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1 Introduction

The notion of a flow on a graph belongs to important concepts of contempo-
rary graph theory with many applications both in graph theory and beyond.
Specifically a nowhere-zero k-flow on a graph G is an orientation of G and an
assignment of values 1, ..., k−1 to the directed edges of G in such a way that
the Kirchhoff Current Law is satisfied, that is, the sum of inflowing values
equals the sum of outflowing values. A nowhere-zero A-flow, where A is any
Abelian group, is defined simmilary. In this case, the flow values are non-zero
elements of A.

A systematic study of nowhere-zero flows begins with the seminal papers
[17] and [18] of Tutte where, among others, are proposed the following three
conjectures.

5-Flow Conjecture: Every bridgeless graph has a nowhere-zero 5-flow.
4-Flow Conjecture: Every bridgeless graph with no Petersen minor admits

a nowhere-zero 4-flow.
3-Flow Conjecture: Every bridgeless graph without 3-edge-cuts admits a

nowhere-zero 3-flow.
It is obvious that a graph with a bridge cannot have a nowhere-zero k-flow

for any k. On the other hand, it is not obvious whether there exists a finite
“universal” bound n such that every bridgeless graph admits a nowhere-zero
n-flow. The existence of such a bound was independently established by
Kilpatrick and Jaeger [10], [9]. They proved that every bridgeless graph has
a nowhere-zero 8-flow. This result was later superseded by Seymour [15] who
showed that every bridgeless graph has a nowhere-zero 6-flow.

The question whether k = 5 satisfies the condition in the conjecture
remains unanswered. Still, the bound 5 is best possible since the Petersen
graph is bridgeless and has no nowhere-zero 4-flow.

Even if correct, the 4-Flow Conjecture will not be the best possible as
every complete graph with at least 10 vertices contains the Petersen graph
as a minor and has a nowhere-zero 3-flow, see [5] page 134.

Cubic bridgeless graphs without a 4-flow are called snarks. Therefore,
the 4-Flow Conjecture for cubic graphs states that every snark contains the
Petersen graph as a minor.

Furthemore, Jaeger showed that every 4-edge-connected graph admits a
nowhere-zero 4-flow. Note that any vertex-transitive graph of valency k is
k-edge-connected. It follows that every vertex-transitive graph of valency 4
has a nowhere-zero 4-flow. As Cayley graphs are vertex-transitive, Cayley
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graphs of valency at least four admit a nowhere-zero 4-flow.
Tutte proved that there is a strong connection between k-flows and A-

flows. A graph admits a nowhere-zero k-flow if and only if it admits a
nowhere-zero A-flow for an Abelian group A. Since the sum of two A-flows
is again an A-flow, it is sometimes easier to construct A-flows than k-flows.
Naturally, the same does not apply for nowhere-zero A-flows.

Another theorem states that if a graph G has a nowhere-zero flow with
at most k different values, it also has a Zk+1-flow. For k ≥ 5, this is a trivial
application of Seymour’s 6-Flow Theorem. When k ≤ 4, the proof is based
on a number theory problem called ”Lonely Runner Conjecture”.

Another well known conjecture is that any Cayley graph of valency at
least four has a Hamilton cycle. It follows from the connection between Zk-
flows and k-flows that any graph with a Hamiltonian cycle admits a nowhere-
zero 4-flow. Unfortunately, we cannot deduce that Hamiltonian graphs have
a nowhere-zero 3-flow.

In this context we have to mention Babai’s [2] counterconjecture saying
that not only there exists a Cayley graph which is non-Hamiltonian, but for
some constant c ≥ 0, there are infinitely many vertex-transitive graphs, even
Cayley graphs, without cycles of length greater than (1 − c)n, n being the
order of the graph. In particular, there exists a non-Hamiltonian arbitrary
large Cayley graph.

Nowhere-zero k-flows are closely related to the existence of k-colourings
of graphs embedded in orientable surfaces. Tutte [17] showed that a graph
embedded in an orientable surface S has a vertex k-colouring if and only
if its dual on S has a nowhere-zero k-flow. In particular, the Four Colour
Theorem is equivalent to the assertion that every bridgeless cubic planar
graph has a nowhere-zero 4-flow, in other words, there is no planar snark.
A related theorem by Grötzsch [6] states that every bridgeless planar graph
with no vertices of valency three admits a nowhere-zero 3-flow.

From here there is a short way to flows on Cayley graphs. As we men-
tioned before, any 4-edge-connected graph admits a nowhere-zero 4-flow.
Since Cayley graphs are vertex transitive, Cayley graphs of valency at least
four admit a nowhere-zero 4-flow.

In 1996, Alspach, Liu and Zhang [1] proved that every Cayley graph of
a solvable group of order greater than 2 admits a nowhere-zero 4-flow. The
crucial cubic case of their result was improved by Nedela and Škoviera [11]
extending it to a broader class of Cayley graphs. They proved, that if there
exists a Cayley snark, then there is one on a simple or an almost simle non
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Abelian group. Another improvement is due to Potočnik [12]. He generalized
the result to the graphs which admit a vertex-transitive action of a solvable
group (excluding the Petersen graph).

Finally, Potočnik, Škoviera and Škrekovski showed that every Cayley
graph of valency at least four on an Abelian group has a nowhere-zero 3-
flow in [13].

The main purpose of the present work is to prove the following two the-
orems.

Theorem A Every Cayley graph Cay(G,S) on nilpotent group of valency
at least four has a nowhere-zero 3-flow.

Theorem B Let G be a group containing an Abelian subgroup of index two.
Then every Cayley graph Cay(G,S) of valency at least four has a nowhere-
zero 3-flow.

2 Preliminaries

The graph is a quadruple G = (V,D,L, I) where D = D(G) and V = V (G)
are disjoint non-empty finite sets, I → V is a surjective mapping, and L is
an involutory permutation on D. The elements of D and V are darts and
vertices, respectively, I is the incidence function assigning to every dart its
initial vertex and L is the dart-reversing function where L(x) = x−1. The
orbits of the group 〈L〉 on D are edges of K. We do not allow L(x) = x.

The valency of a vertex v, written as val(v), is the number of edges
incident to v. Graphs where all vertices have equal valencies are called regular
graphs.

Let A be an abelian group with additive notation. A function f : D(X) →
A is an A-flow on X if the following two conditions are satisfied:

(i) f(x−1) = −f(x), for each dart x ∈ D(X);

(ii)
∑

x∈D(u) f(x) = 0, for each vertex u ∈ V (X).

If f(x) 6= 0 for each dart x, f is called a nowhere-zero A-flow on X. A Z-flow
which takes values in {1, . . . , (k − 1)} is called a nowhere-zero k-flow.

The concept of a Cayley graph was first introduced in 1878 by Cayley in
[4]. Cayley graphs are useful in interconnection network theory (see [7] for
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references ). Given a group G with an identity element 1 and a sequence
S = {s1, s2, . . . , sn} of elements of G − {1} such that S−1 = S, the darts of
Cay(G,S) are ordered pairs (g, si) where g ∈ G and si ∈ S. The dart (g, si)
has initial vertex g and terminal vertex gsi, and L(g, si) = (gsi, s

−1
i ). The

sequence S is called Cayley sequence.
Note that such a graph is connected if and only if elements of S generate

G. Nevertheless, in this paper we allow Cayley graphs to be disconnected.
Cayley graphs are highly symmetric. They are vertex transitive and there-

fore regular. As we mentioned before, each Cayley graph of valency at least
four admits a nowhere-zero 4-flow. Also, all Cayley graphs on solvable groups
admit nowhere-zero 4-flows.

General problems related to search for nowhere-zero 3-flows are difficult
and many of them are left open for years. Rather then attempting to solve
them, we will concentrate on special classes of groups with understandable
and comfortable structure. As the fact that Cayley graphs on Abelian groups
(of valency at least 4) have a nowhere-zero 3-flow is already proved, we will
focus on group classes with an Abelian normal subgroup. We will also show
some results on groups with non-empty centre.

It is assumed that the reader is familial with the fundamentals of group
theory. More details can be found for example in [14]. All groups in this
work are assumed to be finite.

Recall that a subgroup H of a group G is normal, denoted by H £ G,
if gHg−1 ⊆ H for each g ∈ G. That is, if H is invariant under all inner
automorphisms of G. If H is invariant under all automorphisms, then H is
called a characteristic subgroup of G.

Lemma 2.1 Let G be a group with a normal subgroup H. If K £ G and
K ⊆ H, then K £ H and H/K £ G/K.

The centre of a group G, denoted Z(G), is a subset of all elements such
that gh = hg for each h ∈ G. The centre plays an important role in the
study of a group structure. Note that it is a characteristic subgroup of G.

Among groups with a non-empty centre, an important role is played by
p-groups. For any prime number p, a p-group is a group of order being a
power of p. Since the order of a subgroup divides the order of the group, any
subgroup of a p-group is also a p-group. It follows, that any quotient group
of a p-group is a p-group, too.
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Many structural properties of finite groups depend on p-subgroups of a
given graph. Given a group G, a p-Sylow subgroup of G is any p-group which
is maximal with respect to inclusion.

A group G is called nilpotent if it has a normal series

1 = G0 £ G1 £ ... £ Gn−1 £ Gn = G

such that Gj+1/Gj ≤ Z(G/Gj) for any j. Such a normal series is called
a central series of G. The shortest length of nilpotent series of a group is
called the nilpotency class of G. The following theorem is due to Burnside
and Wieland [14].

Theorem 2.1 A nilpotent group is isomorphic to a direct product of its Sy-
low subgroups. In particular, every nilpotent group is isomorphic to a direct
product of p-groups.

Nilpotent groups have similar properties to p-groups. They have a non-
empty centre and any subgroup of a nilpotent group is nilpotent. Moreover,
any quotient group of nilpotent group is nilpotent too.

Theorem 2.2 The class of nilpotent groups is closed under taking subgroup,
quotiens and direct products.

Finally we define solvable groups, a class of groups that contains all nilpo-
tent and Abelian groups.

A group G is called solvable if it has a normal series

G = G0 D G1 D ... D Gn−1 D Gn = {1}

with Abelian factor group Gi+1/Gi for i in {1, ..., n}. Such a normal series is
called a solvable series of G.

There is an alternative approach to solvable groups which is longer, how-
ever, makes some useful properties easier to deduce. First, we introduce the
term commutator.

Let G be a group and g, h ∈ G. The commutator of g and h is

[g, h] = ghg−1h−1.

The commutator subgroup of G, denoted G
′

, G(1) or [G,G], is the sub-
group of G generated by commutators of its elements. Such a subgroup is
also called the derived subgroup of G.
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Inductively, we can define G(2) as the commutator subgroup of G(1), G(3)

as the commutator subgroup of G(2), etc. The subgroup G(i) is the i-th
derived subgroup of G.

The commutator subgroup of the group has some interesting properties.
First of all, [g, h] = e if and only if g and h commute. Therefore, G is
Abelian if and only if G(1) is trivial. In general, the subgroup G

′

measures
the commutativity of a group. The smaller G

′

, the “more commutative” it
is.

Let α be an automorphism of the group G. Note that

α([g, h]) = α(ghg−1h−1) = α(g)α(h)α(g−1)α(h−1) = [α(g), α(h)]

Therefore, α(G
′

) = G
′

for any automorphism α. It is easy to see that G(m)

is a characteristic subgroup of the group G for any integer m.
Now, we are ready to introduce alternative description of solvable groups.

Theorem 2.3 A group G is solvable if and only if for some G(k) is trivial
k ∈ N.

As a consequence of this theorem, any solvable group has an Abelian
characteristic subgroup G(k−1). The following theorem is the one that allows
us to use induction in later proofs.

Theorem 2.4 The class of all solvable groups is closed under taking sub-
groups, quotient groups and direct products.

We will finish this part by folloving theorem concerning group theory.
The proof can be found in [14].

Theorem 2.5 Every Abelian group is isomorphic to a direct product of cyclic
groups.

3 3-Flows In Cayley Graphs On Abelian Groups

By a ladder we mean a graph isomorphic to Pn×K2 where V (Pn) = {1, ..., n}
and V (K2) = {1, 2}. Adding the edges 11, 2n and 1n, 21 to the ladder a
Moebius ladder Mn is obtained. Such a graph is bipartite if and only if n
is odd. A circular ladder Cn × K2 can be obtained by joining the vertices
11,1n and 21 and 2n. Unlike the Moebius ladder Mn, the circular ladder is
bipartite if and only if n is even. We refer to any graph homeomorhic to one
of these two graphs as a cyclic ladder.
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Figure 1. Circulant ladder with eight rungs. It is bipartite.

Figure 2. Moebius ladder with seven rungs. It is also bipartite and
therefore admits a nowhere-zero 3-flow.
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Lemma 3.1 Let Cay(G,S) be a connected cubic Cayley graph, where S con-
tains a central involution of G. Then G is isomorphic to one of following
groups: Z2n, Zn × Z2, D2n, Dn × Z2, Z2 × Z2 × Z2 or Z2 × Z2. In any case,
Cay(G,S) is cyclic ladder.

Proof. Let c be a central involution and let S = {x, x−1, c}. If the
involution c ∈ 〈x〉, then clearly G = Z2n. Otherwise, if c /∈ 〈x〉, then
G = Zn × Z2.

Let all elements of S be involutions x, y, c. In the case of xy = yx we
have G = Z2 × Z2 × Z2, or, if xy = c, then G = Z2 × Z2. Otherwise, if the
group 〈x, y〉 contains c, then G = D2n. If c is not member of 〈x, y〉, then
G = Dn × Z2. 2

Lemma 3.2 Every cyclic ladder has a nowhere-zero 3-flow or has a 3-flow,
where the zero value occurs on a single arbitrary rung.

Proof. We can easily see that any cyclic ladder Cn × K2 with one rung
removed is homeomorphic to the cyclic ladder Cn−1 × K2. Therefore, if n
is odd and the graph Cn × K2 does not admit a nowhere-zero 3-flow, then
Cn−1 × K2 has a nowhere-zero 3-flow.

Analogously, a Moebius ladder Mn without one rung is homeomorphic to
another Moebius ladder Mn−1. If the graph Mn does not admit a nowhere-
zero 3-flow, then we can find a nowhere-zero 3-flow of the Moebius ladder
Mn−1 which completes the proof. 2

A technique used in [13] consists of decomposing a given graph into several
edge-disjoint subgraphs, each having a nowhere-zero 3-flow. Usually the
graph is divided into a cubic bipartite spanning subgraph and a subgraph of
even valency. A cubic bipartite graph admits a nowhere-zero 3-flow and a
graph of even valency has a nowhere-zero 2-flow, therefore this decomposition
gives us a nowhere-zero 3-flow on the original graph.

Any generating set of Cayley graph of valency at least seven contains two
involutions or a non-involution. Edges generated by theses elements form a
spanning subgraph of valency two. What we obtain by deleting them is a
smaller Cayley graph. Therefore, to prove that a nowhere-zero 3-flow exists
on Cayley graphs of valency at least five, it is sufficent to show that there
exists a nowhere-zero 3-flow on Cayley graphs of valency five.

13



Theorem 3.1 Let Cay(G,S) be a Cayley graph of valency at least four such
that S contains a central involution. Then Cay(G,S) has a nowhere-zero
3-flow.

Proof. Clearly, if the valency of Cay(G,S) has a nowhere-zero 3-flow.
It is always possible to find two Cayley subsequences S1, S2 of the se-

quence S with intersection containing only central involution c and both of
them having exactly three elements. Then S

′

= S \ (S1 ∪ S2) is a Cayley
sequence of even length.

If follows from Lemma 3.1 that both Cay(G,S1) and Cay(G,S2) are cu-
bic and composed of cyclic ladders. Any c-edge is contained in exactly two
different cyclic ladders. If at least one of these cyclic ladders, say S1, has
a nowhere-zero 3-flow, then Cay(G,S) can be decomposed into a cubic bi-
partite graph Cay(G,S1) and a graph of even valency Cay(G,S \ S1) and
therefore Cay(G,S) has a nowhere-zero 3-flow.

Otherwise, we have to build the flow inductively. Let us start with the
set T1 containing an arbitrary cyclic ladder. It follows from Lemma 3.2, that
it has 3-flow f such that there exists exactly one c-edge with flow value zero.

In general, let Ti be the set of cyclic ladders and fi 3-flow on Cay(G,S)
satisfying:

• If there is an edge uv in Ti such that fi(uv) = 0, then the edge is a
c-edge.

• The flow fi(uv) is non zero for all c-edges uv contained in two different
ladders from Ti.

• For any edge that is not contained in Ti, the flow fi is zero.

• There is no more than one edge (c-edge) from Ti with flow value of 0.

It is easy to see, that T1 has these properties. Now we define Ti+1. If the
set Ti does not contain an edge with flow value zero, we can pick any unused
cyclic ladder L and set Ti+1 as Ti∪L. According to Lemma 3.2, it is possible
to find a flow l on L which is a nowhere-zero 3-flow or 3-flow where the zero
value occurs on a single rung. Then, we can define fi+1 = fi + l. Since there
is no edge with both flow values fi and l non-zero, fi+1 satisfies conditions
mentioned above.

Otherwise, let uv be a c-edge with flow value zero. It follows from the
second condition, that there is a circular ladder L2 not in Ti containing the
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edge uv. What we obtain by deleting all rungs from the intersection of L2

and Ti except uv from the circular ladder L2 is a new circular ladder L1.
Consider the case where L1 has more than one rung or is bipartite. Again,

we use Lemma 3.2 to find a flow f
′

on L1 such that the flow value on the
edge uv is not zero. Now, we can put Ti+1 = Ti ∪ L1 and define fi+1 as the
sum of flows f

′

and fi. Thus, fi+1 satisfies conditions mentioned above.
Finally, if L1 has exactly one rung and is not bipartite, then we can add

one more rung gh from Ti ∩L1 into L1 and find a nowhere-zero 3-flow f
′′

on
it. Now, the intersection of L1 and Ti contains exactly two c-edges.

Let us inspect the flows sum fi + f
′′

. The only edge where both flows fi,
f

′′

are non-zero is the rung gh. If fi(gh) + f
′′

(gh) 6= 0, then the flow fi+1

will be set as fi + f
′′

. Otherwise, fi+1 will be fi(gh) − f
′′

(gh). Clearly, fi+1

is a nowhere-zero 3-flow on Ti+1

As Cay(G,S1 ∪ S2) is a finite graph, there is an index k such that Tk

covers whole graph and fk is a nowhere-zero 3-flow on Cay(G,S1∪S2). Since
Cay(G,S) = Cay(G,S1 ∪S2)∪Cay(G,S

′

) and Cay(G,S
′

) is of even valency,
Cay(G,S) has a nowhere-zero 3-flow. 2

The following theorem was proved in [13], however we provide shorter
proof.

Theorem 3.2 Every Cayley graph Cay(G,S) on Abelian group of valency
at least four has a nowhere-zero 3-flow.

Proof. If Cay(G,S) is of even valency then Cay(G,S) admits a nowhere-
zero 3-flow. In the case of the graph of odd valency, there is is a central
involution in the sequence S. Therefore, the theorem is a straiforward con-
sequence of Theorem 3.1. 2
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4 3-Flows In Cayley Graphs On Nilpotent

Groups

Lemma 4.1 Let G be a group and H a normal subgroup of G. Let S be a
Cayley sequence with empty intersection with H. If Cay(G/H, S/H) has a
nowhere-zero 3-flow, then Cay(G,S) has also a nowhere-zero 3-flow.

Proof. Let f1 be a nowhere-zero 3-flow on Cay(G/H, S/H). For every
edge xy from the graph Cay(G,S), there is one corresponding edge xHyH
from the graph Cay(G/H, S/H)). Let us define f2 by setting

f2(xy) = f1(xHyH)

Clearly, f2 is a nowhere-zero 3-flow on Cay(G,S). 2

Lemma 4.2 Let G be a finite group and let H £ G be a normal Abelian
subgroup of even order. Then G contains a central involution.

Proof. Since H is Abelian, there exist cyclic subgroups H1 = 〈b1〉, H2 =
〈b2〉, ..., Hr = 〈br〉 such that Hi ∩ Hj = 1 for i 6= j and H = H1H2...Hr. We
may assume that for i = 1, 2, ..., s, |Hi| is even, and for i ≥ s+1, |Hi| is odd.
Define a = a1a2...as where each ai is the only non-trivial involution of Hi.
Since H is Abelian, a is a fixed by each automorphism of H. In particular,
a is fixed by every inner automorphism, and hence a ∈ Z(G) 2

Theorem 4.1 Let G be a group with an Abelian normal subgroup H. Let
Cay(G,S) be a Cayley graph of valency at least than four such that there is
an involution in the S ∩ H. Then Cay(G,S) has a nowhere-zero 3-flow.

Proof. We prove Lemma by induction on |H|. In the case of |H|=2,
c ∈ H ∩ S is a central involution and Cay(G,S) has a nowhere-zero 3-flow
as a consequence of Theorem 3.1. Therefore we may use it to start the
induction.

Since H contains an involution, it has even order. It follows from Lemma
4.2, that there is a central involution c in H.

We will consider two different possibilities. If the involution c belongs to
the Cayley sequence S, then we can use Theorem 3.1 to find a nowhere-zero
3-flow.
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Figure 3. Segment of a Cayley graph on a group G with a normal
subgroup H. Squares reprezents cosets of H. No generator belongs to the
subgroup H.

Figure 4. Segment of a factor Cayley graph on a factor group G/H. The
dotted line represents corresponding edge to the dotted edges in the original
graph.
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If the involution c is not member of the sequence S, then H1 = 〈c〉 is
normal subgroup of G and H with empty intersection with S. Since

gH1hH1g
−1H1 = ghg−1H1 ∈ H/H1,

H/H1 is normal Abelian subgoup of G/H1 and Cay(G,S) has a nowhere-zero
3-flow as a result of the Lemma 4.1 and induction hypothesis. 2

As all solvable groups admit Abelian normal subgroup, a Cayley graph on
a solvable group with a generating involution in the Abelian normal subgroup
of valency at least four has a nowhere-zero 3-flow.

Theorem 4.2 Every Cayley graph Cay(G,S) on nilpotent group of valency
at least four has a nowhere-zero 3-flow.

Proof. If Cay(G,S) is of even valency, then Cay(G,S) is Eulerian and has
a nowhere-zero 3-flow.

If the graph Cay(G,S) is of odd valency, we prove Lemma by induction
on |G|. Any cyclic group of prime order is Abelian and nilpotent. As we
proved before in the Theorem 3.2, such a group admits a nowhere-zero 3-
flow. Therefore we may use it as induction start.

Since G contains an involution, its 2-Sylow subgroup is non-trivial and G
has a centre of even order. Therefore, G has a central involution c.

We will consider two different possibilities. If the involution c belongs
to the sequence S, then we can use Theorem 3.1 to find a nowhere-zero 3-
flow. If the involution c is not a member of the sequence S, then 〈c〉 is a
normal subgroup of G with empty intersection with S, and Cay(G,S) has a
nowhere-zero 3-flow as a result of Lemma 4.1 and of induction hypothesis.
2
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5 Additional results

Lemma 5.1 A Cayley graph on an Abelian group generated by four involu-
tions has a cubic bipartite spanning Cayley subgraph.

Proof. Let a, b, c, d be generating involutions. First, consider Cayley
subgraph G generated by elements a, b, c. If a = b = c, then G is clearly
cubic bipartite. Without loss of generality, let a 6= b. If ab 6= c, then
Cay(G, {a, b, c}) is isomorphic to a vertex disjoint union of cubes (or circular
ladder with four rungs) and therefore is bipartite. The case of ab 6= d is
analogous. Finally, let c = d = ab and consider a graph generated by elements
a, c, d. Such a graph is isomorphic to a circular ladder with two rungs which
is cubic bipartite. 2

Note that involutions a, b, c, d in the previous Lemma do not have to be
distinct. Also, Cayley subgraph obtained in the previous Lemma admits a
nowhere-zero 3-flow.

Lemma 5.2 Let G be a group and let H be a normal Abelian subgroup of
index two. Let H1 £ G such that H1 £ H. In such a situation, H

′

= H/H1

is normal Abelian subgroup of G
′

= G/H1 of index two.

Proof. Let g be an element from G \ H and h be an element from H.
Clearly, gH1 is not in H

′

and 〈H, g〉 = G. Factor group of Abelian group
is Abelian, so H

′

is Abelian. Since H1 is characteristic subgroup of H, then
gH1 = H1g and g−1H1 = H1g

−1. Therefore,

gH1hH1g
−1H1 = ghg−1H1 ∈ H

′

and H
′

is normal Abelian subgroup of G
′

.
Finally, we have to prove that |G

′

/H
′

| = 2. From 〈H, g〉 = G, see that
H

′

∪ gH1 = G
′

and therefore |G
′

/H
′

| = 2 . 2

Lemma 5.3 Let G be a group with an involutory element c and non-involutory
element d. If there exists an integer k such that d(cd)k = 1, then c and d
commute.
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Proof.

d(cd)k = 1

cd(cd)kc = c1c

(cd)k+1c = 1

Now, let us solve folloving equation:

dc = cx

cdc = x

d(cd)kcdc = x

d(cd)k+1c = x

d = x

Therefore dc = cd. 2

Lemma 5.4 Let Cay(G, {c, d}) be a Cayley graph on an Abelian group. If
there is an alternating (c, d)-cycle, then there is a spanning set of alternating
vertex disjoint (c, d)-cycles.

Proof. Let T1 be a set containing only an alternating cycle (c, d)-cycle
passing throught vertex 1. If all elements of G are contained in T1, then T1

is a spanning set of alternating vertex disjoint (c, d)-cycles.
Let Ti be a set containing i alternating vertex disjoin (c, d)-cycles such

that for any two cycles v1, v2, ..., vk and u1, u2, ..., uk in Ti exists an element
from G satisfying vj = huj; j ∈ 〈1, k〉

We define Ti+1 as follows. Let v1, v2, ..., vk be a cycle in Ti. Clearly,
if the set Ti is not spanning, then there exists h ∈ G such that hvj /∈ Ti

for any j. Then hv1, hv2, ..., hvk is an alternating (c, d)-cycle and Ti+1 =
Ti ∪ hv1, hv2, ..., hvk is a set containing i + 1 alternating vertex disjoin (c, d)-
cycles.

As G is finite, there is an index k such that Tk covers all vertices of G by
vertex disjoint (c, d)-cycles. 2

Theorem 5.1 Let Cay(G,S) be a cubic Cayley graph where G has a normal
Abelian subgroup H of index two. If the intersection of S and H does not
contain an involution, |S ∩ H| = 2 and the sequence S is not Abelian, then
Cay(G,S) is bipartite.

20



d

c

d

d
d

c

c

d

d

c d
c

c
c

Figure 5. Alternating (c, d)-cycles to illustrate Lemma 5.4.
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Proof. Let d ∈ S ∩ H and c ∈ S \ H.
It follows from Lemma 5.3, that an integer k such that d(cd)k = 1 does

not exist (otherwise elements c and d would commute). We put m = cdc.
Apparently, m is a member of H and there does not exist l such that d(md)l =
1. Therefore, we can use Lemma 5.4 to find a set T of vertex disjoint spanning
cycles of Cay(H,S1), where S1 = {d, d−1,m,m−1}.

Now, let us take any cycle v1, v2, ..., v2k from S1. We put the flow f on
this cycle’s edges equal one, f(vi, vi+1) = 1 for i ∈ 〈1, 2k − 1〉. The flow f on
the edges not contained in S1 will be 0.

At last, we replace any (g, dg)-edges in flow by path g, ag, acg, acag. The
function f is now 3-flow on c-edges and a-edges such that the flow value
of any oriented c-edge equals 1 or 0. Any a-edge has nonzero flow value.
Therefore, the flow f2 defined on a-edges and c-edges as

• f2(u, cu) = f1(u, cu) + 1

• f2(u, au) = f1(u, au)

is a nowhere-zero 3-flow on Cay(G,S). Since the graph Cay(G,S) admits a
nowhere-zero 3-flow, it is bipartite. 2

Theorem 5.2 Let G be a group containing an Abelian subgroup of index two.
Then every Cayley graph Cay(G,S) of valency at least four has a nowhere-
zero 3-flow.

Proof. We prove lemma by induction on |G|. If |G| = 2, then there is
nothing to show. The graph is bipartite and has a nowhere-zero 3-flow. So
we can use it as the induction start.

For the induction step, let us consider four different cases.
Case 1: |H ∩ S| ≤ 2. Since the index of H in G equals to 2, graph

Cay(G,S \ H) is bipartite. Clearly, it has at least three disjoint 1-factors.
Therefore, the union of these 1-factors is a cubic bipartite graph and as such
has a nowhere-zero 3-flow.

Case 2: |H∩S| = 3. Clearly, there is at least one involution in the group
H. We know from Lemma 4.2, that there is an involution h in H such that
H1 = 〈h〉 is characteristic subgroup of G. If h belongs to S, then Cay(G,S)
has a nowhere-zero 3-flow from Theorem 3.1. It follows from Lemma 5.2, that
we can apply induction hypothesis to Cay(G/H1, S/H1) and we are done.
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Figure 6. Original Cay(G, {c, d}) where c is the involution, d is a member
normal subgroup H of G of index two. Edges generated by the involution c
are horizontal. All other edges are d-edges. The vetices of H are on the letf
and vertices of another coset are on the right.

Figure 7. Alternating (m, d)-cycles. Lines generated by m = cdc are
dotted. The flow is shown by arrows.

23



Figure 8. Final nowhere-zero Z3-flow. Arrows direction represents the
flow value.

Case 3: |H ∩ S| = 4. Now, let a be an element from S \ H. Thus, a is
an involution. We distinguish three different subcases. First of all, if H ∩ S
consists of four involutions, then there is a cubic bipartite spanning Cayley
subgraph. Therefore Cay(G,S) has a nowhere-zero 3-flow.

For the second subcase, let H ∩ S consist of exactly two involutions and
one non-involution. Again, there is h in H such that H1 = {e, h} is char-
acteristic subgroup of G. Proof is then analogous to the case |H ∩ S| = 3,
the existence of a nowhere-zero 3-flow is a consequence of Lemma 5.2 and
Lemma 4.1.

Finally, let H ∩S = {c, c−1, d, d−1}. If either c or d do not commute with
a, then existence of a nowhere-zero 3-flow is straigthforward consequence of
Theorem 5.1 We may therefore assume that a ca = ac and da = ad. Then, a
is a central involution in 〈a, c, d〉. Therefore, Cay(G,S) has a nowhere-zero
3-flow.

Case 4: |H∩S| = 5. Cay(G,S) consist of 2 Cayley graphs on an Abelian
group and as such has a nowhere-zero 3-flow. 2

As a consequence of the last theorem, all Cayley graphs Cay(G,S) of va-
lency at least four where G is solvable containing an Abelian normal subgroup
of index two admit a nowhere-zero 3-flow.
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