
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Generation of oblique plane
triangulations

Bachelor Thesis

2021
Matúš Matok

ii

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Generation of oblique plane
triangulations

Bachelor Thesis

Study Programme: Computer Science
Field of Study: Computer Science
Department: Department of Computer Science
Supervisor: RNDr. Ing. František Kardoš, PhD.

Bratislava, 2021
Matúš Matok

iv

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Matúš Matok
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Generation of oblique plane triangulations
Generovanie oblique planárnych triangulácií

Anotácia: V práci budeme študovať kombinatorické vlastnosti planárnych triangulácií
s vlastnosťou, že pre jednotlivé steny sú trojice stupňov incidentných vrcholov
navzájom rôzne (tzv. oblique triangulácie). Je známe, že takýchto triangulácií je
len konečný počet a tiež sú známe horné odhady na maximálny možný stupeň
takéhoto grafu. Cieľom práce je nájsť oblique triangulácie čo najväčšieho
maximálneho stupňa a vygenerovať všetky možné oblique triangulácie daného
maximálneho stupňa, prehľadávaním pomocou počítača.

Vedúci: RNDr. Ing. František Kardoš, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 28.10.2020

Dátum schválenia: 31.10.2020 doc. RNDr. Daniel Olejár, PhD.
garant študijného programu

študent vedúci práce

vi

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Matúš Matok
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Generation of oblique plane triangulations

Annotation: We will study combinatorial properties of planar triangulations with the
additional property that there are no two faces with the same triple of degrees
of incident vertices (so-called oblique triangulations). It is known that there
are only finitely many such graphs, and upper bounds on maximum degree are
known as well. In this work, we aim to find oblique triangulations of large
maximum degree and to generate all oblique triangulations of a given maximum
degree, using a computer-assisted search.

Supervisor: RNDr. Ing. František Kardoš, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 28.10.2020

Approved: 31.10.2020 doc. RNDr. Daniel Olejár, PhD.
Guarantor of Study Programme

Student Supervisor

iii

Acknowledgments: I would like to thank my supervisor Mr. RNDr. Ing. Fran-
tišek Kardoš, PhD. for his enormous contribution and dedication to this work. I mostly
appreciate the friendly approach and the structure of the work we have set. For all of
that and much more he certainly deserves credit.

iv

Abstrakt

Rovinná triangulácia je oblique ak multimnožina stupňov troch incidentných vrcholov
je pre každú stenu unikátna. V tejto práci sme navrhli a realizovali algoritmus, ktorý
generuje oblique rovinné triangulácie na základe obmedzenia na maximálny stupeň
vrchola v hľadanom grafe. Táto práca obsahuje detailný popis zmieneného algoritmu.
Výsledky práce vo forme vygenerovaných oblique rovinných triangulácií sú obsiahnuté
v prílohách.

Kľúčové slová: oblique graf, rovinná triangulácia, maximálny stupeň

v

Abstract

A plane triangulation is oblique if the multiset of the degrees of the three incident
vertices is unique for each triangular face. In this work, we have designed and imple-
mented an algorithm to generate oblique plane triangulations with a given maximum
vertex degree. This paper contains a detailed description of that algorithm. Results in
the form of discovered oblique plane triangulations are included in the appendices.

Keywords: oblique graph, plane triangulation, maximum degree

vi

Contents

1 Introduction 1

2 Theoretical background 3
2.1 Terminology . 3
2.2 Theoretical findings . 4

3 Algorithm 9
3.1 Core principle . 9
3.2 Definitions for practical application of the core principle 10
3.3 Application . 11

3.3.1 Pseudo-code . 12
3.4 Choose function . 14

3.4.1 OP-transformations . 14
3.5 Transform function . 16

3.5.1 Deterministic situation . 16
3.5.2 Non-deterministic situation . 17
3.5.3 Graph operations . 18

3.6 Check function . 21
3.6.1 Oblique criterion . 21
3.6.2 Non-closable face criteria . 21

4 Complexity 23
4.1 Restricting depth . 23
4.2 Restricting width . 25

4.2.1 Edge type priority . 25
4.2.2 Semi-edge driven decision . 26

4.3 Avoiding multiple isomorphic results 27
4.4 Variation of the algorithm . 29

4.4.1 Restricting admissible vertex degrees 29
4.4.2 Restricting the amount of vertices of admissible degrees 30
4.4.3 Prioritising certain semi-edges to accommodate the modifications 30

vii

viii CONTENTS

5 Implementation 31
5.1 Class FaceStorage . 31
5.2 Class Edge . 32
5.3 Class OpenEdge . 32
5.4 Class EdgeStorage . 32
5.5 Class MutablePriorityQueue . 32
5.6 Class Node . 33
5.7 Class Face . 34
5.8 Class GraphProcedures . 34
5.9 Class Graph . 34

6 Results 35
6.1 Finding all oblique plane triangulations restricted by maximum degree 35
6.2 Finding oblique plane triangulations with high vertex degrees 36

7 Conclusion and perspectives 37

Appendix A 41

Appendix B 43

List of Figures

3.1 Four different ways how an edge can be present in a partial graph H

contained in an oblique plane triangulation G. 11
3.2 If a vertex b has no semi-edges in an open face Fj (left), then the existence

of the edge ac is forced (right). 17
3.3 Situation before operation Add and after operation Add for parameters

a, b, c, F . 19
3.4 Situation before operation Connect and after for parameters a, 1, b, 1, F . 20

5.1 This figure shows faceStorage for ∆ = 5, where each color represents a
value of element in triplet x, y, z . 31

5.2 Figure represents situation in Node v that is incident to open faces Fi, Fj.
Node has four semi-edges in Fi and zero semi-edges in Fj. 33

5.3 Situation in Figure 5.2 corresponds to the situation in this Figure. . . . 33

ix

x LIST OF FIGURES

List of Tables

6.1 For various combinations of values of maximum degree and restrictions
on numbers of medium-degree vertices, the time to produce a first graph
is shown. 36

xi

xii LIST OF TABLES

Chapter 1

Introduction

Since human race existed, all the progress and innovation was driven by curiosity. The
curiosity has brought the society to the state where it currently is. Despite curiosity
is not a sufficient trait on the way to breakthroughs it might be considered the most
important. Sometimes it takes luck, courage and persistence to turn curiosity into
something useful. However, sometimes the curiosity might lead us nowhere. Only
the time will tell, if one’s effort pays off. Amongst others, the research of oblique
plane triangulations might be considered as a pursuit of curiosity. The utility of this
subject has not yet been figured, but one can never know what the future has in
store for us. That’s why it never hurts to learn more about some things. Many
have researched the subject of oblique plane triangulations. Hansjoachim Walther [4],
Margit Voigt [3], Jens Schreyer [2] and František Kardoš with Jozef Miškuf [1] have
all done an astonishing researches on this subject. They have discovered different
facts and constraints of oblique plane graphs. Although, we are only going to restrain
ourselves to triangulations in this paper, we might use some of their knowledge, to
help us achieve our goals. The goals are of two kinds. Firstly, we are going to try to
find a complete set of oblique plane triangulations for some well defined constraints.
Secondly, we are going to try to find as big oblique plane triangulation as possible in
terms of its maximum vertex degree.
The paper is going to start with some specific terminology that will help us orientate in
the subject. This is going to be shortly followed by an overview of facts related to the
topic. After we have covered the theoretical background, we are going to describe the
algorithm in detail. Having described the algorithm, we will focus on its complexity
and on the ways it can be improved. With all that knowledge, we are going to present
a basic overview of the implementation. At the end, we are going to present our results
and achievements.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Theoretical background

2.1 Terminology

The following terminology is basic theory which is essential to understand the topic.
For this purpose we chose definitions used by Kardoš and Miškuf [1] and Schreyer [2]
in their respective works, as well as our own definitions.

A graph is a pair G = (V,E), where V = V (G) is the set of vertices of the graph G
and E(G) is a set of 2-element subsets of V , called edges of G. We shall not distinguish
strictly between the graph and its vertex or edge set. For example, we may speak of a
vertex v ∈ G rather than v ∈ V (G), and so on.

Two vertices x, y ∈ V are joined by an edge e ∈ E(G) if e = {x, y}. Sometimes we
write e = xy or e = yx instead of e = {x, y}.

If two vertices are joined by an edge, they are adjacent. A vertex x is incident with
an edge e if x ∈ e. We might refer to an adjacent vertex as a neighbour for simplicity.

An embedding of a graph G on a surface S is a drawing of G on S without edges
crossing (vertices are represented by points, edges are represented by arcs between their
endvertices). In this work the surface S is a plane since we are going to generate plane
oblique triangulations.

If two edges are facially adjacent in a plane graph, it means that they are incident
to a vertex v and there is no other edge incident to v between them in the embedding.
Every edge is facially adjacent to two other edges in the vertex v.

The degree deg(v) of a vertex v ∈ V (G) is the number of vertices adjacent to v.
The maximum degree in a graph G is denoted by deg(G).

Let G = (V,E, F) be a 3-connected simple graph embedded into a surface S with
vertex set V , edge set E and face set F . A face α is an 〈a1, a2, ..., ak〉-face if α is a
k-gon and the degrees of the vertices incident with α in the cyclic order are a1, a2, ..., ak.
The lexicographic minimum 〈b1, b2, ..., bk〉 such that α is a 〈b1, b2, ..., bk〉-face is called
the type of α.

3

4 CHAPTER 2. THEORETICAL BACKGROUND

A triangulation is a graph in which every face is a triangle (or a 3-gon). Since this
work only researches triangulations, we can abbreviate the term type of face accord-
ingly. Therefore type of a face is a triplet 〈x, y, z〉. Since the type of a face is the
lexicographic minimum, we can additionally put x ≤ y ≤ z.

Let z be an integer. We consider z-oblique graphs, i.e. such graphs that the number
of faces of each type is at most z. If z = 1 (all faces are of different types), the graph
is said to be oblique.

2.2 Theoretical findings

Firstly, we are going to cover some important Theorems which are relevant to the topic
of oblique triangulations.

Theorem 2.1 (Euler’s formula.) Let G be a plane connected graph, then:

|V |+ |F | − |E| = 2

Proof: This formula is considered common knowledge in the graph theory, therefore
we will not include its proof in this paper.

Lemma 2.1 Let G be an plane triangulation, where m = |E| and f = |F |, then:

f = 2
3
m

Proof: Let lf be the amount of edges which a face f is incident to. In a triangulation
G, lf = 3, ∀f ∈ G. If we sum up lf for all faces in G, we get the following:

∑
f∈G

(lf) = 3f

We need to realise that every edge is accounted in the sum twice, therefore:

m = 1
2
3f

which is what we wanted to prove. �

Lemma 2.2 Let G be a graph, where m = |E| then:

∑
v∈G

(deg(v)) = 2m

2.2. THEORETICAL FINDINGS 5

Proof: Every edge is incident to exactly two distinct vertices, therefore if we sum the
degrees of all vertices in a graph, we account for every edge twice, hence:

1

2

∑
v∈G

(deg(v)) = m

�

Theorem 2.2 Let G be a triangulation, then:

∑
v∈G

(6− deg(v)) = 12

Proof: Using Euler’s formula and multiplying it by 6, where n = |V |, f = |F | and
m = |E| we get the following equation:

6n+ 6f − 6m = 12

According to Lemma 1.1 and multiplying its claim by six, we get 6f = 4m. By
substituting 4m by 6f in the above-written formula, we get the following:

6n+ 4m− 6m = 12

6n− 2m = 12

Using Lemma 1.2, we can further exchange 2m, getting

6n−
∑
v∈G

(deg(v)) = 12.

Through realisation that n = |V | we can modify the equation accordingly:∑
v∈G

(6)−
∑
v∈G

(deg(v)) = 12.

Finally, by merging the sums, we have proven the content of this Theorem. �

Lemma 2.3 Let G be an oblique plane triangulation. Then:

v ∈ G =⇒ deg(v) ≥ 3.

Proof:
Let deg(v) = 0. Then v has no edges, hence G is not connected, which is in conflict
with G being a triangulation.
Let deg(v) = 1. Then v has only one edge denoted as vx in a face f . If deg(x) = 1

then G is not a triangulation. If deg(x) = 2 then G must contain edge xy, where

6 CHAPTER 2. THEORETICAL BACKGROUND

y 6= v. Hence the face f , consist of at least 4 edges, which is in conflict with G being
a triangulation. If deg(x) ≥ 3 then x must be incident to edges xy and xz that are
incident to face f . That implies that f contains at least 5 vertices which is in conflict
with G being a triangulation.
Let deg(v) = 2. Then G must contain edges vx, vy. In order for G to be a triangulation
it must contain edge xy twice which is in conflict with G being a plane triangulation.
Moreover, both faces would be of the same type, which is in conflict with G being
oblique. �

Lemma 2.4 Let G be an oblique plane triangulation. Then G must not contain a face
with type 〈3, 3, x〉 for x ∈ N.

Proof:
Let deg(a) = deg(b) = 3 and deg(c) = x, x ∈ N, x ≥ 3. Assume that G contains face
abc. Both a and b are already incident to two edges. Each of them has one edge we
have not mentioned yet. Assume a is adjacent to d. That implies b is also adjacent to
d, because otherwise G would not be a triangulation. Since a has no other edges, in
order for G to be a triangulation, G must contain edge cd. However the same goes for
b, hence G would have to contain cd twice, which is in conflict with G being a plane
triangulation. Such situation would correspond to the situation in Figure LINK. �

Lemma 2.5 Let G be an oblique plane triangulation. Then G must not contain a face
with type 〈3, x, x〉 for x ∈ N.

Proof:
Let deg(a) = 3 and deg(b) = deg(c) = x, x ∈ N, x ≥ 3. Assume that G contains face
abc. In that case, a has one edge we have not mentioned denoted as ad. Since a has no
other edges, in order for G to be a plane triangulation, it must contain edges bd and
cd. However, deg(b) = deg(c) which implies 〈a, b, d〉 = 〈a, c, d〉 which is in conflict with
G being oblique. �

Theorem 2.3 Let G be a plane triangulation with maximum degree ∆. Let Vk be the
set of vertices of degree k, 3 ≤ k ≤ ∆. Then

|Vk| =

b
(∆−3)(∆−4)

6
c, if k = 3

b (∆−3)(∆+2)
2k

c, if k > 3

Proof:
We say that a vertex v gives a token to a face f if v is incident to f . Firstly, we need to
count how many tokens can all vi ∈ Vk give to faces in an oblique plane triangulation.
There are following cases:

2.2. THEORETICAL FINDINGS 7

• face with a type 〈k, k, k〉. In this case, vertices from Vk give three tokens as there
are three vertices of degree k incident to this face. Since there can only be one
face with a type of 〈k, k, k〉, Vk gives tokens 3 tokens at most to G.

• Face with a type 〈k, k, x〉, where x ∈ N, x > 3, x 6= k. In this case, vertices from
Vk give 2 tokens as there are 2 vertices with type k incident to this face. There
are (∆− 4) options for x, as degrees 1, 2, 3 and k are forbidden. Hence Vk has at
most 2(∆− 4) tokens in G in faces of this type.

• Face with a type 〈k, x, x〉, where x ∈ N, x > 3, x 6= k. In this case, vertices from
Vk give 1 token to this type of a face, since only one vertex of degree k is incident
to this face. There are (∆−4) options for x as degrees 1, 2, 3 and k are forbidden,
hence Vk has at most (∆− 4) tokens in G in faces of this type.

• Face with a type 〈k, x, y〉, where x, y ∈ N, x, y > 3, x 6= y, x 6= k and y 6= k.
Vertices from Vk give one token to faces of this type as there is only one vertex
with a degree of k incident to this face. There are (∆ − 3) options for x as
degrees 1, 2, 3 are forbidden and (∆ − 4) options for y as degrees 1, 2, 3 and x

are forbidden. That in total is (∆−3)(∆−4)
2

types of these faces, as 〈k, x, y〉 and
〈k, y, x〉 are considered as the same type. Since there is only one token given by
vertices from Vk, there are at most (∆−3)(∆−4)

2
tokens from Vk in G in faces of this

type.

Now that we have summed how many vertices can be at most in G for each set of
types, we need to sum this number to get the maximum amount of tokens given by Vk
in G. There are two cases:

• if k = 3, then according to the Lemmas 2.4 and 2.5, G cannot contain faces with
types in cases one through 3, hence G will at most contain (∆−3)(∆−4)

2
tokens from

V3.

• if k > 3, then we need to sum all above mentioned cases.

3 + 2(∆− 4) + (∆− 4) +
(∆− 3)(∆− 4)

2
=

= 3∆− 9 +
(∆− 3)(∆− 4)

2
=

= (∆− 3)[3 +
∆− 4

2
] =

=
1

2
(∆− 3)(∆ + 2)

8 CHAPTER 2. THEORETICAL BACKGROUND

Now that we have accumulated the maximum number of tokens given by vertices
in Vk to faces in G, we need to determine how many vertices of degree k can G contain.
We need to realise that each vertex in Vk gives exactly k tokens. By dividing the
maximum count of tokens by k for each Vk, we get the following:

|Vk| =

b
(∆−3)(∆−4)

2×3
c, if k = 3,

b (∆−3)(∆+2)
2k

c, if k > 3,

which is the exact content of this Theorem. �

Secondly, we are going to take a look at some more specific findings about these
graphs which were published by František Kardoš and Jozef Miškuf who have managed
to find upper bounds of these graphs and Hansjoachim Walther who delimited the set
of vertex degrees in these graphs. František Kardoš and Jozef Miškuf restricted the
size of oblique plane triangulations both by maximum degree of a vertex and maximum
size of a face. Since all faces in triangulations are triangles, delimiting face degree is
irrelevant in this case. Let’s take a look at two Theorems that delimit vertex degrees.

Theorem 2.4 (Kardoš and Miškuf [1]) Let G be a z-oblique graph with maximum
degree deg embedded into the surface with Euler’s characteristic e. Then

∆ ≤ 35.7z2 + 56.9z + 42 ln(41 + 21z)z − 6e+ 6.

Especially for every oblique graph G embedded on the sphere we have ∆ ≤ 235.

Note: As the graph is embeded in a sphere (or plane), e = 2.

Theorem 2.5 (Kardoš and Miškuf [1]) Let G be a z-oblique graph embedded into
the surface with Euler’s characteristic e. Let v1 and v2 be the vertices with the highest
degree among all vertices of the graph G and let ∆i = deg(vi), i = 1, 2. Then

∆1 + ∆2 ≤ 35.7z2 + 60.7z + 48z ln(41 + 21z)− 6e+ 12.

For every oblique graph embedded on the sphere we have ∆1 + ∆2 ≤ 268.

Theorem 2.6 (Hansjoachim Walther [4]) Let G be an oblique triangulation with
the degree set M = {m1,m2,. . . ,mk}, then k ≤ 90 .

It is proven that the number of oblique plane triangulations is finite [1], but is not
known. All of these theoretical findings will help to narrow down the computation and
we will discuss their applications in the latter parts of the work.

Chapter 3

Algorithm

As the topic of this work is to construct an algorithm which is able to find oblique tri-
angulations, we are going to cover the basic principles of the algorithm in this chapter.
We are going to list some further definitions to help to understand the process better.
These definitions are not from graph theory, they are only relevant to this algorithm
and its specific features.

3.1 Core principle

Let G be an oblique plane triangulation. Let G′ be a connected subgraph of G. Clearly,
for every vertex v of G′, we have degG′(v) ≤ degG(v). Moreover, every face of G′ is a
union of a set of faces of G.

Let G be an oblique plane triangulation, let H be a plane graph. A realization of
H in G is a subgraph G′ of G isomorphic to H.

Let H be a connected plane graph with at least two faces. A connected subgraph H ′

of H is called a parent of H if H ′ is obtained from H by one of the following operations:

1. remove a vertex of degree one in H, or

2. remove an edge incident to two distinct faces of H.

If this is the case, the graph H is called a child of H ′.
Clearly, if H has a realization in G, then any parent H ′ of H has one as well.

Lemma 3.1 Let G be an oblique plane triangulation, let H ′ be a plane graph that has
a realization in G. If H ′ is not isomorphic to G, then there exists a plane graph H,
which is a child of H ′, that has a realization in G.

Proof. Let G′ be a subgraph of G isomorphic to H ′. Since H ′ is not isomorphic to
G, G′ is a proper subgraph of G, therefore, there exists a vertex or an edge in G \G′.

9

10 CHAPTER 3. ALGORITHM

If G′ misses some vertices of G, then since G is connected, there exists a vertex
v ∈ G \ G′ adjacent to a vertex u ∈ G′. We can create a child H of H ′ by adding a
new vertex of degree one adjacent to the vertex corresponding to u in H ′. It is easy to
see that G′ ∪ {v} is a realization of H in G.

If G′ misses an edge joining two vertices already present in G′, say u and v, then we
can create a child H of H ′ by adding the edge joining the vertices of H ′ corresponding
to u and v in H ′. Since we add an edge joining two vertices of a connected graph, we
split a face into two distinct faces. It is easy to see that G′ ∪ uv is a realization of H
in G. �

As a consequence of this lemma, we get the following observation.
Let G be an (unknown) oblique plane triangulation. Let H0 be a graph consisting

of a single triangle. Then G can be found after a finite number of steps by a non-
deterministic algorithm that, at each step, transforms Hi into its child Hi+1, until
eventually Hk is isomorphic to G for some k.

In order to make this algorithm deterministic, at each step, we ought to consider
all possible children of Hi as candidates for the graph Hi+1 – we should make a search
in the (infinite) tree of all the ancestors of H0.

However, since the target graph G is oblique, there are constraints that make the
number of possible children of each node of the search tree rather limited. In the
following section we describe the tools used to determine the child-parent relation
more precisely.

3.2 Definitions for practical application of the core

principle

In order to be able to capture more precisely the way how a graph H can be realized
in an oblique plane triangulation G, we will consider objects richer than graphs: We
will consider vertex-labeled graphs, and we will allow vertices to be incident with semi-
edges.

A label of a vertex in a graph H is an integer denoted by λ(v), which represents
the degree of the target vertex corresponding to v in a realization of H in G. Clearly,
degH(v) ≤ λ(v). If G is an oblique plane triangulation, then the label of every vertex
in G is equal to its degree.

A semi-edge is an edge only incident to one vertex. We will only consider graphs
with the following property: For every vertex v, the number of semi-edges at v is equal

3.3. APPLICATION 11

to λ(v)− degH(v).

For a fixed embedding of a plane graph H, each semi-edge belongs to some face.

A closed face f is a triangle containing no semi-edges. Therefore all faces in an
oblique triangulation are closed. A face which is not closed is open. Some open faces
might turn-out non-realizable, which we will address in a future section. We will refer
to closed faces with lower-case letters, e.g., f0 is a closed face, whereas F1 is an open one.

Let G be an oblique plane triangulation. Let H be a subgraph of G, let uv be an
edge of G. There are precisely 4 ways in which uv can be present in the graph H (see
Figure 3.1 for illustration):

• both u and v are present in H and the edge uv is also present in H,

• both u and v are present in H, however the edge uv is not present in H, therefore
both u and v contain a semi-edge belonging to their mutual open face,

• only u [v] is present in H, containing a semi edge,

• neither u nor v is present in H, therefore uv is not present in the H in any way.

Figure 3.1: Four different ways how an edge can be present in a partial graph H

contained in an oblique plane triangulation G.

3.3 Application

As mentioned above, there is a non-deterministic algorithm which transforms Hi into
Hi+1 until Hk is isomorphic to an unknown oblique plane triangulation G. As we need
to make this algorithm deterministic, for every Hi we have finite amount of options
how to transform it into Hi+1. This hints at a backtracking algorithm which will go
through an infinite search tree.

12 CHAPTER 3. ALGORITHM

Before we introduce implementation details it is important to present an overview
of algorithm’s structure. It is going to contain some black box functionality, which
will be addressed in latter chapters of the work. The basic principle is based upon
searching an infinite search tree by a recursive function. When the recursive function
is called, there is an instance of a plane connected graph in a consistent state saved in
a global variable and we will refer to it as Hi. In addition, our goal will be to add one
closed face to the graph in each recursive call of the function.

3.3.1 Pseudo-code

recursion():

• At first we need to check if Hi is an instance of an oblique plane triangulation.
It is not hard to verify if Hi is a plane triangulation. To be a plane triangulation
Hi must not contain any open faces. To determine whether Hi is oblique is not
difficult as we need to check if no two faces are of the same type. If it is the case,
we return a copy of the graph.

• If the current instance of the graph is not an oblique plane triangulation, we do
the following:

– We initialise a result pool in which we will add all oblique plane triangula-
tions that Hi is a realization of by collecting return values from all recursive
calls on children Hi+1 of Hi.

– The next important task is to determine where to add the next closed face.
Provided we had a non-deterministic algorithm, this step would not be nec-
essary. Unfortunately, we do not posses such technology, therefore we need
an instruction function that provides us with a set of instructions, so that
we will not omit any child Hi+1 that might be a realization of an oblique
plane triangulation.

– Now we have a set of instructions, which we will refer to as I and its members
will be denoted as Ik. For each instruction Ik we do the following:

∗ Firstly we transform Hi into Hi+1 according to instructions in the Ik
using a transform function.

∗ After the graph is in a consistent state, we check if Hi+1 is a potential
realisation of an oblique plane triangulation using a check function. If
it is a potential realisation then we perform a recursive call on the Hi+1

and collect the return value into result pool.

∗ At last we need to transform Hi+1 back into Hi so that we can transform
Hi into another child according to another instruction in I. For that

3.3. APPLICATION 13

purpose we will use a inverse transform function that will undo the
transformation from the transform function.

– Lastly we return the result pool which contains all the oblique plane trian-
gulations that Hi is a realisation of.

After a very brief observation, it is apchild that the way this algorithm goes through
the search three is a variation of a depth-first search algorithm. This raises a question
of why the algorithm is not implemented as a breadth-first search. To perform a BFS
it would require to store many instances of plane connected graphs which would be
very memory inefficient solution for bigger inputs.

It is important to mention how the whole process begins. In other words, we need
to address how we get in the initial state H0 of the graph at which the first call of the
recursive function is performed. According to the input parameters of the program, we
create the first graph H0 as follows:

• We add first three vertices a, b, c

• we add edges ab,bc,ca creating a triangle in a way that all semi-edges are in one
of the two newly created faces F0. We will refer to the other one as f0

This is the initial state H0. We can see that there are two distinct faces. The face
F0 is the first open face, as it contains at least one semi-edge. On the other hand,
f0 is the first closed face as it is a triangle and contains no semi-edges. Type of f0 is
〈λ(a), λ(b), λ(c)〉.

There is another aspect of this algorithm worth addressing in this section. From
the pseudo-code we can see that a check function is called before entering the recur-
sion. It might be more intuitive to perform this check at the beginning of the recursive
call. On the contrary, if we perform the check function before the recursive call, we
have all the information of how Hi changed during transformation into Hi+1. Since
we know that Hi was a consistent instance of potential realization of an oblique plane
triangulation, it allows the check function to only focus on what has changed, whereas
if we performed the check function in the beginning of the recursion it would require
to check the entire graph or send the information by a complicated set of parameters.

That leaves us with 3 functions that we need to describe:

1. instruction (or choose) function

2. check function

3. transform function

14 CHAPTER 3. ALGORITHM

3.4 Choose function

The importance of the choose function stands in providing the algorithm a set of
instructions of how to transform Hi into its child so we do not except any child that
could be a realisation of an oblique plane triangulation. The set of instructions contains
elementary instructions where each stands for a distinct child of Hi. Each instruction
contains positional information and procedural information. In other words, what needs
to be done and where. We will discuss the procedural part in the section 3.5. In this
section we will discuss the positional part of the instruction. In order to understand
the process of choosing the position, we need to introduce some additional terminology.

3.4.1 OP-transformations

An OP-transformation is a process in which a graph Hi, which is not isomorphic to
any oblique plane triangulation, is transformed into Hi+1. It might be intuitive that
operands of an OP-transformation are two distinct vertices and a face, however that
is not the case. The operands of an OP-transformation are two distinct semi-edges. If
both semi-edges x, y, where x is incident to a and y to b are present in H then they are
merged into one edge ab. However if one of them is not present in H then the vertex it
is incident to is added to the graph H and they are merged into an edge ab. If neither
of them is present in Hi, then this is not a valid OP-transformation as Hi+1 would not
be connected.

An OP-transformation in a plane connected graph G is denoted by Θ(x, y), where
x, y are semi-edges incident to vertices a, b respectively. We can represent the OP-
transformation as a function as follows

Θ(x, y) =



{}, if x, y do not belong to the same face

{}, if x, y are incident to the same vertex

{}, if G contains edge ab

{Hi+1}, otherwise

Let’s denote a function Φ as

Φ(M) = B,

where M is a set of connected plane graphs and B is a set of oblique plane triangula-
tions. Additionally, if H ∈M is a realisation of an oblique plane triangulation G, then
G ∈ B.

As we do not know which operation to perform so that the child ofHi is a realisation
of an oblique plane triangulation, we seemingly have to perform the OP-transformation

3.4. CHOOSE FUNCTION 15

for all 2-sets of semi-edges. However that is not the case as proven in the following
Lemma.

Lemma 3.2 Let H be a plane connected graph, b be a vertex not present in Hi, S be
the set of all semi-edges in Hi ∪ {b} and c a semi-edge in Hi Then

Φ(
⋃

x,y∈S

Θ(x, y)) = Φ(
⋃
y∈S

Θ(c, y)).

In other words, it is sufficient to choose one semi-edge x fromHi as a constant parameter
for Θ instead of all 2-sets of semi-edges in Hi without affecting the set of oblique plane
triangulations that have a realisation in Hi.

Proof:
⊇:
Since c ∈ S:

Hi+1 ∈
⋃
y∈S

Θ(c, y) =⇒ Hi+1 ∈
⋃

x,y∈S

Θ(x, y),

which implies
Φ(

⋃
x,y∈S

Θ(x, y)) ⊇ Φ(
⋃
y∈S

Θ(c, y)).

⊆:
If Hi is not a realisation of any oblique plane triangulation, then

Φ(
⋃

x,y∈S

Θ(x, y)) = {},

therefore by restricting c to be a constant, we do not alter the result set of the Φ

function.
Let us assume that

Φ(
⋃

x,y∈S

Θ(x, y)) * Φ(
⋃
y∈S

Θ(c, y)),

therefore there is a graph Hi+1 ∈
⋃

x,y∈S Θ(x, y) isomorphic to a G′j which is a realiza-
tion of an oblique plane triangulation GJ does not belong to Φ(

⋃
y∈S Θ(c, y)). If Gj

does not belong to Φ(
⋃

y∈S Θ(c, y)), then it must contain the semi-edge c, which is in
conflict with Gj being an oblique plane triangulation.

Therefore
Φ(

⋃
x,y∈S

Θ(x, y)) = Φ(
⋃
y∈S

Θ(c, y))

�

We will refer to c as a primary operand or primary semi-edge.
Although this section’s goal was to explain where exactly the transformation is going
to take place, we omitted it for a good reason. The choice of primary semi-edge is

16 CHAPTER 3. ALGORITHM

deeply connected to the complexity of the algorithm and we will address that in the
future chapter. For the following sections it is sufficient to know that any primary
semi-edge will do.

3.5 Transform function

As mentioned in the section 3.2 there are precisely 4 ways how an edge can be present
in Hi which is a subgraph of an oblique plane triangulation G. The first option is off
the table when it comes to deciding how to transform Hi to Hi+1 as the edge is already
present in Hi which is essentially our goal for all edges. The same goes for the last one
as connecting two vertices which are not present in Hi would mean that Hi+1 would
not be connected. Therefore our attention comes to the second case where vertices u
and v are present in Hi but the edge uv is not and third case where a vertex u is present
in Hi but v is not. If we knew G then the edge uv could get into state in which it is
in Hi by removing the edge uv from the graph and removing either one of the vertices
respectively. Since we are trying to create G, we need to create operations that are
inverse to removal of an edge or a vertex.

Before we introduce the operations, we need to differentiate between two types of
situations that can occur:

• a deterministic situation, which means we only have one option as how to continue
in the algorithm

• a non-deterministic or branching situation in which we have several options how
a child of Hi can look like

3.5.1 Deterministic situation

Lemma 3.3 Let H be a plane triangulation and ax, bx be edges. If ax is facially
adjacent to bx then H must contain edge ab, which is facially adjacent to ax and bx.

Proof:
Assume H does not contain edge ab. Then ax would be facially adjacent to bx and ay,
while bx would be facially adjacent to ax and bz. That would mean that H contains a
face which is at least a 5-gon, which is in conflict with H being a plane triangulation.
�

Let Hi be a plane connected graph, Fj be an open face and a, b, c are vertices incident
to Fj. Additionally b has no semi-edges in Fj, whereas b and c have at least one. Lastly
Fj is incident to edges ab and bc. This situation corresponds to the situation on the
left picture in Figure 3.2.

3.5. TRANSFORM FUNCTION 17

Since b has no semi-edges in the face Fj it implies that ab and bc are facially adjacent.
By Lemma 3.3, which implies that there must be an edge ac which is facially adjacent
to ab and bc. That state corresponds to the situation on the right picture in Figure
3.2.

Figure 3.2: If a vertex b has no semi-edges in an open face Fj (left), then the existence
of the edge ac is forced (right).

Let’s take the semi-edge incident to a which is also facially adjacent to ab and denote
it as s. We can consider s to be the primary operand for the OP-transformation. The
other operand is also determined and it is the semi-edge incident to c which is also
facially adjacent to bc. Since we only have one option for the secondary operand we
call this situation deterministic.

3.5.2 Non-deterministic situation

When H is in a non-deterministic situation, there are no vertices in H that would
have no semi-edges in any open face of H. In that situation, we are provided with
one semi-edge c from the choose function, and we need to assert that we have a set
of operations that meet the conditions of Lemma 3.2. Therefore we have two distinct
sets of secondary semi-edges:

• semi-edges which are present in H,

• semi-edges which are not present in h.

The content of the set which contains secondary edges that are present in the H is
quite intuitive. It is going to consist of all semi-edges of other vertices in the same
open face. However, it might not be clear for the second set. Therefore, we propose
following Lemma.

Lemma 3.4 A set of secondary semi-edges which are not present S in H consist of
one semi-edge for every distinct vertex label contained in a target oblique plane trian-
gulation.

18 CHAPTER 3. ALGORITHM

Proof:
Let U be a set of vertices that are not present in G, but are present in the target
oblique plane triangulation. Each vertex v ∈ G has λ(v) semi-edges, but no edges in
H. Therefore the only way to differentiate between them is by their label. That implies
that it is sufficient to consider semi-edges of one vertex for each label to be present in
S. As mentioned, each vertex in U has no edges, which are present in H, therefore we
cannot differentiate between semi-edges of a specific vertex, therefore S will consist of
one semi-edge for each distinct label present in a target graph. �

3.5.3 Graph operations

Now that we have shown possible situations and what the sets of operands look like for
each of them, it is about the time to introduce the actual operations. It turns out that
for practical application, working strictly with semi-edges is difficult and confusing.
For that reason, these operations are designed to provide a more comfortable interface.
Let Hi be a plane connected graph.

• Deterministic connect. This operation takes 2 arguments:

– vertex c,

– open face F .

As the name suggests, this operation is used in deterministic situation. Therefore,
c is the vertex that has no semi-edges in face F . That determines the neighbours
of c, denoted as a and b. The fact that we are in a deterministic situation also
determines the primary and secondary semi-edge. Without loss to generality, let
ax, which is facially adjacent to ac be the primary semi-edge and bx, which is
facially adjacent to cb be the secondary edge. Then

ax, bx ∈ Hi =⇒ Hi+1 ∈ Θ(ax, bx).

• Add. This operation takes 4 arguments:

– vertex a,

– vertex b,

– vertex c,

– open face F .

This operation is used in a non-deterministic situation when the set of secondary
semi-edges consists of semi-edges that are not present in Hi. For a reason we will

3.5. TRANSFORM FUNCTION 19

elaborate on later, F must contain the edge ab and c is not present in Hi. Then
Hi+1 will also contain c. Let ax be a facially adjacent semi-edge to ab incident to
vertex a and cx be any semi-edge incident to c. Then

Ht ∈ Θ(ax, cx).

As we have set a goal to add one closed face in each step of recursion, forcing ac
to be facially adjacent to ab comes for a reason. According to claims in Lemma
3.3, Hi+1 must contain edge cb which is facially adjacent to ab and ac, resulting
in a closed face abc. Let by be a semi-edge incident to ab and cy be a semi-edge
facially adjacent to ac so that abc is a closed face. Then

Hi+1 ∈ Θ(by, cy).

Figure 3.3: Situation before operation Add and after operation Add for parameters
a, b, c, F

• Connect. This operation takes 5 arguments:

– vertex a,

– integer xa,

– vertex b,

– integer xb,

– open face F .

This operation is used in a non-deterministic situation when the set of secondary
operands is present in Hi. The integers xa and xb are going to be referred to as
offset in a and b respectively. In general, a and b have x and y semi-edges in F
respectively. Therefore xa and xb must be from zero to x−1 and y−1 respectively.

20 CHAPTER 3. ALGORITHM

Figure 3.4: Situation before operation Connect and after for parameters a, 1, b, 1, F .

If not, then they are not consider as valid arguments for the operation. For a
given constant embedding and convention in order of edges of a vertex, offsets
determine which semi-edge of the vertices are the operands. Let ax be the xtha
semi-edge of a and bx be the xthb semi-edge of b in F . Then

ax, bx ∈ Hi =⇒ Hi+1 ∈ Θ(ax, bx).

As a result Hi+1 contains two open faces F1, F2. We know that Add and Connect
must have the same semi-edge as a primary operand. We will consider athx semi-
edge of a as a primary operand. Since it must be facially adjacent to one edge
of a in face F , that means that ax can either be equal to zero or x − 1. That
implies that a must contain no semi-edges in either F1 or F2. Without loss to
generality, Hi+1 must contain edges ab an av in F1. Then, according to claims in
Lemma 3.3 Hi+2 must contain edge bv facially adjacent to ab and av.

For decisions made during the implementation, mainly for clarity of the algorithm,
we have decided to perform these operations the way they are described above. That
means, that the function "add" adds two edges in the graph adding a closed face, while
"connect" only adds one, not adding a closed face directly. However, it forces Hi+1 into
deterministic situation which guarantees adding a closed face in the following recursive
call.

As the algorithm works on a principle of depth-first search, we also need operations
that transform Hi+1 back to Hi. There are similarly three operations, where each of
them is inverse to one of the above mentioned operations. By remembering operands
for a given operation at each point of recursion, we can easily undo the changes in Hi+1

and transform it back to Hi. For that reason it is not necessary to go into the details
of these operations, as their function should be very intuitive.

3.6. CHECK FUNCTION 21

3.6 Check function

Once that we have transformed Hi into Hi+1, we must verify whether Hi+1 is a possible
realization of an oblique plane triangulation. There are some criteria, based on which
Hi+1 can be claimed as non-realizable. Unless Hi+1 matches any criteria, it is claimed
as potentially realizable and recursive call on Hi+1 is performed. The aforementioned
order of operations in which we perform the check function before the recursive call
allows us to only check the parts of the graph that have actually changed.

3.6.1 Oblique criterion

According to the basic definition of an oblique plane triangulation, there must not be
any faces with the same type. If we added a face, we know its type. We need to check
if Hi does not contain such face already. If Hi does contain face of the same time, we
claim Hi+1 to be non-realizable. If it does not, we perform a recursive call on Hi+1.

3.6.2 Non-closable face criteria

There are several situations in which we can tell that Hi+1 is non-realizable based on
the state of its face. We will say that face F is non-closable if there is no way of closing
it using semi-edges in that face. Following Lemmas are going to set the conditions
based on which we can claim F to be non-closable.

Lemma 3.5 Let F be an open face in a plane connected graph Hi+1. Let ab be an edge
incident to F , where a and b have no semi-edges in face F . Then F is non-closable.

Proof:
Since F is incident to ab, it is incident to both a and b. Without loss to generality,
F must also contain edge bc, where c 6= a. According to the claims of Lemma 3.3
Hi+1 must also contain edge ac. However, a has no semi-edges in F , therefore F is
non-closable. �

Lemma 3.6 Let F be an open face in a Hi+1 incident to vertices a, b and c and no
other vertices (F is a triangle). If b has no edges in Hi+1, but a and c do have at least
one, then F is non-closable.

Proof:
Since F contains vertices a, b and c it must contain edges ab, bc and ca. Because b has
no semi-edges in face F then according to the claims of Lemma 3.3, Hi+1 must contain
edge ca, which Hi+1 already contains and it is not facially adjacent to neither ab nor
bc. If Hi+2 contained edge ca which is facially adjacent to ab and bc that would be in
conflict with Hi+1 not containing any multiple edges. �

22 CHAPTER 3. ALGORITHM

Chapter 4

Complexity

In the previous chapter we have described the basic principle of the algorithm. Only
using what we have covered so far, the algorithm would be perfectly functional, capable
of finding any targeted oblique plane triangulation. However, it might take horrendous
time to get the result. In this chapter, we are going to cover ways by which we made
the algorithm’s complexity much more acceptable.

There are two aspects of the search tree that we can measure. They are the depth
and width. In order to improve algorithm’s complexity, we have to focus on both of
these aspects. Firstly, we are going to take a look, how we can restrict the depth of
the search tree.

Let the maximum degree ∆ of a plane triangulation G be fixed. As we’ve seen in
Theorem 2.3, for every degree k, 3 ≤ k ≤ ∆, there can be at most a quadratic number
of vertices of degree k. Therefore, the overall number of vertices in G is in O(∆3).
Similarly, there are O(∆3) possible types of faces in G. Altogether, the depth of the
search tree is bounded by O(∆3). It is very difficult to estimate the width of the tree
as each plane connected graph Hi may have variable amount of children Hi+1. If we
only were to perform operation "add", the amount of Hi+1 for each Hi would be O(∆).
However, that is not the case as we also perform operation "connect". A very rough
estimate can be made, as the width might be O(∆2). Then, the size of the tree can
be estimated as widthdepth which is O(e2∆3 log ∆). If we assumed that the complexity of
transformation from Hi to Hi+1 is O(t(∆)) then the final complexity would be equal
to O(t(∆)e2∆3 log ∆)

4.1 Restricting depth

Firstly, it is very essential to explain why we set a goal of adding one closed face for
every step of the recursion. Without doing so, we cannot really assert that the search
tree would be finite, not containing any infinite branches. By adding a closed face in

23

24 CHAPTER 4. COMPLEXITY

each step of recursion, we assert that no such branch can exist. The reason is very
simple. As we know, the amount of face types is finite once the maximum degree ∆ of
a vertex is fixed. By adding a closed face, we are reducing the amount of faces that
are not yet used in the graph. At some point, we will be in a situation of adding a
face with type a. The more closed faces Hi already contains, the more likely it is for a
face with type a to be already present in Hi. In that case, that branch is finished, as
this a graph containing more faces with type a is in conflict of being an oblique plane
triangulation.

Let G be a target oblique plane triangulation, where ∀v ∈ G deg(g) ≤ ∆,∆ ∈ N.
Let nk = |{v|v ∈ G, δ(v) = n}|. Then according to Theorem 2.2, we get∑

v∈G

(6− deg(v)) = 12,

∑
k∈N,k≥3

(
∑

v∈G,deg(v)=k

(6− k)) = 12,

∑
k∈N,k≥3

(nk(6− n)) = 12.

By expanding the sum, we get

3n3 + 2n4 + n5 − n7 − 2n8 − · · · − (∆− 6)n∆ = 12,

3n3 + 2n4 + n5 = 12 + n7 + 2n8 + · · ·+ (∆− 6)n∆.

According to the Theorem 2.3, we can easily calculate nk for each k.

The combined knowledge of these two Theorems provides us with tools for two
important improvements. Both of these improvements are going to extend the choose
function.

• Firstly, we will check if the amount of vertices with label k has not exceeded
nk in Hi+1. By performing the check function before recursive call on Hi+1, we
can only do this part of check function after operation "add", furthermore only
checking if the inequality holds for k equal to the label of newly added vertex. If
it holds, then Hi+1 is realizable, otherwise it is non-realizable.

• Secondly, we will only be interested in one inequality of the two provided above:

3n3 + 2n4 + n5 ≥ 12 + n7 + 2n8 + · · ·+ (∆− 6)n∆.

We can easily calculate the sum on the left side of the inequality.

3b(∆− 3)(∆− 4)

6
c+2b(∆− 3)(∆ + 2)

8
c+b(∆− 3)(∆ + 2)

10
c ≥ 12+n7+2n8+· · ·+(d−6)nd.

4.2. RESTRICTING WIDTH 25

Let m = b (∆−3)(∆−4)
6

c+ 2b (∆−3)(∆+2)
8

c+ b (∆−3)(∆+2)
10

c and lk = |{v ∈ Hi+1, λ(v) =

k}|. Then, we need to perform following check after every operation "add". If

m < 12 + l7 + 2l8 + · · ·+ (∆− 6)l∆,

then Hi+1 is non-realizable. Otherwise, Hi+1 is realizable.
The importance of this improvement grows with ∆, as those graphs are more
likely to contain vertices with bigger labels, hence adding more weight on the
right side of the inequality.

4.2 Restricting width

In order to restrict the width of the search tree, it is necessary to look at how many
children Hi+1 there are for a certain plane connected graph Hi. As mentioned in
the previous chapter, the choice of the primary semi-edge is crucial for the overall
complexity of the algorithm. Firstly we need to remind that there are two options:

• if Hi is in a deterministic situation, there is only one child Hi+1.

• if Hi is in a non-deterministic situation it is very hard to estimate how many
children it will have in general. That is why we will focus on it in the following
text.

4.2.1 Edge type priority

The amount of children in a non-deterministic situation is a sum of children created
through both operations. Therefore, we need to somehow focus on balancing these
two, as both of them have to be performed with the same primary semi-edge to assert
that we will not leave out any oblique plane triangulation.
In order to limit the amount of children of Hi after operation "connect", it is very
tempting to choose a semi-edge in a face containing the smallest amount of semi-edges.
As it turned out during our experiments, it was not the way to go. Even though the
smallest face in terms of the amount of incident semi-edges might produce the small-
est amount of children Hi+1, the branches from the operation "add" might eventually
bring the formerly smaller face to the size that exceeds the size of the formerly bigger
face in Hi. On the other hand, if we perform the operation "connect" on a semi-edge
from a bigger face, it on one hand produces many children, but on the other hand it
splits the face into two smaller faces that will not produce so many children through
operation "connect". As described, it is very questionable approach to base our choice
of the primary semi-edge on the size of the face it is incident to. Therefore, we will
focus on restricting the amount of children after operation "add". In order to restrict

26 CHAPTER 4. COMPLEXITY

the amount of children after operation add, we will need a following definition.
An open edge is an edge xy that is incident to at least one open face. A type of an
open edge is a pair 〈λ(x), λ(y)〉. The set of potential incident closed faces is a set of
admissible face types that are not present in Hi and contain degrees λ(x), λ(y). In or-
der to reduce the amount of children after operation "add", we will choose a semi-edge
that is facially adjacent to an open edge with the smallest set of potential incident faces.

4.2.2 Semi-edge driven decision

Secondly we need to highlight the importance of deterministic situation. If Hi+1 is
forced into a deterministic situation, where edges ab and bc are facially adjacent and
both are incident to an open face, then the amount of available faces for open edges
with types of 〈λ(a), λ(b)〉, 〈λ(b), λ(c)〉 and 〈λ(c), λ(a)〉 decreases by one, or Hi+1 can
be claimed as non-realizable if face with a type 〈λ(a), λ(b), λ(c)〉 is already present in
Hi+1. Therefore forcing the children into a deterministic situation when choosing the
primary semi-edge is also very beneficial. We will use this method for two situations
described in the following subsections.

One-one edges

If Hi contains a face F incident to an edge ab, where both a and b have exactly one
semi-edge in face F , we will nickname ab as an one-one edge.

Lemma 4.1 Let Hi be a plane connected graph. If Hi contain an one-one edge ab
incident to face F , then any non-deterministic operation with a semi-edge facially
adjacent to ab in face F as a primary operands will force Hi+k into deterministic
situation that will result in 3 closed faces added in Hi+k+1.

Proof:
If Hi contains an one-one edge then irregardless of the operation, both a and b will
have zero semi-edges in an open face in some Hi+k.

• If Hi+1 was created by operation "connect", then a will have zero semi-edges in
both newly created open faces. That forces Hi+1 and Hi+2 into deterministic
situation as both will have to perform the "deterministic connect" in one of
the new open faces. After both of these operations are done, then also b will
inevitably contain zero semi-edges in one of the new open faces, hence Hi+3 will
also be forced into deterministic situation.

• If Hi+1 was crated by operation "add", that has already added one new closed
face and one new vertex into Hi+1. Similarly as previously, both a and b will

4.3. AVOIDING MULTIPLE ISOMORPHIC RESULTS 27

contain zero semi-edges in an open face (this time, it is the same open face F),
which forces Hi+1 and Hi+2 into deterministic situations. �

Therefore, if we prioritise one-one edges, we can force adding 3 closed faces for each
child of Hi created by a non-deterministic operation.

Semi-edge abundance as secondary criterion

We have discussed how beneficial it is to force Hi+1 into a deterministic situation. In
general, there can be more open edges with the same type in the graph. If we were
to choose based only on the edge type priority, we would have to choose the specific
semi-edge at random. However, there is an option to introduce a secondary criterion
when choosing a specific semi-edge. In order to achieve a deterministic situation we
need to complete all semi-edges incident to a vertex in a face. Therefore, the less semi-
edges incident to a face vertex has, the sooner it will result in a deterministic situation.
Using this logic, the secondary criterion, when choosing a specific semi-edge amongst
those that are facially adjacent to an edge of the most prioritised type, will consist of
picking the semi-edge that is incident to a vertex with the lowest number of semi-edges
incident to the face that the open edge is incident to.

4.3 Avoiding multiple isomorphic results

So far, there is no mechanism that prevents us from generating the same oblique plane
triangulation multiple times. Doing so is not only inefficient, but also urges us to
check whether a newly discovered oblique plane triangulation is not isomorphic to any,
already found graph. Fortunately, there is a very simple way to fix both of these issues
at the same time. The algorithm takes 1 parameter ∆ in the beginning, which is the
upper bound of degrees in the target oblique plane triangulation. Therefore all results
Gi of the algorithm with such parameter will have a property

∀v ∈ Gi : deg(v) ≤ ∆ & u ∈ Gi, deg(u) = ∆

As described in the chapter 3 the recursive call starts on a first triangle, splitting
the surface into two faces, of which one is open. In order to find all oblique plane
triangulations for parameter ∆, we seemingly have to perform the recursive call on
triangles of all types admissible in an oblique plane triangulation. However, such
attitude would lead to graphs not necessarily complying to above mentioned restrictions
for a set ∆.

Lemma 4.2 Let ∆ be an integer greater than 3. Then the set R = {G | ∀v ∈
G, deg(v) ≤ ∆ & ∃u(deg(u) = ∆ & u ∈ G)} can be generated, by initiating a recur-
sive call on all plane connected graphs, consisting of vertices a, b, c where λ(c) = ∆.

28 CHAPTER 4. COMPLEXITY

Proof:
Despite the complexity of Lemma, its meaning is in a sense quite simple. It claims two
things.

• If the former triangle consisted of vertices a, b, c where λ(a) 6= d, λ(b) 6= d and
λ(c) 6= ∆, then there is no guarantee that a the discovered graph will contain a
vertex with a degree of ∆.

• If the former triangle contains a vertex with a degree of ∆, then the discovered
graph is guaranteed to contain a vertex with a degree of ∆. �

The point of this Lemma was to clarify what is necessary to produce all oblique
plane triangulations with a parameter d. Now we need to introduce a principle that will
prevent us from discovering the same graph multiple times. Assume that we performed
the recursive call on only one initial triangle a, b, c, where λ(c) = ∆. Then the result
set of graphs would consist of all graphs that contain the face 〈λ(a), λ(b), λ(c)〉. Firstly,
we need to prove that such set would contain only mutually non-isomorphic graphs.

Lemma 4.3 Let H0 be a plane connected graph consisting of three vertices a, b, c, where
a 6= b 6= c 6= a, and two faces, of which one is closed. Then all graphs that were created
from this graph by our algorithm are going to be mutually isomorphic.

Proof:
Assume all children H1 of H0. The only admissible operation is add. Without loss to
generality, we create ∆− 2 children, where each is non-isomorphic to each other as the
closed face 〈deg(a), deg(b), deg(c)〉 is in H1 incident to an edge ab which is incident to
a closed face 〈deg(a), deg(b), deg(d)〉, where deg(d) is different in each child H1.
In general, assume that all graphs Hi are mutually non-isomorphic, then all graphs
Hi+1 will be non-isomorphic either, as each child of a fixed Hi will be non-isomorphic
to all other children of Hi for the very same reason as for H0. �

Now that we have proven, that starting with a fixed initial triangle yields mutually
non-isomorphic graphs, we need a way to to assert that starting with all admissible
initial triangles will together yield a set of non-isomorphic oblique plane triangulation.

Lemma 4.4 Let S be a fixed sequence of all admissible faces for a fixed ∆. Let si be
an admissible face of type 〈a, b, c〉 from S, where a = ∆ and b 6= c. Then if we perform
recursive call on the initial triangle containing the closed face si, allowing the algorithm
to only use faces sk, where k > i, we will get a set of non-isomorphic oblique plane
triangulations as a result.

As we know, performing the recursive call on an initial triangle, which contains a closed
face of type a with all admissible faces available will result in receiving all oblique plane

4.4. VARIATION OF THE ALGORITHM 29

triangulations containing the face of type a. Assume then that the recursive call on an
initial triangle containing a face si will return an oblique plane triangulation containing
a face of type sj, where j < i. That would mean that such graph was not found by the
call on sj, which is in conflict with the fact that a the recursive call on initial triangle
with face sj would return all oblique plane triangulations containing face sj. �

On closer inspection, this approach avoids starting with faces where at least two
vertices are of the same type. Since the arrangement of S does not matter, such faces
might be at the very end of the sequence. That implies that when starting with first
face of such type, all admissible faces adjacent to the vertex of degree ∆ must be of
type 〈∆, x, x〉. That however is not possible as all faces incident to the vertex of degree
∆ would have to be of the same type, which is in conflict with Hi, being a realisation
of an oblique plane triangulation.

4.4 Variation of the algorithm

All the algorithm described so far was good for one use. Finding all oblique plane
triangulations with restrictions of ∆. However, we have also set a goal to find an
oblique plane triangulation with as high ∆ as possible. The algorithm described so
far does not fulfill this goal sufficiently. Therefore, we need some kind of heuristics to
shorten our way to finding an oblique plane triangulation for bigger ∆.

4.4.1 Restricting admissible vertex degrees

As mentioned before, the size of the tree grows more than exponentially based of
the value of ∆. However it is not ∆ that affects the size of the tree. It is foremost
the amount of faces that we can choose from. Until now, the amount of faces was
determined by ∆, that is why we based our complexity estimates on ∆. The point of
this modification is forbidding the algorithm to use certain degrees or restricting the
amount of vertices of other degrees.

Lemma 4.5 Let γ(∆) be complexity function of algorithm based on ∆. Then γ(∆),
where we forbid using j distinct vertex degrees ∈ O(γ(∆− j)).

Proof:
As we have learned the complexity is based on the amount of admissible faces. The
amount of faces a in a graph with maximum degree ∆ with j forbidden vertex degrees
can be estimated using simple combinatorics.

a =
(∆− j)3

3!

.

30 CHAPTER 4. COMPLEXITY

Using the same principle we can estimate the amount of admissible faces for an
algorithm restricted to ∆− j.

b =
(∆− j)3

3!

.
As a = b, then γ(∆), where we forbid using j distinct vertex degrees ∈ O(γ(∆−j)).

�

4.4.2 Restricting the amount of vertices of admissible degrees

From the graphs found by our algorithm, we have observed that they generally contain
fewer vertices of degree close to ∆. Therefore, we have decided to apply another
modification. Instead of calculating the maximum amount of vertices of degree k

as b (∆−3)(∆+2)
2k

c, we will preset the amount to a value from interval 〈0, b (∆−3)(∆+2)
2k

c).
Despite the fact that this modification does not directly reduce the amount of faces,
it makes the graph Hi more likely to fail due to restrictions in the choose function.
This is desired, as it removes the branches that would search for more rare instances
of oblique plane triangulations.

4.4.3 Prioritising certain semi-edges to accommodate the mod-

ifications

With the above-mentioned modifications in mind, it is usually quite difficult to com-
plete semi-edges incident to the vertex of degree ∆ due to lack of various faces. Having
reduced amount of admissible faces and amounts of vertices of certain degrees, there
are usually very few options how to complete these semi-edges so that we are left with a
potential realization of an oblique plane triangulation. Had we not done any measures,
it would frequently happen that somewhere deeply in the recursion the algorithm would
find out that it cannot complete a semi-edge incident to the vertex of degree ∆. This
event is so frequent that we need to prevent it by primarily completing the semi-edges
incident to the vertex of degree ∆ and then carrying on with the computation.

The last concept that needs to be mentioned is that we need to change the way
we retrieve oblique plane triangulations found by the algorithm. Formerly, we would
collect all result into a pool that is returned once we dive out of the recursion. However,
in order to retrieve the pool we would have to wait until the the algorithm traverses
through the entire search tree which defies the point of these modifications. Hence, we
will yield discovered oblique plane triangulations on console or into a file in real time
as the algorithm proceeds.

Chapter 5

Implementation

In this Chapter, we are going to address a few implementation details and basic code
overview. As of the technology, we have used Java, mainly for it’s object oriented
design, which was the basic concept of our program. The program was split into
several classes whose brief overview will be presented in following sections.

5.1 Class FaceStorage

This class introduces a structure to ease the labor with face types. Its main purpose
is to unify all permutations of a face type 〈x, y, z〉 so that we do not have to sort the
items of the triplet x, y, z when referring to a face type. In the algorithm, we will need
to check whether a face of a certain type x, y, z is available to be used during recursion.
We will also need a function to mark a face type as unavailable or available. The data
structure used to achieve this can be most briefly described by a picture.

Figure 5.1: This figure shows faceStorage for ∆ = 5, where each color represents a
value of element in triplet x, y, z

31

32 CHAPTER 5. IMPLEMENTATION

The leaves of this tree-like structure contain booleans that represent the availability
of that specific face.

5.2 Class Edge

This class represents edge types, more specifically all distinct pairs x, y, where 3 ≥
x, y ≤ ∆. It also contains a list of all open edges of x, y in Hi. The most important
attribute however, is the number of available closed faces that can be incident to the
edge of this type.

5.3 Class OpenEdge

This class represents one open edge in Hi. It has attributes start vertex, end vertex
and face to which it is incident.

5.4 Class EdgeStorage

Similarly as the class FaceStorage, this class contains all edge types x, y admissible for
∆. The difference is that it has one less layer compared to the FaceStorage and values
in the leaves are not booleans but instances of the class Edge.

5.5 Class MutablePriorityQueue

This class is a modification of traditional heap. The difference is that in MutablePri-
orityQueue, the priority of elements can change after they have been added in the
heap. This data structure is necessary, as in order to minimise the width of the search
tree, we need to find the edge with least available closed faces that can be incident
to it. Therefore, heap-like structure is tailored to this purpose. However we need the
aforementioned option to change position of edges in the the heap when their priority
changes. We know that that the priority of an edge changed when we do an operation
involving an open edge of this type. When such event occurs, we find the instance of
that specific type in the EdgeStorage and as each edge remembers its position in the
MutablePriorityQueue, we can easily adjust its position.
It is implemented in array and it offers following functionality.

• Add edge - adds an Edge to the queue when the first OpenEdge of this type
occurs in Hi.

5.6. CLASS NODE 33

• Remove edge - removes and Edge from the queue when the last OpenEdge is
removed from Hi.

• Bubble up - changes the position of an Edge when an OpenEdge of this type is
involved in an operation

5.6 Class Node

This class represents a vertex. Each instance of Node remembers its label and a cyclical
order of vertices that are adjacent to it, called neighbours. Neighbours is represented
as an array, where each element is either a reference to other Node or null, which rep-
resents a semi-edge. Node also remembers all open faces it is incident to. It remembers
the start position and the end position of each incident face. Therefore, all semi-edges
at positions between the start position and end position of each incident face belong
to that open face.

Figure 5.2: Figure represents situation in Node v that is incident to open faces Fi, Fj.
Node has four semi-edges in Fi and zero semi-edges in Fj.

Figure 5.3: Situation in Figure 5.2 corresponds to the situation in this Figure.

34 CHAPTER 5. IMPLEMENTATION

Additionally, class Node also contains methods for operations described in Chapter
3. These methods strictly work with attributes of class Node.

5.7 Class Face

This class represent an open face. Each instance of Face Fi remembers cyclical order
of vertices that are incident to it. It remembers them in a custom linked list. It also
contains methods that transform it during a graph operation.

5.8 Class GraphProcedures

This class contains strictly methods for graph operations described in Chapter 3. Ac-
cording to the parameters described in that Chapter, it performs following actions for
each operation.

• Performs respective methods on instances of Face and Node involved in this
operation.

• Adds or removes involved instances of OpenEdge into the list of their relative
Edge.

• Changes positions of involved instances of Edge in MutablePriorityQueue.

• Checks whether an involved vertex does not have zero semi-edges in an open
face, if it does then saves the vertex into a list of "zero semi-edge vertices" in
that respective face.

• Checks whether no pair of adjacent vertices involved in the operation has one
semi-edge in an open face each. If it does then saves it similarly as in the previous
case.

5.9 Class Graph

This class nests all the vertices, faces and other utilities necessary to manage the
process of algorithm described in Chapter 3. It also features the structure and methods
described in that very same Chapter. It might be referred to as the backbone of the
algorithm.

Chapter 6

Results

As mentioned many times before, we have set two goals. The first one was to find all
oblique plane triangulations for as high ∆ as possible. The second one was to find an
oblique plane triangulation containing at least one vertex of degree ∆ for ∆ as high as
possible.

6.1 Finding all oblique plane triangulations restricted

by maximum degree

The first achievement was that we confirmed that there are no oblique plane triangu-
lation for ∆ < 8. This belief was based on theory that we are not going to cover in
this work.
Secondly, we have discovered that there are eleven non-isomorphic oblique plane trian-
gulations for ∆ = 8. The computation for ∆ = 8 took about 8 seconds. The concept of
the algorithm has changed several times in the process in order to make the algorithm
more effective for larger ∆. In all iterations we have discovered the same eleven oblique
plane triangulations. We are providing all these graphs as an appendix to this paper.
Lastly, we have not been able to find all oblique plane triangulations for any ∆ > 8.
The reasons for that are apparent from the Chapter 4. We have tried performing the
recursive call on an initial triangles containing vertices of degrees 3, 4, 9 omitting op-
eration "connect". The omission of the operation "connect" was intentional as a time
saving precaution. Despite that, we were able to discover about 1400 non-isomorphic
oblique plane triangulation in about four hours of computation. This was not very
scientific approach as the set of graphs we have found can be hardly described as a
mathematical set, therefore we list it as a matter of interesting fact. The best that we
can claim that this is a subset of all oblique plane triangulation for ∆ = 9, containing
a face of type 〈3, 4, 9〉.

35

36 CHAPTER 6. RESULTS

6.2 Finding oblique plane triangulations with high

vertex degrees

We have been able to find oblique plane triangulations for all 8 ≤ ∆ ≤ 26 at the point
of finishing this paper. We have done so using the modified version of the algorithm
described in section 4.4. We are providing all these graphs as an appendix to this paper.
Additionally we are providing a following table. The content of this table covers the
time necessary to find the first oblique plane triangulation for given ∆ with various
restrictions. We will be restricting the amount of vertices of degree higher than six.
The format k× n represents that there can be at most k vertices of degree n. If n > 6

and n is not covered in the column restrictions, that stands for 0× n.

∆ restrictions time

10 1× 7, 1× 8 < 1s

10 2× 7, 2× 8 < 1s

11 2× 7, 2× 8 < 1s

11 1× 7, 1× 8 3m
12 2× 7, 2× 8 < 1s

13 2× 7, 2× 8 1s

14 2× 7, 2× 8 3s

14 3× 7, 2× 8 11.5s

14 3× 7, 2× 8, 1× 9 < 1s

15 3× 7, 2× 8, 1× 9 1.5s

15 4× 7, 2× 8, 1× 9 < 4s

15 2× 7, 2× 8, 1× 9 < 1s

15 2× 7, 2× 8 2.5s

16 2× 7, 2× 8 > 60s

16 3× 7, 2× 8 > 60s

16 3× 7, 2× 8, 1× 9 3s

16 2× 7, 2× 8, 1× 9 1.5s

16 2× 7, 1× 8, 1× 9 3s

17 2× 7, 1× 8, 1× 9 9s

17 2× 7, 2× 8, 1× 9 1s

∆ restrictions time

18 2× 7, 2× 8, 1× 9 180s

18 3× 7, 2× 8, 1× 9 4.5s

18 3× 7, 2× 8, 1× 9, 1× 10 3s

18 4× 7, 2× 8, 1× 9, 1× 10 12s

18 4× 7, 2× 8, 2× 9, 1× 10 3s

18 3× 7, 2× 8, 2× 9, 1× 10 1.8s

19 3× 7, 2× 8, 2× 9, 1× 10 9s

19 3× 7, 2× 8, 1× 9, 1× 10 < 1s

20 3× 7, 2× 8, 1× 9, 1× 10 1.8s

20 3× 7, 2× 8, 2× 9, 1× 10 20s

20 4× 7, 2× 8, 2× 9, 1× 10 68s

20 4× 7, 2× 8, 1× 9, 1× 10 5s

20 3× 7, 2× 8, 1× 9 > 200s

21 3× 7, 2× 8, 1× 9, 1× 10 3.5s

21 4× 7, 2× 8, 1× 9, 1× 10 19s

21 3× 7, 2× 8, 2× 9, 1× 10 > 200s

21 3× 7, 2× 8, 2× 9, 1× 10, 1× 11 < 1s

22 3× 7, 2× 8, 2× 9, 1× 10, 1× 11 136s

22 3× 7, 2× 8, 1× 9, 1× 10, 1× 11 105s

22 4× 7, 2× 8, 2× 9, 1× 10, 1× 11 481s

Table 6.1: For various combinations of values of maximum degree and restrictions on
numbers of medium-degree vertices, the time to produce a first graph is shown.

Chapter 7

Conclusion and perspectives

When we started the work, we set out a goal to find at least one oblique plane tri-
angulation using our algorithm. At the time of writing this paper, we have found
overwhelming number of non-isomorphic oblique plane triangulations which can be
considered as a great success. The state of the algorithm is very good and we do not
think it can be improved drastically, however some tweaks might be done in order to
perfect its performance. If we had more time at our disposal, I believe it is in our
computational power to find all oblique plane triangulations with maximum degree of
9. On the similar note, we might be able to find oblique plane triangulations with
higher maximum degree of an vertex. Overall, we are satisfied with the results and
consider them as an interesting contribution.

37

38 CHAPTER 7. CONCLUSION AND PERSPECTIVES

Bibliography

[1] František Kardoš and Jozef Miškuf. Maximum vertex and face degree of oblique
graphs. Discrete Mathematics, 309(15):4942 – 4948, 2009. Cycles and Colourings.

[2] Jens Schreyer. Oblique graphs. Dizertačná práca na získanie akademického titulu
Doctor rerum naturalium, 2005.

[3] M. Voigt and H. Walther. Polyhedral graphs with restricted number of faces of the
same type. Discrete Mathematics, 244(1):473 – 478, 2002. Algebraic and Topological
Methods in Graph Theory.

[4] Hansjoachim Walther. Polyhedral graphs with extreme numbers of types of faces.
Discrete Applied Mathematics, 120(1):263 – 274, 2002. Special Issue devoted to the
6th Twente Workshop on Graphs and Combinatorial Optimization.

39

40 BIBLIOGRAPHY

Appendix A

The eleven oblique plane triangulations with maximum

degree 8.

41

42 BIBLIOGRAPHY

Appendix B

Representatives for each set of oblique plane triangu-

lations with maximum degrees 22-26.

The edges represented by arrow are incident to the same vertex with degree 22-26 for
each graph respectively.

43

44 BIBLIOGRAPHY

BIBLIOGRAPHY 45

46 BIBLIOGRAPHY

BIBLIOGRAPHY 47

	Introduction
	Theoretical background
	Terminology
	Theoretical findings

	Algorithm
	Core principle
	Definitions for practical application of the core principle
	Application
	Pseudo-code

	Choose function
	OP-transformations

	Transform function
	Deterministic situation
	Non-deterministic situation
	Graph operations

	Check function
	Oblique criterion
	Non-closable face criteria

	Complexity
	Restricting depth
	Restricting width
	Edge type priority
	Semi-edge driven decision

	Avoiding multiple isomorphic results
	Variation of the algorithm
	Restricting admissible vertex degrees
	Restricting the amount of vertices of admissible degrees
	Prioritising certain semi-edges to accommodate the modifications

	Implementation
	Class FaceStorage
	Class Edge
	Class OpenEdge
	Class EdgeStorage
	Class MutablePriorityQueue
	Class Node
	Class Face
	Class GraphProcedures
	Class Graph

	Results
	Finding all oblique plane triangulations restricted by maximum degree
	Finding oblique plane triangulations with high vertex degrees

	Conclusion and perspectives
	Appendix A
	Appendix B

