
Reinforcement learning in 2048 game

Adrián Goga
Supervisor: prof. Ing. Igor Farkaš, Dr.

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

June 27, 2018



AI in games playing

Board games are an interesting setting for Artificial
Intelligence

Often require planning
Sometimes involve randomness

The game of 2048 is both stochastic and requires planning



Intro to the game

After selecting the ← action, the two 4 tiles merge into an 8 and a
new 4 tile spawns in the corner.



2048 in AI research

Tree search strategies (e.g. expectimax):

Use heuristics based on human made analysis

Achieve very good results

’Just’ an optimized brute-force, not really AI

Reinforcement learning:

Similar to learning in nature

No prior knowledge of the game required



Reinforcement learning

Agent interacts with the environment

Trial and error learning (as opposed to supervised)

Each interaction is a state transition (St ,At ,Rt ,St+1)

The goal is to find the optimal policy (maximize the expected
rewards)



Q-learning

A popular RL algorithm (Atari from pixels)

Q(s, a) is the expected cumulative reward obtained by taking
action a in state s and playing optimally

Algorithm works by updating the Q-function

It is proven that the Q-learning converges to optimal policy



Deep Q Network

Problem: too many states

Solution: approximate the Q-function using a neural network

Convergence is not guaranteed anymore



The base model

Implemented in Python using Keras library with TensorFlow
backend

Dueling Double DQN + PER

ε-greedy exploration



Experimental settings

Score: the sum of the tiles at the end of the game

We allow moves that do not move any tiles in hope of better
stability of learning



Experiment 1

Input encoding: Gray code

Reward function: sum of the values of merged tiles



Experiment 1

No learning progress achieved



Experiment 2

Input encoding: Gray code

Reward function:

R(s, s ′) =

{
−1, if s ′ is a terminal state

min(#tilesMerged(s, s ′)/4, 1), otherwise



Experiment 2

Visible improvement, although not very stable learning progress



Experiment 3

Input encoding: Normalized board encoding

Reward function:

R(s, s ′) =


−1, if s ′ is a terminal state

1, if R
′
(s, s ′) ≥ 8

R
′
(s, s ′)/60, otherwise



Experiment 3

The training is stable and saturated



Experiment 4

Input encoding: Normalized board encoding

Reward function:

R(s, s ′) =

{
1, if obtained 2048 tile

(#tilesMerged(s, s ′)− 1)/8, otherwise



Experiment 4

Best result so far



Best agent vs. random agent

Distributions of scores of 10000 testing games



Summary

We designed and implemented RL agent that plays 2048 game

We had to modify the rewards to achieve better performance

The best agent achieved the 2048 tile in about 7% of testing
games

Better results can be obtained by using distributional or
asynchronous learning methods



End of presentation

Thank you for your attention
Please, feel free to ask questions


