

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics
Department of Computer Science

Code generation from AML
Implementation into CASE tools and support for existing agent

platforms

Master’s Thesis

Michal Kostic

Informatics

Thesis advisor:

Mgr. Radovan Cervenka

Bratislava 2006

Hereby I declare that the work presented in this thesis is my own, written only with help of
referenced literature.

Bratislava, May 2006

.....................................
Michal Kostic

I would like to thank my thesis advisor Mgr. Radovan Cervenka for guidance, advices and
suggestions.

Contents

1 Introduction ..6

1.1 Abstract ..6
1.2 Introduction to the Agent Development...6
1.3 Objectives and Tasks..7
1.4 Work Structure ...7

2 Sources of Inspiration...8
2.1 Code Generator as a Compiler ...8
2.2 Model Driven Architecture ..9

3 Technological Backgrounds...11
3.1 UML Metamodel Implementations..11
3.2 Agent Platforms..12

3.2.1 Platform for Distributed Communication ..12
3.2.2 Behavior and Message Based Platform..12
3.2.3 Message Handler Based Platform ..12

4 Architectural Approaches...13
4.1 Scenario 1: Add-in Produces Intermediate Language..13
4.2 Scenario 2: Add-in Produces Java Code ..14
4.3 Scenario 3: Using CASE Internal Tools to Generate AP Code14
4.4 Scenario 4: Export to XMI ...14
4.5 Conclusion..16

5 CASE Tool Evaluation...17
6 Agent Platform Evaluation...21
7 Overview of AML..25

7.1 Introduction to AML ..25
7.2 AML and UML ..25
7.3 Description of AML Elements ...26

7.3.1 Architecture Package..26
7.3.2 Behaviors Package ...28
7.3.3 Examples ..29

8 Overview of JADE Platform..32
8.1 Introduction ..32
8.2 Runtime Environment ..32
8.3 Programming Model ..33

8.3.1 Agent ..33
8.3.2 Behavior ...35
8.3.3 ACLMessage/MessageTemplate..36

9 AML to JADE Mapping...37
9.1 Mapping Definitions ..37

9.1.1 Agent ..37
9.1.2 RoleType ..37
9.1.3 PlayAssociation..38
9.1.4 BehaviorFragment..39
9.1.5 AgentType Communication ...39

4

9.1.6 Communicative Interaction ..40
9.1.7 InteractionProtocol ...40
9.1.8 AgentExecutionEnvironment ...40
9.1.9 HostingProperty ...41
9.1.10 HostingAssociation ..41
9.1.11 ServiceSpecification...41
9.1.12 ServicedElement...42
9.1.13 ServicedProperty ..42
9.1.14 ServicedPort ...42
9.1.15 ServiceProvision...42
9.1.16 ServiceUsage..43

10 Implementation Description...44
10.1 Architecture..44
10.2 Design and Implementation ...44
10.3 Algorithms and Complexity ...46

11 Conclusion and Future Work ...48
12 Appendix 1 ...49

12.1 List of Figures ..49
12.2 List of Tables..49
12.3 Reference list..49

5

1 Introduction

1.1 Abstract
The code generation is a technique for transforming analytical models into the engineering
artefacts. In this thesis I will present the implementation of the code generator that translates
AML models to the code executable on JADE agent platform. The code generator architecture is
based on the pipe model of the conventional compiler structure. The execution process and
control flow of code generation is influence by Model Driven Architecture. It uses two phases in
code generation: a generation of Platform Specific Model from Platform Independent Model in
first phase and generation of target code from the Platform Independent Model in the second
phase.
In order to enable the implementation I also show mapping between AML and JADE, evaluate
available CASE tools and agent platforms.

1.2 Introduction to the Agent Development
Multi-agent systems have developed from the theoretical and experimental stage to the business-
ready technology. This is also putting a pressure on standardizing development of multi-agent
systems in the same way the conventional software development processes are standardized. As
the response to this need many agent development methodologies have been defined. For
example TROPOS [Bresciani 2002], MaSE [DeLoach 1999], MESSAGE [Evans 2001] and
others.
Modeling on different levels of abstraction plays important part in all of the main methodologies.
This task is covered by multiple modeling languages that are often defined as part of the
methodology. One of the latest additions to agent modeling languages is AML that I will be using
throughout this work. It is UML based agent modeling language trying to unify the best practices
from other modeling languages and methodologies.
The next step from modeling is implementation of agents. It is usually realized in some of the
agent platforms. Current agent platforms (like JADE [TILab 2006], Grasshopper [IKT++ 2006],
JACK [JACK 2006]) are mostly implemented as Java frameworks that provide classes and
services used to implement agents. Implementing agent then means implementing a Java class
that inherits from some of the platform base classes.
Despite the agent platforms provide framework that makes agent development easier and more
straightforward, there can be certain amount of code overhead needed to perform basic tasks like
sending of messages. This extra work can be overcome by using the tool that transforms a model
to the target code – a code generator.
Code generation is well known technique used to transform models (e.g. UML) to the executable
artifacts (source code). Also in the multi-agent systems area some code generators were
implemented for various agent modeling languages and target platforms.
Specifically for AML there exists a commercial implementation that transforms AML to the code
of proprietary agent platform. Despite this fact we think that it is important for making AML
more widely accepted and support is to provide code generation tool that would be based on free
or open source technologies.

6

This work introduces an implementation of new code generator that transforms AML model in
StarUML to the JADE code. Both of the platforms (StarUML and JADE) are open source
projects.
The core objective while implementing the code generator was exploring and defining the
mapping between AML and JADE concepts. The complexity of this a task is implied by the gap
between the modeling concepts and implementation classes.
As supportive work I will provide a brief evaluation of CASE tools and agent platforms where I
will justify the selection of StarUML as source CASE tool and JADE as target agent platform.
The work also includes a discussion on the code generator structure in relation to compiler and
model driven architecture, introduction to AML and JADE platform in scope necessary for
understanding the code generator.
If you are looking for a definition and explanation what agent is you should consider consulting
some specialized literature on Multi-Agent Systems or artificial intelligence. In this text I will
consider as an agent any class that is marked by proper stereotype in UML or instance of
AgentType metaclass in AML. Any other properties of agent I leave as intuitive. However it is
worth noting that some of the typical (but not required or limited to) features of multi agent
systems are proactivity, concurrency, complex interactions, asynchronous messaging, distributed
architecture etc.
Same, this work is not intended as advocacy of Multi-Agent Systems but should provide a view
on how Agent Modeling Language may be supported by CASE tools.

1.3 Objectives and Tasks
The main goal of this work is implement code generation tool for the selected platform. It should
support the widest range of AML possible.
The task necessary for achieving this target is defining mapping between AML and JADE. It has
to be explored what mappings are possible and what are the limitations of both AML and agent
platform.
Before actual implementation work the target platforms will have to be chosen. There is need to
evaluate both the source CASE tool possibilities and target agent platform because currently there
are many implementations that vary in quality, support and availability.

1.4 Work Structure
This work is structured into 10 main chapters each dealing with a specific part of the problem.
The chapters 2 and 3 introduce methodical and technological grounds that will be used in the rest
of the work. In chapters 5 and 6 I will evaluate available CASE tools and agent platforms and
choose candidates that will serve as platform for the code generator. Chapters 7 and 8 introduce
actual technologies that are used for code generation – namely JADE and AML. The core
chapters are 4, 9, 10. In chapter 4 I discuss few architectural options for implementing code
generator and reason about choosing one approach. Chapter 9 is crucial for code generator
implementation. It defines the mapping between AML and JADE concepts. Chapter 10 explains
the design and implementation issues of code generator.
Chapter 11 concludes the work and chapter 12 provides lists of references.

7

2 Sources of Inspiration
In the following section I will look at the code generation from the two perspectives. One is older
approach of generating code from high level programming languages to the machine code. The
other is modern Model Driven Architecture (MDA) approach that translates UML models to high
level programming languages. Both of these approaches will serve as inspiration for the
architecture and implementation of the AML code generator.

2.1 Code Generator as a Compiler
The task that complier usually handles is translating language on the higher level of abstraction
(e.g. a programming language) to the language on the lower level of abstraction (e.g. a machine
code). This task is similar to code generation from AML model (high level of abstraction) to
agent platform code (lower level of abstraction). Since compilers are well explored and
developed technology mapping of a code generator to compiler will help in effective structuring
the code generator.
Note that in this chapter I will use term “code generation” as substitute for “code generation from
AML/UML to target agent platform code”. By compiler I will mean the compiler that translates
conventional programming language (like C++ or Pascal) to machine code.
I will now show how to map general compiler structure to code generator structure.

General compiler structure is as follows [Aho 85]:

• Lexical analyzer
• Syntax analyzer
• Semantic analyzer
• Intermediate code generator
• Code optimizer
• Code generator

I expect reader to be familiar with these concepts. Should you have any questions, consider
consulting mentioned literature.

Each of the concepts can be mapped to the code generator component. Following section will
show how to perform the mapping.

• Input language – in code generator input language is some kind of graphical language as
opposed to programming language in the compiler. The main difference is that while
programming language can be described by a context-free grammar, modeling languages
are usually described only semi-formal description. This results into structure being too
complex for description by context-free grammar. I will use UML/AML as the foundation
of our code generator.

• Lexical analyzer – lexical analyzer recognizes tokens as the smallest parts of
programming language. In code generation tokens are single model elements. The
elements are atomic so there is no need for lexical analyzer but application that provides
access to the model elements can be viewed as simple lexical analyzer. This application
can be for example extensibility API in CASE tools or UML metamodel implementation.

8

• Syntax analyzer – In traditional compiler implementation the syntax is defined by formal
grammar. Language described by the grammar is recognized by parsing algorithm like
CYK, LALR parsers etc. But UML/AML structure is too complex for description by
context free grammar. Thus I will give up the standard parsing algorithm and use
algorithm that traverses graph consisting of elements and relations between them and
recognizes patterns along the way.

• Semantic analyzer – consistency checks should be performed on the graph of recognized
patterns. They can be implemented in this phase

• Intermediate code generator –using the compiler idea of platform independent
intermediate language can be used in code generation as well. The intermediate language
can take various forms. One candidate for intermediate language is UML model that uses
special profile that represents concepts in lower level of abstraction close to the target
agent platform. Another option is set of objects that represent these concepts. Generally
intermediate language can be seen as platform specific language from the MDA (see next
section).

• Code optimizer – In compiler structure the code optimizer tries to perform
transformations which will result in the better performing target code. In code generator it
could perform optimizations on the intermediate language. These optimizations could be
enhancing structure of the model by applying design patterns or optimizing message
number in interactions.

• Code generator – the resulting artifact of compiler is machine code. In the case of code
generator the role of lower level language takes target agent platform code. It is usually in
the form of plain text files containing object oriented programming language or descriptor
file (e.g. in XML). The source for the generation of code is same as in compiler an
intermediate language.

The mapping between compiler and code generator shows that these concepts share very similar
structure and mapping between them is straightforward. This allows me to use compiler structure
as foundation for code generator architecture.

2.2 Model Driven Architecture

One of the currently most accepted approaches in code generation is initiative based on the OMG
standards called Model Driven Architecture (MDA see [OMG 2006b] for homepage of MDA). I
will introduce it here as the main source for architectural consideration and control flow of code
generator.
The aim for defining MDA is to allow business allow businesses developing bespoke applications
to concentrate on determining their business requirements for the application [Haywood 2004].
Technically MDA is a set of related standards specified by the Object Management Group
(OMG). These standards UML, XMI, MOF, OCL, CWM (see [OMG 2006a] for details) are used
to turn a model (usually in OMG's Unified Modeling Language [OMG 2005]) to engineering
artifacts. Resulting artifacts can take form of either executables like source code or non-
executables like documentation.

MDA does not only define technologies used for modeling and model transformations but also
high level standard steps in code generation. They are defined in following order (see Figure 1):

9

Platform Independent Model
(PIM)

Platform Specific Model
(PSM) Templates Code

Figure 1: MDA Process from [Code Generation Network 2004]

First a source analytical model is created. It captures the business requirements in concepts close
to the reality. In MDA the initial model is called Platform Independent Model (PIM). It specifies
entities in the most abstract form possible while still capturing all of the requirements.
The next level down is the Platform Specific Model (PSM). This model is a transformed version
of PIM, which adds all of the structures required to implement the PIM in the target platform.
PSM is also modeled as a UML model. Note that different platforms require different PSM
models.
The output code is generated from the PSM using predefined templates that transform PSM
elements to the target code or other artifacts.
Main objective of PIM is to capture business requirements in the language using concepts close
to reality. This makes it close to the standard understanding of analytical model.
PSM is more detailed in terms of technical implementation and its objective is to bring the
business requirements closer to the target platform. With focus on the implementation issues
PSM corresponds to the usual view of design model. Essentially PIM is analytical model of a
domain; PSM is design model for specified platform.
Important issues in MDA modeling are transformations between PIM and PSM, and PSM and
code. These translations are performed through transformation steps where patterns in one model
are mapped to patterns in another model. Mappings may be done in a procedural way (i.e. by
implementation of pattern recognition in conventional programming language – Java, C#…) or in
a declarative way (i.e. by pattern transformation language).
OMG as founder of MDA is supporting Query-View-Transform (QVT) [OMG 2002] initiative.
Its task is to describe transformations between two patterns described in MOF language. An
interesting implementation is submission from QVT Partners [QVT 2003].
From the technical point of view MDA in its current state is a promising and intuitive idea that
formalizes usual process of refining model expressed by analytical and design model. However
tools for code generation are quite immature. Most of them allow only restricted model access,
code generation from static structures, low level of customization, narrow concentration on one
specific platform (EJB, database access …) etc.
I will not strictly stick to MDA but I will use it as a guideline for code generator architecture and
recognition process.

10

3 Technological Backgrounds
After introducing two existing approaches that will be foundations for architectural
considerations in code generator implementation I will discuss two technologies that are crucial
for agent code generation.
First is UML metamodel implementation that defines how UML/AML model is
programmatically accessed. Second technology briefly introduced here are agent platforms. They
create environment for executing agents and will be a target platform for code generation.

3.1 UML Metamodel Implementations
UML metamodel implementation is a set of APIs used to access UML model from the
programming language. It provides access to the model in terms of classes, associations,
interactions and other UML elements. These elements are accessible as instances of metaclasses
(e.g. Class from UML).
Metamodel implementations can be segmented to two groups according to their integration with
CASE tool. One possibility is that metamodel implementation is included in CASE tool.
Typically it is part of API which enables extensibility in the form of add-ins written in object
oriented programming languages. This kind of metamodel implementation can be found in almost
any CASE tool – either accessible via public API or as purely internal technology for handling
UML model.
Other variation of metamodel implementation is standalone application. They can read UML
model exported to the file (commonly XML/XMI) and provide access to it not in terms of XML
nodes and elements but in terms of UML elements.
XMI (stands for XML Metadata Interchange) can be viewed as common interchange format for
UML models. It is (as its name stands for) XML based language for interchange of metadata
described by MOF (Metaobject Facility). MOF is OMG language for specification of languages
like UML. XMI can be used to save any language defined by MOF but in its most prominent
application it became industry almost-standard for exchange of UML model among different
CASE tools.
Exchange works so that UML model is saved to the standardized format (XMI) which may be
accessed by other CASE tools or UML metamodel implementations.

The quality of UML metamodel implementation is crucial for the successful and easy code
generator implementation. It can be evaluated using following measures for the quality of UML
model implementation:

• Implementation of all UML elements and their features
• easy navigability across UML connectors
• easy navigability across element references
• stable and well documented API
• strongly typed representation of UML model elements

Standalone UML metamodel implementation could be a good choice for implementing a code
generator, but most of the available implementations are either internal projects of CASE tools
development companies (and thus are accessible only as part of the CASE tool) or their
documentation is at very low level (like NSUML [Novosoft 2002]).

11

This leads to the conclusion that code generator should use CASE tools API for accessing the
UML model to avoid problems with unstable metamodel implementation.

3.2 Agent Platforms
The important MAS enabling technology is agent platform. It is application that simplifies the
implementation of multi-agent systems through a middle-ware [TILab 2006]. Agent platforms
usually provide a library of classes and a set of services that make development of agent
applications easier. One of the agent platforms will have to be chosen as the target platform for
code generation. Here will present three different approaches to agent platform and their
representatives. The chapter Agent Platform Evaluation will discuss available implementation of
each of the approaches.

3.2.1 Platform for Distributed Communication
First kind of agent platforms provides minimum services supporting agent development and uses
coding techniques closest to traditional Java programming. Its programming patterns are very
similar to traditional distributed communication technologies like RMI or IIOP.
For example agent can be implemented as a class running in its own thread that is able to
communicate with remote classes via communication wrappers that make the distributed
communication transparent to the client.
This kind of agent platform provides ease of development and well known environment but it
does not bring any higher level of abstraction from the OO language to agent oriented language.
Example of this approach is Grasshopper [IKT++ 2006]

3.2.2 Behavior and Message Based Platform
To this category belong agent platforms that incorporate many advanced agent features including
asynchronous messaging, Agent Communication Language message types, interaction protocols
and ontology support. The trade-off for high level programming can be code overhead needed for
performing actions like message sending.
Agent can be implemented as class with its own thread that schedules behavior classes for
execution. Behaviors implement agent actions and message handling.
Programmers used for conventional object-oriented programming might not find this
programming model completely convenient but this approach seems very promising for
implementation of code generator because it works with terms that are close to the AML model.
Example of this approach is JADE.

3.2.3 Message Handler Based Platform
This concept represents theoretical model of agent platform where main agent logic is
implemented as message handler of specified type of messages. It is easy to understand model
because most functionality is grouped around message handler. At same time it might imply that
process flow inside the agent can be unintuitive because it has to be translated to the terms of
message handlers.
Example of message handler based approach is commercial product LS/TS by Whitestein
Technologies.

12

4 Architectural Approaches

Code generator can be implemented using various architectural approaches. In this chapter I will
summarize some them in the context of existing technologies and try to justify selection of one
approach that I will use in implementation of code generator.

UML
Model

IL Generator add-
in

AP Code
Generator add-in

Built-in Code
Generator

XMI

Intermediate
Language

AP Code
Generator

AP Code

UML/XMI
handling API

CASE tool Add-in Agent
Platform

Figure 2: Possibiliteis of control flow in code generator

Figure 2 graphically describes possible approaches to code generation implementation. Rounded
rectangles represent artifacts (like UML Model, XMI representation of model …) and square
rectangles represent components (like intermediate language generator …). Gray rectangle means
that this part of system has to be implemented. White rectangle, in contrary, means that there
exists component implementing required functionality.
Generally each path from “UML Model” to “AP Code” represents one possible approach to code
generation. I will describe them more closely.

4.1 Scenario 1: Add-in Produces Intermediate Language
Used path in Figure 2: UML Model → IL Generator Add-in → Intermediate Language → AP
Code generator → Agent Platform Code

This scenario tries for flexibility in code generation yet utilizes existing components.
It uses CASE tool add-in to generate intermediate language (IL) from the AML model.
Intermediate language is then converted to target agent platform language. It is not specified if
model in intermediate language is explicitly expressed in form of text files or it is only a set of
objects representing concepts of intermediate language.
Both transformations (AML → IL and IL → agent platform code) are supposed to be simpler and
more straightforward then direct translation from AML to agent platform code.
IL generator and backend generator are kept separate so that this approach provides certain
flexibility in creating variations for different CASE tools or target platforms and at same time
helps isolating changes in both CASE tool and target platform APIs to small modules.

13

The drawback is that IL has to be carefully designed and developed to enable the mentioned
separation of frontend and backend generators at reasonable level. This means creating language
different from current standards. Implication is that there won’t be any tools that would help
handling IL.
Generally this scenario provides very good balance between amount of work needed for
implementation, flexibility and reuse of current components.

4.2 Scenario 2: Add-in Produces Java Code
Used path in Figure 2: UML Model → AP Code generator add-in → Agent Platform Code

Scenario 2 for generation is very similar to the scenario 1. The difference is that it gives up the
generation of intermediate language and directly translates AML to target agent platform
language. This approach gets around the issue of designing IL with compromise on flexibility and
separation from the existing applications as trade-off.
Also the transformations from AML to agent platform code will be less straightforward then in
previous case.
It seems that these trade-offs are not worth the gain from giving up the definition of IL.

4.3 Scenario 3: Using CASE Internal Tools to Generate AP Code
Used path in Figure 2: UML Model → Built-in Code Generator → Agent Platform Code

Scenario 3 attempts to make the best use of existing code generation tools present in the CASE
tool. It relies on the CASE tools original add-ins to generate code.
Despite contemporary CASE tools are equipped with code generation tools they are not expected
to be used for agent generation. Their functionality is restricted to provide easy code generation
based on predefined patterns. As result they don’t provide any support for agent development.
In this case the direct translation from AML to agent platform code would be complex and hard
to define using simple patterns that are available in the built in code generators.

4.4 Scenario 4: Export to XMI
Used path in Figure 2: UML Model → XMI → UML/XMI handling API → Agent Platform
Code

Scenario 4 strives for maximum flexibility and independence from CASE tools which would
allow using code generator for input from any CASE tool.
In this scenario the AML model exported to XMI file and then UML metamodel implementation
is used to access this file and generate target agent platform code.
Despite this approach has theoretical advantages (flexibility, independence of CASE tools) it
encounters problems with the current state of implementation of XMI handling APIs and
adoption of XMI standard itself.
The problem of free standalone XMI handling applications is that they are immature and poorly
documented.

14

XMI on the other hand is defined as standard but different CASE tools vary in quality of XMI
export [Marchal 2004]. Each tool has specific variation points from the official standard when
exporting UML model to XMI.
These technical issues make this scenario currently unsuitable but it might be interesting option
in the future when XMI handling frameworks get more mature.

The Table 1 summarizes the advantages and disadvantages of the approaches.
Table 1: Scenario comparison

Scenario Advantages Disadvantages
Add-in
produces
intermediate
language

• good coverage of AML/AP
features

• easier code generation from not-
so-high-level language

• back-end generator (intermediate
language to AP) will not be
affected by UML or CASE
tool changes

• need to develop intermediate
language (possibly language for
AP design tools or Agent
Common Layer)

• need to generate intermediate
language different from standards
(maybe extension of XMI or a
kind of an abstraction language
which could be part of AP design
tools)

• need to translate AP intermediate
language to Java by our own tools

Add-in
produces Java
code

• stable API for UML 2.0
available in modeling tools

• good integration with modeling
tool (EA)

• a lot of work has to be done, which
will be tightly coupled with single
tool

• no back-end module makes
generation for different platforms
harder

• hard to integrate with development
environments like Eclipse in the
future (hard reciprocal influence
of code and model)

Using CASE
internal tools to
generate AP
code

• reuse of existing tools (template
framework)

• tight integration with modeling
environment (if designer
changes model => it is easy
for him or her to regenerate
code

• tight integration with modeling
environment (if CASE changes,
code generator has to change too)

• does not enable model/code
cooperation on-the-fly – this
approach can not ensure close
interaction of code and models,

• CASE tool code generators don’t
provide any support for generating
agents

Export to XMI • complete control over generated
code

• most flexible architecture

• almost complete code generation
process coverage would have to
be implemented which results into

15

 a lot of work to be done
• dependent on XMI handling

framework (currently are available
open source frameworks but they
are poorly documented)

• questionable support for UML 2.0
• need to cope with non standard XMI
• support to XMI standard is not fully

adopted by CASE tool vendors

4.5 Conclusion
As stated, each the presented approaches to code generation has its advantages and
disadvantages. There is no evident best approach that would exceed the others in all aspects.
Considering advantages and disadvantages I consider approach of Scenario 1 using CASE tools
add-in to generate an intermediate language as a good candidate for the architecture of code
generator.
This approach, if carefully designed, provides a good balance between platform independence,
reuse of existing tools and ease of programming. As mentioned, defining intermediate language
can be non-trivial task. In order to avoid need of developing special IL and implementing tools
handling it, IL does not need to be explicitly defined but can be represented by set of objects.
Platform independence of Scenario 1 approach is implied by the use of intermediate language. It
allows easy retargeting of generated code by defining new PSM model and its transformation to
code. However, some attention has to be exercised so that implementation of PIM is not too
tightly coupled with CASE tool UML model implementation.
This approach makes use of existing and stable implementation of UML metamodel in CASE
tools. UML handling API is used at traversing the model graph.
Note that ease of programming is dependent on the quality of UML handling interface which may
differ significantly among different CASE tools.

16

5 CASE Tool Evaluation
As discussed in the chapter 4, the code generator won’t use CASE tool only as a source of the
AML model but CASE tool will be an environment for implementing code generator as add-in.
On the market there are many CASE tools of various qualities. There was need to choose one as a
code generator platform.
First different CASE tools where long-listed based on the internet sources. Then five tools where
short-listed based on the price, availability and external reviews like [Godfrey 2006] or [Eckel et
al 2003].
Each of these tools was evaluated according to the following criteria important for code generator
implementation.
Price – since project is not for profit oriented one of the main issues was price. CASE tool will
be preferably freeware or open source software. If there was no suitable free tool available,
relatively low price (<US$100) would be advantage.
UML Support –AML uses UML extensively and thus the proper support for UML 2.0 is vital.
Otherwise many aspects of AML would be left unsupported or would have to be implemented
using workarounds.
Extensibility – AML will be implemented using stereotypes of standard UML and code
generation tool will be implemented as an add-in. As result the selected CASE tool has to support
both of these features – add-in and stereotype customization. In order to facilitate code generation
the CASE tool has to also provide API for accessing UML model that complies with quality
requirements mentioned in chapter 3.1.
UML tools were evaluated from the personal experience and some information was added from
the official documentation and other users experience expressed in the discussion forums.

• Enterprise Architect [SPARX 2006] - offers good features but it is not a free product. User
reviews on enterprise architect are also favorable. The important positive feature for
code generation is clear, easy to use and well documented UML model handling API.
Despite Enterprise Architect contains many bugs it has good community support via
discussion forums and is fixed builds are released quite often. The first version of code
generator was implemented in this tool. Price: $95-$120

• Rational Rose [IBM 2006] – it is a famous CASE tool with powerful features and very
good visual output quality. The drawbacks of this tool are non-standard behavior in
certain cases, little user friendliness and very high price. Price: >$1000

• ArgoUML [Tigris 2005] – it is open source project. At time of writing UML support was
limited to UML 1.4 only. The add-in interface and programming documentation are not
clear. ArgoUML needs a lot of maintenance and improvement before it could be used
as platform for code generation. Price: free

• Poseidon [Gentleware 2006] – provides good UML support features even in free version.
However the free version is limited in number of diagrams and does not support add-in
creation. Commercial version is slightly above Enterprise Architect but still reasonably
priced. Price: $249

• StarUML [StarUML 2006] – is open source project which targets for full UML 2.0 support
and good usability. It is based on the previously commercial tool and so despite it is in
its first version it looks quite mature. The API is well documented and the UML profile

17

18

extensibility is good. There is also available community support via forums. The
application is bound to Windows 2000/XP platform. Price: free

The concise list of features of CASE tools can be found in Table 2.

Table 2: CASE tool comparison

CASE Tool UML Support Extensibility Platform Price

Enterprise
Architect

UML 2.0 Very good – profiles, COM add-
in, user defined menus

Windows
98/2000/XP

$95-120

Rational Rose UML 2.0 with specific
deviations

Very good - profiles, COM add-
in (Windows platform only), user
defined menus

Linux/Solaris/
Windows 2000/XP

>$1000

Poseidon UML 2.0 Very good - profiles, add-in, user
defined menus

Java $249

ArgoUML UML 1.4 excluding
sequence diagram
(limited)

Poor – insufficient
documentation to evaluate

Java Free

StarUML UML 2.0 Good – profiles, own icons for
profiles, COM add-in, user
defined menus, not user friendly
API

Windows 2000/XP Free

From the above results we can make following conclusions:
Among commercial tools Enterprise Architect provides very good value, performance and
extensibility options. At same time it is the cheapest commercial CASE tool from the
comparison.
StarUML is in par with Enterprise Architect in features even if its API is not that well structured
as the one of Enterprise Architect. It is young open source project that is based on the originally
commercial software. It has been undergoing heavy development that slowed down after
publishing official first version. Despite risk of instability it has been chosen as the target
platform.

20

6 Agent Platform Evaluation
Agent platform is essential part of multi-agent system which defines how the multi-agent
application will be implemented.
There exists a multitude of agent platforms. I was focusing on the platforms that are free and
have good community acceptance. This criterion is important for one of the goals of the thesis –
to support usage of AML. Generator for quality and popular platform is expected to be better
accepted and more widely used than generator for minor experimental platform.
With respect to this the main requirements for Agent Platform (AP) that would be chosen as a
target platform for code generation add-in were set as follows:
Price – since project is not for profit oriented one of the main issues was price. Preferably
freeware or open source software. In case there is no free tool available relatively small price
(<US$100) would be advantage.
Support for agent development – agent development is a paradigm that extends usual object
oriented programming and as such it requires different programming model. The closer the
programming model of agent platform is to the AML model the easier will be the implementation
of code generation. It will help also the mapping to be more straightforward and clear.
Some of the questions to evaluate this measure are: How close is the agent platform model to the
agent/AML model? How much programming is necessary to implement agent features (message
sending, mobility…)?
Ease of programming – the target platform for code generation should be easy to use and
implement applications in.
Questions for evaluation are: How different from standard programming are the concepts used in
the agent platform? How big is the code overhead (initializations, property settings…) involved
in the programming of agent? Is there tool support?
Standards compliance – agent mobility and cooperation is important feature in agent
development. It is expected that the agent platform will be interacting with other platforms and so
interoperability is important feature. Standards compliance is directly supporting interoperability
by enabling the different platforms to communicate on the common basis.
Some of the questions to evaluate this measure are: Is agent platform FIPA compliant? Does AP
work on the open standards for message transmission? Are there other standards supported
(XML, web services…)
Support for distributed computing – the support for distribution of agent platforms (or parts of
agent platform) significantly eases development of distributed applications.
Questions for this measure are: Does AP support transparent distribution over multiple
computers? Is there integrated support for agent mobility?
Practical usage – agent platform should be viable enough to be implemented in real-world
projects. Otherwise it would be only experimental platform for which code generation might not
be necessary.
Typical questions representing this measure are: What real-world projects have been
implemented using this platform? Is there a community support?

Agent platforms were evaluated from the personal experience and some information was added
from the official documentation and other users experience expressed in the discussion forums.

21

22

• JADE [TILab 2006] – is an open source platform that was developed by TILab. It is often
evaluated as one of the best currently available open source agent platforms. The
programming model is very close to the agent paradigm (using terms like Agent or
Behavior). Downside is that it requires slightly higher programming overhead for
operations with agents and communication. Despite this it has been used in many
applications in various industries (telecommunications, healthcare, manufacturing…)

• Grasshopper [IKT++ 2006] – is also a free agent platform. It was developed by IKV++.
Grasshopper is representative of agent platform where the programming concept is
close to the conventional programming (does not use explicitly behaviours or
messages). The programming concept of Grasshopper is built around distributed
communication technologies like RMI or IIOP. This makes programming with
Grasshopper easy and convenient when used as platform for distributed computing but
it does not bring the improvement to the programming efficiency for truly agent
oriented applications. Grasshopper was used in multiple applications mostly in
telecommunications.

• LS/TS [Whitestein 2006] – is proprietary agent platform developed by Whitestein
Technologies. Its programming is based on creating xml files for the agents that
describe their structure and message handling capabilities. I have used it mostly for
theoretical considerations. Real world applications were not published yet.

Concise list of agent platform features can be found in Table 3

Table 3: Agent Platform Comparison

Agent
Platform

Ease of programming Support for agent
development

Standards
compliance

Distributed
Programming

Platform Price

JADE Retrieving agent
references and
sending/receiving
messages includes
certain amount of
code.

 Programming model very
close to agent model.
Works with terms Agent,
Behaviour, Message.

FIPA compliant If agent identifier is
known there is no need
to know exact location
of agent.
Migration of agent is
explicit sending
messages with specific
mobility ontology to
AMS or calling agent
methods.

Java Free

Grasshopper Programming model
close to Java with
wrappers for
distributed
communication

Agents are basically Java
classes that communicate
via wrapper that provides
uniform access to
distributed communication
technology (rmi, iiop,

plain socket)

Requires add-in
for FIPA
compliant
communication
Implements OMG
MASIF standard
Supports range of
distributed
communication
technologies
(RMI, IIOP)

If agent identifier is
known there is no need
to know exact location
of agent.
Migration of agent is
explicit using call to
agent methods.

Java Free

LST Declarative way of
programming – agent
is defined by xml.
Simple but not
standard concept.

Programming model very
close to agent model.
Works with terms Agent,
Behaviour, Message.

FIPA compliant Java N/A

From the above results we can make following conclusions:
JADE can be chosen as suitable platform. It is open source project that has been used in various
practical applications. Its programming model is close to the agent oriented programming
concepts. Despite it requires code overhead for performing basic tasks it is a flexible
environment.

24

7 Overview of AML
In this chapter I will provide overview of Agent Modeling Language (AML) in the scope
necessary for understanding and usage of the code generator. For detailed specifications please
refer to the AML language specification [AML 04]
In the first part I will mention the definition of AML and motivation which lead to the definition
of new language. Section AML and UML will put AML into the context of widely used modeling
language UML. The last section – AML Elements description - will provide brief description of
the elements that are used by the code generator.

7.1 Introduction to AML
AML Language specification [Cervenka et. al 2004] defines AML as follows:
“The Agent Modeling Language (AML) is a semi-formal visual modeling language for
specifying, modeling and documenting systems that incorporate concepts drawn from Multi-
Agent Systems (MAS) theory.” Where semi-formal refers to “the language that offers the means
to specify systems using a combination of natural language, graphical notation and formal
language specification. It is not based on a strict formal (e.g. mathematical) theory.”

Motivation for defining AML was to create a practically usable language that would be feasible
for commercial software development. There exist multiple modeling languages focusing on
modeling of agent oriented applications but the need for a new language was implied by the fact
that current agent modeling languages suffer from various problems such as limited
expressiveness, lack of documentation and questionable supportability by CASE tools. AML was
intended to overcome these problems.

In order to make AML accepted and usable it was based on the various sources among which
belong:

• UML 1.5 and UML 2.0
• OCL 2.0
• Various agent modeling languages and methodologies (e.g. MESSAGE, AUML…)
• FIPA standards
• Existing agent-oriented technologies
• Multi-agent system theories and abstract models

In this work I am using AML version 0.9.

7.2 AML and UML
AML is not defined from the scratch. UML was used as the underlying foundation of AML, for
its language definition principles (metamodel, semantics and notation), and extension
mechanisms.
AML is defined as conservative extension of UML as much as possible. That means it retains the
standard UML semantics in unaltered form where possible.

25

AML introduces extensions to UML notation and metamodel. It also extends OCL by adding
operators for modal family logics.
Some of the UML metamodel extension points are [Cervenka 2004]:
• Type (extended by EntityType…)
• NamedElement (extended by MentalState…)
• Class (extended by MentalClass…)
• Property (extended by RoleProperty, MentalProperty, ServicedProperty…)
• Association (extended by PlayAssociation, MentalAssociation…)

Thanks to the proximity of AML and UML, AML can be straightforwardly presented in UML
using profile for AML. The definition of UML 2.0 and 1.4 profiles for AML can be found in the
[Cervenka et al 2004] in chapter AML as UML Profile.

7.3 Description of AML Elements
In this section I will describe the elements that were used for code generation and show few
notation examples. I will be introducing the elements according to their membership in respective
packages.
The highest level packages in AML are Architecture, Behaviors and Mental. Code generation is
using only packages Architecture and Behaviors. Package Mental contains elements like mental
states, goals and beliefs which are not required to be formally specified and thus are not suitable
for automated generation.
The descriptions of elements were extracted from AML Language Specification [Cervenka et al
2004] semantics and glossary. For each element I also indicate what stereotype is used in the
UML 2.0 profile for AML.
At the end of this chapter I show few examples that illustrate the notation usage of the AML.

7.3.1 Architecture Package
This package is used when trying to capture architectural features of the system.
Elements from each subpackage can be used to capture one aspect of the Agent architecture.
Package Agents contains only metaclass AgentType that is used to represent agent in multi-agent
systems.
SocialAspects represent structural characteristics of socialized entities – i.e. architecture of the
entities that can take part in social relations.
MASDeployment is used to model deployment and residing points of agents in multi-agent
systems.
Metaclasses from Ontologies package are used to represent ontology concepts and their
structuring.

The code generator uses these elements from the package Architecture:

AgentType

Stereotype: agent
AgentType is a metaclass used to model a type of agents in MAS. It represents selfcontained
entity that is capable of autonomous behavior in its environment i.e. entity that has control of
its own behavior, and act upon its environment according to the processing of (reasoning on)

26

perceptions of that environment, interactions and/or its mental attitudes. There are no other
entities that directly control the behavior of AgentType entity.

ResourceType

Stereotype: resource
ResourceType is a metaclass used to model types of resources contained within the system.
It's able to own capabilities, observe and effect its environment, participate in social
interactions, provide and use services and play roles.

EntityRoleType

Stereotype: entity role
EntityRoleType is metaclass that represents a coherent set of features, behaviors,
participation in interactions. It's also able to own capabilities, observe and effect its
environment and participate in social interactions

RoleProperty

Stereotype: role
RoleProperty is a specialized Property (from UML) used to specify that an instance of its
owner can play one or several entity roles.

PlayAssociation

Stereotype: play
PlayAssociation is a specialized Association (from UML) used to specify RoleProperty in
the form of an association end.

AgentExecutionEnvironment

Stereotype: agent execution environment
AgentExecutionEnvironment is a specialized ExecutionEnvironment (from UML) used to
model types of execution environments of multi-agent system. It's able to own capabilities,
observe and effect its environment, provide and use services. AgentExecutionEnvironment
thus provides the physical infrastructure in which MAS entities can run.

HostingProperty

Stereotype: hosting
HostingProperty is a specialized ServicedProperty (p. 272) used to specify what EntityTypes
can be hosted by what AgentExecutionEnvironments.

HostingAssociation

Stereotype: hosting
HostingAssociation is a specialized Association (from UML) used to specify
HostingProperty in the form of an association end.

Ontology

Stereotype: ontology
Ontology is a specialized Package (from UML) used to specify a single ontology.

OntologyClass

27

Stereotype: oclass
OntologyClass is a specialized Class (from UML) used to represent an ontology class (called
also ontology concept or frame).

OntologyUtility

Stereotype: outility
OntologyUtility is a specialized Class (from UML) used to cluster global ontology constants,
ontology variables, and ontology functions/actions/predicates modeled as owned features.

7.3.2 Behaviors Package
This package deals with behavior decomposition from multiple aspects. Either decomposition by
capabilities (BehaviorDecomposition), communication patterns (Communicative Interactions),
groups of described capabilities (Services) or interactions with the external world of the agent

The code generator uses these elements from the package Behaviors:

BehaviorFragment

Stereotype: behavior fragment
BehaviorFragment is metaclass used to model coherent and reusable fragments of behavior
and related structural and behavioral features, and to decompose complex behaviors into
simpler and (possibly) concurrently executable fragments. It's able to own capabilities,
observe and effect its environment, provide and use services.

CommunicationMessage

Stereotype: communication
CommunicationMessage is used to model communicative acts of speech act based
communication in the context of Interactions.

CommunicationMessagePayload

Stereotype: cm payload
CommunicationMessagePayload is a specialized Class (from UML) used to model the type
of objects transmitted in the form of CommunicationMessages.

InteractionProtocol

Stereotype: IP
InteractionProtocol is an Interaction template used to model reusable templates of
CommunicativeInteractions. It is used to model parameterized model speech act based
communications.

ServiceSpecification

Stereotype: service specification
ServiceSpecification is specialize BehavioredClassifier (from UML) used to specify services.

ServiceProtocol

Stereotype: SP

28

ServiceProtocol is a specialized InteractionProtocol used to specify how the functionality of
a service can be accessed.

ServicedProperty

Stereotype: serviced
ServicedProperty is a specialized Property (from UML), used to model attributes that can
provide or use services. It determines what services are provided and used by the entities
when occur as attribute values of some objects.

ServicedPort

Stereotype: serviced
ServicedPort is a specialized Port (from UML) and ServicedElement that specifies a distinct
interaction point between the owner and other ServicedElements in the model. The nature of
the interactions that may occur over a ServicedPort can, in addition to required and provided
interfaces, be specified also in terms of required and provided services (p. 271), particularly
by associated provided and/or required ServiceSpecifications.

ServiceProvision

Stereotype: provides
ServiceProvision is a specialized Realization dependency (from UML) between a
ServiceSpecification and a ServicedElement, used to specify that the ServicedElement
provides the service specified by the related ServiceSpecification.

ServiceUsage

Stereotype: uses
ServiceUsage is a specialized Usage dependency (from UML) between a
ServiceSpecification and a ServicedElement, used to specify that the ServicedElement uses
or requires (can request) the service specified by the related ServiceSpecification.

7.3.3 Examples

Example 1
Example on Figure 3 shows a scenario with agent that implements network security management
tasks.
Its behavior is decomposed to two behavior fragments – CollectLogs and
EvaluateSecurityInformation. These behavior fragments could be used by other agents as well.
NetworkSecurityAgent can also play role of AccessController. AccessController forms a
coherent set of functionality that takes care of assigning bandwidth provided by Bandwidth
resource agent to the users.

29

NetworkSecurityAgent
<<agent>>

AccessController
<<entity role>>

+permittedUsers

<<play>>

CollectLogs
<<behavior fragment>>

EvaluateSecurityInformation
<<behavior fragment>>

Bandwith
<<resource>>

Figure 3: Example 1

Example 2
Figure 4 is further elaborating the previous example. It is showing a situation when port of
NetworkSecurityAgent (userNameResolver) is using serviced specified by UserNamingService.
This service is implemented by DomainController agent.

NetworkSecurityAgent
<<agent>>

userNameResolver

<<serviced>>

UserNamingService
<<service specification>>

DomainController
<<agent>>

<<provides>>

<<uses>>

Figure 4: Example 2

Example 3
This example (Figure 5) shows communicative interaction between agents. User initiates the
communication. AccessController after receiving message retrieves user name of the requesting
user and informs the user whether the access was granted or not. This scenario could be used as
interaction protocol if it was marked with stereotype IP.

30

user : A accessController : AccessController namingService : UserNamingService

1 : askForAccess()

<<communication>>

2 : getUserName()
<<communication>>

3 : informUserName()
<<communication>>

4 : informAccessLevel()

<<communication>>

Figure 5: Example 3

31

8 Overview of JADE Platform
In this chapter I will provide overview of Jade agent platform in the scope necessary for
understanding and usage of the code generator.
Section Runtime Environment will give an overview of JADE architecture from the perspective
of multiple running JADE platforms. Next section – Programming model will provide list of the
main programming concepts that are used in the target code and their brief description.
For more complex introduction into the JADE programming refer to the beginners programming
guide [Caire 2003]. For detailed specifications please refer to the JADE Programmer’s guide
[Bellifemine et al 2005] or JADE API documentation [TILaB].

8.1 Introduction
JADE is in [Caire 2003] defined as “middleware that facilitates the development of multi-agent
systems”.
It consists of:

• Runtime – a platform that provides environment for the agents and facilitates basic tasks
• Library of Classes – which have to be used (inherited or instantiated) in order to utilize

capabilities of the runtime
• Graphical tools – for monitoring and administrating the platform

8.2 Runtime Environment
Runtime environment is a platform that provides environment for agents to live in. In JADE it is
designed to provide a transparent network platform for agent execution. Network transparency is
achieved using the concept of containers. Each running runtime environment is called a
container. This provides basic services and before all ensures connectivity with other containers.
One of the containers is marked as “Main container” which means all other containers are
registering with this container. All containers registered with the main container form a platform.
Agents within a platform are able to send messages to each other without explicitly knowing the
receiver agent’s location. If new main container is started it starts forming a new platform.
In main container there are two special services – Agent Management System and Directory
Facilitator. They are implemented in form of special agents that are started automatically when
container is started.
Agent Management System (AMS) is the main infrastructure service – among other services it
maintains a naming service ensuring that each agent has a unique name and helps in
administrating the containers (e.g. by enabling to create/kill agent on certain container).
Directory Facilitator (DF) is the main directory (Yellow Pages) service – it facilitates searching
for a specified agent. DF agent keeps list of registered agents and their descriptions. It provides
interface for searching through these descriptions as service.
One example of running JADE runtime environment can be seen in Figure 6

32

Figure 6: Example of running JADE platform (from [Caire 2003])

8.3 Programming Model
By programming model in this section I mean a set of classes, their lifecycles and design idioms
used to implement applications in agent platform.
Three main concepts used in the JADE programming model are Agent, Behavior and Message. I
will introduce them in the following sections.

8.3.1 Agent
Agent (jade.core.Agent) is a base class for implementing any agent that should live in the JADE
environment and make use of its services. Agent class implements some of the basic features of
agent – identity, autonomy, repeated execution, asynchronous messaging and mobility [Lucny
2004] In the JADE platform these properties are implemented as follows.

• Identity
o each Agent class holds a unique identifier (Agent ID) and each running agent is

unique instance of Agent class
• Autonomy

o each class runs in its own thread.
o Communication with agent is performed via asynchronous messaging that allows

agent to be in better control of its behavior i.e. agent can decide to ignore message.
• Repeated execution

33

o available behaviors (functionality fragments) are repeatedly selected and executed
until they declare themselves finished

• Asynchronous messaging
o agents can construct messages to be sent to other agents (also on different

platforms). Messages are sent in a non-blocking way (agent does not wait until
response from the addressee is received). Received messages are stored in the
message queue that can be examined as deemed fit. As result agent can decide
itself when to respond to certain message

• Mobility
o agents can move from one container to another either by calling methods in the

mobility API or sending message with special ontology to the AMS
Lifecycle of agent thread can be seen on the Figure 7.

34

Figure 7: Agent lifecycle (from [Caire 2003])

8.3.2 Behavior
Agents in order to perform more complex tasks should be multitasking i.e. agent should be able
to execute multiple tasks concurrently. This idea is abstracted into the concept of behavior
(jade.core.behaviours.Behaviour). It usually implements coherent set of functionality (e.g.
handling certain messages, communicate via interaction protocol etc.).
Agent can own multiple behaviors but at each time there is only one behavior active. The
behavior scheduler (transparent to the programmer) performs round-robin non-preemptive
scheduling of behaviors. After being selected for execution, the action() method of behavior is
called. It should handle all the necessary steps of the process. Note that until method action() is
finished no other behavior gets to be executed. Behavior is scheduled for execution executed as

35

long as method done() returns false. After done() returns true, behavior is removed from the pool
of active behaviors where it can be explicitly returned if necessary.

8.3.3 ACLMessage/MessageTemplate
Sending messages is the main mean of communication between agents. Concept of message is
implemented in the jade.lang.acl.ACLMessage class. It represents message in Agent
Communication Language (ACL) that can be exchange between agents. If agent wants to send a
message it should create new instance of ACLMessage, fill its parameters and then call method
Agent.send().
ACLMessage can carry, among others, following information (see exact names in the API
reference):

• sender – sending agent
• receiver – receiving agent (message can be sent to multiple receivers)
• reply-to – agent that a reply should be sent to
• performative (communicative act) – indicates what is the purpose of the message. One of

the constants for FIPA performative (PROPOSE, REQUEST, REFUSE…)
• content – payload of the message in form of string or java object
• in-reply-to – identifies the message that current message is responding to
• language – language of the message
• ontology – name of ontology that can be used to decode the message
• conversation ID – identification of the conversation of which current message is part of

After receiving messages are put into the agent message queue. If the agent needs to find specific
message in the message queue it should use MessageTemplate.
MessageTemplate (jade.lang.acl.MessageTemplate) is class that lets user to set parameters by
which he or she wants to match the messages in message queue. MessageTemplate contains set
of static methods that allow matching most attributes of the ACLMessage and also combining
multiple criteria. This process is usually performed in following steps:

• create instance of MessageTemplate
• define values of attributes to be matched using MessageTemplate static methods (e.g.

MatchConversationID, MatchPerformative, MatchInReplyTo…)
• call Agent.receive() with message template as parameter

36

9 AML to JADE Mapping
This chapter will define a mapping between the Agent Modeling Language (AML) and JADE
platform. The chapter is organized into sections, each describing mapping of one package from
AML. The description for each pattern is structured as follows:

• Mapping definition – contains description on the mapping from the source pattern in the
AML to the destination Java/JADE code.

• Constraints – shows the constraints that have to be adhered in order the code generator
functions properly.

• Rationale – this section discusses on the meaning of the transformation and its correctness
according to the AML specification and JADE programming model.

9.1 Mapping Definitions

9.1.1 Agent

Mapping
Agent is mapped into class jade.core.Agent with following properties:
Attributes of AML Agent are directly transferred to JADE Agent
Operations of AML Agent are directly transferred to JADE Agent
Operations of AML EntityRole that is associated to the AML Agent are directly transferred to
JADE Agent.
Any behavior that is generated from the object of type AML Agent in sequence diagram is added
to the Agent. Resulting JADE Behaviour is added to the JADE Agent in the setup() procedure.

Constraints
Play association has to be between AgentType and RoleType

Rationale
Attributes and operations in JADE provide similar semantics as those in the AML so they can be
directly transferred into the JADE implementation.
RoleType defines the “coherent set of features, behaviours, participation in interactions and
services” so it is treated as AML Agent and all behaviours are added into the JADE agent when
agent is playing role

9.1.2 RoleType

Mapping
Following mapping mechanism is used in implementing RoleType element:

• The amlextensions.Role class is implemented. Role class handles registration of
behaviours that are connected with the role and their registering or deregistering with
agents.

37

• Any RoleType element inherits from this class or contains this class as mix-in
functionality class

• Behaviours that are defined by RoleType element are added to the inherited Role class in
the constructor

• Agent contains collection Agent.playedRoles – a hashtable of Roles that can be played by
this agent.

• According to situation agent can call playRole(roleName) procedure to register
behaviours corresponding to role called roleName or call disposeRole(roleName) to
deregister behaviours corresponding to role called roleName. roleName has to be
conained in the Agent.playedRoles collection.

Role can appear in following contexts:

• Class diagram – class marked with stereotype <<entity role>>
o Results into generation of class inherited from amlextensions.Role with attributes

and operations as indicated in the AML element
• Sequence diagram – instance of EntityRoleType.

o Results into generation of message handler that can send/respond to messages in
the interaction

o Generated message handler (specialized Behaviour) is registered as part of the
EntityRoleType.

o For details on behaviour generation see BehaviourFragment

Rationale
EntityRoleType represents “coherent set of features, behaviors, participation in interactions,
and services” [Cervenka et. al 2004].
The relation to the agent can be set in the class diagram using PlayAssociation. Since the agent
can play different role at different time they can be dynamically changed using playRole and
disposeRole methods.
Role is composed of jade.core.behaviours.Behavior because they are the main source of activity
in the JADE platform (see chapter 8 Overview of JADE). All interaction among agents are
performed using behaviours, so they are natural choice for handling messages in interactions that
EntityRoleType takes part in. For rationale on MessageHandler generation please refer to
MessageHandler section in this chapter.

9.1.3 PlayAssociation

Mapping
Play association is not expressed explicitly in the resulting Java/JADE code.
It is used to indicate which roles are registered with Agent. Each role that is connected to the
Agent using PlayAssociation is added to the Agent.playedRoles collection in the Agent.startup()
method.

Constraints
Play association can be used only between AgentType and EntityRoleType elements.

38

Rationale
PlayAssociation indicates which roles can be played by agent. This is achieved in the JADE
implementation by registering all linked roles to the agent which can invoke them when needed.

9.1.4 BehaviorFragment

Mapping
BehaviorFragment is mapped into a jade.core.behaviours.Behavior class. If it is linked to the
Agent or Role using association it is registered as behavior for the corresponding element.

Rationale
BehaviorFragment serves as a decomposition of the agent behavior. As such it is generated into
the Behaviour class that is registered with agent. It provides the agent added functionality as
defined by BehaviorFragment.

9.1.5 AgentType Communication

Mapping
The result mapping of agent participating in the communicative interaction is a specialized
BehaviorFragment that is used solely for handling messages.
For each instance of AgentType or EntityRoleType that takes part in the communicative
interaction, a separate BehaviorFragment is generated. It handles messages in following way:

• Behaviour contains attribute stateNumber that captures ID of the current state
• Action method examines the stateNumber and decides which state to put into operation
• Each state handles one message – generator provides template for handling messages by

creating a message template, call to send or receive message and blocking of behaviour if
message is not present yet.

• If the message is sent by instance in the interaction – message with proper parameters
(message name, receiver…) is constructed in one of the states of the behaviour. Also a
setReplyWith is called in order to set identifier that will be used to retrieve response to
this message. As preemptive step a messageTemplate is constructed that can be used to
pick correct response message from the message queue.

• If the message is received by instance in the interaction – message template is adjusted to
suit the situation. Then attempt is made to retrieve the message. If message is not present
the behaviour is blocked until another message arrives.

Rationale
Message handling behavior (jade.core.behaviours) in this context is used as decomposition of the
message handling capabilities of the agent. Each instance is generated into separate message
handler to ensure consistency of protocol that is performed by participant.

39

9.1.6 Communicative Interaction

Mapping
Interaction is enclosing element for message handling behaviors. It is not explicitly generated in
the output code.

Constraints
All participant types in the communicative interaction have to be agents.

Rationale
Communicative Interaction is used as logical unit to group message handling behaviors in one
interaction. There is currently no justification for it to appear in the output code explicitly.

9.1.7 InteractionProtocol

Mapping
Interaction protocol is parameterized Interaction where each of the message handling behaviors
can be assigned a new classifier.
InteractionProtocol is generated as factory class from which user can obtain Behaviours with
bound parameters (instance classifier and message name/payload).
If InteractionProtocol parameters are bound in the diagram, behaviours are registered with their
respective agents/roles.

Constraints
Compared to AML specification only lifeline classifiers and message names can be
parameterized.

Rationale
According to AML specification parameters of InteractionProtocol can be bound on various
places in the model. Due to limitations of StarUML the parameter binding of InteractionProtocol
is not supported in the model. However in the code user can utilize the functionality of factory
class to obtain parameterized behaviors. In this place the code generation is not direct
transformation but provides extension to JADE that can be utilized by user.

9.1.8 AgentExecutionEnvironment

Mapping
AgentExecutionEnvironment is mapped into the directory that contains file residing on the agent
platform.
For each type of the hosting properties or hosting associations a file containing code is generated
and put into folder created for AgentExecutionEnvironment.

Rationale
AML is not strict on the detailed specification of AgentExecutionEnvironment. It should provide
physical infrastructure in which MAS entities can run. Mapping into the directories containing

40

hosted artefact does not directly affect execution environment of agents but prepares the files
necessary for deployment on target platform.

9.1.9 HostingProperty

Mapping
HostingProperty type is added to the collection of deployed artifacts by
AgentExecutionEnvironment.

Rationale
HostingProperty specifies that EntityType can be hosted in AgentExecutionEnvironment.
Proposed mapping is not directly enforcing this but it is facilitating deployment of
HostingProperty type to the target platform.

9.1.10 HostingAssociation

Mapping
hostingMemberEnd type of HostingAssociation is added to the collection of deployed artifacts by
AgentExecutionEnvironment.

Rationale
Semantics of HostingAssociation is similar to the semantics of HostingProperty. Therefore they
share the same rationale.

9.1.11 ServiceSpecification

Mapping
Following mapping mechanism is used in generating ServiceSpecification element:

• The amlextensions.Service class is implemented. Service class handles following tasks:
o Registering/deregistering service implementation by specified agent
o Retrieve agent identifiers that implement service
o Provide behaviour (message handler) that can communicate with the service on

the side of the service client.
• Any ServiceSpecification element inherits from amlextensions.Service class or has

instance of this class as mix-in functionality class.
• Behaviours that are defined by ServiceSpecification element are added to the inherited

Service class in the constructor

Rationale
Result of ServiceSpecification generation serves as helper class that facilitates operations with
services. This is contribution compared to the manual programming because handling service
registration, deregistration and providing agents retrieval requires extra amounts of code.

41

9.1.12 ServicedElement

Mapping
ServicedElement is abstract class and as such is not mapped into any concept in JADE. See its
concrete classes for mapping details.

9.1.13 ServicedProperty

Mapping
Used service specification is added to the used services collection of serviced property type.
Provided service specification is added to the provided services collection of serviced property
type.

Rationale
Serviced property indicates that its type is able to provide or use services. In order the user can
easily access service specification they are kept in the collections which make service
specifications readily available. They can be for instance used as factory classes to create
behaviors necessary to communicate with service provider.

9.1.14 ServicedPort

Mapping
Used service is added to the used services collection of serviced port type.
Provided service is added to the provided services collection of serviced port type.

Rationale
ServicedPort is a special kind of ServicedProperty. Therefore the same rationale applies.

9.1.15 ServiceProvision

Mapping
Adds provided service specification to the ServicedElement type (e.g. port type, AgentType etc.).

Constraints
Connects ServicedElement (ServicedPort, ServicedProperty, AgentType, RoleType…) and
ServiceSpecification

Rationale
Along with the specification of the ServiceProvision it indicates “ServicedElement provides the
service specified by the related ServiceSpecification”. By adding ServiceSpecification to the
provided service of ServicedElement type it allows the behaviours that implement the service to
be generated.

42

9.1.16 ServiceUsage

Mapping
Adds used service service specification to the ServicedElement type (e.g. port type, AgentType
etc).

Constraints
Connects ServicedElement (ServicedPort, ServicedProperty, AgentType, RoleType…) and
ServiceSpecification

Rationale
Along with the specification of the ServiceUsage it indicates “ServicedElement uses or requires
(can request) the service specified by the related ServiceSpecification”. By adding
ServiceSpecification to the used services of ServicedElement type it allows the behaviours
necessary for service usage to be generated and added to the owning jade.Agent.

43

10 Implementation Description
Parts of this work are two executable artifacts – UML profile for AML implemented in StarUml
and AML-JADE code generator. In first two sections of this chapter I will introduce their
architecture and design. The third section will discuss the algorithm used for the pattern matching
and its complexity.

10.1 Architecture
Architectural considerations were discussed in the chapter 4. In this section I will just summarize
the results to recall architecture of code generator before the description of the design.
As concluded in the chapter 4 the most suitable architecture for the code generator that will be
implemented is as follows. I will use the pipe architecture as in conventional compiler structure.
The process of code generation will have two phases: transformation from platform independent
model to platform specific model as first phase and platform specific model to target code as
second phase.
Source for the code generation will be an AML model implemented as UML profile in StarUML.
From the point of view of MDA the AML model can be viewed as platform independent model.
The main control logic will reside in the StarUML add-in which will ensure seamless integration
with the UML metamodel implementation available in this CASE tool. The add-in (frontend) will
be transforming the AML model to internal representation of platform specific model.
Transformation will be based on the procedural pattern definitions. It means that patterns are not
defined as model fragments but as procedure that describe how respective pattern should be
recognized.
Note that there is no explicit pure JADE model. It could constitute one more step in the process
between PSM and target code. This step was omitted for following reasons. JADE elements are
defined as Java classes and as such there is no structural difference between JADE elements and
plain Java classes. In addition AML concepts themselves are close enough to JADE concepts so
that PSM model is already straightforward to transform to JADE. Additional step would not add
any clarity or value to the process.
The backend generator will be implemented as independent library that transforms platform
specific model to the target code according to procedural pattern definitions similar to those of
frontend generator. Despite backend generator is independent library it will be controlled by the
application running as the StarUML add-in.

10.2 Design and Implementation
The above mentioned architecture was implemented using the following model.
The whole generator is wrapped in the AMLGenerator class. It handles setting up the generation
and provides simple interface to obtain target code. AMLGenerator is composed of three main
parts – ModelBrowser, PatternRecognitor and BackendGenerator. Each of them supports one step
in the transformation process.
ModelBrowser handles retrieving elements from the UML model. It traverses the model in
breadth first order and at each turn it adds children of currently visited element as next targets.
Then it returns currently visited element. ModelBrowser also keeps list of visited elements to
make sure that each element is visited only once.

44

PatternRecognitor handles transformation between PIM (AML model) and PSM (mixed
AML/JADE model). Input for PatternRecognitor are elements that are returned by
ModelBrowser.
Pattern recognition procedures (procedural templates) are implemented in the PatternDefintion
objects owned by PatternRecognitor. Each pattern definition can handle recognition of one or
more types of patterns and every pattern definition receives each element coming from the
ModelBrowser.
Functionality of PatternRecognitor can be described in pseudo-code as follows:

function Recognize(Element)
begin
 recognizedPatterns={}
 for each pattern in patternDefinitions
 recognizedPatterns = recognizedPatterns U pattern.Recognize(Element)
 return recognizedPatterns
end

Separation of pattern definitions from pattern recognitor provides a way how to customize which
patterns will recognized without modifying PatternRecognitor.
Other feature of pattern recognitor is to retrieve recognized patterns according to UML element
which they were generated from. This function is used when PatternDefinition object needs
information about the structures that it is not able to recognize.
Typical pattern definition checks the stereotype of the examined element, creates the new pattern
instance, adds structural features (attribute and method definitions, received messages…) to the
pattern instance. Additionally it may add child patterns (e.g. played roles for agent).
If pattern definition handles association, dependency or other form of link it will typically
retrieve patterns of its ends and modify these patterns so that they reflect the relationship
indicated by link. For example play association will modify agent pattern so that it will add role
at the other association end to the played roles collection.
BackendGenerator implements the transformation from PSM to target code. BackendGenerator
iterates through the recognized patterns and according to pattern type generates text output.
For most patterns backend generator will generate a Java class (as instance of JavaClass class).
Most of the generated classes inherit from jade.core.Agent, jade.core.behaviours.Behaviour or
jade.lang.acl.ACLMessage which are basic classes to work with in JADE. Backend generator
then adds attributes and methods, adjusts constructor to fill class collections (e.g. add behaviors
for agent) or initialize instance attributes. Depending on the pattern type backend generator may
also add other methods to the class (e.g. Behaviour.action() methods to specify behaviour
execution process). After class is constructed it is output into text file. For description how AML
elements are mapped into JADE classes refer to the chapter AML-JADE mapping.
Each of the components resides in separate package with very narrow interfaces so they can be
replaced by other package of the same functionality if needed.
The public interface point of ModelBrowser is iterator-like interface that provides information if
there is element available (HasNext()) or retrieves this element (GetNext()).
PatternRecognitor main method is RecognizePattern() that takes UML element as attribute and
returns the pattern recognized by one of the pattern definitions.
BackendGenerator main functionality is encapsulated in the GenerateFS() method that returns a
class representing root directory of the generated code.

45

10.3 Algorithms and Complexity
UML code generation is dealt with in various works that show how it can be often formalized as
graph pattern matching problem. For example see [AGRAWAL]. In this setting the UML model
is labeled graph and graph patterns define the fragments from which code can be generated.
Pattern matching is then performed in order to find these patterns in the source UML model.
AML to JADE code generation can be formalized in similar manner. However, thanks to the
resembling structure of AML and JADE object model, the problem is simpler (in terms of pattern
matching) than general UML code generation.
Let AML model be represented by labeled graph G. We can obtain a graph G by applying
following transformation rules:

• Each AML element is expressed as a vertex of a graph,
• Type of element (class, interaction…) is expressed as label of the vertex,
• Structural features (attribute, operation) of elements are represented as labeled vertexes

connected to the parent element by edge,
• Each structural feature or instance is linked to the classifier by specially labeled edge. The

connected vertex indicates the type or classifier of the structural feature
• Parameters of operation are handled as structural features of operation,
• Let there be elements A and B and link L that connects them. Let a and b be the vertexes

that correspond to these elements in the graph G generated using previous rules. Then
graph G will contain edge (a,b) with label indicating the type of the link L.

• Labels contain all the necessary information about the AML elements - e.g. name, type,
parameter information, visibility…

Figure 8 shows the transformation of simple AML diagram to the labeled graph according to the
defined rules.

PlayAssociation

Agent1:AgentType Role1:EntityRoleType

attribute

Attribute1

type

Agent1
<<agent>>

+Attribute1: Agent1
Role1

<<entity role>><<play>>

Figure 8: Transformation of AML to labeled graph

Patterns for matching are defined as any AML model fragment. They can be converted to the
graph representation same as the original AML model.
As shown in the chapter 9 (AML to JADE Mapping) AML and JADE structures are similar and
so the patterns needed for transformation are very simple. They usually comprise only one

46

element. Typical property of the patterns is that they usually describe only small surrounding of
the element and more complicated structure is described by composing patterns together.
Typical pattern structure is element (e.g. Class) with some specifying relations to other elements
(i.e. – decision if pattern matches often depends only on the label of the vertex, other vertices can
only refine the information about this element).
If the graph and patterns had general structure, the pattern matching would be a NP complete
problem. The naïve approach to graph pattern matching generates all possibilities of mappings
from the pattern nodes to the target node and checks if the matching is correct. It performs O(mn)
tests of matching nodes, where n is number of nodes in the pattern and m is number of patterns in
target graph [Valiente].
In our special case the number of nodes in the pattern is restricted to O(1). That makes even
usage of the naïve algorithm for pattern matching in the code generator feasible because it runs in
polynomial time.

The modified naïve pattern matching algorithm used in the code generator:

• Get next node from source graph (e.g. breadth first search)
• Test all pattern definitions if they are feasible to start in this node (root node) (e.g. if they

contain correct label - classifier or stereotype)
o Examine all feasible neighboring elements (connected with correct link (edge

label) and having proper type and stereotype (vertex label)). Recognize their
patterns or retrieve their recognized pattern from the recognized pattern collection.

o Compose all details/sub-patterns found in previous step into pattern recognized
from the root vertex

• Add tested nodes and nodes used when looking ahead while pattern recognition to visited
objects

• Continue with next node

In order to verify that the algorithm runs in polynomial time I will perform the worst case time
complexity analysis.
In the step 1 of the algorithm every node of the graph is visited once – n (number of vertices)
For each pattern definition (size k) – try to match the subgraph induced by the root vertex (it can
include matching another patterns which act as parts of the examined pattern but they don’t have
to be considered because they would be processed when their root vertex would be chosen).
Only action that has to be considered here is searching for the pattern whether it was already
recognized due to activity in some other node. Because there is approximately 1:1 mapping
between AML and JADE patterns there can be at most O(n) patterns in the recognized patterns
collection. So each time search is performed it takes time O(n).
Let m be maximum grade (number of neighbors) of vertex in graph. Then for each neighbor (out
of m) test the feasibility for all pattern definition (k feasibility tests per neighboring node) => m*k
feasibility tests per visited node. This test is performed for each node but it is ensured that each
pattern is tested only once so there is no duplication.
The final worst case complexity adds up to: n*l*m*k where n is number of vertices in graph, l is
maximum number of recognized patterns and can be approximated as n, m is grade of graph and
k is maximum number of pattern vertices.
This theoretical time complexity is in accordance with the expected complexity and fitting for
this application. Also in practical tests the performance seems satisfactory.

47

11 Conclusion and Future Work
The main objective of the work was to define mapping between AML and JADE agent platform
and implement it in code generator. The executable output of this work is a proof-of-concept
application that is able to generate code skeletons for the JADE platform. Second artefact
produced along with this work is implementation of UML profile for StarUML.
Mapping between AML and JADE was performed based on the semantics defined in the AML
specification and documentation of the JADE classes.
Most of the metaclasses that are used to model static structures of the agent were mapped to
JADE concepts.
Among the main elements that were used for code generation belong those of type: AgentType,
EntityRole, BehaviorFragment, ServiceSpecification etc. Mapping of these elements was more or
less straightforward thanks to the proximity of concepts in AML and JADE. One of the
complications that I had to deal with was incomplete UML metamodel implementation provided
by StarUML.
Easy mapping shows that AML is defined in a way that makes it easy to transfer models to the
concrete implementation. This feature gives AML advantage in terms of supportability by tools.
From the JADE perspective the straightforward mapping also shows that programming model
used in JADE is close to the multi-agent system concepts. It means that JADE as agent platform
brings programming of multi-agent application to higher level of abstraction. These results are
favourable for both AML and JADE.
However the mapping was not defined for some of the elements for which precise generation a
formal operational semantics would be required. As mentioned in the AML specification the
operational semantics is outside the scope of AML. There is possibility of future work that would
choose one or more operational semantics and code generation from AML according to their
specifications.
Another part of the AML that was not implemented form elements for describing mental states of
agent. Since JADE does not natively support the reasoning of intelligent agents these elements
were left unsupported. One possibility to cope with this issue could be exploring connection of
JADE and reasoning engine (e.g. JESS [!ref]) that could form to the platform that would be able
to capture also this part of AML. Other platform based on JADE that is capable of reasoning is
JADEX [Braubach 2006].
Generally the biggest contribution is setting the solid foundations for future works on code
generation from AML and showing an example of mapping between AML and JADE agent
platform. Also the work leads you through the design of the code generator from the architectural
foundations, through the technological considerations to the design and implementation
description.

48

12 Appendix 1

12.1 List of Figures
Figure 1: MDA Process from [Code Generation Network 2004] 10
Figure 2: Possibiliteis of control flow in code generator 13
Figure 3: Example 1 30
Figure 4: Example 2 30
Figure 5: Example 3 31
Figure 6: Example of running JADE platform (from [Caire 2003]) 33
Figure 7: Agent lifecycle (from [Caire 2003]) 35
Figure 8: Transformation of AML to labeled graph 46

12.2 List of Tables
Table 1: Scenario comparison ..15
Table 2: CASE tool comparison...19
Table 3: Agent Platform Comparison ..23

12.3 Reference list
[Agrawal]
AGRAWAL, Aditya, KARSAI, Gabor, SHI, Feng, Institute for Software Integrated Systems, Vanderbilt University:
Graph Transformations on Domain-Specific Models [online]

[Aho 85]
Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman: Compilers: Principles, Techniques, and Tools, Addison Wesley
Publishing Company; (October 1, 1985)

[Bellifemine et al 2005]
BELLIFEMINE Fabio, CAIRE Giovanni, TRUCCO Tiziana, Giovanni Rimassa, TILab S.p.A., 2005: JADE
Programmer’s Guide [online]

[Braubach 2006]
BRAUBACH, Lars, Pokahr, Alexander, Walczak, Andrzej, University of Hamburg: Jadex BDI Agent System –
Features [online]
Available on internet: <http://vsis-www.informatik.uni-hamburg.de/projects/jadex/features.php>

[Bresciani 2002]
BRESCIANI, P, Perini, Anna, Giorgini, Paolo, Giunchiglia, Fausto, Mylopoulos, John et al., Kluwer Academic
Publishers, 2002: Tropos: An Agent-Oriented Software Development Methodology [online]
In Autonomous Agents and Multi-Agent Sytems, 8
Available on internet: <http://www.dit.unitn.it/~pgiorgio/papers/jaamas04.pdf>

[Caire 2003]
CAIRE Giovanni, TILab S.p.A, 2003.: JADE Tutorial – JADE Programming for Beginners

[Cervenka et. al 2004]
Cervenka Radovan, TRENCANSKY Ivan, Whitestein Technologies AG, December 2004: Agent Modeling
Language – Language Specification

49

[Cervenka 2004]
Cervenka Radovan, Whitestein Technologies AG: Agent Modeling Language – Metamodel v0.9
[Code Generation Network 2004]
Code Generation Network – MDA [online]
Available on internet: <http://www.codegeneration.net/tiki-index.php?page=MDA>

[DeLoach 1999]
DELOACH, Scott A., Department of Electrical & Computer Engineering, Department of Electrical & Computer
Engineering: Multiagent Systems Engineering: A Methodology And Language for Designing Agent Systems
[online]

[Eckel et al. 2003]
ECKEL, Bruce, MindView, 2003: Bruce Eckel's Mind View Inc, UML Tool Survey [online]
Available on internet: <http://www.mindview.net/WebLog/log-0041>

[Evans 2001]
EVANS, Richard, et. al, Braodcom Eireann Research Ltd., 2001: MESSAGE: Methodology for engineering systems
of software agents. Methodology for agent-oriented software engineering. [online]
Available on internet:
<http://www.eurescom.de/~pub-deliverables/P900series/P907/TI1/p907ti1.pdf>

[FIPA]
FIPA (The Foundation for Intelligent Physical Agents) web page [online]
Available on internet: <http://www.fipa.org>

[Gentleware 2006]
GENTLEWARE: Poseidon Project Home Page [online]
Available on internet: <http://gentleware.com/index.php?id=products>

[GODFREY 2006]
GODFREY Michael W., School of Computer Science, University of Waterloo, 2006: My Little UML (Tools) Page
[online]
Available on internet: <http://www.uwaterloo.ca/~migod/uml>

[Haywood 2004]
HAYWOOD Dan, May 2004: MDA Nice idea. Shame About the… [online]
Available on internet: <http://www.theserverside.com/tt/articles/article.tss?l=MDA_Haywood>

[IBM 2006]
IBM: Rational Rose home page [online]
Available on internet: < http://www-306.ibm.com/software/awdtools/developer/datamodeler/ >

[IKT++ 2006]
IKT++: Grasshopper project homepage [online]
Available on internet: <http://www.grasshopper.de>

[JACK 2006]
AGENT ORIENTED SOFTWARE GROUP, 2006: JACK Intelligent Agents, software agent system (project home
page) [online]
 Available on internet: <http://www.agent-software.com/shared/home/>

[Lucny 2004]
LUCNY, Andrej, Microstep-MIS, 2004: Multiagentové systémy (lecture slides)

[MARCHAL 2004]

50

MARCHAL, Benoît, IBM, May 2004: Working XML: UML, XMI, and code generation, Part 2 [online]
Available on internet: <http://www-128.ibm.com/developerworks/library/x-wxxm24/#code1>

[Novosoft 2002]
NOVOSOFT, 2002: NSUML (Project Homepage) [online]
Available on internet: <http://nsuml.sourceforge.net>

[OMG 2002]
OMG (Object Management Group): Request for Proposal: MOF 2.0 Query/Views/Transformations RFP [online]
Available on internet: <http://www.omg.org/docs/ad/02-04-10.pdf>

[OMG 2005]
OMG (Object Management Group), 2005: UML 2.0 Superstructure Specification [online]
Available on internet: <http:// www.omg.org/cgi-bin/doc?ptc/2003-08-02>

[OMG 2006a]
OMG (Object Management Group): home page [online]
Available on internet: <http:// www.omg.org>

[OMG 2006b]
OMG (Object Management Group): Model Driven Architecture home page [online]
Available on internet: <http:// www.omg.org/mda>

[OMG 2006c]
OMG (Object Management Group): Unified Modeling Language [online]
Available on internet: <http:// www.omg.org/uml>

[Petrie]
PETRIE, Charles J. Agent-Based Engineering, the Web, and Intelligence [online]
Available on internet: <http://cdr.stanford.edu/NextLink/Expert.html>

[QVT 2003]
QVT Partners: QVT: The high level scope [online]
Available on internet: < http://qvtp.org/downloads/qvtscope.pdf >

[SPARX 2006]
SPARX Systems: Enterprise Architect home page [online]
Available on internet: <http://www.sparxsystems.com.au>

[StarUML 2006]
STARUML Development Group: StarUML Project Home Page [online]
Available on internet: <http://www.staruml.com>

[Tigris 2005]
TIGRIS: ArgoUML Project Home Page [online]
Available on internet: <http://argouml.tigris.org/>

[TILaB]
TILaB S.p.A: JADE v3.3 API [online]

[TILab 2006]
TILAB: JADE – Java Agent DEvelopment Framework (project homepage) [online]
Available on internet: <http://jade.tilab.com>

[Valiente]

51

VALIENTE, Gabriel, Martinez, Conrado, Universitat Bremen, Fachbereich Mathematik und Informatik: An
algorithm for graph pattern-matching [online]

[Whitestein 2006]
WHITESTEIN Information Technology Group AG: Whitestein Technologies: Technology Suite [online]
Available on internet: <http://www.whitestein.com/pages/solutions/ls_ts.html>

52

Abstrakt
Generovanie kódu je technika pomocou ktorej sa transformuje analytický model na artefakty. V
tejto diplomovej práci budem prezentovat implementáciu generátora kódu, ktorý prekladá
agentové modely v AML do kódu spustitelného na agentovej platforme JADE.
Architektúra kód generátoru je založená na vzore rúra (pipe), ktorá je základom klasickej
štruktúry kompilátoru. Postupnosť transformácií modelu je ovplyvnená architektúrou MDA
(Model Driven Architecture – Architektúra Riadená Modelom). Podobne ako v MDA kód
generátor využíva dve fázy generovania: najprv pretransformuje model nezávislý na platforme
(PIM) na platformovo závislý model (PSM). V druhej fáze generuje z platformovo závislého
kódu zdrojový kód pre agentovú platformu.
Aby bolo možné implementovať generátor kódu bolo nutné definovať mapovanie z jazyka AML
do jazyka cieľovej agentovej platformy. Ukázalo sa, že je možné rozdeliť mapovanie na tri
skupiny: priamočiare mapovanie elementov, ktoré sú svojou povahou príbuzné v AML aj
platforme JADE. Sem patrí napríklad koncept agent alebo správanie. Druhá skupina sú elementy,
ktoré sa kvôli obmedzeniam CASE nástroja dajú modelovať iba približne. Príkladom môže byť
interakčný protokol. Tretiu skupinu tvoria elementy ktoré buď nie sú v AML definované presne
alebo nie sú dostatočne podporované agentovou platformou. V tejto skupine sú napríklad
mentálne stavy.
Výsledkom práce je funkčný prototyp kód generátoru ktorý je možné ďalej rozvíjať.
Výsledkom pr

53

	Introduction
	Abstract
	Introduction to the Agent Development
	Objectives and Tasks
	Work Structure

	Sources of Inspiration
	Code Generator as a Compiler
	Model Driven Architecture

	Technological Backgrounds
	UML Metamodel Implementations
	Agent Platforms
	Platform for Distributed Communication
	Behavior and Message Based Platform
	Message Handler Based Platform

	Architectural Approaches
	Scenario 1: Add-in Produces Intermediate Language
	Scenario 2: Add-in Produces Java Code
	Scenario 3: Using CASE Internal Tools to Generate AP Code
	Scenario 4: Export to XMI
	Conclusion

	CASE Tool Evaluation
	Agent Platform Evaluation
	Overview of AML
	Introduction to AML
	AML and UML
	Description of AML Elements
	Architecture Package
	Behaviors Package
	Examples
	Example 1
	Example 2
	Example 3

	Overview of JADE Platform
	Introduction
	Runtime Environment
	Programming Model
	Agent
	Behavior
	ACLMessage/MessageTemplate

	AML to JADE Mapping
	Mapping Definitions
	Agent
	Mapping
	Constraints
	Rationale

	RoleType
	Mapping
	Rationale

	PlayAssociation
	Mapping
	Constraints
	Rationale

	BehaviorFragment
	Mapping
	Rationale

	AgentType Communication
	Mapping
	Rationale

	Communicative Interaction
	Mapping
	Constraints
	Rationale

	InteractionProtocol
	Mapping
	Constraints
	Rationale

	AgentExecutionEnvironment
	Mapping
	Rationale

	HostingProperty
	Mapping
	Rationale

	HostingAssociation
	Mapping
	Rationale

	ServiceSpecification
	Mapping
	Rationale

	ServicedElement
	Mapping

	ServicedProperty
	Mapping

	ServicedPort
	Mapping

	ServiceProvision
	Mapping
	Constraints
	Rationale

	ServiceUsage
	Mapping
	Constraints
	Rationale

	Implementation Description
	Architecture
	Design and Implementation
	Algorithms and Complexity

	Conclusion and Future Work
	Appendix 1
	List of Tables
	Reference list

