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Abstract 
The aim of this work is to estimate tentative correspondence in a wide baseline image 

pairs with a well known method and possibly propose a new method. We made a 

research on known correspondence methods. This work experimentally shows a 

verification of our implementation of Maximally Stable Extremal Regions (MSER) 

detection method and describe our implementation in details. We have also 

implemented the method to estimate tentative correspondences using Local Affine 

Frames (LAF). In this work is also  proposed a new method called True Tentative 

Correspondences (TTC) which use MSER as features which were put into 

correspondence. Input to our algorithm is a widebaseline image pair and output is a set 

where one element consist of eight tentative correspondences between detected MSER 

regions, these are the best candidates to compute epipolar geometry between images. 

There is also proposed a new algorithm to estimate epipolar geometry in image pair 

using TTC as is mentioned in a future work. 

 

 

Abstrakt 
Táto práca je zameraná na získavanie predbežných korešpondencií v pároch obrázkov 

scény s veľkou vzdialenosťou medzi polohami fotoaparátov. Je tu navrhnutá nová 

metóda nazvaná Pravé Predbežné Korešpondencie, ktorá hľadá predbežné 

korešpondencie medzi Maximálne Stabilnými Extremálnymi regiónmi. Vstup do nášho 

algoritmu je pár obrázkov scény a výstup je množina, kde každý prvok je osmica 

predbežných korešpondencií. Tieto osmice sú najlepší kandidáti na výpočet epipolárnej 

geometrie medzi danými obrázkami. V tomto článku je tiež ukázané experimentálne 

overenie našej implementácie metódy na detekciu Maximálne Stabilných Extremálnych 

Regiónov. Okrem toho sme overili metódu na získanie predbežných korešpondencií 

pomocou Lokálne Afinných Rámcov a navrhli a implementovali jej modifikáciu. 

V záverečnej časti sme načrtli myšlienku na vytvorenie algoritmu využívajúceho Pravé 

Predbežné Korešpondencie na získanie epipolárnej geometrie medzi danými obrázkami 

ako našu budúcu prácu. 
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1 Introduction 
If the luminance I of the point PA in image A and the point PB in image B have been 

defined by the same scene point, we say that PA and PB correspond. This is the 

definition of Geometric Correspondence [7].  

The correspondence of the feature points in digital image pairs plays an important 

role in many applications. This type of correspondence is needed to compute relative 

camera orientation as the first step in process of 3D image synthesis. 

Applications, which use the 3D image synthesis, to reconstruct architectonical 

objects, objects of art, such as building facades, sculptures, fountains etc. are usually 

used. Data from these applications can be used for example in the projects of virtual 

cities, like Virtual Heart of Central Europe at www.vhce.info 

Epipolar geometry (EG) defines basic geometry between two views. This geometry 

is use to compute relative camera orientation from some number of correspondence 

pairs. In this work 8 points algorithm is used. This algorithm is implemented in 

OpenCV library.  

After the step of computation the relative camera orientation, we need to get a point 

cloud, it means, to find the maximum number of correspondence pairs, lines and 

regions. This point cloud is used to represent 3D scene. In this process, the known EG is 

used. 

The Stereo problem is the problem of establishing geometric correspondences in a 

pair of images. The case of the stereo problem of the images taken from two cameras 

which are close to each other in relation to the viewed scene is called Short Baseline 

Stereo. There is a large body of literature dealing with this subject (e.g. [8]). The 

backbone of all of these methods is the Intensity Cross-Correlation [1].  

The case of the Stereo problem of two possibly different cameras which are not 

close to each other in relation to the viewed scene and in a different illumination 

condition is called Wide Baseline Stereo (WBS). 

Majority of methods dealing with WBS problem do need to detect affine invariant 

features first [2, 3, 4, 6 and 11]. If these features are detected, a matching technique is 

presented to establish a tentative correspondence. 
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2 Related work 
In this part the overall summary of related work in a field of the WBS is described. The 

first section 2.1 decribes affine invariation inevitability of detected features and their 

role in the WBS.  In sections 2.1.1 – 2.1.4, according to our opinion, the most common 

and representative affine invariant feature detection methods are explained. In sections 

2.2 and 2.3 the different ways of solving the WBS problem are depicted. Finally in 

section 2.4 the advantages and disadvantages of the described methods in context of the 

WBS and the aim of our work are summarized. 

2.1 Affine invariant features 
The crucial issue in the WBS is to detect visible correspondences between the features. 

We need to detect the invariant features on the image which are automatically deformed 

with changing a viewpoint as to keep on covering identical physical parts of scene. The 

invariance makes them immune against changes in a viewpoint or illumination. So we 

need to detect features like shapes, corners, regions, lines, which are invariant under 

affine transformations like rotation, scaling, intensity changes, independently in each of 

the images. That offers us a powerful tool of correspondence detection between 

different views of scene.  

Perspective projection is not an affine transformation, therefore between two 

corresponding image patches on the both perspective images there does not have to be 

an affine relation. There is a question why we are looking for the affine invariant 

features: In our opinion the following quotation offers us a sufficient answer and is 

valid in many other works dealing with the WBS problem. Quotation from [16] : 

“In this work, an assumption is made, that image deformations can be reasonably 

well approximated by the local affine transformations of both the geometry and the 

illumination. Such assumption holds for objects where locally planar surface regions 

can be found, and where the size of such regions is small relative to the camera 

distance, so that perspective distortions can be neglected.”  

The local frame of reference of the detected affine invariant feature (Distinguished 

Region (DR) [6]) is usually defined by a transformation invariant construction. The DR 

may be characterised by invariant measurements computed on any part of image 

specified in the local (DR-centric) frame of reference. In [6] this part of image is called 

Measurement Region (MR) and algorithms proposed in the literature [3, 4, 6, 10, 11] 
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use strategies with a similar structure. The core this structure is summarised in 

following four steps [6]: 

1. Detect distinguished regions 

2. Describe DRs with invariants computed on measurement regions 

3. Establish tentative correspondences of DRs 

4. Estimate epipolar geometry in a hypothesise - verify loop 

 

The most common method in establishing a tentative correspondences step (3) selects 

mutually nearest pairs in the Mahalanobis distance between some descriptors of 

measurement regions. Afterwards the Cross-Correlation is also usually used to reject 

low-score matches. The most common method to estimate the epipolar geometry is 

RANdom SAmple Consensus (RANSAC) [18] which enables the selection of the 

inliers. This step is explained e.g. in [13]. Therefore the uniqueness of each of  these 

algorithms lies on the affine invariant feature (DR) detection method.  
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2.1.1 Harris Corner and Edge Detector 
According to our opinion the most quoted method in WBS articles and the basic method 

to detect corner and edge features on image is a Harris Corner and Edge Detector [9]. 

The method is based on the local auto-correlation function. The main idea of the method 

is that we look through a small window of an image and if there is a corner or edge then 

shifting of the window in any direction will be followed by a large change of intensity. 

As a shifting window the Gausian Smooth Circular Window has been chosen: 
222 2/)(exp),( σvuvuw +−=  Change of intensity of the shift [u,v] is:  

[ ] [ ]∑∑ ++=−++=
vuvu

yxOyYxXvuwvuIvyuxIvuwyxE
,

222

,

2 ),(),(),(),(),(),( ,  

where the first gradient is approximated by: 

yIIYxIIX T ∂∂=−⊗=∂∂=−⊗= /)1,0,1(,/)1,0,1(   

and for small shifts E can be written as:  

TT yxMyxyx
BC
CA

yxByCxyAxyxE ),(),(),(),(2),( 22 =⎥
⎦

⎤
⎢
⎣

⎡
=++= , 

where wXYCwYBwXA ⊗=⊗=⊗= )(,, 22 . Then E is closely related to the local 

autocorrelation function, where M decribes its shape at the origin. This matrix is called 

Second Moment Matrix or Auto-Correlation Matrix. Let βα ,  be the eigen values of M 

which are proportional to the principal curvatures of the local autocorrelation function 

and also form the rotationally invariant description of M. Measure of corner response is 

a function of βα ,  alone, on grounds of rotational invariance:  
22 )(,)(,)()( CABMDetBAMTrMkTrMDetR −==+=+=−= αββα   

(k - empirical constant) In Figure 1 relations and meanings between βα ,  and R are 

shown. 



 13

 
Figure 1: The graph of relations between Edges, Corners, Flat regions and βα ,  and R 

 

The core of the Harris Corner and Edge Detector algorithm: 

a) to find points with large corner response function R (bigger than some threshold) 

b) to take the points of local maxima of R 

 

The output of this method are corners with following properties : 

a) rotation invariance and invariance to affine intensity change 

b) non - invariant to image scale 

 

The essential aim of methods dealing with the WBS problem is to detect affine invariant 

features, so a big disadvantage of Harris Corner and Edge Detector method is its non-

invariant to image scale property. 

Harris Corner and Edge Detector is usually used in Intensity Cross-Correlation [1] 

method of Short Baseline Stereo. This technique is based on the neighborhood 

comparation of feature points through the Intensity Cross-Correlation. As a 

neighborhood a small window of (2N+1)x(2N+1) pixels centered around the feature 

point can be taken. For the feature points (x, y) and (x‘, y‘) the similarity measure is 

obtained, as follows: 

∑ ∑
−= −=

−−−−−−=
N

Ni

N

Nj
IjyixIIjyixIC )')','()(),(( , 

where I and I’ are the intensity values at a certain point and I  and 'I  are the mean 

intensity values  of the considered neighborhood. Usually N = 3 ( 7 x 7 pixels window ). 

α 

β 

Corner region 

Edge
region

Edge 
region 

Flat 
region 

R > 0, α and β are 
large and 
α ~ β , E increases in 

R < 0, 
β >> α 

R < 0, α >> β |R| small 
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In the first step feature points in both images (N in the first one and M in the second 

one) are found by some detection method, e.g. by Harris Corner and Edge Detector. 

Then a table of N rows and M colls of values of Intensity Cross-Correlation between 

subsistent points is computed. The last step is the table evaluation procedure. To i-th 

row j-th col is chosen wich has the biggest value and the i-j points are declared as 

corresponding points. Because in Short Baseline Stereo the location of the feature can 

not be changed widely, only the features with similar coordinates in both images are 

usually compared. This fact can be used for the reduction of combinatorial complexity 

of the matching.  
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2.1.2 Harris – Laplacian 
Harris – Laplacian Corner Detector [10] eliminates the disadvantage of Harris Corner 

Detector. The second moment ( auto-correlation ) matrix form Harris corner detector 

has been adapted to scale changes to make it independent of the image resolution. The 

scale adapted second moment matrix is defined by : 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

),(),(
),(),(

*)(),,( 2

2

1
2

2221

1211

DyDyx

DyxDx
DDI xIxII

xIIxI
gx

σσ
σσ

σσ
µµ
µµ

σσµ , 

where Iσ  is the integration scale and Dσ  is the diferentation scale and aI  is the 

derivative computed in the a direction. The matrix describes the gradient distribution in 

a local neighborhood of a point. The local derivatives are computed with Gaussian 

kernels of the size determined by the local scale Dσ . The derivatives are then averaged 

in the neighborhood of the point by smoothing with a Gaussian window of size 

(integration scale). 

We study circular regions around a point with increasing radius. Out aim is to find 

corresponding radiuses independently of two corresponding points so that regions of 

corresponding sizes will look the same in both images.  

 
Figure 2: Scale invariant detection [9] 

 

Automatic scale detection is executed by finding point where the normalized Laplacian-

of-Gausians (LoG) function is of the maximum value in the point x. LoG. : 

),(),(),( 2
nyynxxnn xIxIxLoG σσσσ +=  . 
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Figure 3: Example of characteristic scales [10]. The top row shows two images taken 

with different focal lengths. The bottom row shows the response ),( nxLoG σ over 

scales where. The characteristic scales are 10.1 and 3.89 for the left and right 

image, respectively. The ratio of scales corresponds to the scale factor (2.5) 

between the two images. The radius of displayed regions in the top row is equal to 3 

times the characteristic scale. 

 

The matrix ),,( DIx σσµ  is then computed by integration scale Iσ := nσ  and the local 

scale nD sσσ =  where s is a constant factor. 

 

The idea of Scale Invariant Feature Transform (SIFT) [11] is similar to Harris – 

Laplacian [10] method but for scale detection uses a DoG. Diference-of-Gausian 

function.  
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2.1.3 Intensity-Based method 
The idea of the Intensity-Based method [3] is based on the analysis of intensity without 

extraction of features (edges or corners). As anchor point of the method a local 

extremum in the image intensity is used. Then the intensity function along rays 

emanating from  the extremum is studied: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −

−
=

∫ d
t

dtItI

ItI
tf

t

,
)(

max

)(
)(

0 0

0 ,   

where t is the Euclidean arclength along the ray, I(t) the intensity at the position t on the 

ray, I0 is the intensity extremum and d is a small number to prevent a division by zero.  

 

 
Figure 4: The intensity along “rays” emanating from a local extrema. The point on each 

ray for which a function f(t) reaches an extremum is selected and these points are 

linking together to get affinely invariant region, to which an ellipse is fitted using 

moments. 

 

The position of extrema of f(t) is invariant to the geometric and photometric 

transformations, next of these points from the same local extremum are linked together 

to enclose an affinely invariant region (see figure 4). This region is then replaced by an 

ellipse having the same shape moments up to the second order. This ellipse is affinelly 

invariant but its centre is not the same as the original anchor point (the intensity 

extremum).  
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2.1.4 Maximally stable extremal regions 
Next method to detect affine invariant features is a method of Maximally Stable 

Extremal Regions [6] . The idea of this method is informally explained in [6] as follows. 

Let us assume all possible thresholdings of a gray-level image I through 

S={0,1,…,255}. We will mark all pixels below threshold i as white coloured ones and 

the rest as black coloured ones. The result made of 256 tresholded images, will be a 

movie. The first image of the movie will be white and then black regions belonging to 

local intensity minima will appear and these will grow consequently. At some point 

regions correponding to two local intensity minima will merge. The last image at the 

end of the movie, will be black. The set of all connected components of all frames of the 

movie is the set of all extremal regions. Afterwards we will select these extremal 

regions which support stays virtually unchanged over a range of threshold. Selected 

regions were designated as Maxilmally Stable Extremal Regions. MSER has a 

following properties : 

- Invariance of  affinne transformation of image intensities 

- Covariance to adjacency preserving (continuous) transformation T: D->D on the 

image domain 

- Stability, since only extremal regions whose support is virtually unchanged over a 

range of thresholds is selected 

- Multi-scale detection. Since no smoothing is involved, both very fine and very large 

structure are detected 

- The set of all extremal regions can be enumerated in O(n log log n), where n is the 

number of the pixels  

2.2 Vanishing points 
The method [2] exploiting  the Vanishing points is based on the fact that two parallel 

lines in 3D space can intersect after their perspective projection to the projective plane. 

This intersection is called Vanishnig Point. In the perspective projection of the cube 

there can be three vanishing points. This method has been designed for reconstruction 

of architectural objects. It has several prerequisites and assumes that the building was 

built along three orthogonal axes. 

The first step is to extract straight lines from the two images. In the second step, the 

vanishing points are detected for each image separately. Consequently the lines, 

overcapitalization of which isn’t in neighborhood of one of the detected vanishing 
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points, are excluded. In the third step, edges are intersected to points in image space, 

and point correspondence and relative orientation are detected simultaneously. 

2.3 Triangulation based correspondence 
Kolingerova et al. presented in [19] a different idea of feature matching based on 

comparision of two triangulations of feature poins detected on left and right image. 

2.4 Conclusions 
In section 3.1 the meaning of the affine invariant feature is descibed. In 3.1.1-3.1.2 the 

methods which detect first kind of feature - the corners are shown. In 3.1.1 Harris 

Corner and Edge Detector is decribed. This method detects corner features which are 

invariant only under rotation and intensity change. The use of Harris Corner and Edge 

Detector dealing with Near Baseline Stereo problem is also shown there. Harris Corener 

and Edge Detector is the base of the other two methods Harris - Lapalcian and SIFT 

described in 3.1.2. These have added the scale invariant property to detected corner 

features. 

Another kind of features are regions detected by intensity based method described in 

3.1.3. This method produces features which are invariant under all affine 

transformations. Another region based method is described in 3.1.4. 

All of the features described in sections 3.1.2 – 3.1.4 are used as input to methods 

dealing with WBS problem and can be used to reconstruct scenes from different 

environments. These are, according to our oppinion, the best nowadays.  

Then in 3.2 we show another way of solving the WBS problem which is based on 

vanishing points detection and, according to our opinion, there is a big disadvantage 

because of its prerequisite that buildings were built along three orthogonal axes and this 

method can be applied only in architectural image pairs. In general we assume that 

architectural objects do not have to be built along three orthogonal axes as sculptures, 

fountains and also many modern buildings. Therefore we think that Vanishing Points 

Method is for our goal significantly useless. Finally, in section 3.3 we describe the idea 

of the use of triangulation in correpondence estimation process.  

We have decided to verify MSER method [4]. The reasons why we have decided for 

this method are: 

a) We are interested in MSER method idea because of its simplicity  

b) In [15] the experiments established the superior performance of the MSER detector 

c) Also in [12] the MSER detector was one of the best local detector 
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3 MSER detection method [4] verification  
In the section 3.1 there are some basic definitions, then in the section 3.2 our MSER 

detection process in details, including our invention in MSER detection function, is 

described. Finally in 3.3 there are the results of experimental verification of our MSER 

detection implementation and a comparison of experiments results of our modification 

of MSER detection function. 

3.1 Basic definitions 
These are the definitions from [4] on which our implementation of MSER method is 

based: 

 

Def 1. Image I is mapping SZDI →⊂ 2: . Extremal regions are well defined on 

images if: 

1) S is totally ordered, i.e. reflexive, antisymetric and transitive binary relation ≤ exists. 

In our work only S={0,1,2, …, 255} is considered. 

2) An adjacency (neighbourhood) relation DDA ×⊂  is defined. In this work 4-

neighbourhoods are used, i.e. Dqp ∈,  are adjacted 1)(
1

≤−∑ =

d

i ii qpiffpAq . 

 

Def 2. Region Q is a contiguous subset of D, i.e. for each Qqp ∈,  where is a sequence 

qaaap n ,,...,,, 21  and AqaAaapAa nii ,, 11 +  

 

Def 3. (Outer) region boundary { }qApQpQDqQ ::\ ∈∃∈=∂  i.e. the boundary of Q is 

the set of pixels being adjacted to at least one pixel of Q but not belonging to Q. 

 

Def 4. Extremal region DQ ⊂  is a region such that for all )()(:, qIpIQpQp >∂∈∈  

(maximum intensity region) or )()( qIpI <  (minimum intensity region). 

 

Def 5. Maximally Stable Extremal Region.  

Let ,....,,..., 11 ii QQQ −  be a sequence of nested extremal regions, i.e. 1+⊂ ii QQ .  

Extremal region iQ  is maximally stable if iii QQQiq /\)( ∆−∆+=  has a local minimum 

at i* (|.| denotes cardinality). S∈∆  is a parameter of the method. 
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3.2 Our MSER detection process overview 
Maximally Stable Extremal Regions are decribed in the section 2.1.4. In the section 3.1 

the basic definitions of MSER are presented. Then MSER detection process is described 

in details. In the section 3.2.1 the regions tree structure and its detection is explained, 

then in the section 3.2.2  its traversing is explained and with help of function defined in 

3.2.3 and in the section 3.2.4 our MSER detection function is defined. Finally MSER 

detection process is explained in section 3.2.5.  

3.2.1 Region tree detection 
The first step is to sort pixels by intensity. Then Algorithm 1 goes through the image 

intensities from 0 to 255 where the forest structure with following properties is build  

simultaneously. 

a) Each node represents the pixels with the same gray value only 

b) Each node n can have a parent node representing the pixels with the same or bigger 

gray value than the gray value of the pixels of the node n 

c) If node n has a parent node representing the pixels with the same gray value as the 

gray value of the pixels of the node n, then this is marked in the rename array 

As shown in Algorithm 1 there are four cases of  processing of the pixel pix at some 

gray level (we assume 4-neighbourhood). By every neighbour of pix we get its node (if 

the pixel is assigned to some node) and we find the highest parent of its node. 

a) when the pix does not have any neighbour pixels which belong to some node, then a 

new leaf node is created. 

b) when the pix has some neighbour pixels which belong to the only and highest node 

n and the pix has the same gray value as the pixels of this node, then the pix is assigned 

to the node n. 

c) when the pix has some neighbour pixels which belong to the only and highest node 

n and the pix does not have the same gray value as pixels of this node, then the new 

node is created as a parent node of node n . 

d) when the pix has some neighbour pixels which belong to more than one different 

highest nodes then the new node is created as a parrent node of these neighbour nodes. 

This merge procedure is shown in Figure 5. 
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After this step there is one tree as a consequence of merge procedure. This tree is 

reduced with help of its rename array to get the tree where each node can have only a 

parrent with pixels of bigger gray value. Then the maximum height of the tree is 256. 

Now the tree has a following properties : 

a) when we get all pixels of a node n and all pixels of its subtree then these pixels 

represent an extremal region that was deffined in Def 4. 

b) when we get the way from any leaf which represent pixels from a local extrema to 

any node, this way represents a growing process of its region. 
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Figure 5: Merging nodes 

 
Figure 6: Tree reduction 
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Algorithm 1: regions tree building 
Input  
Output 
01: SORT pixel in increasing order of gray values 
02: for graylevel = 0 to 255 do 
03:  for all pixels pix from GrayValuePixels[GrayLevel] do 
04   for all neighbours q of pix do 
05:   find highest parent of q  
06:   put him into topNeighs field if isn’t  there 
07:  end for 
08:  (* creation of new node - leaf*) 
09:  if neigbCount = 0 then 
10:   parents->add(-1); rename->add(-1); 
12:   graylevels->add(graylevel) 
13:   areas->add(1) 
14:   leaves->add(parents->high) 
15:   image[pix]->nodeIndex = parents->high 
16:  end if 
17:  (* adding pixel to existing node *) 
18:  if neigbCount = 1 and pix->GrayLevel = topNeigs[0] then 
19:   areas[topNeigs[0]] += 1 
20:   image[pix]->nodeIndex = topNeigs[0] 
21:  end if 
22:  (* adding pixel to a new parrent node with one child*) 
23:  if neigbCount = 1 and pix->GrayLevel > topNeigs[0] then 
24:   parents->add(-1); rename->add(-1); 
25:   graylevels->add(graylevel) 
26:   areas->add(1) 
27:   image[pix]->nodeIndex = parents->high 
28:   parents[topNeigs[0]] = parents->high 
29:  end if 
30:  (* merging more childs to new node *) 
31:  if neigbCount > 1 then 
32:   parents->add(-1); rename->add(-1); 
33:   graylevels->add(graylevel) 
34:   areas->add(1) 
35:   image[pix]->nodeIndex = parents->high 
36:   for all neigh from topNeighs do  
37:    areas[parents->high] += areas[neigh] 
38:    parents[neigh] = parents->high 
39:    if graylevels[neigh] = graylevel then 
40:     rename[neigh] = parents->high 
41:    end if 
42:   end for 
43:  end if 
44: end for 
45: end for  
46: (* tree reduction *) 
47: (* finding highest rename node *) 
48: for nodeIndex = 0 to parents->length do 
50: newNodeIndex = nodeIndex; 
51: while rename[newNodeIndex] != -1  do 
52:  newNodeIndex = rename[newNodeIndex] 
53: end while 
54: rename[nodeIndex] = newNodeIndex 
57: end for 
58: (* renaming of the parrents = tree reduction *) 
59: for nodeIndex = 0 to parrents->length do 
60:  if parrents[nodeIndex] != -1 and  
rename[parents[nodeIndex]] != -1 then 
61:  parents[nodeIndex] = rename[parents[nodeIndex]] 
62: end if 
63: end for 
64: (* renaming of the image pixels *) 
65: for all pixels pix from image do 
66: image[pix]->nodeIndex = rename[pix->nodeIndex]  
67: end for 
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3.2.2 Regions tree traversing 
Now we should make an MSER detection step. The bottom-up algorithm goes through 

the field of leaves. For each leaf l, we have to find the way w, where every node n has 

following maximal property : 

If we get the node n, which is the one of the parent’s  p children, then the node n has 

to represent an extremal region with maximal area of all region areas represented by the 

rest of  p children.  

It is equal to the situation when we assume our tree, where the maximal node is on 

the left. We have to traverse our tree by preorder up-bottom Algorithm 2. The bottom-

up approach is simplier because of the fact that we do not have to remember children of 

each node.  

 

Algorithm 2: Tree traversing (up-bottom approach) 
01: FIFO q 
02: TraveseTree(root) 
03:  
04: procedure TraverseTree(node) 
05: q->Add(node) 
06: if not IsLeaf(node) 
07:  for all children of node do 
08:   TraverseTree(child) 
09:  end for 
10: else if 
11:  FindMSERRegions(q) 
12:  q->Clear() 
13: end if 
14: end procedure 

 

The maximal property of the way w is in [4] described as “A merge of two 

components is viewed as termination of existence of the smaller component and an 

insertion of all pixels of the smaller component into the larger one.”. Thus we have to 

detect MSER regions on the small component and later on the larger one. 

 

3.2.3 MSER region detection function 
When we have a way w which represents the growth of the region, for each node n we 

have to compute some value by the Definition 5. In this definition some delta constant 

is used. We wrote to the author to get its value. The result of our comunication is that 

author’s team does not use the function as it is publicated in [4], we were told that they 

are using this function now : 
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Def  6. Let ,....,,..., 11 ii QQQ −  be a sequence of nested extremal regions, i.e. 1+⊂ ii QQ . 

Extremal region iQ  is maximally stable if 

{ })(*2|max;)( iik QsqrtQQkjijiq <−=−=  has a local maximum at i* (|.| denotes 

cardinality) and   Siq ∈∆∆> ;)(  

is a parameter of the method (in our experiments 10:=∆  ). 

 

This MSER detection function for Region Qi deals with: how long the region must grow 

till its area grows more than his circumference, where )(*2 iQsqrt  is some 

approximation of real circumference of the region Qi . 

This detection function gives better MSER regions in experiments for tentative 

correspondence estimation. 

3.2.4 MSER regions detection 
Detection of MSER regions is done by FindMSERRegions procedure, where the input 

is a way w which represents the growth of the region. 

The length of the way is maximally 256. The sequence of nodes on the way is : 

},,,{ 20 hnnn K , where h = Length(w)-1 and represent the sequence of extremal regions 

defined in Definition 6 (7).  

 

Then for each node ni we compute some value vi by function which is defined in Def 6 

(7). Now there is the array of values },,,{ 20 hvvv K  according to the Definition 6 (7) of 

MSER region we have to find some local maximums in this array to get MSER regions.  

In comunication with Dr. Matas’ team (Michal Perdoch) we got the information that 

these values are also filtered. This filter goes through the array of local maximum of 

values and if areas in i-th and i+1 –th local maximum are in less then 10% difference 

they are linked together. 

The regions belonging to remaining local maximums are then marked as MSER 

regions. 
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3.3 MSER detection experiments 
The Dr. Matas’ team has given us the MSER binary file in which MSER detection using 

the function from Definition 6 is implemented. The input to this binary file is the picture 

and some paramaters and output is built up by detected MSER regions. This means a 

powerful tool for our reimplementation of MSER detection method results verification. 

The comparison is done by comparing each region detected by our implementation with 

each region detected by author’s binary file.  

 

The experiments are realised on two imagesets.  

1. Images from Michal Perdoch, CMP, Prague 

2. Images from Joachim Bauer, VRVis, Graz 

 

Image set # orginal MSER # our MSER # identhical % match

Prague 9462 9403 9003 95% 

Graz 4667 4610 4352 93% 

 14129 14013 13355 95% 

 

Table 1: Verification of correctness of our implementation of MSER detection method. 

 

 
 

Figure 7: Left: Identical regions, Right: Our MSER regions (blue: MSER-, green: 

MSER+) 
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3.4 Conclusions 
As you can see in the Table 1 the experiments show: original and our MSER detection 

implementations take on 95% identical results. According to our opinion the reason of 

5% mismathes are in constant values and comparison > vs. >= in proposed algorithms. 

We can claim that our reimplemantation of MSER detection method has been 

succsessfull.  
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4 Tentative correspondence estimation process 
The next step after MSER region detection is to find Local Affine Frames (LAF) of 

three types. In the section 4.1 there are the definitions and the explanation of these three 

types of LAF and its normalisation. In the section 4.3 there are some implemetation 

details, then in 5.4 tentative correspondence estimation process using LAF is described.  

In 5.5 experiments are provided and in the section 5.6 there are conclusions. 

4.1 Local frames of reference and normalization 
Local affine frame can be viewed as local coordinate system which is detected 

invariantly to both affine transformations (geometric and illumination). Local affine 

frames are used to provide normalisation of image patches into canonical frame to 

enable direct comparision with Intensity Normalised Cross-Correlation Method. It 

might not be possible to construct LAF for every MSER. For example if there is an 

elliptical MSER it is viewed as affine transformation of circle and there is no dominant 

direction because the circle is completely isotropic. On the other hand for some MSER 

multiple LAFs in a stable and thus repeatable way can be affine-invariantly constructed.  

Def 8. Centre of gravity (CG) of a region is ∫=
Q

xdQ
Q
1µ . 

Def 9. Covariance matrix of region Q is nn×  matrix defined as 

 ∫∑ −−=
Q

T dQxx
Q

))((1 µµ  

Def 10. Bi-tangent is a line segment bringing a concavity, i.e. its endpoints are both on 

the regions outer boundary and the convex hull, all other points are part of the convex 

hull. 

 

Local Affine Frame is the set of three points which define the local coordinate system. 

These three points need to be affine invariant. The first type of LAF is obtained from 

covariance matrix. From this matrix we obtain properties of ellipse E which 

aproximates the detected MSER.  

a) Centre of gravity of region is the centre of ellipse E 

b) Eigen vectors of covariance matrix are the directions of both ellipse axises 

c) Eigen values v1 and v2 of this matrix define the length of both ellipse axises as : 

)(*2),(*2 21 vsqrtbvsqrta ==  



 30

Affine covariance of CG and covariance matrix is shown in [17]. Transformation by the 

square root of inverse of the covariance matrix normalises the ellipse E to unit circle 

and defines the transformation from local coordinate system defined with ellipse 

parameters to new global, but this normalises the MSER region up to a known rotation. 

Thus we have to complete the affine frame to resolve the rotation ambiguity. In our 

work the following directions have been used:  

1. centre of gravity to a contour point of globally maximal distance from the CG 

(LAFType1) 

2. centre of gravity to a contour point of globally minimal distance from the CG 

(LAFType2) 

3. centre of gravity to a contour point of locally maximal distance from the CG 

(LAFType3) 

4. centre of gravity to a contour point of locally minimal distance from the CG 

(LAFType4) 

 

 
Figure 8: On the left : Ellipse axeses defined by covariance matrix with the scale factor 

3, On the right : Normalized region with detected extremal points and its curvature. 

 

The second type of LAF is based on bitangent, the two tangent points are combined 

with the third point to complete an affine frame. 

1. the most distant point of the concavity part from the bitangent (LAFType5) 

2. the most distant point of MSER from the bitangent (LAFType6) 

3. the CG of MSER (LAFType7) 

 

The invariance of bitangents is the consequence of the affine invariance of the convex 

hull construction. The invarinace of the third points was shown in [16]. 
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Figure 9: a) Two original images, b) Left : bitangent - max. distant concavity point        

Right : normalized, c) Left : bitangent - centre of gravity point Right : normalized  

 

When there is the LAF we could compute an affine transformation mapping the LAF to 

a normalised coordinate system, then transform the image part containing MSER, to 

which the LAF belongs, to normalised coordinate system.  

 

4.2 Implementation details on LAF detection 
The problem of implementation of the first type of the LAF was to detect the local 

extremums of curvature. 

We contacted the author Obdrzalek to get more information about type of curvature 

and local extremum detection proposed in articles [16, 17]. We were told to us the 

curvature consisting of distances from the centrum of gravity of the region, and to use 

the Non Maxima Suppresion algorithm to choose the local extrema. 

It was also confirmed by the author how do they detect the bitangents, because in 

the article only detection of bitangents, which lie on the convex hull, is described but 

the region can have more bitangents which do not lie on the convex hull of the region. 

This fact has been used in the implemantation of the last two types of LAF. 
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4.3 Tentative correspondence estimation of MSER using LAF 
Tentative coreespondence estimation si based on Intensity-Normalized Cross-

Correlation (NCC) [5] between two normalized region in terms of the local coordinate 

frames. 
∑∑

∑
−−

−−
=

xx

x

IxIIxI

IxIIxI
IINCC

2
22

2
11

2211
21

))(())((

))(())((
),( ,  

where ∑∑ ==
xx

xI
N

IxI
N

I )(1,)(1
2211  are the means of windows I1 and I2. NCC 

takes on values in [-1,1] (1 being the most similar, -1 being the least similar) and is 

invariant to illumination transformations such as contrast and brightness modifications. 

We keep the value –(NCC-1) then 0 being the most simillar and 2 being the least 

simillar. 

 

In the case we want to compare two corresponding frames of the left and of the right 

image in normalised coordinate system there is a need that these frames represent a 

parts of some plane in real world, if they do not, the images should be different with the 

change of the viewpoint. This is the local planarity assumption. In general, the MSER 

has a pure histogram and if we put into NCC two MSER without their surroundings the 

result will be delusive. So we need to get MSER with some surroundings. Because the 

LAF is represented by three points of MSER we want to preserve surroundings of all of 

them. We choose the sqaure 1*s x 1*s in normalised coordinate system with the centre 

in point [0.5, 0.5] where s is some scale factor. We can name it normalised 

measurement region as in [16]. Then we will do the resampling of the intensities (using 

billinear interpolation) of the LAF’s MR into a raster into the normalised coordinate 

system. To represent the content of normalised MR we use rasters of size NWxNW 

pixels.  

 

In the section 4.3.1 our invention in iterative NCC is explained, in the section 4.3.2 

tentative correspondences estimation process is described, in the section 4.3.3 there are 

results of experiments and finally in 4.3.4 there are some conclusions about tentative 

correspondence estimation. 
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4.3.1 Iterative NCC 
A larger frames are of higher discriminative potential, but they are more likely to cover 

an object area that violates the local planarity assumption. So we have decided to get the 

best result of iterative NCC algorithm on raster from normalised MR. Iterative NCC 

starts on some scale factor s1 which belongs to raster : 

(iteratNCCBeginVal)x(iteratNCCBeginVal),  

(where 1*)/( ssNWeginValiteratNCCB = ) and ends with the scale factor s which 

belongs to raster NW x NW. At first ∑∑ ==
xx

xI
N

IxI
N

I )(1,)(1
2211  are computed 

and ∑∑ −=−=
xx

IxISumIxISum 2
222

2
111 ))((,))((  and  

∑ −−=
x

IxIIxISum ))()()(( 221112  for the initial raster. Then 122121 ,,,, SumSumSumII  

are iterativelly computed for every following i-th frame  

(iteratNCCBeginVal+i)x(iteratNCCBeginVal+i) where  

{ }eginValiteratNCCBNWi −∈ ,,1,0 L  In each step is computed 

21

12

* SumSum
Sum

NCCi = , so that there is the array of NCCs. The computation cost of 

this array is the same as the computation cost of NCC for final raster NWxNW. 

 

   
Figure 10: On the left there is need of bigger scale factor and on the right there is need 

of smaller scale factor for two corresponding frames (NCC goes from 0 to 2, 

SCALE goes from 1,25 to 3) 
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4.3.2 Comparative process of tentative correspondence estimation 
For each two frames of the same type from the left and the right image (iterative) NCC  

values are calculated between them and saved in the correspondence map. 

Some frame pair A,B forms a tentative correspondence if  A matches B with the highest 

correlation from all right frames and B matches A with the highest correlation from all 

left frames and this correlation is smaller than some threshold (maxCorr). For each 

frame pair we have 7 (iterative) NCCLAF(i) values for each LAF type we have one 

(iterative) NCC value, so now there is a need to define :  

 

Def 10. Frame A matches frame B with correlation c between them according to LAF 

types t1,…,tk when },,min{ )()1( tkLAFtLAF NCCNCCc L= , where k<=LAFCount. 

 

To get more tentative correspondences in our experiments we compute tentative 

correspondences in 4 steps for : 

1. Each LAF type separattely 

2. LAF types 1,2,3,4 

3. LAF types 5,6,7 

4. All LAF types 1,2,3,4,5,6,7 

 

When we want to add tentative correspondence A,B with correlation c to field of 

tentative correspondences in each of the steps 2,3,4, to reject multi tentative 

corespondences for frame A or B we must do the following: 

1. If A exists in the field and matches C with correlation corr we compare c and corr 

and if c < corr then C:=B and corr:=c 

2. If B exists in the field and matches C with correlation corr we compare c and corr 

and if c < corr then C:=A and corr:=c 

3. If A exists in the field and matches B with correlation corr we compare c and corr 

and if c < corr then corr:=c 
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4.4 Experiments 
 

 

 
 
Figure 11: Detected inliers on Mensa02.png (top) and Mensa03.png (bottom) 

architectural images  
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Figure 12: Detected inliers on LeafsA.jpg (top) and LeafsB.jpg (bottom) images of 

nature 
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  NCC Iterative NCC 

Left Image Right Image 
# 
inliers

# 
TC % 

# 
inliers 

# 
TC % 

bookshA.tif bookshB.tif 27 77 35% 28 80 35%
castleA.tif castleB.tif 26 168 15% 30 207 14%
graffA.ppm graffB.ppm 55 122 45% 55 148 37%
kampaA.tif kampaB.tif 15 68 22% 14 79 18%
leafsA.jpg leafsB.jpg 34 172 20% 40 208 19%
plantA.tif plantB.tif 11 90 12% 9 87 10%
shout1.tif shout3.tif 47 93 51% 40 95 42%
vbnA.tif vbnB.tif 10 35 29% 11 35 31%
wallA.jpg wallB.tif 17 102 17% 15 110 14%
washA.tif washB.tif 46 99 46% 49 104 47%
chem_lab_01.png chem_lab_02.png 75 137 55% 74 137 54%
landhaus1.png landhaus2.png 21 73 29% 19 75 25%
landhaus2.png landhaus3.png 50 108 46% 60 136 44%
landhaus3.png landhaus4.png 59 99 60% 63 114 55%
mensa01.png mensa02.png 77 153 50% 85 180 47%
mensa02.png mensa03.png 40 143 28% 38 153 25%
temmel01.png temmel02.png 128 262 49% 117 286 41%
temmel02.png temmel03.png 132 258 51% 134 286 47%
sum   870 2259 39% 881 2520 35%

 

Table 2: Experiments on Tentative Correspondence estimation using NCC and Iterative 

NCC methods. 

4.5 Conclusions 
In the section 4 there are described two methods to estimate Tentative Correspondences 

between WBS image pair. The first method is implementation of ideas of the method 

which is described in articles [16, 17, 20]. As you can see in the Figure 11 and 12 this 

implementation produces satisfying results. The second one is a modification of the first 

one but it uses Iterative NCC algorithm instead of normal NCC. As you can see in the 

Table 2 the use of Iterative NCC method produces only 11 inliers  more than clasic 

NCC method, and the percentage of inliers are approximatelly the same, so we have to 

state that the contribution of our Iterative NCC method is not so satisfying. Our 

expectations of better results by the use of the Iterative NCC algorithm was based on 

theoretical explanation as is mentioned in the section 4.3.1. Our future work is to 

improve the method. 
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5 True Tentative Correspondences  
In this section a new method called True Tentative Correspondences (TTC) to 

estimate tentative correspondence in a wide baseline image pairs is described. This 

method uses MSER as features which were put into correspondence and is based on the 

LAF and The Sideness Constraint. The input to our algorithm is a widebaseline image 

pair and the output is a set where one element consists of eight tentative 

correspondences between detected MSER regions, which are the best candidates to 

compute epipolar geometry between images.  

In the section 5.1 The Sideness Constraint is described. In the next section 5.2 the 

idea of our new method called True Tentative Correspondence is described and in the 

section 5.3 the process of estimation True Tentative Correspondences tree. Then in the 

section 5.4 there are experiments and finally in the section 5.5 there are conclusions. 

5.1 The Sideness Constraint 
This logical rule (The Sideness Constraint) is described in [14]. Let us consider two 

corresponding point pairs: L1, L2 on the left image and R1, R2 on the right image. We 

can divide the left image in to the left and the right part according to directed line 

⎯⎯ →⎯ 21LL  and we can do the same operation with the right image according to directed 

line ⎯⎯ →⎯ 21RR . If there is correspondence pair of points A,B, they have to lie on the 

same part of the left and the right image.  

The function ))21(()2,1,( ALLsignLLAside ×=  returns 1 if A is on the left side of the 

directed line ⎯⎯ →⎯ 21LL  and -1 if it is on the right one. 

The equation )2,1,()2,1,( RRBsideLLAside =  states that A should be on the same side 

of the line on both of the views. 

 

 
 
Figure 13: The Sideness Constraint 
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5.2 True Tentative Correspondences 
The essential idea of our method is to search the following correspondence using the 

best correspondences found before, of which we assume to be geometric 

correspondences.  

Step 1: We take the correpondence regions A0,B0 with the best correpondence value 

computed in comparative process on LAF types 1 and 2. In every experiment we have 

realised that the best correspondence is the geometric one. Then for each region on the 

left image we compute LAF with direction to A0 and for each region on the right image 

with direction to B0.  

Step 2: The comparative process is running again, then we get the first best different 

correpondence regions A1,B1 with the best correspondence value different from A0,B0 

which are not closer to A0,B0 than 10 pixels on both images separatelly.  

Step 3: There are two tentative correspondences and we assume that they are geometric 

and we can now use The Sideness Constraint.  Then for each region on the left image 

we compute two LAFs with directions to A0,A1 and for each region on the right image 

with directions to B0,B1. Afterwards we compute correspondence map and save it to the 

memory. 

Comment: We reject correspondences by The Sideness Constraint by setting 

correspondence value to a certain big number (5.0) in correspondence map of regions 

which are on the different sides of the directed line on the left and on the right image. 

Step 4: This step is repeated untill n=7: 

1. Load correspondence map 

2. Reject correspondences by The Sideness Constraint for each pair of 

correspondences from the True Correspondences Set { A0,B0; A1,B1; … ; An,Bn } by 

changing the correspondence map 

3. Run comparative process on this correspondence map and add the first best different 

correspondence to the True Correspondences Set 

 

There are 8 correspondences as output from this method which we named True 

Tentative Correspondences (TTC).  
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Used rotation direction from CG1 of MSER1 to CG2 is invariant under the viewpoint 

change only if CG2 lies on the same plane as the MSER1 region to which the rotation 

ambiguity is resolved (in respect to the local planarity assumption). The mistake 

depends on the angle between the MSER1 plane and the CG1 to CG2 directed line and 

on the change of camera viewpoint. The smaller is the angle the smaller is the mistake. 

According to our opinion this mistake is in many cases smaller than mistakes in rotation 

from curvature analysis because the boundary of MSER region is discrete and under the 

scale change not so stable.  

 

 
Figure 14: Corresponding regions 

 

Figure 15: TTC – Step1 

 
Figure 16: TTC – Step 2 

 
Figure 17: TTC – Step 3 

 
Figure 18: TTC – Step 4.2 

 
Figure 19: TTC – Step 4.3 

 
Figure 20: TTC - Step 4.2 

 
Figure 21: TTC - Step 4.3 
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5.3 True Tentative Correspondence tree estimation 
To get the set of TTC proposed in the section 5.2 we have developed an algorithm 

which saves TTC in binary tree of the height 8, where every path from the root to the 

leaf is one TTC. The root represents correspondence from the Step 1, the first son of the 

root represents the first best different correpondence from the Step 2 and the second son 

the second best different correpondence from the Step 2. Then the i-th son of node at the 

level j represents the i-th best different correpondence from the Step 4.3. ( i={1,2} 

j={2,3,4,5,6,7} ). 

The reason why we have decided to develop this algorithm is that the geometric 

correpondence on higher levels does not have to be the first best different 

correpondence but it can be the second one or higher. We can also simply compute n-

ary tree of the height 8, but the binary tree takes less computation time and gives 

sufficient results. 
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5.4 Experiments 

Left Image Right Image 
# inliers from 
first TTC 

# inliers from 
TTC tree 

# 
distinct 
TC 
from 
TTC 
tree % 

bookshA.tif bookshB.tif 8 13 13 100%
castleA.tif castleB.tif 8 12 12 100%
graffA.ppm graffB.ppm 8 10 10 100%
kampaA.tif kampaB.tif 8 10 11 91%
leafsA.jpg leafsB.jpg 8 11 12 92%
plantA.tif plantB.tif 5 8 15 53%
shout1.tif shout3.tif 8 21 21 100%
vbnA.tif vbnB.tif 8 9 9 100%
wallA.jpg wallB.tif 3 9 21 43%
washA.tif washB.tif 8 23 24 96%
chem_lab_01.png chem_lab_02.png 8 10 10 100%
landhaus1.png landhaus2.png 6 8 13 61%
landhaus2.png landhaus3.png 8 10 12 83%
landhaus3.png landhaus4.png 3 13 15 87%
mensa01.png mensa02.png 8 11 11 100%
mensa02.png mensa03.png 8 18 19 95%
Temmel01.png temmel02.png 8 14 14 100%
Temmel02.png temmel03.png 8 10 15 67%
Sum  129:152(85%) 220 257 86%

 

Table 3: Experiments results on TTC  

 

  
 

Figure 22: Frames from vbnA.tif (left) and vbnB.tif (right) images and 8 correpondence 

regions from TCC method (blue). 
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5.5 Conclusions 
In the section 5 the new TTC algorithm for finding tentative correpondences between 

MSER regions is presented and there is also experimentally shown, that in every case 

there exist at least 8 inliers in TTC tree and in 14 cases from all 18 experiments we have 

obtained geometric correspondences for all 8 correspondences from first TTC. As we 

have already mentioned, we need only 8 geometric correspondences to compute 

epipolar geometry between two images. 

5.6 Future work 
The essential idea of our future work is to traverse TTC tree and obtain set of TTC 

(every node of the set contains 8 tentative correpondences). Then for every TTC we 

assume that 8 correspondences are geometric and we verify this assumption by the use 

of epipolar geometry and some statistic methods.  
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6 Final conclusions 
In the section 3 is described our implementation of MSER detection method and 

experimentally shown it’s correctness.  

The section 4 deals with establishing tentative correspondences between detected 

MSER regions and verify the method which uses LAF. We also propesed there our idea 

for changing the NCC method. Based on experiments the conculsion is that with the use 

of our Iterative NCC method we obtained better results as with original one, but these 

results are not satisfying for us. 

Finally in the section 5 our TTC method to establish a set, where every node 

contains 8 tentative correspondences is described (wich are the best candidates to 

compute epipolar geometry). The results of experiments on TTC have been very 

satisfying. This is totally new approach to tentative correpondence estimation according 

to our opinion. This method provides a way how the slow stochastic RANSAC method 

can be substituted with use of the outputs from the deterministic TTC method. 

This leads to a quick approximation of the WBS solution. 

 
 



 45

Appendix 
A CD is attached to this thesis. Information about the CD content is written in the file 

"readme.txt" which is located in the root directory. 
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