UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

Fotometrické stereo pre blízke objekty

Diplomová práca

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

Fotometrické stereo pre blízke objekty

Diplomová práca

Študijný program:InformatikaŠtudijný odbor:2508 InformatikaŠkoliace pracovisko:Katedra aplikovanej nformatikyŠkoliteľ:RNDr. Zuzana Berger Haladová, PhD.Konzultant:RNDr. Viliam Dillinger

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko Študijný program: Študijný odbor: Typ záverečnej prá Jazyk záverečnej p Sekundárny jazyk:	študenta:Bc. Cinform denna inform denna inform diploce:diplo slove anglio	Bc. Osama Hassanein informatika (Jednoodborové štúdium, magisterský II. st., denná forma) informatika diplomová slovenský anglický				
Názov: Foto Phot	metrické stereo pr tometric stereo for	e blízke objekty near objects				
Ciel': Nav obje - v so v - uva - fur Dôra	Navrhnite postup kalibrácie a upravte výpočet fotometrického sterea pre blízké objekty, teda vyvinutý algoritmus musí: - vedieť pracovať s objektami, ktorých veľkosť je porovnateľná so vzdialenosťou od kamery a svetiel - uvažovať s reálnou kamerou - fungovať s nehomogénnym osvetlením Dôraz v práci je kladený na presnosť takto získaných normál.					
Vedúci:	RNDr. Zuzana B	erger Haladová,	PhD.			
Konzultant:	Mgr. Viliam Dill	inger				
Katedra: Vedúci katedry:	FMFI.KAI - Kat prof. Ing. Igor Fa	edra aplikovanej arkaš, Dr.	informatik	У		
Dátum zadania:	10.12.2014					
Dátum schválenia:	12.12.2014	pr	of. RNDr. I garant št	Branislav tudijného pr	Rova rograr	an, PhD. ^{nu}

študent

vedúci práce

Čestné vyhlásenie

Čestne prehlasujem, že som túto diplomovú prácu vypracoval samostatne s použitím uvedených zdrojov.

V Bratislave, dňa

.....

Pod'akovanie

Touto cestou by som sa chcel pod'akovať predovšetkým svojmu konzultantovi a školiteľ ke za usmernenie a užitočné rady. Ďakujem takisto svojej rodine a priateľ om za podporu, a to hlavne pri posledných dňoch písania tejto práce.

Abstrakt

V práci sme sa venovali problematike fotometrického sterea a počítania povrchových normál. Navrhli sme vlastný kalibračný algoritmus, ktorý nám umožňuje s vysokou presnosť ou počítať polohu a svietivosť svetelného zdroja. Navrhli sme takisto vlastný algoritmus na počítanie povrchových normál, ktorý je založený na fotometrickom stereu a využíva informácie z kalibračného algoritmu.

Oba navrhované algoritmy sme na záver implementovali a testovali na reálnych dátach. V experimentoch sme ukázali až šesť násobné zlepšenie v presnosti vypočítaných povrchových normál oproti základnému fotometrickému stereu. To spĺňa hlavnú požiadavku stanovenú v cieľ och práce a to maximalizácia presnosti počítaných povrchových normál.

Kľúčové slová: Fotometrické stereo, Kalibrácia pozície bodového svetelného zdroja, Distribúcia svietivosti svetelného zdroja

Abstract

In this thesis we focused on the problem of computing surface normals using the photometic stereo method.

We have designed our own calibration algorithm, which enables us to compute the position and intensity of a light source with great precision. We have also designed our own algorithm for computing surface normals, which is built upon the photometric stereo method and uses the results of our calibration algorithm as inputs.

Both proposed algorithms were then implemented and tested upon real data. In the experiments we have should a sixfold improvement of precistion compared to the basic photometric stereo algorithm. Thus we have fullfilled the main task stated in the goals of our thesis.

Keywords: *Photometric stereo, Point light source position calibration, Light source intensity distribution*

Obsah

Ú	vod			1					
1	Fyzi	Fyzikálne a fotometrické vlastnosti svetla							
	1.1	Geometrické vlastnosti svetla							
		1.1.1	Zákon priamočiareho šírenia	4					
		1.1.2	Zákon odrazu	5					
		1.1.3	Zákon lomu (Snell-Descartes)	5					
	1.2	Energia svetla							
		1.2.1	Priestorový uhol	7					
		1.2.2	Základné fotometrické veličiny	8					
		1.2.3	Zákon inverzného štvorca	8					
	1.3	Absor	pcia	9					
	1.4	4 Vplyv povrchových materiálov na odrazené svetlo							
		1.4.1	Obojsmerná funkcia odrazu svetla	10					
		1.4.2	Difúzny odraz	10					
		1.4.3	Spekulárny odraz	11					
	1.5	Svetel	ný zdroj	12					
2	Kan	nera		13					
	2.1	Štrbino	ová kamera	13					
		2.1.1	Perspektívna projekcia	14					
	2.2	Vnúto	rné parametre kamery	14					
		2.2.1	Homogénne súradnice priestorových bodov	15					
	2.3	Digitá	Ina kamera	17					
		2.3.1	Šošovka	17					

		2.3.2	Fotosenzory	18				
		2.3.3	Funkcia rádiometrickej odozvy	19				
		2.3.4	Skreslenie	20				
3	Kali	Kalibrácia Kamery						
	3.1	Tranzl	ačný vektor a rotačná matica	22				
	3.2	Model	ovanie a korekcia skreslenia	24				
	3.3	Kalibračný algoritmus						
	3.4	Konve	rzie súradníc bodov v priestore	27				
		3.4.1	Prevod z priestorových bodov do pixelových súradníc	27				
		3.4.2	Prevod pixelového bodu do priestorových súradníc bodu na kalibrač-					
			nej rovine	28				
4	Urč	ovanie p	pozície svetelného zdroja	29				
	4.1	Navrh	ovaná metóda	30				
	4.2	Výpoč	et smeru dopadu svetla	31				
	4.3	Výpoč	et bodu svetelného zdroja	32				
5	Urč	ovanie d	listribúcie svietivosti svetelného zdroja	35				
	5.1	Navrh	ovaná metóda	36				
	5.2	Výpoč	et dvojíc hodnôt svietivosti a vektoru dopadu svetelného lúča	37				
	5.3	Výpoč	et svietivosti z pixelovej hodnoty	38				
		5.3.1	Navrhnutý funkčný aproximátor	40				
6	Foto	ometricl	ké stereo	42				
	6.1	Vlastn	osti základnej metódy	43				
	6.2	Navrh	nuté rozšírenia	45				
	6.3	Výpoč	et povrchových normál	45				
7	Exp	eriment	ty	48				
	7.1	Základ	lná metóda	49				
	7.2	Metód	a s kalibráciou pozície svetelných zdrojov	49				
	7.3	Metód	a so vplyvov vzdialenosti na dopadajúce osvietenie	50				
	7.4	Metód	a s kalibráciou distribúcie svietivosti svetelných zdrojov	51				

8 Diskusia

Záver

53

52

Úvod

Analýza povrchu snímaných telies je jedna z najzaujímavejších a najviac skúmaných problémov v oblasti počítačovej grafiky. Medzi metódy, ktoré tento problém riešia patrí *geometrické stereo*, ktoré využíva dve alebo viac kamier, *depth from focus*, ktoré na základe zaostrenia obrazu dokáže určiť vzdialenosť snímaného objektu od kamery, *time-of-flight scanning*, ktoré meria čas medzi vyslaním signál jeho odrazením od snímaného objektu a mnohé iné.

Do tejto triedy patrí aj *fotometrické stereo*, ktoré využíva niekoľko obrázkov statickej scény pod premenlivým osvetlením na výpočet povrchových normál, teda sklonu povrchu, v každom bode. Výpočet je založený na znalostiach o interakcii svetelnej energie s prostredím a povrchovými materiálmi snímaných objektov. Medzi najväčšie výhody fotometrického sterea patrí rýchlosť výpočtu. Toto je v dôsledku toho, že vieme paralelne počítať povrchovú normálu každého viditeľ ného bodu. Ďalšou výhodou sú nízke náklady na hardware, stačí jedna digitálna kamera a aspoň tri svietidlá.

V tejto práci skúmame možnosti priemyselného využitia tejto metódy na meranie povrchov snímaných objektov. Vď aka tomu môžeme robiť rekonštrukcie v plne kontrolovanom prostredí a môžeme využívať mnohé predpoklady o snímaných objektoch. Našim zámerom je maximalizovať presnosť vypočítaných povrchových normál a skúmať hranice možností tejto metódy. Mnohé z prác, ktoré sa venujú fotometrickému stereu, popisujú metódy na rekonštrukciu 3D modelov z vypočítaných povrchových normál, to však nie je predmetom našej práce.

Od vydania článku (Woodham, 1980), ktorý prvýkrát popísal túto metódu v roku 1980, vnikli mnohé rozšírenia a variácie tejto metódy. Mnohé z týchto prác popisujú čiastkové postupy a rozšírenia, ktoré je možné vhodne skombinovať. Preto v tejto práci kombinujeme tieto myšlienky s vlastnými návrhmi na zlepšenie výslednej metódy.

Naša práca má viacero výsledkov. Prvým je návrh kalibračného algoritmu, ktorý sa spúšť a pred samotným meraním. Druhým je návrh algoritmu na výpočet povrchových normál pomocou výstupov kalibračného algoritmu. Tretím je implementácia týchto algoritmov v jazyku C++ s použitím grafickej knižnice OpenCV http://opencv.org/. Štvrtým je zariadenie, ktoré používa implementovaný algoritmus v praxi.

Práca je členená na osem kapitol, z ktorých prvé tri popisujú teoretické poznatky z oblasti fotometrie, optiky a počítačovej grafiky, ktoré vo zvyšku práce využívame. V prvej kapitole si popisujeme fotometrické a geometrické vlastnosti svetla a rôzne fyzikálne javy súvisiace so svetlom, ktoré v našej práci využívame. Druhá kapitola popisuje vlastnosti kamery od teoretických modelov perspektívnej projekcie po technické parametre digitálnych kamier. Tretia kapitola je venovaná kalibrácii kamier a súvislostiam medzi bodmi v priestore a pixelmi na obrázku.

Štvrtá, piata a šiesta kapitola sú venované algoritmom, ktoré sme v našej práci navrhli. Prvým je algoritmus kalibrácie pozície svetelného zdroja, druhým je kalibrácia distribúcie svietivosti svetelného zdroja a tretí je naša varianta fotometrického sterea, ktorá počíta povrchové normály. V každej vysvetlíme najprv problém, ktorý riešime a existujúce práce, ktoré sa problematike venujú, následne popíšeme naše riešenie.

V siedmej kapitole predstavíme experiment, v ktorom predvedieme zlepšenia našej metódy v presnosti vypočítaných hodnôt oproti pôvodnej metóde. Posledná kapitola práce je venovaná diskusii, kde analyzujeme náš návrh a výsledky experimentov.

Kapitola 1

Fyzikálne a fotometrické vlastnosti svetla

Podľa modernej fyzikálnej teórie má svetlo duálny charakter elektromagnetického vlnenia a častice (Štrba et al., 2011). Nás bude hlavne zaujímať prvá časť tohto tvrdenia, podľa ktorého svetlo, tak ako každé elektromagnetické vlnenie, charakterizujú nasledujúce tri základné vlastnosti:

- Amplitúda stredná hodnota energie, ktorá prechádza smerom šírenia energie.
- Vlnová dĺžka človekom vnímaná ako farba svetla vo viditeľ nej časti elektromagnetického spektra. Táto hodnota nepriamo úmerne súvisí s *frekvenciou vlnenia*.
- **Polarizácia** uhol vlnenia vzhľadom na smer šírenia energie. Polarizáciu v našej práci zanedbávame, keď že nemá značný vplyv na fyzikálne javy, ktoré modelujeme.

Vo všeobecnosti svetlo charakterizujeme ako elektromagnetické vlnenie, ktorého *vlnová dĺžka* leží v rozsahu *360 nm* a *780 nm*. V našej práci za svetlo považujeme všetky tie zložky elektromagnetického žiarenia, ktoré je možné zachytiť našim snímacím zariadením. Hraničné hodnoty vlnovej dĺžky by v oboch prípadoch mali zodpovedať prahom citlivosti ľudského oka. Obrázok 1.1 nám poskytuje lepšiu predstavu o svetle v tomto kontexte a ľahko vidíme, že tvorí len veľmi úzku časť elektromagnetického spektra (Šikudová et al., 2013).

Naše snímacie zariadenie využíva senzory, ktoré zaznamenávajú celkovú energiu zachyteného svetla ako skalár. Stráca sa tak akákoľ vek informácia o vlnovej dĺžke a preto ju v našom modeli svetla nebudeme ď alej uvažovať. Citlivosť senzora na rôzne vlnové dĺžky svetla je udaná funkciou, ktorá je podobná tej na obrázku 1.2. Vlastnosti snímacieho zariadenia sú

Obr. 1.1: Viditeľ ná časť elektromagnetického spektra. Farebný úsek zvýrazňuje tie vlnové dĺžky, ktoré vníma ľ udské oko ako farby svetla. Takisto vidíme mená ostatných neviditeľ ných častí spektra. Obrázok je prebratý zo zdroja (Šikudová et al., 2013).

bližšie popísané v časti (2.3).

1.1 Geometrické vlastnosti svetla

Svetlo sa vo vákuu pohybuje rýchlosť ou *c* (rýchlosť svetla). V homogénnej látke (napr. vzduch) sa svetlo pohybuje rovnomerne rýchlosť ou *v*, o ktorej vo všeobecnosti platí $v \le c$.

1.1.1 Zákon priamočiareho šírenia

V homogénnom prostredí sa svetlo pohybuje po priamke v smere šírenia energie. Túto priamku nazývame *svetelný lúč* a ide o základný pojem geometrickej optiky (Šikudová et al., 2013).

Pri prechode svetelného lúča z jednej homogénnej látky do druhej dochádza k *odrazu* časti lúča späť do prvého prostredia, pričom zvyšok sa *láme*. Dve látky považujeme za odlišné ak je rýchlosť svetla rôzna $v_1 \neq v_2$ v každej z nich.

Vektor \vec{N} kolmý na spojnicu dvoch látok, v bode dopadu svetelného lúča ležiaci v polrovine dopadu nazývame *normálový vektor* alebo *povrchová normála*.

Obr. 1.2: Príklad spektrálnej citlivosti senzorov snímacieho zariadenia. Od nej priamo závisí výsledná skalárna hodnota, ktorá je snímaná senzorom po zachytení svetelnej energie.

1.1.2 Zákon odrazu

Uhol α medzi dopadajúcim lúčom \vec{l} a normálovým vektorom \vec{N} je rovný uhlu α' medzi odrazeným lúčom $\vec{l'}$ a normálovým vektorom \vec{N} . Lúč $\vec{l'}$ začína v bode *P* a je jednoznačne určený vď aka definícii normálového vektora \vec{N} a uhlu α' (Taylor et al., 2000).

1.1.3 Zákon lomu (Snell–Descartes)

Lúč prechádzajúci z jednej látky do druhej mení na rozhraní týchto prostredí svoj smer a rýchlosť šírenia (Šikudová et al., 2013). Zmena smeru závisí od uhlu α medzi dopadajúcim lúčom \vec{l} a normálovým vektorom \vec{N} a veličinou ktorú nazývame *index lomu n*. Index lomu počítame pre každé prostredie zvlášť ako podiel rýchlosti šírenia svetla v ňom *v* a rýchlosti svetla vo vákuu *c* (Taylor et al., 2000).

$$n = \frac{v}{c} \tag{1.1}$$

Pre hodnoty indexov lomu n_1 a n_2 platí *Snellová rovnosť* (1.2), kde β je uhol medzi lomeným lúčom \vec{b} a predĺžením normálového vektora \vec{N} v druhom prostredí (Taylor et al., 2000). Podobne ako v prípade odrazeného lúča $\vec{l'}$ vieme jednoznačne určiť lúč \vec{b} , keď získame uhol

Obr. 1.3: Ilustrácia vplvyu zákonov odrazu a lomu svetelného lúča. Po dopade na rozhraní dvoch rôznych látok sa dopadajúci lúč rozdelí na odrazený a lomený lúč. Obrázok je prebratý zo zdroja (Taylor et al., 2000).

 β z rovnice (1.3).

$$n_1 \sin(\alpha) = n_2 \sin(\beta) \tag{1.2}$$

$$\beta = \arcsin\left(\frac{n_1}{n_2}\sin(\alpha)\right) \tag{1.3}$$

Pre lepšiu predstavu vplyvu týchto javov na odrazený a lomený lúč pozrite obrázok 1.3.

1.2 Energia svetla

V úvode tejto kapitoly sme spomenuli časticový charakter svetla. Pre nás to znamená, že svetlo je tvorené zväzkom častíc putujúcich prostredím v smere šírenia energie. Tieto častice nazývame *fotóny*, pričom fotón je definovaný ako minimálne rozlíšiteľ né kvantum svetelnej energie (Štrba et al., 2011). V tejto časti popisujeme fotometrické pojmy a javy, ktoré popisujú a ovplyvňujú množstvo svetelnej energie.

Obr. 1.4: Ilustrácia priestorového uhlu medzi priestorovým bodom a plochou na rovine. Obrázok je prebratý zo zdroja (Wu, 2015).

1.2.1 Priestorový uhol

Pre lepšie pochopenie nasledujúcich fotometrických veličín je potrebné vysvetliť koncept *priestorového uhla*. Ide o trojrozmerný ekvivalent klasického uhla, kde namiesto uhla medzi stredom jednotkovej kružnice a krivky na jej obvode uvažujeme uhol medzi stredom jednotkovej gule a plochou na jej plášti. Štandardnou jednotkou je *steradián* (sr), kde 1 sr je priestorový uhol medzi stredom gule s polomerom *r* a plochou na jej plášti s obsahom r^2 (Taylor et al., 2000).

Často nás bude zaujímať priestorový uhol ω medzi bodom P' a plochou s obsahom S na rovine. Nech r je vzdialenosť bodu P' od stredu plochy P, z ktorej vychádza povrchová normála \vec{N} a nech vektor \vec{N} zviera s priamkou medzi bodmi P' a P uhol α . Potom veľkosť priestorového uhla ω udáva nasledujúca rovnosť (Wu, 2015):

$$\omega = \frac{S\cos(\alpha)}{r^2} \tag{1.4}$$

Pre lepšiu predstavu popísanej scény, pozrite obrázok 1.4.

1.2.2 Základné fotometrické veličiny

Tieto veličiny sa štandardne využívajú na popis množstva svetelnej energie. Vyplývajú z podobných rádiometrických veličín, ktoré popisujú elektromagnetickú energiu.

Svetelný tok

Energia prechádzajúca bodom za jednotkový čas. Označujeme ha Φ a jeho štandardná jednotka je *watt* (W) alebo *lumen* (lm) (Taylor et al., 2000).

Svietivosť

Energie vychádzajúca z bodu za jednotkový čas do jednotkového priestorového uhla. Označujeme je *i* a jej štandardná jednotka je Wsr^{-1} alebo *candela* (cd), ktorá patrí medzi základné jednotky SI (Šikudová et al., 2013).

Osvetlenie

Energia prechádzajúca jednotkovou plochou za jednotkový čas. Označujeme ho e a jeho štandardná jednotka je Wm⁻² alebo *lux* (lx) (Taylor et al., 2000).

Jas

Energia vychádzajúca z jednotkovej plochy za jednotkový čas do jednotkového priestorového uhla. Označujeme ho *m* a jeho štandardná jednotka je $Wsr^{-1}m^{-2}$ alebo $Imsr^{-1}m^{-2}$ (Taylor et al., 2000).

1.2.3 Zákon inverzného štvorca

Nech svetelný lúč so *svietivosť ou i* vychádza z bodu *P* a po prejdení vzdialenosti *d* dopadá na rovinnú plochu kolmú na smer šírenia energie. Potom *osvetlenie e* dopadajúce na túto plochu počítame podľ a nasledujúcej rovnice (Taylor et al., 2000):

$$e = \frac{i}{d^2} \tag{1.5}$$

Tento vzťah je možné ľahko odvodiť z vlastností priestorového uhla, ktoré sme si už uviedli. Pre lepšiu predstavu pozrite obrázok 1.5.

Obr. 1.5: Ilustrácia vzť ahov medzi jednotlivými fotometrickými veličinami. Obrázok je prebratý zo zdroja (Taylor et al., 2000).

1.3 Absorpcia

V ľubovolnom prostredí (okrem vákua) dochádza k redukcii energie svetla v dôsledku *absorpcie* (pohltenia). Táto redukcia je vo všeobecnosti exponenciálna vzhľadom na prejdenú vzdialenosť (Taylor et al., 2000). Keď že jej vplyv je vo vzduchu minimálny, zanedbáme ju úplne. Na druhej strane budeme pri náraze lúča na ľubovolný povrch predpokladať, že došlo k úplnej absorpcii tej časti svetla, ktorá nebola odrazená.

1.4 Vplyv povrchových materiálov na odrazené svetlo

Pre každý svetelný lúč v našom modeli platí, že pred dopadom na snímacie zariadenie sa musel práve raz odraziť od povrchu telesa v prostredí (Klette and Kozera, 1998).

Povrchové materiály telies sú vo všeobecnosti nehomogénne, a rôzne odrážajú dopadajúce lúče. V oblasti počítačovej grafiky, vznikli rôzne modely odrazu určujúce vzťah medzi osvietením *e*, ktoré dopadá na rovinu, a jasom *m*, ktorý je z tejto roviny vyžarovaný smerom k snímaciemu zariadeniu (Horn and Sjoberg, 1979).

Striktná interpretácia zákona odrazu svetla by mohla napovedať, že objekt je možné pozorovať len z jedného smeru (kde odrazený lúč dopadá priamo na snímacie zariadenie). V dôsledku

Obr. 1.6: Vplyv nerovností v mikroštruktúre povrchu na zväzok rovnobežne dopadajúcich lúčov.

nerovností v mikroštruktúre povrchu však dochádza k rozptýleniu odrazených lúčov do rôznych smerov. Do tejto mikroštruktúry zahŕňame všetky geometrické prvky povrchu, ktoré sú príliš malé, aby boli rozlíšiteľ né snímacím zariadením (Horn and Sjoberg, 1979). Pre lepšiu predstavu pozrite obrázok 1.6. My navyše predpokladáme, že takéto rozptýlenie je spojité a teda lúče sú odrážané do každého možného smeru.

1.4.1 Obojsmerná funkcia odrazu svetla

Ide o najvšeobecnejší model odrazu svetla, po anglicky nazývaný *bidirectional reflectance distribution function* (BRDF). Pre každý materiál popisuje štvorrozmernú funkciu f, ktorá na základe dopadajúceho lúča \vec{l} , lúča \vec{a} smerujúceho k pozorovateľ ovi, normálového vektora \vec{N} a orientácie povrchu \vec{w} určuje pomer vyžarovaného jasu m a dopadajúceho osvietenia e (Klette and Kozera, 1998). Uhly α_1 , ϕ_1 , α_2 , ϕ_2 a ich vzť ah k uvedeným vektorom je popísaný na obrázku 1.7.

$$f(\alpha_1, \phi_1, \alpha_2, \phi_2) = \frac{m}{e} \tag{1.6}$$

1.4.2 Difúzny odraz

Dochádza k nemu v *difúznych* materiáloch (nazývané tiež *matné* alebo *lambertovské*), ktoré odrážajú svetlo rovnomerne do všetkých smerov. To znamená, že v kontexte BRDF nezáleží na lúči \vec{a} smerujúcom k pozorovateľ ovi a teda ani na uhloch α_2 , ϕ_2 . Tu si definujeme albedo $\delta \in [0, 1]$ teda faktor, ktorý udáva pomer odrazeného svetla k dopadajúcemu svetlu pre daný materiál. Nech α je uhol medzi dopadajúcim lúčom \vec{l} a normálovým vektorom \vec{N} , potom vyžarovaný jas *m* je pre všetky smery rovnaký a platí pre neho nasledujúci vzťah (Taylor

Obr. 1.7: Všetky faktory vstupujúce do BRDF funkcie. Obrázok je prebratý zo zdroja (Szeliski, 2010).

et al., 2000):

$$m = e\cos(\alpha)\delta\pi^{-1} \tag{1.7}$$

Lambert-ov kosínusový zákon

Napriek tomu, že vyžarovaný jas *m* ostáva konštantný, vyžarovaná svietivosť *i* ďalej závisí od lúča \vec{a} smerujúceho k pozorovateľovi. Jej veľkosť klesá v dôsledku zmenšovania viditeľnej plochy pri narastajúcom uhle β medzi vektorom \vec{a} a povrchovou normálou \vec{N} . Túto závislosť popisuje nasledujúci vzťah (Taylor et al., 2000):

$$i = m\cos(\beta) \tag{1.8}$$

kde S je obsah povrchu, z ktorého je svetlo vyžarované.

1.4.3 Spekulárny odraz

Dochádza k nemu v *spekulárnych* materiáloch, ktoré nemajú nerovnosti v mikroštruktúre povrchu a teda vytvárajú *priame odrazy*. Takéto správanie možno pozorovať v materiáloch ako sú zrkadlá či lakované drevo. V zložitejších modeloch odrazu sa zvykne spekulárny odraz používať v kombinácii s difúznym odrazom na popis vlastností materiálu. Sú však materiály ako napríklad opál, tigrie oko a niektoré kovy, ktoré nie je možné popísať ani takouto kombináciou dvoch zložiek a je potrebné využiť plnú popisnú silu BRDF (Horn and

Obr. 1.8: Všetky faktory vstupujúce do BRDF funkcie.

Sjoberg, 1979). Porovnanie typického difúzneho a spekulárneho materiálu je možné vidieť v obrázku 1.8.

V našom modeli zanedbávame spekulárnu zložku odrazu v povrchových materiáloch snímaných objektoch, keď že naša práca je zameraná na iné aspekty fotometrického sterea. Predpokladáme teda, že snímané objekty sú z dokonale difúzneho materiálu. V časti 6.1 si ukážeme, že existujú prace, ktoré sa zameriavajú na problematiku spojenú so spekulárnou zložkou odrazeného svetla.

1.5 Svetelný zdroj

Okrem snímacieho zariadenia a snímaných objektov sa v scéne nachádza svetelný zdroj. V našom modeli uvažujeme vždy práve jeden svetelný zdroj. Ide o bod v priestore, z ktorého vychádza svetelná energia do všetkých smerov. Do nášho modelu nevstupuje žiadne svetlo, ktoré nepochádza zo svetelného zdroja.

V našom zariadení používame reflektory, ktoré zodpovedajú skôr plošnému zdroju svetla. Ako si ukážeme v kapitole 4, pre naše účely je možné vhodne zvoliť pozíciu bodového zdroja tak aby sa zachoval smer svetelných lúčov, ktoré sú z reflektora vyžarované (Weber and Cipolla, 2001).

Jedným z hlavných prínosov našej práce je, že predpokladáme nerovnomernú svietivosť svetelného zdroja. To znamená, že pre svetelný zdroj definujeme funkciu *h*, ktorá pre každý smer určuje vyžarovanú svietivosť *i*.

Kapitola 2

Kamera

Svetlo vzniká v svetelnom zdroji a v podobe svetelných lúčov sa šíri vzduchom kým nedopadne na povrch objektu. Časť tohto svetla je objektom pohltená a zvyšok sa odrazí späť do prostredia. Časť takto odrazeného svetla nakoniec dopadne na *pozorovateľ a* (Bradski and Kaehler, 2008).

V predošlej kapitole sme používali pojem *snímacie zariadenie* na popis pozorovateľ a v scéne. Týmto snímacím zariadením je v našom prípade *digitálna kamera*. Výstupom digitálnej kamery je dvojrozmerná matica celočíselných skalárnych hodnôt, ktorú nazývame *obrázok*.

V tejto kapitole sa zameriame na proces transformácie viditeľ ných povrchov trojrozmerných objektov scény na tieto dvojrozmerné obrázky. Popíšeme si takisto vlastnosti digitálnych kamier a ako ich kalibrovať. Nakoniec si ukážeme ako z prvkov v obrázku dokážeme presne určiť polohu a natočenie špeciálnych kalibračných objektov v priestore, ktoré využívame ďalej v našej práci.

2.1 Štrbinová kamera

Najjednoduchší teoretický model pozorovateľ a je *štrbinová kamera* (po anglicky *pin-hole camera*). Skladá sa z dvoch rovnobežných rovín, ktorých vzájomnú vzdialenosť *f* nazývame *ohnisková vzdialenosť*. Prvá z týchto rovín obsahuje nekonečne malý otvor, ktorý nazývame *stred projekcie C*. Pre každý bod scény prechádza cez stred projekcie *C* práve jeden svetelný lúč do vnútra kamery. Tieto lúče sú následne zachytené na druhej rovine, ktorú nazývame

projekčná rovina, a vytvárajú na nej obraz scény (Bradski and Kaehler, 2008).

Ako je vidno v obrázku 2.1, v takomto modeli dochádza k prevráteniu obrazu na projekčnej rovine. Tomuto vieme jednoducho zabrániť ak namiesto projekčnej roviny uvažujeme *virtu*álnu projekčnú rovinu, ktorá sa nachádza medzi stredom projekcie C a pozorovanou scénou. Virtuálna projekčná rovina je rovnobežná s pôvodnou projekčnou rovinou a je umiestnená vo vzdialenosti f od stredu projekcie C (Bradski and Kaehler, 2008).

2.1.1 Perspektívna projekcia

Stred projekcie C = (0,0,0) považujeme za základ trojrozmerného súradnicového systému kamery, ktorého os Z je kolmá na projekčnú rovinu. Ak to nie je vyslovene uvedené, všetky súradnice Ďalej v práci používame primárne tento súradniový systém na zápis súradníc Ľubovolnému bodu P = (X, Y, Z) v pozorovanej scéne prislúcha na projekčnej rovine bod p = (x, y, f), ktorého prvé dve súradnice počítame pomocou *perspektívnej projekcie* nasledovne (Bradski and Kaehler, 2008):

$$x = f \frac{X}{Z} \tag{2.1}$$

$$y = f \frac{Y}{Z} \tag{2.2}$$

2.2 Vnútorné parametre kamery

V modeli štrbinovej kamery, nám môže vzniknúť na projekčnej rovine obraz potenciálne nekonečných rozmerov. My však v skutočnej kamere zaznamenávame obraz na obdĺžnikovej ploche konečných rozmerov, ktorú nazývame *projekčná plocha*. Projekčnú plochu vieme rozdeliť na diskrétnu maticu obdĺžnikov, ktoré nazývame *pixely*. Pixely označujeme nezápornými celočíselnými súradnicami (u, v) podľa ich pozície v matici.

Nech svetelný lúč prechádza bodom P = (X, Y, Z) a vchádza do kamery cez stred projekcie *C*. Aby kamera tento lúč zachytila, musí dopadnúť na pixel *q* v projekčnej ploche. My hľadáme zobrazenie **M**, ktoré každému takému bodu *P* priradí súradnice prislúchajúceho pixel-u q = (u, v). Nech sa ľavý horný roh projekčnej plochy nachádza v bode $c = (-c_x, -c_y, f)$ v priestore a každý obdĺžnikový pixel má rozmery s_x a s_y . Potom súradnice pixelu *q* počítame

Obr. 2.1: Obrázok je prebratý zo zdroja (Bradski and Kaehler, 2008).

nasledovne (Szeliski, 2010):

$$u = s_x f \frac{X}{Z} + c_x \tag{2.3}$$

$$v = s_y f \frac{Y}{Z} + c_y \tag{2.4}$$

Pre lepšiu predstavu pozrite obrázok 2.2.

2.2.1 Homogénne súradnice priestorových bodov

Každému bodu P v *n*-rozmernom priestore prislúcha nekonečné množstvo n + 1-rozmerných vektorov \bar{P}_k , ktoré nazývame jeho *homogénne body*. Každý homogénny bod \bar{P}_k prislúchajúci priestorovému bodu $P = (P_1, P_2, \ldots, P_n)$ má súradnice $\bar{P} = (\gamma P_1, \gamma P_2, \ldots, \gamma P_n, \gamma)$, pre nejaké $\gamma \in \mathbb{R}$. Bod $\bar{P} = (\bar{P}_1, \bar{P}_2, \ldots, \bar{P}_n, 1)$ nazývame homogénny bod v normálnom tvare. Homogénne body \bar{P} a \bar{Q} považujeme za ekvivalentné ak platí $\bar{P} = \delta \bar{Q}$ pre nejaké $\delta \in \mathbb{R}$. Navyše platí, že obe prislúchajú rovnakému priestorovému bodu. Konverzia medzi homogénnymi a priestorovými bodmi je z tejto definície zjavná (Szeliski, 2010).

Obr. 2.2: Obrázok je prebratý zo zdroja (Szeliski, 2010).

Vď aka homogénnym bodom vieme zobrazenie **M** zapísať ako maticu veľkosti 3x3, pomocou ktorej počítame homogénny bod \bar{q} prislúchajúci pixelu q = (u, v):

$$\bar{q} = \mathbf{M}P \quad \text{kde} \quad \bar{q} = \begin{bmatrix} u' \\ v' \\ \gamma \end{bmatrix} \mathbf{M} = \begin{bmatrix} s_x f & 0 & c_x \\ 0 & s_y f & c_y \\ 0 & 0 & 1 \end{bmatrix} P = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \quad u' = \gamma u, \quad (2.5)$$

Pre každý priestorový bod P' ležiaci na priamke medzi priestorovým bodom P a stredom projekcie C platí, že homogénny bod $\bar{q}' = \mathbf{M}P'$ tiež prislúcha pixelu q = (u, v). Toto tvrdenie priamo zodpovedá predstave o perspektívnej projekcii, kde priestorové body na priamke prechádzajúce stredom projekcie C vytvárajú obraz na jednom bode projekčnej roviny. Navyše, ak by sme pozerali na body P' takejto priamky ako na homogénne body nejakých dvojrozmerných bodov, potom sú si všetky tieto homogénne body navzájom ekvivalentné.

Maticu **M** nazývame *vnútorná matica kamery*. Vo väčšine prípadov nemáme k dispozícii dostatočne presné hodnoty parametrov s_x , s_y , c_x , c_y a f. V takom prípade používame kalibračný algoritmus, ktorý bližšie popisujeme v časti 3.3 nasledujúcej kapitoly. Tento algoritmus počíta vnútornú maticu kamery **M** v tejto podobe (Bradski and Kaehler, 2008):

$$\mathbf{M} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \quad kde \quad \begin{array}{c} f_x = fs_x \\ f_y = fs_y \end{array}$$
(2.6)

2.3 Digitálna kamera

V našej práci používame na získanie obrázkov digitálnu kameru. Tu si popíšeme vlastnosti špecifické pre takéto zariadenia.

Pred vytvorením obrázku musí na projekčnú rovinu kamery dopadnúť dostatok svetelnej energie z pozorovanej scény. Čas počas ktorého dovolíme svetelným lúčom, aby vchádzali do vnútra kamery nazývame *doba expozície* (alebo tiež *dĺžka uzávierky*). Mnohé fotometrické veličiny uvedené v časti 1.2 minulej kapitoly uvažovali tok energie, teda množstvo energie za čas. Napriek tomu sú v našom prípade pojmy svetelného toku a svetelnej energie zameniteľ né, keď že kamera meria celkovú energiu zachytenú počas doby expozície.

2.3.1 Šošovka

Ak by sme sa v skutočnej kamere chceli priblížiť modelu dierkovej kamery, museli by sme vytvoriť veľmi malý otvor v bode stredu projekcie *C*. Aj keby sa nám podarilo vytvoriť takýto otvor, ktorý by prepúšť al práve jeden svetelný lúč pre každý bod scény, cez takýto otvor by nám prechádzalo veľmi malé množstvo svetelnej energie a na vytvorenie obrázku by sme potrebovali veľmi dlhú dobu expozície (Bradski and Kaehler, 2008).

Tento problém rieši *šošovka*, ktorá vypĺňa otvor dostatočnej veľkosti okolo stredu projekcie *C*. Šošovka je tenké kruhové sklo s parabolickým zakrivením na oboch stranách, ktoré využíva zákon lomu svetla (popísaný v časti 1.1 minulej kapitoly), aby sústredilo svetelné lúče prechádzajúce bodom *P* a otvorom kamery na jeden bod *p* (obraz bodu *P*) vo vnútri kamery Szeliski (2010).

Optické vlastnosti šošovky nám umožňujú ď alej modelovať lúče svetla dopadajúce na projekčnú rovinu akoby prechádzali stredom projekcie *C*. Do nášho modelu sme však vniesli nové komplikácie. Spomínali sme, že obraz *p* bodu *P* je bod v priestore, ktorým prechádzajú všetky lúče svetla z *P*. Takýto bod *p* nazývame *ostrým obrazom* bodu *P*, avšak v niektorých prípadoch bod *p* neleží na projekčnej rovine a vzniká nám *neostrý obraz* bodu *P*. Pre lepšiu predstavu pozrite obrázok 2.3.

Budeme predpokladať, že vo všetkých obrázkoch je kamera nastavená tak, aby vznikal ostrý obraz všetkých bodov snímaného objektu. V tejto práci sa nebudeme ď alej zaoberať popisom

Obr. 2.3: Obrázok je prebratý zo zdroja (Szeliski, 2010).

optických vlastností šošovky a zaostrovaniu obrazu a zvedavého čitateľ a odkazujeme na diela (Szeliski, 2010) a (Štrba et al., 2011), v ktorých je táto problematika popísaná bližšie.

2.3.2 Fotosenzory

Obrázok vzniká, keď svetlo dopadne na pixely projekčnej plochy v kamere. V digitálnej kamere máme na mieste projekčnej plochy kremíkový čip a na ňom rozložené obdĺžnikové fotosenzory, ktoré zodpovedajú pixelom. Tu si popíšeme vlastnosti týchto fotosenzorov a ako prevádzajú svetelnú energiu na skalárne celočíselné hodnoty.

Typ senzora

V digitálnych kamerách sa najčastejšie používajú buď *CCD* (*charge-coupled device*) senzory alebo *CMOS* (*complementary metal oxide on silicon*) senzory.

V CDD senzore sa počas doby expozície zbiera svetelná energia a ukladá do tzv. *studne* (well) ako elektrický náboj. Následne nastáva *transfer* fáza, počas ktorej sa náboj prenáša z jednej studne do druhej k najbližšiemu zosilňovaču, kde je signál ď alej spracovaný. V starších CCD senzoroch dochádzalo ku *kvitnutiu* (blooming), teda k nežiadanému prenosu náboja z "preplnenej studne"do studní okolitých senzorov. Novšie CCD senzory tento problém riešia odvádzaním prebytočného náboja zo studne.

CMOS senzory využívajú fotodetektor, ktorého vodivosť je ovplyvnená množstvom dopadajúcej svetelnej energie počas doby expozície. Následne sú hodnoty lokálne zosilnené a čítané pomocou multiplexovej schémy. Vo všeobecnosti CCD senzory vytvárajú kvalitnejšie obrázky avšak CMOS senzory majú nižšiu spotrebu elektrickej energie (Szeliski, 2010).

Vel'kost' pixelov (Sampling pitch)

Ak zachováme veľkosť čipu, tento parameter súvisí nepriamo úmerne s rozlíšením výsledného obrázku. Pri menších rozmeroch sa však znižuje celková citlivosť kamery na svetlo, keďže klesá plocha na ktorej každý fotosenzor zachytáva svetelnú energiu.

Faktor zaplnenia (Fill factor)

Tento parameter udáva pomer plochy čipu, ktorá priamo zachytáva svetelnú energiu, ku celkovej ploche čipu. Vyššia hodnota je preferovaná, keď že zvyšuje celkové množstvo zachytenej svetelnej energie.

Veľkosť čipu

Vo všeobecnosti chceme, čo najväčšie rozmery čipu, aby sa zväčšila plocha, ktorá zachytáva svetelnú energiu. To však výrazne zvyšuje náklady na výrobu (z dôvodu chybovosti) a priestorové nároky optických zariadení kamery.

Analógové zosilnenie (Analog gain)

Po ukončení doby expozície dochádza k zosilneniu analógového signály, ktorý každý fotosenzora zachytil. Tento parameter sa často nazýva *ISO* v kamerách, kde je možné ho nastaviť. Zosilnenie signálu umožňuje vytvárať obrázky pri nižšom osvetlení. Tak ako v každom meracom zariadení, aj fotosenzory sú náchylné na šum, ktorý sa znásobuje pri aplikácii analógového zosilnenia. V našej implementácii používame najnižšiu prípustnú pre tento parameter a osvetlenie zvyšujeme vhodným nastavením doby expozície.

Na záver je analógový signál premenený na digitálne dáta. Existuje viacero techník na implementáciu takejto konverzie (analogue to digial conversion, ADC) a líšia sa hlavne rozlíšením (do koľkých bitov je zapísaný signál z každého pixelu) (Szeliski, 2010).

2.3.3 Funkcia rádiometrickej odozvy

Popísali sme si ako fotosenzory digitálnej kamery premieňajú svetelnú energiu na číselné hodnoty v prislúchajúce jednotlivým pixelom. Pre digitálnu kameru definujeme funkciu rádiometrickej odozvy g, ktorá každej hodnote osvetlenia e dopadajúceho na ľubovolný jeden pixel priradí číselnú hodnotu v. Uvažujeme pri tom konštantnú dobu expozície t. Vo

všeobecnosti je g monotónna rastúca funkcia (Mongkulmann et al., 2011).

Túto funkciu je možné kalibrovať postupom uvedeným v (Mitsunaga and Nayar, 1999). Podobným postupom sme ukázali, že funkcia radiometrickej odozvy je pre naše zariadenie lineárna a že navyše platí g0 = 0. Tým pádom platí v = eg', kde $g' \in \mathbb{R}$ je *koeficient rádiometrickej odozvy*.

2.3.4 Skreslenie

Pri výrobe digitálnych kamier môže dôjsť k chybám a nepresnostiam, ktoré spôsobujú skreslenia vo výslednom obrázku. V časti 3.2 nasledujúcej kapitoly ukážeme, ako vieme eliminovať ich vplyv.

Radiálne skreslenie

Vzniká pri nekvalitných šošovkách, ktorých zakrivenie nie je parabolické. Toto skreslenie ohýba svetelné lúče dopadajúce na okraj šošovky smerom k stredu obrazu. V obrázku sa prejavuje zaguľ atením na okrajoch. Skreslenie je radiálne, teda jeho účinok závisí od vzdialenosti od stredu projekcie *C*. Tento jav nazývame takisto *efekt rybieho oka* (fish-eye effect) (Bradski and Kaehler, 2008).

Tangenciálne skreslenie

Vzniká pri nesprávnom umiestnení čipu, teda ak projekčná rovina nie je rovnobežná s šošovkou. V obrázku sa prejavuje skrátením obrazu na jednej strane a jeho predĺžením na nemu protil'ahlej strane (Bradski and Kaehler, 2008).

Obrázok 2.4 bližšie ilustruje vplyv uvedených druhov skreslenia.

Obr. 2.4: Obrázok je prebratý zo zdroja (Bradski and Kaehler, 2008).

Kapitola 3

Kalibrácia Kamery

Na kalibráciu využívame špeciálne zhotovený *kalibračný objekt*, obdĺžnikového tvaru s plošným vzorom vytlačeným na jeho vrchnej stene. O tejto stene predpokladáme, že vytvára rovinu v priestore, ktorú nazývame *kalibračná rovina*. Na plošnom vzore sa nachádza *n význačných bodov O_i*, ktoré sú l'ahko rozoznateľ né na obrázku zhotovenom digitálnou kamerou. Plošný vzor nášho kalibračného objektu je podobný vzoru "asymetric circle grid", ktorý sa vyžíva v knižnici OpenCV. Na hľadanie význačných bodov O_i v obrázku preto môžeme použiť metódu podobnú tej, čo je v knižnici OpenCV už implementovaná. Podrobný popis tohto algoritmu je nad rámec našej práce.

3.1 Tranzlačný vektor a rotačná matica

Jeden z bodov na kalibračnej rovine označíme $O = (X_O, Y_O, Z_O)$ a budeme ho považovať za základ trojrozmerného súradnicového systému kalibračného objektu, ktorého os Z je kolmá na kalibračnú rovinu. Pre danú polohu a natočenie kalibračného objektu definujeme tranzlačný vektor $\vec{t} = (t_1, t_2, t_3)$ a rotačnú maticu $\mathbf{R} = \begin{bmatrix} \vec{r_1} & \vec{r_2} & \vec{r_3} \end{bmatrix}$. Vektor \vec{t} (veľ kosti 1 × 3)

Obr. 3.1: Plošný vzor na kalibračnej rovine kalibračnjého objektu. Význačné body sú stredy čiernych kruhov. Obrázok je prebratý zo zdroja (Dillinger, 2015).

Obr. 3.2: Ilustrácia vplvu translácie a rotácie na bod v priestore. Obrázok je prebratý zo zdroja (Bradski and Kaehler, 2008).

určuje polohu bodu *O* na kalibračnom objekte v priestore vzhľadom na stred projekcie *C*. Matica **R** (veľkosti 3×3) určuje natočenie kalibračnej roviny kalibračného objektu v priestore vzhľadom na súradnicový systém kamery (Bradski and Kaehler, 2008). Vďaka tranzlačnému vektoru \vec{t} a rotačnej matici **R** vieme ľubovolný bod *P*_O v súradnicovom systéme kalibračného objektu previesť na rovnaký priestorový bod *P* v súradnicovom systéme kamery:

$$P = \mathbf{R}P_O + \vec{t} \tag{3.1}$$

Pre lepšiu predstavu pozrite obrázok 3.2.

Keď že matica R popisuje rotáciu v priestore, má tri špeciálne vlastnosti.

1. Vektory $\vec{r_1}$, $\vec{r_2}$ a $\vec{r_3}$ sú navzájom kolmé a teda platí:

$$\vec{r_1} \cdot \vec{r_2} = 0 \qquad \land \qquad \vec{r_2} \cdot \vec{r_3} = 0 \qquad \land \qquad \vec{r_1} \cdot \vec{r_3} = 0$$

Vieme ju vypočítať z troch uhlov θ_x, θ_y a θ_z, z ktorých každý popisuje rotáciu v jednej z osí X, Y, Z a teda rotačná matica R je rovná nasledujúcemu súčinu matíc:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_x) & -\sin(\theta_x) \\ 0 & -\sin(\theta_x) & \cos(\theta_x) \end{bmatrix} \begin{bmatrix} \cos(\theta_y) & 0 & -\sin(\theta_y) \\ 0 & 1 & 0 \\ \sin(\theta_y) & 0 & \cos(\theta_y) \end{bmatrix} \begin{bmatrix} \cos(\theta_z) & \sin(\theta_z) & 0 \\ -\sin(\theta_z) & \cos(\theta_z) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

3. Platí $\mathbf{R}^{-1} = \mathbf{R}^{T}$ a teda $\mathbf{R}\mathbf{R}^{T} = I_{3\times 3}$, kde $I_{3\times 3}$ je matica identity.

Všetky body $P_O = (X_{P_O}, Y_{P_O}, Z_{P_O})$, čo nás budú zaujímať ležia na kalibračnej rovine (teda $Z_{P_O} = 0$). Na základe bodu $O = (X_O, Y_O, Z_O)$ určujeme dvojrozmerný bod $o = (X_O, Y_O)$ ako základ dvojrozmerného súradnicového systému kalibračnej roviny. Pre ľubovolný priestorový bod P = (X, Y, Z), ktorý leží na kalibračnej rovine definujeme v súradnicovom systéme kalibračnej roviny homogénny $\hat{p} = (X - X_O, Y - Y_O, 1)$ bod v základnom tvare. Bod \hat{p} nazývame *kalibračný bod* prislúchajúci priestorovému bodu *P*. Kalibračný bod \hat{p} vieme previesť na priestorový bod *P* v súradnicovom systéme kamery nasledovne:

$$P = \mathbf{G}\hat{p} \quad \text{kde} \quad \mathbf{G} = \begin{bmatrix} \vec{r_1} & \vec{r_2} & \vec{t} \end{bmatrix}$$
(3.2)

pričom maticu **G**, ktorá popisuje toto zobrazenie nazývame *kalibračná matica*. Podobne ako tranzlačný vektor \vec{t} a rotačná matica **R**, tak aj kalibračná matica **G** sa vždy vzť ahuje na jednu polohu a rotáciu kalibračného objektu vzhľ adom na kameru.

3.2 Modelovanie a korekcia skreslenia

V časti 2.3 minulej kapitoly sme si popísali radiálne a tangenciálne skreslenie a ako vplýva na výsledný obrázok. Vysvetlíme najprv ako pomocou špeciálnych koeficientov modelujeme vplyv skreslenia a následne ukážeme ako tieto vplyvy vieme negovať. Toto nám rovnako umožňuje odstraňovať skreslenie ale taktiež ho umelo aplikovať.

Ku každému priestorovému bodu P = (X, Y, Z) definujeme *normalizovaný bod* $\overline{p} = (x, y, 1)$, ktorý mu prislúcha nasledovne:

$$\bar{\bar{p}} = \left(\frac{X}{Z}, \frac{Y}{Z}, 1\right) \tag{3.3}$$

Zadefinujeme si $r = \sqrt{x^2 + y^2}$ ako vzdialenosť normalizovaného bodu \overline{p} od priestorového bodu (0,0,1). Skreslenie pre priestorový bod P aplikujeme na jeho normalizovaný bod $\overline{p} = (x, y, z)$. Korekcia je aplikovaná len na prvé dve súradnice x a y normalizovaného bodu.

Najprv modelujeme radiálne skreslenie. Knižnica OpenCV využíva na tento účel taylorov polynóm, ktorý narastá so vzdialenosť ou r. Takéto správanie zodpovedá charakteru radiálneho skreslenia, ktorého vplyv takisto narastá postupne a je najvýraznejší na okrajoch obrázku. Parametre skreslenia, ktoré je potrebné kalibrovať sú koeficienty v_1 , v_2 a v_3 prvých troch párnych mocnín neznámej r. Ostatné koeficienty taylorovho polynómu sú nulové. Nasledujúci vzorec popisuje ako počítame súradnice x' a y' skresleného normalizovaného bodu \bar{p}' z normalizovaného bodu $\bar{p} = (x, y, 1)$ (OpenCV, 2016):

$$x' = x(1 + v_1r^2 + v_2r^4 + v_3r^6)$$
(3.4)

$$y' = y(1 + v_1 r^2 + v_2 r^4 + v_3 r^6)$$
(3.5)

Následne modelujeme tangenciálne skreslenie. Knižnica OpenCV využíva metódu, ktorá sa snaží "vyrovnať"lichobežníkové zúženie a roztiahnutie na hranách obrázku. Parametre skreslenia, ktoré je potrebné kalibrovať sú dva koeficienty w_1 a w_2 . Nasledujúci vzorec popisuje ako počítame súradnice x' a y' skresleného normalizovaného bodu $\overline{p'}$ z normalizovaného bodu $\overline{\bar{p}} = (x, y, 1)$ (OpenCV, 2016):

$$x' = x + [2w_1y + w_2(r^2 + 2x^2)]$$
(3.6)

$$y' = y + [2w_1(r^2 + 2y^2) + 2w_2x]$$
(3.7)

Uvedené koeficienty zoskupujeme spoločne do *vektora koeficientov skreslenia* \vec{d} (Bradski and Kaehler, 2008):

$$\vec{d} = (v_1, v_2, v_3, w_1, w_2) \tag{3.8}$$

Popísaný postup aplikácie skreslenia je možné zhrnúť do jednej funkcie $\bar{p'} = f_D(\vec{d}, \bar{p})$, ktorá pre daný vektor koeficientov skreslenia \vec{d} a normalizovaný bod \bar{p} počíta skreslený normalizovaný bod $\bar{p'}$. Túto funkciu nazývame *funkcia skreslenia*.

Napriek tomu, že neexituje priama metóda na určenie inverznej funkcie k funkcii skreslenia f_D , knižnica OpenCV poskytuje aproximáciu f_D^{-1} , ktorá je pre naše účely postačujúca. Implementácia tejto funkcie využíva pomerne rýchlu iteratívnu metódu (OpenCV, 2016).

3.3 Kalibračný algoritmus

V tejto časti popíšeme fungovanie algoritmu, ktorý slúži na výpočet vnútorných a vonkajších parametrov kamery. V našej práci používame metódu, ktorá je súčasť ou knižnice OpenCV.

Pred spustením algoritmu potrebujeme získať *k* obrázkov kalibračného objektu. Na každom obrázku musia byť viditeľ né a jednoznačne identifikovateľ né všetky význačné body O_i na plošnom vzore. Navyše vyžadujeme, aby v každom obrázku bol kalibračný objekt umiestnený v inej polohe a rotácii vzhľadom na kameru. Pre lepšiu predstavu pozrite obrázok 3.3.

Obr. 3.3: Pri kalibrácii je potrebné mať čo najväčšie množstvo obrázkov kalibračného objektu v rôznych polohách a rotáciach vzhľadom na kameru. Obrázok je prebratý zo zdroja (Bradski and Kaehler, 2008).

Vstupom kalibračného algoritmu je vždy postupnosť kalibračných bodov \hat{o}_i dĺžky *n*, z ktorých každý prislúcha význačnému bodu O_i na plošnom vzore, a postupnosť pixelových súradníc $q_{i,j}$ dĺžky *nk*, kde $q_{i,j}$ prislúcha význačnému bodu O_i na plošnom vzore a bol nájdený v *j*-tom obrázku.

Algoritmus má dve časti, z ktorých prvá zanedbáva vplyv skreslenia a počíta vnútornú maticu kamery **M** a *k* kalibračných matíc G_j . Kalibračná matica G_j prislúcha polohe a rotácii kalibračného objektu v *j*-tom obrázku. Z matice G_j vieme potom vypočítať vektor tranzlácie \vec{t} a rotačnú maticu **R**. V druhej časti pomocou výsledkov z prvej časti počítame vektor koeficientov skreslenia \vec{d} . Algoritmus je možné niekoľ ko krát iterovať na získanie lepších výsledkov.

Nech $\gamma \in \mathbb{R}$ je skalár popisujúci zmenšenie (alebo zväčšenie) výsledného obrázku, potom nasledujúci vzorec popisuje vzťah medzi kalibračným bodom $\hat{o}_i = (X_i, Y_i, 1)$ a pixelovým bodom $q_{i,j} = (u_{i,j}, v_{i,j})$, ktorý mu prislúcha:

$$q_{i,j}^{-} = \begin{bmatrix} u_{i,j} \\ v_{i,j} \\ 1 \end{bmatrix} = \gamma \mathbf{M} \mathbf{G}_{j} \begin{bmatrix} X_{i} \\ Y_{i} \\ 1 \end{bmatrix} = \hat{o}_{i}$$
(3.9)

kde $q_{i,j}$ je homogénny bod v normálnom tvare prislúchajúci pixelovému bodu $q_{i,j}$ (Bradski and Kaehler, 2008).

Na záver odkazujeme zvedavého čitateľ a na práce (Zhang, 2000) a (Duane, 1971), podľ a

ktorých bol popísaný kalibračný algoritmus implementovaný. Nájdete tam podrobnejší popis jednotlivých krokov a rovnice na výpočet hodnôt výsledných matíc a vektorov, čo je nad rámec obsahu našej práce.

3.4 Konverzie súradníc bodov v priestore

V našej práci využívame kalibračný algoritmus na dva účely:

- 1. *Kalibrácia vnútorných parametrov kamery*, teda vnútorná matica kamery **M** a vektor koeficientov skreslenia \vec{d} . Toto je prvá kalibráciu, ktorú počítame a preto predpokladáme, že jej výsledky máme k dispozícii pred akýmkoľ vek ď alším spracovaním obrázkov.
- Kalibrácia vonkajších parametrov kamery, teda tranzlačného vektora t a rotačnej matice
 R. Pri tomto výpočte predpokladáme, že máme už k dispozícii vnútornú maticu kamery
 M a vektor koeficientov skreslenia d z poslednej kalibrácie vnútorných parametrov kamery. Vstupom je jeden obrázok kalibračného objektu, pričom zbehneme len prvú časť kalibračného algoritmu. V nej vieme dosadíme známe hodnoty a počítame len tie neznáme, ktoré sú potrebné na určenie tranzlačného vektora t a rotačnej matice R.

Získané matice a vektory dovoľujú konverziu medzi pixelovými a priestorovými súradnicami bodov.

3.4.1 Prevod z priestorových bodov do pixelových súradníc

Ak chceme konvertovať priestorový bod P' v súradnicovom systéme kalibračného objektu, musíme pomocou tranzlačného vektora \vec{t} a rotačnej matice **R** najprv vypočítať priestorový bod *P*, ktorý mu prislúcha:

$$P = \mathbf{R}P' + \vec{t} \tag{3.10}$$

Predpokladáme, že máme k dispozícii vnútorná matica kamery **M** a vektor koeficientov skreslenia \vec{d} z poslednej kalibrácie vnútorných parametrov. Nech P = (X, Y, Z) je priestorový bod, ktorého pixelové súradnice chceme určiť, potom postupujeme nasledovne:

1. Vypočítame normalizovaný bod \overline{P} prislúchajúci priestorovému bodu P:

$$\bar{\bar{P}} = \left(\frac{X}{Z}, \frac{Y}{Z}, 1\right) \tag{3.11}$$

2. Vypočítame skreslený normalizovaný bod \overline{p} pomocou funkcie skreslenia f_D a vektora koeficientov skreslenia \vec{d} :

$$\bar{\bar{p}} = f_D(\vec{d}, \bar{\bar{P}}) \tag{3.12}$$

3. Vypočítame súradnice pixelu q = (u, v) pomocou homogénneho bodu $\bar{q} = (u', v', gamma)$ a vnútornej matice kamery **M**:

$$\bar{q} = \mathbf{M}\bar{\bar{p}} \tag{3.13}$$

$$q = \left(\frac{u'}{\gamma}, \frac{v'}{\gamma}\right) \tag{3.14}$$

3.4.2 Prevod pixelového bodu do priestorových súradníc bodu na kalibračnej rovine

V prvom kroku si prevedieme pixelový bod q na normalizovaný bod \overline{p} . Vypočítame si inverznú maticu \mathbf{M}^{-1} a vypočítame priestorový bod p:

$$p = \mathbf{M}^{-1}q \tag{3.15}$$

Následne z bodu p vypočítame normalizovaný bod \bar{p} podľa definície.

V druhom kroku je potrebné odstrániť skreslenie z normalizovaného bodu \bar{p} a tak si vypočítame normalizovaný priestorový bod $P' = f_D^{-1}(\bar{p})$ pomocou inverznej funkcii k funkcii skreslenia, ktorá je popísaná v časti 3.2.

Vo všeobecnosti nevieme zo súradníc pixelu q = (u, v) jednoznačne určiť pozíciu priestorového bodu *P* v scéne. Platí, že bod priestorový bod *P* leží na priamke medzi normalizovaným bodom *P'* a stredom projekcie *C*. Navyše vieme, že bod *P* leží takisto na kalibračnej rovine.

Nech $O = C + \vec{t}$ je bod ležiaci na kalibračnej rovine, kde *C* je stred projekcie a \vec{t} je tranzlačný vektor kalibračného objektu. Ďalej nech $\vec{N}_O = \mathbf{R}(0,0,1)^T$ je povrchová normála kalibračnej roviny, kde **R** je rotačná matica kalibračného objektu. Potom pomocou vzorca pre výpočet prieniku priamky a roviny vieme vypočítať pozíciu priestorového bodu *P* nasledovne:

$$P = C + (P' - C) \frac{(O - C) \cdot \vec{N_O}}{(P' - C) \cdot \vec{N_O}}$$
(3.16)

$$P = P' \frac{O \cdot \vec{N_O}}{P' \cdot \vec{N_O}} \tag{3.17}$$

Kapitola 4

Určovanie pozície svetelného zdroja

V tejto kapitole prezentujeme navrhovanú metódu určovania pozície svetelných zdrojov v priestore. Táto metóda je súčasť ou kalibračnej fázy celkového riešenia, ktoré v práci navrhujeme. Kalibráciu pozície svetelného zdroja je potrebné vykonať zakaždým, keď sa zmení vzájomná poloha kamery a svetelného zdroja.

Po vykonaní kalibračného algoritmu, ktorý tu popíšeme, budeme mať pre daný svetelný zdroj pozíciu pomyselného bodu *S*, z ktorého sú všetky svetelné lúče v scéne vyžarované. Bod *S* nám umožňuje vypočítať vektor \vec{l} , pod ktorým dopadajú svetelné lúče na ľubovolný bod *P* v priestore:

$$\vec{l} = \frac{P - S}{||P - S||} \tag{4.1}$$

Určovanie pozície svetelného zdroja je súčasť ou každej implementácie fotometrického sterea. Najčastejšie sa používa špeciálne zhotovený kalibračný objekt v tvare gule so známym polomerom, ktorý je ľahké identifikovať na obrázku. Na guľ u necháme svietiť svetelný zdroj a identifikujeme bod na jej povrchu, ktorý je kolmý na smer dopadu svetelných lúčov. Ide o najsvetlejší bod na povrchu gule, čo vyplýva z vlastností difúzneho materiálu, z ktorého je povrch gule zhotovený. Bližšie sa o tejto metóde píše aj v práci (Ahmad et al., 2014). Podobnú myšlienku využíva práca (Weber and Cipolla, 2001), avšak namiesto gule je použitá kocka ako kalibračný objekt.

Výroba gule alebo kocky s dostatočne veľkou presnosťou je veľmi náročné a nákladné, preto v našej práci používame rovinný kalibračný predmet, podobný kalibračnemu objektu

Obr. 4.1: Kalibračný objekt s odrazom svietidla na lesklej ploche.

spomenutému v kapitole 3. Podobnú myšlienku nájdeme v práci (Park et al., 2014) a (Shen and Cheng, 2011), kde sa analyzuje svetlo odrazené z roviny v priestore na určenie smeru, pod ktorým dopadajú svetelné lúče na ňu.

4.1 Navrhovaná metóda

Naša metóda využíva upravený kalibračný objekt, s lesklou plochou na kalibračnej rovine popri plošnom vzore s význačnými bodmi O_i . Predpokladáme, že táto lesklá plocha je v tvare obdĺžnika a má vlastnosti dokonale spekulárneho materiálu a teda vytvára len priame odrazy. Nech je bod O v priestore základom súradnicovej sústavy kalibračného objektu (podobne ako v kapitole 3), potom vrcholy na rohoch lesklej plochy kalibračného objektu v tejto súradnicovej sústave označujeme D_1 , D_2 , D_3 a D_4 . Pre lepšiu predstavu o podobe takéhoto kalibračného objektu pozrite obrázok 4.1.

Prínos našej práce spočíva v presnosti vypočítanej pozície svetla a v návrhu použitého kalibračného objektu.

Algoritmus má dve hlavné časti:

- Vypočítame niekoľko priamok, ktoré prechádzajú pomyselným bodom svetelného zdroja, z ktorého pochádzajú všetky svetelné lúče v scéne.
- Určenie pozície svetla ako bodu s minimálnym štvorcom vzdialeností od všetkých priamok.

Algoritmus využíva nasledujúce parametre:

- k > 1 obrázkov kalibračného objektu, na ktorých sú rozoznateľ né všetky význačné body O_i plošného vzoru. V každom obrázku musí byť kalibračný objekt umiestnený v inej polohe a rotácii vzhľadom na kameru. Navyše musí byť v každom obrázku viditeľ ný odraz svetelného zdroja v lesklej ploche kalibračného objektu.
- Vnútornú maticu kamery M a vektor koeficientov skreslenia \vec{d} z poslednej kalibrácie vnútorných parametrov kamery.

4.2 Výpočet smeru dopadu svetla

V tejto časti popisujeme postup, ako z *j*-tého obrázku získame parametre priamky, ktorá prechádza pomyselným bodom *S* svetelného zdroja. Nasledujúci postup aplikujeme na každý z obrázkov, kým nezískame *k* priamok:

- 1. S použitím význačných bodov O_i plošného vzoru kalibračného objektu vypočítame vonkajšie parametre kamery (**R** a \vec{t}).
- 2. Identifikujeme lesklú plochu na obrázku a odstránime zvyšok. Tento krok značne zrýchľ uje nasledujúce kroky, keď že nám dovolí pracovať s menšou časť ou obrázku. Potrebujeme vypočítať pixelové súradnice vrcholov lesklej plochy v obrázku, ktoré získame tak, že aplikujeme konverziu z časti 3.4.1 na body D₁, D₂, D₃ a D₄. Hľ adaná lesklá plocha sa nachádza vo výslednom štvoruholníku medzi takto vypočítanými pixelmi.
- 3. Aplikujeme gausovské rozostrenie (gaussian blur) na obrázok, čím odstraňujeme vplyv nedokonalostí na povrchu lesklej plochy kalibračného objektu.
- 4. Binarizujeme obrázok pomocou prahovania s hodnotou v_t .

- Hľadáme najväčšiu súvislú bielu plochu v obrázku za predpokladu, že ide o odraz svetelného zdroja.
- Body súvislej bielej plochy premietneme do priestorových súradníc P_i použitím konverzie z časti 3.4.2.
- Nájdeme stred bodov P_i a označíme ho P. V dôsledku skreslenia a perspektívnej projekcie by mali body P_i tvoriť elipsu, ktorá leží na jednej rovine v priestore. Hľadaný bod P je práve stred takejto elipsy.
- 8. Vypočítame normalizovaný vektor $\vec{l'}$ svetelného lúču, ktorý bol z bodu *P* odrazený do stredu projekcie *C*:

$$\vec{l}' = \frac{-P}{||P||} \tag{4.2}$$

9. Vypočítame si povrchovú normálu kalibračnej roviny \vec{N} :

$$\vec{N} = \mathbf{R}(0,0,1)^T \tag{4.3}$$

10. Vypočítame vektor \vec{l} , pod ktorým svetelné lúče dopadajú na bod *P* na základe zákona odrazu svetla z časti 1.1:

$$\vec{l} = \vec{l}' - 2\vec{N}\vec{l}' \cdot \vec{N} \tag{4.4}$$

Priestorový bod *P* a vektor \vec{l} spolu popisujú hľadanú priamku. Priamku vypočítanú z *j*-tého obrázku označujeme (P_j, \vec{l}_j) .

4.3 Výpočet bodu svetelného zdroja

V tejto časti algoritmu využívame iteratívny algoritmus na odhad pozície svetelného zdroja v priestore. Začíname s odhadom polohy priestorového bodu *S* svetelného zdroja. Vhodnou voľbou odhadu vieme výrazne skrátiť beh tohto iteratívneho algoritmu. My používame pozíciu *S*' z predošlej kalibrácie alebo z manuálneho merania ako prvotný odhad.

Prvotný odhad ďalej optimalizujeme pomocou metódy *gradient descent*. Táto metóda sa využíva na optimalizáciu neznámej *x* minimalizáciou chybovej funkcie *f*, ktorá od neznámej

x závisí. V každej iterácii počítame nový odhad x_{t+1} na základe aktuálneho odhadu x_t podľa vzorca:

$$x_{t+1} = x_t - \alpha f'(x_t) \tag{4.5}$$

, kde $\alpha \in (0,1)$ je *rýchlosť konvergencie* a f' je derivácia chybovej funkcie podľa x.

V našom prípade je neznámou bod *S* a chybová funkcia *f* je súčet štvorcov vzdialeností každej z priamok $(P_j, \vec{l_j})$ z predošlého kroku od aktuálneho odhadu pozície bodu *S*:

$$f(S) = \sum_{j=1}^{k} [d(S, P_j, \vec{l}_j)]^2$$
(4.6)

, kde *d* je funckia počítajúca vzdialenosť bodu *S* od priamky (P, \vec{l}) :

$$d(S, P, \vec{l}) = ||(S - P) - \vec{l}(S - P) \cdot \vec{l}||$$
(4.7)

Ako ukončovacie podmienky optimalizácie používame dosiahnutú priemernú chybu menšiu ako e_{min} alebo dosiahnutý maximálny počet iterácií t_{max} .

Obr. 4.2: Vizualizácia priamok, ktoré boli vypočítané z obrázkov kalibračných objektov. Znázornený je aj bod (červený) v priestore, ktorý bol určený ako pozícia svetelného zdroja. Modrý bod znázorňuje polohu kamery, konkrétne stredu projekcie *C*. Mierka je v milimetroch.

Kapitola 5

Určovanie distribúcie svietivosti svetelného zdroja

V časti 1.5 sme popísali model svetelného zdroja, ktorého svietivosť závisí od smeru vyžarovania. V tejto kapitole prezentujeme navrhovanú metódu kalibrácie funkcie distribúcie svietivosti pre takýto svetelný zdroj. Táto metóda je súčasť ou kalibračnej fázy celkového navrhovaného riešenia a nasleduje po kalibrácii pozície svetelného zdroja. Kalibráciu distribúcie svietivosti svetelného zdroja je potrebné vykonať zakaždým, keď sa zmení vzájomná poloha kamery a svetelného zdroja. Navyše kalibráciu je potrebné vykonávať pravidelne, aby bolo možné počítať so zmenami vo vlastnostiach svetelného zdroja, v dôsledku opotrebovania.

Po vykonaní kalibračného algoritmu, ktorý tu popíšeme, budeme mať k dispozícii pre daný svetelný zdroj funkciu *h*, ktorá počíta svietivosť *i* vyžarovanú v smere vektora \vec{l} , pod ktorým dopadajú svetelné lúče na ľubovolný bod *P* v priestore:

$$i = h(\vec{l}) \tag{5.1}$$

Na realizáciu funkcie h používame v našej práci funkčný aproximátor.

Skúmali sme iné práce, ktoré riešia problematiku porovnávania svietivosti svetelných zdrojov. Niektoré práce využívajú parametre svietivosti uvedené výrobcom svietidla. Treba si však uvedomiť, že sú prípady, kedy výrobcovia svietidiel takéto údaje pre svoje výrobky neuvádzajú a aj keď uvedené sú, opotrebovaním svietidla a vplyvom externých faktorov sa môžu líšiť od reality.

Obr. 5.1: Kalibračný objekt s odrazom svietidla na lesklej ploche.

V práci (Shen and Cheng, 2011) autori namiesto svietivosti merajú osvetlenie v pozíciach blízkych k očakávanej polohe povrchu objektu pri snímaní. Svietivosť svetelného zdroja v práci (Park et al., 2014) určujú autori na základe hodnôt vyčítaných z roviny v priestore, pozícia a rotácia tejto roviny je len odhadovaná a navyše funkcia distribúcie svietivosti musí byť radiálne symetrická.

5.1 Navrhovaná metóda

Naša metóda využíva upravený kalibračný objekt, s matnou plochou na kalibračnej rovine popri plošnom vzore s význačnými bodmi O_i . Predpokladáme, že táto lesklá plocha je v tvare obdĺžnika a má vlastnosti dokonale homogénneho difúzneho materiálu. To znamená, že nevytvára priame odrazy a odrazenú energiu vieme počítať pomocou vzorcov uvedených v časti 1.4. Nech je bod O v priestore základom súradnicovej sústavy kalibračného objektu (podobne ako v kapitole 3), potom vrcholy na rohoch matnej plochy kalibračného objektu v tejto súradnicovej sústave označujeme D_1 , D_2 , D_3 a D_4 . Pre lepšiu predstavu o podobe takéhoto kalibračného objektu pozrite obrázok 5.1. Prínos našej práce spočíva v presnosti vypocitanej pozicie svetla a v navrhu pouziteho kalibracneho objektu.

Prínos našej práce spočíva hlavne v popise veľmi flexibilnej metódy na modelovanie distribúcie svietivosti svetelného zdroja a v návrhu použitého kalibračného objektu. Navyše počítané hodnoty svietivosti sa odvíjajú od reálnych hodnôt nameraných rovnakými prístrojmi ako sa používajú pri rekonštrukcii následne povrchových normál, a je teda možné zahrnúť do aproximácie mnohé vlastnosti použitých zariadení a iných externých faktorov, ktoré nie sú súčasť ou nášho modelu.

Algoritmus má dve hlavné časti:

- Zber dvojíc hodnôt (*l*, *i*) pre každý pixel *q* matnej plochy na obrázku, kde *l* je vektor, pod ktorým svetelné lúče dopadajú na bod *P* na kalibračnej rovine kalibračného objektu, ktorý prislúcha pixelu *q*.
- Kalibrácia funkčného aproximátora na základe nazbieraných dvojíc hodnôt (\vec{l}, i)

Algoritmus využíva nasledujúce parametre:

- k > 1 obrázkov kalibračného objektu, na ktorých sú rozoznateľ né všetky význačné body O_i plošného vzoru. V každom obrázku musí byť kalibračný objekt umiestnený v inej polohe vzhľ adom na kameru, pričom na rotácii nezáleží. Polohy kalibračného objektu musia byť zvolené tak, aby funkčný aproximátor bol kalibrovaný pre každý potenciálny smer dopadu svetla *l* na snímaný objekt.
- Vnútornú maticu kamery **M** a vektor koeficientov skreslenia \vec{d} z poslednej kalibrácie vnútorných parametrov kamery.
- Bod *S* z poslednej kalibrácie pozície svetelného zdroja.

5.2 Výpočet dvojíc hodnôt svietivosti a vektoru dopadu svetelného lúča

V tejto časti popisujeme postup, ako z *j*-tého obrázku získame množinu dvojíc hodnôt (\vec{l}_q, i_q) prislúchajúce každému z pixelov *q* matnej plochy kalibračného objektu na *j*-tom obrázku. Uvedieme si najprv kroky, ktoré je potrebné vykonať na každom z obrázkov:

- 1. S použitím význačných bodov O_i vypočítame vonkajšie parametre kamery (**R** a \vec{t}).
- 2. Identifikujeme matnú plochu na obrázku a odstránime zvyšok. Tento krok značne zrýchľ uje nasledujúce kroky, keď že nám dovolí pracovať s menšou časť ou obrázku. Potrebujeme vypočítať pixelové súradnice vrcholov lesklej plochy v obrázku, ktoré získame tak, že aplikujeme konverziu z časti 3.4.1 na body D₁, D₂, D₃ a D₄. Hľ adaná matná plocha sa nachádza vo výslednom štvoruholníku medzi takto vypočítanými pixelmi.
- 3. Vypočítame pre každý pixel q obrázku vektor l_q dopadu svetelného lúča a svietivosti i_q .

5.3 Výpočet svietivosti z pixelovej hodnoty

Najprv si však ako počítať vektor l_q dopadu svetelného lúča, ktorý je takisto potrebný pre výpočet hľadanej svietivosti i_q .

Aplikáciou konverzie z časti 3.4.2 na pixel q vieme získať priestorový bod P_q na matnej ploche, ktorý pixelu q prislúcha. Následne vďaka rovnici (4.1) vieme určiť vektor l_q dopadu svetelného lúča z bodu S svetelného zdroja na priestorový bod P_q .

Teraz si popíšeme ako pre každý pixel počítame hodnotu svietivosti i_q . Okrem uvedených parametrov pre pixel q poznáme hodnotu v_q pixelu v obrázku. Zo známych parametrov si dodatočne vieme odvodíť nasledujúce parametre:

- Vzdialenosť $d_q = ||P_q S||$ priestorového bodu P_q od pozície svetelného zdroja S.
- Vzdialenosť $r_q = ||P_q C|| = ||P_q||$ priestorového bodu P_q od stredu projekcie C.

Vzorec na výpočet svietivosti je založený na rovnici (1.7), ktorá popisuje vzťah medzi osvietením e_q dopadajúcim zo svetelného zdroja a jasom m_q odrazeným z pozorovanej plochy. Nech α je uhol medzi povrchovou normálou \vec{N} a vektorom dopadu svetelného lúča \vec{l}_q a nech δ je albedo. Za predpokladu, že vektory \vec{N} a \vec{l}_q sú v normalizovanom tvare, potom platí:

$$e_q \cos\left(\alpha\right) \delta \pi^{-1} = m_q \tag{5.2}$$

$$e_q \vec{l}_q \cdot \vec{N} \delta \pi^{-1} = m_q \tag{5.3}$$

Osvietenie e_q vieme na základe zákona inverzného štvorca uvedeného v časti 1.2 vyjadriť

nasledovne:

$$e_q = \frac{i_q}{d_q^2} \tag{5.4}$$

Nech i'_q je svietivosť odrážaná smerom k stredu projekcie *C*, β je uhol medzi povrchovou normálou \vec{N} a vektorom odrazeného svetelného lúča l'_q , e'_q je osvietenie dopadajúce na stred projekcie *C* a g' je koeficient radiometrickej odozvy z časti 2.3, potom jas m_q vieme vyjadriť následovne:

$$m_q = \frac{i'_q}{\cos\left(\beta\right)} \tag{5.5}$$

$$m_q = \frac{e'_q r_q^2}{\cos\left(\beta\right)} \tag{5.6}$$

$$m_q = \frac{v_q g' r_q^2}{\cos\left(\beta\right)} \tag{5.7}$$

$$m_q = \frac{v_q g' r_q^2}{\vec{N} \cdot l'_q} \tag{5.8}$$

Ked' rovnice (5.4) a (5.8) dosadíme do rovnice (5.3) dostávame rovnosť:

$$\frac{i_q}{d_q^2} \vec{l}_q \cdot \vec{N} \delta \pi^{-1} = \frac{v_q g' r_q^2}{\vec{N} \cdot l'_q}$$
(5.9)

z ktorej si vieme odvodiť vzorec pre výpočet osvietenia i_q :

$$i_q = \frac{v_q g' r_q^2 d_q^2 \pi}{\vec{N} \cdot l'_q \vec{l}_q \cdot \vec{N} \delta}$$
(5.10)

Tento vzorec vieme zjednodušiť ak odstránime všetky koeficienty, ktoré sú spoločné pre všetky pixely a všetky svetelné zdroje. Do tejto skupiny patria nasledovné parametre:

- Koeficient radiometrickej odozvy g', ktorý je rovnaký pre všetky obrázky.
- Konštanta π .
- Albedo δ, keď že matná plocha je z homogénneho materiálu a teda vstrebáva rovnakú časť dopadajúcej svetelnej energie.

Konečná podoba vzorca pre výpočet svietivosti i_q je teda:

$$i_q = \frac{v_q r_q^2 d_q^2}{\vec{N} \cdot l'_q \vec{l}_q \cdot \vec{N}}$$
(5.11)

5.3.1 Navrhnutý funkčný aproximátor

Nech $f : \mathbf{R}^2 \to \mathbf{R}$ je spojitá funkcia a máme k dispozícii množinu *W* trojíc hodnôt $w = (x_i, y_i, f(x_i, y_i))$. Pre dvojicu hodnôt *x* a *y* vieme určiť aproximáciu *v* hodnoty f(x, y), ak platí:

$$\exists i_1, i_2, i_3, i_4 : (x_{i_1}, y_{i_1}, v_{i_1}), (x_{i_2}, y_{i_2}, v_{i_2}), (x_{i_3}, y_{i_3}, v_{i_3}), (x_{i_4}, y_{i_4}, v_{i_4}) \in W$$
(5.12)

$$x_{i_1} \le x \le x_{i_2} \quad \land \quad y_{i_3} \le y \le y_{i_4} \tag{5.13}$$

pričom neexistuje iná trojica $w_j = (x_j, y_j, f(x_j, y_j)) \in W$ taká, ktorej hodnota x_j je bližšie ku x než x_{i_1} a x_{i_2} a ani ktorej hodnota y_j je bližšie ku y než y_{i_3} a y_{i_4} . Ak je predošlá podmienka splnená, hodnotu v počítame *bilineárnou interpoláciou* z trojíc $w_{i_1}, w_{i_2}, w_{i_3}$ a w_{i_4} .

Aby sa v množine *W* hľadalo jednoduchšie sú trojice hodnôt $w \in W$ usporiadané do dvojrozmernej matice **W** tak, že trojica $w_{i,j} = (x_{i,j}, y_{i,j}, v_{i,j})$ leží v *i*-tom riadku a *j*-tom stĺpci, a platia nasledovné pravidlá:

- Trojice sú v riadku usporiadané podľa hodnoty x.
- Trojice sú v stĺpci usporiadané podľa hodnoty y.
- V každom riadku majú trojice vždy rovnakú hodnotu y.
- V každom stĺpci majú trojice vždy rovnakú hodnotu x.
- Pre každé dva susedné stĺpce platí $d = x_{i,j} x_{i,j+1}$.
- Pre každé dva susedné riadky platí $d = y_{i,j} y_{i+1,j}$.

Hodnota *d* je rovnaké pre celú maticu a nazývame je *vzdialenosť interpolácie*. Definujeme x_{min} ako hodnotu $x_{i,j}$ v najľ avejšom stĺpci, x_{max} ako hodnotu $x_{i,j}$ v najpravejšom stĺpci, y_{min} ako hodnotu $y_{i,j}$ v najvrchnejšom riadku a y_{max} ako hodnotu $y_{i,j}$ v najspodnejšom riadku.

Na to, aby sme mohli takýto funkčný aproximátor použiť požívame dvojicu uhlov ψ_u a ψ_v na jedinečnú reprezentáciu každého vektoru dopadu svetla $\vec{l} = (l_x, l_y, l_z)$ v normálnom tvare, pričom platí:

$$\psi_u = \arctan\left(l_x, l_y\right) \tag{5.15}$$

$$\psi_{v} = \arctan\left(l_{z}, \sqrt{l_{x}^{2}, l_{y}^{2}}\right)$$
(5.16)

funkcia tan⁻¹, ktorá počíta uhol len na základe pomeru protiľahlej a priľahlej strany vracia hodnoty z intervalu ($-\pi/2, \pi/2$). Používame preto funkciu arctan s dvoma parametrami, ktorá berie do úvahy znamienka jednotlivých strán a teda vracia hodnoty v intervale [$-\pi, \pi$]. Pre lepšiu predstavu o vzťahu medzi uhlami ψ_u , ψ_v a normalizovaným vektorom \vec{l} pozrite obrázok

V našom použití nesú trojice hodnoty (ψ_u, ψ_v, i), kde prvé dve sú uhly prislúchajúce nejakému vektoru dopadu svetla \vec{l} a *i* je vypočítaná svietivosť svetelného zdroja prislúchajúca takémuto vektoru. Parametre matice **W** sú určené pred spustením kalibrácie. Hraničné hodnoty $x_{i,j}$ a $y_{i,j}$ sú určené podľa hraničných hodnôt uhlov ψ_u a ψ_v , teda:

$$x_{min} = y_{min} = -\pi \tag{5.17}$$

$$x_{max} = y_{max} = \pi \tag{5.18}$$

Vzdialenosť interpolácie d je voliteľ ná a jej hodnota určuje veľ kosť matice **W**. Čím väčšia je matica **W** tým sa zvyšuje rozlišovacia schopnosť aproximátora ale potenciálne aj náchylnosť na šum.

Pri kalibrácii je potrebné nastaviť hodnoty $v_{i,j}$ v matici **W** na základe nazbieraných dvojíc vektorov dopadu svetelného lúča l_q a svietivosti i_q . Každej takejto dvojici priradíme riadok *i* a stĺpec *j*, ktorého hodnoty $x_{i,j}$ a $y_{i,j}$ sú najbližšie uhlom ψ_u a ψ_v , ktoré prislúchajú vektoru l_q . Na konci algoritmu je každá hodnota $v_{i,j}$ rovná aritmetickému priemeru všetkých hodnôt svietivostí i_q , ktorým bol priradený riadok *i* a stĺpec *j*.

Kapitola 6

Fotometrické stereo

Fotometrické stereo je metóda na počítanie povrchových normál snímaného objektu v priestore. Tie je možné následne integrovať a použiť na výpočet vzdialeností povrchových bodov snímaného objektu od kamery a teda vytvoriť 3D rekonštrukciu viditeľ ného povrchu.

Fotometrické stereo využíva znalosti z oblasti fotometrie, ktoré popisujú množstvo svetelnej energie odrazené z povrchu snímaného objektu na počítanie povrchovej normály pre každý pixel obrázku zvlášť. Výsledný algoritmus je teda možné počítať pre každý bod obrázku.

Prvýkrát bolo fotometrické stereo navrhnuté v práci (Woodham, 1980). Išlo o rozšírenie staršej metódy, nazývanej *Shape from Shading*, ktorá využívala jeden obrázok osvetlený d'alekým svetelným zdrojom na rekonštrukciu povrchových normál. Fotometrické stereo využíva $k \ge 3$ obrázkov, kde je snímaný objekt v scéne osvetlený jedným zdrojom svetla. Vo všetkých obrázkoch musí byť vzájomná poloha pozorovateľ a a snímaného objektu rovnaká. V každom obrázku musia na povrch snímaného objektu dopadať svetelné lúče z iného smeru. Toto vieme dosiahnuť buď zmenou polohy svetelného zdroja alebo použitím viacerých svietidiel v rôznych pozíciach, pričom v každom obrázku je zapnutý práve jeden z nich.

Od prvého návrhu vznikli mnohé práce, ktoré rozširovali základnú metódu v snahy zvyšovať kvalitu výsledkov a využiteľ nosť v rôznych oblastiach. Všetky tieto práce sa však opierajú o základnú metódu, ktorá bola predstavená v práci (Woodham, 1980).

6.1 Vlastnosti základnej metódy

Toto základné fotometrické stereo využíva niekoľko predpokladov na zjednodušenie výpočtu:

- Využíva ortogonálnu projekciu, kde bodu P = (X, Y, Z) prislúcha na obrázku pixel q = (X, Y).
- V *j*-tom obrázku dopadajú svetelné lúče na snímaný povrch pod rovnakým vektorom *l_j*.
- Na všetky body vo všetkých obrázkoch dopadá rovnaké osvetlenie *e* = 1 na povrch objektu.
- Povrchový materiál snímaného objektu je dokonale difúzny.
- Hodnota obrázku v_q v pixeli q = (X, Y) prislúha jasu m_P v bode P = (X, Y, Z)

Za týchto predpokladov vieme pre každý obrázok definovať mapovanie *R* (*Reflectance Map*) medzi povrchovou normálou \vec{N} a jasom \vec{m} , pre ktoré platí:

$$v_q = R(\vec{N}) = m_P \tag{6.1}$$

kde q = (X, Y) je pixel v obrázku a P = (X, Y, Z) je priestorový bod, ktorý mu prislúcha.

Keď že vzájomná poloha kamery a scény je konštantná dostávame pre *k* obrázkov sústavu rovníc:

$$v_{1_q} = R_1(\vec{N}) = m_{1_P} \tag{6.2}$$

$$v_{2_q} = R_2(\vec{N}) = m_{2_P} \tag{6.3}$$

$$v_{k_q} = R_k(\vec{N}) = m_{k_P} \tag{6.5}$$

Vo všeobecnosti si za mapovanie R môžeme definovať ľubovolné zobrazenie. Dokonca je možné ho počítať na základe BRDF (Horn and Sjoberg, 1979). My však uvažujeme dokonale difúzne objekty a preto vieme za R_i dosadiť veľmi jednoduchý vzťah:

$$R_k(\vec{N}) = \vec{N} \cdot \vec{l}_j \delta \tag{6.6}$$

kde δ je albedo.

Dosadením predošlej rovnic do už spomínanej sústavy rovníc dostávame sústavu lineárnych rovníc:

$$\mathbf{I} = \mathbf{L} \cdot \vec{N} \boldsymbol{\delta} \tag{6.7}$$

(6.8)

kde

$$\mathbf{I} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_k \end{bmatrix} \mathbf{L} = \begin{bmatrix} \vec{l}_1^T \\ \vec{l}_2^T \\ \vdots \\ \vec{l}_k^T \end{bmatrix}$$
(6.9)

Za predpokladu, že pre $k \ge 3$ obrázkov existuje pseudo-inverzná matica L^+ k matici L (Woodham, 1980), potom existuje riešenie uvedenej sústavy lineárnych rovníc pre povrchovú normálu \vec{N} :

$$\mathbf{I} = \mathbf{L} \cdot \vec{N} \boldsymbol{\delta} \tag{6.10}$$

$$\bar{N}\delta = \mathbf{L}^+ \mathbf{I} \tag{6.11}$$

keď že nás zaujíma normalizovaný tvar normálového vektora \vec{N} , vieme sa nasledovne zbaviť albeda δ :

$$\vec{N} = \frac{\vec{N}\delta}{||\vec{N}\delta||} \tag{6.12}$$

Všimnime si, že na výpočet povrchovej normály nám stačili lokálne hodnoty prislúchajúce jednému pixelu. To znamená, že je možné výpočet robiť paralelne. Toto je jedna z hlavných výhod fotometrického sterea oproti iným metódam, keď že umožňuje veľ mi rýchlu povrchovú rekonštrukciou.

Ďalšími výhodami sú nízke hardwarové nároky (jedna digitálna kamera a aspoň tri svietidlá). Vo všeobecnosti je fotometrické stereo vhodné v prípadoch:

- Keď je možné regulovať externé zdroje svetla.
- Keď je snímaný materiál dokonale difúzny.
- Keď snímaný objekt nevytvára priame odrazy a nevrhá tiene na svoj povrch.

6.2 Navrhnuté rozšírenia

Je potrebné si uvedomiť nevýhody základnej metódy, ktoré vyplývajú z jej predpokladov. Zjednodušenia ako sú napríklad ortogonálna projekcia, uniformné svetelné lúče \vec{l}_j a uniformné osvetlenie e = 1 znemožňujú využívanie fotometrického sterea na snímanie objektov, ktoré sú relatívne blízke ku kamere a svetelným zdrojom. Dôvodom je, že vtedy narastajú rozdiely v energii a smere svetla, ktoré dopadá na snímané povrchy. Ako sme už spomínali existujú mnohé rozšírenia pre fotometrické stereo, ktoré sa snažia tieto a iné problémy riešiť.

Už v práci (Woodham, 1980) bolo navrhnuté použitie farebných svetiel a farebnej digitálnej kamery. Pri správnej kalibrácii je možné mať všetku informáciu potrebnú na rekonštrukciu zakódovanú v jednom RGB obrázku (farebný obrázok, kde každému pixelu je priradená hodnota pre červenú, zelenú a modrú farbu). Tento postup bol využitý v práci (Fyffe et al., 2011), kde autori riešili problémy súvisiace s viacfarebnými povrchmi.

Väčšina prác, ktoré sa snažia riešiť problémy súvisiace s tieňmi a priamymi odleskmi využívajú $k \ge 4$ svetiel. Keď detegujú tieň alebo odlesk v jednom obrázku tak pre ovplyvnené pixely ho odstránia a povrchovú normálu počítajú zo zvyšných hodnôt. Takýto postup nájdeme v prácach (Dulac et al., 2014) a (Barsky and Petrou, 2003).

V práci (Tankus and Kiryati, 2005) sa autor snaží odvodiť vzorec pre výpočet povrchových normál pri perspektívnej projekcii namiesto ortogonálnej. Práca (Xie et al., 2015b) skúma možnosti pre výpočet vektorov dopadajúceho svetla pre bodové svetelné zdroje. Pokusy zahrnúť zákon inverzného štvorca na lepšiu aproximáciu dopadajúceho osvetlenia vidíme v práci (Xie et al., 2015a). V mnohých prípadoch sa autori snažili modelovať nelambertovské materiály ako kombináciu difúzneho a spekulárneho odrazu. Toto môžeme vidieť v práci (Li and Shi, 2015), (Chung and Jia, 2008) a (Mecca et al., 2015).

6.3 Výpočet povrchových normál

V našej metóde naď alej predpokladáme, že povrchový materiál je dokonale difúzny. Druhým predpokladom je, že vieme odhadnúť pozíciu každého bodu na snímanom povrchu a to cez odhad približnej vzdialenosti snímaného objektu od kamery. Je dôležité poznamenať, že stačí veľ mi hrubý odhad na dosiahnutie výrazného zlepšenia oproti základnej metóde.

Na druhej strane naša metóda predpokladá perspektívnu projekciu, neuniformné svetelné lúče a neuniformné osvetlenie. Naša metóda je zameraná na minimalizáciu chýb pri počítaní povrchových normál, ktoré sa prejavujú pri objektoch porovnateľ nej veľ kosti k ich vzdialenosti od kamery a svetelných zdrojov. V našej metóde sa opierame o informácie získané z predošlých kalibrácii kamery a svetelných zdrojov, ktoré nám pomáhajú využívať realistický model.

V nasledujúcich výpočtoch sa budeme vo všetkých *k* obrázkoch pozerať na pixel *q*, ktorému prislúcha priestorový bod *P*.

Z kalibrácie svetelných zdrojov máme k dispozícii parametre:

- Pozícia S_i j-tého svetelného zdroja.
- Funkcia distribúcie svietivosti h_i j-tého svetelného zdroja.

Pre každý svetelný zdroj máme jeden obrázok scény. Pre každý pixel *q* na vstupných obrázkoch máme k dispozícii nasledujúce parametre:

- Odhadovaná pozícia P* bodu P v priestore, ktorý sa premietne do pixelu q.
- Celočíselná hodnota pixelu v_j v j tom obrázku.

Zo známych parametrov si dodatočne odvodíme nasledujúce parametre:

- Vzdialenosť $d_j = ||P * -S_j||$ priestorového bodu P * od pozície svetelného zdroja S_j .
- Vzdialenosť r = ||P * C|| = ||P * || priestorového bodu P* od stredu projekcie C.
- Vektor l_j = P*-S_j/d_j pod ktorým dopadá svetelný lúč z j-tého svetelného zdroja na priestorový bod P*.

Náš vzorec na výpočet povrchovej normály je založený na rovnosti (5.9), ktorú sme použili pri kalibrácii funkcie distribúcie svietivosti a ktorá zahŕňa všetky vlastnosti svetla a kamier, ktoré v našej práci modelujeme:

$$\frac{h_{j}(\vec{l}_{j})}{d_{j}^{2}}\vec{l}_{j}\cdot\vec{N}\delta\pi^{-1} = \frac{v_{j}g'r^{2}}{\vec{N}\cdot l'_{q}}$$
(6.13)

$$v_j = \frac{h_j(\vec{l}_j)\vec{l}_j \cdot \vec{N}\vec{N} \cdot \vec{l}'\delta}{d_i^2 \pi g' r^2}$$
(6.14)

Tento vzorec sa pokúsime zjednodušiť tým, že si zadefinujeme nový skalár δ' , do ktorého

skryjeme skalárne parametre, ktoré sú spoločné pre všetky obrázky:

$$v_j = \frac{h_j(\vec{l}_j)\vec{l}_j \cdot \vec{N}\delta'}{{d_j}^2}$$
(6.15)

(6.16)

kde

$$\delta' = \frac{\delta \vec{N} \cdot \vec{l'}}{g' r^2 \pi} \tag{6.17}$$

Zapíšeme odvodený vzťah ako sústavu lineárnych rovníc v maticovom tvare a odvodíme vzorec pre výpočet povrchovej normály:

$$\mathbf{E}\mathbf{L}\vec{N}\boldsymbol{\delta}' = \mathbf{I} \tag{6.18}$$

$$(\mathbf{EL})^{+}(\mathbf{EL})\vec{N}\delta' = (\mathbf{EL})^{+}\mathbf{I}$$
(6.19)

$$\vec{N}\delta' = (\mathbf{E}\mathbf{L})^+\mathbf{I} \tag{6.20}$$

kde

$$\mathbf{I} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_k \end{bmatrix} \mathbf{E} = \begin{bmatrix} \frac{h_1(\vec{l}_1)}{d_1^2} \\ \frac{h_2(\vec{l}_2)}{d_2^2} \\ \vdots \\ \frac{h_k(\vec{l}_k)}{d_k^2} \end{bmatrix} \mathbf{L} = \begin{bmatrix} \vec{l}_1^T \\ \vec{l}_2^T \\ \vdots \\ \vec{l}_k^T \end{bmatrix}$$
(6.21)

Opäť, keď že nás zaujíma normalizovaný tvar normálového vektora \vec{N} , vieme sa nasledovne zbaviť skaláru δ' :

$$\vec{N} = \frac{\vec{N}\delta'}{||\vec{N}\delta'||} \tag{6.22}$$

Kapitola 7

Experimenty

V tejto časti popíšeme experimenty, ktorých účelom je overiť korektnosť a kvalitu nami navrhovanej a implementovanej metódy rekonštrukcie povrchových normál snímaného objektu. Experiment je rozdelený na štyri časti, v každej z nich testujeme kvalitu rekonštrukcie inej varianty fotometrického sterea. V každej variante postupne pridávame ď alšie rozšírenie modelu interakcie svetla s prostredím počnúc základnou metódou a končiac metódou, ktorú sme popísali v predošlej kapitole. Týmto chceme nielen predviesť kvalitu nášho konečného riešenia ale takisto dokázať, že každý z navrhovaných modifikácii základnej metódy má pozitívny vplyv na výsledok výpočtu.

Experiment bol vykonaný v zariadení, ktoré používa štyri svetelné zdroje ležiace na rovine okolo kamery, ktorá je umiestnená v ich strede. Pred spustením rekonštrukčného algoritmu sme najprv vykonali kalibráciu vnútorných parametrov kamery. Následne sme vykonali kalibráciu pozície pre každý svetelný zdroj a nakoniec sme vykonali kalibráciu distribúcie svietivosti pre každý svetelný zdroj.

V experimentoch pracujeme s obrázkami kalibračného objektu s matnou plochou, ktorý je rôzne umiestnený v snímanom priestore. Experiment sme vykonali na 5-tích polohách kalibračného objektu, pričom pre každú máme 4 obrázky (jeden pre každý svetelný zdroj). Vďaka význačným bodom na plošnom vzore vieme pre každú polohu vykonať kalibráciu vonkajších parametrov, pomocou ktorej si vieme vypočítať povrchovú normálu kalibračnej roviny $\vec{N*}$.

Každej variante fotometrického sterea dávame rovnaké vstupy a necháme ju počítať povrchové

normály \vec{N} bodov na matnej ploche. Keď že matná plocha leží na kalibračnej rovine a teda očakávame, že vypočítané povrchové normály budú rovnaké. Budeme takisto používať vektor $\vec{N}*$ ako kontrolnú hodnotu podľ a ktorej počítame veľ kosť uhlovej chyby.

Pre každú variantu nás budú zaujímať nasledujúce výsledky:

- Priemerná uhlová chyba pre všetky vstupy.
- Maximálna uhlová chyba pre všetky vstupy.
- Obrázok znázorňujúci uhlové chyby pre každý vstup.
- Obrázok znázorňujúci povrchovú normálu zafarbením jej súradníc.

7.1 Základná metóda

Tu sa snažíme emulovať základné fotometrické stereo ako bolo popísané v práci (Woodham, 1980). Počítame s uniformným vektorom dopadu svetla \vec{l} a uniformným dopadajúcim osvetlením *e* pre každý zo štyroch obrázkov. Priemerná uhlová chyba pre tento experiment je **21,61**°

7.2 Metóda s kalibráciou pozície svetelných zdrojov

Tu sa snažíme emulovať práce, ktoré využívajú kalibráciu pozície svetelného zdroja na určenie vektorom dopadu svetla $\vec{l_P}$ pre každý bod obrázku. Dopadajúce osvetlenie *e* ostáva naďalej

uniformné pre každý zo štyroch obrázkov. Priemerná uhlová chyba pre tento experiment je **14,37**°, čo je 33,50% zlepšenie oproti predošlej metóde (rozdiel 7.24°)

7.3 Metóda so vplyvov vzdialenosti na dopadajúce osvietenie

K predošlému modelu pridávame redukciu dopadajúceho osvetlenia v závislosti od vzdialenosti medzi bodom *P* na matnej ploche a pozíciou svetelného zdroja *S*. Priemerná uhlová chyba pre tento experiment je **7,52**°, čo je 47,67% zlepšenie oproti predošlej metóde (rozdiel 6.85°)

7.4 Metóda s kalibráciou distribúcie svietivosti svetelných zdrojov

Táto varianta fotometrického sterea je ekvivalentná tej, ktorú sme popísali na konci predošlej kapitoly. K predošlému modelu pridávame funkciu distribúcie svietivosti pre každý zo štyroch obrázkov. Priemerná uhlová chyba pre tento experiment je **3,59**°, čo je 52,26% zlepšenie oproti predošlej metóde (rozdiel 3.93°)

Na základe experimentu môžeme konštatovať, že priemerná uhlová chyba našej metódy je **6,02** krát menšia než priemerná uhlová chyba v základom fotometrickom stereu.

Kapitola 8

Diskusia

V určovaní pozície svetla sme dosiahli lepšie výsledky ako väčšina iných prác, ktoré sa touto problematikou zaoberajú. Jediná práca, ktorá naše výsledky prekonala je práca (Shen and Cheng, 2011).

V určovaní svietivosti svetelného nie je l'ahké porovnať naše výsledky, keď že je celkovo mál Ako je uvedené na závere predošlej kapitoly vď aka výsledkom kalibračného algoritmu sa nám podarilo dosiahnuť až 6 násobné zlepšenie oproti základnému fotometrickému stereu.

Mnohé práce, ktoré sa problematikou . Ostatné práce sa zameriavali na iné podproblémy ako je odstraňovanie tieňov a priamych odrazov, či modelovanie.

Záver

V práci sme sa venovali problematike fotometrického sterea a počítania povrchových normál. Skúmali sme do hĺbky teoretické znalosti z oblastí optiky, fotometrie a počítačovej grafiky, na ktorých je fotometrické stereo založené.

Podarilo sa nám navrhnúť kalibračný algoritmus, ktorý nám umožňuje s vysokou presnosť ou počítať polohu a svietivosť svetelného zdroja. Na modelovanie distribúcie svietivosti využívame vlastný funkčný aproximátor. Navrhli sme takisto vlastný algoritmus na počítanie povrchových normál, ktorý je založený na fotometrickom stereu a využíva informácie z kalibračného algoritmu.

Naša práca je doposial' prvá, ktorá integruje pozíciu, distribúciu svietivosti a perspektívnu projekciu do jedného algoritmu, ktorý počíta povrchové normály.

Oba navrhované algoritmy sme na záver implementovali a testovali na reálnych dátach. V experimentoch sme ukázali až šesť násobné zlepšenie v presnosti vypočítaných povrchových normál oproti základnému fotometrickému stereu. To spĺňa hlavnú požiadavku stanovenú v cieľ och práce a to maximalizácia presnosti počítaných povrchových normál.

V našej aktuálnej metóde najviac času zaberá zber vstupných obrázkov. Chceli by sme sa preto v budúcnosti venovať problematike viacfarebného fotometrického sterea, v ktorom sa používajú jednofarebné svietidlá a je tak možné mať všetky vstupy zakódované v jednom obrázku.

Literatúra

- Jahanzeb Ahmad, Jiuai Sun, Lyndon Smith, and Melvyn Smith. An improved photometric stereo through distance estimation and light vector optimization from diffused maxima region. *Pattern Recognition Letters*, 50:15–22, 2014.
- Takahito Aoto, Takafumi Taketomi, Tomokazu Sato, Yasuhiro Mukaigawa, and Naokazu Yokoya. Position estimation of near point light sources using a clear hollow sphere. In *ICPR*, pages 3721–3724, 2012.
- Svetlana Barsky and Maria Petrou. The 4-source photometric stereo technique for threedimensional surfaces in the presence of highlights and shadows. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 25(10):1239–1252, 2003.
- Gary Bradski and Adrian Kaehler. *Learning OpenCV: Computer vision with the OpenCV library*. O'Reilly Media, Inc., 1st edition, 2008.
- Hin-Shun Chung and Jiaya Jia. Efficient photometric stereo on glossy surfaces with wide specular lobes. In *Computer Vision and Pattern Recognition*, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.
- Viliam Dillinger. Kontrola farebného značenia na gumených poloproduktoch. Rigorózna práca, 2015.
- C BROWN Duane. Close-range camera calibration. *Photogrammetric engineering*, 37(8): 855–866, 1971.
- Amina Dulac, Sandy Martedi, Hideo Saito, Kouichi Tezuka, and Masayoshi Shimizu. Combination method: photometric stereo with shadows. Proc. 2014 Irish Machine Vision and Image Processing (IMVIP2014), pages 137–142, 2014.

Graham Fyffe, Xueming Yu, and Paul Debevec. Single-shot photometric stereo by spectral

multiplexing. In *Computational Photography (ICCP), 2011 IEEE International Conference on*, pages 1–6. IEEE, 2011.

- Kenji Hara, Ko Nishino, and Katsushi Ikeuchi. Determining reflectance and light position from a single image without distant illumination assumption. In *Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on*, pages 560–567. IEEE, 2003.
- Hideki Hayakawa. Photometric stereo under a light source with arbitrary motion. *JOSA A*, 11 (11):3079–3089, 1994.
- Berthold KP Horn and Robert W Sjoberg. Calculating the reflectance map. *Applied optics*, 18(11):1770–1779, 1979.
- Reinhard Klette and Ryszard Kozera. Shape from shading and photometric stereo methods. Technical report, CITR, The University of Auckland, New Zealand, 1998.
- Si Li and Boxin Shi. Photometric stereo for general isotropic reflectances by spherical linear interpolation. *Optical Engineering*, 54(8):083104–083104, 2015.
- R Mecca, E Rodolà, and D Cremers. Realistic photometric stereo using partial differential irradiance equation ratios. *Computers & Graphics*, 51:8–16, 2015.
- Roberto Mecca, Aaron Wetzler, Ron Kimmel, and Alfred Bruckstein. Direct shape recovery from photometric stereo with shadows. In *3D Vision-3DV 2013, 2013 International Conference on*, pages 382–389. IEEE, 2013.
- Tomoo Mitsunaga and Shree K Nayar. Radiometric self calibration. In *Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on.*, volume 1. IEEE, 1999.
- Wiennat Mongkulmann, Takahiro Okabe, and Yoichi Sato. Photometric stereo with autoradiometric calibration. In *Computer Vision Workshops (ICCV Workshops)*, 2011 IEEE International Conference on, pages 753–758. IEEE, 2011.
- OpenCV. Opencv open source computer vision documentation, 2016. URL http: //docs.opencv.org/3.1.0/#gsc.tab=0. [Online; accessed 3-May-2016].
- Jaesik Park, Sudipta Sinha, Yasuyuki Matsushita, Yu-Wing Tai, and In Kweon. Calibrating a non-isotropic near point light source using a plane. In *Proceedings of the IEEE Conference* on Computer Vision and Pattern Recognition, pages 2259–2266, 2014.

- Hui-Liang Shen and Yue Cheng. Calibrating light sources by using a planar mirror. *Journal* of *Electronic Imaging*, 20(1):013002–013002, 2011.
- Richard Szeliski. *Computer vision: algorithms and applications*. Springer Science & Business Media, 1st edition, 2010. ISBN 1848829345, 9781848829343.
- Ariel Tankus and Nahum Kiryati. Photometric stereo under perspective projection. In *Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on*, volume 1, pages 611–616. IEEE, 2005.
- Alma EF Taylor et al. Illumination fundamentals. *Lighting Research Center, Rensselaer Polytechnic Institute*, 2000.
- Anton Štrba, Vladimír Mesároš, and Dagmar Senderáková. *Svetlo (vlny, lúče, fotóny)*. Enigma publishing s.r.o., 2011.
- Martin Weber and Roberto Cipolla. A practical method for estimation of point light-sources. In *BMVC*, pages 1–10, 2001.
- Robert J Woodham. Photometric method for determining surface orientation from multiple images. *Optical engineering*, 19(1):191139–191139, 1980.
- Ying Wu. Radiometry, brdf and photometric stereo. Učebné materiály k lekcii, 2015.
- Limin Xie, Zhan Song, Guohua Jiao, Xinhan Huang, and Kui Jia. A practical means for calibrating an led-based photometric stereo system. *Optics and Lasers in Engineering*, 64: 42–50, 2015a.
- Wuyuan Xie, Chengkai Dai, and Charlie CL Wang. Photometric stereo with near point lighting: A solution by mesh deformation. In *Computer Vision and Pattern Recognition* (CVPR), 2015 IEEE Conference on, pages 4585–4593. IEEE, 2015b.
- Zhengyou Zhang. A flexible new technique for camera calibration. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 22(11):1330–1334, 2000.
- Elena Šikudová, Zuzana Černeková, Wanda Benešová, Zuzana Haladová, and Júlia Kučerová. *Počítačové videnie: Detekcia a rozpoznávanie objektov.* Wikina, 1st edition, 2013.