
Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Music Harmony Analysis:

Towards a Harmonic Complexity of Musical Pieces

Master’s Thesis

Bc. Ladislav Maršík, 2013

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Music Harmony Analysis:

Towards a Harmonic Complexity of Musical Pieces

Master’s Thesis

Course of study: Informatics
Branch of study: 2508 Informatics
Department: Department of Computer Science

Faculty of Mathematics, Physics and Informatics
Comenius University in Bratislava

Supervisor: Mgr. Martin Ilčík
ICGA TU Wien

Date and place of publication: June 2013, Bratislava

Bc. Ladislav Maršík

Declaration

I hereby declare, that I wrote this thesis by myself, under the guidance of my
supervisor and with the help of the referenced literature.

..

Acknowledgments

I would like to thank my supervisor, Martin Ilčík for the most valuable time
spent with this work. His experienced ideas gave the work a real value. I thank
professor Stanislav Hochel from The Bratislava Conservatory because he gave this
work the foundation, building my musical knowledge. I also thank the professors
from University Bordeaux 1, Pierre Hanna and Matthias Robine, for giving this
work the right direction, when it needed most.

My dearest thank goes to my family. My parents and siblings are the greatest
support and my grandma the greatest motivation that I could have, for my studies.
I would also like to thank Pavla Liptáková, for giving me the belief and the vision,
while working on this thesis.

Abstract

Author: Bc. Ladislav Maršík
Title: Music Harmony Analysis
Subtitle: Towards a Harmonic Complexity of Musical Pieces
University: Comenius University in Bratislava
Faculty: Faculty of mathematics, physics and informatics
Department: Department of computer science
Supervisor: Mgr. Martin Ilčík

ICGA TU Wien
Date and place of publication: June 2013, Bratislava

In this work we present a new theoretical model for finding out the complexity
of harmonic movements in a musical piece. We first define, what the yet unde-
fined term, harmonic complexity, means for us, finding different perspectives. Our
basic model is based on tonal harmony. Utilizing the fundamental rules used in
western music we define a grammar based model in which transition complexity
between two harmonies can be evaluated as the computational time complexities
of derivation from one harmony to the other. In graph representation the transi-
tion complexity can be found as the shortest path between the two harmonies. For
these purposes we have created an object oriented model that implements the the-
oretical model. In the end we deploy the system, Harmanal, capable of analyzing
harmony transitions from MIDI and WAV input. We have used Harmanal for com-
paring the overall harmony complexities of musical pieces from different genres.
Moreover, we find Harmanal as a new possibility for enhancing music information
retrieval tasks such as implementing a recommender system for music.

Keywords: harmonic complexity, music complexity, harmony analysis, chord
transcription, chord progression, music information retrieval, recommender sys-
tem

Abstrakt

Autor: Bc. Ladislav Maršík
Názov práce: Harmonická analýza
Podnázov: Smerujúc k harmonickej zložitosti hudobných diel
Škola: Univerzita Komenského v Bratislave
Fakulta Fakulta matematiky, fyziky a informatiky
Katedra Katedra informatiky
Školitel’: Mgr. Martin Ilčík

ICGA TU Wien
Dátum a miesto vydania: Jún 2013, Bratislava

V práci uvádzame nový teoretický model pre nájdenie zložitosti harmonick-
ých prechodov v hudobnom diele. Najskôr popíšeme, čo doposial’ nedefinovaný
pojem, harmonická zložitost’, pre nás znamená, pričom uvažujeme viaceré možné
perspektívy. Náš základný model stavia na tonálnej harmónii. Extrahovaním fun-
damentálnych zákonov používaných v teórii západnej hudby sme skonštruovali
model založený na formálnych gramatikách, v ktorom možno harmonický pre-
chod medzi dvoma harmóniami zhodnotit’ ako časovú zložitost’ odvodenia z jed-
nej harmónie do druhej. V reprezentácii na grafe môže byt’ zložitost’ prechodu
nájdená ako najkratšia cesta medzi harmóniami. Pre tieto účely sme vytvorili ob-
jektovo orientovaný model, ktorý implementuje popísaný teoretický model. Nakoniec
predstavujeme systém Harmanal, schopný analyzovat’ harmonické prechody získané
zo vstupov MIDI alebo WAV. Systém Harmanal sme použili na porovnanie celkovej
harmonickej zložitosti hudobných skladieb z rôznych žánrov. Navyše, systém Har-
manal považujeme za novú alternatívu pre zefektívnenie úloh týkajúcich sa práce
s hudbou na počítačoch, ako napríklad vyhl’adávanie doporučenej hudby pre použí-
vatel’a.

Kl’účové slová: harmonická zložitost’, hudobná zložitost’, harmonická analýza,
transkripcia akordov, akordický rad, vyhl’adávanie hudby, odporúčanie hudby

Foreword

Back in the days when I was studying music composition, the biggest questions
I have had on my mind were – how to make the music more interesting? How to
create more memorable tunes? Will the listener find the same aspects of music
beautiful that I do? If you were ever creating some sort of art, you might have
ended up with questions like these. . . Similarly, if you have your favorite music
pieces, what does really make them your favorite?

I have found, that along with the personal preference of everyone of us, it is
also the function of our musical experience and knowledge. If we have devoted
ourselves into studying music harmony or music itself, our preference changes.
We would eventually recognize the patterns of compositions and find the differ-
ences between simple and more complex music. Interestingly enough, sometimes
the more we know about the possibilities in music, the more we can incline to-
wards simpler music. More often, however, we may get tired of the established
practices and seek different, more complex progress. In the result, the skilled
composer of the 21st century can create music that may sound too complex or
perhaps too minimalistic and thus not beautiful for an inexperienced listener.

Generally speaking, it is difficult to decide whether simpler music can be more
popular, or vice versa. It is a subjective matter. But what we can conclude is, that
introducing a term music complexity can be helpful. Intuitively, our personal pref-
erence of music should correlate with our preferred complexity of music. And for
the music, such complexity can be measured.

Well, can it be measured? That is more of a musicologist’s question. I would
always prefer a thorough analysis by a knowledgeable music analyst over an anal-
ysis made by a machine, in the same way that I would prefer human-made art
over a machine-made product. But, given that even musicology does not have any
general rules for finding out the complexity, and not many works were yet done in

the mathematic or informatic field too, I decided to make the new pathways. The
result will prove itself good if it can be used by both, musicologists and software
developers.

As strong as I believe that computers can not supersede the position of hu-
man in producing and analyzing music, I also believe that music and mathematics
vastly overlap, if not, are the same. In that fashion I started to use different applica-
tions easing the work of a musician, like notation softwares or music sequencers.
Later I started creating my own. First of them, Ear training application [13] with
chord naming model I will reference in this work, too. The next one you are read-
ing right now. And, more are yet to come.

If you find this work useful for any kind of expansion or you are interested in
further discussion, please contact me at: laci@marsik.sk.

Table of Contents

1 Introduction 1
1.1 Music harmony . 1

1.1.1 Definition . 1
1.1.2 History and tonal harmony 2

1.2 Harmonic complexity . 3
1.2.1 Beauty and complexity 4
1.2.2 How can the complexity find its way to beauty – motivations 4
1.2.3 How can the beauty help define the complexity – approaches 6

1.3 Goals . 8
1.4 Outline . 9

2 Understanding tonal harmony 11
2.1 Musicology disciplines . 11
2.2 Basics of music theory . 14

2.2.1 Finding the basic tones 14
2.2.2 Intervals . 16
2.2.3 Scales . 18
2.2.4 Chords . 20
2.2.5 Basics of music notation 22

2.3 Basics of tonal harmony . 23
2.3.1 Basic harmonic functions 24
2.3.2 Diatonic functions . 24

2.4 Additional definitions . 26

3 Related works 31
3.1 Extracting audio features . 31

3.1.1 Vamp plugins . 32
3.2 Chords transcription . 33

3.2.1 Fujishima and pattern matching 33

3.2.2 Chordal analysis . 34
3.2.3 Music harmony analysis improving chord transcription . . 35
3.2.4 Working with added dissonances and tone clusters 36

3.3 Towards models for harmonic complexity 38
3.3.1 Chord distance in tonal pitch space 39
3.3.2 Tonnetz and Neo-Riemannian theory 39

4 Choosing the techniques 42
4.1 Harmanal system outline . 42

4.1.1 WAV input . 42
4.1.2 MIDI input . 44

4.2 Choosing the complexity model 45

5 The TSD distance model 47
5.1 Basic idea . 47
5.2 Formal definition . 49

5.2.1 Understanding the formal model 51
5.2.2 Finding the root harmonies 53
5.2.3 Harmony complexity . 58
5.2.4 Derivation explained . 59
5.2.5 Transition complexity 66
5.2.6 Comparison to Chomsky hierarchy 72

5.3 Graph representation – Christmas tree model 73
5.3.1 Christmas forest . 76

5.4 On the computational complexity of the model 77
5.4.1 Time complexity of the main functions 78

5.5 Evaluating the complexity of the musical piece 79
5.5.1 Time complexity of the music analysis 81

6 Harmanal application 82
6.1 Technical information . 82

6.2 Overview . 82
6.3 Implementation details . 84

6.3.1 Harmanal static class . 84
6.3.2 Chordanal static class . 84
6.3.3 Application GUI . 85
6.3.4 Other components . 85

6.4 Screenshots of usage . 85

7 Results of analysis 88
7.1 Comparing genres and historical periods 90
7.2 Comparing artists and titles . 91
7.3 Other sample results . 93
7.4 Results summary . 94

8 Future works 97
8.1 Five harmonic complexities . 97

8.1.1 Voice leading complexity 98
8.1.2 Complexity of modulations 99
8.1.3 Space complexity . 99
8.1.4 Transition speed . 99

9 Conclusion 101

1 Introduction

1.1 Music harmony

„The most important in music is its harmony.“

Ilja Zeljenka, Slovak music composer

A great music has several qualities. It takes melody to make us memorize and
hum the music on the street. It takes good rhythm to make us dance on the music
at the discotheque. For popular songs, lyrics and a good chorus can relate us even
more to the song. And then there is music harmony, tones sounding together, that
creates the atmosphere and the depth of music. What should we use to analyze
the true complexity of music?

Studying the music more and more, it is the harmony and its changing that
gives us the best platform for analysis. Even the melody by itself can have an
implied harmony, harmony that could accompany it based on its tone material.
Moreover, it has been ever since the late Baroque until now that majority of music
obeys certain harmony rules. That broadens our musical pieces space and gives
us a way to compare pieces even from different genres and periods, using music
harmony. Taking harmony as the subject of our research is therefore understand-
able. And throughout the work we will trust our motto by Ilja Zeljenka, because
it gives us confidence that we have chosen the right aspect1.

1.1.1 Definition

According to Laborecký [8], music harmony is defined as follow:

Music harmony is the study about the character of simultaneously sounding
pitches, their meaning, transitions, functional relationships and usage in the musi-

1Supplementary to the theory of harmony, there is a comprehensive theory of counterpoint
describing how we can combine multiple voices together. There is much more to take into account
before we cast all music in the same mold and we should keep that in mind.

1

cal piece. It studies horizontal (subsequent) relationships in the time and vertical
(concurrent) relationships among the tone space.

In other words, music harmony works with entities that represent simultane-
ously sounding pitches. It has them, with the help of music theory, precisely
labeled and each entity has some meaning. Even more importantly, it specifies
the rules that can connect these entities to the sequences. We thus obtain music,
or more precisely, a musical accompaniment. There is a counterpart to harmony,
which is melody, that floats on the top of musical accompaniment and comprises
solely of sequence of tones and rests. For our analysis, we may choose to extract
melody from musical accompaniment or let the melody and the accompaniment
sound together.

Note that, music harmony, as we defined it, is a scientific discipline, whereas
we will be interested in the harmony of a musical piece. Geared towards a single
piece of music, we define:

Harmony of a musical piece is the use of simultaneously sounding pitches
and chords, their character, meaning, transitions and functional relations in a mu-
sical piece.

In this work we might also use the term „harmony“ to refer to the entities
(simultaneously sounding pitches) that the music harmony works with, i.e. inter-
changeably with the terms: chord, interval, cluster or chord with added dissonance
(see chapter 2 for definitions). We realize that it may become ambiguous at times,
but we hope that the positive reader will successfully distinguish all the different
uses and misuses of the term.

1.1.2 History and tonal harmony

The music harmony has grown over the ages. If we focus on western music, start-
ing in the late Baroque in 18th century, a harmonic thinking has originated, that we
now know as functional tonality, or tonal harmony. Its core is that every part of a

2

musical piece belongs to some major or minor key. It came to its very peak in mu-
sic Romanticism in 19th century. After that, many composers have founded new
approaches to music, moving outside the keys and breaching the tonal harmony
rules. Special rules also apply to modal folk songs, jazz or polyphonic pieces.
Nevertheless, rules of tonal harmony still apply to vast majority of music today
and it is commonly being used as a way of teaching the basics of harmony. We
will describe the aspects of tonal harmony important for this work, in the section
2.3.

1.2 Harmonic complexity

„Two impulses struggle with each other within man: the demand for

repetition of pleasant stimuli, and the opposing desire for variety, for

change, for a new stimulus“

Arnold Schönberg, Austrian composer and music theorist

The purpose of this section is to make the first steps to describe the harmonic
complexity and also to describe how it relates to the beauty in music, which will
help us realize the major motivations for this work. Now, we may all relate to,
that if the music is „all the same“ it may soon loose our interest. While listen-
ing, we need variety, change and the new stimulus in the coming seconds. But if
we get only different harmonies, we will certainly neglect something that we can
relate to, therefore we need repetition of our favorite passage, a pleasant stimuli.
According to Zanette [24], these are the two fundamental principles that cast the
musical form and that we expect in music. (And is it not the same in any other
area of life?)

Intuitively, we may describe the music complexity as the variety, the change

and the occurrence of the new stimulus in music – the more unexpected changes
occur, the more is the musical piece complex. Such description has a nice con-
sequence – as Arnold Schönberg helps us realize, the complexity should be the

3

exact half of what we need in music. We should also take into consideration, that
random and disordered changing of music harmonies should hardly qualify as
complex (Zanette [24]). However, in general it is difficult to find out what was the
composer’s intention to make particular harmonic movement. We will therefore
follow-up with our intuitive definition of complexity as the variety and change,
but instead of giving an exact definition, we describe a model for evaluating the
complexity in chapter 5. We also believe that such model can get us closer to
music beauty. In the next sections we go deeper to find out what are the different
approaches for building such model, and how it can help us in the real world tasks.

1.2.1 Beauty and complexity

Just like „The Beauty and The Beast“, it is clear that the beauty and the complexity
of music are two different terms. But following the fairytale storyline, we may get
to the point where they find the way towards each other.

1.2.2 How can the complexity find its way to beauty – motivations

Inevitably, music beauty is subjective for every listener, whereas the complexity,
since we seek to describe it by a general model, is not. But like we said in the
foreword, every listener also has a subjective look on what is complex and what is
not. In other words, we may still use something that has to do with the listener’s
preferred complexity of music. That is, the complexity of music that he or she
is used to, that he or she likes. If such complexity exists, we can measure it. But
then we can use such measurings to find other music that he or she will like, too.

This idea is well known as recommender systems, that famous internet radios
or portals such as Pandora, or Last.fm2, are using. Such systems have various im-
plementations, filtering music based on its content, or based on other users’ pref-
erences (collaborative approach). The latter is the most frequently used approach.

2http://www.last.fm; http://www.pandora.com

4

We may also conclude, that if the recommending is based on music content, it
is usually on the genre of the piece or the artist, which may not provide enough
flexibility. Recommendation based on the music complexity is a new approach
and can enhance the state-of-the-art techniques.

To begin with, we should find out the complexity of the specified genre of
music, or the concrete artists. If we have good results, we may use harmonic
complexity to specify the genre or similar artists more accurately, or more inter-
estingly, to find slight differences amongst the genre. It is quite obvious that two
rock bands, let’s say Queen and Led Zeppelin, would have different music styles.
We may end up finding that they have different complexities, too. That can be
another evidence that using harmonic complexity for music retrieval is a good
practice.

Similar researches were already done, finding out that usually the band or the
composer uses certain „harmonic language“ (e.g. The Harmonic Language of The
Beatles by KG Johansson [6]). But we have not found any works done on com-
paring these languages. According to these works, chances are, that if we define
our complexity well, we can gather such comparisons.

To summarize, we have found ourselves couple of motivations for this work.
We would wish to create a mathematical model capable of:

1. Evaluating the harmonic complexity of the musical piece, so we can make
one step closer towards, generally undefined, music complexity.

2. Finding out the harmonic complexity of music from different music periods,
genres and artists.

3. Finding out the complexity of music library of the user so that it will be
possible to implement a recommender system searching for the music with
the same complexity – the music he or she would like.

5

The first motivation is filling the gap in the musicology-related terms. Interest-
ingly enough, there are not any attempts known to us to evaluate the music com-
plexity. However, there are works on tonal tension, voice leading, chord recog-
nition, dissonances, and more, outputting different visualizations. It is only the
music complexity that has always had the label of „subjective“ and „undefined“.
The most common practice to call some music „simpler“ or „more complex“ than
other was through some written or spoken analysis. Even if it was taken into
consideration in some works, it was suppressed because the final product was to
obtain another output such as chord sequence or visualization. Perhaps the reason
why is the lack of clues in the harmony literature, where all the rules are found,
but seldom they are somehow ranked or evaluated. We use the same rules, but we
extract the evaluation from them, too.

In our work, in addition to building the model, we also put the second motiva-
tion into practice and we gather results interesting from the musicology perspec-
tive in chapter 7. The last motivation we leave open for future implementation,
but it nevertheless remains one of our „ultimate motivations“– and it also shows
how the complexity can find its way to the subjective beauty.

1.2.3 How can the beauty help define the complexity – approaches

Similarly to the fairytale, the beauty can help the complexity (the beast), to find its
real self. Looking for the approaches to define the complexity, there is an analogy
with looking for the ways to define the beauty. Imagine that we look for the most
beautiful human in the world. Rather like the prince traveling the world, looking
for the most beautiful princess, he may take one of these, three approaches:

1. Take all of his human anatomy books with him, along with a measuring
tape, and then measuring all potential princesses and comparing his results
with the books.

2. Take several friends with him, meeting the young women in the kingdom

6

and then at the evening campfire everyone would share their feelings about
the girls they have met. He would, then, choose the girl with the best rating.

3. Have the king call out, that every young woman should get to the courtyard,
forming a line. He would, then, find about the beauty of the girls by going
from the first and comparing each one with the ones that he had already
seen. By the end of the line he would have a good eye on how the princess
should look like.

These three simple approaches represent: evaluation based on theory, evalua-
tion based on perception and evaluation based on machine learning. All three are
possible and indeed great ways, to evaluate the complexity too.

1. Music theory and the part of it, tonal harmony, describes the set of rules
that, if used well, can help us to evaluate the complexity.

2. Music perception is an important and vital part of the cognitive sciences. We
may get the complexity by studying the opinions or the mental processes of
music listeners.

3. Machine learning is a common technique for music analysis. Teaching
the program on a sample of musical pieces, using hidden Markov models
(HMMs) to learn what are the expected harmony transitions, can get us to
relevant results too.

Comparing all of these approaches would be a nice study, however, out of
the scope of this work. We should choose one. Machine learning is a common
approach, even giving the best known results for naming the harmonies, although,
we might be concerned that it always has better results if taught on music from a
specific genre, and used on that same genre. There is also a belief presented by
De Haas et al. [3], that „certain musical segments can only be annotated when

musical knowledge not exhibited in the data is taken into account as well“. Music

7

Figure 1: Approaches to music complexity

perception is a discipline on its own and lot of statistical data need to be examined
to gather the results.

But having the good theoretical model first seems to be a good headstart for
any future research. Thus, we have chosen the music theory, and its subset, tonal
harmony as the basis for our work. We firmly believe, that, even if some other
parts of music theory may enhance our results (such as theory of counterpoint
or modal harmony), the way we use the key and scale based principles of tonal
harmony is flexible for future modularity and apply to the majority of music we
hear today, and is at the same time consistent with the related works on music
theory too.

1.3 Goals

We here set up the main objectives of this work:

1. Create a good mathematical model for harmonic complexity based on tonal
harmony

2. Create an application capable of complexity analysis

3. Compare music from different periods, genres and artists

The importance of creating a mathematical model we have already discussed
and we find it a good innovation in the field of musicology and music information

8

retrieval. Another important part of this thesis is creating an application for the end
user, capable of music analysis. There is not clearly defined, who may the user of
such an application be. Either a musicologist retrieving information from musical
pieces, or a musician interested in chordal analysis, extracting the chords from
music in order to reproduce them, or a composer playing with new harmonies, or
a programmer implementing a plugin using the complexity model. Therefore, we
tweak our application to provide all of these services:

• Processing WAV input for recorded musical pieces

• Parsing MIDI input for pluggable MIDI instruments

• Parsing text input for convenience

• Displaying analysis results for the whole musical piece, as well as for each
harmony transitions in the piece

• On-demand analysis for input harmonies

• As a by-product to obtain complexity, we will get to analyze every single
harmony from the input. Displaying the name for these harmonies can be
a great help for musicians as well as theorists trying to understand how the
complexity was generated

1.4 Outline

In chapter 2 we introduce the reader to the basic concepts of tonal harmony,
understandable also for a non-musicians. The reader can find there the main defi-
nitions in order to understand, how our model works.

In chapter 3 we switch our focus for a moment and we summarize the works
most related to ours. The reader can use that chapter in order to find out where
trends are about now, in harmony analysis.

9

In chapter 4 we give the outline of Harmanal system, choosing the best funda-
mental techniques for our analysis from chapter 3.

In chapter 5 we introduce the basic model for harmonic complexity. The
reader should not skip that chapter because it shows the main idea of this work.

In chapter 6 we describe the Harmanal application and give more insight on
its components. The reader can see the application in the enclosed screenshots.

In chapter 7 we perform the analysis on music samples. The reader can find
interesting results, such as – comparison of rock bands with the classical com-
posers, or finding out which songs deviate from the majority of songs made by
bands Queen or Beatles.

In chapter 8 called Future works, we take one step back and conclude our work
by describing four other categories for harmonic complexity to give the picture on
how the overall complexity should look like.

In the conclusion we summarize the main results of this work.

10

2 Understanding tonal harmony

In this walkthrough on tonal harmony, we will narrow our focus on definitions for
those terms, that will be repeatedly used in this work. The aim is to provide clear
meanings for the terms that will be used frequently, especially because around the
world the terms and sometimes also the meanings differ. Another aim is to invite
a non-musician reader into discussion. The musicians may, on the other side, find
some interesting insights into the broad topic of tonal harmony.

The definitions were compiled from Arnold Schönberg’s Theory of Harmony
[21], the works of Zika and Kořínek [25] or Pospíšil [17] designed for Slovak
music conservatories and a terminological dictionary by Riemann [18] and La-
borecký [8]. In these works you can also find much more detailed elaboration.

Tonal harmony is a musical system, in which:

1. Every part of a musical piece belongs to a major or minor key.

2. Every harmony has some, close or distant relationship to the center of the
key, the first degree.

We have used some terms, that, to a non-musician, might need more clarifica-
tion. We will define them in the subsequent sessions.

Firstly, we quickly clarify the umbrella terms, not to confuse the readers any-
more, when using terms like music theory, musicology, music harmony, etc. Sec-
ondly, we will hierarchically build the entities that we will work with. And lastly,
we will get deeper into tonal harmony, describing the basic rules that are needed
for our analysis.

2.1 Musicology disciplines

Musicology is the scholarly study of music. It is the top umbrella term that in-
cludes all musically relevant disciplines. It is just as science, as for example math-

11

ematics or informatics, but is considered social science because it studies the art
creations of mankind [15]. However, moving on, we find that splitting up musi-
cology we get on one side historic musicology and ethnomusicology and on the
other systematic musicology, where the second mentioned contains plenty of sub-
disciplines that usually have interdisciplinary character.

The most important, for us, is the small, but fast growing discipline, music
information retrieval (MIR). Its common theme is retrieving information from
music, and it has many real-world applications, such as recommender systems,
track separation, music retrieval by queries, or automated music transcription.
Our work falls under MIR.

We were already talking about music cognition, which is another musicology
discipline, partially falling under systematic musicology.

Other discipline right in between musicology and physics, is called music
acoustics. It goes deep to describe how the physics in music works. But, im-
portantly for us, there is another part of systematic musicology, that builds on the
results of music acoustics, called music theory.

Music theory is an applied discipline, which is, as proposed by many re-

searchers, an applied mathematics. Although music acoustics gave the theory its

building blocks, tones on the scale, and more and more evidences are there when

mathematic theories have helped develop the new harmonies, such as theory of

mathematic inversion, there is still some uncertainty in how much mathematics

can describe music. Perhaps the reason why is that historically, music and math-

ematics have developed separately, one originated as an art with no axiomatic

foundations, other as science. However, recent researchers are now filling the

12

Figure 2: Musicology disciplines diagram

gaps building new mathematical models and works3, in the same fashion as ours,

to show, that the fundamental rules in music, on the top of which the mastery of

the composers is built, can be described by mathematics.

Note that, if we want to build a good new mathematic model for music com-
plexity, we have to build it purely from the rules of music acoustics and music
theory. Otherwise (using other subjective, or „artistic“, reasoning), we would de-
viate from music theory and would not show how mathematics helps describing
music. The resulting model would be wrong, just as unproved experiments cannot
lead to proved theorems in mathematics. Music acoustics and music theory are
bound together well, and any attempt to add a new model on a top of them, should
obey these bounds and make the new model tightly related to both of them. We
need to get the foundations from music theory and use the mathematic language
to stay on the right track.

Then, music theory comprises of studies such as: music harmony, theory
of counterpoint, study of musical forms, and others. Having already defined the

3Amongst many works we may highlight the works of David Lewin [11] [12] and Neo-
Riemannian theory.

13

music harmony, we may conclude this overview by summarizing, that tonal har-
mony is only one concrete system in music harmony. There are others, such as
modal system, using the scales commonly appearing in folk music. In the 20th
century, multiple new systems arose, such as bitonality, polytonality, extended
tonality or also dodecaphony introduced by Arnold Schönberg.

2.2 Basics of music theory

Music acoustics has helped the music theory define these basic terms:

Tone is an acoustic sound, that is created by regular vibration of a source.

Music theory also defines the tone as the smallest element of a musical piece,
characterized by its pitch, intensity, timbre and duration. Pitch can be quantified
as frequency, but it takes comparison of a complex music sound to a pure tone
with sinusoidal waveform to determine the actual pitch, therefore the pitch should
be considered as a subjective attribute of sound.

2.2.1 Finding the basic tones

From the spectrum of all audible pitches, the western music only uses a narrow
set with frequencies in such distribution, that their differences may be clearly
recognized by an ear (88 tones of today’s piano keyboard). In this set, the two
pitches, one with a double of frequency of the other, blend in the sound while
played simultaneously so they resemble one sound, although they have different
pitches. To these pitches, a distance of one octave is assigned. Within an octave,
we differentiate a scale of 7 tones that is periodically repeated. These tones were
assigned the alphabet letters, forming the basis of musical alphabet:

a,b,c,d,e, f ,g

However, with stabilizing the tone c as the beginning of what became a major

14

Figure 3: Tones arranged in the octaves

scale, we more often refer to the tone order: c,d,e, f ,g,a,b.

To distinguish the different octaves, the labeling was established. In Helmholtz

notation commonly used by musicians, we label the octaves from the middle and
up: „one-line“ (c′) , „two-line“ (c′′), „three-line“ (c′′′) and from the middle down:
„small“ (c), „great“ (C) and „contra“ (C,). Some authors prefer the scientific no-

tation, simply labeling the octaves chronologically: 1,2,3,4,5,64.

According to Schönberg, we can explain the basic pitches of a major scale as
having been found through imitation of nature. A musical sound is a composite
made up of series of tones sounding together, the overtones, forming the har-
monic series. It is due to the existence of additional oscillation nodes and partial
waves along with the original oscillation. The frequency of the original wave is
called the fundamental frequency or first harmonics and represents the funda-
mental tone in the composite, whereas the higher frequencies are referred to as
the overtones or higher harmonics (2nd, 3rd, . . .). From a fundamental C, the
higher harmonics are:

c,g,c′,e′,g′,b[′,c′′,d′′,e′′, f ′′,g′′,etc.

4On the standard piano, tones are ranging from sub contra a (A0) to five-line c (C8), MIDI
tones range even from double sub contra c (C-1) to six-line g (G9).

15

Figure 4: Harmonic series explained

The tones that occur first in the series, have also stronger presence in the com-
posite5. For the fundamental tone c it is therefore g as the second most important
component, and as such, our ear represents as a harmony when these two tones
sound together. Similar assumption can also be made about the next tone appear-
ing in the series, tone e. Consequently, for the tone G the higher harmonics are
g,d′,g′,b′,d′′, etc. and therefore we may conclude g and d as another harmony.
Taking the tone c as the midpoint, we should also consider the other direction (as
one of the concepts of the theory of harmonic inversion. We have c as the first
overtone in the harmonic series of f . Following these guidelines, the 7 tones of
the major scale are found.

2.2.2 Intervals

Interval is the frequency ratio of two pitches, the simplest relationship be-
tween two tones in music. From the practical perspective it can be considered as
the distance between the two pitches, that can be derived either from their sounds
or from their notation.

The harmonic series will help us locate the most important intervals that will
later create the basic harmonies. Since the harmonics are from the acoustic view

5In fact, the actual presence of the harmonics depend on the musical instrument being played,
and therefore translates to the timbre of the tone.

16

stationary waves with increasing number of oscillation nodes, we derive the ratio
between the second and first frequency as exactly 2 : 1, the ratio between the third
and second is 3 : 2, the ratio between fourth and third is 4 : 3, etc.

The frequencies ratio 2 : 1 is denoted as the perfect octave. It can be found
for example as the distance between c′ and c′′.

The frequencies ratio 3 : 2 is denoted as the perfect fifth. It can be found for
example as the distance between c′ and g′.

The frequencies ratio 4 : 3 is denoted as the perfect fourth. It can be found
for example as the distance between c′ and f ′.

The frequencies ratio 5 : 4 is denoted as the major third. It can be found for
example as the distance between c′ and e′.

The frequencies ratio 6 : 5 is denoted as the minor third. It can be found for
example as the distance between c′ and e[′.

Following the ratios between the overtones, we have stepped out of the set of
tones of a basic scale, discovering the tone e[′ in between d and e. The difference
between the major third and the minor third is the frequencies ratio 25 : 24 (we
can get it by dividing the intervals). Similarly, we discover that the difference
between the perfect fourth and major third is 16 : 15. These ratios, almost indis-
tinguishable by an ear, along with couple of others occurring between the basic
tones, have been denoted as the semitone or the minor second. The semitone
sets the smallest commonly used distance between the tones in western music and
can be used to measure the distance of larger intervals. Similarly, the distance that
approximates as the double-semitone distance is denoted as the whole tone or the
major second, most commonly appearing as the frequencies ratio 9 : 8.

17

Thus, multiple tones out of the basic major scale were added (black tones on
the piano keyboard), and we differentiate two ways how to describe their presence
– by two types of accidentals:

• If the tone can be described as created by augmenting the original tone by a
semitone, we mark it with the accidental] next to the original tone, and call
it „sharp“ (c sharp: c], d sharp: d], f sharp: f], g sharp: g], and a sharp:
a]).

• If the tone can be described as created by diminishing the original tone by a
semitone, we mark it with the accidental [next to the original tone, and call
it „flat“ (d flat: d[, e flat: e[, g flat: g[, a flat: a[an b flat: b[).

In today’s music theory, the ambiguity between the different semitones in the
tone scale have become impractical for some instruments. Therefore, a common
interval ratio for the semitone was established, with the value of 12

√
2 : 1. This tun-

ing is known as tempered tuning, as opposed to just tuning based on the exact
ratios from the harmonic series.

For summary, all the commonly used intervals can be found in the table 1.

Note that, augmenting or diminishing these basic intervals using accidentals
we get theoretical augmented or diminished intervals that share the same name
as the original interval, but sound like a different interval, e.g. augmented third =
perfect fourth.

2.2.3 Scales

Scale is a series of increasing or decreasing pitches bounded by an octave.

Diatonic scales are the scales created by semitone and whole tone intervals.
They contain 8 tones.

18

semitones name picture

0 perfect unisone

1 minor second

2 major second

3 minor third

4 major third

5 perfect fourth

6 tritone

7 perfect fifth

8 minor sixth

9 major sixth

10 minor seventh

11 major seventh

12 perfect octave

Table 1: Basic intervals

We divide 2 types of diatonic scales:

• Major scales are the diatonic scales characterized by the presence of major
thirds. The most common major scale is C major from the basic tones we’ve
already discussed. From tone c: c d e f g a b c. Major scales are commonly
assigned a „joyful“ character.

19

• Minor scales are the diatonic scales characterized by the presence of minor
thirds. The most common minor scale a minor is also formed from the basic
tones, but from the tone a: a b c d e f g a. Minor scales are commonly
assigned a „sad“ character.

The scales are named based on the first tone of the scale („C major“, „a mi-

nor“). The convention says, that the major scales should be labeled by a capital
letter, whereas the minor scales by a non-capital letter.

The index of a certain tone in the scale is called the degree of the scale and
is denoted by a roman numeral (I., II., . . .). We may also refer to a tone using its
interval from the first degree, which yields a simple expressions: the fourth tone,
the fifth tone, etc.

We provide the comparison of the major and minor scales from the tone c in
the table 2:

tones scale picture

c d e f g a b c major scale

c d e[f g a[b[c minor scale

Table 2: Diatonic scales

2.2.4 Chords

Chord is a set of tones with the minimum of three tones, having the intervals
in between them big enough, so they may sound together without the feel of ex-
cessive density. One of these tones has to have the quality of a chord root for the
chord.

20

Chord root is the tone upon which the chord can be built by stacking thirds
intervals. If the root of the chord is indeed the bottom tone of the chord, we say
that chord is in a root position. We can also obtain the chord inversions, by
reorganizing the tones in such manner, that the root of the chord is put to the top
of the chord – first inversion – or as the second from the top – second inversion
– etc.

We will use the term chord tone for each of the tones within the tone material
of the chord in the context. The term non-chord tone will denote a tone out of the
tone material of the chord. Note that, the tone material implies considering the
tones mapped to one scale, i.e. taking the tone c as a tone chord if the c from any
octave is present in the chord. We will always distinguish whether we consider
the real pitches where order of the tones matters, or mapped tones, the so called,
pitch classes. In general, it is desirable to consider the real pitches for harmony
study and therefore distinguish different inversions of the chord.

Triad is the chord in the root position made up of three tones: the root tone,
the third tone and the fifth tone. It represents the harmony of a tone with its closest
overtones.

Depending on the diatonic scale we use for the triad tones, we will get the two
basic triads, shown in table 3.

structure chord picture

major third, perfect fifth major triad

minor third, perfect fifth minor triad

Table 3: Basic triads

Applying inversions to a triad we get the three basic forms of a chord made up

21

of three tones, shown in table 4 (on a major triad).

type name picture

root position triad

1st inversion sixth chord

2nd inversion four-six chord

Table 4: Triad inversions

Besides major and minor triads we also distinguish diminished triad (minor
third, diminished fifth) and augmented triad (major third, augmented fifth).

2.2.5 Basics of music notation

It is out of the scope of this work to go through all the rules of music notation. We
will only briefly show how the basics work, so non-musician readers may navigate
through the music samples we will use later in the work. For our purposes it will
be sufficient only to localize what tones are present in the notation.

The staff consists of five lines. We mark the tones on the staff using the spe-
cial markings, notes. Higher pitches are marked higher in the staff, either on the
line or in between the lines. To determine the actual pitch, we need to identify at
least one position on the staff, which is done by the clef. For the instruments with
high range, the G clef is used, determining the g′ (and also derived from the letter
„g“, although it resembles the letter just remotely). For specifying the pitch, an
accidental (], [) may be used before the note. All the other attributes of the tone
(length, intensity, the instrument playing the tone) can be derived using the special
markings and guidelines – for more information we refer to Pospíšil [17].

22

�
b �

��
g

��
c

����
e �

��
c f a �d

�

Figure 5: Notation of c minor scale

For illustration, we show the notation of the c minor scale in the figure 5.

2.3 Basics of tonal harmony

With the basic definitions, we may now proceed to the concepts of tonal harmony.
First of all, the diatonic scales play a significant role in music composition, by
providing the tone material that one can use to create a musical piece. Generally,
they define a widespread relationship systems, called keys.

Key is the relationship system based on a major or minor scale. There are
three basic levels of relationships, that define the key:

1. The series of tones: the major or minor scale.

2. The set of chords designed to build harmonies: the triads built on every
degree of the scale, made out of the tones of the scale.

3. The basic chord series also called harmonic cadence, that sets apart triads
on the first, fourth and fifth degree of the scale and gives them a role of
main harmonic functions.

The keys are simply named by the scale they are based on, e.g. key C major,
key a minor, etc. We may refer to the different tones of the key the same way, as
in scales (i.e. by the degree or by the interval), and we allocate a special term for
the first degree: tonic, the base of the key.

23

The complicated definition of the key simply means, that in tonal harmony, we
recognize different keys, of which each defines a set of chords and their possible
sequences – we may say, a set of rules. That of course makes creating the music
or musical accompaniment much easier.

2.3.1 Basic harmonic functions

According to the definition of the key, some of the chords have more important
roles in the key than others. They set the three basic levels of tension towards the
tonic, and are the basis of tonal harmony. We recognize them as the three main
harmonic functions:

• Tonic is the triad on the first degree of the key. It is the function of a har-
monic steadiness and release. All the harmonic impulses origin in tonic and
return back to tonic. We label it with T .

• Subdominant is the triad on the fourth degree of the key. It brings the
deviation from the tonic, and is the intermediary function in between tonic
and dominant. We label it with S.

• Dominant is the triad on the fifth degree of the key. It represents the maxi-
mal tension, that requires an ease, transition to tonic. We label it with D.

The harmonies in music start usually in the tonic. Optionally, the harmony
deviates from tonic by transition to subdominant. Finally, the harmonic move-
ment culminates in dominant and goes back to tonic again. We call this the basic
harmonic progression T – S – D – T. According to Zika an Kořínek, it is the
skeleton of every music motion in musical pieces in the tonal harmony system.

2.3.2 Diatonic functions

It is possible to build a triad on every degree of a diatonic scale, using the tones of
that scale. Every such triad we can then assign a function.

24

VII

���

leadingsubmediant

D 7Tp,Sl

VI

���

D

�

dominant

�

Sp

supertonic
II

���
IV

�

T

tonic
I

��� �
V

���

S

subdominant

Dp,Tl

mediant
III

���

Figure 6: Diatonic functions

Note that, a function here means a certain role that the triad plays towards the
root of the key, the tonic. We have already discussed, that the three main roles
(three main functions) are: tonic, subdominant and dominant, built on (I., IV. and
V. degree accordingly.

The triads on the other degrees we perceive as variants, or parallels of the three
main functions. They share characteristic tones with the main functions, and are
therefore capable of substituting them in certain cases.

Some theories assign each of the seven triads a function on its own – as is
commonly taught in USA – whereas the others will assign the name with the re-
spect to the main function – German approach. We can nevertheless call the triad
with the name of the degree it is built on, simply I, II, III, . . . , VII (some theories
would use lower-case roman numerals if the triad is minor). All of these namings
are summarized in the figure 6.

According to Hugo Riemann, the originator of „functional“ approach to tonal
harmony [19], we may describe the function variants in two ways. Either we
get them from the main function by extending their fifth by a whole tone – thus
obtaining their parallel, labeled with p, or by diminishing their root by a semitone
– thus obtaining so-called counter parallel, labeled with l, since the process is
also called leading-tone exchange.

25

• The triad II represents the variant of subdominant, subdominant parallel.
We label it with Sp.

• The triad III represents both the dominant parallel and tonic counter par-
allel. We label it with Dp or Tl.

• The triad VI represents both the tonic parallel and subdominant counter
parallel. We label it with Tp or Sl.

• The triad VII is an exception, although it resembles dominant counter par-
allel, the root is diminished one more semitone down, thus obtaining not a
major nor minor chord, but a „diminished“ chord. However, because of its
characteristic structure – upper 3 tones of dominant seventh chord, that we
will discuss later – it is simply called incomplete dominant seventh and
labeled D/ 7.

The study of tonal harmony also describes additional chord structures that may
be considered as one of these functions – some of them will be mentioned in the
next section – but mostly describes different ways of connecting these functions
in music. The common transitions are: T – S, T – D, S – T, S – D, D – T, only
the transition D – S is not used. According to Zika, however, we know some
exceptions, e.g. when subdominant substitutes dominant only temporarily. The
main message still remains though, that with simple T – S – D – T transitions, the
music would be too narrow and limited and – considered simple. But the point is,
that instead of main functions we may always use the variant, parallel, of the main
function. This makes the music much more interesting, changing, and complex.

2.4 Additional definitions

In this section we will define all the rest of the musical terms, that will be used in
this work. If You have enough of definitions for now, feel free to continue reading
the chapter 3 and use the rest of this chapter as a dictionary that You can refer
back to.

26

(a)

C C] D D] E F F] G G] A A] B

0.74 0.00 0.10 0.00 0.53 0.04 0.00 0.66 0.00 0.15 0.00 0.10

(b)

C C] D D] E F F] G G] A A] B

1 0 0 0 1 0 0 1 0 0 0 0

Figure 7: Sample chroma vector of C major harmony (a) and a pitch class vector
representation of the C major triad (b)

• Alteration. Chromatic raising or lowering of a note of a major or minor
chord in order to obtain different harmony. Alteration is considered a chro-
matic phenomenon in the diatonic system [18].

• Chroma. Same as semitone. The term is used in different ways – chro-
matic scales are the scales that run through the twelve semitones of equal
temperament. Thus, chromatic, as opposed to diatonic, refers to the struc-
tures or movements derived from this scale, e.g. a process of augmenting
or diminishing one or more tones by a semitone, that can not be described
diatonically [18]. Music information retrieval uses the term chromas as the
synonym for pitch class profiles, the 12-dimensional vectors of floats, used
to map the presence of the tones in the point of time in a musical piece to
the 12 tones of the chromatic scale. These chromas are usually compared
to chord in the pitch class representation (12-dimensional binary vectors) to
approximate the chord in MIR, see figure 7.

• Chord with an added dissonance. First used by Czech composer Leoš
Janáček, we denote the consonant chord enriched with a non-chord tone –

27

Figure 8: Circle of fifths

thus creating dissonances – as a chord with an added dissonance6. They
represent the intermediate stage in between the chords and clusters. We do
not use this term if the chord can be described otherwise, e.g. as a seventh
chord [23].

• Circle of fifths. The rotation through the twelve tones of the chromatic

scale, by fifth intervals, represented graphically in a circle. It is commonly
used to represent the keys, because, starting from C major and a minor, the
keys following by fifth intervals in one direction, have increasing number
of tones with sharp accidentals, and starting from the same (C major, a mi-

nor) going the other direction, have increasing number of tones with flat

accidentals (see figure 8). This is also a common way to determine how
many augmented or diminished tones are there in the particular key – find-
ing out the number of steps in the circle of fifths. The set of accidentals for
a particular key is referred to as the key signature.

• Cluster. Cluster or tone cluster refers to a set of tones sounding together,
with at least three adjacent tones (with a whole tone interval or smaller),

6In Czech language the term is more simple and has the meaning similar to densed chord. We
prefer using the formal translation not to confuse with new terms.

28

where the functional substance of the chord can not be identified anymore
[8].

• Consonance. The harmonious sound or coalescence of two or more tones,
giving the impression of harmonic stability to the listener. On the basic
interval scale, all of the perfect intervals, major and minor thirds and major
and minor sixths are consonant [8].

• Dissonance. The inharmonious sound, opposite to consonance, that re-
quires harmonic transition. On the basic interval scale, major second and
minor seventh are considered „mild“ dissonances, whereas minor second
and major seventh are considered „sharp“ dissonances. A special disso-
nance is also assigned to specific inharmonious sound of the tritone interval
[8].

• Leading tone. A tone leading to another causing the another tone to be
expected in harmony after the presence of the leading tone. This is usually
due to a dissonance in the preceding harmony, that needs to be relaxed –
turned into consonance. A leading tone is always a semitone down or up
from the expected tone. We find leading tones especially in the diatonic
scale, a semitone below the tonic (b leading to c in C major). But there is
another type of leading tones – every sharp or flat accidental which raises or
lowers the tone of the diatonic triad in the process of alteration introduces
the tone which produces the effect of leading tone [18].

• Modulation. Passing from one key to another in a musical piece, a change
of tonality [18]. It is used to add change to the musical piece or to highlight
or create the structure of the piece. From a simplified perspective, it can
be either diatonic, if all of the transitions can be described functionally,
or chromatic, if the chromatic transition was used. In case of diatonic

modulation we look for a common chord , called pivot chord, that has
functional meaning in both of the keys [25].

29

• Seventh chord. The chord in the root position made of the root, the third,
the fifth and the seventh (stacking three thirds on the top of each other). The
seventh chords and their inversions (five-six chord, three-four chord, sec-
ond chord), although containing a dissonance, are very important structures
in tonal harmony. We name the seventh chord (and its inversion) based on
the name of the lower triad and the name of the seventh, e.g. major/minor

seventh chord. The importance of seventh chords lies in the fact, that for
each key, characteristic dissonances can be found, that may, too, substi-
tute the main harmony functions. These are: dominant seventh chord as a
major/minor seventh chord on the V. degree, having a strong dominant char-
acter, half-diminished seventh chord as a diminished/minor seventh chord
on the II. degree, having a subdominant character, and diminished seventh
chord as a diminished/diminished seventh chord on the VII. degree, hav-
ing a dominant character and because of its specific structure common for
multiple keys, used for modulations. It is mainly the presence of additional
leading tones that yields the usage of these dissonances in functional har-
mony [25].

30

3 Related works

In this chapter we provide the summary of the works most related to ours. Mu-
sic Information Retrieval is a modern discipline. Before 2000 the works were
scattered, focusing on different aspects of computer music. But the revolution of
music distribution and storage has ignited the interest of musicians and scientists
to MIR and brought to the beginning of the conferences ISMIR7 (2000) and the
yearly evaluation for systems and algorithms MIREX8 (2005), where many more
works can be found.

It is clear that our task consists of more smaller steps. Since tonal harmony
provides us with rules to build chord transitions, we ultimately want to extract
chords from the audio. Our final list of tasks then looks like this:

1. Extracting the features from the audio

2. Chords recognition

3. Creating a model for harmonic complexity

4. Comparing music from different music periods and genres

For each step, multiple works have been already done. In following sections
we provide a quick summary of the state-of-the-art approaches, so that we can
choose the best practices for our analysis in chapter 4. We also discuss, what we
neglect in the previously proposed models and set the expectations for the rest of
the work.

3.1 Extracting audio features

We are interested in obtaining the chroma features from the audio. The extrac-
tion is based on discrete-time Fourier transform (DFT) that takes time-domain

7http://www.ismir.net
8http://www.music-ir.org/mirex/wiki/MIREX_HOME

31

input and provides us with frequency-domain output. To obtain semitone-spaced
chromas one must first apply transcription that takes the harmonic series of each
tone into consideration and derives the approximation on what tones are sounding
together. Finally, the obtained tones are mapped into 12-dimensional arrays. This
algorithm has some known implementations already.

3.1.1 Vamp plugins

The popular implementation is the use of Vamp plugins9. The NNLS Chroma
Vamp plugin10 developed by Matthias Mauch from Queen Mary University of
London outputs the chromas for given WAV audio. In his work [14], Mauch de-
scribes how the algorithm for solving non-negative least squares (NNLS) can be
used to obtain the tones from the frequency-based data. NNLS Chroma plugin is
free to obtain and re-use under GPL licence.

Another feature we might want to obtain from the audio, if possible, is the
exact start and end time of the chords in the musical piece. However, the chord
boundaries are loose, moving them in one direction or another will result in dif-
ferent, but possibly valid chord recognition. Some researches use various seg-
mentation techniques, where the final boundaries of the chords are found as the
best scoring option after matching the segments to chord templates. This approach
was used by Pardo and Birmingham [16] and we explain it a little more in the next
section.

Other researchers use an approach, where the segmentation is derived from a
different aspect: rhythm. Chord boundaries are approximated at the time of the
beats. The core idea of this method is, that the harmonic changes often appear at
the beats – not only in popular music, but also in classical pieces. Conveniently
enough, there is another Vamp plugin called Bar and Beat Tracker by Davies and

9http://www.vamp-plugins.org
10http://isophonics.net/nnls-chroma

32

Stark [22], that estimates the position of metrical beats within the music.

For the simplicity, we have decided to utilize both Vamp plugins (NNLS
Chroma and Bar and Beat Tracker) for our first practical complexity analysis re-
sults. Whereas NNLS Chroma seems to be the best option, finding chord bound-
aries by beat tracking may introduce some inaccuracies, so it can be later changed
in favor of the further musical analysis.

3.2 Chords transcription

The process of obtaining chords from the audio input is called chord transcrip-
tion. Fujishima was the first to use the pattern matching method to choose from
chord candidates, in 1999 [4]. From 2008, chord transcription became the com-
mon benchmarking topic at the MIREX challenge – between 7 to 19 algorithms
are presented annualy, with various approaches and results. Again, by summa-
rizing the related works we look for the best, yet simple, option to get the chord
sequence for our complexity analysis.

3.2.1 Fujishima and pattern matching

Takuya Fujishima [4] was the first one to design chord transcription algorithm,
and has also introduced the common technique of using DFT to obtain pitch class
profiles (chromas). He has used simple summing of the related frequencies to
obtain the chromas. Then Fujishima chooses 27 commonly used musical chords
for each root pitch (amongst them major, minor, augmented or diminished chords
and chords with common added dissonances) – we refer to this set as the chord
dictionary – and matches each chroma sample to a chord in the dictionary. The
scoring algorithm that Fujishima proposes uses Euclidean distance between the
dictionary chord and the chroma – he calls it the nearest neighbor method – the
nearest chord (with the best score) is selected. Note that, there are many different
ways to match the chroma sample to the dictionary other than Euclidean distance,

33

Figure 9: Segmentation as proposed by Pardo and Birmingham [16] – if the score
of the chord is increasing or stays the same by adding a note, the note is added to
the chord without segmenting

and we summarize them in one of the following sections. Fujishima also proposes
simple smoothing to merge adjacent chromas as the heuristic to improve overall
performance.

3.2.2 Chordal analysis

Bryan Pardo and William P. Birmingham [16] have proposed an algorithm that
aims to find precise chord boundaries between the chords. When the new tone or
multiple tones are played in the musical piece, decision has to be made, whether
the tones remain as the part of the previous harmony, or whether the harmony
changes at that point. The segmentation algorithm by Pardo and Birmingham
considers both cases – the previous harmony together with the new tones is matched
to the chord dictionary, as well as the situation where two separate harmonies are
formed. Then the algorithm greedily selects the best option through analyzing a
directed acyclic graph (DAG), thus leaving the locally correct segmentation be-
hind, see figure 9. Using MIDI as the input simplifies the detection of the start
time of the notes.

34

3.2.3 Music harmony analysis improving chord transcription

De Haas, Magalhães and Wiering [3] have described, how music harmony anal-
ysis can improve chord transcription algorithms. They focus on the point, where
pattern matching shows, that multiple candidates from the chord dictionary have
similar scores. They proceed to compare two systems – one that simply chooses
highest scoring candidate, and the second one, that lets the tonal harmony rules
decide, which candidate is the best. The authors have found statistically signifi-
cant improvement, when the tonal harmony analysis was used. Later in the dis-
cussion they compare different approaches from MIREX 2011 challenge results.
The algorithms proposed only have around 75% accuracy in finding the correct
chords compared to ground truth. The only algorithms returning accuracy more
than 74% were HMM-based machine learning approaches and the algorithm from
Bas de Haas et al. However, as we have discussed in the introduction, HMM-
based algorithm is likely to behave accurate on the genre it has been trained on
and less accurate on the other genres, whereas harmony-based algorithm is likely
to behave the same way in different genres.

Work from De Haas et al. is also amongst the few that actually shows a way
to describe harmonic complexity, even though it was not the aim of the work. The
presented Haskell-based system HarmTrace11 uses tonal harmony to select the
best chord candidate, by deriving a tree structure explaining the tonal function of
the chords in the piece, see figure 10. It tries to label the chords in accordance with
the basic T – S – D – T harmonic progression, enforcing that the piece needs to
be organized as a sequence of tonics and dominants, optionally preceded by sub-
dominant. Instead of main functions, a parallel may be used. If it is not possible
to derive such tree, and a node needs to be deleted or inserted in order to achieve
a valid progression, HarmTrace calculates the number of errors and chooses the
chord candidate based on the lowest local number of errors in harmonies. Such
model, if used globally, can be used to derive a basic harmonic complexity of a

11http://hackage.haskell.org/package/HarmTrace-2.0

35

Figure 10: Harmony analysis as proposed by De Haas et al. [3] – the HarmTrace
system deriving a tree describing the tonal functions of the chords, excerpt of the
analysis of The Long And Winding Road by The Beatles

piece, e.g. by outputting the total number of errors (more errors – higher com-
plexity).

Another thing we might learn from is the straightforwardness in using the
groundwork techniques (usage of Vamp plugins and Euclidean distance) so they
can focus on the main objective – proving that harmony improves chord transcrip-
tion.

3.2.4 Working with added dissonances and tone clusters

All chord transcription algorithms described above work with a smaller subsets of
chords commonly used in music. That is to no surprise – most of the music is built
on such subsets. Moreover, this approach can deal with the melody tones that are
not part of harmony – non-chord melodic tones simply would not be matched be-
cause the chord dictionary does not contain such chords with added dissonances.

However, if we are to evaluate the true harmonic complexity, we should be
interested in more complex dictionary. Chords with added dissonances are com-
monly used in the modern compositions, moreover, we might also benefit from
letting the tones of the melody into our analysis. According to Zika [25], melody

36

may be in harmony with its accompaniment, or it may create dissonances and
additional tension towards the next movements. It would be interesting if our
complexity analysis would differentiate two songs with the same music accompa-
niment, but one having more dissonant melody. Having broad dictionary with a
lot of dissonant chords is therefore desirable.

In our previous work, Ear training application [13], we have created a sys-
tem Chordanal, that was able to name all harmonies from chords to clusters. The
aim was to create an interactive application for music conservatories for the Ear
training course. First, the student selects the lesson. Then he gets the chord as-
signment – the program plays the chord. Student’s task is to write in the text field
exactly what he or she hears. The student may use standard name for the chord,
if possible. But usually, if the assignment becomes harder, the training works
step-by-step and the student only writes what he is sure to hear, e.g. the boundary
interval of the chords. This way, he or she learns fast to recognize the musical
sounds. Moreover, in our application we use the fact, that breaking down the
structure, also the more complex harmonies may be named – chords with added
dissonances may be denoted as the original chord plus all the intervals that create
the dissonance. Chordanal standardizes such naming and given the chord with
an added dissonance it can distinguish the chord and the dissonance, in multiple
ways if possible.

First of all, parts of Chordanal system (since it is a Java object-oriented frame-
work) help us work with the chords encapsulating them in the class, and then
analyze what are the possible diatonic functions of the chords. Secondly, Chor-
danal system also helps us name all harmonies during the analysis, to provide
more verbose output for the user. Re-using and broadening the system seems as a
good option for our work.

To conclude this section, the best approach seems to be using pattern matching

37

to a chord dictionary, like in the works presented. If possible, the results of har-
mony analysis should be used to determine the final chord sequence. And since
we actually are interested in finding more dissonant chords, rather than choosing
a common subset of chords, we broaden the dictionary as much as possible with
the help of Chordanal.

3.3 Towards models for harmonic complexity

In this section we discuss, what are the options to evaluate harmonic complex-
ity once we have the chord sequence. The HarmTrace system developed by De
Haas et al. [3] shows a simple way how to evaluate complexity of the musical
piece. There are other models, that relate to harmonic complexity, since creating
various models is the core study of not only MIR, but the modern music theory it-
self. Lots of works have been done on tonal tension (see Lerdahl and Krumhansl
[10]). However, tonal tension falls more under music perception – and we want
to obtain theoretical model. Another reason why we might not be able to reuse
works of tonal tension is, that it focuses on the distance from tonic, whereas we
might consider the tonic, subdominant and dominant as equivalent, meaning that
they are all three the fundamentals of any simple musical piece. Nevertheless, the
works on tonal tension can point us in the right direction.

Other types of models that closely relate to music complexity, are models for
chord distance. Many musical models have already been proposed to describe
the relationships between tones, chords or keys. We have already talked about us-
ing Euclidean distance to find the best match amongst the chord candidates. Much
more approaches can be used.

The work by Rocher, Hanna, Robine and Desainte-Catherine from Univer-
sity of Bordeaux [20] summarizes 8 different chord distances and examines their
performance when used for chord transcription in pattern matching. The work
concludes, that particular type of distance may be good for particular applica-

38

Figure 11: Basic tonal pitch space as proposed by Lerdahl [9], set to C major

tions, therefore we need to choose the chord distance type based on what we want
to achieve. From their summary, we choose those chord distances, that seem the
most useful for harmonic complexity.

3.3.1 Chord distance in tonal pitch space

Lerdahl [9] introduces the term tonal pitch space, a model describing distances
between pitches, chords and keys. The model starts with the basic space. The
different levels of the basic space are shown in figure 11. Then transformations
of the basic space measure the distance between chords. Lerdahl proposes the
chord distance of two chords Cx, Cy from the possibly different keys Kx, Ky to be
calculated as:

δ (x,y) = i+ j+ k

where i is the distance between the keys Kx, Ky in the circle of fifths, i.e. the
number of moves in the circle of fifths at level (d), j is the distance between the
chords Cx and Cy in the circle of fifths, i.e. the number of moves in the circle of
fifths at levels (a-c), and k is the number of non-common pitch classes in the space
x compared to the space y.

3.3.2 Tonnetz and Neo-Riemannian theory

Another important model is that of geometric harmonic grid called Tonnetz (tone

network in German), proposed by Hugo Riemann [18]. The idea, first described
by Leonhard Euler, is to represent tonal space as a two-dimensional pitch space

39

grid, see figure 12a. The relationships represented by the edges originate in the
just tuning and have been adapted to mirror the fundamental rules of tonal har-
mony. These ideas are extended in the Neo-Riemannian theory. First proposed
by David Lewin [11] [12], the triads may be modified using three basic transfor-
mations, see figure 12b. The R transformation exchanges a triad for its Relative,
e.g. C major to a minor, the L transformation exchanges a triad for its Leading-
tone exchange, e.g. C major to e minor, and the P transformation exchanges a triad
for its Parallel, e.g. C major to c minor. Note the ambiguity in the parallel term
– here, the parallel comes from the notation commonly used in USA, and means
modifying C major to c minor, whereas the parallels how we defined them, based
on original Riemann’s German notation, yields modifying C major to a minor,
which would be called relative in USA (the same ambiguity is in describing the
keys). The triads are shown on Tonnetz as triangles (more complex chords and
harmonic progression may be then visualized e.g. as proposed by Bergstrom et al.
[1], see figure 12c) and Neo-Riemannian transformations are shown as inversions
of the triangles around one of its edges. For more information, the reader may
refer to Cohn [2].

We may conclude this section by stating, that there are plenty of models related
to harmonic complexity, but the way how they can help evaluate the complexity
of a musical piece was not yet described12.

12There actually is an article defining music space complexity the same way as the computa-
tional complexity theory: The Complexity of Songs by Donald E. Knuth [7]. Knuth describes the
space complexity of songs as linear, but finds interesting results for Old McDonald had a farm
song, and even logarithmic and constant complexity for some modern popular songs. Although
published as an inside joke on computational complexity theory, we can take the advice of using
computational complexity as a measure for harmonic complexity. Even more importantly, we can
quote Knuth on that the repetitions and refrains – or simply the space complexity – should not be
forgotten when defining the harmonic complexity as well.

40

Figure 12: Using Tonnetz grid to visualize chords and describe distances in tonal
harmony: (a) Tonnetz grid as proposed by Riemann; (b) Basic Neo-Riemannian
transformations as proposed by Lewin [11] [12]; (c) Isochord visualization as
proposed by Bergstrom et al. [1]

41

4 Choosing the techniques

In this chapter we summarize the chosen components for our system, using the
knowledge from the previous chapter. The aim is to have the groundwork ready
so that we may then simply plug in the model from chapter 5, the main part of this
work.

From previous chapter we can conclude, that for groundwork, we prefer sim-
ple techniques rather than complex, because our main focus is to put new com-
plexity model into practice rather than optimizing the little pieces for best pre-
cision or performance. The exception is choosing the chord dictionary. Rather
then choosing a subset of commonly used chords, as seen in Fujishima [4] or De
Haas et al. [3], we prefer to use broad dictionary to include also the dissonance of
melody with the musical accompaniment into our analysis. This can be achieved
by Chordanal system for parsing the complex harmonies presented in [13].

4.1 Harmanal system outline

We describe two variants of our system called Harmanal, based on the input
method (WAV or MIDI).

4.1.1 WAV input

The outline for our Harmanal system to evaluate harmonic complexity of musical
pieces is as follows:

1. We take WAV sound files as the input.

2. Feature extraction: We use Vamp plugins to extract the audio features –
chromas and beats (NNLS Chroma Plugin, Bar and Beat Tracker Plugin)13.

13For the simplicity, we do not yet work with the chord inversions, therefore we neglect the
bass tone. However, since NNLS Chroma Plugin can extract also bass vectors, using of chord
inversions is later possible in order to bring our complexity model to the next level.

42

3. Smoothing 1: We merge the chromas according to the beats, thus obtaining
beat-synchronized chromas. The merging is done by averaging the chroma
vectors between the two beats.

4. Chord approximation: We do pattern matching using the Euclidean dis-
tance to estimate the chord using the nearest neighbor technique – the best
candidate is chosen. We choose the chord dictionary to contain all possi-
ble chords, chords with added dissonances and clusters made op of n tones
(maximal size of harmonies, formally defined in section 5.2). Specifying
concrete n depends on the implementation, but we may assume n <= 12,
since working with pitch classes. We rely on Chordanal system to iden-
tify the chords with the increasing n. Having the maximum of tones n, the
pattern matching simply means choosing the n strongest chroma features.
Since the features are floats mapped to < 0,1 >, we take the n highest floats
and set them to 1, and set the other pitch classes to 0 to obtain the chord
(as in figure 7). However, a threshold of T is introduced to distinguish the
important sounding tones from the ones that do not play significant role and
are almost not noticeable in the harmony. So even though we are interested
in additional dissonances, we set 0 for all features lower than T .

5. Smoothing 2: If adjacent chords are the same, we merge them into one. In
the result, we obtain the chord sequence {Ci}i≤l = c1,c2, . . . ,cl .

6. Complexity evaluation: Chordanal helps us to analyze the chord or clus-
ter, extracting as many tonal-related informations as possible (root, possible
keys, dissonances, etc.). We then use a complexity model on {Ci} to deter-
mine the complexity of the piece.

7. The other output of the Harmanal system is, with the help of Chordanal,
labeling the chords to provide verbose output for the user. As we describe
in [13], there are multiple ways to perceive and label a single chord. How-
ever, during the analysis, based on the complexity model it uses, Harmanal

43

Figure 13: Harmanal: System for evaluating the harmonic complexity of musical
pieces

chooses one possibility for the chord label that fits the best for the analy-
sis, or two possibilities, if the chord is having a role of pivot chord in the
diatonic modulation. Therefore, outputting the sequence of chord names
{NAMESi} is a by-product of the analysis.

The schema of the Harmanal system is depicted in figure 13.

4.1.2 MIDI input

Thanks to the flexibility of the object oriented framework we work with, and due
to the desired flexibility of our application, there is also another variant of Har-
manal system that parses a real-time MIDI input from MIDI instruments (figure
14):

44

Figure 14: Harmanal, variant 2: System for evaluating the harmonic complexity
of two MIDI harmonies

1. We take MIDI signal as the input to obtain two separate harmonies, c1 and
c2.

2. Complexity evaluation: Chordanal helps us analyze the two harmonies.
Here, we do not define the maximum of tones, because, fundamentally,
Chordanal and the complexity model works for as many as 12 pitch classes
sounding together (in the first variant the maximum of tones was used for
optimizing the performance). We do not use the threshold as well because
we suppose that if the musician played the tone, he or she wants to have it
involved in the analysis. Our complexity model analyzes the complexity of
the transition from c1 to c2.

3. Harmanal system also outputs, with the help of Chordanal, the preferred
and all possible labels for c1 and c2.

4.2 Choosing the complexity model

The only yet undefined step is what complexity model we should use (step 6 in
the WAV variant or step 2 in the MIDI variant of Harmanal system). There’s a
possibility to use already known evaluations, such as Lerdahl’s chord distance,
because it seemed most related to what we want to achieve. Applying it to ad-
jacent chords in the sequence {Ci}i≤l and then aggregating the distances would

45

output the complexity of the piece.

However, we do not want to neglect some of the things specific for tonal har-
monic complexity (such as usage of tonic, subdominant and dominant, usage of
the parallels, added dissonances, etc.) so we prefer building a new tonal harmony
model specific for complexity, but still based on Lerdahl’s tonal pitch space. In
the next chapter we propose and describe this new model in its basic form.

Also, there seem to be other important aspects of harmonic complexity, than
just the tonal harmony view (for example, how much the harmony patterns are
repeated) Note that, the complexity model in Harmanal is interchangeable for any
other model, resulting in flexible environment for complexity analysis. We show
the other possible complexity models in the chapter 5.

46

5 The TSD distance model

In this section we focus on one concrete aspect of harmonic complexity – the com-
plexity of the harmony transitions based on the tonal harmony functions. Having
two harmonies, our aim here is to find out what function the harmonies represent,
and how complex is the transition between them. Therefore, we name the new
model the TSD distance model, as an acronym for tonic, subdominant, domi-
nant distance model. Note that, it is not an exhaustive tonal harmony model –
it does not include modulations, nor voice leading, which are both fundamental
parts of the tonal harmony. Modulations and voice leading should be treated in
separate models, because they work on different levels of the tonal pitch space.
The TSD distance model can nevertheless be used to analyze the complexity of
the pieces modulating to different keys. For more information on this separation
of complexities and the summary of all other harmonic complexities, see chapter
5.

5.1 Basic idea

The basic idea is to measure, how far the harmony transitions of the piece deviates
from the basic T – S – D – T progression. Slightly differently from the tonal ten-
sion [10] – we are not interested in how much the music deviates from the tonic;
we rather study how much the music deviate from the transitions between all three
functions. To describe it even more, the main difference is not focusing on where

we are in the progression, but how this is different from a simple progression. For
example, if we are in basic tonic and move to basic subdominant, the tonal tension
rises. If we then move to basic dominant, the tonal tension rises again. But our
complexity should remain the same.

We build this model on the overtone series rules and the consequent harmony
rules by Riemann [19]. The transitions from the basic harmonic progression T –
S, T – D, S – T, D – T are indeed according to Riemann the simplest harmony

47

transitions, due to the simplicity of the fifth interval. If dominant is built on the
fifth degree above tonic, then subdominant is built on the fifth degree below tonic,
and from that we derive not only the name for subdominant, but also some „equal-
ity of rights“ between subdominant and dominant, when it comes to the usage in
music, as opposed to the tension. In conclusion, if only these transitions are used,
we should consider the harmony very simple. The special case when the music
stays at one function all the time is, again, out of the scope of this model and is
briefly referenced in chapter 5.

We should take a closer look to the transitions S – D and D – S.

• The former, S – D is described by music theory as more difficult than the
fifth interval transition, because the interval between the root tones is a
whole tone. However, since we have already described that the subdom-
inant has the same „right“ to be in the piece as the dominant, we can denote
this transition as being very common in music as well, and it indeed is, as
the part of the basic harmonic progression.

• The latter, D – S, should not be used based on the rules of original tonal
harmony. However, as we have stated in the 2nd chapter, theorists allow
different exceptions to this rule, and nowadays we might listen to this tran-
sition quite a lot.

The point is, that we might want to differentiate these transitions from the fifth
interval transitions, however, we rather do not want to, because they can still be
considered as the part of the basic T – S – D – T progression, and we want to
measure the distance from that progression.

What we therefore focus on are the parallels, or modifications of these main
functions, or the harmonies that can be created by adding dissonances to them.
Graphically, we may imagine the basic idea like in the figure 15. If the music
stays in the T – S – D triangle, we consider it simple. However, if it deviates from

48

Figure 15: Basic idea of the TSD distance model: on the left the simple T – S – D
progressions; on the right more complex progression using modifications

the triangle (in the figure using the parallel instead of S), we assign it a higher
complexity. In the next sections we show how to evaluate such deviations.

There is another reason why we did not assign any complexity to the transi-

tions between T , S and D functions, that we may now fully understand: These

transitions are principally different from the process of modifying a function. If

we would, perhaps later, want to assign some complexity amongst them as well,

we should treat it differently from the rest of the model.

5.2 Formal definition

Before we go into details, we formally define the TSD distance model and other
terms that we work with. For simplicity, we may use some well-known terms
without definitions – we refer to Hoprcroft, Ullman and Motwani [5] for more
information.

Also, we intuitively use the previously defined terms from music theory, that
the reader can find in chapter 2. More formally, we denote the following terms
and labels:

49

• chromatic scale A as a set of 12 pitch classes: A = cc]dd]e f f]gg]aa]b.

• tone as the member of a chromatic scale, t ∈ A. The tones therefore obtain
pitch class (relative) values.

• harmony as a set of tones and a subset of a chromatic scale, h⊆ A. We com-
monly label it with letter h and denote: h = t1t2 . . . tn where t1 . . . tn are the
tones in the harmony. The size of the harmony is denoted |h| and represents
the number of its tones, |h|= n.

• harmony universe U as the set of all possible harmonies: U = 2A. (Note:
Using the same terminology we can refer to A as the tone universe.)

• In our work, we use the terms key and scale interchangeably, both referring
to a subset of A. For simplicity we specify that both keys and scales contain
exactly 7 tones (so they can be treated as 7-tones harmonies). We also use
the key and scale names from the chapter 2, so that C major is a valid label
of the key or scale, and we can use notation such as the tone t ∈C ma jor.
If we do not mean a specific key, we commonly label the keys using k letter
and scales using s letter.

• key universe K as a set of all possible diatonic keys, 12 major and 12 minor.

• harmonic function universe F as a set of possible basic harmonic function
labels: F = {T,S,D} for tonic, subdominant and dominant accordingly.

• harmonic function as the element of F , f ∈ F . (Note: Harmonic function is
therefore not a harmony itself, only a label that we can use along with har-
monies, e.g. harmony h has a function f . However, given the key k and the
function f , the tonal harmony specifies a harmony made out of 3 tones that
represents this function in the given key. Therefore we may, usually in the
text, speaking of harmonic functions in a key, refer to a specific harmony.
See chapter 2 for details.)

50

Although when displaying the content of a harmony, h = ceg we can use dif-
ferent order of tones, still meaning the same harmony, in our work we strictly
work with the notation where the tones are displayed in order of the chromatic
scale. We may also use a pitch class profile format, 12-dimensional binary vector:
< 1,0,0,1,0,0,0,1,0,0,0,0 >, to specify the harmony.

Definition 1. TSD distance model is a tuple (T,P,roots,c, tc), where T is a finite

alphabet, T ⊆ A; P is a finite set of rules, P⊆ f inite A∗×A∗, for every rule u→ v ∈
P : |u| ≤ |v|; roots is a finite function: U→ 2K×F×U ; c is a finite function: U→N
and tc is a finite function: U×U → N.

The definition may induce many questions, but we will go step by step to an-
swer them all. First of all, the reader might have noticed some similarity between
the TSD distance model and context-sensitive grammars. We indeed designed it to
behave similarly to the CSG, with the difference, that there is no nonterminal set,
no start symbol, and we have functions roots, c and tc providing us an extra func-
tionality. The reader might benefit from following section helping understanding
the main idea of the model.

5.2.1 Understanding the formal model

The high-level idea of the model is, that instead of the start symbol, we use the
start sentential form, which is represented by the basic harmony function, i.e.
r = ceg for the basic tonic function of C major key. We will call these basic
harmonies, that can form the start sentential form, the root harmonies for a
given key and denote them with the letter r. Then, using the rules from P, we
can perform a derivation of the given harmony m (modification of the function):
r → h1 → h2 → ··· → m. We need to keep in mind, that these derivations are
key-specific and look differently in different keys. Such derivation can be seen on
Example 1 on page 60 and seen graphically on Figure 16 on page 63, and will be
described more in details.

51

The aim therefore is to derive the modification from the basic harmony func-
tion. Obviously, both of these harmonies should be labelled with the same har-
monic function label (f) and we should have some algorithmic way to find this
label and to determine the basic function to start with. In other words, for a given
harmony h we need an algorithm that will return a root harmony r that the deriva-
tion can start with. For this exact purpose, we describe the function from the
definition of TSD model, roots. But, to provide us all the neccessary information,
the function roots outputs for a given harmony not only the root harmony, but also
the key and the function label, because we know that the process is key-specific
and the function label can be useful, too. The function roots is formally defined
in section 5.2.2.

Notable difference is, that each derivation depends on the key k. Concretely,
we need to have different sets of rules for each key. As the reader will find out,
these differences are very straightforward, caused only by the different sets of
tones in the key. However, for clarity and for underlining the difference between
the TSD distance model and formal grammars, we will always refer to the deriva-
tion of the harmony h with parameters k (key) and r (start sentential form). The
derivation is formally defined in section 5.2.4.

As for the other two functions, c is called harmony complexity and it returns
the static complexity of the given harmony as the length of the derivation of the
harmony. We formally describe harmony complexity in section 5.2.3. The other
function, tc, is transition complexity. It takes two harmonies and outputs the com-
plexity of the transition between them. It is little bit more difficult to describe, but
we will have enough knowledge to formally describe it in section 5.2.5.

In the following, we will work with the concrete model: T SDBASIC. Unlike
with the family of TSD distance models, we will precisely describe how all the
functions of this model work. We use the basic label, because we are aware that

52

more functionality can be added later. In certain moments, we make some pro-
posals for the model T SDCOMPLET E . One of the proposal we can make from the
beginning is, knowing that T SDBASIC does not take the bass tone into the account
and therefore it can not work with chord inversions. A more complete model
T SDCOMPLET E could take all the rules from T SDBASIC and add the functional-
ity for inversions. and for the future works. However, a specification of such
T SDCOMPLET E model is out of the scope of this work and the more simple model
T SDBASIC is sufficient to achieve our goals.

Definition 2. T SDBASIC is a TSD distance model:

(ABASIC,PBASIC,rootsBASIC,cBASIC, tcBASIC)

Where ABASIC =A, and the set of rules PBASIC and the functions rootsBASIC,cBASIC, tcBASIC

are defined in Definition 10, Definition 3, Definition 6 and Definition 16.

Now we will, as collecting puzzle pieces, step by step describe all the remain-
ing elements of T SDBASIC.

5.2.2 Finding the root harmonies

First we treat the problem of how to determine, what is the root harmony of the
harmony h (that goes in hand with determining the function label f for h). The
algorithm is simple: Analyzing the tone material of h, and comparing it to T , S, D

harmonies of different keys (let us denote the basic harmony function with label
f in the key k as k(f); we need to compare h with k(f) for all combinations of k

and f). We may conclude that, if h contains all three tones of k(f), the harmony
k(f) is its root harmony.

From Zika [25] and other harmony textbooks we can see evidences, that some-
times, even two chord tones are sufficient to represent the basic harmony function.
Zika specifies that in some cases, the tonic triad in the end of the musical phrase

53

contains only root tone and the third. Note that, it can still retain the major or mi-
nor character. We also find evidences, that in particular cases, also root tone and
the fifth may be considered an incomplete triad, although in this case we can not
state the character. Moreover, the stand-alone I., IV. or V. degree can intuitively
represent the function too, if no other tones are present. So if the function triad
is not present in the harmony h, we may lower our boundary and look for only
portions of the function triad. On the other hand, if we have found the match for
multiple tones from the function, there is no reason to look for smaller matches.
Since 1 tone is too small of an evidence for the presence of a function, we con-
sider one-tone root harmony match only if there are no multitone matches, in all
the other keys.

We find the confidence in such approach in Leoš Janáček’s conception of
chords with added dissonances, theoretically described by Volek [23]. Janáček
promotes, that by adding certain amount of dissonances, the chord still retains the
same function, provided that these dissonances can not be described otherwise,
diatonically. The good measure is, that the number of added dissonances should
not outrank the number of tones in the root harmony. However, there are cases
(large clusters) where no such configuration can be found – in that case we choose
the largest possible root harmony again. So we use the measure from the previous
paragraph – 2 tones (interval) root harmony is sufficient, if no 3-tones root har-
mony is found, and single-tone root harmony is considered only if there is no 2 or
3-tones root harmony14.

We thus can easily design the rootsBASIC function (as a part of T SDBASIC

model) programatically, see the simple pseudocode. To satisfy the added dis-

14We must mention here, that in this section, even though there have been some related studies,
we are considering rules based more on experience of the composers rather than on fundamen-
tal rules of tonal harmony or acoustics. That can be dangerous, given that the composers’ and
theorists’ views may differ in minor points and our model may loose its generality, as we have
discussed in the section 2.1. One of the proposals for T SDCOMPLET E can therefore be to minimize
the effect of rules that might be considered as not established.

54

sonances rule we stop searching for root function in a certain key once the disso-
nances outnumber the root function tones. That decreases the number of results,
positively influencing the outcome, because we do not want big harmonies to be
classified as having a root harmony only one tone.

array roots(harmony h)

begin

results = empty

// adding 3 or 2-tone root harmonies

foreach k in K

foreach f in F

if (h contains all tones of k(f))

add <k, f, common tones> to results

else

if (h contains root+third or root+fifth of k(f))

add <k, f, common tones> to result

if (results found)

return results

// adding 1 tone root harmonies

foreach k in K

foreach f in F

if (h contains root tone of k(f))

add <k, f, common tone> to results

return results

end

Formally, we may describe rootsBASIC as a set of homomorphisms hk, f , one
for each combination of the key and the function label, that leaves the tones of the
k(f) in the harmony, and erases the remaining tones. In the following definition
we use homomorphism for tones generalized for harmonies the same way that it is
used for words in [5]. For simplicity, we do not formally describe the optimization
for stopping the search. Leaving all the results in the formal model is fine, since

55

we do not look for optimizations there, as opposed to the implementation where
we would be better off looking for more optimal solutions.

Definition 3. Function rootsBASIC is the function U→ 2K×F×U with the definition:

rootsBASIC(h) =
⋃

k∈K

⋃
f∈F

(k, f ,hk, f (h))

Where hk, f is the homomorphism that ∀t ∈ A:

hk, f (t) = t⇔ t ∈ k(f)

hk, f (t) = ε ⇔ t /∈ k(f)

Sometimes it will be handy to access only the keys, functions, or harmonies
from the roots output – we use projection with the label of the desired value for
clarity:

• πK(rootsBASIC(h)) selects the first values from the roots output (keys)

• πF(rootsBASIC(h)) selects the second values from the roots output (func-
tions)

• πU(rootsBASIC(h)) selects the third values from the roots output (harmonies)

Defining the root function will allow us to define the root harmonies formally.
Knowing that the root harmonies form only the subset of U , we define:

Definition 4. Root harmony universe R is the set defined as follows:

R = {r ∈U | ∃h ∈U ;πU(rootsBASIC(h)) = r}

Definition 5. Given a harmony h, we call all harmonies r such that r∈ πU(rootsBASIC(h))

the root harmonies of the harmony h.

56

Due to the table character of the roots output, we might (and in the application
we also do) approach it as a database. For our formal language we therefore
also describe notation for selection in addition to projection, similar to relational
algebra:

σK=k1, F= f1(rootsBASIC(h))

Some analysis of our root finding follows:

Theorem 1. For each harmony in U there exists a root harmony.

Proof. In the Definition 3 of roots function we project the given harmony with
the homomorphism for every combination of function label and key, that means
also for T in every key. Amongst these tonic harmonies, all tones of the chromatic
scale A are present. The homomorphisms keep the tones of these tonic harmonies
in the given harmony, and that means that at least one homomorphism will leave
non-epsilon output.

However, there are some harmonies that have only trivial root harmonies r

with |r| = 1, which does not „look good“ for tonal harmony analysis, but the
following theorem is stating that there are not many of such harmonies (and for
those that have trivial root harmonies it is reasonable to have them).

Theorem 2. The only harmonies h having root harmonies r with |r| = 1 are the

ones with structures: p1; m2; M2; tritone and m2,M215.

Proof. Listed basic intervals m2; M2; tritone, are the only ones not present in
the major or minor triad or its inversions. If we want to find more harmonies
not present in a diatonic triad, we can combine them together – thus adding only
m2,M2 harmony, because other combinations lead to an interval present in dia-
tonic triad. Adding anything else to this set (not counting unisone) would lead to

15By saying harmony with a structure we do not say the exact pitches of the harmony, but we
mean family of harmonies with tones in specified intervals. Comma-separated intervals such as
m2,M2 denote a harmony built from all of these intervals from the lowest tone, so in this particular
case e.g. a harmony cc]d, c]dd], etc. – it is common notation we have used in Chordanal system,
see [13].

57

introduce an interval present in diatonic triad, therefore matching some interval in
tonic, subdominant or dominant function.

Consequence 1. Nice consequence is, that all the remaining harmonies (= vast

majority) have at least 3 non-trivial root harmonies (because for any third, fourth,

fifth or sixth interval there is a key in which tonic matches, another key in which

subdominant matches and the third key where dominant matches). The same – that

always some tonic, subdominant and dominant matches – works also for trivial

root harmonies, so we can make a stronger statement than the Theorem 1 in a

way, that each harmony has at least 3 root harmonies.

We should be careful though, because if there are too many matches, we might
encounter some time complexity issues. Note also how we were working with
intervals in the proof – we work in Z12 group, so when considering an interval,
we as well consider its inversion (e.g. major second, minor seventh).

5.2.3 Harmony complexity

First important complexity that we are able to evaluate is the complexity of a
harmony. It represents the static complexity of a single harmony, which will later
help us to define the complexity of a transition. For T SDBASIC model it is nothing
else than the distance from basic harmony functions, i.e. the length of derivation
from a root harmony to the harmony. Using the BASIC label leaves the door
open for further definitions of harmony complexity (it is considerable also to use
different static measures already defined in the literature, e.g. the surface tension

from Lerdahl [10]).

Definition 6. Harmony complexity in T SDBASIC model: cBASIC(h) is the minimal

length of derivation of h16.

As we have mentioned earlier, by derivation we mean the same as derivation in
CSG, with the difference that T SDBASIC implicitly takes the start sentential form

16Harmony complexity defined this way is actually the computational time complexity of the
harmony in our model.

58

from πU(roots(h)). Another important difference is, that to obtain the minimal
derivation, we will need to compare derivations starting from all root harmonies
in πU(roots(h)), given the respective keys from πK(roots(h)). The harmony com-
plexity is then found as the minimal length of derivation amongst all of these
derivations. We clarify this approach in the following section using examples and
a definition.

Sometimes we might want to look for the complexity of the harmony within

the specific key – the syntax then is cBASIC(k,h). That means that we only consider
the derivations parametrized by the given key. If we want to be even more specific,
we may specify the key and the function, thus obtaining the complexity of the
harmony from the the specific function in the key: cBASIC(k, f ,h).

5.2.4 Derivation explained

Let us consider the following example:

k =C ma jor

r = ce

h = ce f]g]

According to Janáček’s added dissonances, adding a tone can be considered
as a fundamental operation that we can do multiple times, provided that the chord
can not be described otherwise. Therefore we propose the ADD rule, adding a
tone to the harmony (formally we define it at the end of the section).

However, according to Lerdahl [9], if we are in the certain key k, there are
different levels of pitch classes that we should take into consideration, from chro-
matic up to root level as in figure 11. We thus propose for T SDBASIC, that at least
the chromatic and diatonic level should be taken into consideration, and distin-

59

guish if the ADD rule added a diatonic or non-diatonic tone. In accordance with
other established practice in tonal harmony, alteration, we may do such distinc-
tion: alteration is a chromatic process in diatonic system, that allows certain dia-
tonic tones in major or minor scale, to be altered a semitone up or down. T SDBASIC

can generalize otherwise quite specific rules of alteration and let all diatonic tones
have a possibility of alteration, with the exception of root.

We thus propose an ALTER rule, moving the tone of the harmony a semitone
up or down. There are several restrictions to ALT ER rule:

1. We can not alter the tone of the root harmony. We would then weaken the
function of the harmony.

2. It’s not possible to alter the diatonic tone of the scale resulting another dia-
tonic tone, i.e. in C major it’s not possible to alter tone e or b up.

Thus, we let the ADD rule operate only on diatonic tones, whereas ALT ER

rule would be the only chromatic process in the derivation. Now we can also see,
why the derivation depends on the key k. To show the resulting derivation, let’s
get back to the example from the beginning:

Example 1. The derivation of ce f]g] harmony in C major starting from root

harmony ce in T SDBASIC:

r = ce−−−→
ADD

ce f −−−−→
ALT ER

ce f]−−−→
ADD

ce f]g−−−−→
ALT ER

ce f]g]= h

The complexity of the ce f]g] harmony can be then found as the number of

steps in our derivation. Note that, there are multiple derivations even for the given

key and root harmony, depending on what is the order of tones that we derive, for

example:

r = ce−−−→
ADD

ce f −−−→
ADD

ce f g−−−−→
ALT ER

ce f]g−−−−→
ALT ER

ce f]g]= h

60

is another derivation of the same harmony. Normally, we would need to check all

the possibilities. In our example it is however evident that:

cBASIC(C ma jor,T,ce f]g]) = 4

Since ce does not have matches for subdominant or dominant in C major, we

also obtain:

cBASIC(C ma jor,ce f]g]) = 4

However, here comes the „tricky bit“: even though it might not look like it,

roots(ce f]g]) outputs as many as 9 different root harmonies, so we are able to

make 9 independent derivations with different complexities for ce f]g], see table

5. Therefore, the resulting harmony complexity for ce f]g] is the minimum of the

complexities:

cBASIC(ce f]g]) = 3

key function root harmony complexity

E major Tonic eg] 3
G major Subdominant ce 3
B major Subdominant eg] 3
A major Dominant eg] 3

C] major Dominant cg] 3
C major Tonic ce 4
G] major Tonic cg] 4
D] major Subdominant cg] 4
F major Dominant ce 4

Table 5: Output of function rootsBASIC(ce f]g]) (→ first three columns) and the
according output of function cBASIC for the same harmony, given the key from the
first and root harmony from the third column (→ fourth column)

Now that we understand how the derivation works, we can benefit also from
graphical representation of the harmony complexity, see figure 16 (complexity of
modified subdominant, denoted Sm. The reader might remember the picture from

61

the first section of this chapter (figure 15), where we have used a subdominant
parallel. The model was designed in the way, that every commonly used modifi-
cations17 such as parallels or counter parallels, or minor chord instead of major
chord, etc., output the harmony complexity c(h) = 1 (the reader can easily verify).
However, a little drawback of our T SDBASIC model might be, that they are not dis-
tinguished, and other chords with added dissonances also qualify for c(h) = 1. We
thus leave a proposal for more advanced model T SDCOMPLET E to implement the
complexity with smaller granularity.

For clarity, we provide more formal definition of the whole derivation process.
In the following we describe derivations similar to [5], but using harmonies instead
of words for sentential forms. The reader can verify, that the use of harmonies for
sentential forms is the same as using the words, because every harmony can be
written as a word, with the tones in the order of the chromatic scale, as we have
pointed out in the section 5.2. Another difference is, that the definition ot the rule
in our model in fact represents a big family of rules, from which any rule can be
used on sentential form.

Definition 7. Rule in T SDBASIC is a binary relation −−−−−−→
NAME(k,r)

on A∗ denoted by

its NAME and parametrized by the key k and root harmony r.

Definition 8. ADD is a rule defined as follows:

h−−−−−→
ADD(k,r)

g⇔ (h = t1, t2,tn) ∧ (g = t1, . . . ti, t, ti+1, . . . tn)

where (t ∈ k) ∧ (t /∈ r).

Definition 9. ALTER is a rule defined as follows:

h−−−−−−−→
ALT ER(k,r)

g⇔ (h = t1,ti, t, ti+1, . . . tn) ∧ (g = t1, . . . ti, talt , ti+1, . . . tn)

where (t ∈ k) ∧ (talt /∈ k) ∧ (talt is a semitone up or down from t) ∧ (t /∈ r).

17The term modification of the function is used in some music theory literature as a common
term for parallels and counter parallels of the function [25].

62

Figure 16: Graphical representation of harmony complexity

Definition 10.

PBASIC = (
⋃

k∈K

⋃
r∈R

ADD(k,r))∪ (
⋃

k∈K

⋃
r∈R

ALT ER(k,r))}

In the following, we simplify the writing of the rule – we write it without
the brackets containing root harmony and key, but we will assume that every rule
still remembers what is the key and what was the root harmony that the deriva-
tion started with. The important regulation of our model is, that when we obtain
the root harmony r from the roots function, we also obtain the respective key k,
and only the rules with parameters k, r can be used in the derivation. Other
derivation would use different r and k based on the other output of roots func-
tion, and so on, because in order to evaluate the harmonic complexity we need to
take all derivations into consideration. We formalize these regulations in the next
definition.

Definition 11. In a TSD distance model (T,P,roots,c, tc), we call derivation of a

63

harmony h with the parameters k and r and denote ∆(k,r,h) such finite sequence

of rules from P with parameters r and k, that starts with r and finishes with h, and

r ∈ πU(roots(h)) is the root harmony of h, and k ∈ πK(σU=r(roots(h))) is the

respective key. Harmony r is called the start sentential form of the derivation.

The length of the derivation is the number of rules used to derive h and is denoted

as |∆(k,r,h)|.

Consequence 2.

cBASIC(h) = min(
⋃

r∈πU (rootsBASIC(h)); k∈πK(σU=r(rootsBASIC(h)))

|∆(k,r,h)|)

So in conclusion a short quiz for clarification:

Example 2.
Question: What our model really does, while calculating cBASIC(h)?

Correct answer: It first calls the rootsBASIC(h) function that enumerates the tuples

in the form (key, function label, root harmony). It then performs all the deriva-

tions ∆(k,r,h) for every tuple from the table and outputs the smallest length of

derivation it encountered.

As we did also for the function roots, we provide a simple pseudocode for
cBASIC, that helps us analyze the computational time. The actual derivation is very
straightforward, because we know what we start with and what the derivation
should end up with, so we may deduct which tones need to be added (in pseu-
docode these tones are in the array tones). Some of these tones need to be altered
after adding because they do not belong to the key. We do not go into details, but
use following functions that do not increase overall time asymptotically:

• array getDifference(harmony h,harmony r) // gets the array of tones present

in h but not in r

• boolean isDiatonic(tone t) // returns true if the tone is diatonic in the key

and false if not and it needs to be altered

64

• tone getDiatonic(tone t) // returns the diatonic version of the tone

• harmony add(harmony s, tone t) // adds the tone t to the sentential form s

• harmony alter(harmony s, tone t) // alters the tone from the sentential form

s at the index i

and it so the only question is what order of adding tones we choose. However, we
can also notice (without proof) that with a given key and root harmony, the rules
ADD and ALT ER are designed that way, that each different derivation ∆(k,r,h) of
h yields the same complexity. For uniformity, we may choose to add tones in the
order of the chromatic scale.

int c(harmony h)

begin

int count = 0

// initialize min to maximal possible value

int min = 2|A|

// table is an array of tuples K × F × U
array table = roots(h)

foreach k in πK(table)

foreach r in πU (table)

begin

// tones is an array containing tones present in h but not in r

array tones = getDifference(h,r)

for i = 1 to (|h| - |r|)

begin

if (isDiatonic(tones[i])

begin

r = add(r,tones[i])

count++

end

else

begin

65

r = add(r,getDiatonic(tones[i])

count++

r = alter(r,getDiatonic(tones[i]))

count++

end

end

if (count < min)

min = count

end

return min

end

5.2.5 Transition complexity

Having described the complexity of a harmony we can move on to describe the
complexity of a transition. What we are trying to achieve is, find out how „far“ is
the musical piece from the basic T – S – D – T progression. What we could simply
do is sum all the harmony complexities in the piece – we would obtain a measure,
how far are the functions from basic harmony functions. That is ok, but we would
neglect seeing what happens in between the harmonies. It often happens, for ex-
ample, that two harmonies share the tone material, so the transition is smooth for
the listener, however both of the harmony complexities might be high because of
the shared tones.

For that purpose, in our complexity model we have transition complexity func-
tion (TC). TC is closely related to chord distance (CD), however, in general, CD is
not focusing on harmony functions. It would be nevertheless interesting to com-
pare our TC with some CD algorithms from [20].

Definition 12. Transition complexity tcmodel(h1,h2) evaluates the dynamic com-

plexity between harmonies h1, h2 using the specified model.

We first define a sample transition complexity, that we later modify to fit all of

66

our needs.

Definition 13. tcCOMMON(h1,h2) is the sum of the lengths of minimal derivations

of h1 and h2 from its nearest common ancestor in derivation. If nearest common

ancestor can not be found for h1, h2, but there exists a common key k in their roots

tables, tcCOMMON(h1,h2) = cBASIC(k,h1)+ cBASIC(k,h2).

Definition 14. For two harmonies, h1 and h2, the common ancestor in derivation
(CA(h1,h2)) is such sentential form, that appears in at least one derivation of both

harmonies h1, h2.

Definition 15. For two harmonies, h1 and h2, the nearest common ancestor in
derivation (NCA(h1,h2)) is such CA, for which the sum of the lengths of minimal

derivations from CA to h1 and from CA to h2 is minimal.

More easily stated, if we somehow (hypothetically) invert the rules ADD and
ALTER, and we want to get from h1 to h2 as fast as possible, sometimes the path
is not going from h1 all the way to the root harmony, then potentially change the
root harmony (which is for free) and then derive h2. If they have a non-trivial
CA (non-trivial = non root harmony), we can just invert the rules up til the CA
and then derive h2. If CA can not be found, but the harmonies h1, h2 share com-
mon key k, we encounter a transition between functions, so we go all the way to
the root of h1. Even though we really do not want to invert the rule to keep the
model simple, and the work is therefore hypothetical, we may, again, see that this
definition is pretty much the computational time complexity in our model. For a
graphical representation of transition complexity, see figure 17.

Example 3.
Derivation of ce f in C major: ce−−−→

ADD
ce f

Derivation of ce f] in C major: ce−−−→
ADD

ce f −−−−→
ALT ER

ce f]

NCA(ce f ,ce f]) in C major is ce f itself.

Length of minimal derivation of ce f starting from ce f : 0

67

Figure 17: Graphical representation of transition complexity amongst the same
function (in green) an in between two functions (in blue)

Length of minimal derivation of ce f] starting from ce f : 1

Therefore: tcCOMMON(ce f ,ce f]) = 0+1 = 1

Theorem 3. If r is a root harmony for h, then cBASIC(h) = tcCOMMON(r,h)

Proof. Trivially, the NCA of h and its root harmony r is r.

A pseudocode for tcCOMMON is shown below. The algorithm starts with find-
ing the common roots (tuples key, root harmony), and for these roots performs
searching for a common ancestor. The biggest problem seems to be, that to search
for a common ancestor properly, every possible derivation should be done for both
harmonies h1 and h2 and the sentanial forms compared, which would lead to trying
every order of added tones and the time complexity O(|h1|!|h2|!). Luckily, there
is an easy optimization: the tone material of h1 and h2 can be analyzed and the
set of common diatonic tones that would need to be added can be found in O(n2).

68

The order of adding can be then done by the chromatic scale. We also alter the
added tones, if they are altered in both harmonies. We show this finding of com-
mon rules as findCommonRules(harmony h1, harmony h2) function, returning an
array of rules. In the pseudocode we then access the type of the rule number i
(rules[i]["type"], either "ADD" or "ALTER", as well as the tone that needs to be
added or altered (rules[i]["tone"]. Once we perform the common rules, we have
found not only the CA for the given key and root harmony, but also the NCA for
the given key and root harmony, because the findCommonRules() function finds
all necessary tones and therefore the resulting sentential form is the largest pos-
sible. Then we only need to check all the different NCAs for the different tuples
(key, root harmony) and choose the one with the highest complexity.

Amongst other functions that do not increase the time complexity we also use
function intersection(array table1, array table2) returning an array containing

the intersection of two tables with tuples K × F × U.

int tc(harmony h1,harmony h2) {

begin

// common roots searching

// table1 and table2 are arrays of tuples K × F × U
table1 = roots(h1)

table2 = roots(h2)

table commonroots = intersection(table1,table2)

// nearest common ancestor searching

// we set the maxcomplexity to the minimum value possible

int maxcomplexity = -1

harmony nca

int complexity = 0

foreach k in πK(commonroots)

69

foreach r in πU (commonroots)

begin

array rules = findCommonRules()

for i = 1 to |rules|

if (rules[i]["type"] == "ADD")

begin

r = add(r,rules[i]["tone"])

complexity++

end

else

begin

r = add(r,getDiatonic(rules[i]["tone"]))

complexity++

r = alter(r,getDiatonic(rules[i]["tone"]))

complexity++

end

if (complexity > maxcomplexity)

nca = r

end

if (nca != null)

// if common ancestor found, we only sum

// the harmony complexities up to the ancester

int complexity1 = c(h1) - c(nca)

int complexity2 = c(h2) - c(nca)

return complexity1 + complexity2

else if πK(commonroots) != null)

// no common ancestor but common key found,

// so we sum the harmony complexities up to the root

int complexity1 = c(h1)

int complexity2 = c(h2)

return complexity1 + complexity2

end

While for harmony complexity the Theorems 1 and 2 with Consequence 1
were the most important, because they show that we have relevant results for ev-
ery harmony, in transition complexity the situation is different.

70

Theorem 4. Function tcCOMMON(h1,h2) does not return result for every tuple of

harmonies h1, h2, even when it comes to harmonies with |h|= 4.

Proof. These two harmonies do not have common keys: cc]dd] (possible keys:
C minor, F minor, G minor), c]dd]e (possible keys: C] minor or D[minor, F]

minor or G[minor, G] minor or A[minor)

This is a simple consequence of the fact, that it is not possible to perform di-
atonic modulation from every harmony to every other harmony. We are here in
a deadlock situation, because we propose, that TSD distance model should not
evaluate modulations (it indeed does not – T SDBASIC treats every transition as a
diatonic movement and if the modulation occurs, it wouldn’t notify it) and we pro-
pose different ways of evaluating modulation complexity in the following chapter.
However, T SDBASIC still should output how far is the transition from being „dif-
ficult“ (similarly to chord distances concept), so leaving the transition complexity
unevaluated would not be a good idea. However, remembering our constructing

approach in evaluating the complexity, we may still come up with some ideas,
where even for those tuples of harmonies we can find the way how to disassemble
one and construct the other one.

We propose 3 ways of completing the tcCOMMON definition for those tuples
of harmonies that do not have common keys, in order to achieve completeness as
well:

1. tcLAZY behaves like if the harmonies had common keys and simply return
cBASIC(h1) + cBASIC(h2).

2. tcCOMPLEX performs the roots function for both harmonies once again, but
uses a modified version of roots without the optimization to omit trivial root
harmonies. Then there is only O(|A|) tuples for which we still would not be
able to find common keys (usually single tones and clusters, proof can be

71

found simply through trying all types of harmonies starting from |h|= 1, for
|h|= 3 we would find out that they all have common keys). For these special
harmonies we have different options, but the best would be following the
same constructing algorithm as in the rest of the model – we allow an empty
root harmony. That would let us find a common root harmony even for these
tuples and the resulting model would have the attribute of completeness.
The transition then literally is disassembling one harmony and building the
other from „scratch“.

3. tcCHROMAT IC is based on the idea of chromatic modulation – even though
the common key can not be found (= diatonic modulation), by altering
several tones of h1, obtaining h′1, we may find the common keys for h′1
and h2. The constructing approach then advices: tcCHROMAT IC(h1,h2) =

tcCOMMON(h1,h′1)+ tcCOMMON(h′1,h2). The completeness of this approach
has to be treated individually, because even chromatic modulation is not
possible from every key, harmony tuple to every other key, harmony tuple.

Because we want to preserve the uniformity of the T SDBASIC model, we choose
the tcCOMPLEX as the supplementary function to tcCOMMON . From the computa-
tional perspective, finding more roots only adds more cycles in our loops, so the
complexity does not rise asymptotically.

Definition 16. tcBASIC(h1,h2) behaves as tcCOMMON in case that πR(rootsBASIC(h1))∩
πR(rootsBASIC(h2) 6= 0, and as tcCOMPLEX otherwise.

5.2.6 Comparison to Chomsky hierarchy

We quickly and informally compare the T SDBASIC model to the grammars of
Chomsky’s hierarchy, so we don’t leave any confusion in between them.

T SDBASIC model indeed works as a finite set of context-sensitive grammars,
however, with a coordinator (that should be touring-complete). If the coordinator,
has CSG for each key k and each root r, then by performing the function root(h),

72

it chooses those grammars that have their representation in root(h). Each such
grammar has the step from its start symbol to r, in its terminal alphabet it has
the tones of r and all the tones from A− k, the rest of the tones would be non-
terminal symbols. Then the non-terminal symbols have rules for changing into
respective augmented or diminished terminals (ALT ER rule), and the sentential
form is prepared with the „ADD“ non-terminals that can change into respective
tone non-terminals, depending on the contextual information. The coordinator
lets each grammar make a derivation of the harmony and then collect the resulting
lengths, and output the best one.

However, even though the coordinating „machinery“ makes T SDBASIC seem
like even much more complex system, we need to conclude with, that it of course
can not derive any non-regular harmony, because of the finite array we work with
(Z12, maximum of 212 harmonies). Even if we broaden the set of tones to all
audible pitches, we still get only finite number of pitches and therefore also the
harmonies. The grammars are therefore here only for the „feel“ of working with
a known model.

We may also conclude that the space of all musical pieces we analyze is regu-
lar, since it is a sequence of harmonies and we accept it by our program, stepping
from one to another, in a process equivalent to DFA. In the next section 5.3 we
give the reader an insight on how the transition function can look like, and show
a nice graph representation of our model.

5.3 Graph representation – Christmas tree model

A beautiful aspect of our model is, that it is finite – since the harmony universe
contains precisely 212 harmonies. So another beautiful aspect is, that the results
for tcBASIC can be pre-calculated, simply by running the function 212.(212−1)

2 times,
since tcBASIC(h1,h2) = tcBASIC(h2,h1). This yields to the creation of a graph that
represents our model.

73

However, the resulting graph with weighted edges would be complete, there-
fore huge and very impractical to store and create, even if we bound the number
of tones by a constant smaller than 12. Therefore we conclude our description of
T SDBASIC model with another graph representation, much more attainable. Snip-
pets of it we have already used in the previous section. Due to its meaningful
appearance we call it Christmas tree model.

Christmas tree model is a graph representation of T SDBASIC model for a spe-
cific key, CT M(k) = (V,E), where the root node represents family of harmonies
– all possible root harmonies for a given key, and all the other nodes represent
a single harmony. The edges represent either an rule ADD or ALTER and each
edge has a weight 1.

The basic form of Christmas tree model can be seen on figure 18a. The main
harmony functions listed on the top represent all the roots (T = possible tonic
roots, S = possible subdominant roots, D = possible dominant roots) and the tri-
angular clusters represent the graphs that are created by modifying the root, as
already seen e.g. on figure 17. As we have denoted earlier, the arrows in between
T , S, D are „zero“ edges, because they do not hold any transition complexity. By
definition, therefore, we should merge them into one node. However, the same
applies also for some nodes in the clusters – many harmonies can be derived from
multiple functions. For example the harmony ce f a can be derived in C major

from root harmony ce as a Tonic modification, but also from the root harmony
c f a which is a Subdominant. Hence we modify („decorate“) a tree with mark-
ings, that make clear where the nodes are merged into one, see figure 18b.

It is important to notice, that merging the nodes destroys the tree structure. In
this merging, of course, lies the functionality of our model (it is the sound of the
harmony that matters, plus we are interested in the distance from the whole T –
S – D progression and let the functions rename dynamically). But because it also
destroys the Christmas tree representation, we prefer using the above figures as

74

(a) (b)

Figure 18: Christmas tree model in its basic form (a); and including zero edges
(b)

the visual representation.

The next theorem summarizes what the merging of the nodes really does in
our model.

Theorem 5. By merging two nodes (combining them into one and deleting the

created loop from the node to itself) in the graph containing only edges with weight

1, we again obtain the graph containing only the edges with weight 1.

Proof. Since both of the nodes did have only the neighbours in a distance 1, and
now they are forming one node, their neighbours combine together and are again
in a weighted distance 1 from the new node.

Although we loose the possibility to use some tree searching algorithms, we
are given a solid graph with equal edges where each harmony is represented by
one node with the exception of root nodes. The next section explains a little bit
more the significance of the rood nodes.

75

5.3.1 Christmas forest

Spreading the idea towards all of the keys, we get the graph that we may call
Christmas forest, see figure 19. Starting from root nodes of 24 major and minor
keys, The edges intertwine together heavily towards the more complex harmonies,
having many common nodes (on figure coloured) – in fact, the pivot chords of
possible modulations. Note that, we did not mark the possibility of traversing
directly between the basic harmony functions which is possible – between the
keys that are in the relationship of perfect fifth (from tonic C major directly to
tonic of G major since it is the zero edge in C major from T to D). We did it
on purpose – imagining that there are zero edges as well between the colorful
triangles from the figure and that we can therefore „travel “on the whole circle of
fifths for free leads to a misunderstanding of the concept. The root nodes form
one node, but still contain multiple harmonies in which we can not be at one time.
We can explain it the best by the following game example. We suggest the reader
to follow it along with looking at the figure 19:

Example 4. Super Mario is running through the Christmas forest, searching for

his blond princess. While he searches, it is difficult (complex) to move and he

loses one point for every edge he travels over (optionally the computer-fashioned

music also plays the harmonies along). Sometimes he gets tired and looks for the

triangular colorful house to recover. Often he finds himself quite near one of them.

When in the house, it is not difficult (complex) to move anymore, but it still takes

some time. The triangular house has 3 main compartments and each of them

a room for a giant (three tones), 2 human sized (two tones) and one lilliputian

person (one tone, naturally, Super Mario fits to all of them). The only thing he

notices is the light flashing in the room when he is in, while in the other rooms

there is dark. Super Mario is interested by that flashing, and he finds a hidden

teleport in the room, and if he chooses, suddenly he can reappear in a house with

different color! Not to mention, that the teleporting does not take the time at all.

Later he realizes, that every time he enters the house and the room in the house,

particular other rooms in other houses (in the distance of the fifth) flash the light

76

Figure 19: Christmas forest

too – a teleport being activated.

Therefore, we need to differentiate, that even though we can get to the other
root harmonies without any complexity (teleport), we can do it in one step only if
these root harmonies are in Tonic, Subdominant or Dominant relation to the other
root harmony. To get to some other root harmony we need another step. This also
illustrates the point, that we indeed do not track modulations and it should be done
separately.

5.4 On the computational complexity of the model

The importance of the Christmas tree model lies in the theoretical possibility of
implementing the T SDBASIC model by pre-calculating the graph prior to analysis.
Such pre-calculation would still contain all harmonies from U , therefore bounding
the total number of harmonies might be a good idea, for example by bounding the
maximal number of tones. However, the creation is quite fast – we can inductively
generate all the harmonies starting from all the roots and using the rules ADD

77

and ALT ER and remember only the trivial edges, as opposed from the complete
graph at the beginning. Then, having the two harmonies h1, h2, the speed of
algorithm would only depend on the graph algorithms. However, we can also
use the algorithms built around the pseudocodes provided in previous chapter and
not on the graph creation and search. In this section, we consider both ways of
implementation and evaluate their computational complexity.

5.4.1 Time complexity of the main functions

Let n be the maximal size of the harmonies used (n = 12 if not set differently),
k the number of keys used (k = 24), f the number of functions within k (f = 3).
From the analysis of the pseudocode we get:

• rootsBASIC(h) ∈ O(k f n)

• cBASIC(h) ∈ O(k2 f n); if we work with the search of the root database, we
use the upper bound for the keys k and the upper bound for the roots k f

• tcBASIC(h1,h2) ∈ O(k2 f n2)

More optimizations are possible, mostly by caching the expensive look-ups in
the database for keys and functions, but since these are constant, then quadratic
complexity from the length of harmony is not bad for the analysis. If the per-
formance of the algorithm would be slow, we may lower the maximal size of
harmonies, thus lowering the quadratic element.

If we choose the graph traversal algorithms, the best option is to use breadth-
first search (BFS), since the costs of the edges are all equal to 1, resulting in
complexity O(2n) because the amount of vertices is 2n. Even though exponential,
comparing the pseudocode approach (242 ∗ 3 ∗ 122 = 248832) and graph search
(212 = 4096) yields to the usage of the graph algorithms.

78

5.5 Evaluating the complexity of the musical piece

Finally, by using the T SDBASIC model on the chord sequence {Ci}i≤l (which is
the sequence of harmonies), we get the final harmonic complexity of the piece.
There are many options on how to do it, moreover we have transition complexity

(as a sequence {ti}i<l; ti = tcBASIC(Ci,Ci+1)), but also harmony complexity (as a
sequence {hi}i≤l;hi = cBASIC(Ci)) that we can both use.

Also, we have mentioned earlier the analogy with computational time com-
plexity – and in fact, our model implements this idea literally, tc outputs exactly
the assembling or disassembling time, the work needed to do to change one har-
mony to another. We remain true to this analogy too.

Some data might help first: The output of one call of tc is in < 0,44 > in
theoretical perspective, because starting from 0 tones, we can add 12 tones, alter
5 of them and add 5 new tones harmony complexity, times 2 for upper bound of
transition complexity. Normally, the values are somewhere between 0 and 10, 0
- 5 we might encounter commonly in classical and popular music, 10 is already
for chords with 3 or more added dissonances and clusters (note that, this is taken
from notation, these values may change based on the threshold we use and for the
audio are usually higher).

It comes naturally, that we should be interested in some absolute numbers. We
provide the following definition.

Definition 17. For musical piece M, sequence of its transition complexities {ti}i≤l

and harmony complexities {hi}i≤l , we define the following complexity measures:

• Average transition complexity: ATCmodel(M) =

l−1
∑

i=0
ti

l−1

• Maximal transition complexity: MTCmodel(M) = max(ti)

• Average harmony complexity: AHCmodel(M) =

l
∑

i=0
hi

l

79

• Maximal harmony complexity: MHCmodel(M) = max(hi)

The computational time complexity might come in handy if we want to obtain
a relative measure. We can indeed calculate the assembling time based on the
input – which is for one transition the first harmony of the transition. As in the
complexity theory, we simply compare the length of the input to the final time of
execution. This idea is indeed great to differentiate those musical pieces that con-
tain one or two voices from the pieces with more full harmonies – if the analysis
not based on input length outputs that they have the same complexity, the listener
can perceive it differently and find the first one very complex, because the disso-
nances were more audible or disturbing.

Unluckily, there are some differences. Even though it works in the way that
– if we only perform 1 rule no matter how long the harmony is, we get constant
complexity; if we always perform 1 rule with every tone, we get linear complexity
– however, we may also get zero complexity and we can never get quadratic or
higher complexity. In other words, the fact, how many times we perform a rule on
the tone doesn’t depend on the input at all, it is either 0, 1 or 2.

Nevertheless, we use this idea to obtain one more measure:

Definition 18. For musical piece M, sequence of its transition complexities {ti}
and sequence of its harmonies {Ci}, we define relative transition complexity:

RTCmodel(M) =

l−1
∑

i=0
ti

l−1
∑

i=0
|Ci|

where |Ci| is the size of i-th harmony from the sequence {Ci}.

80

5.5.1 Time complexity of the music analysis

Secondly we would be interested in the time complexity of analysis of the mu-
sical piece. Although the concrete implementations might differ, we base our
estimations on the figures of Harmanal system from chapter 3. We do not take
the feature extractions algorithms into our analysis, nor the smoothing 1 since
smoothing 1 depends on the outputs of the Vamp plugins. We start from obtaining
beat-synchronized chromas. Let l be the number of beats from the audio and k, f ,
n are used as defined in the section 5.4.1.

• We do O(ln) operations to get the chord candidates, since we only compare
the chroma features to the threshold

• We do O(l) algorithms for smoothing 2, thus obtaining the chord sequence
{Ci}, with the length bounded by l

• We then do l times calculation of transition complexity, resulting in com-
plexity O(k2 f n2l) or O(2nl) depending on which implementation we choose
for the model

• Finally we calculate the harmonic complexity of the piece in O(l). We also
in O(l) revise the list of potential labels for the harmonies using convolution
method

Since n, k, f can be considered constants, our complexity analysis is therefore
O(l).

81

6 Harmanal application

In this section we provide the implementation details and a quick guide through
the Harmanal application. The requirements for the application can be seen in
section 1.3 and the outlining diagrams of the system in section 4.1.

6.1 Technical information

Harmanal, version 1.0, May 2013

type Java application
platforms Linux, Windows, Mac OS, Java applet
licence GNU GPL
dependencies JRE 6 or higher (http://java.com/en/download/)

NNLS Chroma and Chordino Vamp plugin 0.2.1 or higher
(http://isophonics.net/nnls-chroma/)
QM Vamp plugin set 1.7 or higher (http://vamp-plugins.org/)

documentation http://www.riesky.sk/~laco/web/harmanal/documentation/

download http://www.riesky.sk/~laco/web/harmanal/download/

system components Chordanal 1.2;
NNLS Chroma and Chordino plugin 0.2.1;
Bar and Beat tracker plugin 1.7;
JVamp 1.2;
JNA 3.5.2

Table 6: Harmanal - technical information

6.2 Overview

Harmanal application lets the user do harmony analysis - chord transcription from
audio, chordal analysis from MIDI input devices and harmonic complexity evalu-
ation – all in one place.

82

It is divided into 2 tabbed windows:

• Chord transition tool

– Input: User chooses MIDI input device or text fields to input two har-
monies. Common virtual keyboard applications are supported too.

– Outputs: Several outputs are provided

∗ Names of the harmonies

∗ Relative structures

∗ Keys

∗ Functions

∗ Root harmonies (as defined in section 5.2.2)

∗ Harmony complexities (as defined in section 5.2.3)

∗ Transition details

∗ Transition complexity (as defined in section 5.2.5)

• Audio analysis tool

– Input: User chooses a WAV file for analysis

– Outputs:

∗ ATC - Average Transition Complexity (as defined in section 5.5)

∗ MTC - Maximal Transition Complexity (as defined in section 5.5)

∗ AHC - Average Harmony Complexity (as defined in section 5.5)

∗ MHC - Maximal Harmony Complexity (as defined in section 5.5)

∗ RTC - Relative Transition Complexity (as defined in section 5.5)

∗ Chroma features (txt file)

∗ Chord sequence (txt file)

∗ Transition complexities (txt file)

Version 1.0 of the application is included in this work. For the latest version,
please visit: http://www.riesky.sk/~laco/web/harmanal/

83

6.3 Implementation details

Harmanal application takes full advantage of Java object oriented environment,
decomposed into comprehensible subsystems, and flexible for future extensions.

The main system components are: Harmanal, Chordanal, Application GUI,
Database, MidiHandler, NNLSPlugin, BeatTrackerPlugin, Testing environ-
ment and a comprehensive system of music classes coming with Chordanal, in-
troduced in [13].

6.3.1 Harmanal static class

Harmanal is a static class in Harmanal system responsible for all the tonal har-
mony and harmonic complexity related events: grammar derivation, key finding,

root harmonies finding, complexity evaluation.

In version 1.0 Harmanal static class is implemented to make look-ups to the
Database for key-related information and to simulate grammar derivation each
time when asked for transition complexity. As proposed in computational com-
plexity analysis in section 5.4.1, in future versions a Christmas tree model gener-
ation and graph search algorithms can be introduced to provide faster, even real-
time, outputs.

6.3.2 Chordanal static class

Chordanal is a static class in Harmanal system responsible for all the naming and
structure analysis related events: factory methods to create music entities, naming

methods, abbreviating methods, parsing methods, music entities analysis

Chordanal was first introduced in 2010 in [13]. Its powerful naming and pars-
ing capabilities for chords used for Ear training were re-used in this work. Some
advanced terms might be still missing in 1.2 due to the translation from Slovak

84

language. Chordanal’s strength lies in the look-ups to the Database full of data
from music theory, that it is able to recreate on every run of the program.

Along with Chordanal static class, an object oriented framework for music
entities have been introduced. Following classes are contained in version 1.2:
Tone, Harmony, Key

6.3.3 Application GUI

For GUI documentation, visit:
http://www.riesky.sk/~laco/web/harmanal/documentation

6.3.4 Other components

MidiHandler is a class responsible for any MIDI related events: thanks to Java
Sound API it is able to catch MIDI events as well as send MIDI signals to play
tones.
NNLSPlugin developed by Mauch [14] and BeatTrackerPlugin developed by
Stark and Davies [22] are Vamp plugins developed under GNU GPL licence that
were integrated into Harmanal using JVamp wrappers for native C++ Vamp plu-
gins and JNA library. Provided that the user installs the plugins on his machine,
JRE is able to load the respective libraries and Harmanal can run cross-platform.

6.4 Screenshots of usage

When user runs the Harmanal application, a tabbed window with Chord transition

tool is opened so he can start his queries right away. The usage is intuitive – from
up to down, first the user selects from the available MIDI devices. If everything
works fine, next the user sees that it is possible either to press the „Capture“ button
or to use a text field. When the capture button is on, all played MIDI signals are
being processed and as soon as the button is off, the user sees the analyzed input
in most of the text fields. As soon as he inputs the second harmony, the rest of

85

the text fields containing the transition information are filled out. A nice feature
is, that if the user is not happy with the input, he or she may modify or reassign
the input using textfield – the easiest way is using the relative text field, where he
or she simply writes e.g. C E G to get the C major chord. The screenshot of the
usage of Chord transition tool is on figure 20.

When the user wants to analyze audio files, he or she selects the other tab with
Audio analysis tool label. Again, the usage is very straightforward: from up to
down. Importantly, the user must first hit the button „Load plugins“– it usually
takes around 1-2 seconds to load the plugins. The user is notified if there was a
problem in loading the plugins. Then the user inputs the URL of the WAV he or
she wants to analyze, optionally changes the output txt files and hits the button
„Analyze“. Normally, it takes around 10-15 seconds for an analysis of 3 minute
WAV file, 44100 Hz, 16bit samples. When done, the user reviews the filled text
fields and may open the files for further analysis information. The screenshot of
Audio analysis tool is on figure 21.

86

Figure 20: Harmanal application - Chord transition tool

Figure 21: Harmanal application - Audio analysis tool

87

7 Results of analysis

Harmanal system was tested on the musical pieces from:

• Top 5 Best-selling Rock bands18: The Beatles, Led Zeppelin, AC/DC, The

Rolling Stones, Queen

• Top 3 Best-selling Pop artists: Elvis Presley, Michael Jackson, Madonna,
and leaders of Pop music charts in 2013: Rihanna, Bruno Mars

• Top Jazz artist19 Theresa Andersson, other Jazz artists: Hiromi, The Jazz

Invaders

• Significant composers of classical music from different periods

– Rennaisance: G. Allegri, G.P. da Palestrina

– Baroque: J.S. Bach, G.F. Handel, T.G.Albinoni

– Classicism: W.A. Mozart, L.v. Beethoven, L. Boccherini

– Romanticism: P.I. Tchaikovsky, H. Berlioz, E.H. Grieg

– 20th century: G. Gerschwin, I. Stravinsky, A. Honneger

• Other artists from different genres (Rap, Folk music, etc.)

For each artist an average of 5 titles were analysed. The aim was:

1. To compare the genres and periods against each other

2. To compare the artists amongst the genres

3. To compare the songs from the same artists and find any significant devia-
tions

Meanwhile, the purpose of our experiments was mainly:

18Source: http://www.billboard.com
19Source: http://www.artistsdirect.com

88

• To see whether the our system behaves in the similar way that the skilled
musician would analyze and see the usefulness towards recommender sys-
tems

• To gather feedback based on the results, for further improvements

As a bonus, several challenges were proposed (Queen vs Classical music,
Rock bands competition, etc.).

For the following analysis, we have used a version of Harmanal system opti-
mized for good performance and more precise results. Most importantly, Chordino
plugin version 0.2.1 by Mauch [14] was used instead of Bar and Beat tracker plu-
gin for finding the locations of harmony changes. Using Chordino plugin already
set up for finding where the harmony significantly changes and averaging the chro-
mas according to given locations yielded better results than averaging the chromas
for every beat, because it helps to locate only the significant changes. Chordino
plugin is a GNU GPL licenced Vamp plugin that comes in a package with NNLS
Chroma plugin20. Amongst other optimization we have chosen to bound the max-

imal size of harmonies and set the correct threshold21, as defined in sections 4.1.

20http://isophonics.net/nnls-chroma/
21The Harmanal system was calibrated with the threshold value T of 0.05, so only chroma

features above the threshold value are considered. We have set the maximal size of harmonies n
to 4 to speed up the analysis. If the model can not find the diatonic transition between the two
harmonies, we have used simplified version of the tcCOMPLEX function, which only assigns the
maximal transition complexity of 7 to these harmonies, since according to previous experiments
7 was the highest transition complexity possible due to our calibration. For more information on
transition complexity, see section 5.2.5.

89

7.1 Comparing genres and historical periods

We first focus on a basic task – comparing the different genres of music, and for
classical music, the different historical periods. The results can be seen in tables
7 and 8 and on figure 22. Since Average transition complexity (see section 5.5)
provided the best results from all the proposed values, we chose to include this
value into our final visualizations.

Jazz Rock Pop

ATC 3.148 2.249 1.981
MTC 7 5.842 5.636

Table 7: Comparing music genres

20th century Romanticism Classicism Baroque Rennaisance

ATC 3.512 2.713 2.195 2.012 1.424
MTC 7 7 6.667 6 7

Table 8: Comparing historical periods in classical music

(a) (b)

Figure 22: Chart for comparing music genres (a) and historical periods in classical
music (b)

90

7.2 Comparing artists and titles

Next we have selected the Rock genre to see if there are differences in harmonic
complexity in between the artists. The results can be seen in table 9 and on figure
23.

Queen The Beatles The Rolling Stones Led Zeppelin AC/DC

ATC 2.469 2.131 2.094 2.087 1.915
MTC 6.833 4.833 5 5.667 5

Table 9: Comparing rock bands

Figure 23: Chart for comparing rock bands

Another aspect we were interested in was whether some songs from a certain
artist deviates from their usual production. The results for a sample of titles from
Queen and The Beatles can be seen in tables on the figure 24 and in chart on figure
25

91

(a)

Title ATC

We Are The Champions 2
Don’t Stop Me Now 2.352
Bicycle Race 2.882
Radio Ga Ga 1.604
Bohemian Rhapsody 2.576
Crazy Little Thing Called Love 3.4

(b)

Title ATC

A Hard Day’s Night 2.276
Hey Jude 1.414
Michelle 3
Twist And Shout 2.204
Yellow Submarine 2.554
Let It Be 1.336

Figure 24: Analysis of Queen (a) and The Beatles (b) songs

Figure 25: Song comparison of Queen and The Beatles songs

92

7.3 Other sample results

We provide a table of other sample results for illustration, sort by the music genres.

artist: Queen
title: Bicycle Race

ATC: 2.882
AHC: 1.036
MTC: 7
MHC: 3
RTC: 0.758

artist: The Beatles
title: A Hard Day’s Night

ATC: 2.276
AHC: 1.013
MTC: 5
MHC: 3
RTC: 0.588

artist: AC/DC
title: Highway To Hell

ATC: 1.915
AHC: 1.000
MTC: 5
MHC: 2
RTC: 0.492

Figure 26: Sample results for the Rock music

artist: Michael Jackson
title: Billie Jean

ATC: 1.812
AHC: 1.117
MTC: 4
MHC: 2
RTC: 0.452

artist: Bruno Mars
title: Just The Way You Are

ATC: 1.642
AHC: 1.019
MTC: 4
MHC: 2
RTC: 0.426

artist: Jimi Jamison
title: Baywatch Theme (I’ll Be Ready)

ATC: 1.543
AHC: 0.914
MTC: 4
MHC: 2
RTC: 0.401

Figure 27: Sample results for the Pop music

artist: Hiromi
title: 010101 (Binary System)

ATC: 4.242
AHC: 0.801
MTC: 7
MHC: 3
RTC: 1.35

artist: The Jazz Invaders
title: Licks And Brains

ATC: 2.622
AHC: 1.304
MTC: 7
MHC: 3
RTC: 0.666

artist: Theresa Andersson
title: Birds Fly Away

ATC: 2.581
AHC: 1.279
MTC: 7
MHC: 3
RTC: 0.653

Figure 28: Sample results for the Jazz music

artist: Arthur Honneger
title: Pacific 231

ATC: 4.346
AHC: 1.684
MTC: 7
MHC: 3
RTC: 1.096

artist: Ludvig van Beethoven
title: 5th Symphony: 1.Allegro con brio

ATC: 2.633
AHC: 0.953
MTC: 7
MHC: 3
RTC: 0.716

artist: Gregorio Allegri
title: Miserere Mei Deus

ATC: 1.462
AHC: 0.418
MTC: 7
MHC: 2
RTC: 0.44

Figure 29: Sample results for the Classical music

93

7.4 Results summary

The results of our analysis have proved that our system is useful tool for music
analysis. We illustrate this by the following summary, which includes also other
results not present in the previous tables. First of all, we can see that the the
complexity values do not deviate from an expected analysis made by the skilled
musician in these points:

• Jazz is the most complex genre, followed by rock and pop genres.

• 20th century classical music and Music Romanticism lead the charts in clas-
sical music analysis.

• The leader of the rock artist complexity chart, music band Queen is famous
for their choir passages and interesting harmonies

• As far as concrete songs, high ratings of Queen songs Bicycle Race and Bo-

hemian Rhapsody, or Michelle by The Beatles can be understood by anyone
who knows how harmonies change in these songs. Even more understand-
able are the absolute complexity leaders:

– Hiromi with her piece Binary System, a jazz piece, that was the closest
to computer music from what we’ve had (ATC = 4.242) in our analy-
sis.

– In classical music it is Arthur Honneger with his piece Pacific 231

(ATC = 4.346).

As we have mentioned earlier, the ATC values proved to be the most useful,
with values ranging from 0 to 5. Even though the range is still small, one must
understand that it is the computational time of constructing the harmonies which
is bounded, depending on what maximal size of harmonies we use. MTC has
provided us with results stating that there has been at least one very complex
transition in the piece (maximum of MTC = 7 was used by our model). However,

94

such result might be misleading, because sometimes this can happen due to the
unprecise tuning of the WAV (probably the case also in analysis of Rennaisance
pieces).

During our analysis we have also found other results, that prove that our sys-
tem does what it is supposed to do, but we might not expect them from the begin-
ning:

• High rating of Jazz is caused by using many chromatic movements. The
TSD distance model of course has trouble finding diatonic solutions to
these movements and needs to output high transition complexities. Such be-
haviour can be also clearly seen amongst the Queen titles, where the highest
score is scored by the song Crazy Little Thing Called Love which has very
close to Jazz music.

• Although modern popular music is scoring ATC values almost always be-
low 2, we can conclude that Rap music can have on the other hand very
high values (Eminem: Lose Yourself ; ATC = 3.032). This is caused by the
spoken words being in the dissonance with the music accompaniment. This
behaviour can be also seen e.g. on high ratings of Yellow Submarine by The
Beatles, which has passages in which spoken word may be heard.

• The same applies for songs with very colorful instrumentation, ornamental
singing, or even Pop music using where synthetic or electronic instruments
deviate from the standard pitch classes, e.g. by continuously changing the
frequency. An example of a song where all of these things apply along
with multi-voice singing and rap is Black Eyed Peas: Let’s Get It Started;
ATC = 3.642.

Even the results that were not expected show usefulness of our model. Dif-
ferent aspects of music like intrumentation, choirs, and using different harmonies
form a music style of an artist and our model can be capable of detecting such
style. One example, which should be however proved by more experiments is,

95

that another rock band, Pink Floyd has a style that would rate even higher than
Queen in our analysis (Goodbye Blue Sky; ATC = 2.778).

Interesting results were shown also by analysis searching for title that deviates
from the usual production of the rock bands:

• The title Radio Ga Ga by Queen is known by more popular character than
the rest of Queen songs, and therefore resulting lower complexity.

• The title Let It Be by The Beatles has quite simple chord progression, which
can be played by amateurs on guitars, and was also found by our application.
to have lower complexity

Last but not the least, we have also shown an interesting the way how to com-
pare the musical pieces from different genre. One example is, that on the figure
24 for rock songs of Queen and The Beatles, the songs that are in the upper part of
the blue rectangle would harmonically fall to Romanticism in classical music. On
the other hand, the lower part of the blue rectangle has results similar to Classicim
in classical music.

All of these results show that harmonic complexity can be used effectively
for Music Information Retrieval tasks. Moreover, the results guide us to further
improvements on TSD distance models, but not only there – future works can
be done on describing other complexities complementary to TSD distance, With
these complexities we could gather more precise results, and we discuss them in
section 8 dedicated to future travels.

96

8 Future works

In this section we provide an overview on what other harmonic complexities are
there other than TSD distance complexity, to give as complete picture as possible
and give the ideas for future works.

8.1 Five harmonic complexities

There are different views on complexity when it comes to harmony, even from the
theoretical perspective (not talking about music perception or machine learning).
It can be either how simple or complex transitions are being used (chord distance
concept, as we have described in the chapter 5, it is close to the computational
complexity from complexity theory). It can be how often the repetitions are being
used — refrain, verses, etc. (space complexity). Or, how fast the transitions ap-
pear (speed of transitions, this resembles computational time complexity too).

Then in transitions, we might differentiate, whether any modulations were
used in the piece, how often and between what keys, because majority of chord
distances would not take it into consideration. And there are also another 2 ways
how to look at the transitions between the harmonies — instead of evaluating the
simplicity or complexity of the transition, we can also find how far they are from
tonic (tonal tension) or, how smooth are the transitions (voice leading concept).

To summarize – five complexities in music harmony:

1. chord distances and tonal tension

2. voice leading

3. modulations

4. repetitions

5. transition speed

97

In this thesis, we have provided the proposal for the first one, that takes both
chord distance and T – S – D rules into account, We shortly summarize some pro-
posals for the other ones as well.

These complexities may be better perceived as categories – we put chord dis-
tances and tonal tension together, because they both take care of the transitions
between the chords, only evaluate them from the different perspective. Tonal
tension uses rather cumulative approach for the musical piece, whereas chord dis-
tance suffices with 2 chords. Our approach from chapter 5 combined these two
approaches together. We can say that in general, complexity algorithms can either
focus on the full category, or on some concrete subcategories.

Some of the algorithms may combine multiple categories into one, for exam-
ple Lerdahl’s chord distance is taking also the key relationships into account [9].
However, to provide more verbose and accurate output, we propose to leave the
categories separate. All five categories work on different levels. For example, 1st

and 2nd and 3rd would be from different levels of tonal pitch space: 1st is how
triads change within the key, 3rd studies relationships between the keys, and 2nd

studies the tones within the triad. So we propose that the resulting harmonic com-
plexity for a musical piece would then use five different scores. We consider it
a good practice, as opposed to obtaining only one number/score – nobody would
understand how we calculated that number. Of course, some heuristics can be
used to calculate the total score as well.

8.1.1 Voice leading complexity

This is a proposal for calculating the harmonic complexity from a different per-
spective – voice leading. Both tonal harmony and theory of counterpoint rules
can, and should, be used. The idea that may be thought of for future works is,
whether a LEADING rule can be safely introduced, in the same fashion that ADD

and ALTER rules. Such LEADING rule should however, more like generative

98

system (g-systems) rather than grammars, be used on every tone of the harmony.
Instead of the complexity of the overall transition we would get the complexity of
the parallel voice leading.

Different possibilities occur: Moving semitone up or down (leading tone) may
be considered as not complex, whole tone can be considered more complex. Per-
haps it should be distinguished whether the movement was within the key, or
outside the key, or the complex rules of tonal harmony can aid us in deciding what
should happen.

8.1.2 Complexity of modulations

There have been several attempts on describing the modulations and we believe
that soon enough also some methods arise to compare all of types of modula-
tions and evaluate their complexity. The best practice seems to be modulations
evaluation based on number of steps on the circle of fifths.

8.1.3 Space complexity

As an important note on our TSD distance complexity, we provide an example: A
song or classical piece that would use 3, very harmonically interesting transitions,
may appear very interesting at the beginning. But as soon as it would rotate these
3 chords all the way to the end, we would loose interest quickly. Space complex-
ity needs to be therefore considered in the final evaluation of complexities. We
propose using pattern matching methods, to find all similar regions e.g. through
self-similarity matrices, or more easily, using the extracted chord sequence. Then
the resulting complexity is the total length of transitions that are not repeated any-
where in the piece. This approach is similar to Knuth [7].

8.1.4 Transition speed

Transition speed simply denotes how many transitions per unit of time are used.
Simply stated, however this needs more sophisticated algorithm to find the chord

99

boundaries, because approximating transitions on beats would lead to imprecise
results. We refer to [16] for more information on chord segmentation.

100

9 Conclusion

In this work we have presented a new model for evaluating harmonic complexity
of musical pieces. Our work was focusing on chord transition complexity, which
is amongst the five proposed complexities from section 8.1 one most important
and studied. We have formally and programatically described the grammar-based
model and we have given proofs of its completeness. We have provided the graph
analogy and visualization called Christmas tree model to better understand the
model and optimize its performance. Since harmonic complexity is a new term,
we have also defined the measures for the musical piece that can be researched.
Lastly we have analyzed the asymptotic computational complexity.

We have also provided three added values – one is an written overview of the
interesting world of music theory and music information retrieval, from where it
all begins up to current MIR research, comprehensible even for a non-musician,
to encourage young researchers that might be interested in this field. Second is
implementing a multi-platform application Harmanal capable of complexity anal-
ysis. And the third is the set of experiments we have done on more than 70 songs
to show the comparison of different genres and artists. The aim was not only to
provide interesting information, but also to help our model become helpful for
future, for even more practical usage.

For future works, much can be done in specifying the other proposed com-
plexities, or improving our model. Moreover, there still is the motivation we have
described in the introduction – implementing a recommender system based on
music complexity.

Lot of other models around harmonic complexity have been proposed and
studied, such as chord distance or tonal tension, but the term music complexity
was mostly omitted in formal conversations, perhaps because of the subjectivity
it sometimes may associate. But from theoretical perspective – checking if some

101

music obeys the rules of theory or not is quite simple and very objective task,
provided that we build it on established rules. We hope that by showing another
point of view we have moved the thinking a little step further and, perhaps, induce
some new ideas in someone else’s mind.

102

Bibliography

[1] BERGSTROM, T., KARAHALIOS, K., AND HART, J. C. Isochords: Visual-
izing Structure in Music. Graphics Interface 2007 (2007).

[2] COHN, R. Introduction to Neo-Riemannian Theory: A Survey and a Histor-
ical Perspective. Journal of Music Theory 42/2 (1998).

[3] DE HAAS, W. B., MAGALHÃES, J. P., AND WIERING, F. Improving Audio
Chord Transcription by Exploiting Harmonic and Metric Knowledge. ISMIR

2012 (2012).

[4] FUJISHIMA, T. Realtime Chord Recognition of Musical Sound: A Sys-
tem Using Common Lisp Music. International Computer Music Conference

1999 (1999).

[5] HOPCROFT, J. E., MOTWANI, R., AND ULLMAN, J. D. Introduction to Au-

tomata Theory, Languages, and Computation, second ed. Addison-Wesley,
Boston, 2001.

[6] JOHANSSON, K. The Harmonic Language of The Beatles. STM-Online 2

(1999).

[7] KNUTH, D. E. The Complexity of Songs. Communications of the ACM

28/3 (1984).

[8] LABORECKÝ, J. Music Terminological Dictionary. SPN, Bratislava, 2000.

[9] LERDAHL, F. Tonal Pitch Space. Oxford University Press, Oxford, 2001.

[10] LERDAHL, F., AND KRUMHANSL, C. L. Modeling Tonal Tension. Music

Perception: An Interdisciplinary Journal 24/4 (2007).

[11] LEWIN, D. A Formal Theory of Generalized Tonal Functions. Journal of

Music Theory 26/1 (1982).

103

[12] LEWIN, D. Generalized Musical Intervals and Transformations. Yale Uni-
versity Press, New Haven, 1987.

[13] MARŠÍK, L. Ear training application. Bachelor’s thesis, Faculty of Mathe-
matics, Physics and Informatics, Comenius University in Bratislava, 2010.

[14] MAUCH, M., AND DIXON, S. Approximate Note Transcription for the
Improved Identification of Difficult Chords. ISMIR 2010 (2010).

[15] MÓŽI, A. Study Materials on Music History. Academy of Performing Arts,
Bratislava, 1994.

[16] PARDO, B., AND BIRMINGHAM, W. P. The Chordal Analysis of Tonal
Music. Computer Music Journal 26/2 (2002).

[17] POSPÍŠIL, J. Music Theory for Music Conservatories, vol. 1. SPN,
Bratislava, 1985.

[18] RIEMANN, H. Dictionary of Music. Augener Ltd., London, 1896.

[19] RIEMANN, H. Harmony Simplified. Augener Ltd., London, 1896.

[20] ROCHER, T., ROBINE, M., HANNA, P., AND DESAINTE-CATHERINE, M.
A Survey of Chord Distances With Comparison For Chord Analysis. ICMC

2010 (2010).

[21] SCHÖNBERG, A. Theory of Harmony. University of California Press, Los
Angeles, 1922.

[22] STARK, A. M., DAVIS, M. E. P., AND PLUMBLEY, M. D. Real-Time
Beat-Synchronous Analysis of Musical Audio. DAFx 2009 (2009).

[23] VOLEK, J. The Structure and Figures of Music. Panton, Prague, 1988.

[24] ZANETTE, D. H. Music, Complexity, Information. The Computing Re-

search Repository abs/0807.0565 (2008).

104

[25] ZIKA, P., AND KOŘÍNEK, M. Tonal Harmony for 1st-3rd Class of Music

Conservatory. SPN, Bratislava, 1990.

105

