
The Art of Playing Games

Marko Cvijović
1
, Mislav Unger

2
, Jan Corazza

3

1
Gymnasium Užice, Užice, Serbia

2
Gymnasium Bjelovar, Bjelovar, Croatia

3
V. gymnasium, Zagreb, Croatia

aginor96@gmail.com

mislavunger@gmail.com

yannbane@yannbane.com

Abstract - In our project, we applied artificial intelligence

algorithms to games, in order to see how computers can compete

against themselves and humans. The programming language we

utilized for our main application was Java. We also used various

open source software, such as the OpenCV computer vision

library and the RXTX [6] serial communication library in order

to connect our Java game-playing application to a robotic arm so

it could see the game state and play against humans in the real

world. Google Code and the NetBeans IDE were used as

collaboration and software development tools, respectively.

Keywords - Artificial intelligence; Algorithms; Strategy;

Robotics; Board games; Educational robotics; Computer vision

I. INTRODUCTION

Artificial intelligence (abbreviated as AI) is a branch of
computer science that deals with development and application
of intelligent behavior in machines and software. AI is further
divided into subsectors that explore concepts such as computer
vision, planning, learning, communication, prediction, spatial
orientation, representation and reasoning [7].

Artificial intelligence algorithms are finding their way into
various levels of society with an astonishing pace: Google's
self-driving cars, industrial processes such as aircraft design,
complex data analysis for the stock market, multidisciplinary
science (especially biology and astronomy), etc. The reason for
their huge success is the fact that they allow us to use the
advantages of our own brains' ways of analyzing data, learning,
and memorizing, and combine them with the vast computing
power and other technological conveniences of our machines.

A concrete example of such a system would be Google
self-driving cars[8], which use these algorithms and many
other intriguing technologies in order to solve real-world
problems and make the lives of humans easier. The project was
originally led by Sebastian Thrun and Chris Urmson in secret,
but Google is currently performing tests in public.

The games we have analyzed were one-player or two-
player games that could easily be expressed with simple logical
conditions. We restricted our scope to games where the game
playing progress can be partitioned to a sequence of elementary
pick and place moves with optional modification of states of
game elements. This included board games like mill and
reversi, but excluded real-time video games. Even very
complex board games such as chess could be described in our
system, but we focused on those games, where general
algorithms could be applied without having to feed the system

with substantial expert knowledge and game-specific
information.

A similar, but quite more advanced application, is Watson,
an IBM machine that won the Jeopardy game in a TV show
[9].

II. MATERIALS AND METHODS

As the crux of our project were games, we also played them
a lot, and manually discovered strategies for them and did
some further mathematical analysis. At some point, these
games needed to be transferred to the computer, so we needed
a common language for describing them and how they
progressed, and we had to find a method of representing them
in the computer.

The common language, with which we could define the
games, was a custom expression language made by our project
leaders. Using it, we managed to develop a game called
Connect Four. The goal of the game is to align four tokens in a
line, by dropping them into a grid. The game is played by two
players, each of which use differently-colored tokens.

Figure 1. Traditional Connect Four game.

Figure 2. The Java game interface.

 Code 1

Code 2

The example shows a function that verifies whether the
player has placed a 4th winning token in direction dx, dy. It
uses variables, assignments, built-in operators ==, OR, +, and
functions ELTYPE, CONTENT, FORALL. Full specification
of the language is in the project wiki [1], and full rules of
Connect4 can be found in games/ folder in the open-source
project repository.

A. Internal representation

The board games we studied, had a finite number of game

states, which described the game configuration in a particular
moment in time. Any game state could be expanded to obtain
the set of game states reachable by performing one move.

One of the problems that had to be overcome was the fact
that game states could roll back into a loop – for example, if
moving a figure A to a certain position, and then moving it
back again, was a legal sequence of moves, then there are
infinite moves in the game – which could be quite problematic
to our algorithms, so we had to remember which states we had
visited before. Thus the resulting state space formed a rooted
tree – known from the graph theory as a connected graph
without loops with states represented by nodes and moves
represented by edges.

B. S3Games

 Our main tool for this project was a Java framework called

S3Games. It was prepared by our project leaders, and its goal

was to simplify the definition of new games and the creation

of new algorithms. It includes a GUI for playing and

monitoring games, as well as a custom language for rules.

 The project is maintained at [1], and is about 8k lines of

code long.

C. Algorithms

 We used algorithms that were compatible with graphs, that

is, they could be applied to some form of graph traversal and

analysis.

 Our algorithms had two main characteristics: the most

important one being whether they were deterministic or

stochastic. Deterministic algorithms would give the same

output each time they were applied to the same input (some

initial game state). This practically meant that the algorithms

would try to explore all of the possibilities, one by one

(exactly how it did that depended on the concrete

implementation). This might seem as a desirable feature, but

in reality it imposes serious limitations on the whole process.

We learned how to mitigate these shortcomings by introducing

stochastic elements.

 The stochastic algorithms rely on statistics, and traverse

only a subset of the game state neighborhood. Again, the

details depend on the implementation, but we usually only

chose a percentage of the state neighborhood and ignored the

rest. This allowed the program to simulate the game much

further into the future given the same amount of time, and still

be able to get satisfying results in terms of the moves it

chooses to make.

1. Deterministic

BFS and DFS

 The Breadth First Search algorithm is one of the two

simplest graph traversal algorithms which we learned about. It

tries to expand all of the nodes, and progresses level through

level. If, for example, state A led to states B, C, D, and E, the

algorithm would process them in that order – ignoring the

children of the nodes in the second row.

 This algorithm wasn’t efficient since the number of nodes it

needed to process increased exponentially, and it took a very

long time to reach the end. Statistically, it is not needed to

process all of the states to get good results.

 Depth First Search is just as primitive (for this type of task)

[Expressions]

SameElementType

 ELTYPE(CONTENT("b($X,$Y)")) ==

$TP

 $CNT = ($CNT + 1)

 $X = ($X + $DX)

 $Y = ($Y + $DY)

END

Count($DX,$DY)

 $X = ($L + $DX)

 $Y = ($M + $DY)

 $CNT = 0

 FORALL($A,1,3,SameElementType) OR

true

 $CNT

END

as BFS. It functions on a similar yet opposite principle: it tries

to get to the leaf (ending) nodes first, and only then returns

from there to process others.

E.g., if there was a graph with a root node A, two children D

and E, and if D had yet another two children, B and C, the

algorithm would process the nodes as follows: A, D, B, C, E.

It expanded the D node and processed its children before

processing E, even if they were on the same depth.

Just as BFS was too broad to return useful results in this

particular case, DFS was too specific. It would definitely reach

ending states (leafs), but not nearly enough of them to actually

make it statistically relevant.

AStar search

 The nodes are stored in a priority queue, i.e. when retrieving

the next node, we always take the node with the highest

priority. The priority depends on the function (lower is better):

 Equation1:

 where is a heuristic evaluation of the state of that

node, i.e. the expected distance to the goal state, however it

must comply with the restriction , where is

the real distance to the goal state, and . And

 is the distance from the root state, i.e. the number of

moves we would have to make from the state where we started

searching.

MiniMax

 All of the aforementioned algorithms suffer yet another fatal

flaw: they never account for the opponent. BFS and other

algorithms’ results are of little to no value in two player games,

where it is not enough to simply iterate over all possible states,

since in two player games the decision making process

alternates between and depends on two parties.

 Thus, an algorithm which considered the opposing player

was needed to be developed. The name MiniMax comes from

the fact that the algorithm tries to predict the moves of the

opponent based on minimizing its success, and tries to make

moves based on maximizing it.

2. Stochastic

Monte Carlo method

 The Monte Carlo method is the general method of

constructing stochastic algorithms based on statistics already

described above. Specifically, in our case, it works by

evaluating only a subset of all of the possible paths a game

could take after a move is taken, thus

MiniMax Stochastic

 With this algorithm we combined the predictive power of

the original MiniMax algorithm and the efficiency of the

Monte Carlo method. We supposed that by doing this, we

would develop a strategy better than both of them. This

modification was a relatively simple one, as we only needed to

restrict the possible pool of next moves from a node to random

subset, as described above.

Improvements over the original Monte Carlo method

 We noticed how the original Monte Carlo algorithm had a

serious issue, which was the fact that it didn’t consider how

many moves it takes to reach some final state, and how big

was the chance of an opponent making a move to a particular

node. That is, a victory in a hundred moves would be viewed

the same as a victory in the next two moves – which is

obviously a suboptimal consideration of the current state. We

fixed this by making the deeper nodes less relevant. At first,

this was done by dividing the value of a node by the breadth of

branching in all nodes all the way from the root node to the

considered winning state.

 We also implemented another, less strict method of

trivialization – multiplication by a constant factor. The factor

we used was 0.9, but it was only an estimate, not an

empirically satisfying value (to achieve that, we could, for

example, use evolutionary programming).

D. Robotics

 Since most humans are familiar with these games in their

physical, as opposed to virtual, form, it was only logical to add

the ability to play against the computer in this much more

natural way of interaction.

 For this purpose, a Lynxmotion robotic arm [4] which was

assembled by our mentors was used. The arm consisted of six

servo motors, controlled by an on-board AVR microcontroller.

The microcontroller received commands from a PC over a

serial port [5]. The RXTX library [6] was used in order to

facilitate this connection and make our application capable of

controlling the robot.

Figure 3. The robotic arm playing a game.

 An additional component of the whole setup was a web

camera, which allowed the computer to “see” the current game

state, and interpret it in its internal data structures. We used the

OpenCV computer vision library [3] to detect the variously

colored pads on the game board, and determine their positions.

E. Overnight simulation marathon

Our most important experiment was our game simulation

marathon. We used twelve computers in order to compare

various combinations of our algorithms playing against each

other overnight.

III. RESULTS

We measured our algorithms according to the Connect Four
game we had implemented ourselves.

Table I shows the results we got from the simulations.

These data suggest that the classic Monte Carlo method is
the best algorithm we implemented, since the simpler
algorithms such as BFS and DFS could not really compare.

It is evident that the Monte Carlo method (labeled MC in
Table I), is the best performing, since it had a win percentage
of over 50 against every other algorithm.

We also had humans play against the machines – both
simulated and real board. They mostly won against the random
control, and lost against more advanced algorithms, however, it
would be statistically incorrect to draw any conclusions, since
the number of games was too low.

Table I: Percentage of the games won in all different algorithm
pairs. Pairs played 52-100 games, changing the starting player
after half of them.

MM MMS MC MCR2

MM x 82,93 41,30 48,08

MMS 8,54 x 11,67 3,19

MC 54,35 88,33 x 51,72

MCR2 44,23 96,81 46,55 x

MCR MCR2

MCR x 31,93

MCR2 68,07 x

 Legend: MCR2 – Monte Carlo with a fixed point factor, MC –
original Monte Carlo, MMS – stochastic MiniMax, MM – MiniMax,
MCR – Monte Carlo with breadth-dependent division.

IV. DISCUSSION

 The most surprising result we’ve had was the poor

performance of the stochastic MiniMax. We had hoped that it

would outperform both Monte Carlo family and the original

MiniMax, but it managed to do neither. Our explanation is that

the program doesn’t manage to expand enough nodes and do

the required computations on them for the resulting decision to

be statistically accurate. It is also too likely to ignore an

important move that is close to the root node, thus giving the

opponent a huge advantage. We hypothesized that the

performance could be improved by providing more running

time, and skipping only own moves, but not the moves of the

opponent.

 A lot more useful data could be gathered by more testing

with varying parameters – how much time each algorithm is

given, how many nodes it is allowed to expand, etc.

 Another expansion of this study would also be

implementing more different games.

ACKNOWLEDGMENT

Pavel Petrovič and Zuzana Koyšová were our project
leaders and we’re all very grateful to them for this interesting
and informative project.

REFERENCES

[1] Project open-source repository and wiki at Google Code. Available
online: http://code.google.com/p/s3games/

[2] JAVATM Platform, Standard Edition 7 API Specification, Oracle.
Available online: http://docs.oracle.com/javase/7/docs/api/

[3] OpenCV online documentation, Available online:
http://docs.opencv.org/

[4] Lynxmotion Robot Arm AL5D. Available online:
http://www.lynxmotion.com/c-130-al5d.aspx

[5] Jim Frye: SSC-32 Manual, Lynxmotion, 2010. Available online:
http://www.lynxmotion.com/images/html/build136.htm

[6] Keane Jarvi: RXTX Library. Available online: http://rxtx.qbang.org

[7] Stuart Russell, Peter Norvig: Artificial Intelligence: A Modern Approach
(3rd Edition), Prentice Hall, 2009.

[8] Erico Guizzo: How Google's Self-Driving Car Works, IEEE Spectrum,
2011. Available online:
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-
google-self-driving-car-works

 [9] Eric Brown, Eddie Epstein, J William Murdock, Tong-Haing Fin: Tools
and Methods for Building Watson, IBM Research Report RC25356,
2013.

http://docs.oracle.com/javase/7/docs/api/
http://rxtx.qbang.org/
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works

