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Abstract
Embedded components of project Deadlock are devices responsible for authentication
of users (using e.g. RFID cards, PINs, …) and control of number of Points of Access (e.g.
doors, printers, …). There are two main types of embedded components: Reader and
Controller. These devices communicate with the Deadlock Server, forming a complete
Deadlock System. They are designed to be reliable, modular, maintainable and easy
to produce. They are well documented, fully open-source and open-hardware.

This thesis will first describe the architecture of the Project Deadlock. Then
hardware design of Reader and Controller is described. It then focuses on the imple-
mentation of firmware for the Reader component.

Next, communication interfaces and protocols used by Reader and Controller
are described, followed by the description of implementation of Controller firmware.

Finally, we explain software testing methodology used during development. We
conclude with the summary of achieved results.

Keywords: access control, embedded devices design, network protocol design
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Abstrakt
Vnorené komponenty projektu Deadlock sú zariadenia zodpovedné za autentifikáciu
používateľa (napríklad pomocou RFID kariet, PIN kódov, …) a za umožnenie vstupu
do miestností alebo ovládania ostatných zariadení. Existujú dva typy takýchto zari-
adení: Reader (čítačka) a Controller (ovládač). Tieto zariadenia, spolu s Deadlock
serverom tvoria kompletný systém Deadlock. Tieto zariadenia sú spoľahlivé, mod-
ulárne, jednoduché na údržbu a jednoduché na výrobu. Sú dobre zdokumentované a
kompletne open-source a open-hardware.

Táto práca začína opisom architektúry projektu Deadlock. Ďalej opisuje hard-
vérový dizajn Readera a Controllera. Následne opisuje implementáciu firmvéru kom-
ponentu Reader.

Potom sa venuje opisu komunikačných rozhraní a protokolov medzi Readerom
a Controllerom. Nasleduje opis implementácie firmvéru Controllera.

Záverom práca ukazuje metodológiu testovania softvéru použitú počas vývoja.
Práca je zakončená popisom dosiahnutých výsledkov.

Kľúčové slová: kontrola prístupu, dizajn vnorených zariadení, dizajn sieťových pro-
tokolov
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Introduction

Several institutions, such as schools or universities, need to be able to allow a group
of people in a specified time window to access protected rooms (such as computer lab-
oratories). This requirement is best fulfilled by an electronic Physical Access Control
System, capable of unlocking doors and logging access attempts. Many different sys-
tems that implement this functionality are available commercially, however their cost
per door is usually prohibitive, and are difficult to integrate with existing systems,
limiting their usability. Free systems, on the other hand, lack sufficient quality and
reliability.

Therefore Project Deadlock was created to bridge this gap. The goal of Project
Deadlock is to create an open-source and open-hardware physical access control system.
It is designed to be reliable, extensible, and cost-effective both to manufacture and to
maintain.

This thesis provides an introduction to Project Deadlock and its overview in
Chapter 1. This chapter describes requirements and design principles developed jointly
by Student Development Team, and references previously published works on this
project. It introduces embedded component types “Reader” and “Controller”, and
explains responsibilities of each component.

Rest of the thesis focuses on author’s contribution to the project. We describe
hardware design of embedded devices used in this project in chapter 2. Chapter 3
focuses on description of embedded firmware for the Reader component, which is re-
sponsible for authenticating the user. Next, in chapter 4 we describe how embedded
components communicate with each other on multiple layers, and the protocol stack
that is used for this purpose. Then, in chapter 5, design of firmware for the Controller
component is described. We conclude the thesis with description of methods used for
testing various software components.

1



Chapter 1

System Overview

The goal of Project Deadlock is to create a complete physical access control system.
This system was initially designed to primarily open doors, but several different types
of physical Points of Access (PoAs) may be guarded by this system. A user wishing
to get access to a guarded resource (enter a room, open a gate, get a printout from
a shared printer, …) will get authenticated by a credentials reader located near PoA
using one of supported “Authentication Methods” (usually by reading an ID of RFID
card). The system then logs the access attempt, verifies whether the user should have
access to this resource at this time, and if so, performs an action required to grant
access.

1.1 Previous work on Project Deadlock
Project Deadlock was created to provide an open-source and open-hardware alternative
to existing commercial systems. It was designed to be suitable for use on Faculty of
Mathematics, Physics and Computer Science. Requirements and design principles of
Project Deadlock were developed collaboratively by Adam Dej, Kamila Součková and
other members of ŠVT.1 In 2016, thesis “Design and implementation of an RFID
access control system” [17] was published. It describes a design and implementation of
a Server component and a communication protocol utilized by Project Deadlock.

1.2 Design principles and system requirements
Design principles and system requirements of Project Deadlock were previously de-
scribed in [17]. I will summarize them here in short:

• Trustworthiness: “[The system] must allow access when and only when it is
supposed to”

1Študentský vývojový tím, https://svt.fmph.uniba.sk/ (Stutent Development Team)

2
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– Reliability: Partial outages of the system must not adversely affect rest of
the system nor cause loss of access logs.

– Security: The system must not allow illegitimate access nor access to data
which would allow unauthorized duplication of access credentials.

• Practicality

– Extensibility: The system design must allow for iterative development and
be dynamically adaptable to required changes in the future.

– Ease of development: The system will be maintained by Project Deadlock
Community,2 consisting mostly of volunteers with limited time resources.
Entry cost for a developer should therefore be minimal.

– Ease of use: Without sacrificing generality, the system should be simple
and convenient to use.

– Ease of deployment and maintenance: Simple deployment with mini-
mal overhead.

– Availability: The system should be inexpensive to manufacture and deploy,
its components should be easily replaceable if currently used models are
discontinued.

1.3 Project Deadlock architecture
The requirement of system extensibility is best fulfilled by a modular architecture.
Therefore, the Project Deadlock consists of 3 types of components:

• Server: A software managing the whole system, keeping access rules and access
logs.

• Controller: An embedded device with IP network connectivity which controls
a single Point of Access (for example, opens a door).

• Reader: A user-facing embedded device which obtains user credentials using
some supported Authentication Method (for example, reads an ID of RFID card).
It also provides an user interface (usually LEDs and a speaker) indicating current
status of the system and of the Point of Access.

Each component type may have several different implementations. These imple-
mentations communicate via standardized physical interfaces and network protocols,
and as such, may be mixed and matched to create deployment of Project Deadlock
that can control multiple different types of Points of Access.

2Project Deadlock Community is an umbrella term for Project Deadlock contributors from various
development groups, such as ŠVT, or companies.
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Figure 1.1: Example deployment of Project Deadlock

Figure 1.1 illustrates an example deployment of Project Deadlock. Three doors
(4) are physically secured by electromagnetic locks (2). These locks are driven by Con-
trollers (1). There is one Controller per one Point of Access. Controllers are connected
using Ethernet cable, and can optionally be powered using Power over Ethernet [10]
technology. They use an IP-based network to communicate with Deadlock Servers
([17] specifies an UDP protocol that supports communication with multiple servers
with failovers and load-balancing). One or more Readers (3) can be connected to a
single Controller. They are connected by a physical interface that is specific to Project
Deadlock, but can be built from standard connectors and cables.

1.4 Current scope of the project and expected
growth

The example deployment illustrated by Figure 1.1 is feasible with current components.
Previous work [17] describes implementation of a Server, a communication protocol
that Controllers can use to communicate with the server and front-ends to the server.

In this thesis we describe implementation of a Reader capable of reading IDs of
RFID cards and of a Controller capable of controlling doors equipped with an electro-
magnetic lock, hold-open self-closing mechanism and “door-open” contact.

However, in the future we would like to add support for controlling different
types of points of access:

• Turnstiles
• Garage doors and gates
• Shared printers (user could authenticate to the printer by reading an RFID card,

and the printer will respond by printing out jobs the user previously sent to it)

Additionally, different authentication methods than reading an ID of an RFID
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card are planned:

• Reading protected sections of the card (to verify that the card was not cloned)
• Using GPG encryption keys on a smart-card to sign a challenge sent by the server.

This additionally requires a PIN entry method.
• Authentication using NFC-equipped Yubikey NEO hardware tokens.

To ensure that these features can be added later without the need for a major
project redesign, we need to define abstraction concepts. That is the reason we have
referred to guarded resources as “Points of Access” as opposed to doors. Additionally,
we use term “Authentication Methods” to refer to different ways the system may au-
thenticate the user and “UI Classes” to describe capabilities of User Interfaces present
on various Readers.

1.4.1 Authentication methods. As described above, Project Deadlock must be
designed to be ready to support different ways of authenticating the user. Ideally this
should be achievable by a simple component swap (or even better, a firmware upgrade),
without the need for a major redesign of key Project Deadlock components. Therefore
we devised a concept of “Authentication Methods”. Authentication Method refers to a
type of authentication credential and the process of obtaining it from the user.

Currently only one Authentication Method is supported. This method obtains
(4, 7 or 10 byte) ID of an ISO-14443A compliant Proximity Integrated Circuit Card3.
This authentication method has a huge security drawback – the card ID is publicly
readable4. Therefore, adding other, more secure authentication methods is planned in
the future.

1.4.2 Deadlock Component Registry and component names. As we have de-
scribed above, multiple Authentication Methods, types of Points of Access, Readers,
UI Classes and Controllers may exist within the ecosystem of Project Deadlock. Dif-
ferent implementations of Readers and Controllers can even be considered subprojects
of Project Deadlock. Since these components must work together, they must have a
way of identifying each other. They must also have a common identification for the
features they support.

This task will be fulfilled by a Deadlock Component Registry5. Deadlock Com-
ponent Registry is a single source of truth repository containing machine-parsable and
human-readable definitions of the following:

3International Student Identity Cards, used by our university, are ISO-14443A compliant and
therefore this Authentication Method can read their IDs.

4Fast long-range ISO-14443A card readers do exist. Successful card cloning just by sitting on a
bench next to a person wearing his/her badge was demonstrated in [16].

5This registry did not exist at the time of writing. It will be created in a near future.
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• Available authentication methods, including detailed description of requirements
of the particular authentication method.

• Supported types of Points of Access, including detailed description of mechanisms
required to control these Points of Access.

• Controller hardware models. Each has an ID, a codename and a list of types of
Points of Access it supports.

• Reader hardware models. Each has an ID, codename, UI Class, and a list of
Authentication Methods it supports.

• Firmwares. Each has an ID, codename, and a list of supported hardware boards.

Each Deadlock component is assigned a numerical identification. These numer-
ical identifications are optimal for machine communication, but may be difficult to
remember for developers. Therefore each hardware component and firmware imple-
mentation also has a codename after a mineral.

Currently defined entities are:

• Authentication Method 0: Reading ID of an ISO/IEC 14443 (A) - compliant
RFID cards.

• Point of Access type 0: Doors equipped with an electromagnetic lock, and op-
tionally with “door-open” sensor and self-closing hardware with “hold-open” func-
tionality.

• UI Class 0: User interface containing two green and two red LEDs, and a speaker.
This user interface is suitable for informing the user about state of Point of Access
type 0.

• Reader hardware model 0: “Fluocerite” board. A board equipped with an STM32
MCU, MFRC-522 RFID reader module. It features UI Class 0 and is capable of
Authentication Method 0. Support for other RFID authentication methods can
be added by the means of a firmware upgrade.

• Controller hardware model 1: “Neptunite” board. A board containing NanoPI-
Duo minicomputer with Allwinner H2+ processor. It can be powered using Power
over Ethernet and contains interfaces for two Readers. It can control Point of
Access type 0.

• Firmware type 0: “Chibaite”. A ChibiOS based firmware suitable for use on
low-power MCUs, featuring an extensible RFID stack. Compatible with the
“Fluocerite” board.

• Firmware type 1: “Pyroxene”. A Python-based firmware running on a minimal-
istic Linux distribution, suitable for use with Controllers. Compatible with the
“Neptunite” board.



Chapter 2

Hardware design of embedded
devices

2.1 Common hardware design elements

2.1.1 Custom boards. Section 1.2 describes several requirements that have driven
design decisions in embedded devices. Most notably the requirements of Reliability,
cost-effectivity and ease of development. There are several ways to design a hardware
for embedded device. We will analyze advantages and disadvantages of three most
common approaches:

One possible approach is physically assembling components of a development
platform. This approach is most common for one-of-a-kind prototypes and in early
development. Example of this is buying development platform similar to Arduino
and several extension “shields” that can extend its capabilities. It is very easy to
develop and therefore a perfect way to create a prototype. However, no hardware
cost optimization is possible, and the result is a stack of components that was never
designed to be reliable over a long term.

Another possible approach is creating a custom hardware by assembling elec-
tronic components on a universal board. This approach a little bit more difficult, but
since one can design his/her own circuit and choose own components, cost optimization
is possible. Unfortunately the resulting design can’t be assembled by a machine, which
means the more costly manual assembly is required (if reliable result is desired). Also
not all components are available packages that are physically usable with universal
boards.

Therefore we have chosen to design completely custom boards. These can be
professionally manufactured for a low cost. The drawback is that development of
these boards is difficult and time-consuming. However, it allows us to design and cost-
optimize our own circuit, and allows us to use larger selection of components. The

7
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result is low-cost, space-efficient and reliable embedded device. We believe that these
advantages offset disadvantages caused more difficult development.

2.1.2 Manual assembly and machine-based assembly. We have two options
when it comes to assembly of our own embedded devices. Machine-based assembly is
cheaper in larger volumes, provides more consistent results and can handle more com-
ponent types. On the other hand, manual assembly is more effective in low production
volumes, especially for prototypes, however several component package types can’t be
assembled this way. Taking the above into consideration, we have decided to limit our
component selection to components that can be soldered manually, however optimize
design for machine-based assembly (particularly by preferring SMD1 components).

2.1.3 Extensibility. In the project overview we have described an architecture
where a single embedded component type may have several different implementations.
This is important especially for embedded components. Controlling different Points of
Access may require different hardware (for example opening an electromagnetic lock
on a single door may be accomplished by a single relay, however controlling garage
door requires the ability to drive a motor in two directions, measuring its speed and
processing inputs from several sensors to ensure safety of the user). Similarly, authenti-
cating user using different authentication methods requires different Reader hardware
(reading 13.56 MHz cards vs. reading fingerprints).

However there are multiple ways to implement this extensibility, two of which
will be discussed:

• Physical “shields”
• One device for one purpose

The first method, physical shields, works by creating a base platform with only
essential features (power distribution, processing unit) and then providing a physical
connector (usually a pin header) with GPIOs and other communication interfaces. An-
other board may then contain additional hardware (in case of Controllers for example
relays to activate electromagnetic locks) which is then connected to this on-board pin
header. In certain situations the GPIOs and communication interfaces may physically
pass through the shield so that another shield can be stacked on top, allowing for stacks
of shields and creation of a custom mix of required hardware.

On the other hand “one device for one purpose” is a much simpler method. A
single hardware board is designed to serve a single function. The only extensibility of
the board can be achieved using firmware upgrades. If another set of feature is needed,
another board must be designed.

1Surface Mount Device, a type of electronic component package that can be soldered on a surface
of a board without drilling holes.
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It seems obvious that the shield method will provide a better extensibility. How-
ever, there are other requirements to consider. Section 1.2 states that the system should
be reliable. Introducing a extra pin header through which a critical component will
be connected means introducing another point of failure. Moreover, in order for a
system to be reliable it must be testable. Having to perform (and possibly automate)
testing of a large number of possible different configurations will complicate the qual-
ity assurance process and ultimately lead to a less reliable product. The shield-based
approach would also complicate design and increase the cost of the base platform since
the designer of the base platform would have to anticipate what possible shields may
be needed in the future and add required hardware to the base platform accordingly.

For this reason we have decided not to pursue shield-based extensibility.

2.2 Reader hardware implementation “Fluocerite”

2.2.1 Board features. For the Reader, we have designed a simple, small 5cm by
5cm board. This boards contains RJ12 connector, which implements a physical inter-
face described in section 4.1. This interface provides both power and data communi-
cation lines. The power is transformed to stable 3.3 Volts by an on-board step-down
converter. Data communication lines are terminated by MAX-3232 integrated circuit,
which converts RS-232 voltage levels used on data lines to 3.3 volt levels, usable by
on-board microcontroller. The MCU is an 32-bit low-cost low-power STM32F072 that
provides us with 64kB of flash memory and 16 kB of RAM. It drives an external RFID
module based on MFRC-522. This module is connected over a pin header, and contains
MFRC522 IC and an antenna. On the user-interface front this board features two red
and two green LEDs, and a speaker (connected over an amplifier with volume control).
It can also contain circuitry required for MiniUSB connector.

2.2.2 Previous design and its drawbacks. First generation of the Reader was
primarily oriented at cost reduction (of both material and development costs). In this
iteration, it was powered by a tiny 8 bit MCU (Atmel ATTiny841) with 8 kB of flash
memory and 512 bytes of RAM. This was not enough to hold a proper implementation
of ISO/IEC 14443 (A) card reading algorithm, nor driver of the used RFID module,
so this functionality was implemented in the Controller. The Reader implemented a
simple communication protocol, could drive LEDs and speakers, and forwarded other
commands to the RFID module.

Reader and Controller were interconnected using a single 4-wire cable. 2 wires
carried 3.3V of voltage required to power the reader, the other two were used for UART
link with 3.3 volt signaling levels.

This solution was implemented and deployed. Unfortunately it suffered from
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several issues:

• Length of cable interconnecting Controller and Reader was limited. The Reader
was powered directly from the cable without any voltage conversion, so the system
was sensitive to voltage drops on the cable. The current design solves this issue
by rising on-cable voltage, and implementing a voltage converter on the Reader.

• Since low voltage UART was used for signaling, the induced interference on the
cable had more pronounced effect on the system. This limited the baudrate and
caused the need to retransmit packets more often, slowing down the communi-
cation. The current design solves this issue by using RS-232 line levels, and
implementing a level-shifter on the Reader.

• Speaker on the reader was not loud enough. This is solved by inclusion of an
amplifier that is powered directly from the cable voltage.

2.2.3 Further work. The current design iteration has one important issue. RFID
Reader module is essentialy an extension board connected over pin header. Disadvan-
tages of this approach are described in section 2.1.3. Additionally, this RFID module
is built using low-quality components, and more than 50% of these modules can’t
read ISIC cards. Therefore they have to be manually modified, and retrofitted with
inductors rated for higher currents.

Less important, but still frustrating, issue with this board is that due to a design
oversight, UART transmit and Serial Wire Debug data I/O is connected to the same
physical pin, therefore only one can be used at any given time. This meant that if a
bug was found in communication library during firmware development, the developer
could choose to either be able to reproduce the issue, or attach a debugger, but not at
the same time.

The next iteration should not use an external module, but instead it should
contain the required circuitry and antenna on the Reader board itself.

2.3 Controller hardware implementation “Neptu-
nite”

Neptunite Controller is implemented on a 7.5cm by 7.5cm printed circuit board. It is
built around a small NanoPI DUO [14] board, which contains an Allwinner H2+ CPU,
256MB onbaord RAM, 10/100M Ethernet PHY and an SD card slot. This board is
powerful enough to run Linux efficiently. Physically this board is inserted to a socket
in the Neptunite controller board.

We have designed the Neptunite board to be powered either by an external 50
Volt adapter, or using Power over Ethernet. PoE circuitry on board is compatible
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with both passive and active IEEE 802.3-2012 power sourcing equipment. Up to two
Readers can be connected to this board (intended for Readers on both sides of the
door).

It is equipped with 2 relays, that can be wired to act as switches, or can supply
either fixed 12 Volts or any voltage between 3 Volts and 10 Volts via dedicated onboard
voltage regulator. Intended use is the control of a single Type 0 Point of Access, where
one relay drives the electromagnetic lock, and the second relay activates hold-open
function of door closing mechanism. An input for “door-open” contact sensor is also
available.

2.3.1 Further work. No cost optimization was yet performed for this board. PoE
circuitry provides 50 volts, and an expensive off-the-shelf step-down converter is used
to convert it to 12 Volts. This converter can be redesigned to use components that
are still sufficient and ultimately cheaper. The PCB layout is inefficient, resulting in a
board that is larger than necessary, increasing costs further. Onboard dedicated user-
adjustable lock power supply is absolutely unnecessary for the job. It can be completely
replaced by a single PWM controller. All these issues will be fixed in a next iteration
of the board.



Chapter 3

Reader firmware “Chibaite”

The Chibaite firmware is intended to be used on “Fluocerite” Reader hardware (de-
scribed in section 2.2) or on other Readers that use a low-range (and low-cost) micro-
controllers1, that are not capable of running mainstream operating systems such as
Linux. This firmware must be fast, stable and execute efficiently on a low-power MCU.
We have therefore decided to write this firmware in C.

To mitigate disadvantages of writing a C firmware directly for a bare-metal
device (such as portability), we have decided to use ChibiOS [4]. ChibiOS is a develop-
ment environment for embedded applications that can freely be used for open-source
projects2. It contains an RTOS (ChibiOS/RT), which provides threading capabilities,
synchronization primitives and other useful programming constructs, and HAL, which
simplifies development and facilitates firmware porting to different hardware boards.
This way, this firmware can be used on more Reader hardware models, if necessary.

3.1 Components and their interaction
The Chibaite firmware is composed of several Tasks and one Master Task. Each task
runs in its separate thread and does only one thing. For example, we have implemented
a task that reads RFID cards and another task that updates the UI. These tasks do
not communicate directly with each other. Instead, they only communicate with the
Master Task. The Master Task implements business logic of the Reader firmware. For
example, when the Master Task receives a callback from RFID Reading task that a
card ID has been obtained, it will instruct Communication task to send that ID to the
Controller.

This threaded approach was chosen because it simplifies event dispatch and
1At the time of writing, this firmware, compiled using gcc and -O2 takes up approximately 32kB

of flash space, which is roughly half of what is available on the Fluocerite board.
2ChibiOS is dual-licensed. It can be used either under GNU GPLv2 license for open-source projects,

or under a paid license for commercial projects.

12
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state management of the device. Instead of managing a complex global state, each
task isolates its state from rest of the system and manages it on its own. Each thread
can then implement simple event handling loop in a way that is best suited for the
task. This overally simplifies the development.

Since every Task (including the Master Task) runs in a different thread, a form
of inter-thread communication is required. Each task provides a thread-safe API which
the Master Task may call whenever it needs. This allows Master Task to send instruc-
tions to individual Tasks. For the other communication direction we have chosen a
different approach. A Task specifies a set of callback functions the Master Task must
implement if it wants to use the given Task (in a thread-safe way). When the Task
is being initialized, the Master Task passes pointers to its implementation of these
callback functions as argument to initialization function of the Task.

This Task callback approach, similar to a “dependency injection” concept, was
chosen because it simplifies testing of the firmware. This way, each task can be easily
separated from the system and tested as a separate unit. We discuss testing embedded
devices in more detail in Chapter 6.

Functionality of this firmware is provided by 3 simple tasks:

• UI task is responsible for the user interface, displaying LED flash sequences and
driving the speaker.

• CardID task is responsible for polling for and reading IDs of RFID cards. It
provides an implementation for Authentication Method 0.

• Comm task handles communication with the Controller.

3.1.1 Watchdog. The multithreaded nature of this firmware also presents some
issues. Since each task runs as a separate thread, it may lock up / enter an endless loop
without impairing the rest of the system. If the CardID task locks up, the Controller
will not notice anything abnormal, however the Reader will cease to function from
perspective of the user. It is therefore necessary to implement a watchdog which would
watch over all tasks (including the Master Task), and reset the Reader if something
like this happens.

Restarting the whole Reader seems like a crude solution, however it is effective
in getting the Reader to a known state. The Reader can start up less than half second.
The communication protocol described in Section 4.2.1 provides a connection-oriented
service, and if the Reader gets reset, the link drops. This in turn notifies the Controller
that it needs to reinitialize the Reader.

The implemented watchdog mechanism utilizes the hardware watchdog built in
the MCU. The watchdog in this MCU is essentially just a timer, which when runs out,
resets the MCU. So the firmware has to perpetually reset this timer. Resetting the
watchdog is the responsibility of the Master Task. Each task, including a Master Task,
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generates heartbeats. Code that generates these heartbeats is written in such a way,
that it depends on correct functioning of the monitored task. For example, the CardID
task polls for a card in a loop. After each loop, it generates a heartbeat. If the task
gets stuck when reading a card, it will not be able to generate this heartbeat. If Task
uses more than one thread (as is the case for the Comm task, each thread generates
its own heartbeats).

Those heartbeats are implemented as callbacks to the Master Task. The Master
Task internally keeps a vector of bits (Heartbeat Vector), where each bit represents a
single thread. When a task calls its Heartbeat callback, the Master Task sets its bit
in the Heartbeat Vector. Then, when the Master Task itself generates a heartbeat,
it checks the Heartbeat Vector, and if bits representing all threads present on the
system are set, it resets the watchdog timer, and clears all bits in the Heartbeat Vector.
Therefore if a task continually misses its heartbeats, its bit will not be set and the
watchdog timer will not be reset which will cause restart of the Reader.

3.2 Previous component design and its drawbacks
The architecture described in section 3.1 is a direct result of an attempt to implement
firmware with overly-complicated design, which retained only advantageous elements.
This section describes this design and explains its drawbacks.

The proposed firmware consisted of several modules. Each module implemented
a single well-defined task, ran in its own thread and communicated with other modules
using message passing. This way, each module could be individually monitored for
correct functioning and restarted if necessary. Facilities required for this were provided
either by the underlying operating system (ChibiOS, in our case) or part of the firmware
called “Common Deadlock Services”.

Common Deadlock Services were supposed to implement two notable features:

• CMA, Central Message Allocator. This system was responsible for allocating
messages that modules use to communicate with each other.

• Component Supervisor, which was tasked with starting, watching over and if
needed restarting firmware modules.

There are however huge issues with this approach. Implementing “Common
Deadlock Services” as proposed would require essentially creating a garbage-collected
programming environment in plain C on embedded hardware, where memory access
issues are very hard to debug. Any advantages in firmware stability the monitoring
and task restarting would bring would be negated by the potential for bugs present
in the Common Deadlock Services themselves. Additionally firmware modules would
have to continue functioning properly even if any other modules they depend on are



CHAPTER 3. READER FIRMWARE “CHIBAITE” 15

Hardware

Common part of the firmware
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Figure 3.1: Proposed, but unused, embedded firmware architecture

restarted at any moment. These two factors would have created failure modes that are
very hard to predict and difficult to debug.

3.3 RFID Stack
The Chibaite firmware was primarily intended to implement Authentication Methods
that require communication with an RFID card (most notably Authentication Method
0, reading an ID of ISO/IEC 14443 (A) compliant PICC). For this, a robust RFID
stack was required.

Our requirements for the RFID stack were:

• Implementation of a proper Anticollision sequence, as described by ISO/IEC
14443-3 [11]

• Either the ability to “select” a PICC and communicate with it, or clean and
structured codebase that would allow us to add this feature

• Usable with ChibiOS/HAL and optimized for embedded devices
• Abstraction between the code handling communication with the card (PICC),

and the code handling communication with the RFID hardware module (PCD).

At first, we tried to find an open-source implementation that is already done.
Fortunately, easy access for hobbyists to PCD module we have decided to use, and to
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Figure 3.2: RFID stack architecture

microcontroller development platforms, such as Arduino, meant that many different
implementations were available. Unfortunately, most of them were either specific to
Arduino, had ISO/IEC 14443-3 anticollision sequence implemented incorrectly, had low
quality code base or were mixing low-level PCD drivers with PICC activation logic. In
the end we found no suitable candidate.

Therefore we have implemented our own RFID stack that fulfills all require-
ments we have specified above. Most importantly, our RFID stack provides a proper
abstraction layer between PCD driver, and PICC communication logic, which increases
portability of this firmware to boards featuring different PCD hardware (section 2.2.3
describes why such a change may be necessary). Figure 3.2 illustrates the architecture
of our RFID stack.

3.3.1 Components of our RFID stack.

3.3.1.1 Proximity Coupling Devices

Proximity Coupling Device is a hardware module physically capable of communicating
with a card (PICC). In order to be able to support several hardware modules, we have
defined an abstract interface hal_abstract_iso14443_pcd.

Communication between the PCD and the PICC consists of sending and receiv-
ing frames. The frames are transmitted in pairs, PCD to PICC followed by PICC to
PCD. Part A of the standard defines 3 different types of frames:

• Short frame: transmits 7 bits.
• Standard frame: Used for data exchange and can transmit several bytes with

parity.
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Figure 3.3: States and state transitions of a PCD driver

• Bit oriented anticollision frame: 7 byte long frame split into two parts. First part
is transmitted by the PCD, second part is added by the PICC. It is used during
bit-oriented anticollision loop.

ISO/IEC 14443-3 specifies different communication methods (different modula-
tion type / index, different encoding, several speeds) for part A and B. However, not
all PCDs support all modes, therefore this interface provides a mechanism for PCD
feature querying.

PCDs also usually support a number of extended features, not covered by the
ISO/IEC 14443 standard. For example, the MFRC522 is able to perform a Mifare
authentication using its crypto unit, or a self-test. Upper layers which know how to
use these extended features should have access to them, but they should not clutter
the main API. We have provided a mechanism for accessing these, outside of the main
API.

This interface is implemented by a MFRC-522 driver (hal_mfrc522), that can
drive PCD present on the Fluocerite board.

3.3.1.2 Proximity Integrated Circuit Cards

This part of RFID stack uses the PCD interface to implement drivers for activating
and communicating with RFID cards themselves. We have defined an interface called
hal_abstract_CRCard. It defines an abstract interface used to communicate with an
Integrated Circuit Card (either with contacts or contactless) using request-response
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frames.
If we want to communicate with an ISO/IEC 14443 PICC, we must first activate

(“select”) it. In order to activate a card, we must know its ID. Part 3 of ISO/IEC 14443
standard defines a procedure that can be used to get IDs of all cards present in an RF
field [11]. This procedure is called “Anticollision cascade”.

The standard defines three possible lengths of IDs of PICCs (4, 7 and 10 bytes).
Only 4 bytes can be obtained in a single anticollision loop, therefore to get the whole
PICC ID, we may need up to three loops (called “cascade levels”). We start with a
first cascade level, and eventually obtain 4 bytes of PICCs ID. Then we try to issue a
“select” command. The card will respond to this command, and indicate whether its
ID is complete or not. If it is not, we discard the last received byte, and proceed with
the next cascade level.

Getting a part of an ID in a single cascade level works by exchanging “Anti-
collision frames” with PICCs (see section 3.3.1.1). An anticollision frame contains the
following 7 bytes:

• CMD: the command (this depends on the cascade level)
• NVB: Number of Valid Bits
• UID[0-3]: Part of the UID CLn (UID in Cascade Level n)
• BCC: Checksum, all previous bytes XORed

This frame may be split into two parts anywhere after the second byte and
before the last byte. First part is transmitted by the PCD. It includes a part of ID
it already knows3. The second part is transmitted simultaneously by all PICCs with
IDs that start with the prefix transmitted by the PCD. All PICCs transmit at the
same speed, and therefore transmit a bit at a given position at the same time. If there
are multiple PICCs in the field, they will have different IDs and therefore inevitably
a situation will occur, where two PICCs will transmit two different bits at the same
time. A PCD can detect this situation at physical layer. This is called a “collision”.

When a collision occurs we store received valid bits before the collision, and
remember the collision position. Then we transmit the first part of the anticollision
frame again, with all known bits and the collided bit set to 1. Only PICCs with
matching ID prefixes will respond again with the second part of the frame. There may
be a collision again so we repeat the procedure in a loop. When we know the full ID we
append a CRC to the full Anticollision frame. This is called the SELECT command,
which will activate the PICC (or tell us to proceed to the next cascade). After that,
we go back to the last collision position where we previously set the collided bit to 1.
This time we set it to 0 and repeat the whole process. This way we can get UIDs of

3In the first iteration the PCD does not know any ID bits and therefore NVB is zero. In that case,
all cards in the RF field will respond.
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all cards in the RF field. If the number of found cards exceeds a constant the user can
pick (max_cards) then we simply won’t mark the collision position and we will set the
collided bit to “1”. That way we ignore all cards with lower IDs.

This effectively means that the user does not have to remove a card from his/her
wallet, since the Reader is capable of reading IDs of all cards present there.

We have implemented the process described above in component hal_iso_14443_picc.
This component also detects all cards in the RF field, and constructs a CRCard object
for each one. This object contains ID of the card and is directly usable by Authentica-
tion Method 0, or by other layers of this RFID stack that may wish to communicate
with the card further.

3.4 Bootloader
Bootloader, in the context of embedded devices, is a dedicated small piece of software
that runs before the main firmware starts. It is most commonly used to update the
main firmware. Currently, Chibaite firmware does not implement its own bootloader,
but relies on one that is built-in to the STM32 MCU. This has the advantage that
no custom implementation is required. Unfortunately, the built-in bootloader does
not support any form of access control when reading flash memory, nor signature
verification when upgrading the firmware. It can only be completely disabled.

3.5 Further work
Even though this firmware serves its purpose well, there are several weak spots that
should be improved. The RFID stack requires more stability testing. Currently, in
certain situations, it can freeze or not detect a collision properly. Custom bootloader
should be implemented and the MCU should be configured so that no other side-channel
can read the main flash. This would make it safe to store access keys if flash memory of
the MCU. Additionally, the custom bootloader should allow firmware upgrades only if
they contain a valid cryptographic signature, so that firmware of this device couldn’t be
hijacked for nefarious purposes. After that, advanced Authentication Methods should
be implemented. Currently only Authentication Method 0 is supported, and it is known
to be not secure.



Chapter 4

Reader/Controller interconnection

In this chapter we describe in detail physical interfaces and all layers of communication
protocols used to connect Readers to Controllers. Then we describe the libdeadcom
component, a universally usable, heavily documented and automatically tested library
that implements these protocols.

4.1 Physical layer
Readers and Controller are physically interconnected using a 6-wire cable terminated
with RJ12 (6P6C) connectors. Maximum length of such interconnecting cable is 15
meters. This single cable carries power, data lines and two other auxiliary signal lines:

Pin Function

1 RST
2 Vcc
3 reader RxD (controller TxD)
4 reader TxD (controller RxD)
5 GND
6 Boot

Power is provided by the Controller, with absolute minimum voltage of 4 Volts,
and absolute maximum voltage of 15 Volts. Nominally the Controller should choose
to provide either 5 Volts or 12 Volts. In any case, it must be able to provide at least 3
Watts of power.

RxD and TxD lines are RS-232 communication lines with voltage ranges as
mandated by TIA/EIA-232-F standard [18]. This allows for a communication that is
stable, fast and is easily implemented by a single level shifting chip and almost any
cheap embedded microcontroller. Initial communication over this interface uses the

20
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following mode:

Baudrate Data bits Stop bits Parity

38 400 8 1 Even

After the contact between Controller and the Reader is established, a new set
of communication parameters may be negotiated1.

Two auxiliary signals RST and Boot are also available. Logical signaling level on
those pins is 3.3 Volts. RST is active LOW, idle HIGH. Boot is idle LOW, active HIGH.
LOW pulse on RST line will generate a reset of the Reader. If Boot signal is active
during power-up or reset, the Reader enters its Bootloader mode (see section 3.4).

4.2 Data link layer
Reader and Controller must be able to reliably exchange messages. If, for example,
the Reader is attempting to send message “Authentication Method 0: ID Obtained”,
this message must either be delivered reliably or error must be detected (and user
must be notified of this error). Therefore it is clear that reliability will have to be
ensured at some layer. We have decided to solve this problem on the Link Layer. Since
communication between Reader and Controller consists of exchange of short messages
rather than streams, this layer must provide facilities for datagram transport. The
system must also know if the communication link between Reader and Controller is
currently functional, therefore this layer must provide a connection-oriented service.

Providing reliable connection-oriented datagram communication over unreliable
byte-oriented link is a problem that is already solved by a High-level Data Link Con-
trol (HDLC) protocol [12]. We were especially interested in HDLC “Asynchronous
Balanced Mode” of operation, which would allow any station to initiate a connection
and communication with the other. Unfortunately, we were unable to find an open-
source implementation suitable for use in embedded devices. We have therefore decided
to create our own implementation of such library.

4.2.1 Deadcom Layer 2 (dcl2) library. Deadcom Layer 2 library implements a
protocol that fulfills the above requirements. Internally it uses a protocol inspired by
HDLC operating in Asynchronous Balance Mode, however simplified to simplify its im-
plementation and maintenance. This simplification lowered the required development
time, however as a result of this decision, dcl2 library itself is not compatible with
HDLC. It also has a limitation that a station must wait for acknowledgment of a frame
it sent before it is allowed to send another frame.

1Although none of the current devices require nor make use of this feature.
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Internally this library utilizes a modified version of open-source library yahdlc
[20]. This library claimed to provide support for encapsulating byte buffers to HDLC
frames, including application of control-octet transparency, and also extracting frame
contents from arbitrary byte streams. We have discovered and fixed several issues in
this library and extended it to support frame types that we required. In order to
minimize code footprint, we have also removed unneeded APIs2. Since these changes
are not backwards-compatible, no attempt to upstream these changes was made. We
have incorporated our yahdlc fork directly into dcl2 (in compliance with the MIT
license yahdlc is released under).

This library is intended to be used in multithreaded environments, and takes
advantage of this fact for the implementation of its procedures of operation. For ex-
ample, the function to transmit data to the other station blocks the calling thread (by
waiting on a condition variable) until either reception confirmation from the other sta-
tion is received or the operation fails. Before unblocking the calling thread with error
status, the transmit function attempts to retransmit the message several times. In the
meantime, responses are processed in a “Receive thread”. This thread is responsible for
extracting received messages, automatically acknowledging frames that were already
received (this can happen if ACK frame got lost) or processing acknowledgments from
the other station and signaling condition variable the sender thread is waiting on. This
design simplifies both usage and implementation of this library since we can avoid
status callbacks that may occur at any time.

To function properly, this library requires an environment that provides two
synchronization primitives: mutexes and condition variables. Functions dealing with
initializing and using these objects are passed as function pointers to dcl2 initialization
function and stored as a part of dcl2 object. It is up to the user to provide these “glue”
functions for the platform of his choice3. This “object-oriented” approach is advanta-
geous if a Controller wants to communicate with multiple readers at once. However the
real advantage of this approach is testability, since this allow for existence of multiple
dcl2 objects simultaneously with different implementations of these (mocked, in the
case of unit tests) “glue” functions. This is used heavily by unit tests of this library4.

4.2.1.1 dcl2 API

From user’s perspective this library provides a simple API. Function dcInit initial-
izes an object representing a Deadcom L2 link. This is the function that takes “glue”

2Full list of changes made to the yahdlc library is detailed in license comment of yahdlc files.
Those can be found in libdeadcom repository.

3Requirements on these functions are as minimal as possible and it is known that they can be
implemented on ChibiOS, on any system with pthread environment or on any system with working
threading Python module.

4These tests run automatically on Gitlab’s Continuous Integration system.
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function pointers as described above. Function dcConnect attempts to create a con-
nection. It will block until the connection is established or the operation times out.
Function dcDisconnect closes the connection immediately. Messages can be transmit-
ted using function dcSendMessage, which blocks until the other station acknowledges
the reception or the operation times out. Function dcProcessData processes a part of
received byte streams, automatically sending responses where necessary and unpacking
received message to internal buffer. Function dcGetReceivedMsg can then be used to
obtain complete received message from the internal buffer. Complete documentation
of this library is automatically generated from sources using Doxygen and Sphinx. It
is available in in libdeadcom repository.

4.2.1.2 Helper libraries

We have also created library helper-pthreads to simplify usage of this library on
systems where pthread library is available. This library implements threading “glue”
functions using pthread. It is heavily utilized by integration tests of the dcl2 library
itself.

Additionally, we have created library leaky-pipe as an extension of open-source
project pipe [15]. Project pipe provides a plain-C thread-safe implementation of a
FIFO queue. leaky-pipe adds configurable deterministic unreliability to the pipe.
It can be configured to lose, corrupt or add bytes to the communication, either in a
specific sequence or in pseudo-random way. This library can be used to simulate a
thread-safe unreliable byte-oriented link, and is used in integration tests of dcl2. (Of
course this library also has its own unit tests).

4.2.1.3 Python 3 bindings

We have decided to implement Controller software in Python 3 (see Chapter 5 for
details). So in order to use dcl2 library from Python, we have created an extension
for CPython. This extension consists of two parts: Low-level module _dcl2, written
using Python C API and high-level module dcl2.

The low-level _dcl2 module provides a way to call C API of the dcl2 library
directly from Python. It takes care of Python type and object creation and converts
arguments and return values between Python types and C types. It also implements
dummy “glue” functions required by dcl2 that are just invocations of callback functions
the user can implement in Python5.

This module is in turn used by dcl2 Python module. dcl2 Python module pro-
vides a high-level Pythonic API. Internally it utilizes threading module to implement

5This is the only time the design of dcl2 library caused implementation difficulties. It turned out
that implementing a Python extension that requires callbacks to Python code from a multithreaded
C environment is not that easy. However once implemented the result turned out to be worth it.
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“glue” functions and uses them to initialize the low-level _dcl2 module. Additionally it
creates a “receive thread”6 that periodically reads bytes from a file-like object the user
has provided and calls function to process these bytes. This greatly simplifies usage of
this library.

To demonstrate simplicity of this solution, let us compare usage of C implemen-
tation with the usage of these Python bindings. To use this dcl2 C library (without
helper-pthreads) the user has to:

• Use platform-specific way to initialize a serial port
• Implement 6 threading glue functions and one transmit function that uses that

serial port
• Create a structure with function pointers to these functions
• Initialize the library
• Create a receive thread that calls dcProcessData periodically when data were

received over the serial port

The same thing can be accomplished by the following Python code:

import dcl2
import serial

s = serial.Serial("/dev/ttyS1", baudrate=38400, parity=serial.PARITY_EVEN)
link = dcl2.DeadcomL2(s)

4.3 Application layer
Application layer of Reader/Controller communication protocols facilitates exchange
of commands and event notifications between Reader and Controller. These devices
communicate by exchanging Controller-Reader Protocol Messages (CRPMs for short).
CRPMs contain data encoded in RFC 7049 (Concise Binary Object Representation) [2]
format. CBOR is a format with data model similar to JSON, however designed to be
easily implemented with minimal code footprint, and produce compact binary-encoded
messages. These messages can be encoded and decoded without knowing the schema
in advance, allowing for easy extensibility of this protocol in the future.

Even though the schema definition is not necessary for encoding/decoding
CBOR messages, we have decided to specify one since schema specification with
comments explaining details can serve both as a protocol documentation for developers

6Since we are using CPython we are limited by CPython’s Global Interpreter Lock, which means
that CPython can’t run more than one thread of Python code at any given time. This is however not
a problem for us, since our task is I/O-bound.
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and a formal protocol definition usable in automated tests. We have used CBOR Data
Definition Language (CDDL) [9] to describe the schema7. This schema specification
format can be also used by utility based on Ruby gem cddl to check if a given string
of bytes contains schematically-correct message, and to generate schematically correct
random data8.

4.3.1 Controller-Reader Protocol Messages. The Controller-Reader protocol
consists of several CRPM types. Each CRPM type is assigned a number and also
allowed direction (whether this message can be only sent by Controller, only sent by
Reader or if it can be sent by both). Each CRPM message is a CBOR map containing
one entry. The key is the CRPM Type number and the value is CRPM payload.
Expressed in CDDL:

crpm = {
0 => heartbeat //
1 => sysQueryRequest //
2 => sysQueryResponse //
3 => activateAuthMethod //
4 => rdrFailure //
5 => uiUpdate //
6 => am0PiccUidObtained

}

4.3.1.1 Heartbeat CRPM

This is a dummy CRPM for checking whether the other station can receive and ac-
knowledge a message. No response to this message is expected on application layer.
This protocol is intended to be used on top of Deadcom Layer 2 protocol, which imple-
ments acknowledgments, and if the other station is unable to acknowledge this frame,
we will be notified of transmission failure.

This CRPM has no payload and can be sent by both Reader and Controller. In
CDDL:

heartbeat = nil
7Unfortunately, at the time of writing, CDDL is only an Internet-Draft, not an RFC standard. We

have used the latest available draft which is due to expire in August 2018. Once it reaches RFC status
the schema definition will be thoroughly reviewed and fixed if specification has changed.

8Similarly to CDDL Internet-Draft, cddl Ruby gem is a work-in-progress, and even though it can
use schema defined by us to verify existing messages, it does not yet support some of the CDDL
constructs we have used and can’t generate random schematically-correct data.
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4.3.1.2 System Query Request CRPM

This is a no-payload CRPM that can be sent by Controller to Reader to identify it.
The Reader must reply with “System Query Response”.

sysQueryRequest = nil

4.3.1.3 System Query Response CRPM

Reader uses this CRPM to respond to “System Query Request” received from a Con-
troller. The payload is Reader Hardware model number, Firmware type number, hard-
ware revision, hardware serial number and software version. Hardware model number
and Firmware type number must be registered in Deadlock Component Registry.

During the design of this CRPM we were faced with a dilemma: should the
Reader report its model and firmware, or just a list of authentication methods it sup-
ports and type of UI it features? The latter is in the end what the Controller is
interested in. Additionally it would allow us to swap Reader for another with the same
set of features, that the Controller may not yet know about, which would allow for ex-
tensibility and iterative system upgrades. However, we believe that reliability is more
important, and this approach would allow using Readers with Controller that have
never been tested together. And even though it should work in theory, in practice this
may lead to issues that are discovered (if we are lucky) only in production environment.

Therefore the Controller can use these values to find out whether it supports this
particular Reader model and its Firmware, and which UI and Authentication Methods
this Reader supports.

sysQueryResponse = [1*1 sysQueryResponseGroup]
sysQueryResponseGroup = (

swType: uint .size(2),
hwModel: uint .size(2),
hwRev: uint .size(1),
devSN: text .size(25),
swMajor: uint .size(1),
swMinor: uint .size(1)

)

4.3.1.4 Activate Auth Method CRPM

Controller can use this CRPM type to instruct Reader to enable one or more Authen-
tication Methods. Available authentication methods are enumerated in the Deadlock
Component Registry.
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activateAuthMethod = [ 1*10 &authMethod ]

authMethod = (
am0PiccUid: 0

)

4.3.1.5 Reader Failure CRPM

Reader can use this CRPM to inform Controller of its own failure. Payload is a
human-readable text. The Controller should therefore log this failure for review by the
operator.

rdrFailure = text .size(1..200)

4.3.1.6 UI Update CRPM

The Controller can use this CRPM to instruct the Reader to update its UI status to
make user aware of changes that have occurred on the Point of Access. Available UI
classes are enumerated in the Deadlock Component Registry. Currently only one UI
class is supported.

uiUpdate = &uiClass0State

uiClass0State = (
doorClosed: 0,
IDAcceptedDoorUnlocked: 1,
IDRejected: 2,
doorPermanentlyUnlocked: 3,
doorPermanentlyLocked: 4,
systemFailure: 5,
doorOpenTooLong: 6

)

4.3.1.7 Authentication Method 0: PICC UID obtained

The Reader can use this CRPM to inform the Controller that Authentication Method 0
has succeeded in obtaining IDs of one or more ISO/IEC 14443 (A) Proximity Integrated
Circuit Cards. These IDs may be 4, 7 or 10 bytes long.

am0PiccUidObtained = [1*10 piccUid]

piccUid = bytes .size(4) / bytes .size(7) / bytes .size(10)
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Controller firmware “Pyroxene”

The Pyroxene firmware is intended to be used on the “Neptunite” Controller hardware,
described in section 2.3, or on any other board with enough resources to run Linux
effectively. The software itself is written in Python 3.

5.1 Embedded Linux distribution
Since we have decided to base this firmware on Linux, we needed to find an appropriate
Linux distribution. The distribution must be small, because storage space could be
limited (Fluocerite board supports SD cards, however industrial SD cards1 are still
expensive). Many exploits for poorly secured embedded Linux systems are currently
in the wild2, so the distribution must not only be secure by default, but it should also
be difficult to make it insecure by accidental misconfiguration.

Flexible, but rolling release distributions such as Arch Linux, which were used
in early prototypes, were immediately rejected. After some deliberation, we have also
decided against use of conventional distributions, such as Debian. These distributions
are designed and optimized for use on desktop and server systems. Their ARM ports
do not receive the same level of thorough testing as their x86_64 counterparts. They
contain a lot of software necessary for its function but ultimately unnecessary for
embedded Controller, so it only increases the attack surface.

Instead, we have decided to use tool buildroot [1] to create our own minimal
Linux system. This system contains only packages that are essential to its operation:

• Linux kernel 4.16
• musl, a fast and lightweight standard library
• Busybox, which implements basic utilities and an init system
• Python 3 interpreter
1Use of consumer-level SD cards is strongly discouraged due to their limited durability.
2Probably most commonly known is malware Mirai, which was detected in August 2016.
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Initially we wished to use an LTS release of the Linux kernel. However, Neptu-
nite board is based on Allwinner H2+ CPU, and support for Ethernet MAC controller
present in this CPU was included in mainline version of Linux only in release 4.15. As
soon as LTS release of post-4.15 Linux kernel will exist this firmware will migrate to
it.

The Linux kernel is configured to be as stripped-down as possible. Support for
loadable modules is disabled, since we know exactly which drivers will be needed be-
forehand, and it also simplifies the boot process. Only drivers that are really necessary
are included in the kernel. Busybox is stripped down in a similar way.

The system build process generates two images: a compressed kernel image,
and a compressed squashfs image of root filesystem. This means that root filesystem
is not only mounted read-only, it is impossible to modify it. This further limits the
attack surface, since it is impossible to silently add a malicious program/file. When
the firmware needs to be upgraded, it is upgraded as a whole with another image. A
separate read-write data partition is provided for network configuration files, Python
implementation configuration, access logs and access database. No code should be
executable from this partition.

Currently, the squashfs root filesystem takes less than 8MB of space, and this
distribution can boot in under two seconds (not including Python application starup
or bootloader delays)3.

5.1.1 Hardware abstraction. Similarly to Chibaite (Reader) firmware, this
firmware should also be able to support multiple different hardware boards. Linux
provides several different mechanisms which we can use for this purpose.

Configuration of Linux kernel can be separated into several files, using KConfig
fragments. Therefore we can define a default kernel configuration, configured for needs
of this distribution, and a hardware configuration fragment for each board we wish to
support.

Additionally, we can use “Device Trees” to inform the kernel about different
devices that are present on a given board and how are they connected. With this
information, the kernel can properly configure all devices during bootup. Addition-
ally, we can use it to specify names of various LEDs and GPIO pins that are present
on the board. This way, the userspace can only ask the kernel “Activate gpio dead-
lock:lockrelay”4, and the kernel will do the right thing as long as information in the
Device Tree is correct (so it does not matter if the relay is physically connected to

3And its build is automated, using Gitlab’s Continuous Integration.
4Surprisingly, this feature was added to Linux kernel relatively recently. This change also in-

troduced a new way to control GPIO from the userspace (by addition of a character device), and
deprecated the old and inflexible ABI for controlling GPIO using /sysfs. Unfortunately not many
people have noticed and not many Python libraries are available for this purpose.
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processor GPIO pins, or over a GPIO expander that communicates with the processor
over I2C bus, as is the case for Neptunite board).

5.1.2 A/B firmware upgrades. A/B firmware upgrades work by keeping 2 copies
of the system in persistent storage at the same time, and updating the one that is not
running. Then, only a reboot is required to switch to the new version5, which limits
the system downtime. Additionally, if the boot fails, the system can recover by booting
the old version again, which improves system reliability.

We are planning to implement this feature in Pyroxene firmware. Storage is
partitioned so that it can contain 2 copies of the system. Das U-Boot is used as
bootloader. U-Boot supports loading and storing persistent environment variables
from a fixed storage location. These variables can then be used in boot scripts to
choose which copy of the system should be loaded. U-Boot also supports incrementing
a variable each time a boot is attempted. Additionally, it is possible to modify these
variables from Linux. The firmware upgrade process can therefore look like this:

• Flash rootfs and kernel to partitions that belong to currently inactive system
• Modify U-Boot environment variable that points to system that should currently

be active
• Reboot
• U-Boot will increment “number of attempted boots” variable, and attempt to

boot the new system
• If the system boots, it should reset “number of attempted boots” variable back

to zero, and copy itself to partitions occupied by the original system (so that it
will not be possible to boot the old, potentially insecure version by accident).

• If the system does not boot, the “number of attempted boots” won’t get reset,
and if it reaches a sufficiently large value, the U-Boot will fall-back to booting
the old system, which may then perform a recovery action.

5.2 Further work
Unfortunately, at the time of writing, the Pyroxene firmware is largely unfinished.
Build system for the Linux distribution is mostly done, however init system and network
configuration are missing, as well as business logic implementation. These will be
implemented in a near future.

Pyroxene firmware should support Neptunite board, which is equipped with a
PoE+ power extractor. The IEEE 802.3-2012 [10] standard mandates that a Powered

5This method is successfully implemented for example in Container Linux by CoreOS or in newer
versions of Android.
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Device must support both Hardware and Link Layer classification, and the Power
Sourcing Equipment may decide which one to use. Neptunite board supports hardware
classification, but Link Layer classification must be implemented in this firmware. The
lldp deamon may be used for this purpose.



Chapter 6

Testing

This chapter describes methods for testing software of embedded devices and other
components of this project, especially the Chibaite firmware. Software testing is essen-
tial to ensuring that the code is of high quality. It is also beneficial in many other ways.
However, testing code for embedded devices is not easy since in production environ-
ment the code runs on an embedded hardware and there is no option to force specific
error-conditions upon that hardware.

In case of Pyroxene firmware, which is written in Python, unit testing is easy.
The situation is more complicated for Chibaite firmware written in C. There are 3
feasible options. Some of them have advantages, unfortunately all of them have disad-
vantages.

• Compile the code for PC and run tests locally
• Run tests on an emulator of the given embedded platform
• Run tests on physical embedded hardware

Compiling code for the PC and running these tests locally is very fast compared
to other options. However, only hardware-independent pieces of code can be tested in
this way. Moreover, since different compiler is used to compile the unit tests these
tests won’t catch compiler-introduced bugs (which is not unheard of in embedded
development). However, logical error is still a logical error no matter the platform or
compiler, so these tests can test business-logic very well. Although it is possible to test
higher-layers of device drivers by mocking the low-level device interface and emulating
the hardware, it is pointless since it is way harder to write a flawless hardware emulator
(bug-for-bug compatible with the real hardware) than it is to write a solid driver for it.

Running code on an emulator has the advantage of using the same compiler
for both tests and production code. MCU registers may be changed at will and error
conditions introduced. Unfortunately, we have not found suitable emulator for our
platform.
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Running tests on physical embedded device is the most difficult approach. Physi-
cal hardware can’t be forced to deterministically create a specific failure mode through
software when debugging drivers. Collecting test results is also difficult. Unfortu-
natelly, this is often the only applicable choice.

6.1 Chosen testing strategy
In Chibaite firmware, we have decided not to write automated tests for the lowest
Hardware Abstraction Layer (two device drivers we have created) for aforementioned
reasons. These will be tested manually. Other drivers that we have used are imple-
mented in ChibiOS HAL [5], which is rigorously tested by its author.

The Chibaite firmware has modular design. Each module runs in its own thread
and is designed so that it can be separated from other modules and tested on its own
(see Section 3.1). These modules will be unit-tested by cross-compiling them for a host
PC.

Tests for Python components of Pyroxene firmware are written in a way that is
specific to Python.

Unit tests and integration tests of libdeadcom are run also by compiling these
components for host PC.

6.2 Unit tests
Unit tests are built on the Unity [19] unit testing framework in combination with the
Fake Function Framework [8].

6.2.1 Technical details of unit-testing C code with mocking. Mocking is a
process of replacing an object or function with dummy version mimicking real objects
/ functions for testing purposes. If one .c file represents one unit then unit-testing is
relatively easy: compile the file under test, compile the test file, let the test file define
mock functions, link them. Test file will call a function from the file under test, it will
call some library function which is provided by the mock in the test file.

Usually a single .c file is a single module consisting of several units, and a unit
is represented by one function. Functions in a .c file may use other functions from that
file, so in order to write an unit test for given function from the .c file, other functions
from this file may need to be mocked. Even worse, these functions may be static (for
optimalization reasons). There are several solutions to this problem:

• Split the .c file into multiple files so that each file is an unit. Advantage is
that building and writing tests is easy. Also it may encourage better and more
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modular design. Disadvantages are that you need to produce more .c files and
the code may be harder to write. Also static functions can’t be used.

• You can use weak references (through some preprocessor magic like custom de-
fined testable macro or by objcopy --weaken). You can then provide your
own implementation of custom symbols in the test file and linker will replace
weak references in the file under test. Advantage is that writing tests is easy, dis-
advantage is that you may need magic macros or a bit more complicated build
process. You still need preprocessor magic to solve static functions, as compiler
may do what it wants with static functions (such as inline them or change their
calling convention).

• You can manipulate the GOT table at runtime and force the running program
to use your function instead [13]. Building tests is easy, writing them is hard
and the whole process is not elegant and unreliable. And it still won’t solve the
problem with static functions.

We will do the following: where possible and logical we will split the code to
multiple .c files. It is quite possible that the split will not be needed in most cases,
and when it is needed the file should anyway be logically splitted. Additionally the file
will be processed with objcopy --weaken, so if it really is not logical to split the file
under test it is still possible to mock internal functions.

The last problem to solve are static functions defined in the same file and
static inline functions defined and present in headers of the OS. These functions
are written in this way for performance reasons, and examples include functions for
entering/exiting OS critical zones.

Static functions will be solved by custom preprocessor macro. It is not the
most elegant solution, but it will work reliably. The problem with static or static
inline functions can’t be solved in this way, since they are defined in OS headers,
which are chain-included from one include which can’t be ommited. This can be solved
by including testable.h header after all system headers. This header can be specific
for each test and can use preprocessor to rename used functions. Those renamed
functions can then be easily mocked. This is also very ugly solution, however, it will
be required only in rare cases.

6.2.2 Used mocking framework. We use Unity [19] unit testing framework. This
framework is also used by CMock [6] mocking framework, from the same creators, so
it would be logical to use it. That, however, turned out to be a bit problematic.

CMock parses header files included by the file under test and produces a mock
file for all functions it finds. Advantage is that this process is fully automatic. Dis-
advantage is that CMock treats one file as one unit and makes it impossible to mock
functions inside that file.
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The other problem is the build system. The mocks should be generated automat-
ically and tests should be built automatically as well. Officially recommended option
is to use Ceedling [3] as a build system. However, this is not universally applicable
to this project, especially to the Chibaite firmware which is based on ChibiOS, build
system of which is based on Makefiles which include other ChibiOS-specific makefiles
from within ChibiOS folder structure. Ceedling is based on Ruby’s Rake, and can’t
build ChibiOS based projects.

CMock itself supports Makefiles, however it is quite inconvenient to use it. It
works by generating a new Makefile using a Ruby script. This script makes assumptions
about the project which don’t hold true for the Chibaite firmware (e.g. flat source code
structure). Moreover, official documentation mentions that it is required to run make
twice for this to work. The last option is to use ruby build system rake. This was
actually feasible, since you are free to utilize internal CMock objects (which is also
written in Ruby), and the example was easily modified to build the tests with our
code structure. Rake was invoked from the Makefile with proper enviroment variables
(because they are known only during execution of make). However, this solution is not
elegant since it mixes two different build systems.

All that would be still quite acceptable. However, the biggest problem is that
CMock doesn’t work with ChibiOS. CMock works by parsing included header files and
finding function definitions in them. However, it is not able (nor it is intention of
authors to make it able) to preprocess that file. In case of ChibiOS the user includes
only ch.h. Other parts of the system are included by this header, and are dependent
on the architecture. The preprocessor is heavily utilized and the resulting include
is dependent on compile-time definitions defined in ChibiOS Makefiles. This makes
perfect sense for embedded projects, as it minimizes footprint of the compiled code.
However, it also means that in order to reliably generate mocks the files have to be
preprocessed. Official advice on this was to run the header through the C preprocessor.
After we’ve done that the CMock crashed with a parsing error on the resulting file. In
the end we’ve decided that although CMock is a decent framework it is not applicable
for our use case.

We have decided to use the Fake Function Framework [8] instead. It’s usage, as
opposed to CMock, is trivial: #include "fff.h". However now we have to do mocks
manually. But this is actually a great advantage, since we can mock what we want
when we want to. Usually we don’t have to mock that many functions anyway, and all
it takes to mock a function is FAKE_VOID_FUNC(halInit);. And if we forget to mock
something the linker notifies us. And we can use the weak-reference trick and mock
functions from the same file that the function under test comes from.
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6.2.3 Building and running tests. Unity includes an example Makefile which can
be used to build and run unit tests. It needs to be modified to be usable in our case,
because:

• It presumes a flat source / test folder structure
• It doesn’t automatically generate test runners
• It doesn’t automatically weaken references of object file under test
• It supports only one test for each file

So we have written our own makefile for running tests. For explanation of this
file please refer to the Chibaite documentation [7] or review Makefiles in libdeadcom
repository.



Conclusion

We started this thesis by introducing the Project Deadlock and describing its architec-
ture in chapter 1.

Then, in chapter 2 we have described decisions that were the main drivers of
hardware design. Later we describe design of two hardware boards for our embedded
components, Fluocerite (Reader implementation) and Neptunite (Controller implemen-
tation). We have manufactured and tested the Fluocerite board. Neptunite board was
assembled as a prototype, and final boards are being manufactured at the time of writ-
ing. Additionally, further work such as integrating PCD module to Fluocerite board
itself, and cost-optimization of Neptunite board was described.

Chapter 3 described a Chibaite firmware, written in C and based on ChibiOS.
We have described our previous mistakes, and what lessons we have learned. Then
we have described implementation of the firmware itself. As a notable part of this
firmware, we have also implemented a clean and modular RFID stack capable of reading
identification cards. Then we summarized further work this firmware requires, notably
implementation of more secure authentication methods.

Design and implementation of all communication layers utilized by Readers and
Controllers was described in chapter 4. First we described the physical link. Then we
described requirements of Data Link Layer, and how our implementation fulfills them.
Several helper libraries for testing this implementation were also developed, as well as
bindings of this library with Python. Lastly, we have specified an Application layer
protocol using CBOR Data Definition Language.

In chapter 5 we have described design of Pyroxene firmware for Controller. Un-
fortunately, we have managed to implement only a small part of underlying Linux
distribution. However, we have described architecture and our future plans for this
fimware.

We have concluded with chapter 6, which described various methods used to
test different components of this project.
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Appendix A: Source code and
documentation

Project Deadlock is under continuous iterative development. Source code, hardware
schematics and documentation of various components of this project can be found at
https://gitlab.com/project-deadlock/.

Project homepage (with documentation and development guides) will be hosted
at https://project-deadlock.io/ in the near future.

Attached: CD with source code and hardware schematics of Project Deadlock
components described in this thesis.
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