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Abstract

The goal of this thesis is to create a simplified, biologically inspired multimodal rep-
resentation of the body (body schema). For this we use the open simulator of the
humanoid robot iCub that learns to associate two modalities of somatosensation - pro-
prioception and tactile sensation. The proposed solution employs a predictive model
based on a multilayer perceptron that is trained off-line in a supervised way, given
the current proprioceptive state and an action as inputs, to predict the future body
state and a potential tactile sensation. Prior to training the model, the training data
was collected from the simulated iCub that was made to perform various types of the
self-touch using its both arms. The neural network model was successfully tested for
its ability to predict touch in the corresponding proprioceptive states, when no action
was implied as input, but also to anticipate the touch during action, shortly before it
occurred.

Keywords: body schema, somatosensory, iCub, predictive model, population coding
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Abstrakt

Cieľom tejto práce je vytvoriť zjednodušenú, biologicky inšpirovanú multimodálnu
reprezentáciu tela (schému tela). V tejto práci používame open-source simulátor hu-
manoidného robota iCub, ktorý sa učí asociovať medzi dvoma modalitami somatosen-
zorického systému, propriocepciou a hmatovým vnemom. Navrhnuté riešenie využíva
predikčný model založený na viacvrstvovom perceptróne, ktorý je učený off-line, metó-
dou učenia s učiteľom. Dokáže predvídať nasledujúci stav tela a potenciálny hmatový
vnem na základe aktuálneho proprioceptívneho stavu a vstupnej akcie. Pred samot-
ným učením boli pomocou simulátora iCub-a, ktorý vykonával rôzne vzájomné dotyky
oboch jeho rúk, zozbierané trénovacie dáta. Neurónová sieť bola úspešne otestovaná a
preukázala vlastnosť predvídať dotyk v príslušných proprioceptívnych stavoch, v prí-
pade, že nebola na vstupe daná žiadna akcia, ale aj anticipovať dotyk pri pohybe,
krátko pred tým, ako nastal.

Kľúčové slová: schéma tela, somatosenzorický, iCub, predikčný model, populačné
kódovanie
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Introduction

In recent years, the scientists in the field of cognitive robotics have been trying to
simulate processes, inspired by those of human mind, to create autonomous robots that
could perform various tasks. The iCub is an open-source humanoid robot, developed at
Italian Institute of Technology, which by its size, body morphology and sensorimotor
capacities reminds of a 4-year old child. For research purposes, there is the iCub
simulator, a software that mimics the functionality of the physical robot.

Our goal is to create a body representation of the iCub, which maps spatial prop-
erties of its body. The representation, referred to as the body schema, is inspired by
the behavior of an infant who is believed to create such representation by touching
itself. Based on proprioceptive senses that contain information of the position and the
movement of the body, we will try to predict tactile stimuli and its localization on the
artificial skin of the robot in case of self-touch configuration.

In order to create the body schema, we will employ a predictive model of a feed-
forward neural network (multi-layer perceptron) that is given the current state of the
body and an action (a movement) and predicts, together with a potential touch, the
next state of the body. The data used for training and testing of our model were
generated by the iCub simulator.

In Chapter 1, we describe the biological motivation behind the body schema and
define the important biological terms. Chapter 2 introduces the iCub and its essential
properties. The technical concepts, as the predictive model, the neural networks and
also the design of our model, are depicted in Chapter 3. The details of the implemen-
tation, the data and the chosen parameters are specified in Chapter 4. Finally, the
results of the implemented predictive model are analyzed in Chapter 5.

1



Chapter 1

Biological Motivation

In this chapter, we will discuss representations of a human body constructed by a
human mind. We will also introduce some biological terms important for understanding
the matter of this thesis.

1.1 Body representation

We perceive our body through senses, which are subsequently being processed, the
central nervous system decides on the response and we react accordingly. Those senses
such as touch, pressure, pain and temperature perception are referred to as somatosen-
sation. Processing of somatosensation can be divided into two levels: physiological
somatoperception and cognitive somatorepresentation (Longo et al., 2010).

Somatoperception represents the processes of our nervous system on the physical
level. Physiological processes that are parts of somatoperception, are, for instance,
localisation of somatic stimuli on the body surface, perceiving the current posture,
metric properties of our body, as well as processing of responses to those stimuli.

Somatorepresentation, on the other hand, involves cognitive processes of the human
mind. Encyclopaedic, lexical, and topological knowledge about bodies in general and
attitudes towards one’s body are parts of somatorepresentation. It represents the link
between the physical and psychological self.

1.2 Proprioception

Proprioception is the sense that allows us to perceive the position and movement
of our body in space. The sensory receptors of proprioception, i.e. proprioceptors,
are mechano-receptors located in joints and tendons and stretch-sensitive receptors in
muscles and skin (Proske and Gandevia, 2012).

The neurons responsible for these sensations are called afferent neurons. They carry

2



CHAPTER 1. BIOLOGICAL MOTIVATION 3

afferent information all the way to the somatosensory cortex, where those signals are
being processed by the brain. The impulse released from the central nervous system
as a response is carried by efferent neurons to the effectors.

The configuration of our body can be described using the afferent signals from
proprioceptors and the efferent signals specifying our movements. It is important to
realize that this concept does not employ sight and therefore is a powerful tool. It gives
us information about the relative position of our body parts, even if we do not see them
(e.g. we can touch our hands behind our back without seeing where they lead).

1.3 Tactile sensation

On the basis of tactile perception, we can distinguish between detection and localization
of touch on the skin. According to neurological studies, the ability to localize tactile
stimuli depends on an inward representation of the body surface, the superficial schema
(Longo et al., 2010).

1.4 Somatoperception and body schema

As a part of this thesis, we will create an artificial body schema, in neuroscience often
called the postural schema, which maps spatial properties of the body. In order to
do this, we will combine two aspects of somatoperception, proprioception and tactile
sensation. In spite of the fact, a body schema involves other modalities like vision, we
will leave that behind and focus on somatosensory input.

The schema uses touch localization to determine the accuracy of the prediction of a
contact point, based on proprioceptive perception of the body parts position and their
movements. This approach was inspired by the behavior of infants and certain animals
who are believed to calibrate their body representations by self-stimulation (Roncone
et al., 2014). Technical view of the model will be described in Chapter 3.



Chapter 2

Humanoid Robot iCub

As technology advances, people are starting to create intelligent robotic systems of all
kinds. On the one hand, there are robots meant for labour needs, as household helpers
or to be used for what is impossible for a human. For instance the Mars Exploration
Rover. On the other hand, scientists search to reveal and simulate cognitive processes
beyond human mind. Therefore, they try to create artificial humanoid robots, complex
systems that can learn and behave as humans.

The iCub is one of these humanoid robots, used for research in cognitive neuro-
science and artificial intelligence. It was developed at Italian Institute of Technology
in Genova as an open-source project. The robot, with its height 105 cm reminds of a
4-year old child (Metta et al., 2010).

2.1 The body representation

Considering the iCub’s limited structure of the body, compared to a human body, we
need to use representations that do not completely correspond to the human body. As
we mentioned in Chapter 1, our outlined body schema consists of two representations:
proprioceptive and tactile. The tactile input allows us to calibrate the kinematic pa-
rameters by enclosing the kinematic chain with self-touch. This is reffered to as the
closed-loop system.

2.1.1 Proprioceptive representation

The motor system of the iCub is formed by 53 motors attached to its joints. Each
joint has 1 to 3 axes of rotation that together creates 53 degrees of freedom (DoF). For
demonstration, as indicated in Figure 2.1, there are 6 DoF on the head, 3 on the torso,
2×16 on the arms and 2×6 on the legs (Metta et al., 2010).

The configuration of iCub’s current posture can be represented using the angles of
its joints in all DoF. Each DoF has a different range of angles and a different default

4



CHAPTER 2. HUMANOID ROBOT ICUB 5

Figure 2.1: Humanoid robot iCub and its kinematic structure (Parmiggiani et al.,
2012). The joints on the fingers are not depicted.

position (not necessarily 0). The ranges of DoF in robot’s arm are stated in Table A.1
(the same for both arms). The information about the body’s next movement can be
represented as a vector of angular changes, one per each DoF.

2.1.2 Tactile representation

Several parts of iCub’s body are covered by artificial skin, organized into 18 patches (1
in each hand, 2 in each forearm, 4 in each upper arm and 4 in the torso). Each patch
is composed by triangular modules, each consisting of 10 tactile sensors (a.k.a. taxels)
(Bruchi et al., 2016). There are approximately 1750 taxels on iCub’s skin altogether.
The triangular modules are visible in Figure 2.2.

Figure 2.2: Triangular modules of artificial skin (Bruchi et al., 2016).

In Figure 2.3, we can see iCub touching its arm and the visualization of the activa-
tion of corresponding sensors on the sensory map on the left side in the figure.
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Figure 2.3: iCub touching its arm (Roncone et al., 2014).

2.1.3 iCub simulator

The data we will be using have been generated using iCub simulator1, which is an open
source software developed for research purposes. It sufficiently mimics the functionality
of the iCub, therefore we do not need the access to the physical robot.

1http://wiki.icub.org/wiki/ICub\_Simulator\_Installation



Chapter 3

Modeling Approach

The implementation design, along with the explanation of necessary concepts will be
outlined in this chapter.

3.1 Forward and inverse models

Autonomous robots should be able to learn to make predictions of their future state
based on their observations. There is evidence of predictive models employed by a
human brain (Davidson and Wolpert, 2005). The basic ones used in machine learning
are forward and inverse models.

Figure 3.1: (a) The forward model allows inferring the next state sk+1 given the current
state sk and the action ak. (b) The inverse model determines the action ak required to
move the system from the current state sk to the next state sk+1 (Nguyen-Tuong and
Peters, 2011).

3.1.1 Forward models

Forward models are functions that imitate physical systems. A forward model rep-
resents a causal relationship between the given state of a system and an intervening
action (Nguyen-Tuong and Peters, 2011). It simply outputs the conclusive state. On
the basis of psychophysical and electrophysiological studies, it has been suggested that

7



CHAPTER 3. MODELING APPROACH 8

the sensorimotor system employs forward models to predict the consequences of mo-
tor movements (Davidson and Wolpert, 2005). Hence, they are otherwise known as
predictive models.

3.1.2 Inverse models

On the other hand, inverse models predict the action that needs to be executed to
acquire the desired state from the current state. An inverse model represents an anti-
causal relationship (Nguyen-Tuong and Peters, 2011), they do not always exist and can
be ambiguous (different actions can cause the same consequences). In general, learning
an inverse model is an ill-posed problem.

In other words, a forward model predicts the consequences of a movement from the
current configuration, while an inverse model predicts the movement, that would cause
a desired configuration. These models are described in Figure 3.1.

In this thesis, we will employ a forward model to predict the consecutive configura-
tion and a possible contact of iCub’s body from the current configuration, determined
by proprioception, and the given motor command.

3.2 Multi-layer perceptron in a nutshell

For the model implementation, we will use concepts of artificial neural networks (ANNs).
In this section we will shortly introduce the ANNs and describe the architecture of the
ANN we have chosen for the implementation of a predictive (forward) model.

3.2.1 Supervised learning

Supervised learning is a type of machine learning algorithm, which infers the output
function based on training examples. Each example is a pair of an input vector and
a desired output (target). There are two types of supervised learing problem: classifi-
cation (in case of a discrete output function) and regression (if the output function is
continuous).

3.2.2 A feedforward neural network

Artificial neural networks are computational models of machine learning inspired by
biological neural networks that can be trained (using various methods of machine learn-
ing) to perform different tasks (Haykin, 2009). There are multiple types of ANNs,
however, we will only be using feedforward neural networks.

A perceptron, an artificial neuron, recieves one or more weigthed inputs and sums
them in order to produce output. The perceptron outputs a non-zero value only if the
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weighted sum exceeds a certain threshold. For that reason a bias unit (usually a value
of 1) is often added to the input. The weighted sum (linear combination) is then passed
to an activation function (usually sigmoid function) to produce a non-linear output.

A feedforward neural network is composed of layers of neurons. The input layer
is composed of the input sensors, equivalently, the output layer is the output of the
network. A network that only consists of input and output layer is termed a single
layer perceptron, while model consisting of multiple layers is a multilayer perceptron
(MLP). The other layers, between the input and the output layer, are referred to as
hidden layers. A typical MLP with one hidden layer is shown in Figure 3.2.

Figure 3.2: Multilayer perceptron with an input vector x, one hidden layer h, an output
layer y and weight matrices V and W (Farkaš, 2011).

To train an ANN, we need to set its weights, so that the output is close to the
target value. A properly trained ANN has the ability of generalization, which means it
can predict the output of an input vector that was not in the training data. The ANN
is trained after multiple cycles of forward propagation and backpropagation of error,
called epochs.

3.2.2.1 Forward propagation

To evaluate the output of a neural network, we use the forward propagation. Working
with a MLP, we need to compute the activation of the layers in the direction from
the input to the output layer. We will demonstrate the forward propagation on the
example network in Figure 3.2. The activation of the k-th neuron in the hidden layer
is the output of the activation function f that is given the linear combination of the
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input vector x and the k-th vector from the weight matrix V as the argument.

hk = f(
n+1∑
j=1

Vkjxj) (3.1)

Similarly, the activation of the i-th neuron in the output layer is calculated by the
output of the activation function with the input of the linear combination of the hidden
layer and the corresponding vector from the weight matrix W.

yi = f(
q+1∑
k=1

Wikhk) (3.2)

There are various types of activation functions used in neural networks. The typical
is the logistic function with the output from the interval (0, 1) that we will be using.

f(net) =
1

1 + exp (−net)
(3.3)

3.2.2.2 Backpropagation

The backward propagation of errors, i.e. the backpropagation, is a learning algorithm
used for training ANNs (Rumelhart et al., 1986). Initially, the weights of a neural
network are set randomly. Based on the desired output (target), we compute the error
of an ANN by comparing it to the output and then update all weights in the network
using backpropagation.

We compute the error of the i-th neuron from the output layer using formula 3.4,
where f ′i is the derivative of the activation function with respect to its argument (net).

δi = (di − yi)f
′
i (3.4)

At first, we update the weights closer to the output layer by adding a small value
to each of them. The update is computed by the formula

Wik(t+ 1) = Wik(t) + αδihk (3.5)

where Wik is the weight between the k-th neuron in the hidden layer and the i-th
neuron in the output layer, α is the learning rate (usually 0 < α < 1), δi is the error of
the i-th neuron, computed by the formula 3.4 and hk is the k-th neuron in the hidden
layer.

Then, we back propagate the error through the network. We compute the error of
the hidden layer, as follows

δk = (
∑
i

Wikδi)f
′
k (3.6)

Equivalently, we update the weights between the hidden and the input layer

Vkj(t+ 1) = Vkj(t) + αδkxj (3.7)
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3.3 Implementation design

In this section, we will discuss the architecture of our forward model that can predict
the future state of iCub’s body, i.e. limbs configuration and tactile sensation, based on
the current posture and the motor command. The diagram of this model is sketched
in Figure 3.3.

Figure 3.3: Network architecture design of the predictive model.

3.3.1 Population coding

In this section, we will describe the representation of the proprioceptive information
in our model. A population coding is often used, to encode data by activation of
several neurons, termed a population of neurons. Population coding is inspired by the
activation of biological neurons, which are believed to encode information in a similar
way (Pouget et al., 2000). There are a few different methods of population coding. In
this thesis, we will use encoding by Gaussian and by sigmoidal tuning curves.

3.3.1.1 Gaussian tuning curves

Population encoding by Gaussian tuning curves is often reffered to as position coding.
We can encode a position x by a population of Gaussian tuning curves with a different
center µ and the same standard deviation σ (the distance between the center and the
inflection point of each curve). The activation of each Gaussian is given by

y = exp (−(x− µ)2

2σ2
) (3.8)

An example of position coding of a number in range [−1, 1] is shown in Figure 3.4.
Since the DoF all have different ranges of possible angles, we need to normalize the
encoding, in order to unify the proprioceptive input. For our purpose, we will use the
corresponding range of each DoF on the x-axis, the activation of neurons on the y-axis
will always be in range [0, 1].
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Figure 3.4: Gaussian encoding of a number −0.3 by a population of 5 neurons with
corresponding activations (0, 0.6, 0.32, 0, 0) (Zdechovan, 2012).

3.3.1.2 Sigmoidal tuning curves

Alternative to the Gaussian encoding is sigmoidal population coding. The only differ-
ence is the sigmoidal tuning curve. Activation of neurons, each with specified offset, of
a position x is calculated as

y =
1

1 + exp (−x+ offset)
(3.9)

3.3.2 Problem simplification

The proprioceptive information tells us only about the configuration of iCub’s body,
not about any other external objects. Therefore, we are only concerned about self-
touch of the body. That means, there will always be at least two activated tactile
regions on iCub’s body. To simplify this a little, we will only take into consideration
the robot’s arms touching itself, excluding the proprioceptive information about the
fingers, which makes 2× 7 = 14 DoF (see Table A.1). Further on, we will decrease the
contact surface to the fingers, palms and forearms.

The tactile sensory input space of iCub simulator is reduced in comparison to the
physical iCub. The surface on the artificial skin in the simulator is divided into several
regions, each containing a few (2 to 3) triangular modules (Varga, 2016).

Regarding our decision to only operate with the tactile sensors on fingers, palms
and forearms, we will describe the tactile regions on these parts. The tactile input
space consists of 42 regions. There is one region on each finger, 5 × 2 = 10 regions on
palms and 11 × 2 = 22 regions on forearms. The complete list of corresponding taxels
of each region can be found in Table B.1.

In our model of a multilayer perceptron, we will represent the 42-dimensional space
of tactile regions by 42 neurons, each with activation in the range [0, 1], where 1 means
touch, and 0 means no touch (activated taxel) in that particular region.



Chapter 4

Implementation

The complete implementation of the predictive model of the iCub’s body representation
is covered in this chapter. We chose Python for the implementation of the neural net-
work and for the data processing. For operations with matrices, we used Numpy,
a package for scientific computing with Python. The source files formater.py,
encoder.py and mlp.py, and the data files leftArm.log, rightArm.log and
skinEvents.log are located in the attached CD.1

4.1 The data

All data used for traning and testing have been generated using the iCub simulator by
Dr. Matěj Hoffmann. The data capture the course of a number of trajectories (more
than 200). At the beginning of each trajectory, iCub starts in the default (home) posi-
tion, then moves both arms, one at a time, and ends up in a double-touch configuration,
where the fingers of one arm touch the contralateral palm or forearm. An example of
double touch configuration in the iCub simulator is shown in Figure 4.1. The dataset
duration is 60 minutes. Each trajectory takes less than 20 seconds, from which the
touch lasts roughly 5 seconds.

The sampling of the tactile and the proprioceptive data was different. The sampling
of the proprioceptive data varies between 10-30 ms, while the tactile varies between 30-
70 ms. However, we needed both information at the same time. Therefore, we merged
the data with a lower sampling rate and got approximately 100000 records. This was
still too dense, because the change between a position in time t and t + 1 (record
number t and t + 1) was too little, so we took into consideration every 5-th record,
ending up with 20000 records of the iCub’s body state. The script that processes the
data is saved in the file formater.py. Before training, we divided the dataset into
the training and the testing data in a ratio of 3 to 1. In order to train and test the

1also at https://github.com/LejlaMetohajrova/proprio-haptic-prediction
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Figure 4.1: Double touch of the iCub simulator. Skin GUI on the left side shows the
activated regions of touch. (Varga, 2016).

model, we needed to process the data into a form suitable for a neural network.

4.1.1 Tactile data

As mentioned in Section 3.3.2, the tactile input space of our model consists of 42
neurons. Although the data contain much complex information, we had to extract what
is important and create a 42-dimensional vector of values in interval [0, 1] representing
the tactile input.

The original tactile data consist of multiple skin contact vectors per record. Each
skin contact vector has the following format (Bruchi et al., 2016):

((contactId bodyPartId linkNumber skinPart)

(centerOfPressure_x cOP_y cOP_z)

(force_x f_y f_z)

(moment_x m_y m_z)

(geometricCenter_x gC_y gC_z)

(surfaceNormalDirection_x sND_y sND_z)

(activatedTaxelId1 aTId2 ... aTIdN) average_pressure)2

The interesting values are skinPart and the vector of the activated taxel IDs
2For clarity we split the skin contact vector into several lines.
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(marked as activatedTaxelId1 aTId2 ... aTIdN). The values of skinPart
in our dataset could be integers 1, 2, 4 or 5 with the following meaning: (left hand = 1,
left forearm = 2, right hand = 4, right forearm = 5). We ignored other potential values
that could represent a different skin part (e.g. the torso). The taxel IDs are unique for
each skin part.

According to the list of activated taxel IDs and Table B.1, we distinguished between
the activated (1) and not activated (0) regions, and thereby created the 42-dimensional
binary vector per each record. The tactile data were transformed during the merging
process and the scripts are included in the file formater.py.

4.1.2 Proprioceptive data

The original structure of the poprioceptive data is one angle per each DoF, that is
to say 2 × 7 angles, from the corresponding range according to Table A.1. The data
representing the action that enters into the configuration state was obtained by the
difference between the successive states, i.e., the angle of change of each DoF.

action = next proprio− current proprio (4.1)

In order to unify the data, we encoded each angle by a population of neurons (see
Section 3.3.1). At first, we used Gaussian encoding, because it is the most common in
neural modeling. We used 20 Gaussian neurons for encoding each angle (DoF). Actions
were encoded using 15 Gaussian neurons, due to the smaller range (-25, 25) degrees.

The parameters of the Gaussian tuning curves were chosen as follows. The centers
of the Gaussians µi were uniformly distributed along the corresponding range. The
standard deviation σ was computed as a half of the distance between the centers of the
two neighbouring Gaussians.

Later, we encountered a problem (to be mentioned in Section 4.2.1), which we solved
using the sigmoidal tuning curves instead of Gaussians to encode only the target values.
The input remained the same. The encoding of the output and the input values does
not have to be identical; the network can still learn the mapping. The number of the
sigmoidal tuning curves, 20, was chosen on the basis of the best performance of the
network.

The implementation of the encoding class is located in the file encoder.py. The
class is, afterwards, imported as a module into the main file containing the multilayer
perceptron named mlp.py. In the function read_data() in mlp.py, the data is
read and processed by the encoder module, before the training.



CHAPTER 4. IMPLEMENTATION 16

4.2 Training

In order to successfully train the network, we need to find its optimal parameters to
minimize the prediction error. Typical parameters that can vary in a neural network
are e.g. the number of neurons in the hidden layer and the learning rate (α). For the
best performance, we also needed to find a proper amount of neurons encoding the
angles of DoF.

To evaluate the performance of the network, we compute the mean squared error
(MSE) of the network by comparing the outputs y to the desired responses (targets)
d. The formula for MSE is

MSE =
1

n

n∑
i=1

(yi − di)
2 (4.2)

where n is the number of output neurons. During the training, we will usually calculate
the MSE on both, the training and the testing data, to evaluate the performance on
previously unseen (testing) data, too, and plot them as two independent curves.

4.2.1 Encoding problem

As mentioned in Section 4.1.2, we encountered a problem with encoding of the targets.
The (average) MSE, plotted in Figure 4.3(a), did not get below 0.05. Therefore, the
backward reconstruction from the activations of population of neurons to the result-
ing angle was nearly impossible. An example output compared to target encoded by
Gaussian tuning curves is shown in Figure 4.2.

Figure 4.2: Output and the corresponding target encoded by Gaussian tuning curves.

Later, we found a solution to this problem. The Gaussian distribution of the output
was not consistent with the sigmoid activation function, since the neuron that required
the highest activation often had a smaller value than was the output of a neuron with
sigmoid activation function, which is limited to 1. Thus, we used sigmoidal tuning
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curves, instead of Gaussians, to encode the target angles of DoF. After that, the MSE
decreased to 0.01 as shown in Figure 4.3(b).

(a) MSE using Gaussian encoding (b) MSE using sigmoidal encoding

Figure 4.3: Comparison of training errors in case of Gaussian and sigmoidal population
coding.

4.2.2 Setting the parameters

The optimal parameters of the population coding were described in Section 4.1.2. After
many trials, the optimal number of hidden neurons turned out to be 50. We set the
learning rate α = 0.001, what smoothed the learning curve (MSE). The final model of
the multilayer perceptron is shown in Figure 4.4.

We have tried a variant of a neural network with and without a bias unit. Eventu-
ally, adding bias only to the input layer worked the best. In Figure 4.3(b) the optimal
variant is used. For illustration, in Figure 4.5(a) we added bias to both, the input and
the hidden layer, in Figure 4.5(b) no bias was used.

4.2.3 Backward reconstruction of sigmoidal population coding

In order to get the final output, from the network output, we needed to reconstruct the
angles of DoF from the neurons representing sigmoidal population coding. In Figure
4.6, there are depicted the activations in the output layer responsible for encoding the
angle of the first DoF and the corresponding encoded target value.

The first DoF takes values from the range [−95, 10] (see Table A.1), which is spec-
ified on the x-axis. The target value of the angle was in this case −60.9◦, which was
encoded by 20 sigmoidal tuning curves and is drawn in Figure 4.6 using red dots. The
network output is illustrated by the blue dots.

If we applied the inverse of the sigmoid function (equation 4.3) to all activations of
neurons, we would get 20 different values (representing angles), from which only a few
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Figure 4.4: Model of the multilayer perceptron with corresponding numbers of neurons.
ϕi is the angle of i-th DoF, ∆ϕi is the change of the angle of i-th DoF, p(t) is the
proprioceptive input at time t, a(t) is the action at time t, h denotes the hidden neurons,
t(t + 1) is the tactile output at time t + 1 and dp(t + 1) is the desired proprioceptive
output at time t+ 1. For clarity, we depicted the population coding, to allow the reader
to see, that the encoding and decoding take place outside the network and do not take
a part in the network operations. For simplicity, we did not depict the desired tactile
output in the figure, since there is nothing special happening.

would be useful. This is because if the values close to 0 (or 1) of the sigmoid function
differ only slightly, the corresponding value on the x-axis (the angle) could differ a lot,
due to the nonlinearity of the function (steeper slope).

x = ln(
y

1 − y
) + offset (4.3)

Therefore, we find a neuron with the activation closest to 0.5 and apply the inverse
of the sigmoid function, with the offset value specified by the chosen neuron (and the
range matching the given DoF), to its activation. The offset is calculated as

offset = min+ i(l/(n− 1)) (4.4)

where l is the length of the range of the given DoF, min is the minimal value from the
range, i is the index of the chosen neuron and n is the number of the coding neurons
(sigmoidal tuning curves). Decoding of the sigmoidal neurons is implemented in the
file encoder.py.



CHAPTER 4. IMPLEMENTATION 19

(a) MSE with bias units in both layers (b) MSE without a bias unit

Figure 4.5: MSE with and without bias units.

Figure 4.6: Encoded target of the first DoF compared to the output. On x-axis are
depicted the 20 output neurons representing proprioception of the first DoF (targets are
encoded using 20 sigmoidal tuning curves). Y -axis shows the activation of the neurons.

We will demonstrate the evaluation on the example given in Figure 4.6. The neuron
with activation closest to 0.5 was the 7-th (indexing from 0, that is 6) neuron with its
activation 0.6. Using the formulas above, we get the following equations:

offset = −95 + 6(105/(20 − 1)) = −61.8 (4.5)

x = ln(
0.6

1 − 0.6
) − 61.8 = −61.4 (4.6)

The decoded value of the angle of the first DoF is then −61.4◦, while the desired
value was −60.9◦.



Chapter 5

Results

In this chapter we will analyze the results of the implemented predictive model.

5.1 The general ability of learning

In this section, we will analyze the general ability of our model of multilayer perceptron
to learn. As we previously showed, in Figure 4.3(b), the MSE of the network on the
training and also on the testing dataset lowered within the growing number of epochs,
until it reached approximately 0.01 MSE on a neuron.

For instance, we compared an example output to its target before and after the
network was trained. In Figure 5.1(a), we can see the desired output of the last DoF
(wrist yaw on the right hand), compared to the output of an untrained network. The
results after we trained the network are shown in Figure 5.1(b).

(a) Before training (b) After training

Figure 5.1: Output representing the last DoF (20 neurons with the corresponding IDs)
and the target before and after training.

20
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The tactile output compared to its target before and after the training is depicted
in Figure 5.2. As we can see, the activations of the activated taxels do not reach as
high values as the desired ones, however, they acquire much greater values than those,
which were not activated.

(a) Before training

(b) After training

Figure 5.2: Tactile output and the target before and after training, on example data.
The x-axis marks the 42 neurons representing the tactile output, with the corresponding
IDs.
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5.2 Prediction of touch

In order to evaluate the ability of the network to predict touch, we made several
tests. In Figure 5.3, we can see the average activation of each tactile region in the
whole dataset (red) and the average activation of each region predicted on the basis
of each proprioceptive configuration from the whole dataset (green). The most were
represented the fingers, due to the double-touch configuration, where the fingers of one
arm always touch the other arm.

Figure 5.3: Average tactile activation on output neurons compared to the expected av-
erage activation.

An interesting fact is the generalization ability of the network that predicts touch a
while before and a while after the touch really occurs. That is because the propriocep-
tive configuration of the iCub’s body is very similar to those, when the touch occurs.
We can see that in Figure 5.4, depicting the average activation of neurons in a given
time. The values on x-axis mark the successive numbers of the records in the dataset
that represent a period of time. The green plot representing the average predicted
activation rises before the red plot and descends after. That means the network can
anticipate tactile stimuli before the actual touch.

On the trained network, we tried to predict the tactile output from the input
configuration that causes a touch of iCub’s left fingers and right forearm without any
action (an action that equals zero on each DoF). According to the desired and the actual
output, shown in Figure 5.5, the network has the ability to connect the two modalities,
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Figure 5.4: Average tactile activation of (all tactile) neurons in time compared to the
expected average activation. Time is represented by successive numbers of records of
the data. The selected period of time shows 7 trajectiories ending by double-touch that
are represented by the corresponding peaks.

proprioceptive and tactile, by successfully predicting the touch out of a configuration
that causes it. Yet, the output neurons still do not acquire as high activation as desired,
which is the same as in Figure 5.2, where there was an action (not equal to zero) in
the input. However, the important thing is that these neurons have activations that
are significantly higher compared to other neurons, which can be interpreted as correct
answer.

Figure 5.5: Tactile output compared to the targets. The x-axis marks the 42 neurons
representing the tactile output, with the corresponding IDs.



Conclusion

The goal of this thesis was to create a simplified body schema, a multimodal represen-
tation of the iCub’s body that combines two modalities carrying somatosensory infor-
mation, proprioception and tactile sensation. In biology, this corresponds to an early
developmental stage when a baby learns about its body through the self-exploration.
The implemented model was supposed to predict tactile stimuli and the next configu-
ration of the body based on the current configuration and current movement.

The former idea was to include the tactile stimuli to the input of the network and
examine the associative capabilities of the network. Nevertheless, we decided not to,
because the input of the tactile stimuli had low average activation and, probably, would
not bring forth a lot of additional information to the network. Therefore, the weights
between the tactile information and the hidden layer would, probably, vanish to zero.

We decided to demonstrate this representation by the movement and self touch
of iCub’s arms, therefore we did not consider other parts of its body in our model.
For the implementation, we employed a multilayer perceptron with one hidden layer.
The data used for training and testing were generated using the iCub simulator. The
tactile sensory information was mapped to a 42-dimensional vector that represented
the tactile regions on iCub’s fingers, palms and forearms. For the representation of the
proprioceptive information, we used population coding. The input configuration along
with the action were encoded using Gaussian tuning curves, while the desired output
configuration was encoded using sigmoidal tuning curves.

In conclusion, the predictive model demonstrated the ability to learn the mapping
between the proprioceptive configuration and the representation of the tactile stimuli.
In addition, it was able to learn the forward kinematics of the robot and to predict
an incoming self touch. However the neurons representing the predicted tactile output
did not acquire as high values as the targets (which were binary). To figure this out,
we might try using discrete activation function for the evaluation of the tactile output
instead of sigmoid activation function. It also may be caused by the mean of the tactile
data, which was closer to 0 (see Figure 5.3).

For the future work, we could try different representations of the somatosensory
modalities, include other modalities like vision, or use deeper networks, that could
learn to associate them. It is our belief that the exploration of the predictive model
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of proprioceptive body representation can help the development of more complex rep-
resentations that associate the proprioceptive and tactile stimuli and contribute to
progress in autonomous cognitive robots.



Appendix A

Ranges of DoF of iCub’s arm

Degree of freedom Min Max Range
shoulder pitch -95 10 105
shoulder roll 0 161 161
shoulder yaw -37 80 117
elbow 16 106 122
wrist pronosupination -90 90 180
wrist pitch -90 0 90
wrist yaw -20 40 60
hand finger adduction/abduction 0 60 60
thumb opposition 10 90 80
thumb proximal flexion/extension 0 90 90
thumb distal flexion 0 180 180
index proximal flexion/extension 0 90 90
index distal flexion 0 180 180
middle proximal flexion/extension 0 90 90
middle distal flexion 0 180 180
ring and little finger flexion 0 270 270

Table A.1: Ranges of all degrees of freedom of iCub’s arm in degrees (Bednárová, 2015).

26
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Tactile regions

Neuron
ID

Taxel ID vector Skin GUI

Left/Right fingers

1/22 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)

2/23 (12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23)
3/24 (24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35)
4/25 (36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47)

5/26 (48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59)

Left palm

6 (96, 97, 98, 99, 102, 103, 120, 129, 130)

7 (100, 101, 104, 105, 106, 113, 116, 117)

8 (108, 109, 110, 111, 112, 114, 115, 118, 142, 143)

9 (121, 122, 123, 124, 125, 126, 127, 128)

27
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10 (132, 133, 134, 135, 136, 137, 138, 140, 141)

Right palm

27 (96, 97, 98, 100, 101, 110, 111, 112)

28 (99, 102, 103, 104, 105, 106, 127, 129, 130)

29 (108, 109, 113, 114, 115, 116, 117, 118, 142, 143)

30 (120, 121, 122, 123, 124, 125, 126, 128)

31 (132, 133, 134, 135, 136, 137, 138, 140, 141)

Left forearm

11
(288, 289, 290, 291, 292, 293, 295, 296, 297, 299, 300, 301,
302, 303, 304, 305, 307, 308, 309, 311, 348, 349, 350, 351,

352, 353, 355, 356, 357, 359)

12
(204, 205, 206, 207, 208, 209, 211, 212, 213, 215, 336, 337,

338, 339, 340, 341, 343, 344, 345, 347)

13
(252, 253, 254, 255, 256, 257, 259, 260, 261, 263, 312, 313,

314, 315, 316, 317, 319, 320, 321, 323)

14
(0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 180, 181, 182, 183, 184, 185, 187,

188, 189, 191)

15
(24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 12, 13, 14, 15, 16, 17,

19, 20, 21, 23)

16
(156, 157, 158, 159, 160, 161, 163, 164, 165, 167, 144, 145,

146, 147, 148, 149, 151, 152, 153, 155)



APPENDIX B. TACTILE REGIONS 29

17
(132, 133, 134, 135, 136, 137, 139, 140, 141, 143, 168, 169,

170, 171, 172, 173, 175, 176, 177, 179)

18
(120, 121, 122, 123, 124, 125, 127, 128, 129, 131, 60, 61, 62,

63, 64, 65, 67, 68, 69, 71)

19
(96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110,

111, 112, 113, 115, 116, 117, 119)

20
(84, 85, 86, 87, 88, 89, 91, 92, 93, 95, 72, 73, 74, 75, 76, 77,

79, 80, 81, 83)

21
(36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53,

55, 56, 57, 59)

Right forearm

32
(288, 289, 290, 291, 292, 293, 295, 296, 297, 299, 300, 301,
302, 303, 304, 305, 307, 308, 309, 311, 348, 349, 350, 351,

352, 353, 355, 356, 357, 359)

33
(204, 205, 206, 207, 208, 209, 211, 212, 213, 215, 336, 337,

338, 339, 340, 341, 343, 344, 345, 347)

34
(252, 253, 254, 255, 256, 257, 259, 260, 261, 263, 312, 313,

314, 315, 316, 317, 319, 320, 321, 323)

35
(0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 180, 181, 182, 183, 184, 185, 187,

188, 189, 191)

36
(24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 12, 13, 14, 15, 16, 17,

19, 20, 21, 23)

37
(156, 157, 158, 159, 160, 161, 163, 164, 165, 167, 144, 145,

146, 147, 148, 149, 151, 152, 153, 155)

38
(132, 133, 134, 135, 136, 137, 139, 140, 141, 143, 168, 169,

170, 171, 172, 173, 175, 176, 177, 179)
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39
(120, 121, 122, 123, 124, 125, 127, 128, 129, 131, 60, 61, 62,

63, 64, 65, 67, 68, 69, 71)

40
(96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110,

111, 112, 113, 115, 116, 117, 119)

41
(84, 85, 86, 87, 88, 89, 91, 92, 93, 95, 72, 73, 74, 75, 76, 77,

79, 80, 81, 83)

42
(36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53,

55, 56, 57, 59)

Table B.1: Distribution of tactile regions on the skin surface with the corresponding
taxel IDs. For simplicity, the neuron IDs used are marked within the range [1, 42], not
[281, 322] as we use in our model of multilayer perceptron.
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