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Abstract

In this diploma thesis we present data structure for representation of maximal repeats in
strings - R3 tree, based on well known data structure - suffix tree. It requires O(n) space
and it can be constructed in O(n) time and space for string of length n over constant-sized
alphabet. We formalize repeat in string S as triple (p1, p2, l), where p1, p2 are two distinct
positions in S and l is the length of the repeat. We formulate query for maximal repeats in S
in the form of the function findPairs(p1, k, S) that returns all pairs (p2, l) such that (p1, p2, l)
is maximal repeat in S with l ≥ k. R3 tree allows computation of findPairs queries in optimal
time O(z), where z is the number of found pairs. We also describe design and functionality of
R3lib – library written in C, for finding maximal repeats in arbitrary binary data, that works
with proposed structure.
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Chapter 1

Introduction

The most known motivation for maximal repeat algorithms comes from bioinformatics. The
computation of maximal repeats in strings plays an important role in the analysis of genomic
sequences. In general, this area stimulates majority of research in area of string algorithms
today. There are several other motivations for finding duplication in any data. Repeat dis-
covery may help avoiding redundancy and can be useful in text analysis. For example, it is a
good practice to avoid duplication in program source code because of the danger of bug fixes
being applied to one copy but not all the others.

There are algorithms and software tools for finding all maximal repeats in a string. Optimal
algorithm for finding all maximal repeats was first described in [1]. This algorithm is based
on suffix trees and finds all maximal repeats in O(n.log|Σ| + z), where n is length of the
string, |Σ| is size of the alphabet and z is number of maximal repeats (output size). A space
efficient version of this algorithm using suffix arrays is described in [2]. There are tools that
can efficiently find maximal repeats in genome sequences, for example Vmatch1 (new version
of REPuter) and also recent version of MUMmer2.

Maximal number of all maximal repeats in a string S of size n is O(n2). Some applications
may occur, where we don’t want to see all maximal repeats at once, but interactively analyze
data or text and see only maximal repeats starting at position in currently viewed segment.
Our approach is to build a data structure representing all maximal repeats in the data, that
could answer such queries quickly. It turns out, that such structure requires only linear space
and also can be constructed in linear time and space.

We decided to call our data structure R3 tree. The part ’R3’ comes from Repeat Report
Representation, as this structure can effectively replace "repeat report" (list of all maximal
repeats) in some applications.

The main task of this diploma thesis was to develop a library that supports this approach to
maximal repeats. Our library, written in C, is called R3lib and the latest version can be found
on the R3lib project home page at http://michal.linhard.sk/r3lib.

The contents of this thesis are organized as follows. In Chapter 2 we define the basic terms
and data structures. Suffix tree and lcp-interval tree will be defined in terms of graph the-
ory and isomorphism of these two structures will be established. This is because R3 tree

1http://www.vmatch.de/
2http://mummer.sourceforge.net/
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will be conceptually defined in terms of suffix tree but implementation in R3lib works with
suffix array and lcp-interval tree. This approach - replacing suffix trees by enhanced suffix
arrays - was introduced in [2] and this work will be referenced many times throughout our text.

Chapter 3 starts by introducing LC-bucket tree. This structure is defined, so that we can
demonstrate problems that have to be solved for findPairs query to run in optimal time. Then
we define R3 tree and show how it deals with these problems.

In Chapter 4 we describe data structures that are used in R3lib library to represent R3 tree
and we show how R3lib constructs R3 tree in this representation.
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Chapter 2

Definitions and notation

2.1 Basic notions

Let Σ be finite ordered alphabet. We will use symbols a, b, . . . for elements of the alphabet.
We suppose |Σ| is constant. Σ∗ is the set of all strings over Σ. Let >L denote lexicographic
ordering on Σ. We will use symbols S, S1, S2, x, y, . . . for strings. |S| denotes length of string
S. Reverse of string S is denoted SR. We write S[i], where 0 ≤ i < n, to refer to i-th character
of S. We define S[−1] = c and S[n] = $ , where c, $ are special symbols not occuring in Σ.
∀a ∈ Σ : $ > a. S[i..j], where 0 ≤ i ≤ j ≤ n refers to substring of S starting at position i and
ending at position j. For 0 ≤ i < n , substring S[i..n−1] is called suffix and substring S[0..i] is
called prefix. The fact that S1 is prefix of S2, is denoted x v y and the fact that x is suffix of y
is denoted y w x. Set of natural numbers smaller than n is denoted Nn = {0, 1, . . . , n−1}, i-th
suffix with end marker is denoted suffixS(i) = S[i..|S|], left context of i-th suffix is denoted
LCS(i) = S[i− 1].

For two strings x, y we define lcplen(x, y) to be length of their common prefix.

A triple (p1, p2, l) is called repeat in string S if 0 ≤ p1 + l ≤ |S|, 0 ≤ p2 + l ≤ |S|, p1 6= p2

and S[p1 . . . p1 + l − 1] = S[p2 . . . p2 + l − 1]. Repeat (p1, p2, l) is called left maximal if
LCS(p1) 6= LCS(p2) and right maximal if S[p1 + l] 6= S[p2 + l]. A repeat is called maximal
if it’s left and right maximal.

On figure 2.1, we can see example of maximal repeat (1, 25, 7). Our queries for maximal repeats
in string S will have form of findPairs(p1, k, S), where findPairs is a function that returns the
set of all pairs (p2, l) such that (p1, p2, l) is maximal repeat in S with l ≥ k. For example the
query findPairs(0, 4, S) for string from figure 2.1 would return the set {(4, 5), (11, 4), (28, 4)}.

Figure 2.1: Example of maximal repeat
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Tree T is a triple (V,E, root) where V is set of nodes, root ∈ V is the root node, E ⊆ V × V
is set of edges. For all nodes v ∈ V \ {root} there is exactly one node parentT (v) ∈ V
such that (parentT (v), v) ∈ E . For a node v we define ChildrenT (v) = {u|(v, u) ∈ E},
DescT (v) = {u|(v, u) ∈ E+}, where E+ is transitive closure of E. Depth of a node is defined
as follows: depthT (root) = 0, depthT (v) = depthT (parentT (v))+1 for v ∈ V \ {root}. Lowest
common ancestor of two nodes will be denoted LCAT (v1, v2).

We divide set of nodes V into leaves VL, and internal nodes VI . We divide set of edges E into
internal edges EI = E ∩ (VI × VI) and leaf edges EL = E ∩ (VI × VL).

For a tree T, we use following symbols. V (T ) is set of nodes, E(T ) is set of edges, root(T )
is the root of the tree, VI(T ) is the set of internal nodes, VL(T ) is set of leaves, EI(T ) is the
set of internal edges, EL(T ) is the set of leaf edges. TI(T ) = (VI(T ), EI(T ), root) will denote
internal part of suffix tree. E+ will denote transitive closure of relation E, whenever E is used
as symbol for set of edges.

2.2 Suffix tree and lcp-interval tree

Suffix tree for a string S is a 5-tuple T = (V,E, root, label, prefix). First three components
form a tree Ṫ = (V,E, root). We define the same symbols for suffix tree as we defined for tree:
V (T ) = V , E(T ) = E, root(T ) = root, VI(T ) = VI(Ṫ ), VL(T ) = VL(Ṫ ), EI(T ) = EI(Ṫ ),
EL(T ) = EL(Ṫ ), ChidrenT = ChildrenṪ , DescT = DescṪ , parentT = parentṪ , depthT =
depthṪ , LCAT (v1, v2) = LCAṪ (v1, v2).

labelT : E → Σ+ is an edge-labeling function, that labels each edge of the tree T by some
non-empty string. If labelT (e) = ax for some x ∈ Σ∗, we call e an a-edge.

prefixT : V → Σ∗ is a map from nodes to strings. For a node v ∈ V \ {root} and the path
root = v0, v1, . . . , vk = v we define prefixT (v) = labelT (v0, v1)labelT (v1, v2) . . . labelT (vk−1, vk),
prefixT (root) = ε.

Suffix tree T satisfies following conditions

1) VL(T ) = N|S|+1

2) ∀i ∈ VL(T ) : prefix(i) = suffixS(i)

3) ∀v ∈ VI(T ) : |ChildrenT (v)| ≥ 2

4) ∀v ∈ VI(T ) : ∀i ∈ DescT (v) ∩ VL(T ) : prefixT (v) v prefixT (i)

5) ∀v ∈ VI(T ) :
(
(v, u) ∈ E ∧ (v, w) ∈ E ∧ (v, u) is a-edge ∧(v, w) is b-edge

)
⇒ a 6= b

In other words, 1) the leaves of ST (S) represent positions of all suffixes of S$, 2) concatenation
of labels on the path from root to a leaf spells exactly the suffix represented by the leaf, 3)
each internal node is a branching node - it has at least 2 children, 4) internal nodes represent
common prefix of their descendants and 5) all labels of edges outgoing from a node must begin
with distinct characters. Note that suffix tree definition uses suffixes that are extended to the
right endmarker $.

We define set Prefixes(T ) = {prefixT (v)|v ∈ VI(T )}
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Figure 2.2: Suffix tree for string S=’acaaacatat’

For an internal node v, we define lcplenT (v) = |prefixT (v)|.
Leaves of the suffix tree represent positions of suffixes of S. Internal nodes represent sets of
positions. For an internal node v we define

PosT (v) = ChildrenT (v) ∩ VL(T )
Pos+

T (v) = DescT (v) ∩ VL(T )

For a node v ∈ V

Pos∗T (v) =
{

Pos+
T (v) if v ∈ VI(T )

{v} if v ∈ VL(T )

Suffix tree for string S will be denoted ST (S). Let n = |S| + 1 (length of S$). Following
properties should be easy to verify.

Property 2.1. |VI(T )| < n.

Property 2.2.
∑

v∈VI(T )

|ChildrenT (v)| < 2n.

Property 2.3. {PosT (v)|v ∈ VI(T )} is partition of VI(T ).

Property 2.4. ∀v ∈ VI(T ) : PosT (v) ≤ |Σ|.

mapT : N|S|+1 → VI(T ) is a function that maps positions into internal nodes they belong to.
∀i ∈ N|S|+1 : i ∈ PosT (mapT (i)).

It is known that suffix tree T for string of length n can be built in O(n) time and space, using
algorithms of [3], [4] or [5] ([5] presents on-line construction). Function mapT can be realised
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by table that can be easily precomputed in O(n) time by one traversal of T . Value mapT (i)
can be therefore accessed in O(1) time.

We deal with suffix trees, because they have an interresting property from the point of view
of maximal repeats. Each internal node v of a suffix tree T represents the longest common
prefix prefixT (v) of it’s descendants. Moving to a child of the vertex v means extending the
prefix. For suffixes under two distinct children (that are either leaf or internal nodes) the
prefix prefixT (v) is not right-extensible.

Property 2.5. Let v be an internal node of ST (S), l = lcplen(v), c1, c2 ∈ Children(v),
c1 6= c2, p1 ∈ Pos∗(c1), p2 ∈ Pos∗(c2). Then (p1, p2, l) is right maximal repeat in S.

Lemma 2.1. Let T = ST (S) and p1, p2 ∈ N|S|+1, p1 6= p2. Let v1 = mapT (p1), v2 =
mapT (p2), w = LCAT (v1, v2). Then (p1, p2, l) is right maximal repeat in S if and only if
l = lcplenT (w).

Proof. It holds that ∃c1, c2 ∈ Children(w), p1 ∈ Pos∗(c1), p2 ∈ Pos∗(c2). Also c1 6= c2,
because w = LCAT (v1, v2). By property 2.5 (p1, p2, lcplenT (w)) is right maximal repeat in S.
There can’t be right maximal repeat (p1, p2, l) for l other than lcplenT (w), because it would
contradict with properties of maximal repeat.

Suffix tree will be used to define R3 Tree in the next chapter. However our implementation
will be based on more space efficient structure - enhanced suffix array. Authors of article [2]
show that suffix tree can be replaced by enhanced suffix array in many applications. They
introduce conceptual data structure - lcp-interval tree that is defined by suffix array and
lcp-table (it doesn’t really have to be built). With little added information, this data struc-
ture allows us to simulate suffix tree traversals efficiently. In following text we’ll introduce
concept of enhanced suffix arrays and establish isomorphism of lcp-interval tree and suffix tree.

Suffix array is a permutation saS : N|S|+1 → N|S|+1 such that (∀i, j)(0 ≤ i < j ≤
|S|) : suffixS(saS(i)) <L suffixS(saS(j)). For 0 ≤ i ≤ j ≤ |S| we define saS [i..j] =
{saS(i), saS(i + 1), . . . , saS(j)}.

Lcp-table is a function lcptabS : N|S|+1 → N|S|+1 such that (∀i)(1 ≤ i ≤ |S|) : lcptabS(i) =
lcplen (suffixS(saS(i− 1)), suffixS(saS(i))), lcptabS(0) = 0

Suffix array and lcp-table are represented as arrays of integers. It is known that suffix array
for a string of length n can be constructed in O(n) time and space. There are three different
algorithms described in [6], [7] and [8].

Example of suffix array and lcp-table is shown on figure 2.3. Also values LCS(saS(i)) and
suffixS(saS(i)) are shown for each suffix array entry saS(i).
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Figure 2.3: Suffix array and lcp-table for S=’acaaacatat’.

i saS(i) lcptabS(i) LCS(saS(i)) suffixS(saS(i))
0 2 0 c aaacatat$
1 3 2 a aacatat$
2 0 1 c acaaacatat$
3 4 3 a acatat$
4 6 1 c atat$
5 8 2 t at$
6 1 0 a caaacatat$
7 5 2 a catat$
8 7 0 a tat$
9 9 1 a t$
10 10 0 t $

Lcp-interval in table lcptabS is a triple (l, i, j) that satisfies all following conditions1

1) 0 ≤ i < j ≤ |S|

2) lcptabS(i) < l

3) (∀k)(i + 1 ≤ k ≤ j) : lcptabS(k) ≥ l

4) (∃k)(i + 1 ≤ k ≤ j) : lcptabS(k) = l

5) lcptabS(j + 1) < l

Sometimes, instead of triples, we’ll use symbols I,J , . . . for lcp-intervals. For lcp-interval
I = (l, i, j) we define I.lcp = l, I.lb = i, I.rb = j.

Lcp-interval I is said to be embedded in lcp-interval J if J .lb ≤ I.lb∧ I.rb ≤ J .rb∧ I.lcp >
J .lcp2. J is then called the interval enclosing I. We call I a child interval of J if it is
embedded in J and there is no other interval embedded in J , that also encloses I. We’ll write
childintS(J , I) to express that I is child interval of J .

Lcpintervals(S) will denote set of all lcp-intervals in lcptabS .

Lcp-interval tree for a string S is a tree T = (V,E, root) such that

1) V = Lcpintervals(S)

2) E = {(I,J) ∈ V × V |childintS(I,J)}

3) root = (0, 0, |S|)
1for the purpose of this definition we define lcptabS(|S| + 1) = −1
2Note that we cannot have both J .lb = I.lb and I.rb = J .rb because I.lcp > J .lcp
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Figure 2.4: Lcp-interval tree for string S=’acaaacatat’

Pos+
T (I) = saS [I.lb..I.rb]

PosT (I) = Pos+
T (I) \

( ⋃
J∈ChildrenT (I)

Pos+
T J

)
For an lcp-interval I ∈ V we define prefixT (I) to denote the longest common prefix of all
positions in Pos+

T (I).

Prefixes(T ) = {prefixT (I)|I ∈ V }
Each interval gets unique prefix and therefore we can define function prefix−1

T : Prefixes(T ) →
V returning interval with given prefix.

Lcp-interval tree for a string S will be denoted LCPIT (S).

Theorem 2.1. Let T1 = ST (S), T2 = LCPIT (S). Then

1) Prefixes(T1) = Prefixes(T2)

h = prefixT1 ◦ prefix−1
T2

is isomorphism of TI(T1) and T2, i.e.

2) h is bijection between VI(T1) and V (T2)

3) (∀(u, v) ∈ EI(T1)) : (h(u), h(v)) ∈ E(T2)

Internal node and it’s respective lcp-interval have identical position sets.

4) (∀v ∈ VI(T1)) : Pos+
T1

(v) = Pos+
T2

(h(v))

5) (∀v ∈ VI(T1)) : PosT1(v) = PosT2(h(v))

This theorem establishes isomorphism of suffix tree (it’s internal part) and lcp-interval tree.
From now on, we don’t have to distinguish between internal nodes of suffix tree and lcp-
intervals, V (LCPIT (S)) = VI(ST (S)). This theorem is presented without proof but we
believe it should be clear from properties of lcp-intervals and lcp-interval tree. Detailed proof
would be out of scope of this thesis. For details refer to [2].
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Table for S = acaaacatat
i saS i  lcptabS i  suffix S i 
0 2 0 aaacatat$
1 3 2 aacatat$
2 0 1 acaaacatat$
3 4 3 acatat$
4 6 1 atat$
5 8 2 at$
6 1 0 caaacatat$
7 5 2 catat$
8 7 0 tat$
9 9 1 t$
10 10 0 $

Table for S R = tatacaaaca
i saS Ri  lcptabS Ri  suffix S Ri 
0 5 0 aaaca$
1 6 2 aaca$
2 3 1 acaaaca$
3 7 3 aca$
4 1 1 atacaaaca$
5 9 1 a$
6 4 0 caaaca$
7 8 2 ca$
8 2 0 tacaaaca$
9 0 2 tatacaaaca$
10 10 0 $

revposS 6,2=2
revposS 8,2=0

(2,4,5)

(2,8,9)

rev

Figure 2.5: Example of reverse lcp-interval in suffix array and lcp-table.

2.3 Reverse lcp-interval

Authors of suffix tree construction algorithms ([5], [3]) work with concept of auxiliary edges
called suffix links. Usually, when taking edges in the suffix tree, the prefix represented by
the current node is lengthened or shortened at the end. Suffix links are used to move from
one node to another so that the represented prefix is shortened at the front. In [11] it is
shown that, there is a strong relationship between the suffix tree built from the reverse string
(often called reverse prefix tree) and the suffix links of the suffix tree built from the original
string. Utilization of this relationship of ST (SR) and ST (S) is brought one step further by
introduction of Affix trees in [12]. In our work, we exploit some aspects of this relationship
with the concept of reverse lcp-intervals.

Let x = S[p..p + l − 1] be a substring of length l, that occurs in S at position p. It holds

(S[p..p + l − 1])R = SR[|S| − (p + l)..|S| − p− 1]

To express position of xR in SR, we define function

revposS(p, l) = |S| − (p + l)

If P is set of positions, then

revposS(P, l) = {revposS(p, l)|p ∈ P}

11



Theorem 2.2. Let T = LCPIT (S), TR = LCPIT (SR), I ∈ V (T ). Then there exists exactly
one J ∈ V (TR) such that

1) J .lcp ≥ I.lcp

2) prefixT (I)R v prefixT R(J)

3) Pos+
TR

(J) = revposS(Pos+
T (I), I.lcp)

We call the lcp-interval J a reverse lcp-interval of I and we denote it rev(I).

Proof. Let α = prefixT (I), let (l, i, j) = I. From properties of suffix array it follows that
saS [i..j] is set of all positions at which α occurs in S and therefore revposS(saS [i..j], l) is set
of all positions at which αR occurs in SR. Let’s have set of all suffixes of SR, with prefix αR

R = {suffixSR(k)|k ∈ revposS(saS [i..j], l)}

Let p be such that suffixSR(saSR(p)) is minimum from R w.r.t. <L.
Let q be such that suffixSR(saSR(q)) is maximum from R w.r.t. <L.

Since saSR is lexicographically ordered, we have saSR
[p..q] ⊇ revposS(saS [i..j], l). suffixS

and revposS are bijections, therefore saSR [p..q] = revposS(saS [i..j], l) and R = {suffixSR(k)|k ∈
saSR [p..q]}.
Let β be the longest common prefix of all suffixes from R. and let m = |β|. It’s easy to see
that αR is prefix of β and therefore m ≥ l. Now we will show that J = (m, p, q) is lcp-interval
in lcptabSR , i.e. it satisfies all conditions

1) 0 ≤ p < q ≤ |SR|

2) lcptabSR(p) < m

3) (∀k)(p + 1 ≤ k ≤ q) : lcptabSR(k) ≥ m

4) (∃k)(p + 1 ≤ k ≤ q) : lcptabSR(k) = m

5) lcptabSR(q + 1) < m

1) p < q because |R| ≤ 2.
2) lcptabSR(p) < l because p is the lowest index in saSR such that suffixSR(saSR(p)) begins
with αR. l ≤ m ⇒ lcptabSR(p) < m.
3) and 4) follow from the choice of m.
5) lcptabSR(q + 1) < l because q is the highest index in saSR such that suffixSR(saSR(q))
begins with αR. l ≤ m ⇒ lcptabSR(q + 1) < m.

From this we have J = rev(I).

Lemma 2.2. Let T = LCPIT (S), TR = LCPIT (SR), V1 = {I ∈ V (T )|rev(I).lcp = I.lcp}.
Then rev narrowed to V1 is injection i.e. I,J ∈ V1 ∧ I 6= J ⇒ rev(I) 6= rev(J).

12



Proof. Let R = rev(I) = rev(J). It holds that
Pos+

T R(R) = revposS(Pos+
T (I), I.lcp) = revposS(Pos+

T (J),J .lcp)
As I.lcp = J .lcp = R.lcp, we can also write
revposSR(Pos+

T R(R),R.lcp) = Pos+
T (I) = Pos+

T (J)

and from that we have I = J .

13



Chapter 3

R3 Tree

Property 2.5 of suffix trees would be sufficient for us to be able to report all right maximal
repeats. To ensure left maximality of (l, i, j), it has to hold that LCS(i) 6= LCS(j). In
following section we’ll define another refinement of the structure of the suffix tree, so that
we can address this requirement. This will be done by partitioning the PosT sets of internal
nodes of suffix tree T according to left contexts of its suffixes/positions. The result will be
a conceptual structure - LC-bucket tree - that will be used to illustrate problems we need to
cope with, when we want to implement optimal findPairs query.

3.1 LC-bucket tree

Let Σc = Σ∪{c}. For an internal node v of suffix tree T for a string S and symbol a we define
LC-bucket to be a set of positions returned by function b : VI(T ) × Σc → 2N|S|+1 which is
defined as follows:

bT (v, a) = {i ∈ PosT (v)|LCS(i) = a}

We also define analogue for sets Pos+
T that will be used later. We will call it b+ set.

b+
T (v, a) = {i ∈ Pos+

T (v)|LCS(i) = a}

Set of all LC-buckets for a suffix tree T :

B(T ) = {bT (v, a)|v ∈ VI(T ), a ∈ Σc, bT (v, a) 6= ∅}
B+(T ) = {b+

T (v, a)|v ∈ VI(T ), a ∈ Σc, b
+
T (v, a) 6= ∅}

We define left context for a b+ set to be left context of any of it’s elements (there has to be
at least one and there is finite number of them).

∀B ∈ B+(T ) : LCS(B) = LCS(i) for some i ∈ B
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For better legibility of text, we omit parameter T in expressions bT (v, a) and b+
T (v, a). When

we use symbols b(v, a) and b+(v, a) we allways know the suffix tree T that node v belongs to.

These are easily verifiable facts about buckets and b+ sets. We present them without proof.

Lemma 3.1. Let T = ST (S), TI = TI(T ), v ∈ VI(T ), a ∈ Σc.

1) B(T ) is partition of N|S|+1.

2) b+(v, a) = b(v, a) ∪

( ⋃
u∈ChildrenTI

(v)

b+(u, a)

)

3) u1, u2 ∈ ChildrenTI
(v) ∧ u1 6= u2 ⇒ b+(u1, a) ∩ b+(u2, a) = ∅

4) u ∈ ChildrenTI
(v) ⇒ b+(u, a) ∩ b(v, a) = ∅

Lemma 3.2. Let T = ST (S), TI = TI(T ), EI = EI(T ), u, v ∈ VI(T ), a ∈ Σc.

1) b+(u, a) = b+(v, a) 6= ∅ ⇒
(
(u, v) ∈ E+

I ∨ (v, u) ∈ E+
I ∨ u = v

)
2)
(
u 6= v ∧ (u, v) /∈ E+

I ∧ (v, u) /∈ E+
I

)
⇒ b+(u, a) ∩ b+(v, a) = ∅

3) b+(u, a) ⊃ b+(v, a) 6= ∅ ⇒ (u, v) ∈ E+
I

Proof. 1) Let’s consider case u 6= v. Let s ∈ b+(u, a). Let s = u0, u1, u2, . . . , uk = u be path
from s to u in T and let s = v0, v1, v2, . . . , vl = v be path from s to v in T . W.L.O.G.,
let 0 < k < l. Then u0 = v0 = s, u1 = v1 = parentT (s), . . . , uk = vk = parentT (uk−1),
u = vk, vk+1, . . . , vl = v is path in T , therefore (v, u) ∈ E+

I .

2) Let w = LCAT (u, v).
(
u 6= v ∧ (u, v) /∈ E+

I ∧ (v, u) /∈ E+
I

)
⇒ (w 6= u ∧ w 6= v). (∃w1, w2 ∈

ChildrenTI
(w))(w1 6= w2)((w1, u) ∈ E∗

I ∧ (w2, v) ∈ E∗
I ), where E∗

I is reflexive and tran-
sitive closure of EI . By lemma 3.1 3) b+(w1, a)∩b+(w2, a) = ∅ ⇒ b+(u, a)∩b+(v, a) = ∅.

3) b+(u, a) ⊃ b+(v, a) 6= ∅ ⇒ b+(u, a) ∩ b+(v, a) 6= ∅ ⇒ by 2) u = v ∨ (u, v) ∈ E+
I ∨

(v, u) ∈ E+
I . Neither (v, u) ∈ E+

I nor u = v can be the case because it would imply
b+(u, a) ⊆ b+(v, a), which would contradict our premise. Therefore (u, v) ∈ E+

I holds.

Let’s have T = ST (S) and M ∈ B+(T ), a = LCS(M). There may be more than one v ∈ VI(T )
such that b+(v, a) = M . However by statement 1) of lemma 3.2, all such nodes v form path
in T . Therefore we can define functions returning first and last(deepest) node of this path.

firstT (M) = v ∈ VI(T ) : b+(v, a) = M ∧ b+(parentT (v), a) 6= M
lastT (M) = v ∈ VI(T ) : b+(v, a) = M ∧ (∀u ∈ Children(TI(T )) : b+(v, a) 6= M)

LC-bucket tree will be created from suffix tree by removing it’s leaves and appending LC-
buckets to respective internal nodes.
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Figure 3.1: LC-bucket tree for string S=’acaaacatat’

LC-bucket tree for string S is a tree T = (V,E, root), such that

1) V = VI(ST (S)) ∪B(ST (S))

2) E = EI(ST (S)) ∪ EB

3) root = root(ST (S))

Where EB = {(v, b(v, a))|v ∈ VI(ST (S)), a ∈ Σc, b(v, a) 6= ∅}
By removing leaves and adding LC-buckets, no internal node of ST(S) could become leaf.
Also no bucket node has any children, therefore VI(T ) = VI(ST (S)), VL(T ) = B(T ), EI(T ) =
EI(ST (S)) and EL(T ) = EB.

We define lcplen function for internal nodes of T :

∀v ∈ VI(T ) : lcplenT (v) = lcplenST (S)(v)

LC-bucket tree for a string S will be denoted LCBT (S).

3.2 Non-optimal findPairs query on LC-bucket tree

We present LC-bucket tree and non-optimal version of findPairs query as the first iteration
towards our target data structure, to demonstrate the main problems that have to be solved
to achieve optimality. The algorithm is given on figure 3.2. It works with LC-bucket tree
T = LCBT (S). Values mapT (i), LCS(i), lcplenT (v), parentT (v) are assumed to be accessible
in O(1) time. Also all children of a node can be determined in constant time.

Theorem 3.1. Call of function findPairsNonOptimal(p1, k) reports pair (p2, l) if and only if
(p1, p2, l) is maximal repeat in S such that l ≥ k.
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Proof. Let T = LCBT (S), v1 = mapT (p1), v2 = mapT (p2), and w = LCAT (v1, v2). Let
u1 = v1, u2 = parentT (u1), . . . , up = parentT (up−1) be the sequence of nodes on path from
v1 to root(T ) visited by procedure findPairsNonOptimal in the while loop on lines 3-6. up is
the last node with lcplenT (up) ≥ k. Note that once a subtree of a node uj is marked as visited
in line 5 it is never visited again in any subsequent calls of combineSubtree on line 4. This is
because next node to be marked is it’s parent uj+1, whose marking also excludes subtree of
uj .

(if) Let (p1, p2, l) be a maximal repeat in S such that l ≥ k. Since (p1, p2, l) is right maximal,
by lemma 2.1 lcplenT (w) = l ≥ k and therefore ∃j ∈ {1..p} : w = uj . It means that procedure
combineSubtree is called at least once with parameters pos := p1, v := w, visited := uj−1

(where u0 =⊥), l := lcplenT (w). Procedure combineSubtree recursively visits all nodes in
subtree of w that weren’t already visited by previous call from findPairsNonOptimal and for
all buckets B with LCS(B) 6= LCS(p1) reports pair (s, l) for each s ∈ B. Since w is ancestor
of v2, node v2 is also visited by combineSubtree and since w is lowest common ancestor
of v1 and v2, v2 hasn’t been visited in any previous call. Since (p1, p2, l) is left maximal
LCS(p1) 6= LCS(p2) and therefore (p2, l) is also reported.

(only if) Let (p2, l) be a pair reported by a call findPairsNonOptimal(p1, k). It had to be
reported by a call of procedure combineSubtree on uj for some j in line 4 of findPairsNonOp-
timal. This means that l ≥ k. The pair (p2, l) could only be reported if LCS(p1) 6= LCS(p2),
because of condition in line 3 of combineSubtree. uj is common ancestor of v1 and v2. We
will show that it is also lowest common ancestor w. Suppose that w = ui for some i such that
depthT (ui) > depthT (uj). This means that i < j and that (p2, l) is reported by a call combine-
Subtree on the node ui which is then marked as visited on line 5 before combineSubtree on uj is
called. This means however that combineSubtree called on node uj couldn’t report pair (p2, l),
which is contradiction. Since uj = w, it holds l = lcplenT (w) and since w = LCAT (v1, v2), by

combineSubtree(pos, v, visited, l)
1 for all children c of v
2 if c 6= visited
3 if c is bucket and LCS(c) 6= LCS(pos)
4 for all s from c
5 report pair (s, l)
6 if c is iternal node
7 combineSubtree(pos, c, visited, l)

findPairsNonOptimal(pos,k)
1 v := mapT (pos)
2 visited := ⊥
3 while v 6=⊥ and lcplenT (v) ≥ k do
4 combineSubtree(pos, v, visited, lcplenT (v))
5 visited := v
6 v := parentT (v)

Figure 3.2: Algorithm 1 - Non-optimal findPairs query on LC-bucket tree
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lemma 2.1 we have (p1, p2, l) is right maximal repeat. Therefore (p1, p2, l) is maximal repeat
in S with l ≥ k.

The problem is, that findPairsNonOptimal may take O(n) time, while only 1 pair is reported.
Let’s take string S = an for example. T = LCBT (an) has n internal nodes that form a
single path. Each of them, except the deepest one, has one LC-bucket. All of suffixes have
left context a except the suffix 0 which has left context c. Let ui be node with depth i.
lcplenT (ui) = i. LC-bucket of each ui contains exactly one suffix n − i. The deepest node
un−1 contains also LC-bucket with suffix 0. If we call findPairsNonOptimal(n − i, 1) for
n − i 6= 0, we start while loop at lines 3-6 with node ui = mapT (n − i) and end at node
u1. First call of combineSubtree will traverse n − i + 1 buckets under ui. Subsequent calls
of combineSubtree on nodes ui−1, ui−2, . . . , u1 will traverse one bucket on each. This means
another i − 1 buckets. Only one of these n buckets has left context other than a (the node
un−1) and therefore only one pair is reported.

The non-optimality of algorithm findPairsNonOptimal comes from following two problems

1) combineSubtree(p1, v, visited, l) visits all buckets under node v, not only buckets with
left context other than LCS(p1). This makes time consumed by combineSubtree not
proportional to number of reported pairs.

2) while loop on lines 3-6 of findPairsNonOptimal visits all nodes v with lcplenT (v) ≥ k
on the path from mapT (p) to root, disregarding that some nodes may not contain any
unvisited bucket with left context other than LCS(p). This means, that we might visit
too many nodes without proportional number of pairs being reported.

The R3 tree structure presented in the following text solves exactly these two problems.

3.3 Union trees

First problem of non-optimal findPairs query described in previous section is that it visits all
buckets in the subtree of the LC-bucket tree node v on which it is called and not just the
buckets with left context different from LCS(p1). Positions we want to report are only those
from the sets b+(v, a) where a 6= LCS(p1). It would be useful, if we could access b+ sets for
certain left contexts. If we want to do this, we have to represent them in a data structure that
allows optimal access to their contents and also has optimal memory requirements. In this
section we describe the way, how to represent the sets from B+(T ). Unlike LC-buckets, b+

sets for different suffix tree nodes may overlap. We’ll have to apply few tricks so that we don’t
have to store the same position in two different places. Elements of Bu(T ) = B+(T ) \ B(T )
will be called union nodes, because they can be constructed by union of buckets from B(T ):

∀B ∈ Bu(T ) : ∃B1, B2, . . . , Bk ∈ B(T ) : B = B1 ∪B2 ∪ . . . ∪Bk

Our next conceptual structure - union tree - captures the structure of union operators applied
to LC-buckets to be composed into union node.
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Union tree for a suffix tree T = ST (S) and B ∈ B+(T ), is a tree UTT (B) = (V,E, root)
such that

1) V = {b+(u, a)|(v, u) ∈ E∗
I , b+(u, a) 6= ∅}, where E∗

I is reflexive and transitive closure of
EI(T ), v = lastT (B) and a = LCS(B).

2) E = {(M1,M2) ∈ V × V |M1 ⊃ M2 ∧ ¬(∃M3 ∈ V : M1 ⊃ M3 ⊃ M2)}

3) root = B

We will use symbol UTT without parameter T for simplicity. For a suffix tree T , UF (T ) will
denote forest of union trees UT (b+(root(T ), a)) for all a. Symbol emptyUT = UT (∅) will
denote special empty union tree.

Lemma 3.3. Let T = ST (S), v ∈ VI(T ), a ∈ Σc, b(v, a) 6= ∅, Tu = UT (b+(v, a)). Then
either b+(v, a) = b(v, a) or (b+(v, a), b(v, a)) ∈ E(Tu).

Proof. Let b+(v, a) ⊃ b(v, a) and (b+(v, a), b(v, a)) /∈ E(Tu) i.e. (∃M3 ∈ V (Tu))(b+(v, a) ⊃
M3 ⊃ b(v, a))}. Let u be child of v such that b+(u, a) ⊇ M3 (3) in lemma 3.2 guarantees it’s
existence). From this we have b+(u, a) ∩ b(v, a), which contradicts 3) in lemma 3.1.

Following property is easily verifiable.

Property 3.1. Let u, v be internal nodes of ST (S) such that u is descendant of v, a ∈ Σc.
Then UT (b+(v, a)) = UT (b+(u, a)) or UT (b+(u, a)) is subtree of UT (b+(v, a))

Lemma 3.4. Let T = ST (S), TI = TI(T ), U ∈ Bu(T ) a = LCS(U), Tu = UT (U). Then
|ChildrenTu(U)| ≥ 2.

Proof. Let v = lastT (U). Let c1, c2, . . . , ck be all elements of ChildrenTI
(v).

(∀i)(1 ≤ i ≤ k) : b+(c1, a) 6= U . (1)

By 2) in lemma 3.1 U = b+(v, a) = b(v, a)∪b+(c1, a)∪. . .∪b+(ck, a). Sets b(v, a), b+(c1, a), . . . , b+(ck, a)
are disjunct by 3) and 4) of lemma 3.1. One of them has to be non-empty. Let’s say that
there is exactly one non-empty set among them.

• If it is b(v, a) then U = b(v, a) which contradicts that U is an union node.

• If it is b+(ci, a) for an i, 1 ≤ i ≤ k then it’s contradiction with (1)

So there have to be two or more non-empty sets among b(v, a), b+(c1, a), . . . , b+(ck, a).

• If b(v, a) is among them, by lemma 3.3 (U, b(v, a)) ∈ E(Tu)

• If b+(ci, a) is among them, then (U, b+(ci, a)) ∈ E(Tu), if the edge (U, b+(ci, a)) didn’t
exist it would mean that (∃b+(x, a) ∈ V (Tu))(b+(v, a) ⊃ b+(x, a) ⊃ b+(ci, a))} ⇒ by
3) in lemma 3.2 (v, x) ∈ E+

I (T ) ∧ (x, ci) ∈ E+
I (T ) ⇒ ci /∈ ChildrenTI

(v) which is
contradiction.
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For an union tree Tu, nu(Tu) denotes number of it’s union nodes and nb(Tu) number of it’s
bucket nodes. nu(emptyUT ) = nb(emptyUT ) = 0.

Lemma 3.5. Let T = ST (S), B ∈ B+(T ), Tu = UT (B). Then nu(Tu) < nb(Tu).

Proof. We will prove the lemma by induction on nu(Tu). If nu(Tu) = 0, Tu consists of single
bucket and nu(Tu) < nb(Tu) holds. Let nu(Tu) = k and suppose the statement nu(T1) <
nb(T1) holds for all union trees T1 with nu(T1) < k.

k > 0 ⇒ B is union node and by lemma 3.4 |ChildrenTu(B)| ≥ 2

Let C1, C2, ..., Cn be all children of B.

nb(Tu) =
∑

1≤i≤n
nb(UT (Ci))

nu(Tu) = 1 +
∑

1≤i≤n
nu(UT (Ci))

(∀i)(1 ≤ i ≤ n)(nu(UT (Ci)) < nb(UT (Ci)))

n ≥ 2 ⇒ nu(Tu) < nb(Tu)

Lemma 3.6. Let T = ST (S), B1, B2 ∈ B+(T ), Tu = UT (B1), B2 ∈ V (Tu). If T ′
u is a tree,

that results from prunning subtree UT (B2) from Tu then nu(T ′
u) ≤ nb(T ′

u).

Proof. We will prove the lemma by induction on nu(Tu). For nu(Tu) = 0, Tu is emptyUT or
single bucket and the goal holds. Let nu(Tu) = k and suppose the goal statement holds for
all union trees T1 with nu(T1) < k

k > 0 ⇒ B1 is union node and by lemma 3.4 |ChildrenTu(B1)| ≥ 2.

Let C1, C2, ..., Cn be all children of B1

There has to be j, 1 ≤ j ≤ n such that B2 ∈ V (UT (Cj)) Let Tj be union tree that is created
by prunning UT (B2) from UT (Cj).

nb(T ′
u) = nb(Tj) +

∑
1≤i≤n,i6=j

nb(UT (Ci))

nu(T ′
u) = 1 + nu(Tj) +

∑
1≤i≤n,i6=j

nu(UT (Ci))

(∀i)(1 ≤ i ≤ n, i 6= j)(nu(UT (Ci)) < nb(UT (Ci)))
nu(Tj) ≤ nb(Tj)

n ≥ 2 ⇒ nu(T ′
u) ≤ nb(T ′

u)

We can conclude, that we are able to store B+(T ) in O(n) space (T = ST (S), n = |S| + 1).
Elements of B(T ) can be stored explicitly as they are. By 1) of lemma 3.1 B(T ) is partition
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of Nn. We need O(|B|) space to represent bucket B ∈ B(T ) and |B(T )| ≤ n, therefore we
will be able to represent B(T ) in O(n) space.

Elements of Bu(T ) will be represented as union nodes. An union node needs only constant
amount of information to be stored in form of pointers to it’s children. By 2) of lemma 3.1,
maximal number of such pointers is |Σ|+ 1.

B+(T ) will be stored in form of union forest UF (T ). Lemma 3.5 shows that for each Ta =
UT (b+(root(T ), a)) : nu(Ta) < nb(Ta) and therefore |Bu(T )| < |B(T )|. This way b+ sets can
be effectively represented in O(n) space. Moreover, enumeration of all elements of B ∈ B+(T )
can be done in O(|B|) time.

This representation of sets in union trees also allows union operation in O(1) time which will
prove useful later on.

3.4 R3 tree

Let TS = ST (S). R3 tree for a string S is a 6-tuple T = (V,E, root, UF, bp, up) such that

1) V = VI(TS)

2) E = EI(TS)

3) root = root(TS)

4) UF = UF (TS)

5) bp : V × Σc → V (UF ), bp(v, a) = b+(v, a)

6) up : V × Σc → V

R3 tree is internal part of suffix tree with few enhancements. Set of edges E is present so
that we can speak of parent-child relationships of R3 tree nodes, but they don´t need to be
represented as we will see later. For navigation in R3 tree structure, we will use two functions
bp and up instead. The function bp connects each node with it’s b+ sets in union forest and
up is a navigation function.

up(v, a) is nearest ancestor u of v (in TS), such that Pos+
TS

(u) contains at least one more
position i with LCS(i) 6= a than Pos+

TS
(v).

Now we define condition that has to be met by node u = up(v, a) more formally:

UP (u, v, a) ≡ (u, v) ∈ E+ ∧ (∃b ∈ Σc)(b 6= a)(b+(u, b) ⊃ b+(v, b))

We also want u = up(v, a) to be deepest with respect to depth = depthTI(TS):

DUP (u, v, a) ≡ UP (u, v, a) ∧ ((∃w : UP (w, v, a) ∧ w 6= u) ⇒ depth(w) < depth(u))
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Figure 3.3: Visualisation of R3 tree for string S=’acaaacatat’ with union forest.

up(v, a) =
{

u such that DUP (u, v, a) if such u exists.
⊥ otherwise

R3 tree for string S will be denoted R3T (S).

We define V (T ) = V , E(T ) = E, root(T ) = root.

Nodes of R3 tree are also internal nodes of a suffix tree or nodes of a lcp-interval tree. It holds
V (R3T (S)) = VI(ST (S)) = V (LCPIT (S)).

ChidrenT = ChildrenTI(TS), DescT = DescTI(TS), parentT = parentTI(TS), depthT =
depthTI(TS), LCAT = LCATI(TS). lcplenT = (lcplenTS

narrowed to VI(TS)), mapT = mapTS
.

For later analysis, we define following values for nodes of R3 tree.
bpsizeT (v) is number of different symbols a, such that bp(v, a) 6= ∅
upsizeT (v) is number of different symbols a, such that up(v, a) 6=⊥

bp and up can be seen as tables that are stored in each node v of R3 tree. We will call them
bp-table and up-table for node v. bpsize(v) resp. upsize(v) is size of bp-table resp. up-table
for node v. Important property of these tables is that bp and up values can be accessed in
O(1) time.

Figure 3.3 shows simple R3 tree with bp-table pointers displayed as links to nodes of union
trees. Number next to each R3 tree node represents lcplen value. Another visualisation of R3
tree can be seen at figure 3.4. This time bp-tables and up-tables are shown for each node.
Each R3 tree node and union tree node is labeled by a number to be reffered to in up-tables
and bp-tables. Edges from E are hidden. Edges between R3 tree nodes represent values from
up-tables.

22



Figure 3.4: Another visualisation of R3 tree with union forest.
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3.5 Optimal findPairs query on R3 tree

Optimal find pairs query is shown as Algorithm 2 on figure 3.5. It assumes we have string S
and T = R3T (S) available and also mapT is precomputed.

combineUnionSubtree(u, visited, l)
1 if u = visited exit
2 for all children c of u
3 if c is bucket node
4 for all s from c
5 report pair (s, l)
6 if c is union node
7 combineUnionSubtree(c, visited, l)

findPairs(pos, k)
1 v := mapT (pos)
2 for each symbol a
3 visited[a] :=⊥
4 while v 6=⊥ and lcplenT (v) ≥ k do
5 for all a such that bp(v, a) 6=⊥
6 if a 6= LCS(pos)
7 combineUnionSubtree(bp(v, a), visited[a], lcplenT (v))
8 visited[a] := bp(v, a)
9 v := up(v, LCS(pos))

Figure 3.5: Algorithm 2 - Optimal findPairs query on R3 tree

Lemma 3.7. Call combineUnionSubtree(u, visited, l) runs in time O(z), where z is number
of reported pairs.

Proof. Let T = UT (u) and T ′ is tree that results from prunning UT (visited) from T . Call
combineUnionSubtree(u, visited, l) traverses T ′ and reports at least one pair for each bucket
it encounters. Therefore nb(T ′) ≤ z. By lemma 3.6 nu(T ′) ≤ nb(T ′). Processing each node
takes constant time, thus total time is O(z).

Theorem 3.2. Call findPairs(p1, k) reports pair (p2, k) if and only if (p1, p2, l) is maximal
repeat in S such that l ≥ k.

Proof. Let T = R3T (S), v1 = mapT (p1), v2 = mapT (p2), a1 = LCS(p1), a2 = LCS(p2)
and w = LCAT (v1, v2). Let w1 = v1, w2 = parentT (w1), . . . , ws = parentT (ws−1) be
the sequence of nodes on path from v1 to root(T ) such that ∀i ∈ {1..s} : lcplenT (wi) ≥ k.
lcplenT (parentT (ws)) < k or ws = root(T ). This sequence may be empty if lcplenT (v1) < k.
Let u1 = v1, u2 = up(u1, a1), . . . , up = up(up−1, a1) be the subsequence of w1, w2, . . . , ws vis-
ited by procedure findPairs in the while loop on lines 4-9. Note that once tree UT (bp(uj , b))
is marked as visited in line 8 it is never processed again in any subsequent calls of combine-
UnionSubtree on line 7. This is because next node uj+1 is ancestor of uj and by property
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3.1 either UT (bp(uj+1, b)) = UT (bp(uj , b)) or UT (bp(uj , b)) is subtree of UT (bp(uj+1, b)), and
therefore marking of UT (bp(uj+1, b)) also excludes UT (bp(uj , b)).

(if) Let (p1, p2, l) be a maximal repeat in S such that l ≥ k. Since (p1, p2, l) is right maximal,
by lemma 2.1 lcplenT (w) = l ≥ k and therefore s ≥ 1 and ∃j ∈ {1..s} : w = wj . We need
to show that also ∃j ∈ {1..p} : w = uj . If w = v1 this holds for j = 1. Let’s consider case
w 6= v1. Let i be maximal index such that w is ancestor of ui. It holds that either w = ui+1

or ui+1 is ancestor of w. ui+1 = up(ui, a1) therefore UP (ui+1, ui, a1) and DUP (ui+1, ui, a1).
We also have (w, ui) ∈ E+(T ) and b+(w, a2) ⊃ b+(ui, a2), because w is lowest ancestor of
v1 in whose union tree p2 occurs. a1 6= a2 because (p1, p2, l) is left maximal repeat. From
this we have UP (w, ui, a1). If ui+1 is ancestor of w then depthT (ui+1) < depthT (w), but that
contradicts DUP (ui+1, ui, a1). Therefore ui+1 = w. When node w is visited by while loop on
lines 4-9, combineUnionSubtree(w, bp(w, a2), visited[a2], l) is called. bp(w, a2) 6= visited[a2]
because w = LCAT (v1, v2). p2 occurs in a bucket of UT (bp(w, a2)) and therefore pair (p2, l)
is reported.

(only if) Let (p2, l) be a pair reported by a call findPairs(p1,k). It had to be reported by a
call of procedure combineUnionSubtree on uj for some j in line 7 of findPairs. From condition
of while loop on line 4 we have l ≥ k. The pair (p2, l) could only be reported if a2 6= a1,
because of condition in line 6. uj is common ancestor of v1 and v2. We will show that it
is also lowest common ancestor w. We will prove uj = w by contradiction. Let uj 6= w.
Then uj is ancestor of w because w is first to contain p2 in it’s union tree and w is ancestor
of uj−1 because UT (bp(uj−1, a2)) can’t contain p2. If it did, p2 would be reported in call
combineUnionSubtree on uj−1, subtree UT (bp(uj−1, a2)) would be marked as visited and the
call combineUnionSubtree on uj wouldn’t be able to report p2. as uj = up(uj−1, a1), we have
UP (uj , uj−1, a1) and DUP (uj , uj−1, a1). From properties of w above, also UP (w, uj−1, a1)
and depthT (w) > depthT (uj) which contradicts DUP (uj , uj−1, a1).

Since uj = w it holds that l = lcplenT (w) and since w = LCAT (v1, v2), by lemma 2.1 we have
(p1, p2, l) is right maximal repeat. Therefore (p1, p2, l) is maximal repeat in S with l ≥ k.

Theorem 3.3. findPairs runs in time O(z) where z is number of reported pairs.

Proof. Let a1 = LCS(p1). Let u1 = mapT (p1), u2 = up(u1, a1), . . . , up = up(up−1, a1) be all
nodes visited in while loop on lines 4-9.

Let’s consider set C of all calls to combineUnionSubtree from line 7 in findPairs. Let Ca be
subset of calls that report at least one pair and Cb subset of calls that don’t report any pair
because they are called on visited node. By lemma 3.7, total time ta spent in all Ca calls is
O(z). Total time tb spent by Cb calls is O((p− 1)|Σ|). (if a call occurs in u1, it is a Ca call.)

From node ui, we continue to node ui+1 = up(ui, a1) if it exists. We know that, ∃b ∈
Σc, b 6= a1 : b+(ui+1, b) ⊃ b+(ui, b). This means that bp(ui+1, b) is ancestor of bp(ui, b) in
UT (bp(ui+1, b)) and can’t have been visited before and UT (bp(ui+1, b)) has therefore at least
one new bucket that will be visited by combineUnionSubtree.
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Thus for each node in {u2, . . . , up} at least one Ca call is made and (p− 1) ≤ |Ca| ≤ z. tb is
therefore O(z) too. Initialisation in lines 1-3 takes constant time and time spent in each node
for other purpose than for C calls is also constant. Total time taken by findPairs is therefore
O(z).

3.6 Properties of R3 tree

Lemma 3.8. Let T = R3T (S), T1 = LCPIT (S), TR
1 = LCPIT (SR), I ∈ V (T1) = V (T ),

R = rev(I). Then

• If R.lcp > I.lcp then bpsizeT (I) = 1

• If R.lcp = I.lcp then bpsizeT (I) ≤ |ChildrenST (SR)(R)|

Proof. Let R.lcp > I.lcp. This means that ∃a : ∀p ∈ Pos+
T R
1

(R) : SR[p + I.lcp] = a, which
means that all occurences of prefixT1(I) in S have left context a, which means bpsizeT (I) = 1.
Let R.lcp = I.lcp. Then prefixT1(I)R = prefixT R

1
(R).

∀p ∈ Pos+
T (I) :

(
LCS(p) = a ⇒ SR[revposS(p, I.lcp)..revposS(p, I.lcp) + I.lcp] = a

)
This means that if bp(I, a) 6= ∅ then there is a-edge outgoing from R in ST (SR) which means
bpsizeT (I) ≤ |ChildrenST (SR)(R)|.

Theorem 3.4 shows that volume of information stored in bp-tables is not dependent on |Σ|.

Theorem 3.4. Let T = R3T (S), n = |S|+ 1. Then∑
v∈V (T )

bpsizeT (v) < 3n.

Proof. Let T1 = LCPIT (S), TR
1 = LCPIT (SR). Let’s partition V (T ) into V1 = {v ∈

V (T )|rev(v).lcp = v.lcp} and V2 = {v ∈ V (T )|rev(v).lcp > v.lcp}. Let rev(V1) = {rev(v)|v ∈
V1} ⊆ VI(ST (SR)).

(1)∑
v∈V1

bpsizeT (v)
lemma 3.8

≤
∑

v∈V1

|ChildrenST (SR)(rev(v))| lemma 2.2=
∑

v∈rev(V1)

|ChildrenST (SR)(v)|

≤
∑

v∈VI(ST (SR))

|ChildrenST (SR)(v)|
prop. 2.2

< 2n

(2)∑
v∈V2

bpsizeT (v) lemma 3.8= |V2|
prop. 2.1

< n
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Now we have ∑
v∈V (T )

bpsizeT (v) =
∑

v∈V1

bpsizeT (v) +
∑

v∈V2

bpsizeT (v)
(1),(2)

< 3n.

Theorem 3.5 shows that volume of information stored in up-tables is not dependent on |Σ|.
Each up-table contains at most two distinct values.

Theorem 3.5. Let T = R3T (S), v ∈ V (T ), a, b, c ∈ Σc, a 6= b, b 6= c, c 6= a, ua = up(v, a),
ub = up(v, b), uc = up(v, c). Then

ua = ub ∨ ub = uc ∨ uc = ua

Proof. Let’s assume ua 6= ub ∧ ub 6= uc ∧ uc 6= ua. All of nodes ua, ub and uc lie on the path
from v to root(T ). W.L.O.G, let’s suppose that

depthT (ua) < depthT (ub) < depthT (uc) < depthT (v)

From definition of up function we have

• UP (ua, v, a) ⇒ ∃da ∈ Σc : da 6= a ∧ b+(ua, da) ⊃ b+(v, da)

• UP (ub, v, b) ⇒ ∃db ∈ Σc : db 6= b ∧ b+(ub, db) ⊃ b+(v, db)

• UP (uc, v, c) ⇒ ∃dc ∈ Σc : dc 6= c ∧ b+(uc, dc) ⊃ b+(v, dc)

Now we consider two cases

• dc = a - this violates condition DUP (ub, v, b).

• dc 6= a - this violates condition DUP (ua, v, a).
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Chapter 4

R3 tree implementation

This chapter will show how R3 tree can be implemented and describes algorithms and data
structures that are used in R3Lib library. First we will show how R3 tree is stored in com-
puter memory. We will describe it’s data structures and their properties and present version
of findPairs that works over these data tructures. Then we will show how R3 tree in this rep-
resentation can be constructed. R3Lib works with arbitrary binary data. Our alphabet will
be alphabet of bytes, Σ = {0, . . . , 255}. Some details about representation of special symbol c
are still hiden to make algorithms more legible. We suppose we work with strings with length
n < 230 − 1. This allows us to represent every number in {0, . . . , 230 − 2} with 32 bit integer
where two bits are left for other purposes. We will often use these flags in our representation.
It also leaves us one value 230 − 1 for special purposes, which will be denoted ⊥.

4.1 Representation of Union forest

Union tree will be represented in single array of integers. Item i will have associated value[i]
and flag[i] indicating whether it is value item (flag[i] = 0) or navigator item (flag[i] = 1).

There are two types of navigator items: B-navigator items and U-navigator items. B-navigator
item represents a bucket from B(T ). For a B-navigator item k it holds that item at k − 1 is
value item. U-navigator item represents an union node from Bu(T ). For U-navigator item k
it holds that item at k − 1 is a navigator item.

Each bucket from B(T ) is stored as continuous interval of value items followed by one B-
navigator item. value[k] of navigator item at index k is index of first value item of it’s bucket.
To retrieve a bucket from this array, one needs to know index k of it’s navigator item. All
positions of this bucket are then value[value[k]], value[value[k]+1], . . . , value[k − 1].

Sets from Bu(T ) will be represented by continuous sequence of subtrees, from which it is
composed and one U-navigator item. value[k] of U-navigator item k is index of first value item,
that belongs to it’s subtree. Interval corresponding to U-navigator item spans over multiple
subtrees and the items on indices value[k], value[k]+1, . . . , k−1 may be also navigator items.

This representation requires nodes of union tree to be added in bottom-up manner. If an
union tree node Bi is represented by navigator item i, node Bj is represented by navigator
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item j and Bi is descendant of Bj , then i < j. Algorithm that builds union forest this way
will be presented later.

By lemma 3.5, number of U-navigator items in each subtree is smaller than number of B-
navigator items. This means that we can retrieve all positions from union node represented
by U-navigator item k by scanning the array from index value[k] to k−1, reporting value items
and skipping navigator items. This operation will cost us O(|B|) time, for set B ∈ B+(T ).

Union forest is represented by an array composed from arrays for it’s union trees appended
together. In union forest for a suffix tree T = ST (S), |S| + 1 = n, there are exactly n value
items. There is exactly one B-navigator item for each bucket and one U-navigator item for
each union node. Number of B-navigator items is smaller than number of value items and
number of U-navigator items is smaller than number of B-navigator items. Therefore total
worst-case size of the array is 3n, which means 12n bytes. Example of union forest in this
representation is shown on figure 4.1 (array UF).

4.2 Representation of R3 tree

As we could see in previous chapter, R3 tree is basically internal part of a suffix tree (which is
isomorphic with lcp-interval tree) with bp pointers to union forest of that tree and up pointers
for quicker navigation of findPairs algorithm.

R3 tree will be represented by a table of nodes (lcp-intervals) and some additional arrays.
Table of nodes will have following fields: LCP, LC1, UP1, UP2, BP.

Let T = R3T (S), n = |S|+ 1. Entry at index i in node table represents a node vi ∈ V (T ).

• LCP[i] = lcplenT (vi)

• LC1[i] = b ∈ Σc. We pretend that this value can be stored in one byte. (In R3lib, if
b = c we use auxiliary flag in UP1[i] value to indicate this.)

• UP1[i] = j, such that vj = up(vi, a), a 6= b (it also holds that vj is parent of vi, but we
don’t exploit this property in any way.)

• UP2[i] = j such that vj = up(vi, b)

• BP[i] = pointer to array BPTABLES. BP[i] is index of first item in bp-table for node vi.

Additional arrays are BPTABLES, UF and MAP.

• BPTABLES - array that stores bp-tables for nodes. Each entry between index BP[i] and
nearest index with end-flag represents pointer to an union forest node representing set
b+(vi, a) for some a. Left context a has to be found out by retrieving a position from the
set and finding it’s left context. Each entry has one additional flag ’own’ that indicates
that b(vi, a) 6= ∅. Let BTABLES[j] = k and own[j] = 1. If UF[k] is an B-navigator item,
then b(vi, a) is represented by this item. If UF[k] is an U-navigator node, then b(vi, a)
is represented by item k − 1.
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• UF - contains union forest as described in previous section.

• MAP[i] contains value j such that vj = mapT (i).

Worst case size of this representation is 45n bytes (+ n bytes of original string). This amount
is distributed among particular arrays the following way

• node table - 17n (4 × integer + 1 × byte per entry, |V (T )| entries, |V (T )| < n)

• BPTABLES - 12n (3n integers)

• UF - 12n (3n integers)

• MAP - 4n (n integers)

Snapshot of these memory structures, built for simple input is shown on figure 4.1. Bp-tables
in array BPTABLES are divided by horizontal lines and end-flag is hidden. Left context of
union trees is present for clarity, but it isn’t really stored in array UF. Navigator items in
array UF are highlighted. U-navigator items are darker than B-navigator items.

FindPairs query working with this representation is shown on figure 4.2. To determine left
context of position p, in pseudo-code denoted LC(p), we have to have access to input string.

There is small technical difference between representation described here and implementation
of R3lib regarding representation of union tree with left context c (bucket with position 0).
This union tree is not explicitly represented in array UF. We use auxilliary flags in value
LCP[i] to indicate situations b(vi, c) = {0} and b+(vi, c) = {0}.

4.3 Construction of R3 tree

In this section we will show how to build R3 tree in representation described above. Following
text should be read as extended comment for source code of R3lib. All R3 tree related functions
are implemented in file r3.c. When we want to create R3 tree, we call function r3t_create.
The construction process can be divided into several phases. For each phase, r3t_create calls
different function and each of them can be completed in time linear in input data size. We
explain each construction phase in details. Time complexity will be discussed only for selected
phases or subroutines, where time requirements are not obvious.

Most of information contained in R3 tree comes from suffix tree. To build bp-tables and union
forest we need to have it’s structural information available. To avoid the complex operation
of building suffix tree, we’ve chosen approach of [2], where it is shown that for simulating
bottom-up traversal of suffix tree ST (S) we need only suffix array and lcp-table (two integer
arrays of length |S|+ 1). This will be enough to build arrays LCP, BP, BPTABLES and UF.
During this phase we also extract parent-child information from the suffix tree into temporary
array FD. This array will be used to compute UP1 array required for top-down traversal and
computation of arryas UP2 and LC1. In the last phase we compute MAP array. This is
summary of R3 tree construction phases:

1) suffix array and lcp-table construction
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Figure 4.1: Data structures of R3 tree for string ’acaaacatat$.
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combineUnionSubtree(k,visited,l)
1 if k = visited exit
2 for i := k-1 downto UF[k].value
3 if UF[i].flag = 0
4 add pair (l, UF[i].value)
5 else
6 if i = visited
7 i = UF[i].value -1

findPairs(p, k)
1 for each a ∈ Σc

2 visited[a] := ⊥
3 v := MAP[p]
4 while v 6=⊥ ∧ LCP[v] ≥ k
6 i := BP[v]-1
7 repeat
8 i := i+1
9 j := BPTABLES[i].pointer
10 fd := UF[j].value
11 lc := LC[UF[fd].value]
12 if lc 6= LC(p)
13 combineUnionSubtree(j, visited[lc], LCP[v])
14 visited[lc] := j
15 until BPTABLES[i].endflag = 1
16 if LC1[v] 6= LC(p)
17 v := UP1[v]
18 else
19 v := UP2[v]

Figure 4.2: Algorithm 3 - findPairs query with new representation.
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2) bottom-up traversal (LCP, BP, BPTABLES, UF, FD)

3) UP1 construction

4) top-down traversal (LC1, UP2)

5) MAP construction

4.3.1 Phase 1: suffix array and lcp-table construction

Suffix array and Lcp-table can be constructed in linear time and space. In R3lib, suffix array
is computed using algorithm of [6]. We’ve modified the original code of Pang Ko, so that
it would compute suffix arrays over arbitrary binary data. Lcp-table is build independently
afterwards using algorithm of [9] with space saving tricks described in [10]. The memory
requirements of the whole process do not exceed 10n. See functions createSuffixArray and
createLCPTable in file suffixArray.c.

4.3.2 Phase 2: bottom-up traversal (LCP, BP, BPTABLES, UF, FD)

Authors of [2] present algorithm (Algorithm 4.4, p.63) that simulates bottom-up traversal of
lcp-interval tree (internal part of suffix tree). It calls function process on each encountered
lcp-interval. By specifying function process we can implement construction steps needed in
the second phase. For each lcp-interval we will need to

• create new entry in lcp-interval table

• add lc-buckets to union forest

• create bp-table for lcp-interval

For our purposes, this algorithm needs a small modification, which is shown as Algorithm 4
on fig. 4.3. Original version works with tuples 〈lcp, rb, lb, childList〉, where lcp is lcp-value
of the lcp-interval, lb resp. rb is left resp. right boundary of lcp-interval and childList is list
of children intervals of the lcp-interval. We will use stack of 4-tuples 〈lcp, lb, rb, fd〉. Each
tuple represents an lcp-interval with additional field fd - first descendant. This information
will be used to determine parent-child relationships of lcp-intervals in our table. Operation
push inserts one item on the top of the stack. Operation pop removes one item from top of the
stack. top is pointer to the top of the stack. We acces components of tuple I = 〈lcp, lb, rb, fd〉
by I.lcp, I.lb, I.rb, I.fd .

Following lemma will be presented without proof, for details see [2].

Lemma 4.1. Algorithm 4 calls process() on tuple 〈lcp, lb, rb, fd〉 if and only if (lcp, lb, rb) is
an lcp-interval. Intervals are processed in bottom-up fashion i.e. if lcp-interval (lcp1, lb1, rb1) is
descendant of (lcp2, lb2, rb2) then tuple 〈lcp1, lb1, rb1, fd1〉 is processed before 〈lcp2, lb2, rb2, fd2〉.

This algorithm is implemented in function r3th_traverseBottomUp and it runs in linear time
(see [2] for details) if we assume that function process runs in constant time.
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1 cnt := 0
2 lastInterval := ⊥
3 push 〈0, 0,⊥, 0〉
4 for i = 1 to n-1 do
5 lb := i-1
6 while lcp[i] < top.lcp
7 top.rb := i-1
8 lastInterval := pop()
9 process(lastInterval)
10 lb := lastInterval.lb
11 cnt := cnt + 1
12 if lcp[i] = top.lcp
13 lastInterval := ⊥
14 if lcp[i] > top.lcp
15 if lastInterval 6=⊥ then
16 push 〈lcp[i], lb, ⊥, lastInterval.fd〉
17 else push 〈lcp[i], lb, ⊥, cnt〉
18 while stack not empty
19 top.rb = n-1
20 process(pop())

Figure 4.3: Algorithm 4 - computing FD and processing lcp-intervals
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Now, let’s take a look at function process. This function is too technical to be presented in
pseudo code. This text will only serve as extended comment for the source code of function
r3th_processIntervalBottomUp.

Let T be R3 tree to be constructed. Let R0, R1, . . . , Rm−1 be the sequence of all tuples in
order they were processed on line 9 by Algorithm 4. When tuple Ri is being processed, lcp-
interval table of T already contains valid values in fields LCP, FD and BP up to index i− 1.
For LCP and FD it holds that ∀j, 0 ≤ j < i : LCP [j] = Rj .lcp ∧ FD[j] = Rj .fd. Let’s say
that ∀k, 0 ≤ k < m, tuple Rk represents lcp-interval (or R3 tree node) vk ∈ V (T ). From now
on, we’ll refer to lcp-interval represented by row i in node table by vi.

Array FD will be used to determine parent-child relationship of lcp-intervals. This will be
done by exploiting following property:

∀j : vj is descendant of vi if FD[i] ≤ j < i.

We know that all descendants of vi have been processed before vi and every node that belongs
to subtree of vi (if any) is on some index between FD[i] (first descendant of vi) and i − 1.
To determine only children of vi instead of all descendants, we have to skip child subtrees as
shown on fig. 4.4.

getChildren(i)
1 j := i-1
2 while j ≥ FD[i]
3 report child j
4 j := FD[j]-1

Figure 4.4: Retrieving children of lcp-interval vi

We can also access sets b(u, a) and b+(u, a) for each child u of vi and for each a ∈ Σc, because
arrays BP, BPTABLES and UF already contain correct data for children of vi. Main task
of function process is to create (for each a) new union tree UT (b+(vi, a)) by composition of
union trees of children of vi and possibly adding bucket b(vi, a) (if it’s not empty).

For this purpose we compute auxilliary array firstTree. Let’s consider following two cases:

1) For all children u of vi, b+(u, a) = ∅
In this case firstTree[a] = ⊥. Union tree UT (b+(vi, a)) consist only of bucket b(vi, a)
if this bucket is non-empty. In such case index of it’s B-navigator item is stored in
BPTABLES.

2) There are children vj1 , vj2 , . . . , vjc of vi such that j1 < j2 < . . . < jc ∧ ∀k, 1 ≤ k ≤ c :
b+(vjk

, a) 6= ∅.
Let vj1 , vj2 , . . . , vjc be all such children. firstTree[a] is then index of navigator item for
b+(vj1 , a) in UF. If c > 1 or b(vi, a) 6= ∅ we will have to create new U-navigator item in
UF to union all subtrees into new union tree. This item will be added after all previous
subtrees and possibly one b(vi, a) bucket. If k is index of new U-navigator item, then
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we put UF [k].value := UF [firstTree[a]].value. The situation is illustrated on fig. 4.5.
New index k is then stored in array BPTABLES.

In both cases, if b(vi, a) 6= ∅, we set ’own’ flag to 1 in respective BPTABLES entry. Buck-
ets b(vi, a) are computed by bucketing elements of PosT (vi) by their left context. The
set PosT (vi) is determined by skipping Pos+ sets of children lcp-intervals and processing
only suffix array items that, weren’t processed before. This takes O(|Σ|) time, because
PosT (vi) ≤ |Σ| and |ChildrenT (vi)| ≤ |Σ|. Computing firstTree array takes O(|Σ2|) time.
Function r3th_processIntervalBottomUp therefore runs in time O(|Σ2|) and this means
constant time for us.

b v j1 , a

...

b v j 2 , a 

b v j c , a

b v i , a 

b v i , a 

firstTree[a]

Figure 4.5: Composition of union trees of children of vi into union tree of vi

The array BPTABLES is built by adding one bp-table at the current end of array in each call
to function process. The array UF is composed from segments of particular union trees. These
segments are built in parallel, because one call to process may need to add buckets to union
trees with different left contexts. Before start of phase 2, array UF have been allocated for
3n items (in function r3th_allocate), space for each segment is allocated according to count
of symbols in input string S and pointers to each union tree are set (in table r3tw->ut_ptr).
When phase 2 is completed, array UF may contain gaps between union tree segments. That’s
why phase 2 is followed by auxilliary procedure r3th_compactUnionForest, that removes
unused space and compacts array UF.

4.3.3 Phase 3: UP1 construction

Algorithm that transforms FD array into UP1 array is shown in fig. 4.6. It uses stack of
integers with classical top, push and pop operations. Array UP1 is constructed so that UP1[i]
stores index of parent of vi. This phase is implemented in function r3th_computeParent.
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4.3.4 Phase 4: top-down traversal (LC1, UP2)

Let m be number of nodes in node table, created by bottom-up traversal. For 0 ≤ i < m,
let vi be node represented by i-th table row. Pseudo code for top-down traversal at fig. 4.7
uses function findBpEntries that is defined only in theoretical terms for simplicity. Function
findBpEntries can be computed in constant time, because it works with constant sized bp-
tables and property b+(vi, a) ⊃ b+(vj , a) can be tested in constant time with our representation
of union trees. The whole phase can be therefore finished in O(m) time. Implementation can
be found in function r3th_traverseTopDown.

4.3.5 Phase 5: MAP construction

Algorithm on fig. 4.8 visits every node vi in node table of R3 tree T and goes through each
entry in bp-table for node vi. For each position p ∈ b(vi, a) sets MAP[p] := i. Algorithm makes
m = V (T ) node visits. Since B(T ) is partition of the set N|S|+1, assignment on line 10 is
made for each position exactly once so there are exactly |S|+1 executions of this assignment.
This means that phase 5 can be completed in time O(m + n) or O(n). Implementation can
be found in function r3th_computeMap.

computeParent()
1 UP1[m-1] := ⊥
2 push(m-1)
3 for i := m-2 downto 0 do
4 UP1[i] := top
5 push(i)
6 while stack not empty and FD[top] = i
7 pop()

Figure 4.6: UP1 construction
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findBpEntries(i, j)
1 let a be such that b+(vi, a) ⊃ b+(vj , a) (such a has to exist)
2 u1 = index of navigator item for b+(vi, a)
3 if (∃b)(b 6= a) : b+(vi, b) ⊃ b+(vj , b)
4 u2 = index of navigator item for b+(vi, b)
5 else
6 u2 =⊥
7 return (u1, u2)

traverseTopDown
1 UP1[m-1]=⊥
2 UP2[m-1]=⊥
3 LC1[m-1]=c
4 for i := m-2 downto 0 do
5 parent := UP1[i]
6 (u1, u2) := findBpEntries(parent,i)
7 u := UF[u1].value
8 LC1[i] := LC(UF[u].value)
9 if u2 =⊥
10 if(LC1[i] 6= LC1[parent])
11 UP2[i] := UP1[parent]
12 else
13 UP2[i] := UP2[parent]

Figure 4.7: Top-down traversal of R3 tree

1 for i:= 0 to m-1
2 j := BP[i]-1
3 repeat
4 j := j+1
5 if BPTABLES[j].own = 1
6 u := BPTABLES[j].pointer
7 if UF[u-1].flag (u-navigator item at index u)
8 u:=u-1
9 for k := UF[u].value to u-1
10 MAP[UF[k].value] := i
11 until BPTABLES[j].endflag = 1

Figure 4.8: MAP construction
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Appendix A

R3lib documentation

R3lib 1.0.0 source code package contains following files

test/analysis.c - tools for memory utilisation analysis and statistics
test/analysis.h
test/debug.c - debugging output tools
test/debug.h
test/rmalloc.c - external malloc debug library1

test/rmalloc.h
test/test.c - testing routines
test/test.h
test/test_r3.c - R3 tree specific tests
test/test_r3.h
test/test_sa.c - suffix array and lcp-table specific tests
test/test_sa.h
testdata - directory with basic test data
array.c - simple augmentable array implementation
array.h
bitstr.c - bit array implementation
bitstr.h
conf.h - global configuration and definitions
LICENSE.txt - GNU LGPL license file
main.c - used only for running tests
r3.c - R3 tree routines
r3.h
suffixArray.c - suffix array and lcp-table routines
suffixArray.h

Files in directory test and testdata are used only during development of R3lib. They are not
needed for regular use. R3 tree data structure is represented by structure t_r3t defined in file

1see http://www.hexco.de/rmdebug
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r3.h. Main functionality of R3lib is covered by three functions r3t_create, r3t_findPairs
and r3t_destroy that are defined in file r3.c. By calling function r3t_create we initialise
the t_r3t structure. This function creates R3 tree for input data. This step is therefore most
time consuming in the whole process. See Appendix B for preformance results. When R3
tree construction is finished, we can perform findPairs queries with function r3t_findPairs.
When we don’t need R3 tree anymore, clean-up should be made with function r3t_destroy,
that frees memory allocated by r3t_create. Each step of this process is demonstrated in
example function on fig. A.1 and A.2

Now we desrcibe each of the three functions in detail.

int r3t_create(t_r3t* r3t, BYTE* text, int textLen)

Creates R3 tree for text of length textLen (n) and initializes r3t structure. BYTE is defined as
unsigned char. Data at location text may contain arbitrary BYTE values (0 . . . 255). Worst
case peak memory usage is 52n bytes and worst case R3 tree size is 44n bytes (not counting
the n bytes of text). Returns 0 on success, non-null value on error. See conf.h for error
constants. See Appendix B for performance results.

int r3t_findPairs(t_r3t* r3t, int p1, int k, int* count,
int count_limit, int* p2, int* l)

Finds all pairs (p2, l) such that ( p1 , p2, l) is maximal repeat and l ≥ k. Number of found pairs
is returned in count. Pairs are stored as (p2[0], l[0]), (p2[1], l[1]), . . . , (p2[count-1],
l[count-1]). Pairs will be sorted by length, in descending order. Number of reported pairs
can be limited by count_limit, to make sure, that function r3t_findPairs won’t try to write
more results to arrays p2 and l than they are allocated for.

int r3t_destroy(t_r3t* r3t)

Free all memory locations allocated by r3t_create called on r3t.

40



#include <stdio.h>
#include <string.h>
#include "r3.h" 
int example()
{
   int result, i;
   t_r3t r3t; // r3 tree structure
   int* p2; // storage for p2 component of (p2, l) pair
   int* l; // storage for l component of (p2, l) pair
   int pair_cnt; // number of found pairs
   int k; // minimal repeat length
   int p1; // first component of maximal repeat
   int limit; // maximal number of returned repeats
   /* input text */
   /* PATTERN occurs at positions 4, 16, 28 and 40 */
   BYTE* text = "abcdPATTERNabceaPATTERNbcfabPATTERNcgabcPATTERNhabc";

   /* size of input */
   int textLen = strlen(text);
   /* create r3 tree for given input */
   result = r3t_create(&r3t, text, textLen); 
   if(result) 
      return result;
   /* allocate space for query results */
   p2 = (int*) malloc(textLen*sizeof(int));
   l = (int*) malloc(textLen*sizeof(int));
   if(!p2 || !l)
      return -1;
    
   /* define parameters for findPairs query */
   p1 = 4; /* first component of maximal repeat */
   k = 7;  /* minimal repeat length */
   limit = textLen; /* maximal number of returned repeats */
    
   /* find all pairs (p2, l) such that (p1, p2, l) is 
    * maximal repeat in text and l >= k */
   result = r3t_findPairs(&r3t, p1, k, &pair_cnt, limit, p2, l);
   if(result)
      return result;
   /* now we should have 
    *  
    * pair_cnt == 3
    * (p2[0], l[0]) == (16, 7)
    * (p2[1], l[1]) == (28, 7)
    * (p2[2], l[2]) == (40, 7)
    */

Figure A.1: Example function using R3lib
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   printf("*** Example of findPairs query ***\n");
   printf("Text: '%s'\n", text);
   printf("Position: %i\n", p1);
   printf("Min. length: %i\n", k);

   for(i=0; i<pair_cnt; i++) {
      /* (p1, p2[i], l[i]) now represents maximal repeat */
      printf("found repeat: (%i, %i, %i)\n", p1, p2[i], l[i]);
   }

   /* free resources held by r3 tree structure */
   r3t_destroy(&r3t); 
   return 0;
}

Figure A.2: Example function continued
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Appendix B

Performance results

In this section, we supply some measurements to illustrate time and memory requirements for
R3 tree construction. We’ve chosen various types of files, both text and binary as input data1.
Table B.1 shows memory measurements for each file.

• File = file used as input data

• Size = size of input data in bytes

• Peak = peak memory usage during construction of R3 tree in bytes

• Mem = memory usage of finished R3 tree in bytes

• rPeak = Peak/Size

• rMem = Mem/Size

Time measurements were done for two operating systems: Windows XP and Linux. We’ve
measured time taken to construct R3 tree four times for each file on each OS. Table B.2 shows
average results for both operation systems. Machine used for measurement was 3GHz Intel
Pentium 4, 1GB RAM.

• File = file used as input data

• Size = size of input data in bytes

• TimeWin = average time to construct R3 tree in seconds (OS: Windows XP SP1, gcc
3.4.4 cygwin)

• TimeLinux = average time to construct R3 tree in seconds (OS: Linux Ubuntu 6.06,
Kernel 2.6.15-27-386, gcc 4.0.3)

1At the time when the measurements took place all of these files were free to download. Links to these files
can be found on R3lib project home page: http://michal.linhard.sk/r3lib
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Table B.1: Memory measurements.

File Size Peak Mem rPeak rMem
gimp-2.2.9.tar.gz 18,400,967 691,693,912 416,358,967 37.59 22.63
Azureus_2.5.0.4a_Win32.setup.exe 10,007,784 362,287,916 206,977,004 36.20 20.68
180907088.jpg 4,611,403 164,415,064 92,187,563 35.65 19.99
183899999.jpg 1,993,582 69,729,972 38,079,982 34.98 19.10
184722357.jpg 1,065,155 36,752,568 19,964,923 34.50 18.74
rbcru10.txt 653,492 27,613,492 16,417,866 42.26 25.12
zlib123.zip 583,873 20,627,024 11,447,525 35.33 19.61
2ws2610.txt 193,004 8,072,116 4,839,906 41.81 25.07
1ws2510.txt 150,662 6,355,132 3,797,228 42.18 25.20
1ws1810.txt 145,500 6,125,588 3,647,890 42.10 25.07
1ws3410.txt 129,092 5,435,572 3,245,222 42.11 25.14
1ws1710.txt 121,446 5,114,920 3,053,803 42.12 25.15
1ws0610.txt 105,421 4,445,260 2,651,660 42.17 25.15
19033.txt 74,726 3,178,480 1,916,273 42.54 25.64

Table B.2: Time measurements.

File Size TimeWin TimeLinux
gimp-2.2.9.tar.gz 18,400,967 149.701 174.265
Azureus_2.5.0.4a_Win32.setup.exe 10,007,784 57.460 67.203
180907088.jpg 4,611,403 22.031 25.509
183899999.jpg 1,993,582 7.649 8.850
184722357.jpg 1,065,155 3.080 3.617
rbcru10.txt 653,492 3.364 4.073
zlib123.zip 583,873 1.756 2.116
2ws2610.txt 193,004 0.898 1.098
1ws2510.txt 150,662 0.712 0.892
1ws1810.txt 145,500 0.673 0.831
1ws3410.txt 129,092 0.597 0.734
1ws1710.txt 121,446 0.560 0.695
1ws0610.txt 105,421 0.480 0.585
19033.txt 74,726 0.353 0.396
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Abstrakt

V tejto diplomovej práci predstavujeme dátovú štruktúru - R3 strom, ktorá efektívne reprezen-
tuje maximálne opakovania v reťazci. R3 strom koncepčne vychádza zo suffixového stromu.
Má lineárne pamäťové nároky a vieme ho skonštruovať v lineárnom čase aj priestore pre
reťazce nad abecedou s konštantnou veľkosťou. Opakovanie v reťazci S definujeme ako tro-
jicu (p1, p2, l), kde p1, p2 sú dve rôzne pozície v reťazci S a l je dĺžka opakovania. Dotazy na
maximálne opakovania formulujeme vo forme funkcie findPairs(p1, k, S), ktorá vracia všetky
dvojice (p2, l) také, že (p1, p2, l) je maximálne opakovanie v reťazci S s dĺžkou l ≥ k. R3
strom umožňuje výpočet dotazov findPairs v optimálnom čase O(z), kde z je počet nájdených
dvojíc.

Ďalšou dôležitou súčasťou práce je popis návrhu a funkcionality knižnice R3lib, napísanej v
jazyku C. Táto knižnica slúži na vytváranie R3 stromov a vykonávanie findPairs dotazov nad
reťazcami nad abecedou bajtov. To znamená, že umožňuje vyhľadávať maximálne opakovania
v ľubovoľných textových ale aj binárnych súboroch.
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