for all n > N

pn
an
an+1

− pn+1 ≥ A (6.1)

The series diverges if and only if there exist positive numbers pn such
that

∑ 1
pn

=∞ and a number N ∈ N such that for all n > N

pn
an
an+1

− pn+1 ≤ 0 (6.2)

Proof. First we prove the convergence. For the right-to-left implication, we
adjust the equation (6.1)

pnan − pn+1an+1 ≥ Aan+1

With qn = pn

A we can write

qnan − qn+1an+1 ≥ an+1 (6.3)

Since we know the left side of upper inequality, we can construct a sequence
{Bn}∞n=1 such that

qnan − qn+1an+1 = Bn+1an+1, ∀n Bn ≥ 1

The sequence {qnan}∞n=1 is positive and decreasing (follows from (6.3)).
Therefore it has a limit

0 ≤ lim
n→∞

anqn < q1a1

Thus the series
∞∑
n=1

anBn =
∞∑
n=1

(qnan − qn+1an+1) = q1a1 − lim
n→∞

qnan > 0

2adopted from http://math.feld.cvut.cz/mt/txte/2/txe3ea2d.htm on 2nd May, 2009
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converges. And because Bn ≥ 1 for all n

an ≤ anBn ⇒
∞∑
n=1

an ≤
∞∑
n=1

anBn

In words, the series
∑∞

n=1 anBn converges and creates an upper bound for
the series

∑∞
n=1 an, therefore the series

∑∞
n=1 an must converge as well. This

is nothing more then just a first comparison criteria. We showed that find-
ing numbers pn is equally hard as finding a convergent series

∑
bn which

creates an upper bound for the series
∑
an in the first comparison test.

For left-to-right implication, let p1a1 be a positive number. According to
the theorem 5.0.6, we assume the existence of positive monotonous sequence
{Bn}∞n=1

lim
n→∞

Bn =∞ (6.4)

∞∑
n=1

anBn = p1a1 + a1B1

Now we shift the index n
∞∑
n=1

an+1Bn+1 = p1a1

We define the sequence {pnan}∞n=1 this way

pn+1an+1 = pnan − an+1Bn+1

where

lim
n→∞

pnan = p1a1 − lim
n→∞

n∑
k=1

ak+1Bk+1 = 0

So, using (6.4) we have (for sufficiently large n)

pnan − pn+1an+1 = an+1Bn+1 ≥ Aan+1 where A > 0

And finally
pn

an
an+1

− pn+1 ≥ A

hence the numbers pn are found.

Remark 6.1.2. The reader surely perceives that, in fact, the requirement
(6.4) is not necessary as any positive and monotonous sequence {Bn} with
limn→∞Bn = A ≥ 1 is totally sufficient (where A is an arbitrary constant).
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For example, let
∑
an be a convergent series. If we let Bn = 1 for all n

and we construct numbers pn using the terms from
∑
an

pn+1 = pn
an
an+1

− 1

Kummer’s test will confirm the convergence of series
∑
an (as would first

comparison test).

Now the divergence part.

Proof. For the right-to-left implication, we have
∑ 1

pn
= ∞ and from (6.2)

we get
an
an+1

≤
1
pn

1
pn+1

We can conclude the divergence of series
∑∞

n=1 an by using the second com-
parison test (theorem 1.2.9).

To prove left-to-right implication (when
∑∞

n=1 an is divergent), we can
assume, according to the theorem 5.0.7, the existence of positive and monotonous
sequence Bn such that

lim
n→∞

Bn = 0 (6.5)

∞∑
n=1

anBn =∞

We have

an
an+1

≤ anBn
an+1Bn+1

∧ pn =
1

anBn
⇒ an

an+1
≤

1
pn

1
pn+1

And after some adjustments, we get the right formula

pn
an
an+1

− pn+1 ≤ 0

It is not difficult to see, that
∑ 1

pn
=∞ and pn > 0 for all n, thus we found

the numbers we were looking for.

Remark 6.1.3. Again, the requirement (6.5) is not necessary as any positive
and non-increasing sequence {Bn} with limn→∞Bn = A > 0 will do the
trick (as it is the monotony we are interested in).
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As in the previous remark, if
∑
an is a divergent series and if we let

Bn = 1 for all n then Kummer’s test will confirm the divergence.

Remark 6.1.4. To sum it up, Kummer’s test is very powerful because it
really works for all the series with positive terms. On the other hand, using
this test is equally difficult as using the first and second comparison test.
The true strength of this test therefore lies in the the numbers pn. That is,
the form of this test is a masterpiece, not its contents.

To demostrate the power of Kummer’s test, we show that Raabe’s test
and Bertrand’s test are in fact its corollaries. As for Raabe’s test, if we set
pn = n, we get

∃A > 0, ∃N ∈ N, ∀n > N : n
an
an+1

− (n+ 1) ≥ A

n

(
an
an+1

− 1
)
≥ 1 +A compare with (2.3)

for convergence and(∑ 1
n

=∞
)
, ∃N ∈ N, ∀n > N : n

an
an+1

− (n+ 1) ≤ 0

n

(
an
an+1

− 1
)
≤ 1 compare with (2.4)

for divergence.

We see, that what we can decide with Raabe’s test, we can also decide
with Kummer’s test (with pn = n) and vice versa, thus they are equivalent.

As for Kummer’s version of Bertrand’s test, we set pn = n lnn and put
it into the left side of (6.1):

n lnn
an
an+1

− (n+ 1) ln (n+ 1) =

= n lnn
an
an+1

− (n+ 1)
(

lnn+ ln
(

1 +
1
n

))
=
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= n lnn
an
an+1

− n lnn− lnn− ln
(

1 +
1
n

)(n+1)

=

= lnn
(
n

(
an
an+1

− 1
)
− 1
)
− 1− ε (n)

So

n lnn
an
an+1

−(n+ 1) ln (n+ 1) = lnn
(
n

(
an
an+1

− 1
)
− 1
)
−1−ε (n) (6.6)

Where

ε(n) = ln
(

1 +
1
n

)(n+1)

−1 = (n+ 1)
(

1
n
− 1

2n2
+ o

(
1
n2

))
−1 =

1
2n

+o
(

1
n

)

We go back to (6.1). With (6.6), if

∃A > 0, ∃N ∈ N, ∀n > N :

lnn
(
n

(
an
an+1

− 1
)
− 1
)
≥ 1 +A+ ε(n) (6.7)

then the series
∑∞

n=1 an is convergent.

Compare with Bertrand’s test we worked out in the fourth chapter (see
(4.4)): If

∃A > 0, ∃N ∈ N, ∀n > N :

lnn
(
n

(
an
an+1

− 1
)
− 1
)
≥ 1 +A (6.8)

then the series
∑∞

n=1 an is convergent.
Since ε(n) can get arbitrarily small as n tends to infinity, we can hide it
inside the positive constant A. Thus (6.7) and (6.8) are equivalent.

Divergence is a bit different and we will see that in this case, the tests
are not equivalent. That is, Kummer’s test is slightly stronger. It is because
now we have zero as a sharp border, while the constant A from the previous
case was quite flexible.

With (6.2), (6.6) and pn = n lnn : if(∑ 1
n lnn

=∞
)
, ∃N ∈ N, ∀n > N :
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lnn
(
n

(
an
an+1

− 1
)
− 1
)
− 1 ≤ ε(n)

then the series
∑∞

n=1 an is divergent. Compare with Bertrand’s test (see
(4.5)): If

∃N ∈ N, ∀n > N : lnn
(
n

(
an
an+1

− 1
)
− 1
)
− 1 ≤ 0

then the series
∑∞

n=1 an is divergent.

Now let’s consider the series
∑∞

n=1 an, where an = 1
n lnn . Using Bertrand’s

test
lnn

(
n

(
(n+ 1) ln (n+ 1)

n lnn
− 1
)
− 1
)
− 1 ≤ 0

(n+1) ln (n+ 1)−n lnn−lnn−1 = (n+1) ln
(

1 +
1
n

)
−1 = ε(n) ≤ 0 → false

Using Kummer’s test (with pn = n lnn)

n lnn
(n+ 1) ln (n+ 1)

n lnn
− (n+ 1) ln (n+ 1) ≤ 0

0 ≤ 0 → true

There is infinite number of series that can be decided only with Kummer’s
version of Bertrand’s test, but if we use limits, the tests are equivalent.
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Chapter 7

The Last chapter

In this chapter we will return to Raabe’s test to show how we got the se-
quence 1

n(lnn)p in Bertrand’s test and consequently, how to create limitless
number of more and more powerful tests.

We start by analyzing when Raabe’s test fails. If

n

(
an
an+1

− 1
)

= 1 + ξ(n), lim
n→∞

ξ(n) = 0+

then there exists no such constant p from (2.3), nor 1 + ξ(n) ≤ 1. This
means, that the given series

∑
an converges more slowly than the series∑ 1

np , p > 1. But it does not mean that the series
∑
an diverges. So

what can we do? We need a series whose convergence/divergence is known,
plus the series must converge more slowly than

∑ 1
np . A good candidate is∑ 1

n(lnn)p , since

∀ε > 0, ∀p > 0, ∃n0, ∀n > n0 :
1
nε

<
1

(lnn)p

(To prove use l’Hopital’s rule.) So, in chapter 4, we worked out Bertrand’s
test from the series

∑ 1
n(lnn)p . But even this test fails when

lnn
(
n

(
an
an+1

− 1
)
− 1
)

= 1 + ξ(n), lim
n→∞

ξ(n) = 0+

and the situation repeats itself. Again, because

∀ε > 0, ∀p > 0, ∃n0, ∀n > n0 :
1

(lnn)ε
<

1
(ln lnn)p
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we can formulate a new, more powerful criterion.

First, we have a closer look at the series∑ 1
n lnn(ln lnn)p

, p > 0

Let f(x) be a function

f(x) =
1

x lnx(ln lnx)p

on the interval (e,∞) which satisfies f(n) = an. To use integral criteria we
find the primitive function F (x)

F (x) =
∫

1
x lnx(ln lnx)pdx

=
ln lnx

(ln lnx)p
− p

∫
ln lnx

(ln lnx)(p+1)

1
lnx

1
x
dx

F (x) =

{
ln ln lnx if p = 1
1

(1−p)(ln lnx)(p−1) if p 6= 1

Thus the series∑ 1
n lnn(ln lnn)p

{
converges if p > 1

diverges if p ∈ (0, 1]
(7.1)

Expressing an
an+1

1
n lnn(ln lnn)p

1
(n+1) ln (n+1)(ln ln (n+1))p

=
(n+ 1) ln (n+ 1)(ln ln (n+ 1))p

n lnn(ln lnn)p
=

(after some adjustments very similar to (4.3))

= 1 +
1
n

+
1

n lnn
+

p

n lnn ln lnn
+ o

(
1

n lnn ln lnn

)
(7.2)

Now we can create a new test:

Theorem 7.0.5. Let
∑∞

n=1 an be a series with positive terms. If

∃p > 1, ∃N ∈ N, ∀n > N :

ln lnn
(

lnn
(
n

(
an
an+1

− 1
)
− 1
)
− 1
)
≥ p (7.3)
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then the series
∑∞

n=1 an converges. If

∃N ∈ N, ∀n > N :

ln lnn
(

lnn
(
n

(
an
an+1

− 1
)
− 1
)
− 1
)
≤ 1 (7.4)

then the series
∑∞

n=1 an diverges.

Proof. Following (7.3)

p > 1 ⇒ ∃q > 1 ∧ ∃ε > 0 ∧ p = q + ε

Thus, for sufficiently large n

ln lnn
(

lnn
(
n

(
an
an+1

− 1
)
− 1
)
− 1
)
≥ q + ε ≥ q + o(1)

an
an+1

≥ 1 +
1
n

+
1

n lnn
+

q

n lnn ln lnn
+ o

(
1

n lnn ln lnn

)
and with (7.2)

an
an+1

≥
1

n lnn(ln lnn)q

1
(n+1) ln (n+1)(ln ln (n+1))q

Because q > 1 the series ∑ 1
n lnn(ln lnn)q

converges (see (7.1)). According to the second comparison test (theorem
1.2.9) the series

∑
an converges as well.

As for the divergence, we bump here into the same problem as we did in
Chapter 4 when we were proving Bertrand’s test (theorem 4.1.1). (We will
not point out the problem again.)

1
n lnn ln lnn

1
(n+1) ln (n+1) ln ln (n+1)

=
(n+ 1) ln (n+ 1) ln ln (n+ 1)

n lnn ln lnn
=

=
(n+ 1) ln (n+ 1) ln

(
lnn+ ln

(
1 + 1

n

))
n lnn ln lnn

=
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=
(n+ 1) ln (n+ 1)

(
ln lnn+ ln

(
1 +

ln (1+ 1
n)

lnn

))
n lnn ln lnn

=

=
(n+ 1) ln (n+ 1)

n lnn
+

(n+ 1) ln (n+ 1) ln
(

1 +
ln (1+ 1

n)
lnn

)
n lnn ln lnn

=

= 1 +
1
n

+
1

n lnn
+

1
n lnn ln lnn

+
ς(n)

n lnn ln lnn

Where:

ς(n) = ln lnn
(

(n+ 1) ln
(

1 +
1
n

)
− 1
)

+ (n+ 1) ln (n+ 1) ln

(
1 +

ln
(
1 + 1

n

)
lnn

)
− 1

With
lim
n→∞

ln lnn
(

(n+ 1) ln
(

1 +
1
n

)
− 1
)

= 0

we can simplify ς(n)

ς(n) ≈ (n+ 1) ln (n+ 1) ln

(
1 +

ln
(
1 + 1

n

)
lnn

)
− 1 =

= (n+ 1)
(

lnn+ ln
(

1 +
1
n

))
ln

(
1 +

ln
(
1 + 1

n

)
lnn

)
− 1

And pull out the biggest part

ς(n) ≈ (n+ 1) lnn ln

(
1 +

ln
(
1 + 1

n

)
lnn

)
− 1 ≥ 0

Adjusting (7.4) we get

an
an+1

≤ 1 +
1
n

+
1

n lnn
+

1
n lnn ln lnn
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Note that the terms we neglected in ς(n) were all positive so the following
inequality is correct.

an
an+1

≤ 1 +
1
n

+
1

n lnn
+

1
n lnn ln lnn

≤

≤ 1 +
1
n

+
1

n lnn
+

1
n lnn ln lnn

+
ς(n)

n lnn ln lnn
And finally

an
an+1

≤
1

n lnn ln lnn
1

(n+1) ln (n+1) ln ln (n+1)

The second comparison test implies the divergence of the series
∑
an because

the series ∑ 1
n lnn ln lnn

diverges (see (7.1)).

Now we state one of the most general version of Bertrand’s test.

Lemma 7.0.6. Let us denote k-th (k ∈ N) iteration of nk = lnnk−1

(n0 = n) with lnk n (so ln3 n = ln ln lnn). Then the series

∞∑
n=1

1
n lnn ln2 n... lnk−1 n(lnk n)p

p > 0 k ∈ N

converges for p > 1 and diverges for p ≤ 1.

Proof. Let k be an arbitrary natural number. Let f(x) be a function on the
interval [1,∞) such that

f(n) =
1

n lnn ln2 n... lnk−1 n(lnk n)p

To use integral criteria we find F (x)

F (x) =
∫

1
x lnx ln2 x... lnk−1 x(lnk x)p

dx =

=
lnkx

(lnk x)p
− p

∫
lnkx

(lnk x)p+1 lnk−1 x...(lnx)x
dx
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F (x) =

{
lnk x if p = 1

1
(1−p)(lnk x)p−1 if p 6= 1

Now we examine limx→∞ F (x) and we can conclude that the series

∞∑
n=1

1
n lnn ln2 n... lnk−1 n(lnk n)p

{
converges if p > 1

diverges if p ∈ (0, 1]

Lemma 7.0.7. Using the notation from the previous lemma

∀ε > 0, ∀p ∈ N, ∀k ∈ N, ∃n0 : ∀n > n0
1

(lnk n)ε
<

1
(lnk+1 n)p

Proof. Use substitution m = lnk n and l’Hopital’s rule.

Lemma 7.0.8.

(n+ 1) ln (n+ 1) ln2 (n+ 1). . . lnk (n+ 1)
n lnn ln2 n. . . lnk n

=

= 1 +
1
n

+
1

n lnn
+ . . .+

1
n lnn...lnkn

+
ϑ(n)

n lnn...lnkn
where

ϑ(n) ≥ 0 and lim
n→∞

ϑ(n) = 0

Theorem 7.0.9. Let
∑∞

n=1 an be a series with positive memebers. If

∃k ∈ N, ∃p > 1, ∃N ∈ N, ∀n > N :

lnk n
(

lnk−1 n
(
...lnn

(
n(

an
an+1

− 1)− 1
)
...− 1

)
− 1
)
≥ p

then the series
∑∞

n=1 an converges. If

∃k ∈ N, ∃N ∈ N, ∀n > N :

lnk n
(

lnk−1 n
(
...lnn

(
n(

an
an+1

− 1)− 1
)
...− 1

)
− 1
)
≤ 1

then the series
∑∞

n=1 an diverges.

Again, the theorem can be made into equivalence. We will use

k∏
i=1

lni n = (lnn)(ln2 n)...(lnk n)
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Theorem 7.0.10. Let
∑∞

n=1 an be a series with positive memebers. Assume
that there exist a natural number k, a real number p, a number r > 1 and a
real bounded sequence Bn and

an
an+1

= 1 +
1
n

+
k−1∑
j=1

1

n
∏j
i=1 lni n

+
p

n
∏k
i=1 lni n

+
Bn

n
(∏k−1

i=1 lni n
)
(lnk n)r

Then the series
∑∞

n=1 an converges if and only if p > 1. And the series∑∞
n=1 an diverges if and only if p ≤ 1.

Even though it might seem that this is a powerful tool to test conver-
gence, it actually can resolve only a fraction of all possible series (with
positive terms). We will discuss the results in the chapter named Epilogue.

An example of the case when the upper criterion fails. Let {an}∞n=1 be
a monotonous positive sequence and

∑∞
n=1 an be a convergent series. Let

{bn}∞n=1 be a sequence such that

bn =
1
n
⇔ n = a2, a ∈ N

bn = 0 for all other n

It is easy to see that the series
∑∞

n=1 bn converges (moreover, if we look at
the index n and the term an, it converges very slowly). Now we use these
two series to create new series

∑∞
n=1 Ξn:

Ξn = an ⇔ bn = 0

Ξn = bn ⇔ bn 6= 0
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{Ξn}∞n=1 :

0 10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

0.25

Obviously, the series
∑∞

n=1 Ξn converges. Now let’s try to find such least
monotonous sequence {Υn}∞n=1 that

∀n : Ξn ≤ Υn
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It is not very difficult to see that the sequence we are looking for is

Υk =
1
n2

⇔ k ∈ ((n− 1)2, n2], n ∈ N

0 10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

0.25

Moreover, there are exactly (2n − 1) terms of value 1
n2 in the sequence

{Υk}∞k=1. Therefore

∞∑
k=1

Υk =
∞∑
n=1

2n− 1
n2

≈
∞∑
n=1

1
n

=∞ (7.5)

Sequence {Υn}∞n=1 is the least monotonous bound of sequence {Ξn}∞n=1 and
because the convergent series from the theorem 7.0.9 is also monotonous, it
cannot be an upper bound for this sequence (otherwise it would bound a
divergent series from (7.5)).

49



Chapter 8

Epilogue

And that’s all folks. We hope that this work has helped all readers to
familiarize with the techniques used to determine convergence/divergence
of infinite series (with positive terms only, though). But also to realize,
that these special tests (Raabe, Gauss, Bertrand) will work only for a small
fraction of them and that no given series can lead to a universal compari-
son test. The example from the previous chapter can also serve as a proof
that no monotonous series can lead to a test that will be able to decide all
positive series. We are sure that the reader can see where the problem arises.

Note that we are distinguishing between the terms “universal criterion”
and “general criterion”. The former means a test, based on a fixed series,
that can unravel the character of all series with positive terms. That is, the
usage of such criterion is straithforward. The latter means a test (e.g. first
or second comparison test) that works for all positive series, but it usually
requires additional (and often big) effort to make a good use of it (as a price
for its generality).

And that is the situation with Kummer’s test, as this is a general test
and it truly works for all the series (with positive terms) there are. However,
when looked at more closely, we can see that it is just the first and second
comparison criterion in a smart disguise. So making this test work (finding
the numbers pn) can be very difficult. On the other hand, the benefit of this
test is that we can see many special criterions as its corollaries. That is, the
treasure is the treasure chest itself, not its contents, and this is probably the
best result we can expect to get with general criterions.
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Last but not least, thank you for reading this work. We hope that someday,
somewhere, it will come in hand.
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