
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Electronic Election System
for Academic Senate

Bachelor thesis

2018
Adam Štefunko

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Electronic Election System
for Academic Senate

Bachelor thesis

Study programme: Computer Science
Study field: 2508 Computer Science
Department: Department of Computer Science
Supervisor: RNDr. Jaroslav Janáček, PhD.

Bratislava, 2018
Adam Štefunko

66062830

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Adam Štefunko
Study programme: Computer Science (Single degree study, bachelor I. deg., full

time form)
Field of Study: Computer Science, Informatics
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Electronic Election System for Academic Senate

Annotation: This thesis deals with design and implementation of an electronic election
system for academic senate. It defines functional and security requirements
for an election system and analyzes to what extent the designed solution
conforms to the requirements.

Aim: - define requirements for an election system
- design a solution
- analyze the level of conformance of the designed solution to the defined
requirements
- implement the solution as a web application for online voting

Supervisor: RNDr. Jaroslav Janáček, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 26.10.2017

Approved: 26.10.2017 doc. RNDr. Daniel Olejár, PhD.
Guarantor of Study Programme

Student Supervisor

66062830

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Adam Štefunko
Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Electronic Election System for Academic Senate
Systém pre elektronické voľby do akademického senátu

Anotácia: Táto práca sa zaoberá návrhom a implementáciou systému pre elektronické
voľby
do akademického senátu. Definuje funkčné a bezpečnostné požiadavky
na volebný systém a skúma, do akej miery navrhnuté riešenie tieto požiadavky
spĺňa.

Cieľ: - definovať požiadavky na volebný systém
- navrhnúť riešenie
- preskúmať, do akej miery riešenie zodpovedá definovaným požiadavkám
- implementovať riešenie v podobe webovej aplikácie na online hlasovanie

Vedúci: RNDr. Jaroslav Janáček, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 26.10.2017

Dátum schválenia: 26.10.2017 doc. RNDr. Daniel Olejár, PhD.
garant študijného programu

študent vedúci práce

iii

Acknowledgement: There are many people to which we want to express our
thanks.

In the first place, we would like to thank the supervisor of our bachelor thesis,
RNDr. Jaroslav Janáček, PhD., for irreplaceable help and pieces of advice in var-
ious topics. These include thoughts on how to design a voting scheme or what en-
cryption method to choose. The time we spent with him was very inspirational for us.
Especially, our supervisor helped us so much when we found a crucial error in our
system.

A few people quickly helped us with several implementation problems. With help
of Jakub Šimo, we discovered many JavaScript ’s secrets and we found out why we
were not able to install Python packages on our iMac. This issue was, fortunately,
solved.

Our voting system is developed for our faculty. Therefore, several faculty services
needed to be used within it. Mgr. Matej Zagiba explained to us how Cosign works
and gave us numerous examples.

Last but not least, we would like to thank the members of ŠKAS (our faculty’s
student senate), and especially their vice-chairMgr. Júlia Pukancová, for suggesting
us the idea of developing an electronic election system for our faculty.

iv

Abstract

Electronic election represents a modern way of collaborative decision-making. It can,
in many aspects, simplify and automatise traditional election processes. However, it
raises new security and usability questions. These include easy-to-use interface, cost-
effectiveness, reliability of the system or correct computation of the votes. In this thesis
we try to deal with them and implement our own electronic election system. Inspired
by existing solutions, we propose our own electronic voting scheme. Our proposal
is, then, used to develop an electronic election system. This system uses an Internet
browser to cast a vote and is run on a server, which also collects the votes. At the end
of the election process, the votes are counted in the machine for vote counting. This
system is developed on top of several cryptographic primitives, such as asymmetric
encryption or secret sharing, which are also described in this thesis. Our system is,
finally, analysed regarding the defined requirements.

Keywords: electronic election system, electronic voting scheme, internet application,
academic senate

v

Abstrakt

Elektronické voľby reprezentujú moderný spôsob skupinového rozhodovania sa. V mno-
hom dokážu zjednodušiť a zautomatizovať tradičné voľby, avšak prinášajú so sebou
nové bezpečnostné a používateľské otázky. Sú to napríklad ľahko použiteľné uží-
vateľské rozhranie, rentabilita, spoľahlivosť systému či správne spočítanie hlasov.
V tejto práci sa s nimi snažíme vyrovnať a implementovať náš vlastný elektronický
volebný systém. Po inšpirovaní sa existujúcimi riešeniami navrhneme vlastnú elektron-
ickú volebnú schéme. Z tejto schémy potom vyvinieme vlastný elektronický volebný
systém. Tento systém využíva na hlasovanie internetový prehliadač a beží na serveri,
ktorého úlohou je aj zbierať hlasy. Na záver volieb sú hlasy sčítané v sčítacom zari-
adení. Tento systém je postavený na báze niekoľkých kryptografických metód, ako je
napríklad asymetrické šifrovanie alebo zdieľanie tajomstva. Tieto sú taktiež popísané
v našej práci. Na záver analyzujeme náš systém na základe definovaných kritérií.

Kľúčové slová: elektronický volebný systém, elektronická volebná schéma, interne-
tová aplikácia, akademický senát

Contents

Introduction 1

1 Description of the Electronic Election System 3
1.1 Definition of the Electronic Election System 3
1.2 Requirements on an Electronic Election System 4
1.3 Types of Electronic Election System . 6

1.3.1 E-voting . 6
1.3.2 I-voting . 7
1.3.3 Comparison . 8

2 Summary of Existing Solutions 9
2.1 Electronic Voting Scheme Techniques 9

2.1.1 Blind Signatures . 9
2.1.2 Verifiable Anonymous Channels 10
2.1.3 Homomorphic Encryption . 10
2.1.4 Untraceable Electronic Cash Protocol 10

2.2 Existing Electronic Election Systems 12
2.2.1 Estonian Internet Voting . 12
2.2.2 Norwegian Internet Voting Protocol 13
2.2.3 Swiss Online Voting Protocol 14

3 Our Solution 17
3.1 Our Voting Scheme . 17
3.2 Players in Our Voting Scheme . 17
3.3 Phases of Our Voting Scheme . 18

3.3.1 Initialisation . 19
3.3.2 Voting . 19
3.3.3 Counting . 20

3.4 Format of the Vote . 21
3.5 Security Tools Used in Our Voting Scheme 21

3.5.1 OpenPGP . 21

vi

CONTENTS vii

3.5.2 Shamir’s Secret-Sharing Scheme 22
3.5.3 Cosign . 23

3.6 Other Proposed Solutions . 23
3.6.1 Authorisation by a Token . 23
3.6.2 Authorisation by User Information 24

4 Implementation of Our Solution 26
4.1 Overview . 26

4.1.1 Technical Requirements . 27
4.1.2 External Libraries and Packages Used 27

4.2 Database . 27
4.2.1 Database of Persons . 28
4.2.2 Database of Votes . 29

4.3 Voting . 29
4.3.1 The Form . 30
4.3.2 Vote Formation and Encryption 30

4.4 Vote Collection . 30
4.5 Vote Transfer . 31
4.6 Vote Counting . 32

4.6.1 Decryption . 32
4.6.2 Validation . 32
4.6.3 Extraction . 33
4.6.4 Counting . 34

4.7 Administration . 34

5 Analysis of Our Solution 37
5.1 Usability . 37
5.2 Security . 38
5.3 Accuracy . 39

Conclusion 40

Appendix A - Source Code 44

List of Figures

3.1 Voting phase of our scheme . 20
3.2 Counting phase of our scheme . 21
3.3 Authorisation by a token . 25
3.4 Authorisation by user information . 25

4.1 Code for the vote formatting function 31
4.2 Example of a code using the SQLite library 31
4.3 Deterministic finite automaton accepting valid votes 33
4.4 Code for extraction of the values . 35

viii

Introduction

Lives of modern people are accompanied with modern digital technologies. Many
people cannot even imagine their life without a computer devices. Governments and
companies often promote their use in a variety of fields. Since its beginning, Internet
has spread out throughout the whole society and services like Internet banking, social
networks and e-mail are used on daily basis by plenty of people in this world.

There are many attempts to fully digitalise governmental administration, including
the election process. However, this raises several questions of trust and many usability,
security and accuracy requirements that every electronic voting system should follow
have been defined.

Throughout the centuries, several traditional voting systems have been developed.
These include ostraca—pieces of broken pottery having been used in Athens—or classic
ballot papers in envelopes, as we know them today. These systems have been being
improved over a long period of time and they represent a confidential way of expressing
one’s opinion.

Despite reliability of traditional voting mechanisms, many institutions are interested
in introducing modern technologies to the field of voting. These include either special-
purpose machines or personal computers. Use of these technologies, of course, makes us
meet new challenges. It took the previous generations several centuries to solve many
usability, security and reliability issues makers of electronic voting systems need to solve
almost immediately. Despite all the considerations [24], electronic—particularly Inter-
net—voting is on its best way to become very popular.

Using cryptographic methods, such as blind signatures, anonymous channels or
homomorphic encryption [16], it is possible to find an elegant way to solve all these
issues. There have been quite a few attempts to design a trustworthy election system.
Some of the most successful approaches are election systems developed for Estonia
[18, 26], Norway [12, 13, 14] and Switzerland [27]. They have been run as pilot projects
by the countries’ governments.

Out faculty has also expressed their interest in electronic voting. It is planned to be
used by our students to choose their representatives it our faculty’s academic senate.
In this thesis, we design and implement a minimal, yet secure remote electronic election
system. It can enable the students to cast a vote with use of nothing but an Internet

1

Introduction 2

browser in their personal computer or mobile device. We consider all the limitations
of such technology that can have impact on our solution.

Finally, we analyse our solution and we try to figure out to what extent it meets
defined usability, security and accuracy requirements.

Chapter 1

Description of the Electronic Election
System

In this chapter, we talk about some possible definitions of the electronic election system,
we propose a definition with which we want to work and we present some requirements
on such a system. We also discuss two main approaches to the system in terms of
technology used and describe our choice of the system we use for our solution.

1.1 Definition of the Electronic Election System

To have the system correctly and precisely designed, it is necessary to have it clearly
defined. At first, we need to say something about the electronic election or voting itself.
We have borrowed descriptions from two large online encyclopaedias. We think they are
amongst the first sources to which a person being interested in this particular topic is
introduced. According to Wikipedia, electronic voting "refers to voting using electronic
means to either aid or take care of the chores of casting and counting votes” [28].
In comparison, Encyclopaedia Britannica offers this description of electronic voting,
"a form of computer-mediated voting, in which voters make their selections with the aid
of a computer” [4]. It can be observed that the two descriptions are vague in terms
of roles, or how the actual voting and counting is processed. They only say that
computers are used to manipulate with the votes and that voters are enabled to vote
using computers. For the use of our thesis we define a computer system which performs
manipulation with the votes and which is responsible for the electronic election. This
is the definition we propose:

Definition 1: Electronic Election System is a computer system which

i. authenticates the voter,

ii. enables the voter to cast a vote,

3

CHAPTER 1. DESCRIPTION OF THE ELECTRONIC ELECTION SYSTEM 4

iii. securely transfers and stores the vote,

iv. counts the votes.

This definition simply enumerates all the basic roles of our electronic election sys-
tem. We want the election process to be as automated as possible; therefore, the def-
inition is directly derived from the tasks performed during regular election for our
academic senate. The system authenticates a voter, so it checks whether the voter is
authorised to vote; it enables every authorised voter to cast their vote; it transmits and
stores every vote in a way that no vote is lost or changed; and after the voting period
has ended, it counts all the votes and outputs the result.

All the authorities and voters involved in electronic elections need to follow a partic-
ular electronic voting scheme (or protocol). This scheme prescribes procedures which
should be proceeded during the voting process and which should describe how the elec-
tronic election system should perform its roles. Such scheme usually consists of three
stages [29]:

1. Initialisation, during which the elections are announced, questions are being
made, and all the private and public keys are being generated.

2. Voting, during which voters are casting their votes: ballots are being created
and then sent.

3. Counting, during which ballots are being opened and counted, and the final
results of the elections are being published.

Several existing voting schemes are discussed in Chapter 2 and our proposed voting
scheme is described in Chapter 3.

1.2 Requirements on an Electronic Election System

Every electronic election system must satisfy several requirements to make sure that all
its tasks have been performed unmistakably and that the result is demonstrably correct.
In this section, we present several requirements which we find essential for the purposes
of the elections to the academic senate. We also compare them to the requirements
presented in bibliography sources on this topic.

P. P. Bungale and S. Sridhar from Johns Hopkins University, Baltimore have named
several Requirements for an Electronic Voting System [5]. They have divided them
into two categories: "Functional Requirements" and "Security Requirements". We
have chosen several of them which we find most important for our electronic election
system, and we have added a few that are not included in Bungale’s and Sridhar’s

CHAPTER 1. DESCRIPTION OF THE ELECTRONIC ELECTION SYSTEM 5

original paper, yet we find them very important. We have partially followed their
division. However, besides adapting the terminology we have added an extra category
for the sake of better distinction. Thus, we divided them in these three categories:
usability, security, accuracy.

Usability requirements are easy-to-use user interface, mobility, cost-effectiveness
and confirmation.

• Easy-to-use user interface. The system should have a user interface which
voters can use easily with (almost) no instructions provided. On top of that,
voting options should be displayed in a way that no candidate is disadvantaged.

• Mobility. The voters should not be restricted to a certain place where they
can vote. In terms of electronic voting, the voter should not be limited to a cer-
tain type of technology used for voting. In spite of Bungale’s and Sridhar’s opin-
ion, who call voting via the Internet "infeasible both for security issues as well
as social science issues" [5], we advocate Internet voting because we think that
in certain conditions, it is preferable and can meet our requirements (particularly
this one).

• Cost-effectiveness. The technology used for electronic voting should not be
expensive and hard to implement, yet it must provide adequate functionality and
security, so it can be effectively used as an electronic election system.

• Confirmation. Each voter should have the chance to confirm that their vote
corresponds to their own decision and have the chance to modify their vote before
committing it. Voters also should have the chance to verify whether their vote
was correctly transferred and stored.

Security requirements are secrecy, anonymity, reliability and incoercibility.

• Secrecy. There must be no chance to determine how a voter voted.

• Anonymity. No vote must be associated with a voter’s identity.

• Reliability. The system must be robust enough, so that no votes are lost or
illegally changed in any case, and it must be ensured there is no malicious code
or bugs. Also, the system should be simple enough because such system offers
fewer possibilities for the attackers and, thus, is less vulnerable.

• Incoercibility. There must be no way in which voter can prove how they have
voted. This prevents from anyone else’s impact on voter’s choice and it also
prevents from vote-selling.

CHAPTER 1. DESCRIPTION OF THE ELECTRONIC ELECTION SYSTEM 6

Accuracy requirements are authorisation, uniqueness and limitation, persistence
and correct computation.

• Authorisation. It must be secured that only authorised voters can cast their
votes.

• Uniqueness and limitation. Each voter can participate in an election by no
more than one vote and no more candidates than allowed can be chosen.

• Persistence. It must be guaranteed that votes remain intact after they have
been committed and sent.

• Correct computation. The votes must be correctly computed according to
the published rules of the election.

For comparison, Rjašková [29] has provided a set of seven requirements, which we in-
troduce to the reader: eligibility, privacy, individual verifiability, universal verifiability,
fairness, robustness, receipt-freeness, incoercibility. We strongly believe that almost
each our requirement finds its counterpart in one or more Rjašková’s requirements,
and vice versa. For instance, counterpart to confirmation is individual verifiability and
counterpart to reliability is robustness. Receipt-freeness means that there is no way to
prove how a voter voted [9]. This can be substituted for incoercibility and vice versa.

1.3 Types of Electronic Election System

In this section, we present two possible types of electronic election system, which are
the most common, and of which we choose one for our purposes. Then, we compare
those two types regarding our requirements which we presented in Section 1.2. We also
present their advantages and their drawbacks. Finally, we give reasons for our choice
of used type of electronic election system.

Regarding the technology used during the voting phase (as described in 1.1), there
are two main types of electronic election system: e-voting and i-voting [4].

1.3.1 E-voting

This type uses special-purpose machines designed directly for the purposes of the elec-
tions. These machines either directly record the ballots or they optically scan tradi-
tional paper ballots, which are then stored in their internal memory.

Reliability relies on testing the machines during the initialisation phase and on con-
fidence that the same software is running during the whole election process. However,
thanks to relatively smaller number of individual machines used during the election

CHAPTER 1. DESCRIPTION OF THE ELECTRONIC ELECTION SYSTEM 7

and thanks to higher possible responsibility from the authority, these machines can be
checked for malicious software and controlled without much difficulty. Also, network
communication between a device of this type and any other device is generally disabled.
Hence, it is possible to implement this type of electronic election system in a way that
it does not break security requirement in such a manner which is fatal to the election
process.

However, regarding functional requirements, we find this type of system awkward.
Firstly, special-purpose hardware is built to hold the tasks during the election process
and these machines are placed in special-purpose polling stations where the voting
process is controlled by a commission. Voters have to come to the polling station
where they can cast their ballot. Depending on the software in these machines, it is
possible that the voter has to learn how to use the machine before they cast their vote.

1.3.2 I-voting

The second type, on the other hand, uses Internet to hold the communication between
the authorities and the voter that enables the voter to be authorised and to cast their
vote.

One of the biggest security issues with this type of the system is the relatively
large amount of independent devices, owned mainly by the voters themselves, which
can run a malicious software which might not, depending on the security support
of the individual device, be spotted. Rubin notes how many violent acts may potential
attackers perform: "view every aspect of the voting procedure, intercept any action
performed by the legitimate user with the potential of modifying it without the user’s
knowledge, and further install any other program of the attacker’s desire—even those
written by the attacker—on the voter’s machine" [24]. The second issue is the Internet
communication itself. Thus, cryptographic protocols, some of which are to be described
particularly in chapters 2 and 3 and which are largely discussed in [29], are used
to prevent Internet communication from vulnerability during the election process and
to assure to a great extent that security and accuracy requirements are not to be
broken.

Despite all the security issues, mobility and cost-effectiveness are two important
advantages of this type of electronic voting system. A voter needs nothing, but their
computer or mobile device with either a special-purpose application or Internet browser.
Moreover, it is relatively cheap to develop a special software that runs on a user’s
device. There is left to consider whether to use Internet browser or a special-purpose
application. We find the first option as preferable from the point of view of mobility,
whilst the second is, in our opinion, preferable when considering security. We should
still bear in mind that a lot of important details lie on the way how the system is

CHAPTER 1. DESCRIPTION OF THE ELECTRONIC ELECTION SYSTEM 8

developed, which is to be discussed more deeply in chapters 3 and 4.

1.3.3 Comparison

All these facts and expectations described above have been considered for the purposes
of our choice. We state that not all requirements we present in Section 1.2 are equally
important for the purposes of the system. Also, some requirements can be equally
satisfied using either type. Mobility and cost-effectiveness have perhaps been the most
crucial during our decision process because our system is to be made for no more than
a thousand of voters involved in one election. Albeit not the most secure, our system
should provide reasonable security using accessible solutions. Some other security and
functional requirements, such as anonymity, reliability and persistence, are essential,
but these can be adequately achieved using either type of the system and appropriate
protocols.

E-voting systems are ideal for elections involving a large number of voters, e.g. par-
liamentary elections, which is not our case. Thus, we decided to use i-voting because
it meets our functional requirements perfectly and it also provides adequate security
thanks to cryptography. Possible security issues can be treated quite quickly with-
out any difficulty also thanks to the relatively small amount of individuals involved
in the elections.

Chapter 2

Summary of Existing Solutions

Several computer scientists have been working on electronic election systems until this
day. We introduce and describe some techniques used to design electronic voting
schemes as well as some existing solutions to the electronic elections.

2.1 Electronic Voting Scheme Techniques

Electronic voting systems use several cryptographic primitives to assure integrity, au-
thenticity and correct transfer of votes as well as to preserve voter’s anonymity. There
are at least three specific techniques used to design an electronic voting scheme. These
are blind signatures, anonymous channels and homomorphic encryption [16]. They are
used besides symmetric and asymmetric cryptography, certificates, digital signatures,
etc. Here, we describe the ideas on which they are based and some of their properties.
We also briefly describemixing networks, onion routing and David Chaum’s untraceable
electronic cash protocol.

2.1.1 Blind Signatures

In many voting systems, blind signatures are used to detach the vote from the voter’s
identity. The basic principle of such schemes is that blinded empty ballot is sent
to the authority alongside voter’s personal information. After verifying voter’s iden-
tity and correctness of the ballot, it is blind signed by the authority and sent back
to the voter. Then, voter unblinds the ballot, fills it and sends to votes collector.
Simple example of such a scheme is described in [2].

As written in [16], all protocol requirements, except receipt-freeness, are accom-
plished in schemes using blind signatures when some other cryptographic primitives,
such as encryption, are used together with blind signatures. But, these schemes have
restricted usability due to the fact that in order to ensure fairness and verifiability,

9

CHAPTER 2. SUMMARY OF EXISTING SOLUTIONS 10

voters need to be active in at least two phases. However, there are some protocols that
overcome this functional drawback.

2.1.2 Verifiable Anonymous Channels

We use anonymous channels to send anonymous messages. This means that there is
no way to trace the received message back to the sender. Anonymous channels can be
built using mix networks or onion routing.

• Mix Network uses a chain of proxy servers that mix the multiple messages and
send them in a random order to the next node, which might be either another
mixing server or a different type of device.

• Onion Routing encapsulates a message in new layers of encryption. Analogous
to this are layers of onion, hence the name. The message is, then, transmit-
ted through a series of subsequent routers, each decrypting the actual top layer
of encryption and uncovering the message’s next destination. In every moment
of the message transfer, only precedent and following location is known to each
onion router, thus making the sender’s identity untraceable [15].

It is necessary to ensure that no messages are dropped or substituted during
the transfer. Therefore, proofs of correct computation need to be provided. Channels
that are able to do so are called verifiable anonymous channels. Their main drawbacks
are computational complexity and inefficiency [16].

2.1.3 Homomorphic Encryption

Use of homomorphic encryption is based on the desire to decrypt the sum of votes
without being able to decrypt the individual ballots. It means that no voter can
get anyone else’s vote, while the calculation of the votes remains publicly verifiable.
For that reason, voters can openly authenticate to the server [17].

However, such schemes have several serious drawbacks. Not only do they require
computationally intensive zero-knowledge proofs, but they also do not allow voter
to choose multiple options [16].

2.1.4 Untraceable Electronic Cash Protocol

In [7], David Chaum introduces a protocol which can be used to send electronic cash
while preserving sender’s anonymity and avoid double-spending at the same moment.
Moreover, if a sender tries to send several copies of an electronic coin, their identity

CHAPTER 2. SUMMARY OF EXISTING SOLUTIONS 11

can be revealed. The protocol also provides a method that can be used to reveal double-
spender’s identity. With a few modifications, this protocol is useful for electronic voting
to prevent double-voting.

The Chaum’s protocol can be described in the following way. It can be noticed that
we present only the most important steps to the reader.

In this example, the symbol · denotes concatenation. Let n be an RSA modulus
and let f and g be two-argument collision-free functions. Let u be sender’s account
number and v be a counter associated with this number and kept in the bank.

1. Formation

(a) The sender chooses k ∈ N values ai, ci, di and ri, where 1 ≤ i ≤ k. All
ai, ci, di and ri are modulo n.

(b) The sender sends to the bank k blinded candidates Bi = r3i f(xi, yi) (mod n),
where xi = g(ai, ci) and yi = g(ai ⊕ (u · (v + i)), di).

(c) The bank randomly picks k/2 indexes from {i1, ..., ik}. The sender shows
their ai, ci, di and ri to the bank for each picked i. From these, the electronic
coin C is formed following steps described in [7].

2. Payment

(a) In order to pay, the sender sends their coin C to the shopkeeper.

(b) The shopkeeper randomly chooses k/2 binary values x1, ..., xk/2. For each
xi ∈ {x1, ..., xk/2}:

• If xi = 0, the sender shows the shopkeeper ai, ci and yi.

• If xi = 1, the sender shows the shopkeeper ai ⊕ (u · (v + i)), di and xi.

(c) The shopkeeper sends obtained values to the bank in order to verify the coin C.

When the sender tries to use C twice, it can be observed that with high probability
complementary binary values will be sent to the bank for at least one xi and the sender’s
identity will be revealed. This is possible because in this situation, all the values i, ai
and ai⊕(u ·(v+i)) are known, from which the sender’s identity can be easily extracted.

Although not designed directly for the purposes of electronic election, this protocol
can be used, requiring only slight modifications, such as making u a unique personal
identification number given to every voter prior to the election. Such a modified scheme
can be found in [22].

CHAPTER 2. SUMMARY OF EXISTING SOLUTIONS 12

2.2 Existing Electronic Election Systems

Many governments are interested in replacing traditional election schemes based on pa-
per voting with electronic election systems. At the turn of the millennia, SERVE was
an ambitious experiment by the United States of America in the field of Internet vot-
ing. It was later cancelled, mostly due to large security weaknesses SERVE showed.
Switzerland was amongst the first countries to use electronic elections in some of their
cantons. Estonia was the first country to run nationwide electronic parliamentary elec-
tions. In this section, we describe pioneering election systems developed for Estonia,
Norway and Switzerland.

2.2.1 Estonian Internet Voting

Estonian identification cards (ID cards) have a chip that stores asymmetric cryptog-
raphy key pair, which their owners can use to digitally sign documents. This has
been used to develop an internet voting protocol, which was first used during the elec-
tion in 2005, while it was still possible to vote traditionally. Information about this
protocol comes mainly from [26].

The protocol used in Estonian internet voting system uses method of double en-
velope. While the outer envelope is used to provide the voter’s identity, the inner is
used to cryptographically protect the vote. These entities play role in this protocol:
voter, voting commission, voting application, server, ballot box, counting device and
certification authority.

The protocol consists of three stages, which we now describe:

1. Initialisation. Election asymmetric encryption key pair is generated. The public
key is given to every voter while the private key is divided using a secret-sharing
scheme and each member of voting commission is given their piece. The voting
application is digitally signed and provided to every voter.

2. Voting. Voter, who has validated their ID card, connects to the server and
launches the voting application on their device. In order to establish secure con-
nection, the voter needs to provide a PIN code associated with their ID card.
The voter, then, chooses their favourite options to form the vote. When the vote
is formed, it is padded using OAEP padding scheme with randomness r and
encrypted with the election public key using RSA. After that, the voter dig-
itally signs the vote using their ID card. The vote encryption forms the lower
envelope and assures the vote protection, while the digital signature forms the up-
per envelope and identifies the voter. The double-enveloped vote is, finally, sent
to the server.

CHAPTER 2. SUMMARY OF EXISTING SOLUTIONS 13

The server verifies voter’s identity and strips off the upper envelope. It sends
the vote in the lower envelope to the ballot box and associates it with a random
token t. The voter can check whether their vote was correctly recorded using
a verification app on their smartphone. The app reveals r and t in the form
of a QR code. The voter uses a smartphone app to scan the QR code and
to compare the encrypted vote stored in the ballot box with a simulated vote
encrypted using r and corresponding the voter’s choices. Verification can be
done no later than half an hour after casting the vote and up to three times per
a single vote.

3. Counting. Valid encrypted votes stored (without the signatures) in the ballot
box are burned to a DVD, on which they are transferred to the counting device.
The private key is reconstructed and loaded onto the counting device. It produces
the result, which is burned on another DVD and published.

Estonia’s Internet Voting Committee claim that, in terms of security and reliability,
this voting protocol is equal to traditional elections. However, it seems to be contro-
versial. Tests run by a team from the University of Michigan show that the system
can be successfully attacked on both the client-side and the server-side. In one type
of client-side attacks we take advantage of the fact that the voter can cast a vote
more than once. Malware is installed on the voter’s computer that sniffs the voter’s
PIN code while the voter is electronically voting. The malicious program waits un-
til the verification period expires or until the voting application is closed and the QR
code can no more be scanned. As soon as the ID card has been inserted into the com-
puter, the malware open a hidden mock version of the voting application and submits
a replacement vote [26].

2.2.2 Norwegian Internet Voting Protocol

In Norway, trial of Internet elections was first organised in 2011. A protocol that
would satisfy the security expectations was defined for the Norwegian elections [12]
and a new cryptographic protocol was published two years later [13]. A new instanti-
ation of the cryptosystem underlaying Internet voting in Norway was introduced and
is described in [14].

In the original paper, associated with the election in 2011, a simplified voting proto-
col is described. We believe that this protocol provides enough information about the ideas
on which the Norwegian internet voting is based. The players in the protocol are: voter,
voter’s computer, ballot box, receipt generator and decryption service.

The voting scheme is divided into three stages and the following steps are processed:

CHAPTER 2. SUMMARY OF EXISTING SOLUTIONS 14

1. Key generation. Asymmetric encryption keys and three secret parameters
for the election are generated, first for the decryption service, second for the bal-
lot box and the third for the receipt generator. From these, associated public
parameters are computed. Expected return codes for each voter are also gener-
ated and sent to the voter.

2. Voting. When the voter choses their options, voter’s computer sends the en-
crypted vote to the ballot box. With the cooperation of receipt generator, receipt
codes are generated and sent to the voter. Those are checked by the voter, if they
correspond with the expected receipt codes.

3. Counting. Submitted votes from the ballot box are sent to the decryption de-
vice. There, they are decrypted and counted in order to get the final result.

According to the author of the protocol, its security properties are not perfect, yet
it is reasonable to be used for an i-voting experiment. In order to assure that the vote
remains confidential, the voter’s computer should not be corrupted. If the vote is not
correctly submitted, although not corrupted before being submitted, the voter can see
this through receipt codes and can complain. The author also concludes that "any
corrupt infrastructure player may prevent the election from completing." [12].

After the elections in 2011, the protocol used for it was gradually renewed and
improved. One of the last introduced improvements on the underlying cryptosystem
was that new techniques were used to prove the knowledge of the decryption of the en-
crypted text. These new techniques have the same effect as former; however, due
to their use, the underlying cryptosystem has a better security proof [14].

2.2.3 Swiss Online Voting Protocol

There are multiple public voting events in Switzerland every year. Not only can the cit-
izens choose their representatives in Federal Assembly, but also referenda are organised
federally or regionally.

Cantons of Geneva, Zürich and Neuchâtel were the first to introduce electronic
voting. In 2013, The Federal Council of Switzerland published a framework which
provides security, verifiability and functionality requirements in order to allow all
the voters to vote electronically. In a publication by Scytl [27], a protocol ensuring
cast-as-intended verification is provided. This protocol has been created on the basis
of Norwegian internet voting protocol (described in this thesis in 2.2.2). It is basi-
cally the improvement of that protocol "by not needing to rely on the strong assump-
tion that two independent server-side entities do not collude to preserve voter privacy"
[27]. The building blocks of the protocol are ElGamal assymetric encryption scheme,

CHAPTER 2. SUMMARY OF EXISTING SOLUTIONS 15

bit-length prime numbers representing voting options, pseudo-random function family,
signature scheme made up of probabilistic algorithms and a verifiable mix network.

These are the participants in the Swiss voting scheme:

• Election Authorities, responsible for the whole elections;

• Voters, who express their opinion by casting a vote;

• Registration Authorities, who provide voters with all the information needed;

• Voting Server, which receives, proceeds and stores the votes;

• Voting Device, responsible for enabling the voter to select their options, forming
the vote and correctly send it to the voting server;

• Code Generator, which generates return codes from the votes;

• Auditors, in charge of verifying the correctness and integrity of election process.

The Swiss voting scheme consists of following processes divided into four phases:

1. Configuration. A set of voters’ identities ID is defined and published. The pro-
tocol uses several key pairs, of which public keys are published. Those keys are
election public key, global code generation public key, signing public key. Voting
options are also published in this phase. The global code generation private key
is given to the code generator and the registration authorities, and the signing
private key is given only to the registration authorities.

2. Voter registration. In order to register to the election, voter provides their
identity id ∈ ID to a registration authority. Then, voter is given their public
and private keys, a set of return codes associated with particular choices and con-
firmation and finalisation codes. Also, voter’s public key is published together
with reference values associated with return codes and a validity proof for finali-
sation code.

3. Voting. When the voter is successfully authenticated, voter’s id and public key
are stored in their voting device. The voter votes by choosing from the voting
options and entering their private key. From these, the vote is created and sent
together with voter’s id to the voting server.

When the server successfully receives the vote and the voter’s identity, return
codes are generated and shown to the voter, who, then, is asked to confirm
the vote. The voter does so by providing their confirmation code to the vot-
ing device. Subsequently, the confirmation message is sent to the server. When

CHAPTER 2. SUMMARY OF EXISTING SOLUTIONS 16

the vote is confirmed and finalisation code is sent back to the device and the voter
checks whether it matches the finalisation code they have obtained during the reg-
istration.

4. Counting. The counting algorithm takes the votes stored on the voting server,
the election private key and validity proofs for finalisation codes and produces
the final result, which is, then, verified.

The described protocol requires the voter to type several private values to the voting
device. This means to copy by hand 52 or 410 characters when Base32 is used [27].
The voter cannot perform such a task. Therefore, the protocol also describes a usability
layer, whose role is to reduce the length of values that the voter needs to directly provide
for the voting system. Its description can be read in the original paper a we do not
include it in this thesis.

Chapter 3

Our Solution

The main purpose of this chapter is to present our own solution to the electronic election
system. We describe players in the final voting scheme we implement, the voting
scheme itself and the format in which the vote is stored and read. Then, we bring
some description of existing security schemes and services we use in our solution. We
also discuss some other proposals of the voting scheme, which we modified or rejected.

3.1 Our Voting Scheme

Our voting scheme is similar to the scheme that has been developed for elections in Es-
tonia. This scheme is described in Chapter 2. Both schemes are based on the principle
that voter’s identity cannot be known to any player besides that particular voter when
their vote can be decrypted or read. It means that computer that is responsible for de-
crypting the votes cannot obtain any information about any voter who casted their
vote.

We bear in mind that we require the voting process to run in an Internet browser
and that this technology has several limitations. The reader can read more about
limitations of the technology used in Chapter 4.

3.2 Players in Our Voting Scheme

We shortly describe each player in our voting scheme and their purpose.

• Voter V authenticates to server for vote collection S using authentication au-
thority T and casts their vote using voting application A. They also can cast
their vote in paper form in a special-purpose room.

• Election commission B are in charge of key generation during the first phase.
They hold secret key SK generated for machine for vote counting M and share

17

CHAPTER 3. OUR SOLUTION 18

corresponding public key PK. They also securely transfer encrypted data from
server for vote collection S to M . Data can be, then, decrypted using SK,
provided to M by B. In the end, they publish the result of the elections. Last
but not least, they are responsible for paper votes casted in a special-purpose
room designed for the elections.

• Database D stores information about all the candidates and identities of all
authorised voters. This information is then used by A and S to display list
of possible candidates and authorise voter V . This database is physically stored
on server S and is accessible only to S.

• Voting application A provides user interface for V in which they can cast their
vote. It also validates the vote, converts it to a proper format and encrypts it
using PK. Then it sends the vote together with the voter’s identity.

• Server for vote collection S receives encrypted vote and voter’s identity and
checks whether this identity corresponds to any of those stored in database D. If
the encrypted vote comes from an authorised voter, then it stores the encrypted
vote and the voter’s identity in its internal database of votes. This server also
provides storage for voting application A and database D.

• Machine for vote counting M receives all the votes (without identity of any
voter) stored in S’s internal database and secret key SK. It, then, decrypts all
the received votes using SK, validates them and computes the result of the elec-
tions, which is finally published. We point out that this machine is not connected
to any network prior or during the elections. This machine is restricted to be
in off-line mode until the results of the elections are published.

• Authentication authority T is responsible for authentication of V and pro-
vides S with V ’s identity, which must 1-to-1 correspond to a value in D. For pur-
poses of our voting scheme, we use Cosign, which is a service commonly used
for authentication of students studying at our faculty. From this point, we
mean Cosign any time we talk about T . Similarly, we use term UK login of voter
V instead of V ’s identity. More information about Cosign is provided in Section
3.5 and Chapter 4.

3.3 Phases of Our Voting Scheme

Our voting scheme is designed to have three subsequent phases: initialisation phase,
voting phase and counting phase. The basic purpose of these stages is discussed in chap-

CHAPTER 3. OUR SOLUTION 19

ter 1. In this section, we provide a detailed description of what is done during each
of these phases.

3.3.1 Initialisation

1. Database D with a table of candidates is created and stored on S. For each
candidate, the table contains a unique ID and name of the candidate.

2. A table of authorised voters is created in D. For each voter, this table contains
their UK login.

3. A special UK login is created for the election commission B. This login is used
when a voter casts their paper vote.

4. Public key PK and secret key SK are generated. They are to be used to encrypt
the vote by the voting application A and decrypt it by the machine for vote
counting M , respectively.

5. Using Shamir’s Secret-Sharing Scheme, the key SK is divided into n parts, where
n is the number of members of B. The key SK can be reconstructed from any
combination of k parts, where k is the smallest number of members of B that
have to sign the Protocol of elections. The reader can read more about the scheme
in Section 3.5.

6. Public key PK is shared with all the voters by inserting it into A as a constant
value for the whole elections.

3.3.2 Voting

For each voter V :

1. Voter V opens a specific Internet location in their browser and logs in using
Cosign in order to authenticate to S.

2. If V is successfully authenticated, voting application is launched in their Internet
browser. This application contains a form in which there are three options for each
candidate.

3. When V submits the form, it is then validated regarding the rules of the elections.
When the form is valid, vote in the format described in Section 3.4 is created and
this vote is encrypted using OpenPGP standard and PK. Finally, the vote and
voter’s UK login are sent to S via an HTTPS connection.

CHAPTER 3. OUR SOLUTION 20

Figure 3.1: Voting phase of our scheme

4. When S receives the encrypted vote, it compares the sender’s UK login with logins
in the table of authorised voters stored in D. If it matches exactly one record,
then it is compared whether there is a record with the same login. If there
already is such a record and the vote in this record is different form the special 0
character vote in S’s internal database of votes, this vote is rewritten with the new
one. If there is not such a record, the login and the encrypted vote are stored
in the database.

5. If V decides to use paper vote and goes to the special-purpose voting room,
the election commission B authenticate to S using their special UK login. When
they give V a ballot paper, they send a special 0 character vote together with V ’s
UK login, which rewrites V ’s electronic vote if they have sent one and prevents
V from casting an electronic vote.

3.3.3 Counting

1. Server S is disconnected from network and off-line mode is enabled.

2. Using a secured USB device, the election commission B transfers encrypted votes
from S’s internal database of votes to machine for vote counting M . It is crucial
that UK logins stored in this database be excluded from the transfer.

3. With aid of at least k members of election commission B, secret key SK is
reconstructed. Then, it is inserted into M and used to decrypt votes.

4. Decrypted votes are, then, validated byM . All votes that are in the right format
and follow the rules of the elections are counted and the final result is published.

CHAPTER 3. OUR SOLUTION 21

Figure 3.2: Counting phase of our scheme

3.4 Format of the Vote

Definition of format to which each vote is formatted prior to being sent to the server
for vote collection S is also part of our voting scheme. We want the vote to be stored
in one compact file and the choices to be clearly separated. It is known how many
candidates are in the elections. Let M be the number of candidates. Hence, we
propose that the vote is of the following format:

<candidate_number_1#value_1>...<candidate_number_M#value_M>

Here, M is the representation of number of candidates M .
This format represents a string of ordered pairs (ci, vi), where ci ∈ {1, ...,M} is

candidate_number_i and vi ∈ O is value_i, i ∈ 1, ...,M . Value vi is numerical
representation of one of the voting options and O is the set of all possible numerical
representations. For example, 1 represents YES, 0 represents NO and O = {0, 1}.

Let (c1, ..., cM) be an ordered set of all candidate numbers. Then, (c1, ..., cM) is
a permutation of {1, ...,M}.

It is obvious that the candidate number 1, for instance, is given YES if and only if
the vote contains exactly one ordered pair of value (1, 1).

3.5 Security Tools Used in Our Voting Scheme

In our voting scheme, we use these cryptographic protocols and schemes as well as
security services to securely transfer and store the data.

3.5.1 OpenPGP

Developed to provide a secure way to communicate electronically and store data,
OpenPGP (Open Pretty Good Privacy) uses asymmetric, symmetric encryption and

CHAPTER 3. OUR SOLUTION 22

hash algorithms. Not only can it be used by traditional email clients, but also by mes-
sage transfer services that use cryptographic solutions to prevent any person from un-
desired intervention. One obtains or generates OpenPGP private and public keys when
they want to encrypt data using this standard. In order to do this, one sets a passphrase
to be used to decrypt the encrypted data with a particular OpenPGP private key.

Callas et al. provide a specification of OpenPGP in [6]. More can be also read in
[10].

3.5.2 Shamir’s Secret-Sharing Scheme

In [25], Adi Shamir proposes a solution to the problem of dividing data into n pieces
in such a way that these data can be reconstructed using k of these n pieces, but
attempt to reconstruct the data with fewer than k pieces results in no information
about it. Such a scheme is called (n, k)-threshold scheme. The scheme he proposed is
based on polynomial interpolation.

Let p(x) be a polynomial of degree d. It is obvious that d + 1 distinct points
(x0, p(x0)), ..., (xd, p(xd)) are sufficient to define p(x) and that p(x) cannot be defined
with fewer than d+ 1 distinct points.

In Shamir’s scheme, assume that data D is a number. Then, to divide D into n
pieces in such a way that it can be reconstructed by using at least k pieces, we follow
these steps:

1. We pick a random k− 1 degree polynomial p(x) = a0 + a1x+ ...+ ak−1x
k1 , where

a0 = D.

2. We, subsequently, evaluate D1 = p(1), ..., Dn = p(n). Then, each of n distinct
pieces of secret consists of an ordered pair Pi = (i,Di), where i ∈ 1...n.

3. In order to reconstruct data, at least k pieces of secret Pi1 , ..., Pik are put to-
gether. Polynomial interpolation is then used to find p(x), which is the Lagrange
polynomial for the set of used pieces of secret. This makes recovering data D
possible because p(0) = a0 and p(x) has been constructed in such a way that
a0 = D.

The scheme as described above consists only of the basic idea on which secret sharing
is based. In reality, we use modular arithmetic instead of its real counterpart. Let
p > max(D,n) be a prime number. Then, the set of integer coefficients a0, ..., ak−1 is
picked randomly from a uniform distribution over integers in [0, p). Values D1, ..., Dn

are also computed modulo p. The set of coefficients forms a field Zp, which makes
polynomial interpolation and data retrieval possible [25].

CHAPTER 3. OUR SOLUTION 23

This scheme has some useful properties. It can be observed that the individual
pieces are at most of the same size as the original data. With k fixed, some pieces
can be added or deleted without affecting the other, or the pieces can be changed
without changing the original data. It is also possible to reflect hierarchy in a particular
group, such as election commission, in a way of distributing the pieces. For example,
chairperson of the commission is given three pieces, vice-chairperson two and the other
members one.

3.5.3 Cosign

Comenius University in Bratislava uses Cosign, a secure single sign-on web authentica-
tion system originally developed at the University of Michigan [20]. It is based on web
cookies.

Authentication data are sent to the central server, which uses an authentication
protocol to verify these data. The server, then, sets the user a web cookie, controlled
by Apache filters during every user’s attempt to access addresses secured by the system.
During the whole process, TLS is used for a secured communication.

In Chapter 4 is described how authentication via Cosign has been integrated into our
system.

3.6 Other Proposed Solutions

In the course of designing the final voting scheme for our election system, we proposed
some other solutions. Those were either rejected, or the final scheme was based on
them and their modifications. There are two elementary design classes being in con-
sideration during the whole process. Those are based on question whether server gives
client any additional information used to authorise the sender of the vote. Regarding
this, we consider two meaningful classes, which we call authorisation by a token and
authorisation by user information. In all of the schemes we have looked at, at least
three players represented by computers are needed: a client C, an authentication server
A and a counting machine B.

3.6.1 Authorisation by a Token

In this design, authorisation in provided by a token. This token assures B that the vote
comes from an authorised voter without associating it with a particular voter. In order
to preserve anonymity, token must be generated or handled with in a way that it
cannot be associated with any particular voter. In Chapter 2, we describe some existing
solutions using this design.

CHAPTER 3. OUR SOLUTION 24

Here, we briefly describe voting phase of a scheme that uses server A’s signature
to prove that the vote comes from an authorised voter.

Let V be voter and n ∈ N, n ≥ 2, be constant defined by the scheme. Then,
for each voter V :

1. Voter V logs in and voting application is opened on C.

2. Client C sends n encrypted votes and V ’s identity to A, where 1 of those is
the real vote and the other votes are fake.

3. If V is an authorised voter, A signs all n votes and sends them back to C.

4. Client C sends the signed real vote to B.

5. Server B validates the vote and if it recognises the signature with which the vote
is signed, then it stores the vote.

The main issue with this scheme is that it may enable the voter to double-vote when
their voting application is corrupted. In Chapter 2 we introduce the reader to David
Chaum’s scheme, which was designed to be used with electronic cash to prevent double-
spending. When using a modification of this scheme to prevent double-voting, we
face a problem. In order to achieve this, additional data about the voter have to be
generated and stored on client’s side. Of course, these data cannot be stored on voter’s
personal computer or smartphone, since our scheme is supposed to be mobile and these
data have to be accessed from any device of those kinds. This means that a cloud
storage in which these data can be stored has to be provided. This storage has to be
secured in a way that only voter can freely access the data. It raises new security
tasks, which we think the reader can imagine. We do not say that it is impossible
to implement such a system, but we think that it is not necessary to implement such
a complex system for purposes of our type of elections.

We have also come up with a totally different scheme using mix networks, referred
to in Chapter 2, to mix the tokens in order to assure anonymity.

3.6.2 Authorisation by User Information

Using voting schemes in this class, C assures that the vote comes from an authorised
voter by providing a publicly inaccessible piece of information unique for that voter that
can be matched with a record in A’s memory. In order to retain anonymity, the vote
must be in an illegible form during the whole time it can be associated with this piece
of information.

Here, we provide a simple scheme that has been modified and partly used in the final
voting scheme.

CHAPTER 3. OUR SOLUTION 25

A

C

B

2

1
3

Figure 3.3: Authorisation by a token

Let V be voter. Then, for each voter V :

1. Voter V logs in and the voting application is opened on C.

2. Client C sends encrypted vote and V ’s identity to A.

3. If V is authorised to vote, then A sends the encrypted vote without V ’s identity
to B.

4. Server B stores the vote.

This scheme has several security issues. Let corrupted A send B encrypted votes and
voters’ identities. These votes can be, then, decrypted by B, which also knows who
casted which vote. Thus, it can be revealed how voters voted.

Due to this fact, we propose in our final solution that the server A stores the votes
in an encrypted form and that the device B stays in off-line mode during the whole
election. Moreover, the server A is turned off before the votes are provided to B. This
disables all the possible communication between A and B. We only need to assure that
nothing but individual encrypted votes are transferred from A to B by the election
commission.

A

C

B

1

2

Figure 3.4: Authorisation by user information

Chapter 4

Implementation of Our Solution

Our task for this thesis is to develop a functioning electronic election system that can be
used by our faculty’s academic senate. In this chapter, we describe some important
implementation details and we provide examples of important parts of our code.

4.1 Overview

For the desired system, we implement the electronic voting scheme described in Chapter
3. This scheme consists of several entities—players, which together make our election
system and some of which are represented by computers. These players have to be
implemented independently, each running its own program that provides all its func-
tionality and communication with other entities. Analysis of the final solution can be
found in Chapter 5.

We have chosen Python [11] and JavaScript [19] as our primary programming lan-
guages. For databases, we use SQL [8], a standard language in database programming.
Our used encoding is UTF-8.

We name this system SEVAS (System of ElectronicVoting forAcademic Senate).
The source code for this system is attached to this thesis and consists of several
Python and JavaScript files that provide the voting functionality and the administra-
tion of votes, and of some additional configuration and database files. More information
about the source files can be found in the included README.md file. The code for this
system is publicly available and can be found on GitHub. The reader can access it
here: github.com/adamcho14/SEVAS.git.

In this election system, we have three possible answers for each candidate: positive,
negative and neutral. However, if one wishes, the code for this system can be easily
changed to use a different number of possible answers.

26

github.com/adamcho14/SEVAS.git

CHAPTER 4. IMPLEMENTATION OF OUR SOLUTION 27

4.1.1 Technical Requirements

In order to run the system correctly, there have to be some technical requirements
accomplished. On the client-side, the voter needs to have one of these supported
Internet browsers: Mozilla Firefox, Google Chrome or Safari.

The system is developed to run on Linux distributions and the system can be built
from existing Python source files. In order to provide the authentication, the Linux
voting server needs to have Apache 2 server installed with a module that provides
Cosign functionality. More about Cosign can be read in Chapter 3.

The voting is provided by a series of CGI scripts. Common Gateway Interface
(CGI) is a protocol used to run external programs—CGI scripts—under a server. It
forwards the request sent by the client to the external program, which is executed, and
the output of the program in the form of a response is sent via the server to the client
[23]. These scripts are very often used to generate dynamic web content.

In order to manage the keys and certificates, GnuPG has to be installed on the ma-
chine for vote counting. It is a full-featured and free implementation of OpenPGP
standard [21]. We access GnuPG functionality via the gnupg module for Python.

4.1.2 External Libraries and Packages Used

In almost every file, we include packages cgi and cgitb to provide the CGI function-
ality. We also use several external libraries or packages to implement services that we
do not program directly. They are used in different parts of our election system:

• Front end JavaScript vote forming and vote encryption. JavaScript cryp-
tography library openpgpjs.

• Back end Python internet voting and vote collection. We import Python
packages os and sqlite3.

• Machine for vote counting code. In this code, packages json, sqlite3 and
gnupg.

• Code for key and vote administration. Here, we import packages sqlite,
gnupg and secretsharing.

4.2 Database

We use an open-source database library SQLite [1], which is an embedded database
with no separate server process. We strongly believe that this database library is
sufficient for our system because it is used as a server-side data storage. The client does

CHAPTER 4. IMPLEMENTATION OF OUR SOLUTION 28

not communicate directly with the database, but they either send data to the server,
which are stored in the database by the server, or all Select statements are first posted
by the server and their results are sent to the client. We, too, do not expect very
high traffic because our system is created for elections with no more than about a few
thousand voters (our faculty has about a thousand students).

We have also chosen SQLite mostly because we find it sufficient for the purpose
of this particular implementation, that is to show how our electronic election system
works. If the user of this system wishes, MySQL, PostgreSQL or another SQL server
can be chosen for the practical use instead of SQLite library. It is obvious that it
requires some minor changes in implementation, which can be easily executed.

Database structure of our voting system consists of two separate databases stored
in the memory of the server for vote collection: database of persons and database
of votes. There are discusses in the following subsections.

4.2.1 Database of Persons

The purpose of this database is to store information about both the candidates and
the voters. They are used to display the list of candidates and to provide the list of au-
thorised voters. Thus, this database has two tables, whose structure is described below.
Not only do we provide the reader with the information about the columns in these
particular tables, but we also show them how we create the tables. In this description,
we use standard SQL syntax to present the way in which the tables can be created:

CREATE TABLE Candidates (

CandID int NOT NULL AUTO_INCREMENT PRIMARY KEY ,

LastName varchar (255) NOT NULL ,

FirstName varchar (255) NOT NULL);

CREATE TABLE Voters (

UKLogin varchar (255) NOT NULL PRIMARY KEY);

Here can be seen that the table of candidates consists of all the information that is
displayed to the voter. We suggest that the CandIDs be in ascending order starting
from number 1. The table of voters contains only the voter’s UK login. The other infor-
mation are not important for the server and can be fetched from the the data provided
by Cosign.

The reader can obtain some more information about the usage of these databases
in the next sections.

CHAPTER 4. IMPLEMENTATION OF OUR SOLUTION 29

4.2.2 Database of Votes

This database is the internal database of the server for vote collection. Its purpose is
to store encrypted votes paired with the voters’ UK logins. The database is made up
of a table that can be created with the following SQL statement:

CREATE TABLE Votes (

UKLogin varchar (255) NOT NULL PRIMARY KEY ,

Vote varchar (255) NOT NULL);

4.3 Voting

This application provides the voter with interface that allows them to authenticate and
cast their vote. This application runs on the server for vote collection as a series CGI
scripts. The application works as following:

1. When the voter types the WWW address of the Internet elections, the main page
with the login button is displayed.

2. When the voter clicks on the login button, they are redirected to the University’s
central login webpage, where they can authenticate.

3. When the voter has been successfully authenticated, a form with the voting
options, the maximum number of chosen options and a button with the label
Create a vote is displayed.

4. When the voter’s desired options are chosen, the voter clicks on the button.
If they have chosen more than the maximum number of options, an alert is
displayed. Otherwise, the vote is created, encrypted and displayed on the page
together with a button whose label says Send the vote.

5. When this button has been clicked on, the voter is informed on the page whether
or not their vote has been successfully processed. At this moment, they have
successfully casted a vote and they can log out, or, for some of the reasons
described in Chapter 3, they were not allowed to cast a vote.

In order to provide all the functionality, the files openpgp.min.js and
form_processing.js have to be included in the source code for the voting appli-
cation. The former provides necessary OpenPGP functionality and the latter includes
JavaScript code for client-side vote validation, formation and encryption.

CHAPTER 4. IMPLEMENTATION OF OUR SOLUTION 30

4.3.1 The Form

The main part of the voting application is the HTML form. It is sent using the POST
method. It contains a list of candidates from the database of persons, described in Sub-
section 4.2.1. There are three radio buttons for every candidate, each representing one
of the possible answers: positive, negative, or neutral. To each of these answers a par-
ticular integer value, obligatory for the whole election, has been assigned. In our
implementation, positive answer is represented by 1, negative by 2 and neutral by 3.
This form also includes field vote. This is to be filled with the encrypted vote. More
about vote formation can be read in Subsection 4.3.2.

Some parts of our code use JavaScript and the voter’s UK login is displayed
in the HTML source code. This means that the voter can change the code of the page
and send corrupted data, such as a vote that is not in the right format. Therefore,
votes are validated during the counting period.

4.3.2 Vote Formation and Encryption

We use a JavaScript program to form the final vote from the voter’s answers. The for-
mat of the vote is described in Section 3.4. Here, we describe what is done with
the data from the form in order to become the encrypted vote.

It is checked whether the number of positive answers in the form does not exceed
their maximum number defined by the election commission. All the candidate IDs
and the values corresponding the checked answers are put together to form the vote.
The vote is, then, encrypted using OpenPGP encryption provided by the openpgpjs

library. For the encryption, the election public key is used. More about managing
the election keys and certificates is written in Section 4.7.

4.4 Vote Collection

Using the POST method, the final vote is sent together with the encrypted UK login
to the server for vote collection. There, a CGI script that verifies the voter and inserts
the vote to the database of votes, described in Subsection 4.2.2, is executed.

The code of this past consists mostly of Select, Insert and Update SQL statements.
The script decrypts the UK login and checks whether the particular voter has their
record in the database of persons. If this is true, then it checks whether the voter has
their vote recorded in the database of votes and whether this vote has the special 0
value. If the value is 0, the vote is not recorded. If there already has a vote been
recorded with the voter’s UK login in the database, the value is updated. Otherwise,
a new record with the voter’s UK login and the received vote is created. Finally,

CHAPTER 4. IMPLEMENTATION OF OUR SOLUTION 31

function createVote(radios) {

var vote = "";

for (i = 0; i < radios.length; i++) {

if (radios[i]. checked) {

vote += "<";

vote += radios[i].name.toString ();

vote += "#";

vote += radios[i]. value.toString ();

vote += ">";

}

}

return vote;

}

Figure 4.1: Code for the vote formatting function

it shows the voter a message saying whether the vote was successfully recorded or
the voter is not allowed to vote.

import sqlite3

connection = sqlite3.connect("votes.sqlite")

cursor = connection.cursor ()

cursor.execute("INSERT␣INTO␣votes␣VALUES(?,␣?)", (UKlogin , vote ,))

connection.commit ()

connection.close ()

Figure 4.2: Example of a code using the SQLite library

4.5 Vote Transfer

This task is performed by the server for vote collection at the beginning of the counting
period.

The vote transfer program selects encrypted votes from the database of votes
to produce a list of all votes different from the special 0 vote. Let us call this list
V . The list V is, then, saved in JSON encoded file F . JavaScript Object Notation
(JSON) is a data interchange format derived from the JavaScript object literals defined
in the ECMAScript Programming Language Standard. It is text-based and language-

CHAPTER 4. IMPLEMENTATION OF OUR SOLUTION 32

independent. It can represent null, numbers, boolean values, strings, arrays and objects.
Specification of JSON is contained in [3].

The file F is saved to a USB flash drive by the voting commission and transferred
to the machine for vote counting.

4.6 Vote Counting

The JSON file F containing the votes is moved from the USB device to a particular
directory. Also, the election private key is reconstructed and saved in a particular file.
The machine for vote counting must, also, be provided with the list of candidates.
A special Python script is written to create the list from the database of persons.
These files are read by the counting program running on the machine for vote counting.
The file undergoes several procedures in order to have the votes extracted, decrypted
and counted:

1. The original list of votes V is reconstructed from F . Each vote v ∈ V is a string
representing the vote in the desired format of the vote.

2. Each vote v ∈ V is decrypted and parsed. The result of parsing is a list of char-
acters C which form the string v.

3. Each vote, now represented by C, is checked whether it is of the proper format and
answers for each candidate, represented by the integer values, are extracted.

4. All valid votes with extracted values are counted and the final result is published
by the machine.

Vote decryption, validation, extraction and counting are more deeply described
in the following subsections.

4.6.1 Decryption

Vote decryption is fully provided by gnupg module mentioned in Subsection 4.1.1. It
loads the election private key and returns the decrypted vote as a string.

4.6.2 Validation

The purpose of the validation is to check whether the vote is of the proper format.
More formally:
Let the vote v = v1v2....vn, where n ∈ N and v1, ..., vn ∈ {0, ..., 9, <, >, #}. It can be
noticed that subsequences that contain 0 immediately after < or #, for example <1#09>,
are permitted. Such case can be represented in a way that the initial 0 be omitted

CHAPTER 4. IMPLEMENTATION OF OUR SOLUTION 33

from the final representation of the value during the extraction process. According
to this, 09 would become 9.

We call the vote v valid if it is accepted by deterministic finite automaton A =

{Q,Σ, δ, q0, F}, where Q = {q0, ..., q4}, Σ = {0, ..., 9, <, >, #} and F = {q0}. We
do not describe the δ function, since it can be easily reconstructed from the diagram
in Figure 4.6.2. There, the word digit represents any symbol of digit 0,...,9.

q0start

q1

q2

q3q4

< digit

#

digit

digit

>

digit

Figure 4.3: Deterministic finite automaton accepting valid votes

The reason why we describe A is that the code for vote validation is an actual
simulation of this automaton. Therefore, we find A a good abstraction of the vote
validation process as it is implemented in our voting system.

4.6.3 Extraction

One of the most important task of this part of our system is to extract all the ordered
pairs (canditate_number, value) from all valid votes. During this process, it is also
double-checked whether the individual votes do not contain more positive answers
than allowed.

At the beginning, a counter q for the positive answers is initialised and set to zero.
Dictionary D is initialised. In D, candidate numbers c would form the key for which
a value v associated with the answer is stored. Then, list C, representing the vote
in the valid format, is looped through. Let us show to the reader how a single dictionary
element D[c] with value v is formed.

It can be said that the algorithm works in two distinct states. The first state is
when a < symbol has been read, but the next # symbol has not been reached, yet.
In this state, a candidate number is read digit by digit. Let k be the already read
part of the candidate number c and the first n digits thereof have already been read.
We assume that there is at least one digit before the next # symbol. We move on
to the next digit d. Because the numbers are represented in the standard decimal

CHAPTER 4. IMPLEMENTATION OF OUR SOLUTION 34

position notation, k is changed in the following manner: k := 10k + d. This process is
finished when we reach a # symbol. Finally, we do c := k.

In the second state we have read a # symbol, but the next > symbol has not been
read, yet. In this state we form the value v associated with the candidate number
similarly to what was done in the first stage. When we reach a > symbol, we assign v
its value and we do D[c] := v. If v equals the value that represents the positive answer,
we increment q by 1.

When the whole vote was processed, we check whether q has not exceeded the max-
imum number of positive answers defined by the election commission. If so, we return
zero, otherwise we return D.

During the extraction process, we deal with invalid votes that contain at least one
of these:

• two keys ki and kj such that ki = kj, where i 6= j,

• invalid candidate number,

• invalid voting option.

Such votes are displayed to the voting commission and are not counted.

4.6.4 Counting

This is the final part of our election system. The votes with extracted values are
counted and the final result is displayed in this part.

Let us recapitulate that we have 3 types of possible answers: positive, negative and
neutral. At the beginning, 3n ∈ N variables are initialised and set to zero, where n
is the number of candidates. Let i be a particular candidate number and j be a value
representing a particular type of answer. Then, c[i][j] represents the count of answers
of type j given to candidate number i. For every candidate i, it is looped through
every vote v. For every value j, if j is associated with key i in vote v, then c[i][j] is
incremented by 1.

Finally, it is displayed for every candidate how many positive, negative and neutral
answers they were given.

4.7 Administration

Some administration programs are also included in our election system. They are used
by the election commission for key generation and secret sharing of the election private
key and to administer the paper voting process. Here, we provide a complete list of them
and shortly describe the function of each one:

CHAPTER 4. IMPLEMENTATION OF OUR SOLUTION 35

num = 0 # checks the number of yeses

values = {}

j = 1 # the first number in the string

while j < len(l):

key = 0

val = 0

while l[j] != ’#’:

key = 10* key + int(l[j])

j += 1

j += 1 # the first number after "#"

while l[j] != ’>’:

val = 10* val + int(l[j])

j += 1

if val == 1:

num += 1

values[key] = val

j += 2 # the first number after "<"

if num > CAND_NUM:

return 0

return values

Figure 4.4: Code for extraction of the values

• Paper voting. This is used by the election commission to record that a voter
has voted traditionally. The election commission uses their internal UK login
and password to log in, but they do not authenticate with Cosign. Instead, they
use a special login page. Then, a form displays and they type in the UK login
of the voter that is voting traditionally and confirm it. In this implementation
the commission’s internal UK login and password are not encrypted, but are
simply stored as variables in the CGI script used. However, it is more secure
when a hash is used to store the data, but we did not implement it. But, it can
be done in the future.

• Key management. Here, the electronic election public and private keys can be
generated and the private key can be shared among members of the election
commission.

In order to generate the keys, the election commission may use our key generating

CHAPTER 4. IMPLEMENTATION OF OUR SOLUTION 36

program. It also uses gnupg. The program generates a public key, which is saved
to a file and a private key, which is, automatically, shared among the members
of the election commission using the secret-sharing program, we also implement.

It splits the given key into several parts using secretsharing library for Python.
The shares are, then, saved to specific files and given to the members of the elec-
tion commission. Our key is longer than the limit of the library we use. Therefore,
the key is shared line by line. For instance, in file share_i_j.txt, i is the ID
of the share and j represents the j-th line of the key. Files with the same ID
are stored in the same directory shares_i. Then, a similar program reconstructs
the key from shares given by some of the members. The members copy the files
containing their parts of secret to the directory in which is the program saved.
The members of the commission type in their IDs and the program recovers
the key.

In this implementation, however, the private key is saved to a file, which can
be loaded to the key-sharing program. Its due to fact, that the vote generation
program cannot find the secret-sharing program in the present file structure.

Chapter 5

Analysis of Our Solution

In Chapter 1, we established several requirements concerning usability, security and
accuracy of an electronic election system. In this chapter we briefly and informally
analyse how our solution presented in Chapters 3 and 4 meets these requirements.

5.1 Usability

Here, we discuss the usability of our electronic voting system concerning these points:

• Easy-to-use user interface. Our user interface is provided by an online ap-
plication. Users can easily log in using the usual method used by our faculty.
The actual voting is done by clicking on a few radio buttons and clicking on two
submit buttons. The voter is given the information on the number of candidates
they can vote in favour of. On the other hand, we could say that giving answer
for every candidate might be time consuming. But, the neutral option is set as
the default option. It means that the voting time can be reduced just to giving
yes answers to the desired candidates while the others are left with the default
answer.

• Mobility. The voter is not restricted to a particular type of device, nor have they
to stick on an individual device. What is more, no voting application is needed
to be installed. The voters can access voting everywhere. The only thing they
need is a device with a supported Internet browser and an Internet connection.

• Cost-effectiveness. The system requires two to three computer devices on
the server side, which can be costly depending on the resources of the faculty.
Yet, all the software used for the system is open-source, so that it does not require
any additional financial resources.

• Confirmation. When the vote is formed, the voter can still change their mind
and create another vote before the former would be sent. Moreover, using the elec-

37

CHAPTER 5. ANALYSIS OF OUR SOLUTION 38

tronic voting, the voter can cast a vote as many times as they want to and only
the most current one remains recorded. Yet, confirmation is not fully imple-
mented in our solution. For example, the Estonian voting protocol, described
in Chapter 2, implements an application that the voter can use to check their
vote. It might be possible to implement such an application for our electronic
election system, too. However, this is not included in our implementation partly
due to preserving incoercibility.

5.2 Security

In this section, we discuss how secure our solution is. We analyse these requirements:

• Secrecy and anonymity. When the vote is formed and sent to the server
for vote collection, it is in an encrypted state and the server does not pos-
sess the election private key, which must be used to decrypt the votes. In-
stead, this private key is shared among members of the voting commission, using
a secret-sharing scheme. When the votes are transferred to the machine for vote
counting, they are no more associated with voters’ identities. Therefore, they
can be decrypted and counted there. Keeping secrecy and anonymity relies mostly
on the election commission. They should not provide the server for vote collec-
tion with the election private key. They must not provide the machine for vote
counting with voters’ identities associated with the votes, either. The most vul-
nerable part of our code is retrieving the encrypted votes from the database
of votes and saving them to the USB flash drive. At this very moment, a bug or
undesired intervention can cause lost of secrecy and anonymity.

• Reliability. Our voting scheme is very minimal and mostly uses known tech-
niques. Votes are stored in a database and associated with an individual identity
for most of the time. No anonymous channels, described in Chapter 2, are used.
Therefore, chances that the votes are dropped or substituted while they are trans-
ferred or stored are low. Moreover, a suspicious voter can cast their vote again if
they think there is chance that is has not been recorded correctly. Reliability
also rests on the election commission during administration of paper voting and
during the maintenance of server-side devices used. On the other hand, voters
are responsible for they devices and they can contain malware, which can affect
the election. Our implementation relies on at least two cryptographic libraries.
It means that there can be some bugs in them, as well. If we find that out, we
are ready to update our implementation according to the findings.

• Incoercibility. The voter can change their vote in any moment. That means

CHAPTER 5. ANALYSIS OF OUR SOLUTION 39

that, from the client side, there is no such a way in which the voter can prove
how they voted most recently. On the other hand, the encrypted votes are stored
together with UK logins of the voters’ and the voters have access to the encrypted
vote stored in their Internet browser during the voting session. If an attacker
succeeds in accessing the database of votes, they can compare the encrypted
voter’s vote in the database with the encrypted vote from the voter’s Internet
browser.

5.3 Accuracy

It is important to make sure that only valid votes are recorded, all the votes are accu-
rately counted and the right result is displayed. Now, we discuss how our solution meets
our accuracy requirements:

• Authorisation. In our system, voters are authorised twice. First, they need
to log in using Cosing, an authentication system used by our University, be-
fore the voting application is even displayed to them. When they send their
vote together with their identity provided by Cosign, the server for vote collec-
tion checks whether they are allowed to vote. If not, the sent vote is, simply, not
recorded.

• Uniqueness and limitation. Every voter participating in the electronic elec-
tion is allowed to cast as many votes as they want to. However, only the most
recent vote remains recorded. As soon as they participate in the paper election,
their electronic votes are erased and they are not able to participate in the elec-
tion anymore. The voting application checks whether the voter does not vote
for more than allowed number of candidates in a single vote. Due to the fact
that the code of the voting application can be changed in the Internet browser
and an invalid vote can be sent, this is double-checked during the counting phase
of our election system.

• Persistence. Sent votes are stored in the database and handled with according
to the voting scheme. They are transferred only once—from the server for vote
collection to the machine for vote counting. However, the votes can be irreversibly
changed by the election commission if they accidentally make a record about
a voter that has not been involved in paper voting, yet.

• Correct computation. The machine for vote counting is responsible for the cor-
rect computation. Therefore, this depends on the correctness of the particular
implementation of the machine for vote counting. We have not discovered any
bugs regarding vote computation in our implementation.

Conclusion

Estonia Norway and Switzerland are piloting countries in developing and organising
electronic elections. Their election systems represent reasonable solutions and use sev-
eral cryptographic primitives to provide enough security and reliability. Representa-
tives of our faculty also expressed interest in electronic elections as a tool of democracy
for our students and this thesis deals with this desire.

Firstly, we defined the electronic election system and its three basic phases, and
we presented some usability, security and accuracy requirements. This was important
because we needed to describe the topic with which we were about to deal as clearly
as possible. Keeping in mind these requirements, we also discussed two main types
of electronic election system in terms of their functionality.

We also gave examples of existing systems and described technologies they used
in order to retain all the aspects of a secure and reliable electronic election system. We
also discussed some problems that those systems had.

This led us to our own proposal of the electronic election system. We listed play-
ers in this system, including voters or vote counting machine. These players played
several roles in three phases of our proposed voting scheme. This scheme uses sev-
eral technologies, such as secret-sharing scheme, Cosign authentication system and
OpenPGP encryption standard. To provide the reader with some information on how
our system had been designed, we described several proposed schemes and we explained
to the reader why we either rejected them or built on top of them.

As part of our this thesis, we also implemented the proposed system as an Internet
application. This included implementation of the voting application, which can run
in the Internet browser, server for vote collection, machine for counting the votes and
some supplementary administration programs.

Finally, we analysed our system regarding the usability, security and accuracy re-
quirements we defined.

We must admit that we met challenges of various kinds during the implementation
of our system. In the first place, we needed to learn how to work with various cryp-
tographic libraries, particularly gnupg for Python and openpgpjs for JavaScript. We
were not a hundred percent successful in using these libraries, but we think that we
managed to create a reasonable implementation. We also learnt a lot about the work

40

Conclusion 41

with CGI scripts, and OpenPGP encryption and decryption. Although we possessed
a theoretical basis in those topics, we needed to learn from scratch how to practically
use them in order to create a working system. Last but not least, we learnt new infor-
mation about the Internet infrastructure of our faculty and how to use Cosign, a secure
single sign-on used by our university.

We hope that this thesis represents only the beginning of this electronic election sys-
tem. There are several other goals that we want to be accomplished. First, the system
needs to be deployed and tested in the environment of our faculty in order to enable and
test the Cosign functionality. This includes configuration of the server and the com-
puters on which the system is to run. Then, the system can be improved and extended.
A smartphone application can be one of such extensions. We think there is a lot to do
in the system itself, as well. For example, customisable answers is something we have
not implemented, yet. Also, the system is still not fully automated. The election public
key, for instance, has to be copied to the JavaScript file and formatted by a member
of the commission. And last but not least, our system must be used during a real
election in order to find out all its advantages and drawbacks and to figure out to what
extent we accomplished all our desires.

Bibliography

[1] SQLite [online]. Retrieved May 12, 2018, from http://www.sqlite.org.

[2] Standford University Applied Gryptography Group. Electronic Voting [online].
Retrieved April 21, 2018, from https://crypto.stanford.edu/pbc/notes/

crypto/voting.html.

[3] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange Format
[online]. 2017. Retrieved May 11, 2018, from http://buildbot.tools.ietf.

org/html/rfc3875.

[4] Encyclopaedia Britannica. Electronic voting [online]. Retrieved January 24, 2018,
from https://www.britannica.com/topic/electronic-voting.

[5] Prashanth P. Bungale and Swaroop Sridhar. Requirements for an Electronic
Voting System. Department of Computer Science. Johns Hopkins Univer-
sity, Baltimore. Available at http://www.cs.jhu.edu/~rubin/courses/sp03/

group-reports/group4/group4_requirements.pdf.

[6] Jon Callas, Lutz Donnerhacke, Hal Finney, David Shaw, and Rodney Thayer.
OpenPGP message format. Technical report, 2007.

[7] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Con-
ference on the Theory and Application of Cryptography, pages 319–327. Springer,
1988.

[8] Refsnes Data. SQL Introduction [online]. Retrieved May 9, 2018,
from https://www.w3schools.com/sql/sql_intro.asp.

[9] Stéphanie Delaune, Steve Kremer, and Mark D Ryan. Receipt-freeness: Formal
definition and fault attacks. In Proceedings of the Workshop Frontiers in Electronic
Elections (FEE 2005), Milan, Italy, 2005.

[10] Michael Elkins, David Del Torto, Raph Levien, and Thomas Roessler. MIME
security with OpenPGP. Technical report, 2001.

42

http://www.sqlite.org
https://crypto.stanford.edu/pbc/notes/crypto/voting.html
https://crypto.stanford.edu/pbc/notes/crypto/voting.html
http://buildbot.tools.ietf.org/html/rfc3875
http://buildbot.tools.ietf.org/html/rfc3875
https://www.britannica.com/topic/electronic-voting
http://www.cs.jhu.edu/~rubin/courses/sp03/group-reports/group4/group4_requirements.pdf
http://www.cs.jhu.edu/~rubin/courses/sp03/group-reports/group4/group4_requirements.pdf
https://www.w3schools.com/sql/sql_intro.asp

BIBLIOGRAPHY 43

[11] Python Software Foundation. Welcome to Python [online]. Retrieved May 9, 2018,
from https://www.python.org.

[12] Kristian Gjøsteen. Analysis of an internet voting protocol. IACR Cryptology
ePrint Archive, 2010:380, 2010.

[13] Kristian Gjøsteen. The Norwegian Internet Voting Protocol. E-Voting and Iden-
tity, pages 1–18, 2012.

[14] Kristian Gjøsteen and Anders Smedstuen Lund. The Norwegian Internet Voting
Protocol: A new Instantiation. IACR Cryptology ePrint Archive, 2015:503, 2015.

[15] David Goldschlag, Michael Reed, and Paul Syverson. Onion Routing for Anony-
mous and Private Internet Connections. Communications of the ACM, 42(2):39–
41, 1999.

[16] Rolf Haenni, Eric Dubuis, and Ulrich Ultes-Nitsche. Research on e-voting tech-
nologies. Bern University of Applied Sciences, Tech. Rep, 5, 2008.

[17] Yehuda Lindell Jonathan Katz. Introduction to modern cryptography. Boca Raton,
Fla.: Chapman & Hall/CRC Press, 2008.

[18] Epp Maaten. Towards remote e-voting: Estonian case. Electronic Voting in
Europe-Technology, Law, Politics and Society, 47:83–100, 2004.

[19] Mozilla. JavaScript [online]. Retrieved May 9, 2018, from https://developer.

mozilla.org/en-US/docs/Web/JavaScript.

[20] University of Michigan. cosign: web single sign-on [online]. Retrieved April 16,
2018, from http://weblogin.org.

[21] The GnuPG Project. GnuPG. Retrieved May 14, 2018, from https://www.gnupg.

org.

[22] Michael J Radwin and Phil Klein. An untraceable, universally verifiable voting
scheme. In Seminar in Cryptology, pages 829–834, 1995.

[23] David Robinson. The common gateway interface (CGI) version 1.1 [online],
2004. Retrieved May 10, 2018, from http://buildbot.tools.ietf.org/html/

rfc3875.

[24] Aviel D. Rubin. Security Considerations for Remote Electronic Voting. Commu-
nications of the ACM, 45(12):39 – 44, December 2002.

[25] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

https://www.python.org
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://weblogin.org
https://www.gnupg.org
https://www.gnupg.org
http://buildbot.tools.ietf.org/html/rfc3875
http://buildbot.tools.ietf.org/html/rfc3875

BIBLIOGRAPHY 44

[26] Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kitcat, Harri Hursti,
Margaret MacAlpine, and J Alex Halderman. Security analysis of the Estonian
internet voting system. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 703–715. ACM, 2014.

[27] Scytl Secure Electronic Voting. Swiss Online Voting Protocol.

[28] The Free Encyclopedia Wikipedia. Electronic voting [online]. Retrieved January
24, 2018, from https://en.wikipedia.org/wiki/Electronic_voting.

[29] Zuzana Rjašková. Electronic Voting Schemes. Master’s thesis, Faculty of Math-
ematics, Physics and Informatics. Comenius University, Bratislava, April 2002.
Available at https://people.ksp.sk/~zuzka/elevote.pdf.

https://en.wikipedia.org/wiki/Electronic_voting
https://people.ksp.sk/~zuzka/elevote.pdf

Appendix A - Source Code

Source code of our implementation of the election system can be found on the CD
attached to this thesis. It is also available on the Internet and can be accessed
on github.com/adamcho14/SEVAS.git

Necessary information about the code is provided in the README.md

and the CONTENTS.md files.

45

github.com/adamcho14/SEVAS.git

	Introduction
	Description of the Electronic Election System
	Definition of the Electronic Election System
	Requirements on an Electronic Election System
	Types of Electronic Election System
	E-voting
	I-voting
	Comparison

	Summary of Existing Solutions
	Electronic Voting Scheme Techniques
	Blind Signatures
	Verifiable Anonymous Channels
	Homomorphic Encryption
	Untraceable Electronic Cash Protocol

	Existing Electronic Election Systems
	Estonian Internet Voting
	Norwegian Internet Voting Protocol
	Swiss Online Voting Protocol

	Our Solution
	Our Voting Scheme
	Players in Our Voting Scheme
	Phases of Our Voting Scheme
	Initialisation
	Voting
	Counting

	Format of the Vote
	Security Tools Used in Our Voting Scheme
	OpenPGP
	Shamir's Secret-Sharing Scheme
	Cosign

	Other Proposed Solutions
	Authorisation by a Token
	Authorisation by User Information

	Implementation of Our Solution
	Overview
	Technical Requirements
	External Libraries and Packages Used

	Database
	Database of Persons
	Database of Votes

	Voting
	The Form
	Vote Formation and Encryption

	Vote Collection
	Vote Transfer
	Vote Counting
	Decryption
	Validation
	Extraction
	Counting

	Administration

	Analysis of Our Solution
	Usability
	Security
	Accuracy

	Conclusion
	Appendix A - Source Code

