Faculty of Mathematics, Physics and Informatics
Comenius University

Master’s Thesis

2005 Anton Vasko

Anton Vasko
SIMD Optimization in Volume Rendering

Master’s Thesis

supervised by

Doc. Dr. techn. Ing. Milos Sramek

Department of Computer Graphics and Image Processing
Faculty of Mathematics, Physics and Informatics
Comenius University
Bratislava

I honestly declare that I wrote this Master’s Thesis independently only with the help of
listed literature.

Bratislava, 29th April 2005 Anton Vasko

I would like to thank my consultant Doc. Dr. techn. Ing. Milos Srdamek for his valuable
advices, comments and suggestions.

Contents

1 Summary
R N
1.2 Abstract

2 Background
2.1 Basic Concepts
2.2 Software Volume Rendering L.
221 Brute Force
2.2.2 Efficient Ray Tracing L.
2.2.3 Shear-Warp Factorization
2.2.4 Multiresolution Min-Max Octrees
2.2.5 Parallel Ray Casting
2.3 Hardware Volume Rendering
24 Conclusion

3 SIMD
3.1 Theoretical SIMD
3.1.1 MMX .,
3.1.2 SSE . ..
3.1.3 SSE2
3.1.4 SSE3
3.1.5 3DNow!
3.2 Practical SIMD
3.2.1 MMX . .
3.2.2 SSE . ..
3.2.3 3DNow! . . .
3.3 Conclusion

4 SIMD Optimization in Volume Rendering
4.1 Software Specification

10

11
11
13
13
13
15
17
17
18
19

20
20
21
22
23
24
25
25
26
27
29
31

32

4.1.1 Implementation Notes, 33

4.2 General Optimization 33
4.3 Bricking 35
4.4 VR Pipeline 36

4.4.1 Entry Point Buffer 37

4.4.2 Ray Initialization oo 0 38

4.4.3 Accumulation 39
4.5 Conclusion 40
Results 41
5.1 Brickingo 43
5.2 Entry Point Buffer oo 44
5.3 Ray Initialization o 45
54 Accumulation 46
5.5 Conclusion 47
5.6 Future work Lo 48

List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1

Standard volume rendering pipeline 12
Hierarchical spatial enumeration 14
Shear-warp for parallel projection 15
Shear-warp for perspective projection 16
Blocks grouping 18
3D Textures L 19
Comparison of SISD and SIMD 21
MMX registers 21
MMX data types 22
Vertical vs horizontal computation model 24
SSE3 instruction addsubpso Lo 24
Scalar and packed SSE instructions 28
Volume layouts 35
Volume rendering pipeline oo 37
A Screenshot from the testing program 42

List of Tables

5.1
5.2
9.3
5.4
9.5
0.6
5.7
5.8
5.9

PCs used for testingo 41
Impact of Bricking on Calculation Times 43
Transforming cube vertices 45
Optimization of stage EPB 0L 45
Impact of the INIT_RAYS BATCH parameter. 45
Optimization of the Ray Initialization stage 46
SIMD optimization of the Accumulation stage 46
Three versions of Accumulation stage L. 47
Total rendering times L 47

Chapter 1

Summary

1.1 Aim

Information (data) in the contemporary world is often more valuable than gold. The most
common 3D data (volume data) is from computed tomography or magnetic resonance.
Such data (if we are capable to process and read them quickly enough) can help doctors
by diagnosing without invasive surgery. We can thus see that it is very important to do
quick and precise visualisation of 3D data.

Problem, arising when we want to visualize medical 3D data, is its size (512 x 512 x 512 x
16bit = 256 MB !) and expensive calculations during rendering. Therefore, the interactive
visualization of 3D data was at the beginning impossible.

The aim of this work is to investigate whether the SIMD capabilities, that are commonly
available on the most of currently widespread processors, can decrease the volume rendering
times.

According to the Moor’s law the processor’s speed is doubled every 18 months. The
processor’s power is thus rapidly growing from year to year. But along with processor’s
power grows also our demand for quicker and more accurate visualisation of 3D data that
are also permanently growing in size. Nowadays, we can observe, that also GPUs’ power
grows very fast. The incredible power of current GPUs lies mostly in their vertex and pixel
shaders. Volume rendering can be also implemented with use of the recent GPUs. In this
work we would like to find out whether SIMD optimized volume rendering can beat GPU
accelerated volume rendering. So we will answer the following question:

“T'O DO OR NOT TO DO THE SIMD OPTIMIZATION IN VOLUME
RENDERING?”

1.2 Abstract

We will implement software and hardware optimized volume rendering algorithm. There-
fore, Chapter 2 includes some theoretical background in the area of volume rendering and
description of several volume rendering algorithms, together with some software optimiza-
tion techniques. In this case, under the term "hardware optimization’” we do not mean
volume rendering using the modern GPU, but optimization using the CPU extensions
(3DNow!, SSE). Chapter 3 describes the basic principles of SIMD optimization that are
later in Chapter 4 applied to volume rendering . Chapter 5 discusses results obtained us-
ing this implementation. Here we finally answer the question put forward in this Master’s
Thesis and sketch the possible future work.

10

Chapter 2

Background

This chapter introduces the basic concepts of volume rendering and gives a brief overview
of some important software volume rendering algorithms.

2.1 Basic Concepts

In computer graphics we often work with 2D images. 2D image (picture of mostly square or
rectangle shape) is 2D array consisting of small elements called pixels (for picture elements).
3D arrays of voxels (volume elements) like a cube or a box are a 3D analogy of 2D images.
They are also called volume data. But like the 2D image has not necessarily to be of a
rectangular shape, the volume data could be treated more generally.

We can think of the volume data as sampled scalar functions of three spatial dimensions.
This kind of data typically arises e.g. in medical imaging (Computer Tomography — CT,
Magnetic Resonance Imaging — MRI, Emission-Computed Tomography — ECT ...). To
visualize it we can choose from two basic techniques:

1. Surface Rendering
With this technique we try to fit geometric primitives (triangles) to the sampled data.
The main disadvantages of this approach are (see [3], p.29):

e the model is separated from the original data and thus a great deal of information
is lost,

e a large number of polygons (& 10°) is necessary to approximate a surface of
even medium complexity, and

e it is hard to simulate weakly defined surfaces and fuzzy phenomena.

The great advantage of surface rendering is the native support for triangle meshes in
all current graphics accelerators (GPU).

The alternative to surface rendering is

11

2. Volume Rendering
With this technique if we want to obtain a 2D image from the 3D volume data we
first shade each sample and then project it onto the image plane.

The standard volume rendering pipeline is shown in Figure 2.1(from [1], p. 30).

ray tracing/resampling

shading classification

sample colors

\ sample opacities\

compositing

Figure 2.1: Standard volume rendering pipeline.

As for shading, Phong® shading model is used the most, but it is not the rule. The clas-
sification is responsible for visualizing the desired feature of the volume data. Depending
on the classification function the volume rendering techniques can be split into:

binary - each sample is assigned a binary value which expresses whether the sample does
or does not represent the object of interest. This approach causes loosing of small or
poor defined surfaces.

probabilistic - instead of binary decision we assign to each sample its probability or
transparency.

Another criterion for classifying the volume rendering algorithms is the domain the algo-
rithm works in. We distinguish

image-order algorithms - they iterate through the image pixels,

object-order algorithms - they iterate through the voxels of the object being rendered,
and

hybrid-order algorithms - they combine both the image-order and object-order approaches.

However, the basic two approaches used today are software and hardware volume rendering.

For more details about Phong shading see e.g. [9]

12

2.2 Software Volume Rendering

Software volume rendering is the approach where the available graphics card (Graphics
Processing Unit - GPU) is used only to display the calculated frame. The entire calculations
themselves are done on processor (Central Processing Unit - CPU). In this section, there
are chronologically arranged and described some of the important milestones in software
volume rendering algorithms.

2.2.1 Brute Force

In May 1988 the article DISPLAY OF SURFACES FROM VOLUME DATA was published in
IEEE Computer Graphics and Applications ([1]). Its author, Marc Levoy, explains there
the brute force method of ray casting.

From the observer eyepoint we cast a ray through each pixel of the image plane into the
volume data and resample the volume data at K evenly spaced locations x; along the ray.
Then we calculate a vector of sample colors ¢; and opacities «; by trilinear interpolation
from the eight neighbouring (surrounding) voxels closest to the sample location x;. As the
0-th component of the vector we add fully opaque (o = 1) background color. Finally, to
obtain the color C of the pixel the ray was cast through, we use the over operator [2]:

K k—1
C = Y alll—-q
i k=0 7=0
= (O + 01(1 — O[Q) + CQ(]_ — O[Q)(]_ — O[l) —+ 4 CK(l — CY()) s (]_ — aK—l)
= Cp Oover c; over ¢y --- over Ck

The skeleton of the algorithm is

for(y=0;y<ImageHeight;y++)
for (x=0;x<ImageWidth;x++){
Ray r = CastRayFromEyeThroughImage[x,y];
Pixels[x,y] = ResampleAndCompositeColorAlongRay(r);
}

Notice that the data are processed from background. Algorithms of this type are called
back-to-front algorithms. It can be also easily seen from the pseudocode that ray casters
belong inherently to image-order algorithms.

2.2.2 Efficient Ray Tracing

In 1990 Marc Levoy published another article - EFFICIENT RAY TRACING OF VOLUME
DATA [5]. Here we can find the front-to-back (data closer to the eye are processed sooner)
ray caster together with two optimization.

The algorithm works as follows: we cast ray through each pixel on the image plane. First,
we calculate the vector of colors and opacities by resampling the volume data at evenly

13

Level O Level 1 Level 2
contains 4*4*4 cells contains 2*2*2 cells contains one cell

=] L~

|
v

Figure 2.2: Hierarchical enumeration of object space for cube of size 5°.

spaced locations along the ray by trilinear interpolation from the colors and opacities in
the eight voxels surrounding each sample location?. The final pixel color C(u,v) of ray u is
obtained by compositing the color and opacity at each sample location from front to back
using the under operator. Specifically, the color C,,;(u, U) and opacity a..:(u, U) of ray
u after processing the sample U are related to the color C;,(u, U) and opacity «;,(u, U) of
the ray before processing the sample and the color C(U) and opacity a(U) of the sample
by transparency formula

A

Cou(u,U) = Cjp(u, U) + C(U)(1 — (1, U))
Aout (1, U) = a4, (1, U) + a(U)(1 — o (u, U))

A A~

where C;,(u,U) = C;,,(u, U)a;,(u, U), Coue(u, U) = Cphue(u, U)agy(u, U) and C(U) =
C(U)a(U).

The first optimization is a hierarchical spatial enumeration. The idea is similar to 3D
mipmapping and/or hierarchical octree encoding. We can represent this enumeration by
a pyramid of volumes V;. The pyramid is constructed recursively as follows: Every cell in
the base volume Vj (level 0) contains a zero value if all eight voxels lying at its vertices
have opacity equal to zero. Every cell in any volume V;, (i > 0) contains a zero if all eight
cells on level i — 1 that form its octants contain zero (see Fig. 2.2). Thanks to this repre-
sentation, we can now quickly advance across the empty region space and do resampling
and compositing only when it is necessary.

The second optimization is adaptive ray termination of ray casting. While compositing
the final pixel color C(u,v) the opacity «a;,(u, U) increases monotonically along the ray
whereas the contribution to the pixel color decreases. Hence, no significant color change
occurs after exceeding opacity of 1 — ¢ for small € > 0. By setting ¢ to nonzero value we
can stop the ray casting earlier, but we can introduce image artifacts. Therefore it is up
to us to find a satisfactory compromise.

2Interpolation of colors and opacities introduces artifacts. Today, interpolation of densities and gradi-
ents is preferred, and opacity and colors are assigned only to these interpolated values.

14

viewing rays

shear

project

volume slices

—>

warp

image plane

Figure 2.3: For parallel projection to transform volume into sheared object space it is
sufficient to translate each slice.

2.2.3 Shear-Warp Factorization

On the SIGGRAPH’94, Philippe Lacroute together with Marc Levoy introduced a new
family of fast volume rendering algorithms [6]. They combined the advantages of image
order algorithms (early ray termination, hierarchical spatial enumeration) with the advan-
tages of object order algorithms (traversing the volume in the storage order). At that time,
the algorithms based on shear-warp factorization of the viewing transformation belonged
to the fastest known.

Actually, volume rendering is mapping from 3D (volume data) to 2D (image plane). Image-
order algorithms iterate over image—they know image coordinates of just the rendered
pixel and have to do complicated volume addressing arithmetic together with resampling
and compositing. On the other hand, object-order algorithms iterate over volume data
(addressing arithmetic is thus very simple) but have to compute convolution of the voxels
with the view-dependent filter.

This problem can be solved by choosing a suitable intermediate coordinate system with a
simple mapping from the object coordinate system and efficient projection to 2D image.
These conditions are met in the sheared object space. For parallel projection, to transform
into the sheared object space it is sufficient to shear the volume parallel to the set of slices
that is most perpendicular to the viewing direction. For perspective projection after shear
we also have to scale and translate each slice (Figures 2.3 and 2.4) (see [4], p. 30-31). In
the sheared object space we can project the voxel slices onto an image efficiently.

A simple object-order volume rendering algorithm based on the shear-warp factorization
works as follows:

15

viewing rays shear & scale
AN/

volume slices —

—>

project

warp
image plane
center of projection

Figure 2.4: For perspective projection to transform volume into sheared object yet we have
to do scaling after translation of each slice.

1. Transform the volume data to the sheared object space and resample each voxel slice.

2. Composite the resampled slice in front-to-back order using the over operator onto a
distorted 2D intermediate image in sheared object space.

3. Transform the distorted intermediate image into final image by warping.

Thanks to the factorization properties, we can now iterate through the volume data in the
storage order (thus only once) with very simple addressing arithmetics and 2D resampling
filter.

Together with the shear-warp factorization the authors also introduced three optimized
shear-warp volume rendering algorithms.

The first two are both for parallel and perspective projection rendering. To skip the
runs of transparent voxels (thus taking the advantage of object coherence) they create
in a preprocessing step view-independent run-length encoded volume. Also, to skip the
long runs of opaque pixels (and so taking the advantage of the image coherence) they are
remembering information about opaque pixels during rendering.

Although the run-length encoded volume (precalculated in the preprocessing step) is view-
independent, it is transfer function-dependent. This preprocessing step is computationally
very expensive. Therefore, the transfer function cannot be changed interactively. To solve
this problem, the third algorithm introduces another volume data structure—instead of
the run-length encoding they use the min-max octree which is independent of the chosen
transfer function. Specifically, in preprocessing step, while loading volume into memory,
one can precalculate the min-max octree, because it is opacity transfer function- and view-
independent. Then, just before rendering, a summed-area table is computed. The octree
and the summed-area table help during rendering to determine all non-transparent voxels.
The disadvantage of this solution is the common problem of the object-order algorithms:
if the major viewing axis changes then the volume data must be accessed against the stride

16

and performance degrades. Therefore it is recommended to use only small range of view
angles and for animation rendering to switch to the first or second algorithm.

The main disadvantage of algorithms based on the shear-warp factorization is that they use
only bilinear interpolation within slices which deteriorates quality of the rendered imaging
by introduction of reconstruction artifacts.

2.2.4 Multiresolution Min-Max Octrees

Lacroute & Levoy have brought the compass of interactive volume rendering closer to the
standard desktop PC. The next step (and it seems that the last substantial step in the al-
gorithms based on shear-warp factorization) to enable the interactive volume rendering on
a standard PC is multiresolution. Unfortunately, the min-max octree in the original L&L
algorithm is resolution-dependent and its computation is expensive, so interactive switch-
ing between different resolutions is practically impossible. So F. Dong, M. Krokos and
G. Clapworthy designed another structure for capturing min and max parameter values,
namely a multiresolution min-max octree [7].

Multiresolution data is stored in a pyramid form with a hierarchical data structure. At
a particular dataset resolution, any voxel corresponds to a cell of 2x2x2 voxels at the
higher resolution. To encode volume dataset in a multiresolution representation, the ADS
(averaging and differencing scheme) is used (see Section 4.1 in [7]).

Multiresolution is an excellent tool for trading quality for speed. It is up to the user,
whether he or she chooses better quality or higher rendering speed. Moreover, if the user
is working with a large dataset and the PC is not keeping up the rendering, he or she can
select the lower resolution and after choosing the right transfer function and view direction
the higher resolution for the final image can be used.

2.2.5 Parallel Ray Casting

In [9], additional techniques aimed at acceleration of volumetric ray casting were intro-
duced.

First, the volume is bricked into smaller blocks. Blocks are then sorted in front-to-back
order according to the current viewing direction. The ordered blocks are grouped into
levels in such a way that for every level (group of blocks) the following condition holds:
There does not exist any ray from a block that intersects another block from the same
group. In other words, if a ray belongs to block A and intersects block B, then blocks A
and B cannot belong to the same level (see Fig. 2.5). This condition ensures that all blocks
on the same level are independent and thus can be processed in parallel.

The ray-casting itself begins with initializing rays. To quickly skip empty space (transpar-
ent voxels), hierarchical octree according to the current classification is built and the Entry
Point Buffer (EPB) is calculated (EPB is simply a buffer that holds, for each pixel, the
distance from the camera to the appropriate non-transparent voxel—if such exists). After
rays are initialized from EPB, they travel through the volume. Because the front-to-back

17

=Nl
e

wih oo

Koo~

Figure 2.5: The 2D version of blocks grouping. 16 blocks are divided into 7 levels.

accumulation is used, the alpha value increases monotonically from initially zero (fully
transparent) to one (fully opaque) and early ray termination can be used for speed up (see
Section 2.2.2).

Although this algorithm was primarily designed for MIMD computers, its ideas are general
and give good results on computers with one CPU, too. Perhaps the only thing that can
be hold against this approach, is that for performance reasons parallel projection is used.

2.3 Hardware Volume Rendering

Interesting trends in computer technology can be noticed nowadays. The current CPUs
are developed slower than current GPUs. Whereas the CPU development is in a moderate
slump (the maximal CPU frequency is about 3.4 GHz and is not rising extremely) current
GPUs are witnessing big revolution. (Something similar can be observed also by comparing
CPU and RAM, where the gap in frequency between new processors and memories is even
more visible.) Therefore, the number of GPUs which can handle 3D textures is permanently
growing. And especially this GPU feature offers a new way to visualize volume data.
There are several algorithms that visualize volume using the GPU support (see e.g. [11]
or [12]). The basic idea is that the volume is stored as a single 3D texture. Then, set of
planes which are parallel to the image plane with suitable texture coordinates is rendered
back-to-front. The final frame is composed through alpha blending (see Fig. 2.6).
Although the hardware assisted volume rendering can be very fast it can suffer regarding
quality and is binded tightly to graphic accelerator. As this work deals with pure software
volume rendering we will not be concerned with greater details (see e.g. [13]).

18

Figure 2.6: 3D Textures.

2.4 Conclusion

As we could see, there are many ways to visualize volume data. The hardware volume
rendering reaches very interesting frame rates when working with datasets that fit into
GPU memory. However, we are concerned with software methods for volume rendering
as they are universal (they run practically on every CPU) and do not need a most recent
GPU with 3D texture support.

In Section 2.2 we introduced couple of software rendering algorithms. They all have some
advantages and disadvantages. The Brute Force approach (see Section 2.2.1) is totally
unsuitable because current CPUs cannot handle volume data of typical sizes (256%256%256)
within a reasonable time. The shear-warp factorization of the viewing transformation (see
Section 2.2.3) was very popular in the past. The reason is quite simple. At that time,
the CPU and RAM have run roughly at the same speed, so it was worth to precalculate
everything possible and store it in the memory, because later querying for the precalculated
data was faster rather then calculate it on the fly. But nowadays, especially querying for the
precalculated data is the bottleneck of rendering algorithms, because the memory is not fast
enough to feed the CPU with data (the buses are slow) and the caches are to small to hold
everything precalculated. The locality concept (see Section 4.3) is significantly violated
and the results are poor. Another reason is that shear-warp does only bilinear interpolation
within slices. The Multiresolution Min-Max Octrees technique (Section 2.2.4 is also based
on the shear-warp transform and suffers from the same problems. Therefore, we have
decided to implement and further optimize the Stefan Bruckner’s approach (Section 2.2.5).
It is a simple ray casting, but suitable for parallel computations, which is giving interesting
results on current desktop computers.

19

Chapter 3

SIMD

This chapter describes various SIMD technologies. The first subsection deals shortly with
SIMD technologies (theoretically) which are available today on the overwhelming majority
of desktop processors. In the second subsection we give practical examples demonstrating
contribution of SIMD technologies to the ’classical’ SISD computers.

3.1 Theoretical SIMD

A widely used classification of parallel systems, due to Michael J. Flynn [23], is based on
the number of simultaneous instruction and data streams seen by the processor during
program execution . In the case we have only one data stream we are talking about SISD
(Single Instruction stream, Single Data stream) and MISD (Multiple Instruction stream,
Single Data stream). If we have more than one data stream, we are talking about SIMD
(Single Instruction stream, Multiple Data stream) and MIMD (Multiple Instruction stream,
Multiple Data stream).

Apart from modern processors’ features like out-of-order execution or multiple decode and
fetch units, the common desktop computers and notebooks are inherently SISD®. However,
they bear some SIMD features. To illustrate the difference between SISD and SIMD,
consider some binary operation * (e.g. plus or logical and). A SISD processor is capable to
perform only one single instruction on one single data stream, z = x * y, whereas one single
instruction of a SIMD processor works on more (typically from two to eight) data streams
in parallel, see Fig. 3.1. This leads to significant speedup without increasing processor’s
core speed. The most widespread processors today are 32-bit ones from Intel [21] and
AMD [20]. Therefore, we will concentrate on these two CPU families. They support SIMD
in the form of extended instruction set and new registers. The technologies standing behind
are known as MMX, SSE, SSE2, SSE3 and 3DNow!.

Lexcept for the newest Intel processors with the HyperThreading technology

20

X1 |

/////

AR RE R

X1+Y1 X4+xY4 X3+Y3 X2*xY2 X1+Y1

Figure 3.1: Comparison of SISD (left) and SIMD (right) model.

3.1.1 MMX

MMX (MultiMedia eXtension) can be thought of as a pioneer in SIMD. This technology
was first used in Intel Pentium processors.

MMX offers 8 logically new registers called mm0O-mm7. They are 64 bits wide and
physically mirrored on the FPU stack (Fig. 3.2). Together with the new registers Intel
introduced four new integer data types. One MMX register can hold 8 packed bytes, 4
words, 2 doublewords or 1 quadword (Fig. 3.3). 57 new instructions extend the old IA
instruction set to exploit the capabilities of the new registers. The new instruction types
are

Floating-point registers
79 63 0

MM7
MMG6
MM5
MM4
MM3
MM2
MM1
MMO

MMX registers

Figure 3.2: MMX registers are in fact just lower parts of 80-bit FP registers.

21

63 87

0
Packed bytes -
8 elements per register ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ﬁ

63 1615 0
Packed words -
4 elements per register ‘ ‘ ‘ ‘

63 3231 0
Packed dwords -
2 elements per register

63

N N O

Quadword -
1 element per register ‘

Figure 3.3: MMX data types.

packed arithmetic - padd, psub, pmul, pmadd,
data manipulation - movq, pack, punpck, psr, psl,
logical - pand, pandn, por, pxor,

saturating arithmetic - padds, psubs,

3.1.2 SSE

SSE (Streaming SIMD Extension) is descendant of MMX. It is available on all Intel Pen-
tium III (and higher) processors and on some AMD processors. SSE provides 8 physically
new 128-bit registers (called xmm0 - xmm7) and 70 new instructions. While the whole
MMX technology was integer(or fixed-point) based, SSE is inherently floating-point based.
It is evident from the new instructions’ constitution—up to 50 of them are designed to work
with floating-point data, 8 instructions control cacheability and the remaining 12 enhance
MMX instruction set. The instructions can be divided into the following groups:

o Arithmetic instructions - addps,subps, mulps, divps, sqrtps,
e Logical instructions - andps, andnps, orps, Xorps,

e Reciprocal instructions - rcpps, rsqrtps,

e Conversion instructions - cvtpi2ps, cvtps2pi,

o Comparison instructions - maxps, minps, cmpeqps, cmpltps,

o Shuffle instructions - shufps, unpcklhps, unpckhps,

e Data movement - movaps, movhps, movhlps,

22

o Cacheability control instructions - prefetch, sfence, movntq,
e State management instructions - ldmxcsr, stmxcsr,

o Additional SIMD integer instructions - pshufw, pminsw,

3.1.3 SSE2

SSE2 is Intel’s second Streaming SIMD Extension. It was first introduced in Pentium IV
processors. Whereas SSE worked on 128-bit registers as on four single-precision floating-
point registers in parallel, SSE2 can work on the same 128-bit register as on two double-
precision floating-point numbers. So, SSE2 is focused mainly for applications that require
double-precision calculations. Although the effective speedup decreased from four to ’only’
two when using SSE2, the real speedup can be even more than two times if we consider
that the old FP unit suffers much longer latencies than the streamlined SSE2 unit. SSE2
also extends MMX by using 128-bit registers instead of 64-bit ones. A brief list of new
instructions follows.

Double-precision:

o Arithmetic instructions - addpd,subpd, mulpd, divpd, sqrtpd,

Logical instructions - andpd, andnpd, orpd, xorpd,
e (Conversion instructions - cvtpi2pd, cvtps2dq,

o Comparison instructions - maxpd, minpd, cmpeqpd, cmpltpd,

Shuffle instructions - shufpd, unpckhpd, unpcklpd,
e Data movement - movapd, movhpd, movmskpd,
"128-bit MMX:
o Arithmetic instructions - paddq, psubq, pmuludqg,
e Data manipulation - movq2dq, punpckhqdq, psrldq, pslldq,
e Logical instructions - pand, pandn, por, pxor,

o Shuffle instructions - pshufhw, pshuflw, pshufd,

23

X4 | X3 | X2 | x1 | X4 | X3 | x2 | X1 |

/ / / / Y4 | Y3 | Y2 Yi

.

4 [ys [1v2 [1v1 | P = =]
ARAREERE

X4xY4 X3*Y3 X2xY2 X1+xY1 Y3xY4 Y1xY2 X3xX4 X1xX2

Figure 3.4: Vertical (left) and horizontal (right) computation model.

3.1.4 SSE3

SSE3 is the last extension of the SSE’s instruction set. It is privilege only of the most
recent Intel Pentium 4 processors. It enhances SSE and SSE2 with 9 new SIMD floating-
point instructions. Contrary to the SSE or SSE2 sets, which prefer homogeneous arith-
metic operations on parallel data elements (see Fig. 3.1), SSE3 instructions can perform
asymmetric arithmetic operations and arithmetic operations on horizontal data elements
(so-called horizontal computation model, see Fig. 3.4).

The 9 new SIMD instructions can be divided into:

o Asymmetric arithmetic instructions - addsubps, addsubpd
e Horizontal arithmetic instructions - haddps ,hsubps,haddpd, hsubpd

e Data manipulation - movsldup, movshdup, movddup

Figure 3.5 demonstrates asymmetric arithmetic instruction addsubps.

Horizontal arithmetic instructions facilitate calculation of numerous algebraic formulas
without swizzling the data between SOA and AOS type representation (Section 3.2). For
example, instruction haddps (substitute + for * in Fig. 3.4) is similar to the 3DNow!
accumulation instruction pfacc (see later in this chapter).

/
L2

Figure 3.5: SSE3 asymmetric arithmetic instruction addsubps.

/ / /
?Y4X3?Y3 ?

X4+ X2+Y2

24

Data manipulation instructions help with common problem of data swizzling? when trying
to use SIMD instructions. They help to replicate data elements already at the loading
time. For example,

movsldup xmmO, [a] ; al[1] a[1] a[0] a[0]

loads and duplicates two values a[0] and a[1] (assuming that a is a single floating-point
array pointer).

3.1.5 3DNow!

3DNow! is AMD’s SIMD technology. It is a mixed MMX and SSE. 3DNow! uses 8 logi-
cally new 64-bit registers which are mirrored on floating-point registers. Unlike MMX, 17
of 21 new instructions operate on these registers as on two 32-bit single-precision floating-
point numbers. New groups of instructions, that enrich the original MMX instruction set,
are:

o Arithmetic instructions - pfadd, pfacc, pfsub, pfmul,
e Reciprocal instructions - pfrcp, pfrsqrt, pfrcpitil,

e Conversion instructions - pi2fd, pf2id

e Comparison instructions - pfmax, pfmin, pfcmpgt,

e Cacheability control instructions - prefetch, sfence ...
o State management instructions - femms

o Additional SIMD integer instructions - pavgsub, pmulhrw

3.2 Practical SIMD

As we have seen, SIMD optimization is especially suitable for algorithms that are processing
a lot of data. They often contain conditional assignments and long but quite simple loops.
Exactly these parts can be speeded up by removing branches and processing more data
in parallel with the help of SIMD. However, SIMD increases algorithm data throughput,
and therefore along with SIMD optimization also cache consideration comes into play.
Although current compilers are very smart and can do various optimizations, they still
often do not optimize for SIMD (or the optimization is very poor). Therefore, all these
optimizations have to be written manually by programmers and mostly in assembler.

The natural data structure often used in 3D geometry computations is AOS (array of
structures) [14]:

2Data swizzling is the operation which rearranges the data from AOS into SOA form, see Section 3.2

25

struct Vector3f_A0S{
float x,y,z,w;

}

Vector3f_AOS *verts;

To process data stored in this form, we have to use the horizontal computation model (e.g.
SSE3 or some 3DNow! instructions). However, still the most widespread instruction set
extensions are SSE;, SSE2 and 3DNow! that work more efficiently if the data are stored in
another form—SOA (structure of arrays):

struct Vector3f_S0A{
float x[4], float y[4], float z[4], float w[4];
}

In order to achieve the full utilization of the SIMD registers when the instructions are
designed for vertical computation, we have to prepare the data in this ‘vertical-friendly’
form. Rearranging the data from AOS into SOA form is the operation referred to as
“swizzling” , whereas the reverse operation (used after computation before storing results
again in the AOS form) is referred to as “deswizzling”.

Now, let us look at the advantages and disadvantages of some of the above-mentioned
SIMD technologies.

3.2.1 MMX

MMX was the first SIMD technology, that spread around and was used. Because the reg-
isters are physically mirrored on FPU stack, the MMX- and floating-point- code cannot be
mixed together. Switching between using MMX and FPU code (by the emms instruction)
costs about 50 cycles, one must therefore carefully consider reorganizing the code or use
fixed-point arithmetic. The instructions are prefixed with p (packed) and suffixed with
b, w or d according to the data type you are using (8 bytes, 4 words or 2 doublewords).
There are two modes in MMX arithmetic. In the saturation mode, the result never over-
flows or underflows, however, it is clipped to maximal or minimal value respectively. This
mode is especially useful in many applications, e.g. when doing color accumulation. The
wraparound mode causes truncation of the result after overflow or underflow. Typically
MMX (and SIMD in general) is used in wide range of applications, e.g. image and speech
processing, MPEG video, games, etc. The following very simple example shows how to
speed up the standard C function memset using MMX:

26

3

; void memsetMMX(void* dest, int value, int dwSize);

3

memsetMMX:

emms
;edx =

;mmO contains [value

dest

;eax is counter

align 16

.loop:
movntq
movntq
movntq
movntq
movntq
movntq
movntq
movntq

add
dec
jnz

sfence
emms
ret

3

[edx] ,mmO
[edx+8] ,mmO
[edx+16] ,mmO0
[edx+24] ,mmO0
[edx+32] ,mmO0
[edx+40] ,mmO
[edx+48] ,mmO0
[edx+56] ,mmO0

edx,64
eax
.loop

; end of memsetMMX

I

clean up MMX and FP state

valuel

eight times unrolled loop
movntq writes into memory
without cache pollution

advance dest pointer
advance counter
and loop while not end

due to movntqg’s
clean up MMX and FP state
return

3

3.2.2 SSE

As we have mentioned earlier, SSE introduced 8 physically new registers xmm0 - xmm7.
So, together with MMX registers, SSE places additional 16 general-purpose registers at
programmer’s disposal. The algorithms now can use packed, single-precision, floating-point
and integer (both MMX and SSE) instructions respectively. Since the registers are 128
bits wide, the SSE instructions can operate on four single-precision floating-point numbers
in parallel (these instructions are suffixed ps for packed single). We can also use scalar
single version of these instructions (suffixed ss) which operate only on the last 32 bits of

27

4

1

L

Y3 [[y2 [y

////

Y4
M

ly2 |y

X2 X1 *Y'I

%

< ® *<*

X4*Y4 X3*Y3 X2*Y2 X1 *Y1

Figure 3.6: Difference between scalar (left) and packed (right) SSE instructions.

xmm register (see Fig. 3.6).

To demonstrate the power of SSE consider simple matrix-vector transformation often used

in computer graphic:

(ZL‘/, y/) Z,, w/)T —

mo My
my My
mo Mg
ms3 mry

The code performing this transformation follows:

mi2 T
mis | Y
mig z
mis w

3

; xformVectorSSE(const float* m, float* vector);

b

xformVectorSSE:

;edx contains pointer to vector
;eax contains pointer to matrix m

; load matrix
movaps xmm0, [eax] ;
movaps xmml, [eax+16] ;
movaps xmm2, [eax+32] ;
movaps xmm3, [eax+48] ;
; load vector
movaps xmm4, [edx] ;
movaps xmmb,xmmé4 ;
movaps xmm6 ,xmmé4 ;
movaps xmm7 ,xmmb ;

[m3 m2
[m7 m6
[m11 mi
[m15 mil

[w
[w
[w
[w

N N N N

y
y
y
y

; swizzle the data - prepare vectors in

shufps xmm4,xmm4,0 ;
shufps xmm5,xmm5,01010101b ;
shufps xmm6,xmm6,10101010b ;
shufps xmm7,xmm7,11111111b ;

[x x x
ly vy

[z z z
(Wwww

28

0
4

x]
x]
x]
x]

ml
mb
m9
mi3

mO]
mé]
m8]
mi2]

the apposite form

x]

y]
z]

W]

; multiply - very nice

mulps xmm4,xmm0 ; [x*m3 x*m2 x*ml x*mO]
mulps xmm5,xmml ; [y*m7 y*m6 y*m5 y*md]
mulps xmm6,xmm2 ; [z*mll z*ml10 z*m9 =z*m8]
mulps xmm?7,xmm3 ; [w*ml5 w*ml4 w*ml3 w*m12]

; and accumulate into result

addps xmm4,xmmb5 ;

addps xmm6,xmm7 ;

addps xmm4,xmm6 ; [w’ z’ y’ x’]
; store result and return

movaps [edx] ,xmmé4

ret

; end of xformVectorSSE

3.2.3 3DNow!

Since 3DNow! uses the MMX registers, they are called mm0 - mm7, too. The instruc-
tions are prefixed with pf (packed float) and operate on two single-precision floating-point
numbers in parallel. 3DNow! extended MMX by 21 new instructions that are very similar
to SSE instructions. Therefore, we would like to emphasize only two of them, which we
consider especially interesting. Firstly, since 3DNow! is only extended MMX, we have
to carefully switch between using FPU and MMX registers. To minimize penalty for the
switch, we can use femms instead of emms, which is executed in two cycles only. Secondly,
3DNow! contains one very useful instruction - pfacc. It accumulates the high and low
part of the destination and source registers. We are sure that when optimizing for both
3DNow! and SSE one will often miss similar instruction in the SSE instruction set.

The following example demonstrates that—due to the width of the registers—optimizing
for 3DNow! is a little bit harder and less readable than for SSE (matrix and vector are the
same as in the last example):

; xformVector3DNow(const float* m, float* vector);
xformVector3DNow:

;edx contains pointer to vector

;eax contains pointer to matrix m

femms ;clear MMX state

movq mm0O, [edx] ;7 | ox
movd mml, [edx+8] ; 0 | z

29

movq mm2, mmO ;7 | ox
movq mm3, [eax] ; al | a0
punpckldq mmO, mmO ; x | x
movq mm4, [eax+16] ; ab | a4

pfmul mm3, mmO ; x*al | x*a0
punpckhdqg mm2, mm2 ; y | y

pfmul mm4, mm2 ; yxab | y*ad
movq mm5, [eax+8] ; a3 | a2
movq mm7, [eax+24] ; a7 | a6
movq mm6, mml cw | oz

pfmul mm5, mmO ; x¥a3 | x*a2

movq mmO, [eax+32] ; a9 | a8
punpckldq mml, mml ; z | z

pfmul mm7, mm2 ; y*xa7 | y*aé

movq mm2, [eax+40] ; all | al0

pfmul mmO, mmi ; zxa9 | z*xa8

pfadd mm3, mm4 ; x*kal+yxab | x*xaO+y*ad
movq mm4, [eax+48] ; al3 | al2

pfmul mm2, mml ; zxall | z*al0

pfadd mm5, mm7 ; x*ka3+yxa7 | x*a2+y*ab

movq mml, [eax+56] ; alb | al4d
puncpckhdg mm6,mmé6 ; w | w

pfadd mm3, mmO ; x*al+yxab+z*a9 | x*al+y*ad+z*a8
pfmul mm4,mmé ;o al3*xw | al2xyw

pfmul mml,mmé ; albxw | aldxy

pfadd mm5, mm2 ; x*ka3+yxa7+zxall | x*xa2+y*a6+z*all
;xxal+y*ab+z*xad+wxalld | x*alO+yxad+z*a8+w*al2 = [y’ x’]
pfadd mm3, mm4 ; Ly | ox’]

movq [edx], mm3 ; store [y’ | x’]

;x*¥a3+y*a7+zxall+wkalb | x*a2+y*xab+zxalO+wxald = [w’ z’]

pfadd mm5, mml cow | oz7]

movq [edx+8], mm5 ; store [w’ | z’]
femms ; clear MMX state
ret

3

; end of xformVector3DNow

b

30

3.3 Conclusion

Current processors support various SIMD technologies. We find the SSE and 3DNow! to
be the most important ones. SSE is present on all nowadays manufactured Intel desktop
processors and on some AMD processors, too. 3DNow! is implemented in all current 32-bit
AMD processors. Both are floating-point based and support the older MMX technology,
too. Therefore, we decided to optimize the algorithm in the next section for these two
technologies.

31

Chapter 4

SIMD Optimization in Volume
Rendering

This chapter describes SIMD optimization of ray-casting used in volume rendering. The
first section specifies software requirements and summarizes the decisions we have made
when more choices were possible. The next sections introduce some of the general opti-
mizations techniques that have been used. Section 4.3 emphasizes the importance of the
bricking technique. The fourth section shows how the SIMD optimization principles ap-
ply to volumetric ray-casting. Experimental results obtained with different optimized and
non-optimized algorithms are summarized in Chapter 5.

4.1 Software Specification

Our task is to write a simple program that should interactively visualize volume data,
and optimize it (with respect to SIMD), for the two chosen families of processors. This
program will be used to analyze suitability of the volume rendering problem for SIMD
optimization. It will also help us to answer the main question put forward in this Master’s
Thesis, namely: “To do or not to do the SIMD optimization in volume rendering?”.

The GUI of the program will offer only a minimal functionality. Various parameters such
as CPU optimization type or brick size can be set to observe their impact on the final
rendering time.

The program should be platform independent and as we decided in Section 3.3 it will
be written in three versions—non optimized, optimized for SSE and for 3DNow!. If it is
possible, there should be one version of the executable for interactive comparison of the
non-optimized and optimized algorithms and—if the CPU allows it—for comparison of the
SSE and 3DNow! optimized versions between each other.

32

4.1.1 Implementation Notes

As was mentioned earlier, we have decided to implement the Bruckner’s approach (see
Section 2.4).

There are more 3D formats for storing volume data, e.g. DICOM [15]. We have chosen
£3d [16] because of its simplicity and efficiency.

As it is usual in computer graphics, the major code will be written in ANSI C++. Thanks
to this, our program should be platform (Windows/Linux) independent. However, to ex-
ploit the SIMD features, the core will be written in assembler. There are more alternatives,
e.g TASM [17] or MASM [18] but we have decided for NASM [19]. It is free, platform in-
dependent, has simple syntax and what is its main advantage, it natively recognizes MMX,
3DNow! and SSE/SSE2 instructions.

To be platform independent also with GUI, the wxWindows library [22] will be used for
user interface programming.

4.2 General Optimization

One of the basic optimization rules when working with memory is to align data on natural
operand size address boundaries (see [14], page 2-28). According to this rule, addresses for
MMX and 3DNow! should be aligned on 8 byte boundaries (MMX and 3DNow! registers
are 64 bits wide) and for SSE (which has 128 bits wide registers) the addresses should
be multiple of sixteen. The common solution is to align important addresses on 16 byte
boundaries so both 3DNow! and SSE can load and store data without incurring significant
performance penalties.

We also have to mention the well known classical optimization rule the ‘Loop Unrolling’
(see [14]). The benefits are obvious: after unrolling a loop the number of branches (if-
tests) significantly decreases, thus reducing the possibility of pipeline flush occurrences.
Unrolling also enables to hide latencies, as mostly important instructions (such as fmul or
all SIMD instructions) today are very well pipelined. Consider for example multiplying of
two arrays:

for(int i=0;i<N;++i)
clil=alil*b[i];

The loop body has to load (£1d) a[i], multiply it with b[i] (fmul) and store the result (fst),
which takes about 1 + 3 4+ 2 = 6 cycles per one array element. Rewriting into assembler
(for 3DNow!) may look as follows:

mov ecx,N ; number of iterations (assuming that
shr N,1 ; N is even - processing 2 per loop)
.loop

movq mm0, [a] ;1 (2) load first operand

movq mml, [b] ;2 (2) load second operand

33

pfmul mmO, mmil ;4 (4) multiply them

movq [c], mmO ;8 (2) and store result
dec ecx ; decrement counter
jnz .loop ; repeat again if not zero

(Notice that result of multiplication is not available until cycle 8, because pfmul has latency
of four.) This version takes about 10 cycles to process two array elements, giving 5 cycles
for one array element. After unrolling four-times the code may look like this:

mov ecx,N ; number of iterations (assuming that
shr ecx,3 ; N is divisible by 8)
.loop

movq mmO, [a] ;1 (2) load operands ...

movq mml, [a+8] ;2 (2)

movq mm2, [a+16] ; 3 (2)

movq mm3, [a+24] ;4 (2)

movq mmé4, [b] ;5 (2)

movq mm5, [b+8] ;6 (2)

movq mm6, [b+16] ; 7 (2)

movq mm7, [b+24] ; 8 (2)

pfmul mmO,mm4 ;9 (4) multiply them ...

pfmul mml,mmb ; 10 (4)

pfmul mm2,mm6 ;11 (4)

pfmul mm3,mm7 ;12 (4)

movq [c],mmO ; 13 (2) and store results...

movq [c+8],mm1 ;14 (2)

movq [c+16],mm2 ;15 (2)

movq [c+24],mm3 ;16 (2)

dec ecx

jnz .loop

This version processes eight array elements in about 18 cycles, which means 2.25 per one
element!

However, excessive unrolling, especially unrolling of large loops can lead to increased code
size and decreased performance, if the unrolled loop no longer fits in the cache.

Another optimization rule is prefetching. It is closely related to the use of the cache (see
Section 4.3). If we have some ‘SIMD-natural’ loop, i.e. loop which is hungry for data, we
can add (usually at the end of the loop body before decreasing the counter and condition
jump) additional instruction (some from the prefetch family) which can ensure, that

34

linear bricked

Figure 4.1: Volume layouts. Linear volume stores slice after slice. Bricked volume stores
block after block, each block is stored linear.

after jumping again into the loop body the demanded data will be already in cache—this
is so-called prefetching. This way we can avoid many ‘cache-miss’ events (Section 4.3).
We can start the whole optimization with the two basic functions memcpy and memset. It
is important to work with memory as quickly as possible, and this functions are very well
optimizable for SIMD (see results in Chapter 5).

The SIMD optimization is especially suitable for batch-like tasks. We have tried to find
this 'batch-pattern’ in all important parts of ray-casting. The results showed that this is
the right way for speeding up the calculations times, even when SIMD optimization does
not follow immediately.

4.3 Bricking

The increasing gap in speed between CPU and memory is often the bottleneck in current
real-time application. This is particularly true when doing SIMD optimization because the
SIMD instructions naturally tend to increase algorithm’s data throughput. This bottleneck
can be moderated by properly using the CPU caches. The cache is small (typically 16 -
2048 kB) but fast memory between the CPU and RAM that can cover the RAM speed
limits. The reason why to consider cache optimization is apparent from the locality concept.
“Temporal locality is the idea that if an item is referenced, it will tend to be referenced
again soon. Spatial locality is the idea that if an item is referenced, nearby items will tend
to be referenced soon.” (see [10], p. 141)

Volume data are usually stored in memory as an array of 2D images, i.e. as a linear
array. During ray casting we often search for neighbouring voxels (spatial locality concept).
Because the volume data are huge and the caches are price compromise between speed and
size the neighbours are often out of cache (so-called cache-miss happens) and CPU has to
wait for the data. To avoid cache-misses and CPU stalls, volume data can be bricked and
stored blockwise (see Fig. 4.1). Addressing in the bricked data can be effectively done with

35

help of a lookup table ([9]). Bricking and calculating the lookup table is done only once in
the initialization phase.

The brick dimension can be an arbitrary positive number. However, it is suitable to choose
it to be a power of two. The reasons emerges from the following optimization rules.
When addressing the volume, the optimization rule “Shift, not multiply!” can be success-
fully used. For example, if brick dimensions are power of two, then, in C+4 notation,
instead of doing

p = datalcx + Bx*(cy + cz*By) + v]

it is faster to do

p = datalcx + (cy<<logBx) + (cz<<logBxy) + v],

where logBx = log, B,, logBxy = log, B, + log, B, and B, and B, are brick dimensions.
Another optimization rule when working with ‘nice’ integers (i.e. which are power of two)
is that binary function modulo can be done more efficiently with masking, namely

int ¢x = sx % Bx; //relative x-coord in the block
can be replaced with
int cx = sx & (Bx-1); //relative x—coord in the block

if B, is power of two.

The success of the last two optimization rules dwells in instructions latencies. The multi-
plication is obviously translated into imul instruction, which has latency! of 10 (cycles),
whereas the shifting is done via shl instruction with latency of one single cycle. Imple-
menting function modulo with help of masking (instruction and) takes 1 cycle, but doing
idiv instruction to get the modulo takes 66-80 cycles! If we become aware how often we
multiply or do modulo with ‘nice’” integers—especially when doing addressing arithmetics—
we understand that performing of these operations is one big wasting of CPU cycles. Of
course, if multiplication or modulo is performed by constants then a lot compilers translate
this code effectively, but this is not the case if we multiply (or do modulo) by a variable,
content of which the compiler cannot predict.

Rewriting the code using these optimizations has caused not only direct speedup but it has
also opened the way for SIMD optimization. The reason is that the only way to optimize
integer code for SIMD is using MMX, but MMX does not contain instructions for parallel
multiplying of two DWORDs. However, shifting is done very well.

4.4 VR Pipeline

The standard ray-casting algorithm works as follows. Every pixel on the screen defines
one ray. After initialization, the ray advances through the volume until leaving it. During

nstruction latencies depend on the processor type and model encoding, we state latencies for Pentium
IV processors with model encoding 3, see [14].

36

F EPB — Ray initialization — Accumulation T

Figure 4.2: Volume rendering pipeline.

advancing, the ray’s color and alpha values are accumulated. When all rays have been
processed their color is written into framebuffer and the frame can be rendered. Volume
rendering pipeline (see Fig. 4.2) therefore consists of three key parts: Creating Entry
Point Buffer(EPB), Ray Initialization and Accumulation.

4.4.1 Entry Point Buffer

Ray-casting is an image-order algorithm, thus we have to process one ray for every screen
pixel. If we consider standard resolution 1024 x 768, then about 780 000 rays travel for
every frame through the scene. This is pretty much and often unnecessary. The solution
is to create an Entry Point Buffer (EPB) which holds for every ray its distance from the
camera when the ray hits the volume for the first time. The EPB contains a special value
for those rays which do not hit the volume and therefore will not be processed. Once
the ray hits the volume and has to be processed, it is important to set its initial world
position as closest as possible to the non-transparent part of the volume according to the
current transfer function. This is especially true for medical datasets, because the object
of interest is usually in the middle and surrounded with air (transparent empty space).
After choosing the transfer function (in preprocessing step), every block is classified as
transparent or non-transparent. Only non-transparent blocks are rasterized into EPB (like
z-buffer). Because parallel projection is used, it is sufficient to project and rasterize only
one block (three visible faces of the cube or box chosen according the viewing direction)—
we obtain the template buffer—and the remaining part of EPB can be obtained by just
copying the translated template buffer.

To determine EPB in higher resolution than the block granularity a min-maz octree is
used. For performance reasons, the depth of the octree is restricted to three.

SIMD optimization of this stage lies mainly in using optimized memset function (see Sec-
tion 3.2.1) and vector arithmetic. When rasterizing a block, eight cube vertices of the block
need to be transformed from world space into camera space. For this purpose, function
xformCube was written. This function uses pipelined matrix-vector transformation (see
Section 3.2.2) and prefetching the data to be in the cache before the CPU will demand
them.

37

4.4.2 Ray Initialization

The next stage in the ray-casting pipeline is Ray Initialization. This stage is responsible
for initializing all rays whose colors will contribute to the final rendered frame. Every ray
is of TRay type and its declaration look as follows:

struct TRay

{
float sx, sy, sz; //resample position
int index; //index into framebuffer
float alpha; //accumulated alpha
float color; //accumulated color

}

In a naive implementation, one processes all the rays in one loop (one for every pixel).
Initialization consists of setting alpha and color to zero (fully transparent black color)
and sx, sy and sz to the corresponding entry sample position according to the EPB. To
find the entry sample position we have to transform ray’s origin into world space, which is
simple matrix-vector transformation. After this the initialized ray is added into its block
(See 2.2.5):

for all pixels[x,y]

{
calculate z from EPB;
if (ray from [x,y,z] will contribute to frame)
{
transform ray into world space;
add ray into corresponding block;
}
+

At first glance, nothing except the matrix-vector transformation can be optimized here.
However, we can split the entire ray initialization phase in three step: gathering information
about the rays that will be transformed into a temporary array, then transforming them
all and finally to distribute them into blocks which they belong to. To keep the temporary
array size not too high, we do the rays initialization in batches until all rays are initialized:

for all pixels[x,y]
{
calculate z from EPB;
if (ray from [x,y,z] will contribute to frame)
add ray into the temporary array;

if (array is full)
{

38

//process whole batch
Transform all rays from array;
Add all transformed rays into corresponding blocks;

3

The measuring showed that this was the right way. Already a non-SIMD-optimized version
gave better results (for the exact results see Chapter 5).

For the purpose of SIMD optimization, let INIT_RAYS_BATCH be the parameter holding
the size of the temporary array into which are the rays added. It is important to choose
this parameter properly. If INIT_RAYS_BATCH is too low we do not use the SIMD power of
the CPU. On the other side, if INIT_RAYS_BATCH is chosen too high, then, although the
transformation is done fast, we loose the cycles while waiting for the data, because a too
big array does not fit into the cache, violates the locality concept and causes cache-misses
and CPU stalls (for concrete results see Chapter 5).

The core of the optimized Ray Initialization assembler function lies (again) in the pipelined
matrix-vector transformation, now for any number of vectors. Also the fast conversion
between integer and float data types, which is offered by the SIMD extended instruction
sets, was used. Finally, the last loop (the third step - distributing the initialized rays into
their blocks) was unrolled to decrease the number of condition jumps which cause CPU
stalls (due to pipeline flushes).

4.4.3 Accumulation

The third stage in the ray-casting pipeline is Accumulation. It is very simple. Blocks
are grouped into blocklists—levels of block (see Section 2.2.5). The levels are traversed
from front to back. For each block in the current level all rays are processed, i.e. ray is
resampled and color and alpha values are accumulated until the ray leaves the block and
enters a new one or leaves the scene. The correct block grouping into levels ensures that
no ray can be added into a block that has been processed before. After processing the last
ray of the last block of the last level the frame can be displayed.

There is nothing to optimize when processing rays in this way. It is just one quite short
loop with color and alpha accumulation and couple of statements responsible for managing
the rays when they leave the current block. If we look at the accumulation code (below)
we can see the strong read-after-write dependency which keeps all efforts from optimizing
this most important stage of ray-casting pipeline.

//get alpha and color value for current ray’s resample position
GetVoxel(ray, tmpColor, tmpAlpha);

//accumulate color and alpha

tmpAlpha*=(1.0f-alpha);

color+=tmpAlpha*xtmpColor;

alpha+=tmpAlpha;

39

However, being enlightened from optimizing the Ray Initialization phase, we have trans-
formed the classic SISD approach into SIMD approach—instead of processing one ray at
a time we work with two rays at the time. Now, the loop is a little bit more complicated
because the two rays have not to spend the same time in the loop at all, thus there is a
little overhead to keep the rays pipe (of length two) full. This approach has immediately
led to SIMD optimization of the accumulation code.

Accumulation in this form is especially suitable for parallel computations using 3DNow!.
As the SSE instructions can work with four single float values at once (not only two as the
3DNow!) this loop does not take advantage of full computational power of SSE. Therefore
we finally rewrote the loop to process four rays at once. The SSE version of accumulation
looks as follows:

; excerpt from SSE Accumulation code

; register xmml contains tmpColor(O ... tmpColor3
; register xmm2 contains alphaO ... alpha3
; register xmm3 contains colorO ... color3

; register xmm7 contains [1.0f | 1.0f | 1.0f | 1.0f]

subps xmm7,xmm2 ; 1.0f-alpha

mulps xmm7 ,xmmO ; tmpAlpha*=(1.0f-alpha)
mulps xmml,xmm7 ; tmpColor*tmpAlpha

addps xmm3,xmml ; color+=tmpColor*tmpAlpha
addps xmm2,xmm7 ; alphat+=tmpAlpha

4.5 Conclusion

This chapter has briefly described optimization details of the final code evolution. The
practical results (the timing and comparison) is the subject of the next chapter.

40

Chapter 5

Results

This chapter describes comparison results between non-optimized and optimized versions
of our program. The measurings have been done on several computers, we are presenting
three of them. Let us denote them as PC1, PC2 and PC3. More details about these
computers are in Table 5.1.

All measurings have been done for brain dataset brain.f3d (see Fig. 5.1). The dataset
with dimensions 256 x 256 x 109 x 8 bits is after loading converted into one with dimensions
256 x 256 x 128 x 8 bits. The images of size 1152 x 854 are rendered without shading with
nearest neighbour interpolation. The results are mostly in milliseconds (absolute values),
some of them are in cycles (relative values). As the rendering times depend on viewing
direction (due to the number of rays, not the memory alignment), we have measured the
longest rendering times, which are for our case for values = 0 and a around zero, namely
a =0.3. The o €< 0,27) and § € (—m, m) parameters are angles in radians and determine
the camera’s rotation about y-axis (a-value) and its inclination (S-value).

At first we have measured the impact of the bricking technique on the final rendering time
(Section 5.1). Next sections describe the measurings we have done for all three volume
rendering stages and also the total rendering times for the optimized and non-optimized
versions.

Table 5.1: Details of PCs we have used for testing.

Name ‘ CPU ‘ Clock Speed ‘ L2 Cache ‘ Instruction Sets
PC1 | AMD | 1460.4MHz | 256 kBytes MMX, 3DNow!
PC2 | Intel | 551.3MHz | 512 kBytes MMX, SSE
PC3 | AMD | 1659.1MHz | 256 kBytes | MMX, 3DNow!, SSE

41

W brain.f3d L EX

alpha=8.6870000
beta=0.08608060008
distance=180.880004
viewDir=SET

Figure 5.1: A Screenshot from the testing program with the brain dataset.

42

5.1 Bricking

The theoretical reasons why to use bricked rather than linear volume layout was described
in Section 4.3. This section shows whether the practical results confirm the theory or not.

Table 5.2 shows the measurement obtained from PC 1 running a non-SIMD-optimized
version. The B,, B, and B, values are dimensions (in voxels) of one brick. EPB, RC-
Init, RC-Accum and Total are given in milliseconds. From the table can be easily seen

Table 5.2: Impact of Bricking on Calculation Times [ms].

B, | B,| B.| EPB|RC-Init | RC-Accum | Total

256 | 256 | 128 | 9.94 15.27 1426.91 | 1452.12
128 | 128 | 128 | 7.33 11.08 743.73 | 762.14
64| 64| 64| 7.28 10.13 148.25 | 165.66
32| 32| 32| 893 9.67 73.95 92.55
16| 16| 16 | 18.72 9.62 04.07 82.41
8| 16| 16| 30.34 9.88 51.89 92.11

that bricking significantly influences all parts of volume rendering pipeline, especially Ray-
Accumulation. Let’s examine these interesting results.

The first row represent the case with no bricking, as the brick dimensions equal exactly the
volume dimensions. Creating the EPB in this case is extraordinary simple—just parallel
projection and subsequent rasterization of one cube (brick, i.e. block). This block contains
all rays which are initialized in the second stage pipeline stage. Every ray is followed as it
advances through the scene and its color is written into the framebuffer when it leaves the
volume. It is the standard ray-casting.

The second row shows the results after decreasing B, and B, by half. Now we have four
blocks. The rasterization is faster, because only one block (which area is four times smaller
than in the previous case) has to be rasterized, the remaining three are only copied. The
RC-Init stage contains less rays as more octree nodes are now classified as transparent. The
most important impact of bricking can be seen on the RC-Accum stage. The calculating
time decreased nearly two times. Although the whole block still does not fit into the cache
(1283 > 256 kB), we can suppose that decreasing block size is the right direction.

The next rows only confirm our assumptions. With the decreasing brick dimensions the
number of blocks increases, but common calculating time decreases. After the brick di-
mensions fall bellow 16, the EPB time starts to grow, because there are too many small
blocks which have to be copied, and the cache is not the bottleneck anymore. The RC-Init
times are quite stabilized, the total number of discarded rays significantly changes only
when not considering bricking. This can be easily explained by the number of transparent
blocks, which is certainly higher when the volume is more bricked, and by considering,
that the rendered volume contains only one object surrounded with air. This stage is only

43

minimally influenced by bricking.

The impact of bricking can be extremely well seen on the last stage (the column RC-Accum
in the Table 5.2). The color accumulation permanently accesses the volume. As the volume
is too big for cache, a lot of cache-misses occur. Processing rays in the correct order (see
Section 2.2.5) significantly decreases number of cache-misses. So it is possible to improve
calculating time from about ~1400 ms to ~50 ms which gives approximately speedup of
28! Of course, not only cache is responsible for this speedup. With finer octree granularity
in EPB, the rays are initialized quite near before they enter the volume, so the number of
accumulations, and thus memory accesses, is decreased.

More precisely, the L2 cache on PC 1 is 256 kB. Theoretically, a block of dimensions
64 x 64 x 64 fits into cache, but additional data needed by other calculations cause cache-
misses. Therefore, when processing any of the 32 x 32 x 32 block from any direction, it
always fits into cache and resides there, so, theoretically, no more cache-misses occur when
accumulating rays’ colors. That is the reason why the dramatically increasing speedup
stops at 16 x 16 x 16 blocks. Bellow this, the cache does not play such a significant role in
optimizing the calculations time. Until now, the CPU had to wait for data (stalling), now
the CPU power is important, as the slower memory does not hinder the CPU.

When we consider the last table row, we can see that 16 x 16 x 16 blocks are the right
compromise between the EPB and Ray-Accumulation. With smaller blocks, the EPB time
becomes the bottleneck of volume rendering, not the Ray-Accumulation.

5.2 Entry Point Buffer

The first stage of volume rendering pipeline, which creates Entry Point Buffer, successfully
uses SIMD optimized memset routine (see Section 3.2.1). Highly unrolled loop, together
with aligned pointers and data prefetching runs about three times faster than the standard
(rep stosd) implementation. This optimization runs on all' current modern processors
as it needs only the MMX extended instruction set.

Before the block can be rasterized, we need to transform its vertices from world into
camera space. This transformation involves eight matrix-vector multiplications. This can
be effectively optimized for SIMD. The code for matrix-vector transformation is (with
little modifications) identical with the codes introduced in Sections 3.2.2 and 3.2.3. The
following Table 5.3 shows that matrix-vector transformation belongs to SIMD-like tasks,
because the obtained measurings give high speedup—about three for both CPU types.
The most expensive part, however, is template buffer projection into EPB according the
octree structure. As the template buffer may be of arbitrary width, it cannot be successfully

SIMD-optimized. The above mentioned optimizations cause speedup of about 1.2 (see
Table 5.4).

'Note that we are considering only Intel and AMD processors.

44

Table 5.3: Transforming § cube vertices from camera-space into world-space.

PC | Average cycles count Speedup
None | 3DNow | SSE | 3DNow | SSE
PC1 | 3720 | 1227 - 3.03 -
PC2 | 4227 - 633 - 6.67
PC3 | 3811 1380 | 892 2.76 | 4.27

Table 5.4: Optimization of stage EPB.

pPC Duration [ms] Speedup
None | 3DNow | SSE | 3DNow | SSE
PC1 | 19.13 14.4 - 1.33

PC2 | 489 40.2 - - 1.22
PC3 |26.39 | 23.0 |22.7 1.15 1.16

5.3 Ray Initialization

As mentioned in Section 4.4.2; the second stage of volume rendering pipeline-Ray Initia-
lization—had to be rewritten into ‘SIMD-like form’ after realizing, that quite a lot of rays?
had to be initialized before they could travel through the scene, and this initialization
consists primarily of doing matrix-vector transformations. To observe the impact of SIMD
on the calculating time we introduced new INIT_RAYS_BATCH parameter. Table 5.5 sum-
marizes our observations for SSE:

Table 5.5: Impact of the INIT_RAYS_BATCH parameter.

IRB 1 2 32 64 128 | 256 | 512 | 1024 | 2048
None [ms| | 20.5 | 18.07 | 17.5 | 17.4 | 17.13 | 17.3 | 17.8 | 18.28 | 18.5
SSE [ms| | 14.4 | 13.3 | 12.8 | 12.7 | 12.6 | 12.7 | 13.5 | 14.4 | 14.8

We can see, that the best results are obtained when processing about 128 rays in one batch.
This technique gives speedup of about 1.36.
The overall speedup of this stage is summarized in Table 5.6.

2Tt depends on size of the window client area, e.g. for window 1024 x 768 about 780 000 rays have to
be processed!

45

Table 5.6: Optimization of the Ray Initialization stage.

PC Duration [ms] Speedup
None | 3DNow! | SSE | 3Now! | SSE
PC1| 95 6.0 - 1.6 -
PC2 | 22.0 - 16.0 - 1.4
PC3 | 10.03 7.06 7.05 1.4 1.4

5.4 Accumulation

The last and the most important stage in our volume rendering pipeline is Ray Accu-
mulation. This stage is often the bottleneck when trying to reach real time rendering.
According to the Section 4.4.3 we implemented three versions of the accumulation code.
The first version iterates through all the rays, processing one ray per loop iteration. In this
simple loop, the only place, where the SIMD can be used, is the color accumulation. Simply
putting all color and alpha values, obtained by resampling the ray, into a temporary array
and then doing accumulation on this array (like we did in Ray Initialization stage) is not the
right way, because the accumulation is inherently sequential. Therefore, we have unrolled
the loop and processed two (later four) rays per one loop iteration. It is very important
to realize, that this is not the true loop unrolling as we have mentioned in Section 4.3.
Each iteration of the new loop’s body now has to perform two (or four-according to the
version) times more tests, so we did not decrease the number of potential pipeline stalls.
All what we have done is that we have grouped the same operations together. Instead of
one multiplication or addition we do four. This can be, if we have the data in proper data
structures, done in parallel. Actually, that was the reason why we did so—to prepare the
code for SIMD optimization. Table 5.7 shows the measurings obtained after rewriting the
accumulation for 3DNow! and SSE, both processing 4 rays per one loop iteration.

Table 5.7: SIMD optimization of the Accumulation stage.

PC Duration [ms] Speedup
None | 3DNow! | SSE | 3Now! | SSE
PC1 | 55.7 04.7 - 1.02 -
PC2 | 122.1 - 116.3 - 1.05
PC3 | 53.53 | 52.23 50.7 1.02 | 1.06

We can see that processing four rays in parallel (SIMD optimized version) did not speed
up the calculations a lot. This can be explained similarly like in the previous section.
Accumulation of four rays constitutes very small batch. As the SIMD instructions are
especially successful when doing long batch tasks, the impact of SIMD optimizations is

46

very low (only 5%).

But very interesting results are in the Table 5.8. It compares processing one, two and
four rays per loop iteration without SIMD-optimization. This table demonstrates that
already the single C++ code reorganization for SIMD itself causes speedup about 24%
even without successive assembler SIMD optimization.

Table 5.8: Three versions of Accumulation stage (non-SIMD-optimized) - processing one,
two and four rays per one loop iteration.

Rays per loop ‘ Duration [ms] ‘ Speedup

1 67.4 -
2 59.3 1.14
4 54.2 1.24

5.5 Conclusion

After choosing the best parameters (INIT_RAYS_BATCH = 128, B, = B, = B, = 16) we
have measured the following values:

Table 5.9: Total rendering times.

Total Duration [ms] Speedup
None | 3DNow! | SSE | 3Now! | SSE
PC1 | 83.2 4.7 - 1.11 -
PC2 | 192.0 - 172.0 - 1.12
PC3 [89.95 | 8229 |80.45| 1.10 |1.12

This table shows that using SIMD we are able to speed the overall rendering time by 10-12
%.

What can we conclude from this?

First, software ray-casting cannot beat the hardware assisted ray-casting using the newest
graphics cards. They are running at around 40 fps [13], whereas our approach only at
around 14 fps. Second, it is good to write the code with SIMD optimizing on mind, be-
cause (as we could have seen in Section 5.4) this optimization itself can lead to global
optimizations and overall speedup even when the code is finally not rewritten into assem-
bler.

The SIMD-optimization is especially suitable for batch-like tasks. We have tried to find
this 'batch-pattern’ in all stages of ray-casting. However, the analysis and implementation

47

showed, that ray-casting is not a typical batch-like task. Although we tried to reorganize
the code in this way, there were found not many such parts. Optimized memset runs twice
faster than standard memset routine. Optimized matrix-vector transformation runs about
three times faster, but overall the Ray Initialization stage runs only 1.5 times faster. The
bottleneck, however, remains the last stage— the Ray Accumulation. This stage cannot be
transformed into typical SIMD batch task, so this part nearly does not exploit the SIMD
power offered by the CPU.

The answer to our question, whether to do or not to do the SIMD optimization in volume
rendering, cannot be definitive yes or no. If we look for interactive real time volume render-
ing then we recommend GPU volume rendering. Number of graphics cards supporting 3D
textures is permanently growing, so in a few years it will be the common hardware. On the
other side, the GPU suffers from lower quality and limited flexibility. Therefore, software
volume rendering (whether SIMD optimized or not) will still be the best choice for render-
ing high quality images, especially since multi-CPU computers can become commonplace
soon.

Although the SIMD optimization did not significantly improve the rendering time, its
principles are worthful and should be taken into consideration when optimizing software
volume rendering. The practice has shown, that the SIMD optimization of such easy func-
tions like memset or transforming batch of vectors can bring a lot if used often. However,
a function written in assembler is compiled directly into machine code, many non-trivial
optimization rules must be therefore obeyed—e.g. calculating instructions’ latencies to
avoid partial stalls or pairing instructions according to the pipe the instructions will go
in to effectively use both execution pipes—all this is bypassed by assembler programming
and not automatically done by compiler. For longer parts of code the compiler obviously
does better work.

5.6 Future work

SIMD (like many other things) is double edged sword. You can dramatically speed up some
portions of your code, but also slow it down, when used not carefully. This work has shown,
that some calculations are naturally suitable for SIMD, some of them have to be changed
to be suitable for SIMD, but some are completely unsuitable for SIMD-optimization. We
tried to beat GPU power using SIMD-optimized CPU code but the reality has shown that
it is impossible. However if we completely forget the rivalry, we could use the software
volume rendering for quality reasons. This would involve to do trilinear interpolation,
Phong shading and the support for more than 8-bit dataset should be added, too. Perhaps
afterwards SIMD will show its real power.

48

Bibliography

1]

2]

[10]

[11]

LEVOY, M. Display of Surfaces from Volume Data. 1988. IEEE Computer Graphics
and Applications, 8(3):29-37, May 1988

PORTER, T. - DUFF, T. Compositing digital images. 1984. In Hank Christiansen,
editor, Computer Graphics (SIGGRAPH 84 Proceedings), volume 18, pages 253-259,
July 1984.

SRAMEK, M. Visualization of Volumetric Data by Ray Tracing. 1998. Wien:
Osterreichische Computer Gesellschaft 1998. ISBN 3-85403-112-2.

LACROUTE, P. Fast Volume Rendering Using a Shear-Warp Factorization of the
Viewing Transforamation. 1995. Technical report CSL-TR-95-678. Stanford University

LEVOY, M. Efficient Ray Tracing of Volume Data. 1990. ACM Transaction on Graph-
ics, 9(3):245-261, July 1990

LACROUTE, P. - LEVOY, M. Fast Volume Rendering Using a Shear-Warp Factor-
ization of the Viewing Transformation. 1994. Proc SIGGPRAPH 94, pp. 451-458,
July 1994

DONG, F. - KROKOS, M. - CLAPWORTHY, G. Fast Volume Rendering and Data
Classification Using Multiresolution Min-Max Octrees. 2000. EUROGRAPHICS 2000,
19(3)

YAGEL, R. - KAUFMAN, A. Template-based Volume Viewing. 1992. Proc. EURO-
GRAPHICS’92, p. C153-C157, June 1992

BRUCKNER, S. Efficient Volume Visualization of Large Medical Datasets. 2004. Mas-
ter’s Thesis. Vienna University of Technology

BISTRY, D. - DELONG, C. et al. The Complete Guide to MMX Technology. 1997.
McGraw-Hill. ISBN 0-07-006192-0.

CABRAL, B. - CAM, N. - FORAN, J. Accelerated volume rendering and tomographic
reconstruction using textuge mapping hardware. 1994. In Proceedings of the Sympo-
sium on Volume Visualization 1994, p. 91-98, 1994.

49

[12] ENGEL, K. - KRAU, M. - ERTL, T. High-quality pre-integrated volume rendering
using hardware-accelerated pixel shading. 2001. In Proceedings of the Workshop on
Graphics Hardware 2001, p. 9-16, 2001.

[13] CERVENANSKY, M. Vyuzitie komercnijch grafickych akcelerdtorov pre vizualizdciu a
spracovanie objemovych dat. 2004. Master’s Thesis. Faculty of Mathematics, Physics
and Informatics, Comenius University.

[14] IA-32 Intel Architecture Optimization. 2004. Reference Manual. Order number 248966-
011. http://www.developer.intel.com

[15] DICOM - http://medical.nema.orqg/dicom/2003.html

[16] f3d - www.viskom.oeaw.ac.at/ milos/page/Download.html

[17]) TASM - http://info.borland.com/borlandcpp /cppcomp /tasmfact. html
[18] MASM - www.masm32.com

[19] NASM - http://nasm.sourceforge.net/

[20] AMD - www.amd.com

[21] INTEL - wwuw.intel.com

22] wxWindows - http://www.wrwindows.org

23] www.tommesani.com

90

