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Abstract - In our project, we applied artificial intelligence 

algorithms to games, in order to see how computers can compete 

against themselves and humans. The programming language we 

utilized for our main application was Java. We also used various 

open source software, such as the OpenCV computer vision 

library and the RXTX [6] serial communication library in order 

to connect our Java game-playing application to a robotic arm so 

it could see the game state and play against humans in the real 

world. Google Code and the NetBeans IDE were used as 

collaboration and software development tools, respectively.  

Keywords - Artificial intelligence; Algorithms; Strategy; 

Robotics; Board games; Educational robotics; Computer vision 

I.  INTRODUCTION 

Artificial intelligence (abbreviated as AI) is a branch of 
computer science that deals with development and application 
of intelligent behavior in machines and software. AI is further 
divided into subsectors that explore concepts such as computer 
vision, planning, learning, communication, prediction, spatial 
orientation, representation and reasoning [7]. 

Artificial intelligence algorithms are finding their way into 
various levels of society with an astonishing pace: Google's 
self-driving cars, industrial processes such as aircraft design, 
complex data analysis for the stock market, multidisciplinary 
science (especially biology and astronomy), etc. The reason for 
their huge success is the fact that they allow us to use the 
advantages of our own brains' ways of analyzing data, learning, 
and memorizing, and combine them with the vast computing 
power and other technological conveniences of our machines. 

A concrete example of such a system would be Google 
self-driving cars[8], which use these algorithms and many 
other intriguing technologies in order to solve real-world 
problems and make the lives of humans easier. The project was 
originally led by Sebastian Thrun and Chris Urmson in secret, 
but Google is currently performing tests in public. 

The games we have analyzed were one-player or two-
player games that could easily be expressed with simple logical 
conditions. We restricted our scope to games where the game 
playing progress can be partitioned to a sequence of elementary 
pick and place moves with optional modification of states of 
game elements. This included board games like mill and 
reversi, but excluded real-time video games. Even very 
complex board games such as chess could be described in our 
system, but we focused on those games, where general 
algorithms could be applied without having to feed the system 

with substantial expert knowledge and game-specific 
information. 

A similar, but quite more advanced application, is Watson, 
an IBM machine that won the Jeopardy game in a TV show 
[9].  

II. MATERIALS AND METHODS 

As the crux of our project were games, we also played them 
a lot, and manually discovered strategies for them and did 
some further mathematical analysis. At some point, these 
games needed to be transferred to the computer, so we needed 
a common language for describing them and how they 
progressed, and we had to find a method of representing them 
in the computer. 

The common language, with which we could define the 
games, was a custom expression language made by our project 
leaders. Using it, we managed to develop a game called 
Connect Four. The goal of the game is to align four tokens in a 
line, by dropping them into a grid. The game is played by two 
players, each of which use differently-colored tokens. 

  

Figure 1. Traditional Connect Four game. 



 

Figure 2. The Java game interface. 
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Code 2 

The example shows a function that verifies whether the 
player has placed a 4th winning token in direction dx, dy. It 
uses variables, assignments, built-in operators ==, OR, +, and 
functions ELTYPE, CONTENT, FORALL. Full specification 
of the language is in the project wiki [1], and full rules of 
Connect4 can be found in games/ folder in the open-source 
project repository. 

 

A. Internal representation 

 
The board games we studied, had a finite number of game 

states, which described the game configuration in a particular 
moment in time. Any game state could be expanded to obtain 
the set of game states reachable by performing one move. 

One of the problems that had to be overcome was the fact 
that game states could roll back into a loop – for example, if 
moving a figure A to a certain position, and then moving it 
back again, was a legal sequence of moves, then there are 
infinite moves in the game – which could be quite problematic 
to our algorithms, so we had to remember which states we had 
visited before. Thus the resulting state space formed a rooted 
tree – known from the graph theory as a connected graph 
without loops with states represented by nodes and moves 
represented by edges. 

B. S3Games 

    Our main tool for this project was a Java framework called 

S3Games. It was prepared by our project leaders, and its goal 

was to simplify the definition of new games and the creation 

of new algorithms. It includes a GUI for playing and 

monitoring games, as well as a custom language for rules. 

 

    The project is maintained at [1], and is about 8k lines of 

code long. 

 

C. Algorithms 

 

    We used algorithms that were compatible with graphs, that 

is, they could be applied to some form of graph traversal and 

analysis. 

    Our algorithms had two main characteristics: the most 

important one being whether they were deterministic or 

stochastic. Deterministic algorithms would give the same 

output each time they were applied to the same input (some 

initial game state). This practically meant that the algorithms 

would try to explore all of the possibilities, one by one 

(exactly how it did that depended on the concrete 

implementation). This might seem as a desirable feature, but 

in reality it imposes serious limitations on the whole process.       

We learned how to mitigate these shortcomings by introducing 

stochastic elements. 

    The stochastic algorithms rely on statistics, and traverse 

only a subset of the game state neighborhood. Again, the 

details depend on the implementation, but we usually only 

chose a percentage of the state neighborhood and ignored the 

rest. This allowed the program to simulate the game much 

further into the future given the same amount of time, and still 

be able to get satisfying results in terms of the moves it 

chooses to make. 

 

1. Deterministic 

 

BFS and DFS 

    The Breadth First Search algorithm is one of the two 

simplest graph traversal algorithms which we learned about. It 

tries to expand all of the nodes, and progresses level through 

level. If, for example, state A led to states B, C, D, and E, the 

algorithm would process them in that order – ignoring the 

children of the nodes in the second row. 

    This algorithm wasn’t efficient since the number of nodes it 

needed to process increased exponentially, and it took a very 

long time to reach the end. Statistically, it is not needed to 

process all of the states to get good results. 

    Depth First Search is just as primitive (for this type of task) 

[Expressions] 

 

SameElementType 

  ELTYPE(CONTENT("b($X,$Y)")) == 

$TP 

  $CNT = ($CNT + 1) 

  $X = ($X + $DX) 

  $Y = ($Y + $DY) 

END 

 

Count($DX,$DY) 

  $X = ($L + $DX) 

  $Y = ($M + $DY) 

  $CNT = 0 

  FORALL($A,1,3,SameElementType) OR 

true 

  $CNT          

END 

 



as BFS. It functions on a similar yet opposite principle: it tries 

to get to the leaf (ending) nodes first, and only then returns 

from there to process others. 

E.g., if there was a graph with a root node A, two children D 

and E, and if D had yet another two children, B and C, the 

algorithm would process the nodes as follows: A, D, B, C, E.        

It expanded the D node and processed its children before 

processing E, even if they were on the same depth. 

Just as BFS was too broad to return useful results in this 

particular case, DFS was too specific. It would definitely reach 

ending states (leafs), but not nearly enough of them to actually 

make it statistically relevant. 

AStar search 

    The nodes are stored in a priority queue, i.e. when retrieving 

the next node, we always take the node with the highest 

priority. The priority depends on the function (lower is better): 

                               

                        Equation1:   

    where          is a heuristic evaluation of the state of that 

node, i.e. the expected distance to the goal state, however it 

must comply with the restriction              , where   is 

the real distance to the goal state, and             . And 

         is the distance from the root state, i.e. the number of 

moves we would have to make from the state where we started 

searching. 

MiniMax 

    All of the aforementioned algorithms suffer yet another fatal 

flaw: they never account for the opponent. BFS and other 

algorithms’ results are of little to no value in two player games, 

where it is not enough to simply iterate over all possible states, 

since in two player games the decision making process 

alternates between and depends on two parties. 

    Thus, an algorithm which considered the opposing player 

was needed to be developed. The name MiniMax comes from 

the fact that the algorithm tries to predict the moves of the 

opponent based on minimizing its success, and tries to make 

moves based on maximizing it. 

 

2. Stochastic 

 

Monte Carlo method 

    The Monte Carlo method is the general method of 

constructing stochastic algorithms based on statistics already 

described above. Specifically, in our case, it works by 

evaluating only a subset of all of the possible paths a game 

could take after a move is taken, thus  

MiniMax Stochastic 

    With this algorithm we combined the predictive power of 

the original MiniMax algorithm and the efficiency of the 

Monte Carlo method. We supposed that by doing this, we 

would develop a strategy better than both of them. This 

modification was a relatively simple one, as we only needed to 

restrict the possible pool of next moves from a node to random 

subset, as described above. 

Improvements over the original Monte Carlo method 

    We noticed how the original Monte Carlo algorithm had a 

serious issue, which was the fact that it didn’t consider how 

many moves it takes to reach some final state, and how big 

was the chance of an opponent making a move to a particular 

node. That is, a victory in a hundred moves would be viewed 

the same as a victory in the next two moves – which is 

obviously a suboptimal consideration of the current state. We 

fixed this by making the deeper nodes less relevant. At first, 

this was done by dividing the value of a node by the breadth of 

branching in all nodes all the way from the root node to the 

considered winning state. 

    We also implemented another, less strict method of 

trivialization – multiplication by a constant factor. The factor 

we used was 0.9, but it was only an estimate, not an 

empirically satisfying value (to achieve that, we could, for 

example, use evolutionary programming). 

D. Robotics 

    Since most humans are familiar with these games in their 

physical, as opposed to virtual, form, it was only logical to add 

the ability to play against the computer in this much more 

natural way of interaction. 

    For this purpose, a Lynxmotion robotic arm [4] which was 

assembled by our mentors was used. The arm consisted of six 

servo motors, controlled by an on-board AVR microcontroller. 

The microcontroller received commands from a PC over a 

serial port [5]. The RXTX library [6] was used in order to 

facilitate this connection and make our application capable of 

controlling the robot. 

 

Figure 3. The robotic arm playing a game. 

    An additional component of the whole setup was a web 

camera, which allowed the computer to “see” the current game 

state, and interpret it in its internal data structures. We used the 



OpenCV computer vision library [3] to detect the variously 

colored pads on the game board, and determine their positions. 

E. Overnight simulation marathon 

Our most important experiment was our game simulation 

marathon. We used twelve computers in order to compare 

various combinations of our algorithms playing against each 

other overnight. 

 

III. RESULTS 

We measured our algorithms according to the Connect Four 
game we had implemented ourselves. 

Table I shows the results we got from the simulations. 

These data suggest that the classic Monte Carlo method is 
the best algorithm we implemented, since the simpler 
algorithms such as BFS and DFS could not really compare. 

It is evident that the Monte Carlo method (labeled MC in 
Table I), is the best performing, since it had a win percentage 
of over 50 against every other algorithm. 

We also had humans play against the machines – both 
simulated and real board. They mostly won against the random 
control, and lost against more advanced algorithms, however, it 
would be statistically incorrect to draw any conclusions, since 
the number of games was too low. 

Table I: Percentage of the games won in all different algorithm 
pairs. Pairs played 52-100 games, changing the starting player 
after half of them. 

 
MM MMS MC MCR2 

MM x 82,93 41,30 48,08 

MMS 8,54 x 11,67 3,19 

MC 54,35 88,33 x 51,72 

MCR2 44,23 96,81 46,55 x 

     

 
MCR MCR2 

  

MCR x 31,93 
  

MCR2 68,07 x 
  

     

    Legend: MCR2 – Monte Carlo with a fixed point factor, MC – 
original Monte Carlo, MMS – stochastic MiniMax, MM – MiniMax, 
MCR – Monte Carlo with breadth-dependent division. 

 

IV. DISCUSSION  

    The most surprising result we’ve had was the poor 

performance of the stochastic MiniMax. We had hoped that it 

would outperform both Monte Carlo family and the original 

MiniMax, but it managed to do neither. Our explanation is that 

the program doesn’t manage to expand enough nodes and do 

the required computations on them for the resulting decision to 

be statistically accurate. It is also too likely to ignore an 

important move that is close to the root node, thus giving the 

opponent a huge advantage. We hypothesized that the 

performance could be improved by providing more running 

time, and skipping only own moves, but not the moves of the 

opponent. 

    A lot more useful data could be gathered by more testing 

with varying parameters – how much time each algorithm is 

given, how many nodes it is allowed to expand, etc. 

    Another expansion of this study would also be 

implementing more different games. 
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