
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Generic JavaScript-to-WebAssembly
wrapper

Bachelor Thesis

2021
Eva Herencsárová

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Generic JavaScript-to-WebAssembly
wrapper

Bachelor Thesis

Study Programme: Computer Science
Field of Study: Computer Science
Department: Department of Computer Science
Supervisor: RNDr. Richard Ostertág, PhD.
Consultant: Dr. Dipl.-Ing. Andreas Haas, Bakk. techn.

Bratislava, 2021
Eva Herencsárová

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Eva Herencsárová
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Generic JavaScript-to-WebAssembly wrapper
Všeobecná „obalová funkcia“ pre WebAssembly funkcie volané z JavaScriptu

Anotácia: V8 je interpreter/kompilátor pre WebAssembly a JavaScript v prehliadači
Google Chrome. V8 skompiluje pre každú WebAssembly funkciu volanú
z JavaScriptu špecifickú „obalovú funkciu“. Tieto špecifické „obalové funkcie“
sú potrebné, aby sme vedeli prekladať medzi jednotlivými typmi v jazykoch
JavaScript a WebAssembly. Kompilácia špecifických „obalov“ zaberie nejaký
čas a prostriedky, ktoré by sme chceli ušetriť.

Cieľ: Cieľom tejto práce je navrhnúť a implementovať všeobecnú „obalovú funkciu“,
ktorá by bola použiteľná pre ľubovoľnú WebAssembly funkciu volanú
z JavaScriptu. Tým pádom by odpadla predkompilácia špecifických „obalových
funkcií“.

Vedúci: RNDr. Richard Ostertág, PhD.
Konzultant: Dr. Dipl. Ing. Andreas Haas, Bakk. techn.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Spôsob sprístupnenia elektronickej verzie práce:
bez obmedzenia

Dátum zadania: 05.10.2020

Dátum schválenia: 05.10.2020 doc. RNDr. Daniel Olejár, PhD.
garant študijného programu

študent vedúci práce

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Eva Herencsárová
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Generic JavaScript-to-WebAssembly wrapper

Annotation: V8 is the WebAssembly and JavaScript engine in Google Chrome browser.
At the moment, V8 compiles a specific wrapper for WebAssembly functions
that are called from JavaScript. These specific wrappers are needed because
we need to translate back and forth between JavaScript and WebAssembly
types. Compiling these wrapper functions takes some time and resources that
we would like to save.

Aim: The goal of this thesis is to design and implement a generic wrapper for
WebAssembly functions so that this wrapper can be used to call arbitrary
WebAssembly functions from JavaScript; therefore, avoiding pre-compilation
of specific wrappers.

Supervisor: RNDr. Richard Ostertág, PhD.
Consultant: Dr. Dipl. Ing. Andreas Haas, Bakk. techn.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 05.10.2020

Approved: 05.10.2020 doc. RNDr. Daniel Olejár, PhD.
Guarantor of Study Programme

Student Supervisor

iv

Acknowledgments:
As the thesis was partially an internship project, special thanks goes to my host,

Andreas Haas, co-host, Thibaud Michaud, and the WebAssembly Runtime Team for
this wonderful opportunity and the rewarding experience. During the internship, I had
the pleasure to work alongside superb software engineers who helped and supported
me to successfully finish the project and acquire valuable knowledge.

Furthermore, I would like to thank my supervisor, RNDr. Richard Ostertág, PhD.,
for valuable advice, guidance and support.

v

Abstrakt

JavaScript interpreter/kompilátor je jedným zo základných podsystémov v architektúre
webových prehliadačov, ktorý parsuje a spúšťa JavaScript kód, vďaka čomu sú webové
stránky interaktívne. WebAssembly je relatívne nový jazyk, ktorý sa tiež dá spúšťať
v moderných prehliadačoch. V prehliadači Google Chrome interpretrom/kompilá-
torom pre JavaScript a aj WebAssembly je V8. Keďže V8 vie spúšťať kód napísaný v
oboch spomínaných jazykoch, je možné aj zavolať WebAssembly funkcie z JavaScriptu.
Pôvodne V8 skompiloval špecifické wrapper funkcie pre rôzne WebAssembly funkcie
volané z JavaScriptu, ktoré zaisťovali vhodnú konverziu medzi typmi týchto dvoch
jazykov. V tejto práci sme úspešne navrhli a implementovali jednu všeobecnú wrap-
per funkciu pre WebAssembly funkcie volané z JavaScriptu vo V8. Vďaka našej novej
všeobecnej wrapper funkcii, ktorú môžeme použiť pre štandardné WebAssembly funkcie
volané z JavaScriptu, odpadla predkompilácia špecifických wrapper funkcií, čím sme
úspešne ušetrili čas a prostriedky.

Kľúčové slová: V8, Google Chrome, WebAssembly, JavaScript, wrapper funkcie,
volacie konvencie

vi

Abstract

The JavaScript engine is an essential subsystem in the web browser’s architecture that
parses and executes JavaScript code embedded in web pages making them interactive.
WebAssembly is a relatively new language that can be also run in modern web browsers.
In Google Chrome, V8 is the JavaScript and WebAssembly engine. As V8 can exe-
cute code written in both of these languages, it is also possible to have function calls
from JavaScript to WebAssembly. Before, V8 compiled specific wrapper functions for
WebAssembly functions called from JavaScript to ensure conversion between the two
languages’ types. In this bachelor’s thesis, we successfully designed and implemented a
generic JavaScript–to–WebAssembly wrapper function in V8. The new, generic wrap-
per can be used for standard type WebAssembly functions when called from JavaScript.
By using the generic wrapper, compilation of specific wrapper functions was avoided,
therefore, we improved the compilation time and saved resources.

Keywords: V8, Google Chrome, WebAssembly, JavaScript, wrapper functions, call-
ing conventions

Preface
This bachelor’s thesis was partially created during a summer internship at Google

Switzerland GmbH.
Google Switzerland GmbH has all copyright, design rights, other proprietary rights,

rights of ownership and use to all Computer Programs conceived or developed dur-
ing the term of the internship, i.e. the code related to the generic JavaScript-to-
WebAssembly wrapper function. This internship project was initiated by the We-
bAssembly Runtime Team to further improve Google Chrome browser’s JavaScript
and WebAssembly engine, V8.

Contents

Introduction 1

1 Background 2
1.1 Web browsers . 2

1.1.1 The browser architecture . 2
1.1.2 Google Chrome . 4

1.2 WebAssembly . 5
1.2.1 Introduction to WebAssembly 5
1.2.2 Design goals . 6
1.2.3 WebAssembly as part of the web platform 7
1.2.4 Main concepts . 8

2 V8 11
2.1 Main concepts . 11
2.2 Pointer compression . 12
2.3 Compiling specific wrappers . 14

3 Design and implementation of the generic wrapper 17
3.1 Main structure of the generic wrapper 17

3.1.1 Register types . 18
3.1.2 The structure and the stack layout 20

3.2 Handling one 32-bit integer parameter 23
3.2.1 Interpreting and accessing the signature 25
3.2.2 Adding garbage collection support 26

3.3 Design options for the signature interpretation in the generic wrapper . 28
3.4 Adding support for arbitrary number of 32-bit integer parameters . . . 29
3.5 Adding support for 32-bit integer return value handling 32
3.6 Adding support for other parameter and return value types 33
3.7 Handling arbitrary number of integer and floating-point parameters . . 34

viii

CONTENTS ix

4 Results 36
4.1 Compilation time and runtime . 36
4.2 Using the generic wrapper in production code 39

Conclusion 40

Appendix 43

Introduction

One of the most widely used software applications are web browsers. Web browsers
retrieve information from web servers, display it and allow client-side computation.
Throughout these processes, we expect high performance from web browsers.

JavaScript is a well-known scripting language that enables web developers to add
interactivity to web applications. WebAssembly is a relatively new, low-level language
that can be run alongside JavaScript in modern web browsers. A key goal of We-
bAssembly is to serve as a compilation target for other programming languages (e.g.
to take an application written in C++ like Google Earth, compile it to WebAssembly,
and run it in the browser). [2, 5]

In this bachelor’s thesis, we will focus on V8, Google’s open source high-performance
JavaScript and WebAssembly engine used in the most popular modern web browser,
Google Chrome [21].
We will investigate how JavaScript and WebAssembly interact with each other, more
precisely, the way we call WebAssembly functions from JavaScript in V8. Due to value
representation differences in these two languages, we have to ensure proper conversions
between the value types. For these conversions, specialized wrapper functions are
compiled based on the number and types of function parameters and return values.

As a result of this thesis, we want to design and implement one generic wrapper
function that can be used to call arbitrary WebAssembly function from JavaScript.
Therefore, pre-compilation of the specific wrapper functions can be avoided by compil-
ing only the generic wrapper.
Note that the generic wrapper is more complex compared to the specific ones resulting
in run-time performance overhead. Thus, for optimal efficiency results, tier-up strate-
gies should be considered to ensure that for frequently called functions the specific
wrappers are compiled.

1

Chapter 1

Background

In this chapter, we will talk about the architecture of web browsers to understand and
locate the JavaScript and WebAssembly engine subsystem. Furthermore, we will study
the main concepts of WebAssembly and emphasize the advantages of using it in the
JavaScript environment in web browsers.

1.1 Web browsers

Modern web browsers are constantly evolving and gaining complexity, therefore, effi-
ciency is one of the most important factors in their software quality.

If we look back, the first web browser, created by Tim Berners-Lee in 1991, was text-
only and it was able to display only simple static web pages written using HyperText
Markup Language (HTML). This simple web browser parsed the HTML tags to present
the encoded information and also served as an HTML editor.
To attract more users, graphical browsers were created and numerous innovations were
introduced setting a new standard for web browsers. [12]

1.1.1 The browser architecture

Nowadays, modern browsers are highly sophisticated, displaying web pages from HTML,
CSS, JavaScript and handle interaction with ease.

At a high-level, we can divide the web browser into several components (subsystems)
as in Figure 1.1. Each subsystem has an important role in the information retrieval
and displaying process. We can briefly describe these roles: [12]

1. User Interface – Basically, it is everything inside the browser window excluding
the area where the requested page appears. It includes the address bar for the
URL address, toolbar, buttons, etc.

2

CHAPTER 1. BACKGROUND 3

2. Browser Engine – Manipulates the actions between the User Interface and the
Rendering Engine. It is responsible for loading the given URL address and sup-
porting simple browsing actions (forward, back or reload).

3. Rendering Engine – Responsible for displaying HTML, CSS and XML documents
with embedded content such as images.

4. Networking – Handles network calls and file transfer.

5. JavaScript Engine – The JavaScript Engine that parses and executes the
JavaScript code embedded in web pages.

6. XML Parser – Used to parse XML documents. It is often a generic and reusable
browser component with a standard, well-defined interface compared to the HTML
parser which is commonly tightly integrated with the Rendering Engine.

7. Display Backend – Used for drawing and windowing primitives (UI widgets, set
of fonts), may be tied with the OS.

8. Data Persistence – Stores and manages user data related to the browsing session
(cookies, bookmarks, etc.).

As mentioned above, the complexity of modern web pages is increasing and new
features are being added. WebAssembly is one of the new “extensions”, that is why we
need a WebAssembly compiler subsystem too. In Google Chrome, V8 is the JavaScript
and WebAssembly engine.
We will learn more about WebAssembly in Section 1.2, Google Chrome in Subsection
1.1.2 and about V8 in Chapter 2.

CHAPTER 1. BACKGROUND 4

Figure 1.1: Reference architecture for web browsers [12]. We can see the major subsys-
tems and the dependencies among them.

1.1.2 Google Chrome

Google Chrome is a web browser based on an open-source software project called
Chromium. In Figure 1.2 [7], we can see Google Chrome’s subsystems mapped to the
reference architecture for web browsers from Figure 1.1.

This popular web browser was first released in 2008. Unlike most web browsers
back then, Google Chrome used multi-process architecture. Multi-process architecture
means separate rendering engine processes for browser tabs. This was a crucial step for
better stability and performance, because the rendering engine’s work became complex
over time. If the rendering engine crashed in one web application, the multi-architecture
allowed the browser to continue with the remaining responsive web applications. [3]

V8, the new JavaScript engine, was also released in 2008 which compiled JavaScript
code directly into machine code. Experimental support for WebAssembly was available
in V8 and Chromium in 2016. [4]

Throughout the years, Google Chrome has gained popularity becoming today the
most popular web browser in the world accounting for about 70% of the global desktop
internet browser market share [15].

CHAPTER 1. BACKGROUND 5

Figure 1.2: Conceptual architecture of Google Chrome [7]

1.2 WebAssembly

In this section, we will learn about WebAssembly to understand relevant concepts for
the thesis and the importance of the work around this new technology.

1.2.1 Introduction to WebAssembly

WebAssembly is a binary instruction format for a stack-based virtual machine. It was
designed as a portable compilation target for programming languages such as C, C++,
Rust, etc., enabling near native speed on the web. WebAssembly is supported in all
four major browsers: Google Chrome, Mozilla Firefox, Edge and Safari. [2]

In Figure 1.3, we can see an illustration about the compilation process of a high-
level language (e.g. C, C++, Rust) into machine code of the given architecture (e.g.
x86, ARM). WebAssembly, i.e. wasm, stands there as the next step after creating the
intermediate representation (IR). However, WebAssembly is not the same as other
kinds of assembly, as it is a language for a virtual machine, not an existing physical
machine, and thanks to its portability capabilities, it has a much more direct mapping
to actual machine code compared to JavaScript. Therefore, the web browser can easily
turn the virtual instructions of WebAssembly into the real processor’s code format. [9]

CHAPTER 1. BACKGROUND 6

Figure 1.3: Illustration of the compilation of high-level languages (C, C++, Rust) into
machine code with WebAssembly (wasm) [9]

1.2.2 Design goals

WebAssembly was created with the following goals to be fulfilled: [5, 2, 18]

• Efficient, fast and portable
WebAssembly takes advantage of common hardware capabilities on a wide range
of platforms aiming to achieve near native code performance. Furthermore, it
can be embedded in browsers or integrated in other software environments.

• Safe and secure
Similarly to JavaScript, data corruption and security breaches are prevented by
creating a memory-safe, sandboxed execution environment. When running in
web browsers, WebAssembly enforces the browser’s same-origin and permissions
security policies.

• Readable and debuggable
Despite of being a low-level assembly-like language, WebAssembly has a textual
representation allowing debugging, viewing and writing programs by hand. We
can easily convert textual format into binary and also the other way around.
However, WebAssembly is primarily intended to be an effective compilation target
and not written by hand.

• Part of the web platform
As one of WebAssembly’s purposes is to run on the web platform, it is designed to
be compatible with the web technologies and maintain backwards compatibility.

CHAPTER 1. BACKGROUND 7

1.2.3 WebAssembly as part of the web platform

JavaScript is a flexible, dynamically typed high-level language, furthermore, it is the
most popular scripting language used to create dynamic web pages. Undoubtedly,
JavaScript is a powerful tool, however, when using it for performance demanding tasks
(such as 3D games or image/video editing), performance issues may occur.
To avoid such issues, we should consider using WebAssembly for these more intensive
use cases. Indeed, WebAssembly is great to deal with bottlenecks, i.e. where near-
native performance is necessary.
However, we should not use WebAssembly as a replacement for JavaScript. These two
languages are intended to be used together on the web platform, so we can benefit from
both languages’ strong points. [18]

To understand the performance differences between WebAssembly and JavaScript,
we first have to explain these two languages’ compilation/interpretation phase. Let’s
look at Figure 1.4. (Note: we will study V8 more precisely in the next chapter.)

In V8, Ignition is the JavaScript interpreter pipeline, Liftoff is the WebAssembly
compiler and TurboFan is the optimizing compiler. When interpreting JavaScript with
Ignition, analytic data of the code execution is being collected. This data is used for
TurboFan to optimize the code by compiling certain parts that are used more often
(e.g. when a function is called many times in a loop). However, as we mentioned before,
JavaScript is dynamically typed, so the optimized code may not be applicable in every
case (e.g. some properties of an object were dynamically changed). In this case, we
have to deoptimize. It can be clearly seen that in some cases continuous optimization
and deoptimization may lead to performance issues. [20]

Below, we can see a simple function using the += operation in a for loop. Let’s
assume that the arr array consists of 100 integers. After a number of iterations, the
code “warms up” and the baseline compiler will compile this part of the code. However,
the arr array may also contain a string, so the optimized compiled code cannot be used.
Therefore we have to deoptimize. [8]

function arraySum(arr) {
var sum = 0;
for (var i = 0; i < arr.length; i++) {

sum += arr[i];
}

}

On the other hand, WebAssembly is statically typed, therefore, when compiling
WebAssembly, the deoptimization can never happen, because TurboFan can only begin
after Liftoff has finished. This means that WebAssembly has a predictable performance
in contrast to JavaScript. [20]

It is important to mention that WebAssembly, aside from being predictable, is also

CHAPTER 1. BACKGROUND 8

Figure 1.4: Interpreting JavaScript (with V8’s interpreter, Ignition and the optimizing
compiler, TurboFan) and compiling WebAssembly (with V8’s WebAssembly compiler,
Liftoff and TurboFan) [20]

faster. Its binaries are lighter than the textual JavaScript files, therefore, WebAssembly
gets loaded, parsed and executed in a shorter amount of time compared to JavaScript.
[19]

The predictability problem can be seen on Figure 1.5 where a benchmark written
both in WebAssembly and JavaScript was run in different browsers. Overall, besides
WebAssembly being faster thanks to its design, we can see that the scattering of the
measurements of the JavaScript code is significantly larger than for the WebAssembly
code. [20]

1.2.4 Main concepts

In this subsection, we introduce the key concepts of WebAssembly to understand how
it runs in the browser.

In WebAssembly, the unit of deployment, compilation and loading is the module.
The module is stateless and it represents a WebAssembly binary. This WebAssembly
module consists of several components, it defines types, functions, tables, memories,
global and local variables, imports and exports, and initializing values.
An instantiated module is paired with all the state it uses at runtime (including a
memory, table, etc.).

CHAPTER 1. BACKGROUND 9

Figure 1.5: Benchmark written in JavaScript and also WebAssembly for speed compar-
ison in various browsers by Nick Fitzgerlad [11]

CHAPTER 1. BACKGROUND 10

Let’s look more precisely at the components that are relevant for our generic wrapper
[5, 18]:

• Types
For our thesis, the most relevant types are the 4 standard number types : i32, i64,
f32, f64 (32-bit and 64-bit integer and floating-point value, respectively).
This component also defines another relevant type, the function type that specifies
the signature of functions. The signature determines the number and type of
parameters and return values of the given function.
(To learn more about other WebAssembly types visit [5].)

• Memory
Defines a vector of linear memory (raw, uninterpreted bytes) that is being ac-
cessed by WebAssembly’s low-level memory access instructions.

• Table
Defines a vector of references (e.g. to functions), so it is possible to map to values
outside of the WebAssembly module (e.g. JavaScript objects, operating system
file-handles). These are references that could not be stored in the memory (for
safety and portability reasons).

• Exports and imports
This component defines a set of exports that are accessible from the host environ-
ment after instantiation, and a set of imports that are required for instantiation.
Exportable and importable definitions are functions, tables, memories and globals
(i.e. global variables of the module).
In our case, the host environment is JavaScript. To sum up, when given a We-
bAssembly instance, JavaScript code can synchronously call its exported func-
tions. These exported functions are exposed as normal JavaScript functions.
Similarly, JavaScript functions – passed as imports to a WebAssembly module –
can also be synchronously called by WebAssembly code.
Note that our generic wrapper will be used for exported functions – WebAssem-
bly functions called from JavaScript. A generic wrapper for JavaScript functions
called from WebAssembly could also be created.

Chapter 2

V8

As mentioned before, JavaScript is used to make web pages interactive. To ensure
smooth user experience, we expect JavaScript to run fast in the browser. JavaScript
engines (i.e. interpreters or compilers) are responsible for guaranteeing high perfor-
mance.
In this chapter, we will talk about V8, Google’s open source JavaScript and WebAssem-
bly engine used also in Google Chrome. We will explain the key concepts and topics
related to the implementation of our generic wrapper.

2.1 Main concepts

To process JavaScript source code, we need a tool to parse and translate JavaScript
into machine code that can be executed.

A compiler takes the whole source code, runs through it, makes smaller optimiza-
tions if possible, and translates it into the target language – in our case into machine
code. After the translation phase, the machine code can be executed with the given
inputs. However, compiling long source code can take some time, therefore, it may not
be convenient for web applications. [6]

An interpreter, on the other hand, directly executes the operations specified in the
source program on the given inputs. That is, instead of translating the whole source
code and only after that executing it, an interpreter translates a single statement (e.g.
one line of source code) into machine code, executes it and moves further. This means
that with an interpreter we start executing the source code faster, however, the machine
code created by an interpreter is not optimized and therefore slower. [6]

To benefit from both of these traditional language processors, we can use JIT –
just-in-time – compilers. A JIT compiler compiles the source code into machine code
during program execution, i.e. at run time, and may use a profiler (or monitor). The
profiler collects additional analytic data during runtime, and remembers how often a

11

CHAPTER 2. V8 12

given part of code (e.g. functions, methods) is being executed and what types were
used. Based on these runtime observations, we can categorize the functions as not so
frequent, as warm or as hot. To increase speed, warm functions will be compiled by
the baseline compiler, and whenever the same code with the same types is about to
be executed, the stored compiled version will be used. Similarly, whenever functions
are being called very often – are hot – these functions will be sent to the optimizing
compiler that compiles them into even faster, optimized version of machine code that
will be stored and reused for the same types.
Note that different browsers have slightly different way of the above mentioned JIT
compilation, but they follow the basic idea we have just explained. [8]

V8, as all modern JavaScript engines, is a JIT compiler written in C++. To process
and execute JavaScript V8 uses:

• Ignition – interpreter pipeline. First, the JavaScript source code is being com-
piled to concise bytecode by the baseline compiler. Bytecode is a low-level program
code compiled from source code (e.g. JavaScript) and it is designed for an inter-
preter. Furthermore, bytecode takes up significantly less space, it is around 50%
to 25% the size of equivalent baseline machine code. In the next step, the byte-
code is being executed by a high-performance interpreter or it is processed by
TurboFan resulting in an architecture specific machine code. [16, 17]

• TurboFan – the optimizing compiler for both WebAssembly and JavaScript. It
is built around a concept called Sea of Nodes [10]. This means that TurboFan’s
intermediate representation is a graph where nodes (that represent operations)
are linked together with different types of edges representing dependencies in
data-flow and control-flow.

In Figure 2.1, we can see the the interpreter pipeline Ignition and the optimizing com-
piler, Turbofan. Furthermore, we can observe the compilation process of WebAssembly.
In V8, Liftoff is the baseline compiler that compiles WebAssembly source code into
unomptimized machine code very fast. In the next steps, TurboFan generates highly
optimized machine code that runs closer to near-native speeds. [13, 14, 21]

2.2 Pointer compression

The generic wrapper will have to deal with compressed and decompressed values. Let’s
explain the idea behind this technique.

In 2014, Chrome switched from being a 32-bit process to a 64-bit process achieving
better security and stability. However, this improvement comes at a cost of memory

CHAPTER 2. V8 13

Figure 2.1: V8’s JavaScript and WebAssembly compilation pipeline [14]

consumption. Each pointer occupies eight bytes instead of four. With pointer com-
pression in V8, a memory usage of a 32-bit application with performance of a 64-bit
one was achieved. The main idea of pointer compression is to store 32-bit offsets from
some base address instead of storing a whole 64-bit value. [21]

In V8, JavaScript values are represented as objects and allocated on the V8 heap,
allowing us to represent them as pointers to the objects. Pointer tagging technique is
used to store additional information in V8 pointers. This allows us to create two types
of values based on a tag bit: real pointers and values that represent integers. [21]

As V8 allocates objects in the heap only at word-aligned addresses, the 2 (or 3,
depending on the machine word size) least significant bits can be used for tagging.
V8 uses the least significant bit to distinguish small integers, called Smis, from heap
object pointers:

• if the bit equals to 1 then it is a pointer,

• if the bit equals to 0 then it is a Smi.

Furthermore, for pointers the second least significant bit is used to distinguish strong
references from weak ones.
Note: this means that on 32-bit architectures a Smi can only carry a 31-bit payload
and a pointer can use 30 bits for addresses.
Having 4 GB addressable space (with 4 byte granularity due to world-alignment) may
not sound too good, but V8 in Google Chrome already has a 2 GB or 4 GB limit on
the size of the V8 heap (even on 64-bit architectures). [21]

In our wrapper function, we will be working with compressed and decompressed
values. For this, we will always have to use the proper instructions, and bear in mind
which parts of the register we are using and are rewritten after the instruction (e.g.
lower 32-bits or full 64-bits).

CHAPTER 2. V8 14

2.3 Compiling specific wrappers

As already mentioned, to transition from JavaScript to WebAssembly, we need conver-
sion functions – wrapper functions (wrappers for short) – that ensure proper conversions
between the value types. That is, after instantiating the WebAssembly module and
calling an exported WebAssembly function from JavaScript, we have to use a specific
wrapper based on the function signature.

Before the generic wrapper, the function that was responsible for creating the
JavaScript to WebAssembly wrappers was BuildJSToWasmWrapper. It is a method
in the WasmWrapperGraphBuilder class which is used to build wrapper functions re-
lated to WebAssembly. Note that we have to compile a wrapper once per signature
(and not once per exported function). We will use this function as a reference for the
logic to transition from JavaScript to WebAssembly in our generic wrapper. TurboFan,
the optimizing compiler, is used to generate the wrapper functions. As the wrappers
are created by the optimizing compiler, the compilation time takes longer. Hence, be-
ing able to compile only one generic wrapper function could significantly reduce the
startup time.

Let’s briefly explain the idea behind the BuildJSToWasmWrapper method1.
The sig_ variable stands for the function signature that contains the number and types
of parameters and return values. Note that support for WebAssembly functions with
multi-returns was added recently. However, we will not support these types of functions
in our wrapper (we plan to implement it in the future).
As TurboFan’s intermediate representation is a graph, the BuildJSToWasmWrapper
method will create linked nodes. First, we start by creating the starting node of the
control-flow and other relevant nodes for TurboFan (js_closure, js_context):

1 void BuildJSToWasmWrapper(bool is_import) {
2 const int wasm_count = static_cast<int>(sig_->parameter_count());
3 const int rets_count = static_cast<int>(sig_->return_count());
4
5 // Build the start and the JS parameter nodes.
6 SetEffectControl(Start(wasm_count + 5));
7
8 // Create the js_closure and js_context parameters.
9 Node* js_closure =

10 graph()->NewNode(mcgraph()->common()->Parameter(
11 Linkage::kJSCallClosureParamIndex, "%closure"),
12 graph()->start());
13 Node* js_context = graph()->NewNode(
14 mcgraph()->common()->Parameter(
15 Linkage::GetJSCallContextParamIndex(wasm_count + 1), "%context"),
16 graph()->start());

1https://source.chromium.org/chromium/_/chromium/v8/v8.git/+/

462378addab907ab7452d38baccb27fe2ef7289a:src/compiler/wasm-compiler.cc;l=

6002;drc=4f50c554bae694d56b34238f95b52f4315649dd3;bpv=1;bpt=0

https://source.chromium.org/chromium/_/chromium/v8/v8.git/+/462378addab907ab7452d38baccb27fe2ef7289a:src/compiler/wasm-compiler.cc;l=6002;drc=4f50c554bae694d56b34238f95b52f4315649dd3;bpv=1;bpt=0
https://source.chromium.org/chromium/_/chromium/v8/v8.git/+/462378addab907ab7452d38baccb27fe2ef7289a:src/compiler/wasm-compiler.cc;l=6002;drc=4f50c554bae694d56b34238f95b52f4315649dd3;bpv=1;bpt=0
https://source.chromium.org/chromium/_/chromium/v8/v8.git/+/462378addab907ab7452d38baccb27fe2ef7289a:src/compiler/wasm-compiler.cc;l=6002;drc=4f50c554bae694d56b34238f95b52f4315649dd3;bpv=1;bpt=0

CHAPTER 2. V8 15

On line 22, we load into the instance_node a pointer to the WebAssembly instance.
It will be important for our generic wrapper for accessing definitions (like the memory)
of the WebAssembly module.

17 // Create the instance_node node to pass as parameter. It is loaded from
18 // an actual reference to an instance or a placeholder reference,
19 // called {WasmExportedFunction} via the {WasmExportedFunctionData}
20 // structure.
21 Node* function_data = BuildLoadFunctionDataFromExportedFunction(js_closure);
22 instance_node_.set(
23 BuildLoadInstanceFromExportedFunctionData(function_data));

After checking if the signature is valid on line 24, we convert all the JavaScript
parameters into compatible types in WebAssembly:

24 if (!wasm::IsJSCompatibleSignature(sig_, enabled_features_)) {
25 // Throw a TypeError. Use the js_context of the calling javascript
26 // function (passed as a parameter), such that the generated code is
27 // js_context independent.
28 BuildCallToRuntimeWithContext(Runtime::kWasmThrowTypeError, js_context,
29 nullptr, 0);
30 TerminateThrow(effect(), control());
31 return;
32 }
33
34 const int args_count = wasm_count + 1; // +1 for wasm_code.
35 base::SmallVector<Node*, 16> args(args_count);
36 base::SmallVector<Node*, 1> rets(rets_count);
37
38 // Convert JS parameters to wasm numbers.
39 for (int i = 0; i < wasm_count; ++i) {
40 Node* param = Param(i + 1);
41 Node* wasm_param = FromJS(param, js_context, sig_->GetParam(i));
42 args[i + 1] = wasm_param;
43 }

Next, we prepare for calling the WebAssembly function by setting a flag (ThreadIn-
Wasm flag) on line 45 (later unsetting on line 70). We may call an exported function
that was imported and it is handled separately (on lines 47-53), but we will ignore it
and not use our generic wrapper for this special case (we plan to implement it in the
future).
Otherwise, on lines 54-67, we create nodes for calling the WebAssembly function:

44 // Set the ThreadInWasm flag before we do the actual call.
45 BuildModifyThreadInWasmFlag(true);
46
47 if (is_import) {
48 // Call to an imported function.
49 // Load function index from {WasmExportedFunctionData}.
50 Node* function_index =
51 BuildLoadFunctionIndexFromExportedFunctionData(function_data);
52 BuildImportCall(sig_, VectorOf(args), VectorOf(rets),
53 wasm::kNoCodePosition, function_index, kCallContinues);
54 } else {
55 // Call to a wasm function defined in this module.
56 // The call target is the jump table slot for that function.
57 Node* jump_table_start =
58 LOAD_INSTANCE_FIELD(JumpTableStart, MachineType::Pointer());
59 Node* jump_table_offset =
60 BuildLoadJumpTableOffsetFromExportedFunctionData(function_data);

CHAPTER 2. V8 16

61 Node* jump_table_slot = graph()->NewNode(
62 mcgraph()->machine()->IntAdd(), jump_table_start, jump_table_offset);
63 args[0] = jump_table_slot;
64
65 BuildWasmCall(sig_, VectorOf(args), VectorOf(rets), wasm::kNoCodePosition,
66 nullptr, kNoRetpoline);
67 }
68
69 // Clear the ThreadInWasm flag.
70 BuildModifyThreadInWasmFlag(false);

Finally, we handle the conversion of the return values back to JavaScript values:

71 Node* jsval;
72 if (sig_->return_count() == 0) {
73 jsval = BuildLoadUndefinedValueFromInstance();
74 } else if (sig_->return_count() == 1) {
75 jsval = ToJS(rets[0], sig_->GetReturn());
76 } else {
77 int32_t return_count = static_cast<int32_t>(sig_->return_count());
78 Node* size =
79 graph()->NewNode(mcgraph()->common()->NumberConstant(return_count));
80
81 jsval = BuildCallAllocateJSArray(size, js_context);
82
83 Node* fixed_array = BuildLoadArrayBackingStorage(jsval);
84
85 for (int i = 0; i < return_count; ++i) {
86 Node* value = ToJS(rets[i], sig_->GetReturn(i));
87 STORE_FIXED_ARRAY_SLOT_ANY(fixed_array, i, value);
88 }
89 }
90 Return(jsval);
91 if (ContainsInt64(sig_)) LowerInt64(kCalledFromJS);
92 }

Chapter 3

Design and implementation of the
generic wrapper

Compiling specific wrappers takes some time and resources at startup that we would
like to save by creating a generic wrapper. In this chapter, we will describe the design
and implementation workflow of the generic wrapper and the challenges we faced.

In Section 2.3, we described the logic to create specific wrappers with the Build-
JSToWasmWrapper method. Another relevant method is the Generate_CEntry1

that implements a JavaScript to C wrapper function as a built-in function written in V8
macro assembly. Both methods show us different ways to generate machine code in V8.
As we needed the flexibility offered by the macro assembler, the generic wrapper was
written in V8 macro assembly as a built-in function (similarly to theGenerate_CEntry)
for architecture x64. (Note that we plan to implement the generic wrapper for other
architectures too in the future.) We began with a wrapper that supports only the
simplest signature, and continued by gradually adding support for other signatures.

3.1 Main structure of the generic wrapper

Our first step was to introduce a wrapper that could handle functions with the simplest
signature – no parameters and no return values.

First, we created a V8 flag that enables our generic wrapper, and set up the compi-
lation to use the generic wrapper only for WebAssembly functions with no parameters
and no return values if our new flag is set to true. To test our wrapper, we wrote a
test in JavaScript that creates a WebAssembly module, imports a simple JavaScript
function (import_func) that only changes the value of a global variable, and after in-

1https://source.chromium.org/chromium/_/chromium/v8/v8.git/+/

1a1aa77644c24808d3356293ac0602cd23506b57:src/builtins/x64/builtins-

x64.cc;l=2708;drc=26824a285cc1536e19d5738bff1c4cbfa6bc69ab;bpv=1;bpt=0

17

https://source.chromium.org/chromium/_/chromium/v8/v8.git/+/1a1aa77644c24808d3356293ac0602cd23506b57:src/builtins/x64/builtins-x64.cc;l=2708;drc=26824a285cc1536e19d5738bff1c4cbfa6bc69ab;bpv=1;bpt=0
https://source.chromium.org/chromium/_/chromium/v8/v8.git/+/1a1aa77644c24808d3356293ac0602cd23506b57:src/builtins/x64/builtins-x64.cc;l=2708;drc=26824a285cc1536e19d5738bff1c4cbfa6bc69ab;bpv=1;bpt=0
https://source.chromium.org/chromium/_/chromium/v8/v8.git/+/1a1aa77644c24808d3356293ac0602cd23506b57:src/builtins/x64/builtins-x64.cc;l=2708;drc=26824a285cc1536e19d5738bff1c4cbfa6bc69ab;bpv=1;bpt=0

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE GENERIC WRAPPER 18

stantiating the WebAssembly module, it calls the import_func and checks if the value
stored in the global variable is correct. The test can be seen in Listing 3.1.

1 (function testGenericWrapper() {
2 print(arguments.callee.name);
3 let builder = new WasmModuleBuilder();
4 let sig_index = builder.addType(kSig_v_v);
5 let func_index = builder.addImport("mod", "func", sig_index);
6 builder.addFunction("main", sig_index)
7 .addBody([
8 kExprCallFunction, func_index
9])

10 .exportFunc();
11
12 let x = 12;
13 function import_func() {
14 x = 20;
15 }
16
17 builder.instantiate({ mod: { func: import_func } }).exports.main();
18 assertEquals(x, 20);
19 })();

Listing 3.1: Our first function to test the generic wrapper functionality for
WebAssembly functions with no parameters and no return values1.

To make our new test pass, we started implementing the generic wrapper in V8
macro assembly for the x64 architecture based on the BuildJSToWasmWrapper
method from Section 2.3. In our generic wrapper, the main task was to set up the
stack for the WebAssembly function which is a part of the run-time memory.

Generally, when a procedure is called, a code sequence known as the calling sequence
is responsible for transferring the control to the procedure. To ensure proper transfer
and state restoration of the machine after the call, we have to save records on the stack.
We create a stack frame (the frame pointer or base pointer points to the start of the
stack frame) and save all the necessary values like the return address, frame pointer,
parameters, local data, etc. [6]

3.1.1 Register types

A register is the fastest memory type to hold a value. Usually, we only have a limited
number of registers, so all other values should reside in memory. Instructions where the
registers are the operands are always faster and shorter than those with operands in
memory. Therefore, for high performance, it is very important to utilize the registers
efficiently. [6]

When assigning values to registers or doing instructions with register operands, we
have to pay attention to several things, e.g.:

• We always have to use registers that support the instruction we want to use.
1https://chromium-review.googlesource.com/c/v8/v8/+/2307240/17/test/

mjsunit/wasm/generic-wrapper.js

https://chromium-review.googlesource.com/c/v8/v8/+/2307240/17/test/mjsunit/wasm/generic-wrapper.js
https://chromium-review.googlesource.com/c/v8/v8/+/2307240/17/test/mjsunit/wasm/generic-wrapper.js

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE GENERIC WRAPPER 19

• There are special purpose registers that are reserved and should not be used.

• Use the calling conventions (how arguments are passed from a calling procedure
to the callee, and return values passed back to the caller).

• Be aware of what part of the register we are using (e.g. lower 16-bits, lower
32-bits, full 64-bits, . . .)

Based on the V8 source code [1], for platform x64 the following facts and statements
apply1:

• The general purpose registers are: rax, rbx, rcx, rdx, rsp, rbp, rsi, rdi, r8, r9,
r10, r11, r12, r13, r14, r15, where rsp, rbp, r10, r13 are not allocatable.

• The non-allocatable general purpose registers should contain:

– rsp: contains the stack pointer that points to the value that is on the top
of the stack,

– rbp: contains the base (or frame) pointer that points to the start of the
stack frame,

– r10 : scratch register that is used by the macro assembler,

– r13 : root register that stores the isolate_root which is a pointer to the
Isolate. The Isolate is the V8 instance containing the global memory. (We
can think about it as a V8 instance containing the global state for a browser
tab.)

• The allocatable double registers are: xmm0, . . . , xmm14. They should be used
for floating-point values and instructions with floating-point operands.

• For the calling conventions:

– rax, rdx, rcx, rbx, r9 : contain the first 5 integer (i32 or i64) parameters,
respectively,

– xmm1, xmm2, xmm3, xmm4, xmm5, xmm6 : contain the first 6 floating-
point (f32 or f64) parameters, respectively,

– rax and xmm0 : contain the first integer and floating-point return value,
respectively.

1https://source.chromium.org/chromium/_/chromium/v8/v8.git/+/

554b7ee535b3eca3f041dc45d00de5cbd490729c:src/codegen/x64/register-

x64.h;bpv=1;bpt=0;drc=ab5470212eb90c9aa8b3d2541bf51f8f2b4bc992 and
https://source.chromium.org/chromium/_/chromium/v8/v8.git/+/

554b7ee535b3eca3f041dc45d00de5cbd490729c:src/wasm/wasm-linkage.h;l=31;

drc=e7cb911a93f372a6dbbeacab8f0a615c0c58a9c4;bpv=1;bpt=0

https://source.chromium.org/chromium/_/chromium/v8/v8.git/+/554b7ee535b3eca3f041dc45d00de5cbd490729c:src/codegen/x64/register-x64.h;bpv=1;bpt=0;drc=ab5470212eb90c9aa8b3d2541bf51f8f2b4bc992
https://source.chromium.org/chromium/_/chromium/v8/v8.git/+/554b7ee535b3eca3f041dc45d00de5cbd490729c:src/codegen/x64/register-x64.h;bpv=1;bpt=0;drc=ab5470212eb90c9aa8b3d2541bf51f8f2b4bc992
https://source.chromium.org/chromium/_/chromium/v8/v8.git/+/554b7ee535b3eca3f041dc45d00de5cbd490729c:src/codegen/x64/register-x64.h;bpv=1;bpt=0;drc=ab5470212eb90c9aa8b3d2541bf51f8f2b4bc992
https://source.chromium.org/chromium/_/chromium/v8/v8.git/+/554b7ee535b3eca3f041dc45d00de5cbd490729c:src/wasm/wasm-linkage.h;l=31;drc=e7cb911a93f372a6dbbeacab8f0a615c0c58a9c4;bpv=1;bpt=0
https://source.chromium.org/chromium/_/chromium/v8/v8.git/+/554b7ee535b3eca3f041dc45d00de5cbd490729c:src/wasm/wasm-linkage.h;l=31;drc=e7cb911a93f372a6dbbeacab8f0a615c0c58a9c4;bpv=1;bpt=0
https://source.chromium.org/chromium/_/chromium/v8/v8.git/+/554b7ee535b3eca3f041dc45d00de5cbd490729c:src/wasm/wasm-linkage.h;l=31;drc=e7cb911a93f372a6dbbeacab8f0a615c0c58a9c4;bpv=1;bpt=0

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE GENERIC WRAPPER 20

3.1.2 The structure and the stack layout

The first version of our wrapper did not deal with parameters nor return values. Our
task was to correctly set up the stack, call the proper function and restore the stack
afterwards. Let’s walk through the code of our wrapper1 and explain each step.

When the generic wrapper is called, the return address is automatically saved on
the stack. The first thing we had to do was to save the address of the start of the
frame in the proper register, rbp. However, rbp contains the start of the frame of the
caller procedure and we did not want to lose it. Therefore, we pushed the value in rbp
onto the stack before setting it to the proper value. We also pushed a specific constant
value onto the stack (JS_TO_WASM), the frame marker, that indicates the type of
the frame. Saving and setting the value in rbp, and saving the frame marker on the
stack was done by the EnterFrame macro instruction on line 3:

1 void Builtins::Generate_GenericJSToWasmWrapper(MacroAssembler* masm) {
2 // Set up the stackframe.
3 __ EnterFrame(StackFrame::JS_TO_WASM);

The next step was to load into registers a pointer to theWasmExportedFunctionData
object (function_data) that contains metadata to the exported WebAssembly function,
and a pointer to the WebAssembly instance (wasm_instance).
We expected that register rdi had contained the closure, an address to a V8 heap object.
Based on the address of the closure and constant offsets, we loaded the function_data
on lines 6-16, and the (wasm_instance) on lines 19-23. (See below.)
Note: when assigning a register to a Register type (like assigning rdi to Register closure
on line 4), we create an alias for the register for better readability. Similarly, no_reg
deletes this alias improving readability.

4 Register closure = rdi;
5 Register shared_function_info = rbx;
6 __ LoadAnyTaggedField(
7 shared_function_info,
8 MemOperand(
9 closure,

10 wasm::ObjectAccess::SharedFunctionInfoOffsetInTaggedJSFunction()));
11
12 Register function_data = shared_function_info;
13 __ LoadAnyTaggedField(
14 function_data,
15 MemOperand(shared_function_info,
16 SharedFunctionInfo::kFunctionDataOffset - kHeapObjectTag));
17 shared_function_info = no_reg;
18
19 Register wasm_instance = rsi;
20 __ LoadAnyTaggedField(
21 wasm_instance,
22 MemOperand(function_data,
23 WasmExportedFunctionData::kInstanceOffset - kHeapObjectTag));

1https://chromium-review.googlesource.com/c/v8/v8/+/2307240/17/src/

builtins/x64/builtins-x64.cc

https://chromium-review.googlesource.com/c/v8/v8/+/2307240/17/src/builtins/x64/builtins-x64.cc
https://chromium-review.googlesource.com/c/v8/v8/+/2307240/17/src/builtins/x64/builtins-x64.cc

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE GENERIC WRAPPER 21

Based on the wasm_instance and constant offsets, we had to load the address to
the thread_in_wasm_flag like in the BuildJSToWasmWrapper method before calling
the proper WebAssembly function – see on lines 24-34. We set the flag to true on line
34 by writing value 1 on the address that is stored in register thread_in_wasm_flag.

24 int isolate_root_offset =
25 wasm::ObjectAccess::ToTagged(WasmInstanceObject::kIsolateRootOffset);
26
27 // Set thread_in_wasm_flag.
28 Register isolate_root = rdx;
29 __ movq(isolate_root, MemOperand(wasm_instance, isolate_root_offset));
30 Register thread_in_wasm_flag_addr = isolate_root;
31 __ movq(
32 thread_in_wasm_flag_addr,
33 MemOperand(isolate_root, Isolate::thread_in_wasm_flag_address_offset()));
34 __ movl(MemOperand(thread_in_wasm_flag_addr, 0), Immediate(1));
35 isolate_root = no_reg;

The next step was to call the proper function. We got its address by several loads
and adding constant offsets to the wasm_instance or the function_data.
We had to do a conversion on lines 52-53 from Smi (small integer) to a 64-bit integer
(due to pointer compression).

36 Register jump_table_start = thread_in_wasm_flag_addr;
37 __ movq(jump_table_start,
38 MemOperand(wasm_instance,
39 wasm::ObjectAccess::ToTagged(
40 WasmInstanceObject::kJumpTableStartOffset)));
41 thread_in_wasm_flag_addr = no_reg;
42
43 Register jump_table_offset = function_data;
44 __ DecompressTaggedSigned(
45 jump_table_offset,
46 MemOperand(
47 function_data,
48 WasmExportedFunctionData::kJumpTableOffsetOffset - kHeapObjectTag));
49 function_data = no_reg;
50
51 // Change from smi to int64.
52 __ sarl(jump_table_offset, Immediate(1));
53 __ movsxlq(jump_table_offset, jump_table_offset);
54
55 Register function_entry = jump_table_offset;
56 __ addq(function_entry, jump_table_start);
57 jump_table_offset = no_reg;
58 jump_table_start = no_reg;

On line 59, just before calling the WebAssembly function on line 62, we pushed the
pointer to the WebAssembly instance onto the stack, because we needed this value after
the WebAssembly function had finished. We restored it right after on line 66 so we could
load the pointer to the Isolate (isolate_root) again to unset the thread_in_wasm_flag
on line 75.

59 // Save wasm_instance on the stack.
60 __ pushq(wasm_instance);
61
62 __ call(function_entry);
63 function_entry = no_reg;

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE GENERIC WRAPPER 22

64
65 // Restore wasm_instance.
66 __ popq(wasm_instance);
67
68 // Unset thread_in_wasm_flag.
69 isolate_root = rdx;
70 __ movq(isolate_root, MemOperand(wasm_instance, isolate_root_offset));
71 thread_in_wasm_flag_addr = r8;
72 __ movq(
73 thread_in_wasm_flag_addr,
74 MemOperand(isolate_root, Isolate::thread_in_wasm_flag_address_offset()));
75 __ movl(MemOperand(thread_in_wasm_flag_addr, 0), Immediate(0));

Even though we did not have to deal with any return values in this version of our
wrapper, we had to set the register that should contain the first integer return value,
rax, to a constant that indicates undefined value:

76 Register return_reg = rax;
77 __ movq(return_reg,
78 MemOperand(isolate_root, IsolateData::root_slot_offset(
79 RootIndex::kUndefinedValue)));

Lastly, on line 81, we restored rbp to point to the start of the caller frame and
removed our wrapper’s frame marker with the macro instruction LeaveFrame, and
transferred program control to the return address (with a parameter that indicates
how many slots should be removed after the return address) on line 83:

80 // Deconstrunct the stack frame.
81 __ LeaveFrame(StackFrame::JS_TO_WASM);
82
83 __ ret(kSystemPointerSize);
84 }

In figure 3.1, we can see the stack layout during this first version of our generic
wrapper. The caller frame slots contain a pointer to the receiver (JavaScript object)
and the function arguments (as JavaScript values) that must be removed before trans-
ferring the program control to the caller function. In the first version of the wrapper,
the caller frame slots section contained just one slot, a pointer to the receiver. (This
is the reason we had to remove one slot that has a size of kSystemPointerSize on line
83.)
The next slot (in the direction of growth) is occupied by the implicitly saved return
address followed by the base pointer and the frame marker in the next two slots.
During the wrapper function, we may save several values on the stack (spill slots)
that had to be removed before the wrapper had finished. In the first version of our
wrapper (for the no parameter and no return value WebAssembly functions), we used
only one spill slot to save the address to the WebAssembly instance before calling the
WebAssembly function.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE GENERIC WRAPPER 23

Figure 3.1: General stack layout for the generic wrapper

There were several smaller challenges we had to overcome when implementing the
first version of our generic wrapper.

1. Dealing with pointer compression. As we mentioned in Section 2.2, we had
to consider how the given value is represented and which instructions to use to
access and manipulate with the values properly.

2. Saving values on the stack. We realized that after we call to another function
(line 62), the function may change the values stored in the registers that we used
before. We had to reconsider which values are needed after the call and use the
stack to save them.

3. Compile time vs runtime. We realized that some values change during run-
time (after our generic wrapper was compiled). At first, our wrapper could not
react properly to a flag that enabled trap handling and could change at runtime,
therefore, we had to change some conditions to handle runtime changes properly1.

3.2 Handling one 32-bit integer parameter

The next natural step to extend our wrapper’s functionality was adding support for
parameter handling. In this section, we will describe how we made the generic wrapper
work also for WebAssembly functions with one i32 parameter and no return value2.

1https://chromium-review.googlesource.com/c/v8/v8/+/2307240/17/src/

runtime/runtime-wasm.cc
2https://chromium-review.googlesource.com/c/v8/v8/+/2339622

https://chromium-review.googlesource.com/c/v8/v8/+/2307240/17/src/runtime/runtime-wasm.cc
https://chromium-review.googlesource.com/c/v8/v8/+/2307240/17/src/runtime/runtime-wasm.cc
https://chromium-review.googlesource.com/c/v8/v8/+/2339622

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE GENERIC WRAPPER 24

We have already showed the general stack layout in Figure 3.1 and explained that
the caller frame slots include the JavaScript receiver and JavaScript arguments. It can
be clearly seen that we can easily access the parameters relatively to the base pointer
stored in rbp. In Figure 3.2, we can see both of the possible orders of the JavaScript
arguments.

Figure 3.2: The caller frame slots consist of the JavaScript receiver and the
JavaScript arguments. The order of the arguments may be reversed depending on the
V8_REVERSE_JSARGS macro. The advantage of the reversed order is that even if
the number of provided parameters does not match the expected number of parameters,
a function can easily access them.

So, to handle the one parameter, we just moved the value from the proper slot
to the register that should contain the first parameter, rax. If the arguments are not
reversed, the proper slot is above the return address, in the direction of higher addresses
(we handled both the not reversed and reversed arguments in the later versions of the
wrapper):

// Param handling.
Register param = rax;
const int firstParamOffset = 2*kSystemPointerSize;
__ movq(param, MemOperand(rbp, firstParamOffset));

However, the value of the argument may be a Smi or a non-Smi (e.g. valueOf()
JavaScript method that returns a 32-bit integer) depending on the tag bit. If it is a
Smi, we used an instruction to convert it to a i32. Otherwise, if it is a non-Smi, we
had to call a built-in function that handles the conversion. As the more frequent case
is converting a Smi, we put the conversion of the non-Smi with the built-in function
into the deferred code part. (Note: deferred code is the part of the code that is not

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE GENERIC WRAPPER 25

part of the main flow. We can jump to the deferred part from the main flow, e.g. to
convert a value, and then jump back):

Label not_smi;
__ JumpIfNotSmi(param, ¬_smi);

// Change from smi to int32.
__ SmiUntag(param);

...

// --
// Deferred code.
// --

// Handle the conversion to int32 when the param is not a smi.
__ bind(¬_smi);

__ pushq(wasm_instance);
__ pushq(function_data);
__ pushq(signature_type);
__ LoadAnyTaggedField(

rsi,
MemOperand(wasm_instance, wasm::ObjectAccess::ToTagged(

WasmInstanceObject::kNativeContextOffset)));
// We had to prepare the parameters for the Call:
// put the value into rax, and the context to rsi.
__ Call(BUILTIN_CODE(masm->isolate(), WasmTaggedNonSmiToInt32),

RelocInfo::CODE_TARGET);

__ popq(signature_type);
__ popq(function_data);
__ popq(wasm_instance);

__ jmp(¶ms_done);

In the listing above, we can see that before calling the built-in function for the
non-Smi conversion, we had to save some values on the stack and then restore them
(pushq and popq instructions) to prevent losing them after the built-in function.

So far we showed how to prepare the JavaScript argument for the WebAssembly
function. However, there are two big challenges hiding we haven’t discussed yet:

1. interpreting the signature,

2. adding garbage collection support.

3.2.1 Interpreting and accessing the signature

Inside our generic wrapper, we had to decide if we are dealing with a WebAssembly
function with zero or with one i32 parameter.
In the listing above, we saw that besides the wasm_instance and function_data we
saved and restored a register with signature_type alias. For now the signature_type
register stored only 0 or 1 depending on the number of parameters. To access the

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE GENERIC WRAPPER 26

number of parameters, we added a field to the WasmExportedFunctionData class which
is metadata to the exported WebAssembly function1. See below on lines 5-7:

1 Handle<WasmExportedFunction> WasmExportedFunction::New(
2 Isolate* isolate, Handle<WasmInstanceObject> instance, int func_index,
3 int arity, Handle<Code> export_wrapper) {
4 ...
5 const wasm::FunctionSig* sig = instance->module()->functions[func_index].sig;
6 sig->parameters().empty() ? function_data->set_signature_type(0)
7 : function_data->set_signature_type(1);
8 ...
9 }

We had already accessed theWasmExportedFunctionData object before in our wrap-
per to load the address of the WebAssembly instance. Therefore, similarly based on
a constant offset we could load the address of the field that stores the information
about the signature (lines 2-5). Next, based on its value, we could skip the parameter
handling (lines 7-11) or load and convert the parameter2:

1 // Int signature_type gives the number of int32 params (can be only 0 or 1).
2 Register signature_type = r9;
3 __ SmiUntagField(
4 signature_type,
5 MemOperand(function_data, WasmExportedFunctionData::kSignatureTypeOffset - ←↩

kHeapObjectTag));
6
7 __ cmpl(signature_type, Immediate(0));
8
9 // In 0 param case jump through parameter handling.

10 Label params_done;
11 __ j(equal, ¶ms_done);

Obviously, the generic wrapper must be able to decide any types of signatures.
This was just a temporary solution for this version of the wrapper. We will discuss the
design options later for the generic version.

3.2.2 Adding garbage collection support

Objects on the JavaScript heap that are no longer used are marked and later deleted.
To avoid segmentation, the garbage collector (GC for short) manages the memory by
compacting it. This means that the GC may move objects in the memory, therefore,
all the references to the moved objects get updated.
Calling the WebAssembly function or built-in functions may trigger the GC and rear-
range some objects (e.g. the address of the WebAssembly instance). Therefore, saving
pointers to the objects by storing addresses on the stack before calling a function is
not enough. We will have to iterate through pointers to the JavaScript heap objects

1https://chromium-review.googlesource.com/c/v8/v8/+/2339622/6/src/wasm/

wasm-objects.cc
2https://chromium-review.googlesource.com/c/v8/v8/+/2339622/6/src/

builtins/x64/builtins-x64.cc

https://chromium-review.googlesource.com/c/v8/v8/+/2339622/6/src/wasm/wasm-objects.cc
https://chromium-review.googlesource.com/c/v8/v8/+/2339622/6/src/wasm/wasm-objects.cc
https://chromium-review.googlesource.com/c/v8/v8/+/2339622/6/src/builtins/x64/builtins-x64.cc
https://chromium-review.googlesource.com/c/v8/v8/+/2339622/6/src/builtins/x64/builtins-x64.cc

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE GENERIC WRAPPER 27

stored on the stack and update them.
In the previously mentioned version of the wrapper, we had to save the value indi-

cating the signature type and the pointer to the WebAssembly instance before calling
the WebAssembly function. When we call the built-in for conversion, besides the above
mentioned two values, we had to save a pointer to the WasmExportedFunctionData ob-
ject (function_data). From these values only the value that indicates the signature
types is not a heap object, so it must not be scanned. On the other hand, the slots
storing the pointers to the WebAssembly instance and WasmExportedFunctionData
must be scanned.

By placing these values on the top of the stack (in the direction of growth) and
iterating through them was the easiest way to scan and update these slots. In Figure
3.3, we can see the stack layout which is convenient for this GC scanning.

Figure 3.3: Stack layout of the generic wrapper when the GC can be triggered

We know that the base pointer points to the start of the frame (on the base pointer
slot) of our wrapper function, and the stack pointer points to the top slot on the stack.
Therefore, based on the base and stack pointer we could easily select the values we had
to scan. We called the VisitRootPointers function (line 27) to scan the right half-open
interval from the top stack slot (spill_slot_base) until the frame (base) pointer minus
the size of 2 slots (spill_slot_limit)1:

1https://chromium-review.googlesource.com/c/v8/v8/+/2351673/7/src/

execution/frames.cc

https://chromium-review.googlesource.com/c/v8/v8/+/2351673/7/src/execution/frames.cc
https://chromium-review.googlesource.com/c/v8/v8/+/2351673/7/src/execution/frames.cc

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE GENERIC WRAPPER 28

1 void JsToWasmFrame::Iterate(RootVisitor* v) const {
2 Code code = GetContainingCode(isolate(), pc());
3 // GenericJSToWasmWrapper stack layout
4 // ------+-----------------+----------------------
5 // | return addr |
6 // rbp |- - - - - - - - -| <-fp() -------------|
7 // | base pointer | |
8 // rbp-p |- - - - - - - - -| |
9 // | frame marker | | no GC scan

10 // rbp-2p | - - - - - - - - | <- spill_slot_limit |
11 // | signature_type | |
12 // rbp-3p |- - - - - - - - -| -------------------|
13 // | | |
14 // | spill slots | | GC scan
15 // | |<- spill_slot_base |
16 // |- - - - - - - - -| -------------------|
17 if (code.is_null() || !code.is_builtin() ||
18 code.builtin_index() != Builtins::kGenericJSToWasmWrapper) {
19 // If it's not the GenericJSToWasmWrapper, then it's the TurboFan compiled
20 // specific wrapper. So we have to call IterateCompiledFrame.
21 IterateCompiledFrame(v);
22 return;
23 }
24 FullObjectSlot spill_slot_base(&Memory<Address>(sp()));
25 FullObjectSlot spill_slot_limit(
26 &Memory<Address>(fp() - 2 * kSystemPointerSize));
27 v->VisitRootPointers(Root::kTop, nullptr, spill_slot_base, spill_slot_limit);
28 }

3.3 Design options for the signature interpretation in

the generic wrapper

In our generic wrapper, we have to access the signature to properly handle the We-
bAssembly function call. In this section, we will describe the signature interpretation
for our wrapper and the other options we considered.

The function signature is represented by a C++ class. Its fields are: the number of
return values, the number of parameters, and a pointer to an array that contains the
types of both the return values and parameters. [1]

As we already mentioned before, we can easily access the WasmExportedFunction-
Data object in our wrapper. In the older version of our wrapper, we added an integer
field to this class that indicated if the function had zero or one integer parameter, and
we accessed it through adding a constant offset to the address of the WasmExported-
FunctionData. To support any type of signature in our wrapper, we decided to save a
pointer to the original signature as a field in the WasmExportedFunctionData. We had
to use a Foreign pointer (wrapper class around a raw pointer) instead of a raw pointer
field, because the GC interprets raw pointers as JavaScript heap objects1:

1https://chromium-review.googlesource.com/c/v8/v8/+/2369178/9/src/wasm/

wasm-objects.cc

https://chromium-review.googlesource.com/c/v8/v8/+/2369178/9/src/wasm/wasm-objects.cc
https://chromium-review.googlesource.com/c/v8/v8/+/2369178/9/src/wasm/wasm-objects.cc

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE GENERIC WRAPPER 29

1 Handle<WasmExportedFunction> WasmExportedFunction::New(
2 Isolate* isolate, Handle<WasmInstanceObject> instance, int func_index,
3 int arity, Handle<Code> export_wrapper) {
4 ...
5 const wasm::FunctionSig* sig = instance->module()->functions[func_index].sig;
6 Handle<Foreign> sig_foreign =
7 isolate->factory()->NewForeign(reinterpret_cast<Address>(sig));
8 ...
9 function_data->set_signature(*sig_foreign);

10 ...
11 }

We also considered creating our own array containing all the information from the
signature class, but then we would have to think about its memory management.

Other alternatives we considered to access the signature:

• Accessing the signature similarly to the sig()1 method:
We could have accessed the signature in our wrapper similarly to the following
method based on the WebAssembly instance:

const wasm::FunctionSig* WasmExportedFunction::sig() {
return instance().module()->functions[function_index()].sig;

}

The disadvantage of this approach is that we need many indirections to load the
signature based on the WebAssembly instance. Furthermore, functions is a C++
vector with dynamically changing size, so accessing the signature would have
been more complicated.

• Change the current implementation of the signature globally:
Unfortunately, this way we would have to do many changes in the code-base, so
it seemed easier to go with the chosen approach.

3.4 Adding support for arbitrary number of 32-bit

integer parameters

Adding support for arbitrary number of i32 parameters was the next natural step to
extend our wrapper. We explained what the caller frame slots are on the stack, and
that the WebAssembly function expects the first 5 parameters to be in the proper
registers (we will call these registers as parameter registers). If there are more than
5 parameters, then the remaining ones must be “properly” placed on the top of the
stack. By properly we mean that the WebAssembly function expects that the converted

1https://source.chromium.org/chromium/chromium/src/+/master:v8/src/

wasm/wasm-objects.cc;l=1886;drc=953aea9232834912b2f01c8497bd87cb004cbe06?

originalUrl=https:%2F%2Fcs.chromium.org%2F

https://source.chromium.org/chromium/chromium/src/+/master:v8/src/wasm/wasm-objects.cc;l=1886;drc=953aea9232834912b2f01c8497bd87cb004cbe06?originalUrl=https:%2F%2Fcs.chromium.org%2F
https://source.chromium.org/chromium/chromium/src/+/master:v8/src/wasm/wasm-objects.cc;l=1886;drc=953aea9232834912b2f01c8497bd87cb004cbe06?originalUrl=https:%2F%2Fcs.chromium.org%2F
https://source.chromium.org/chromium/chromium/src/+/master:v8/src/wasm/wasm-objects.cc;l=1886;drc=953aea9232834912b2f01c8497bd87cb004cbe06?originalUrl=https:%2F%2Fcs.chromium.org%2F

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE GENERIC WRAPPER 30

JavaScript parameters that did not fit into registers can be popped from the stack in
an increasing order.

To maximize the code readability and avoid special case handling we decided to
handle multiple i32 parameters the following way1:

1. Before starting processing the parameters for the WebAssembly function call, we
reserve 5 stack slots on the stack by decrementing the stack pointer.
With this approach, we can always pop the values from the top 5 stack slots into
the parameter registers before the WebAssembly function call.
Note that if we have more parameters, we cannot move the parameter right
after conversion into the proper parameter register, as the conversion functions
that might be called for the other parameters can change the values inside these
allocatable parameter registers.

2. We start looping through the JavaScript arguments from the caller frame slots
and convert and move them onto the stack. As the WebAssembly function expects
the parameters that did not fit into registers to be placed on the stack in a way
it can pop them in an increasing order, we reserve on the stack the number of
parameter slots, and place all the parameters after conversion into this area in
proper order.
Note that the order of processing the parameters is important. The reason is that
the conversion of the JavaScript values to WebAssembly values is observable
in JavaScript, e.g. the conversion may change the global state of JavaScript.
Therefore, we have to convert the JavaScript arguments in an increasing order
(e.g. starting with the first parameter).

3. Now all the parameters are converted and can be popped from the stack in an
increasing order. Therefore, right before calling the WebAssembly function, we
pop the top 5 values into the parameter registers.
Note that we delete the spill slots after calling the WebAssembly function by
incrementing the stack pointer.

The above mentioned parameter handling algorithm is illustrated in Figure 3.4. We
can see the 5 reserved stack slots (colored with violet) under (in the direction of growth)
the last spill slot, and the properly placed converted parameters that are popped to
the parameter registers later.

1https://chromium-review.googlesource.com/c/v8/v8/+/2381459

https://chromium-review.googlesource.com/c/v8/v8/+/2381459

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE GENERIC WRAPPER 31

Figure 3.4: Preparing the stack before calling the WebAssembly function with 4 param-
eters

In the former version of our wrapper, when it could handle WebAssembly functions
with up to one 32-bit integer parameter, we could save values on the top of the stack.
However, to support functions with arbitrary number of parameters, the parameters
that did not fit into registers are expected to be on the top of the stack before calling
the WebAssembly function, which means that we cannot store other values on the top.
Therefore, we had to change the GC support, as before we stored the pointers to the
JavaScript heap objects on the top of the stack.
We decided to save a value that indicates how many values should be scanned after
garbage collection. We could access this value and the values that have to be scanned
relative to the frame pointer and iterate and update them.

We also decided to save onto the stack the information from the signature: number
of parameters, number of return values, and the pointer to the array of parameter and
return value types. It seemed easier to access them from the stack instead of loading
them all over again.

In Figure 3.5, we can see the indicating value for the number of slots that need to
be scanned after GC (GC scan slot count), and three slots containing the information
from the signature (parameter count, return count, ptr to the array of types).

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE GENERIC WRAPPER 32

Figure 3.5: Spill slots on the stack

3.5 Adding support for 32-bit integer return value

handling

As our next step, we decided to add support for i32 return value in the generic wrap-
per1. We already showed in Figure 3.5 that the return count stack slot contains the
number of return values.

If we have a return value, we have to convert it. After calling the WebAssembly
function, we expect the return value to be in register rax. As we already mentioned
in Section 2.2, pointer compression in V8 is set by default (but may be disabled). We
learned that V8 uses tagged values, i.e. the least significant bit is used to distinguish
Smis from heap object pointers. With compressed values, Smis can carry only a 31-
bit payload. Therefore, we had to check if the value had fitted into 31-bits. If not,
we converted it to a JavaScript type, a HeapNumber, by calling the proper built-in
function:

1 Label to_heapnumber;
2 // If pointer compression is disabled, we can convert the return value to a Smi.
3 if (SmiValuesAre32Bits()) {
4 __ SmiTag(return_reg);
5 } else {
6 Register temp = rbx;

1https://chromium-review.googlesource.com/c/v8/v8/+/2390141

https://chromium-review.googlesource.com/c/v8/v8/+/2390141

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE GENERIC WRAPPER 33

7 __ movq(temp, return_reg);
8 // Double the return value to test if it can be a Smi.
9 __ addl(temp, return_reg);

10 // If there was overflow, convert the return value to a HeapNumber.
11 __ j(overflow, &to_heapnumber);
12 // If there was no overflow, we can convert to Smi.
13 __ SmiTag(return_reg);
14 }
15 __ jmp(&return_done);
16
17 // Handle the conversion of the return value to HeapNumber when it cannot be a
18 // Smi.
19 __ bind(&to_heapnumber);
20 // We have to make sure that the kGCScanSlotCount is set correctly. For this
21 // builtin it's the same as for the Wasm call = 0, so we don't have to reset
22 // it.
23 __ Call(BUILTIN_CODE(masm->isolate(), WasmInt32ToHeapNumber),
24 RelocInfo::CODE_TARGET);
25
26 __ jmp(&return_done);

3.6 Adding support for other parameter and return

value types

We want our wrapper to support the four standard WebAssembly types, i.e. i32, i64,
f32 and f64. Extending the wrapper to support arbitrary number of i32 and i64 pa-
rameters was quite straightforward. While converting parameters, we iterated through
the array that contains the types of the parameters and the return values, and called
the proper conversion function based on that type. Similarly, if the return value was
i64, we called the built-in function to convert the value into the proper JavaScript
value, a BigInt.

When dealing with floating-point values, we have to use different, floating-point
registers. To add support for f32 and f64 return value, we just had to call the proper
built-in function and use the floating-point registers. However, dealing with arbitrary
number of all the four standard type parameters is a bit more complicated. In Subsec-
tion 3.1.1, we said that the WebAssembly function expects the first 5 integer and first
6 floating-point parameters in the proper “parameter registers”. The function expects
that the remaining parameters (i.e. those that did not fit into the parameter registers)
can be popped from the stack in an increasing order.

First, we might think that we can just similarly convert and then place the param-
eters onto the top of the stack as before, and pop them to proper parameter registers
based on the array that contains the value types. However, now that we have two types
of parameter registers, popping or moving the values into them can create gaps on the
stack and the remaining parameters will not be contiguously on the top of the stack
(i.e. the WebAssembly function cannot pop them properly). In the next section, we
describe the modified algorithm to avoid this problem.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE GENERIC WRAPPER 34

The problem with the gaps on the stack after popping the converted parameters
into the parameter registers is illustrated in Figure 3.6 (in this example there are only
3 general purpose and 3 floating-point parameter registers).

Figure 3.6: Popping the converted integer and floating-point parameters from the stack
similarly as in the former version of the generic wrapper

3.7 Handling arbitrary number of integer and floating-

point parameters

Our main goal was to efficiently prepare the parameters for the WebAssembly function
in our wrapper. However, we wanted to avoid special case handling to make the
assembly code easy to read. We decided to use the following algorithm1:

1. We create 2 sections on the stack for the converted parameters based on their
types: Integers and Floats. This approach will help us when filling the parameter
registers, because the types (integers: i32 and i64, floats: f32 and f64) will not
be mixed up.

We iterate through the caller frame slots to access the JavaScript arguments as
before, however, this time after converting a value, we place it to the proper
section. Both of the sections will have the size of the number of parameters.

2. After all the parameters are in their proper section, we move the top parameters
from both sections into the proper parameter registers. We save two pointers
into registers that point to the first parameters of the sections that have not been

1https://chromium-review.googlesource.com/c/v8/v8/+/2429266

https://chromium-review.googlesource.com/c/v8/v8/+/2429266

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE GENERIC WRAPPER 35

moved to the parameter register yet. (Note that this time we will be moving the
parameters and not popping.)

3. Next, we have to move the remaining parameters that did not fit into the param-
eter registers onto the top of the stack. We start iterating through the array that
contains the types of the parameters from the back. Based on the pointers point-
ing to the remaining parameters of both of the sections, we place the remaining
parameters onto the top of the stack. Going through the array containing the
types in reversed order ensures that the parameters are placed in the correct
order for the WebAssembly function.

Figure 3.7 illustrates the algorithm if there are only 3 general purpose and 3 floating-
point parameter registers.

Figure 3.7: Handling arbitrary number of integer and floating-point parameters in the
generic wrapper

Chapter 4

Results

We created a generic wrapper that can handle standard exported WebAssembly func-
tions, i.e. exported functions with arbitrary number of standard WebAssembly type
parameters, and zero or one standard WebAssembly type return value. In this chap-
ter, we will show the results of measurements when using the generic wrapper function
instead of the specific ones.

To use the generic wrapper, we have to set the flag that enables it. However,
we would like to use the generic wrapper by default. A follow-up work enabled our
wrapper by default, and also defined a strategy to compile specific wrappers after
frequently calling WebAssembly functions with the same signature (we will refer to
this follow-up work as a tier-up strategy). After the generic wrapper was enabled, we
saw improvements in startup time that we will show below.

4.1 Compilation time and runtime

To measure the improvement in compilation time, we ran the Angry Bots game bench-
mark which consists of a 10 MB large WebAssembly module. With the generic wrapper,
we avoided the compilation of 159 specific wrapper.
In Figure 4.1, we can see that the compilation decreased by 14% on average based on
the Angry Bots benchmark.

36

CHAPTER 4. RESULTS 37

Figure 4.1: Measuring compilation time with the Angry Bots benchmark. The bench-
mark was measured on 2, 4 and 48 cores.
The average compilation time without using the generic wrapper on 2 cores is 614.12
ms, on 4 cores 238,66 ms and on 48 cores 81.93 ms. While using the generic wrapper,
the compilation time decreased on 2 cores to 538.55 ms, on 4 cores to 207.80 ms and
on 48 cores to 67.14 ms.

As the generic wrapper is more complex than the specific wrappers, we wanted to
measure also the runtime cost of using the generic wrapper instead of the specific ones.

We used an internal function that creates and uses exported and imported wrappers
for functions with 1, 2, 4 and 10 parameters of the four standard WebAssembly types,
respectively. In Figure 4.2, we illustrated the growth in runtime due to the complexity
of the generic wrapper.

CHAPTER 4. RESULTS 38

Figure 4.2: Measuring runtime (in ms) with an internal function that creates and uses
wrappers for exported and imported functions. We measured the regression in runtime
separately for functions with 1, 2, 4 or 10 parameters.
On average, the runtime increased for the Smi parameter functions by 28.8%, for the
not Smi integer parameter functions by 18.5%, for f32 parameter functions by 27.5%,
and for the f64 parameter functions by 25.3%.

CHAPTER 4. RESULTS 39

4.2 Using the generic wrapper in production code

In the previous section, we saw that using the generic wrapper improves the compilation
time, however, when used frequently instead of the specialized wrappers, it worsens
runtime. After we had finished the implementation of our generic wrapper, a tier-up
strategy was introduced to solve this issue. After a threshold of same signature function
calls is reached, we compile the specific wrapper for the signature and use it instead of
the generic one. The follow-up work also resulted in enabling the generic wrapper by
default in Google Chrome 89.0.4339.0 (March 2021).

We observed a huge improvement in deserialization time of Google Earth. For multi-
threaded WebAssembly applications, the compiled WebAssembly code is shared across
all threads. However, each thread needs its own set of export wrappers. The generic
wrapper eliminated the need to re-compile the specific export wrappers, therefore, we
reduced the deserialization time of Google Earth by 84%. This is illustrated in Figure
4.3.

Figure 4.3: Performance measurement of Google Earth’s deserialization time. We
can see significant improvement after using the generic wrapper. We reduced the
deserialization time from 1074.88 ms to 168.101 ms. The whole graph is available on
https://chromeperf.appspot.com/report?sid=624f9526e10146ecb3e4bcdf184be0ab5bc8a7
df0561a8ad59a39777eae0de8d&rev=831654.

https://chromeperf.appspot.com/report?sid=624f9526e10146ecb3e4bcdf184be0ab5bc8a7df0561a8ad59a39777eae0de8d&rev=831654
https://chromeperf.appspot.com/report?sid=624f9526e10146ecb3e4bcdf184be0ab5bc8a7df0561a8ad59a39777eae0de8d&rev=831654

Conclusion

In this work, we successfully designed and implemented a generic wrapper function for
exported WebAssembly functions with arbitrary number of standard type parameters,
and zero or one standard type return value.

First, we started with a brief explanation of the structure of web browsers to lo-
cate the JavaScript and WebAssembly engine. We explained the main concepts of
WebAssembly, the compilation and interpretation phase in V8 and also described how
the specialized wrapper functions were created in this engine.
The core part of this thesis explains our design approaches and the gradual process of
extending our wrapper to support more and more WebAssembly functions. We had
to overcome several challenges. We worked with a huge code-base and we had to get
familiar with the V8 macro assembly language to write the body of our wrapper. After
considering several options, we dealt with accessing the signature, added garbage col-
lection support, and learned how to set up the stack for the WebAssembly functions.
Some of the trickiest parts of the work were using the correct register operations to
rewrite or to use the proper parts of memory locations, deal with pointer compression,
reconsider what happens at compile time and runtime, and debugging our code. While
implementing the algorithms, we always tried to create efficient code that can be read
easily.
After we had finished the implementation, we made measurements that proved that
our work was successful. We saw that after using the generic wrapper the compilation
time and deserialization time was reduced. Therefore, we managed to improve the
browsing experience for millions of people worldwide.

Obviously, the generic wrapper can be further extended to support even more We-
bAssembly functions, e.g. with multiple return values, imported WebAssembly func-
tions, or JavaScript reference type parameters. Furthermore, we implemented our
wrapper only for architecture x64, therefore, implementing it for all the other plat-
forms will have to be done in the future.

40

Bibliography

[1] Cromium source code from Chromium Code Search – V8 JavaScript En-
gine. https://source.chromium.org/chromium/chromium/src/+/

master:v8/. Accessed: 2021-02-07.

[2] WebAssembly. https://webassembly.org/. Accessed: 2020-11-16.

[3] Google Chrome Memory Usage – Good and Bad. https://blog.chromium.
org/2008/09/, Sep 2008. Accessed: 2020-11-16.

[4] Experimental support for WebAssembly in V8. https://v8.dev/blog/

webassembly-experimental, Mar 2016. Accessed: 2020-11-20.

[5] WebAssembly Specification. https://webassembly.github.io/spec/

core/index.html#, 2020. Accessed: 2020-11-16.

[6] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullmann. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 1986.

[7] Jesse Burstyn, Katricia Barleta, Lukas Berk, P Bennett Cole, and Tom Franzon.
Conceptual Architecture of Google Chrome. Queen’s University at Kingston, 2009.

[8] Lin Clark. A crash course in just-in-time (JIT) compilers – Mozilla Hacks – the
Web developer blog. https://hacks.mozilla.org/2017/02/a-crash-
course-in-just-in-time-jit-compilers/, February 2017. Accessed:
2021-02-06.

[9] Lin Clark. Creating and working with WebAssembly modules – Mozilla
Hacks – the Web developer blog. https://hacks.mozilla.org/2017/02/
creating-and-working-with-webassembly-modules/, February 2017.
Accessed: 2021-01-13.

[10] Cliff Click and Michael Paleczny. A simple graph-based intermediate representa-
tion. ACM Sigplan Notices, 30(3):35–49, 1995.

41

https://source.chromium.org/chromium/chromium/src/+/master:v8/
https://source.chromium.org/chromium/chromium/src/+/master:v8/
https://webassembly.org/
https://blog.chromium.org/2008/09/
https://blog.chromium.org/2008/09/
https://v8.dev/blog/webassembly-experimental
https://v8.dev/blog/webassembly-experimental
https://webassembly.github.io/spec/core/index.html#
https://webassembly.github.io/spec/core/index.html#
https://hacks.mozilla.org/2017/02/a-crash-course-in-just-in-time-jit-compilers/
https://hacks.mozilla.org/2017/02/a-crash-course-in-just-in-time-jit-compilers/
https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/
https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/

BIBLIOGRAPHY 42

[11] Nick Fitzgerald. Oxidizing Source Maps with Rust and WebAssembly – Mozilla
Hacks – the Web developer blog. https://hacks.mozilla.org/2018/01/
oxidizing-source-maps-with-rust-and-webassembly/, January
2018. Accessed: 2021-01-14.

[12] Alan Grosskurth and Michael W Godfrey. A reference architecture for web
browsers. In 21st IEEE International Conference on Software Maintenance
(ICSM’05), pages 661–664. IEEE, 2005.

[13] Franziska Hinkelmann. Franziska Hinkelmann: JavaScript engines – how do they
even? | JSConf EU. https://youtu.be/r5OWCtuKiAk, 2016.

[14] Uday Hiwarale. The anatomy of WebAssembly: Writing your first WebAssembly
module using C (C++). https://medium.com/jspoint/the-anatomy-

of-webassembly-writing-your-first-webassembly-module-

using-c-c-d9ee18f7ac9b, Dec 2020. Accessed: 2021-02-06.

[15] Shanhong Liu. Desktop internet browser market share 2015-2020.
https://www.statista.com/statistics/544400/market-share-

of-internet-browsers-desktop/, Oct 2020. Accessed: 2020-11-16.

[16] Ross McIlroy. BlinkOn 6 day 1 Talk 2: Ignition – an interpreter for V8. https:
//youtu.be/r5OWCtuKiAk, 2016.

[17] Ross McIlroy. Firing up the Ignition Interpreter. https://v8.dev/blog/

ignition-interpreter, Aug 2016. Accessed: 2021-04-30.

[18] Mozilla Contributors. MDN Web Docs: WebAssembly. https://developer.
mozilla.org/en-US/docs/WebAssembly. Accessed: 2020-11-16.

[19] Optasy. WebAssembly vs Javascript: Is WASM Faster than JS? When
Does JavaScript perform Better? https://medium.com/@OPTASY.com/

webassembly-vs-javascript-is-wasm-faster-than-js-when-

does-javascript-perform-better-db86d2ecf2cc, Dec 2018. Ac-
cessed: 2021-02-13.

[20] Surma Surma and Deepti Gandluri. WebAssembly for Web Developers (Google
I/O ’19). https://youtu.be/njt-Qzw0mVY, 2019.

[21] V8 Team. V8. https://v8.dev/. Accessed: 2020-11-16.

https://hacks.mozilla.org/2018/01/oxidizing-source-maps-with-rust-and-webassembly/
https://hacks.mozilla.org/2018/01/oxidizing-source-maps-with-rust-and-webassembly/
https://youtu.be/r5OWCtuKiAk
https://medium.com/jspoint/the-anatomy-of-webassembly-writing-your-first-webassembly-module-using-c-c-d9ee18f7ac9b
https://medium.com/jspoint/the-anatomy-of-webassembly-writing-your-first-webassembly-module-using-c-c-d9ee18f7ac9b
https://medium.com/jspoint/the-anatomy-of-webassembly-writing-your-first-webassembly-module-using-c-c-d9ee18f7ac9b
https://www.statista.com/statistics/544400/market-share-of-internet-browsers-desktop/
https://www.statista.com/statistics/544400/market-share-of-internet-browsers-desktop/
https://youtu.be/r5OWCtuKiAk
https://youtu.be/r5OWCtuKiAk
https://v8.dev/blog/ignition-interpreter
https://v8.dev/blog/ignition-interpreter
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly
https://medium.com/@OPTASY.com/webassembly-vs-javascript-is-wasm-faster-than-js-when-does-javascript-perform-better-db86d2ecf2cc
https://medium.com/@OPTASY.com/webassembly-vs-javascript-is-wasm-faster-than-js-when-does-javascript-perform-better-db86d2ecf2cc
https://medium.com/@OPTASY.com/webassembly-vs-javascript-is-wasm-faster-than-js-when-does-javascript-perform-better-db86d2ecf2cc
https://youtu.be/njt-Qzw0mVY
https://v8.dev/

Appendix

In the thesis, we extended V8, the JavaScript and WebAssembly engine that is available
at https://chromium.googlesource.com/v8/v8.git.

To clone the repository, run the following command:

git clone https://chromium.googlesource.com/v8/v8

To view the changes created by us, run the following command:

git log --author="evih"

The source code written by us is also available at https://chromium-review.
googlesource.com/q/owner:evih%2540google.com+status:merged+before:

2020-11-01. We recommend viewing the source code on this website. The website
contains a list of changelists (CLs) ordered by date. By clicking on a CL, you will see
all the files that were modified in the CL. To see the exact changes in a file, click on
the filename. In the thesis, we described the implementation of the generic wrapper
based on the submission order of the CLs.

An alternative way for viewing the source code is to view it from the attached DVD.
Please read the README file first to navigate through the files on the DVD.

43

https://chromium.googlesource.com/v8/v8.git
https://chromium-review.googlesource.com/q/owner:evih%2540google.com+status:merged+before:2020-11-01
https://chromium-review.googlesource.com/q/owner:evih%2540google.com+status:merged+before:2020-11-01
https://chromium-review.googlesource.com/q/owner:evih%2540google.com+status:merged+before:2020-11-01

	Introduction
	Background
	Web browsers
	The browser architecture
	Google Chrome

	WebAssembly
	Introduction to WebAssembly
	Design goals
	WebAssembly as part of the web platform
	Main concepts

	V8
	Main concepts
	Pointer compression
	Compiling specific wrappers

	Design and implementation of the generic wrapper
	Main structure of the generic wrapper
	Register types
	The structure and the stack layout

	Handling one 32-bit integer parameter
	Interpreting and accessing the signature
	Adding garbage collection support

	Design options for the signature interpretation in the generic wrapper
	Adding support for arbitrary number of 32-bit integer parameters
	Adding support for 32-bit integer return value handling
	Adding support for other parameter and return value types
	Handling arbitrary number of integer and floating-point parameters

	Results
	Compilation time and runtime
	Using the generic wrapper in production code

	Conclusion
	Appendix

