
Department of Computer Science
Faculty of Mathematics, Physics and

Informatics
Comenius University, Bratislava

The Tape�size and
Extended Chomsky hierarchy

(Master Thesis)

�ubo² Steskal

Advisor:
Prof. RNDr. Branislav Rovan, PhD. Bratislava, 2006

I hereby declare that I wrote this thesis by myself,
only with the help of the referenced literature, under
the careful supervision of my thesis advisor.

. .

Acknowledgments

I thank my supervisor, Prof. Branislav Rovan, for insightful conversations
during the development of the ideas in this thesis, and for helpful comments
on the text.

I warmly thank my family for everlasting support, care and love. A special
thank you goes to all my friends, they mean very much to me.

I would like to express my gratitude to those, who have ignited my motiva-
tion for this work by discussing interesting problems�lessons on metaphysics
and numbers.

2

Abstract

By proposing a new computational model we studied properties of in�nite
computations. It showed up, that they are closely linked to the structure of
the Σ3 level of the arithmetical hierarchy. We proved that the ∆3 set con-
sists of an in�nite hierarchy starting with the set Σ2. We showed that the
structure of the top �ve levels of this hierarchy is in some sense similar to
the structure of the Chomsky hierarchy, while the bottom levels remind us
of the bounded oracle query hierarchy.

Keywords: Super Turing computation, arithmetical hierarchy, in�nite
computation, Chomsky hierarchy.

3

Contents

1 Introduction 5
1.1 Super Turing Computation � an Overview 6

2 Notation and Preliminaries 11
2.1 De�nitions . 12

3 Building hierarchies in Σ3 17
3.1 General Properties of Display Turing Machine with Control . . 17
3.2 The Tape�size Hierarchy . 22
3.3 The Extended Chomsky Hierarchy 33

4 Conclusion 38

Bibliography 40

4

Chapter 1

Introduction

The theory of recursive functions and e�ective computability is a scienti�c
�eld with many interesting results; some of them might have philosophical
impact. It is well known that there are problems, which cannot be solved by
algorithms. In fact, a whole hierarchy of unsolvable problems opens before
us, if we go a little bit deeper in our studies.

There are many results that give us better understanding of both formal
languages of logic and of computer science [HR92]. Although, there are
several ways to study this subject, oracle machines surely provide a good
computational model to consider.

In recent years several new computational models di�ering from the stan-
dard framework were proposed. These models shared the attribute of being
stronger then the Turing Machine. Some of them were purely theoretical
concepts, some tried to model some phenomenon that could be observed in
reality [EN02]. Such models are sometimes called Hyper-machines, or ma-
chines with Super Turing computational powers. The aim of this thesis is
to study the properties of possibly in�nitely long computations. Inspired by
the models of the Accelerated Turing Machine proposed by Bertrand Russell,
Ralph Blake and Hermann Weyl and the In�nite Time Turing Machine pro-
posed by Joel Hamkins and Andy Lewis [HL00] we de�ne a new model of our
own. The reason why we do this is that we want to separate the in�nite and
non in�nite parts of the computation. This shall allow us to study the asset
of in�nite computation and identify factors a�ecting the power of models

5

utilizing such computations.
Our model consists of two parts. A machine capable of an in�nitely long

computation and a language (which can be interpreted as another machine)
processing its output. By placing constrains to the �rst or second machine,
we obtain classes of languages which form hierarchies. One such hierarchy
is similar to the one obtained by limiting the number of queries of an oracle
machine [Bie95] [BGH89]. The other hierarchy looks more like the Chomsky
hierarchy, but it is in the Σ3 class of the Arithmetical hierarchy.

1.1 Super Turing Computation � an Overview

We shall now present various Super Turing models in a more detailed view.
We shall put emphasis on the motivation for such models as well as their
computational power and resources used to achieve this power. One study
regarding the resources used is presented in [Ord02].

One of the �rst models capable of hyperturing computation was the Or-
acle Turing Machine proposed by Alan Turing. This model consists of a
standard Turing Machine equipped with an Oracle � a device capable of an-
swering a speci�ed group of questions1. The oracle actually models some
form of a subroutine or a subprogram realized by a `third person'. In case
the answers of the oracle are not computable by algorithmic means (e.g., it
is a non�recursive set), the Oracle Turing Machines obviously gain Super
Turing computational power. The actual computational limits depend on
the non�recursiveness of the oracle. This model is often used in logic and
computer science as well.

Another concept, very similar2 to the Oracle Machines is the Turing Ma-
chine with Initial Inscriptions. Such machine has one additional read�only
tape with one possibly in�nite word written on it (this word is �xed for all
inputs). This way, we may model the situation when an algorithm has ac-
cess to an external database. Sometimes oracles are modeled in this way
by making the in�nite word consist of lexicographically ordered elements of

1Oracles providing yes/no answers are often represented as sets consisting of all ques-
tions with a `yes' answer.

2and in some aspects identical

6

the oracle (separated by a special delimiter symbol). Thus again by the use
of some non�recursive initial inscription, the respective machine would gain
Super Turing computational power. However, this model does not share all
of its properties with the Oracle Machines, since the answer of an oracle
query is realized in just one computational step whilst the examination of
the read�only tape may take much more time.

The Turing Machines with Advice represent another concept capable of
Super Turing computation. They actually represent a special class of oracle
machines3. The idea is that the answer of the Advice depends only on the
size of the word on input. The answer however may be of any size (in the
general case). In the theory, the length of the Advice is often bounded by
some function having the length of input as its argument. Again by having
the Advice complicated (and long) enough, this model gains computational
power beyond the Turing Machines.

All of these models have one common feature. They consist of a standard
Turing machine and an external source of information that they can harness
at any time as `desired' by the respective machine. We shall now present an-
other group models di�ering in their inability to control their external source
of information.

Interactive Turing machines proposed in [WvL01] di�er from standard
Turing machines in that they have in addition a special input port for re-
ceiving information from the outside world. However, they cannot directly
control what information is to be provided. Still, if the information supplied
by the external source is of non�recursive character the model might gain
Super Turing power.

Another group of models of the same type are Turing Machines with some
form of noise. This means, that from time to time the head writes something
else as desired, or the contents of some squares change due to some external
agent and not by the means of the machine4. If the machine can identify
these changes and the information gained by the rewriting is non�recursive,

3Here the oracle is rather called Advice (function).
4This can be seen as an in�uence of noise or an intervention of an out side observer.

7

the model may again gain powers greater than those of the Turing Machines.

The next class of Super Turing models are models with in�nite speci�-
cation allowed. By this we mean non�uniform Boolean Circuits and Turing
Machines with in�nitely many states and an in�nite transition function. If
there are absolutely no bounds placed on their in�nite speci�cation, these
models obviously represent the strongest possible form of computation, since
they can actually represent any set by directly listing all of its elements.

There is another interesting model lying somewhere between the domains
of in�nite speci�cation and external information source � Neural Networks
with real valued weights. These machines consist of a �nite net (or oriented
graph) of nodes. Each edge has its weight and in each node, there is a
processor. In one computational step, each processor counts the linear com-
bination of the outputs5 of the processors attached to it and the weights of
their respective connections. Then this result is used as an argument in some
sigmoid function6 and the result is its output. It has been shown in [SS92]
that such machines (without any bounds) have computational power equal to
the non�uniform circuits. However, if we bound the numbers used as weights
to be rational or natural numbers, their computational power is reduced to
the domain of standard algorithms [SS95]. It is expectable that by bounding
the weights to be Σi enumerable reals, we would gain a hierarchy of di�erent
computational power7.

The models in the last group draw their computational power from a little
bit di�erent source. They have �nite speci�cation and lack any additional
(possibly in�nite) external information. The quality that they utilize to
achieve supreme computational power is in�nitely long computational time.

First such model is the Accelerating Turing Machine. This model is in-
spired by the Zeno's aporiae with the tortoise. After the �rst computational

5from the previous computational step
6The concrete function depends on the speci�c model
7The author believes that this hierarchy would match with the Arithmetical Hierarchy.

8

step takes place, the time until the second step is realized is one half of a
second. Each of the following steps takes only half of the time as the previ-
ous did. Thus, after one second the machine has preformed in�nitely many
computational steps. In this model the tape of the machine contains one
special square whose content may be changed only once during the whole
computation. The acceptance of the machine depends on the content of this
square after in�nitely many steps.

Another model working in a similar way was proposed in [EN02]. In
that model the in�nite computation is realized by a pair of computers �
one orbiting a black hole and another falling into it. The model utilizes the
fact, that in the Malament-Hogarth Spacetimes the time �ows di�erently for
both of the computers. While from the orbiting computer's point of view it
would take in�nite time until the falling computer `hits' the black hole, the
falling computer will reach it in �nite time (from its point of view). Thus the
orbiting computer may perform a possibly in�nite computation and if the
computation halts, send the result to the falling machine. So by the time the
falling machine reaches the black hole, it will know the answer to the halting
problem of the orbiting machine. In [WvL02], it has been shown that this
model is equal to a special class of Turing Machines with Advice.

The last model mentioned in this overview is the In�nite Time Turing
Machine [HL00]. This model works as a standard Turing machine, only that
it is able to preform a number of computational steps equal to some ordinal.
For each computational step whose number is a limit ordinal, the machine
enters a special trans�nite state, the content of the tape is the limit of the
contents so far and the head is placed on the �rst square of the tape. This
is the most general model for in�nite computation.

We can see that there are several, maybe at �rst sight heterogeneous
groups of Super Turing models: those with controlled/uncontrolled external
information, in�nite speci�cation and in�nite computation time. If we take
a closer look, we might see that these groups are linked closely together. It
can easily be seen, that models with external information can by simulated
by oracle machines with an appropriate oracle. For example, to simulate

9

machines with an external observer intervening in the computation, the oracle
might be the set of all actions of the observer and after simulating each step
of the respective machine, we might ask the oracle what changes will be done
by the observer.

The in�nite speci�cation can be simulated in a natural way by machines
with initial inscription, by simply having the code of the in�nite machine
written on the read only tape.

The Accelerating Turing Machines actually correspond to the halting
problem of standard Turing Machines. The interesting thing is, that in this
model, there are no problems with diagonalization, since these machines can-
not make any computation after the �rst second and thus, cannot accept if
another machine rejected by an in�nite computation.

Thus, most (if not all) of these machines can be more or less simulated
by the oracle machines.

There is also another point of view at these groups of models, namely the
constructive one. We might argue, that to supply one model with some non�
recursive8 information, the information must have been created in advance.
From this point of view the models with in�nite time might be considered
most interesting, since they have neither external nor internal non�recursive
information. Thus in this thesis, our aim is to explore the in�nite compu-
tation and identify the factors having in�uence on its power. We shall only
study in�nite computation with just one trans�nite step.

Looking at all these models, another interesting question might arise.
Most of these models simulate some (at least in our imagination) physical
devices. The concepts of movement, speed and time are obviously based on
Newtonian view of physics. It might be interesting to mix these models with
the relativity or quantum theory.

The mathematical apparatus is based on the standard set theory. It
might also turn out to be of some interest, to study these models from the
alternative set theory point of view.

8external in an oracle, internal in a speci�cation

10

Chapter 2

Notation and Preliminaries

In this part, we introduce a new computational model� the Display Turing
Machine1. These machines enable us to study functions that require possibly
in�nite computational time. The model looks like a standard one�tape Tur-
ing Machine equipped with an additional tape. We shall call this additional
tape the Display Tape2. During its computation, the TMD can use both of
the tapes as standard tapes. After the computation is done, the content of
the display tape shall be considered to be the result of the computation. If
the computation does not halt after �nite time, then the limit of the display
tape shall be the result. The display tape represents the information, we are
able to directly receive from the in�nite computation (e.g. by measurement).
We shall also say that the TMD transforms the input word to a display word
(the limit contents of the display tape).

We can also use this model to accept languages. This can be done by
specifying a set of words that are allowed to occur on the display. Thus
a TMD will accept an input word w if and only if it transforms it into
a display word from this set. We shall denote this set as Control, since
it controlls whether a word is accepted or not. We shall call this whole
accepting mechanism a Display Turing Machine with Control and use the
acronym TMDC.

1We shall use the acronym TMD (Turing Machine with Display) to avoid confusion
with the Deterministic Turing Machine.

2We might refer to these tapes as to the �rs tape and second tape. By second tape we
mean the display tape, �rst tape represents the �standard� tape while .

11

2.1 De�nitions

We shall now provide formal de�nitions of the Display Turing Machine and
Display Turing Machine with Control. We use the notation and terminology
similar to the one used in [HU79]. We also expect the reader to have basic
knowledge of formal languages and automata.
De�nition 2.1.1. Let Λ be a �nite alphabet3. We denote by Λ∗ the set of all
�nite words consisting solely of letters in Λ. We denote by Λω the set of all
in�nite words consisting solely of letters in Λ. We denote by Λ∞ = Λ∗ ∪ Λω.

Informally, a Display Turing Machine works in the following way. At the
beginning of the computation, there is only the input word w written on
the �rst tape. The head of this tape is on the �rst letter of the input. The
display tape is empty and the head of the display tape is at the beginning
of the display tape. The machine is in a special state called the initial state.
Once the computation starts, each head reads the content of the respective
square of the respective tape. Then according to the letters red by the heads
and the state of the machine, each head writes some symbol onto its current
position on the tape and moves to one of the adjacent squares, or remains
where it is.

These changes constitute a computational step. After the �rst computa-
tional step is accomplished, the second computational step is realized, etc.
Thus the whole computation consists of a sequence of consecutive computa-
tional steps. With a word on input, all the information necessary to perform
each computational step is stored in the transition function δ. Given the
symbols read by both heads and given the state of the machine, δ tells the
heads what to do as well as what should the new state of the machine be.

The result of the computation is the content of the Display tape after
in�nitely (ω�many) computational steps. The special symbol † used in the
output of the machine is an indicator saying that the content of the square
where it is was changed in�nitely many times and thus there is no limit
content of that square4.

3We use the symbol Λ instead of Σ because Σi is used to denote the i-th enumerable
level of the Arithmetical Hierarchy.

4We can view this situation so that the square of the tape was scratched and damaged

12

De�nition 2.1.2. A Display Turing Machine is a 5-tuple (Λ, Γ, δ, K, q0)

where
Λ ⊆ Γ are the input and auxiliary alphabets, B and $ in Γ−Λ are special

symbols for a blank space and the beginning of the display tape, † /∈ Γ is a
special symbol that is not allowed to be in Γ,

K is a �nite set of all states of the machine, q0 ∈ K is the initial state
and

δ : K × Γ2 → K × ({Γ− {B}} × {−1, 0, 1})2 is the transition function
such, that δ(q, a0, a1) = (p, a′0, d0, $, d1) if and only if a1 = $, and d1 never
equals −1 if a1 is $.

The con�guration of the Display Turing Machine is a �vetuple containing
the current state of the computation, i.e. the state of the machine, the content
of the tapes and the positions of heads. An example is (p, BwB, 5, $vB, 2).
Here p denotes the current state of the machine, w is the word written on
the �rst tape, 5 means, that the head on the �rst tape is on the �fth square,
v is the word written on the display tape and 2 stands for the position of the
head reading the display tape.
De�nition 2.1.3. A Con�guration of TMD T is an element of the set K ×
B(Γ− {B})∗B × N× $(Γ− {B, $})∗B × N

We can now formally de�ne a computational step. It is actually the
transition from one con�guration to another by only one application of the
δ�function.
De�nition 2.1.4. A computational step of a TMD T is a relation `T on
con�gurations of TMD de�ned by (p, Bu0u1 . . . unB, k, $v0v1 . . . vmB, l) `T

(q, Bu0u1 . . . uk−1auk+1 . . . unB, k+d0, $v0v1 . . . vl−1bvl+1 . . . vmB, l+d1) ⇐⇒
δ(p, uk, vl) = (q, a, d0, b, d1). We omit the index T and shall write only ` if it
is obvious what machine we are referring to.

The resulting content of the TMD is de�ned for each square of the dis-
play tape and these are then concatenated to form the resulting word. The
result of each square is seen as a limit of the contents of that square during
by in�nite rewriting.

13

computation. If the content of the square does not change from some mo-
ment on (if it changes only a �nite number of times), then its display content
of it is the last letter written. On the other hand, it the content changes
unbounded number of times, then its display content is a special symbol †
which means, that the square was scratched and there is no proper result.
De�nition 2.1.5. Let T be an TMD and w ∈ Λ∗. Let DT (w) = {dT (w)(n)}∞n=0

denote the sequence of contents of the display tape of the machine T working
on the input w. Let D

T (w)
i = {dT (w)

i (n)}∞n=0 denote the sequence of letters
written on the i-th square of the display tape during the computation of T on
the input w (where the beginning of the tape $ is considered to be the minus
�rst square). Let d̄

T (w)
i be the limit of D

T (w)
i if it converges, † if it does not.

If there exists an l such that l = min{i|Di converges to B}, then we say that

T (w) = d̄
T (w)
0 d̄

T (w)
1 . . . d̄

T (w)
l−1

is the result of the TMD T with w on input.
If there is no such l then the result of the TMD T with w on input is the

in�nite word
T (w) = d̄

T (w)
0 d̄

T (w)
1 d̄

T (w)
2 . . .

We shall now de�ne the Display Turing Machine with Control. It is a
computation model consisting of two main parts. The TMD and a set called
the Control language. If the output of the Display Turing Machine is in
the Control language, then the word that was on input is accepted by the
TMDC. In this thesis, we shall show that using more complex Control
language allows the TMDC to accept more languages. Thus the in�nite
computation can not do all the job by itself. In some sense, the Control
represents some after-processing of the in�nite computation.
De�nition 2.1.6. The Display Turing Machine with Control is a pair A =

(T, S) such, that T is an TMD and S is a set. We shall call S the Control
set of A and sometimes refer to it as C(A).
De�nition 2.1.7. Let A = (T, S) be a Display Turing Machine with Control.
We de�ne L(A) = {w ∈ Λ∗|T (w) ∈ S}. L(A) is the language accepted by A.

14

We shall now de�ne a (partial) function alternative to the Display Turing
Machine with Control.
De�nition 2.1.8. Let T be a TMD with Γ1 as its working alphabet, Γ2 be
a �nite alphabet and f a (partial) function f : (Γ1 ∪ {†})∞ → Γ∞

2 . We shall
call the pair (T, f) a Display Turing Machine function.

We shall now de�ne a few useful functions and notations.
Notation 2.1.1. Let f(n) : N → N be a nondecreasing function. We denote
by Tf(n) the class of all TMD for which the size of their result on input words
of length at most n does not exceed f(n).
De�nition 2.1.9. Let T be a TMD. #†T (w) shall denote the number of †
symbols in T (w).
De�nition 2.1.10. PAR(u) shall denote a predicate that is true if the num-
ber of non�† symbols in u is even5.

We shall now de�ne bounded classes of Display Turing Machines with
Control.

Notation 2.1.2.
• Let (Tf(n),L) denote a class of Display Turing Machines with Control
such that A = (T, S) is in (Tf(n),L) i� A is in Tf(n) and S is in L and
there is no w in S containing the symbol †.

• Let (T †
f(n),L) denote a class of Display Turing Machines with Control

such that A = (T, S) is in (T †
f(n),L) i� A is in Tf(n) and S is in L.

• Let C be a class of machines. We shall denote by L(C) the class of all
languages accepted by machines in C (i.e., L is in L(C) i� there exists
A in C such that L(A) = L).

We shall sometime refer to the control language S of a TMDC A = (T, S)

by C(A).
5We shall use this predicate for T (w), the result of a TMD T on an input w, and write

PAR T (w) instead of PAR(T (w)).

15

Notation 2.1.3. We shall denote by TM (TM′) the set of all total (partial)
functions computable by standard Turing Machines.

We shall now de�ne a machine equivalent to the In�nite Time Turing
machine with one trans�nite step as presented by Hamkins and Lewis [HL00].
Notation 2.1.4. Let LRE∗ be the class of languages containing possibly in�-
nite words, for which there exists a Deterministic Turing Machine M accept-
ing it. An in�nite word w is accepted by a Deterministic Turing Machine M

if the machine M working on input w enters its accepting state after �nite
number of steps.
De�nition 2.1.11. The In�nite Time Turing Machine with one trans�nite
step is a TMDC A with C(A) ∈ LRE∗.

In what follows, we might omit some indices if they are clearly implied
by the context. If P (x) is a predicate, we shall denote by P the set of all x

satisfying P (x).

16

Chapter 3

Building hierarchies in Σ3

3.1 General Properties of Display Turing Ma-
chine with Control

We shall now show some basic properties of the Display Turing Machines
and Display Turing Machine with Control using very simple control sets and
small display tape. In fact in this section we shall only use TMD in T1, i.e.,
TMD with display tape size limited to one square. In this way, one can get
some intuition of what these machines can do and what are the major factors
a�ecting their computational power.

First of all, we shall show what is the power of `nice' machines, machines
with control set not using the † symbol.
Lemma 3.1.1. Σ2 ⊆ L(T1,R).
Proof. Let L be in Σ2 and let M be an oracle Turing machine with an
oracle for the halting problem of Turing machines accepting L. We shall
construct a corresponding TMDC A = (T, C) with display tape consisting of
a single square and a regular control language, accepting L. T shall simulate
a multi tape machine, which can change the number of its tapes during
its computation. This can be achieved by serially writing the contents of all
simulated tapes onto the working tape and separating them by the # symbol.

T shall simulate M in an obvious way, as long as there is no oracle query.
If M writes something to the oracle tape, then T creates a new tape (for

17

each query a new tape) and writes the same onto that tape1. If M enters
the query state, the following happens:

1. T writes its current con�guration at the end of a special tape. We shall
call it Query Con�gurations Stack Tape, (QCST).

2. T writes a unique identi�er (e.g., the serial number of this oracle call)
at the beginning of the respective oracle tape and also at the end of
the QCST.

3. T starts a parallel simulation of the machine whose code is written on
the appropriate oracle tape.

4. T continues in parallel the computation of M assuming the oracle an-
swer was no (i.e., as if the machine encoded on the oracle tape would
not halt).

If the simulated oracle machine M enters a halting state, T shall write
the symbol 1 onto the display tape square if M accepts and 0 if it does not.
This way, there are numerous tapes used. There is one tape of the original
machine M , one QCST and k oracle tapes where k is the total number of
oracle calls in the computation of M so far. We can see, that this way, there
can be many computations simulated in parallel. Of course, the parallelism
is only simulated by T .

Should the simulation of a machine Z written on the oracle tape z halt,
then T must roll back its entire computation and free the tape z which is no
longer needed. There is no problem with the rollback, for all the necessary
information is stored on the QCST. All oracle simulations, which started
after the simulation of Z, are also to be disposed of. This can also be done
without any problem because their identi�ers are also written on the QCST.

Finally, if the wrong simulation of M already stopped and T has printed
an appropriate symbol on the display tape square, it needs to be cleared. If
this happens, T shall change the output square to 0.

We de�ne C = {1}
1Note that a query to the Halting Problem oracle consists of an encoding of some

Turing machine and its input.

18

Machine A as described above is in (T1,R), since T is a TMD with a
single square on a display tape and C is obviously a regular set.

L ⊆ L(T, C):
Let w be in L(M). Then there exists a �nite accepting computation of M .
This means, that there is a �nite number of oracle queries. We shall show,
that the simulation of M by T eventually follows the same computation as
M does. From the construction of T it is obvious, that there is no problem
with those parts of the computations which do not contain an oracle call. So
all we have to show is that after some �nite time T shall provide the correct
answer to each oracle query in the computation of M .

We shall prove this by contradiction. Let k denote the serial number of
the �rst query in the computation of M for which T never generates the
correct answer. There are only two reasons why this could happen. The �rst
is, that the query was never asked. This is not possible, since for each of
the queries before the k-th one there was a correct answer generated in �nite
time. Thus the simulation had to reach the point, where the k-th query was
asked.

The second reason is that the correct answer to the query was not gen-
erated in �nite time. If the machine that is the subject of this query ever
halts, then the machine T obtains this information after some �nite number
of steps (since the query simulation is performed in parallel). So to make our
assumption true, the query computation must never halt. But in this case,
T has the correct answer to the query immediately, since no is the default
answer to any query. This again is a contradiction.

This implies, that T shall follow the computation of M for some �nite
time and write the appropriate symbol onto the display square. From that
moment on it shall not change the content of it. For, all queries that are
still being simulated never halt and thus no rollback shall be done. Thus the
sequence of characters written on the single display square converges to 1.

L(T, C) ⊆ L

We show, that w /∈ L implies w /∈ L(T,C).
From the �rst part of the proof we already know, that for all p ∈ N there

exists an qp ∈ N such that the �rst p steps of M are correctly simulated by
T in qp steps. Thus if the computation of M halts after k steps and does not

19

accept, then after qk steps T shall print 0 onto the output square and shall
not change the content of it anymore.

Let us consider the case, when M does not stop. Then it is obvious from
the construction of T , that after simulating exactly l steps of M (needing
exactly ql steps of T) there is 0 or B written on the display square. Let
{dqk

}∞k=1; dqk
∈ {0, B} be the sequence of contents of the output square after

qk steps. This is a subsequence of D = {di}∞i=1 where di is the content of the
display square after i steps of T . From that it follows that if D converges,
then it must converge to either B or 0. Thus if w /∈ L then w /∈ L(T,C). �

Lemma 3.1.2. L(T1,R) ⊆ Σ2

Proof. Let A = (T,C) be in (T1,R)2. We shall construct an oracle machine
M (with a Σ1 oracle) accepting w if and only if w is in L(A). All we need
to do is to determine the result T (w) of the display machine T in �nite
time assuming, that the output belongs to C. We shall utilize the fact,
that if T (w) ∈ C then T (w) 6= † (in other words the number of changes of
the display is �nite). So M shall simulate A and ask the oracle, whether
the content of the display square shall be changed during the forthcoming
computation (how to ask such questions is shown in the next paragraph). If
it does not change, we shall just check if it is in C. If it does, it must happen
after some �nite time so we can simulate the computation to the point of
the change and then ask the oracle again. This implies that if w ∈ L(A)

then w ∈ L(M). On the other hand if T (w) = † then M never halts. If
T (w) 6= † but T (w) is not in C(A) then w /∈ L(M) also. Thus if w /∈ L(A)

then w /∈ L(M). Thus w ∈ L(A) ⇐⇒ w ∈ L(M).
To complete the proof we need to show that we can ask queries as de-

scribed above. The question we are asking is Given a con�guration of the dis-
play machine T , shall the content of the display change after some �nite num-
ber of computational steps? Formally, let (p, w0, n0, w1, n1) be a con�guration
of T . We are asking about the truth of the predicate P ≡ ∃k ∈ N : R(k),
where R(k) ≡ ((p, w0, n0, w1, n1) `k

T (q, w′
0, n

′
0, w

′
1, n

′
1)) ∧ w1 6= w′

1. R(k) is
obviously a recursive predicate thus P ∈ Σ1. �

2Since the size of the display is limited to 1 only very speci�c languages from R are
usable.

20

Theorem 3.1.1. L(T1,R) = Σ2.
Proof. The proof follows from Lemma 3.1.1 and Lemma 3.1.2. �

We see, that the in�nite computation of the Display Turing Machine
can be used to answer (arbitrary many, but �nite) number of queries to the
Halting problem of standard Turing machines. It can be seen that if all
the words in the control set are †�free it su�ces to consider control sets
consisting of words of length one. Thus having display tape of size k, k > 1,
does not increase the power of TMDC in this case. We shall now consider
the question whether TMDC can compute more in case the words in the
control language can contain the symbol †.
Lemma 3.1.3. Π2 ⊆ L(T †

1 ,R)

Proof. Let L ∈ Π2 then LC ∈ Σ2. Thus there exists an oracle Turing machine
M with a Σ1 oracle accepting LC . We shall construct a Display Turing
Machine with Control A = (T, {†}) such that T (w) = † ⇐⇒ w /∈ L(M).
Let T ′ be the display machine used in the proof of Lemma 3.1.1. We already
know, that T ′(w) = † if the computation of M requires in�nitely many oracle
queries. We shall construct T by a slight modi�cation of T ′. The only reason,
why T ′ does not satisfy our needs is that if the computation of M needs only
a �nite number of queries and then rejects the input, T ′ does not produce a
† on its display. So T shall di�er from T ′ in such case. T shall simulate M

just as T ′ does, but should the simulation come to the point, where M would
reject, T shall enter a loop in which it continually rewrites the content of the
display square. Of course, the parallel simulation of oracle queries does not
stop. This implies, that w ∈ L(M) ⇒ T (w) = 1 as in the proof of Lemma
3.1.1 and w /∈ L(M) ⇒ T (w) = † ⇒ w ∈ L(A). �

We see, that the † symbol is `stronger' then any non�† symbol. What
power does the use of this symbol provide?
Lemma 3.1.4. Let A = (T,C) be in (T †

1 ,R) and let † ∈ C, then L(A) is in
Π2.
Proof. Let A = (T,C) be in (T †

1 ,R) such that † ∈ C(A). We shall construct
an oracle machine M with a Σ1 oracle such that L(M) = L(A)C . M shall

21

simulate the computation of T on w and try to determine the display T (w)

of T . It shall ask the oracle, whether given a con�guration of the display
machine T , the content of the display changes after �nite number of com-
putational steps. If it does not, M will know the resulting content of the
display d̄0 of T and shall accept if d̄0 /∈ C and vice versa. Since C ∈ R (and
all its elements are of size 1), this will not be a problem.

If the content is to be rewritten, then M can simulate the computation
of T to that point and then ask again. If T (w) = † then M never halts and
thus does not accept w.

Thus w ∈ L(M) ⇐⇒ T (w) /∈ C. �

Theorem 3.1.2. {L|∃A = (T,C) ∈ (T †
1 ,R) : A accepts L and † ∈ C} = Π2

Proof. The theorem is an obvious corollary of Lemma 3.1.3 and Lemma 3.1.4.
�

Corollary 3.1.1. L(T †
1 ,R) = Π2 ∪ Σ2

Proof. The proof follows directly from Theorem 3.1.1 and Theorem 3.1.2. �

After these results, we might get the feeling, that in one square, we can
compute the answer to one oracle call to a Σ2 oracle. So if there was a larger
display tape, we might be able to compute more. Since we know (see [Bie95]),
that for an oracle machine k + 1 queries to Σ2 are better then k queries, it
would be tempting to prove such conjecture for our model. This shall be the
aim of the next section.

3.2 The Tape�size Hierarchy

In this section, we shall examine the relation between oracle machines with
a Σ2 oracle and Display Turing Machines with Control. The main result of
this section is the proof, that display tape of �xed size k +1 is stronger, then
the one of size k for all k. We shall call the hierarchy established in this
way the Tape�size Hierarchy. Since all machines studied in this section have
a constant bound of their display tape, their control sets can be reduced to
�nite sets. Thus the control sets of all machines in this section are clearly
regular.

22

We shall �rst formulate a simple but useful �concatenation� property of
the Display Turing Machines with Control. For any two machines, we can
create a third one by �gluing� these two machines together. Conversely, if we
have one display machine using a display tape of size k, we can �separate� it
into two machines with display tapes of sizes a and k− a that shall compute
their respective parts of the output of the original machine.
Lemma 3.2.1 (Concatenation Lemma).

i. Let (T1, S1) and (T2, S2) be two TMDC. Then there exists a machine
(T, S) such that L(T, S) = L(T1, S1) · L(T2, S2).

ii. Let T be a TMD. Then there exists two machines T1 and T2 such that
for all w is T (w) = T1(w) · T2(w) and if |T (w)| > 0 then |T1(w)| = 1.

Proof.
i. T shall simulate the computation of T1 and T2 in parallel and write the

output of T2 right behind the output of T1. There are many ways how
to do this, we shall omit unnecessary technical details. S = S1 · S2. It
is obvious, that (T, S) satis�es our demands.

ii. T1 shall simulate in an obvious way T by using only its �rst tape3.
After each computational step of T , T1 shall copy the content of the
�rst square of T 's display tape onto its own display tape. Thus the
resulting content of the display tape of T1 is the content of the �rst
square of the display tape of T . T2 shall work as T1 with the di�erence,
that it shall copy onto its display tape the content of the whole display
tape of T except its �rst square. Thus for each w is T (w) = T1(w)·T2(w)

and if |T (w)| > 0 then |T1(w)| = 1.
�

We might refer to T by writing T1 · T2.
We shall continue by establishing several technical Lemmas, which we

shall use in the proofs that will follow.
3This can be done in many ways, for example by serially writing the contents of both

tapes of T and separating them with some special symbol.

23

Lemma 3.2.2. Let T be a TMD with display tape �xed to the size k. Let
LE†(T (w), n) denote a predicate which is true if and only if #†T (w) ≤ n.
Then for all n ≤ k is the set ST

n = {w|LE†(T (w), n)} in Σ2.
Proof. Let T and n be given. Clearly a lower bound for the number of non�†
symbols in T (w), implies an upper bound for #†T (w), namely k minus this
lower bound. Thus the set of all words w for which T (w) contains k − n or
more non�† symbols is the same set as ST

n . Formally

{w|k −#†T (w) ≥ k − n} = {w|#†T (w) ≤ n}

Let Ti be a TMD that writes only one symbol onto its display tape, namely
the i-th symbol of T (w). It can be easily seen that there is such a machine.
Let S be the set of all output symbols of T except for †. Then Ai = (Ti, S)

is a TMDC accepting those w for which the i-th letter of T (w) is a non�†
symbol. Since ST

n is the set of all words whose output contain at least k − n

non�† symbols, the following equation holds:

ST
n =

⋃
M⊆{1,...,k}
|M|=k−n

⋂
i∈M

L(Ai)

From Theorem 3.1.1 we know, that L(Ai) ∈ Σ2 for all i. Since Σ2 is
closed under union and intersection, ST

n is in Σ2. �

Now, we can show how to simulate a Display Turing Machine with Control
set restricted by a �xed tape size by an oracle machine using only logarith-
mically4 many queries.
Lemma 3.2.3. L(T †

k ,R) ⊆ {L ∈ Σ3|∃ oracle machine M with a Σ2 oracle
such that L(M) = L and M needs at most dlg (k + 1)e+ 1 oracle calls}.
Proof. Let L ∈ L(T †

k ,R) and let A = (T,C) be the TMDC machine accept-
ing it. We shall construct an oracle machine M with the desired properties.

Given w on input, M will work in the following way. At �rst, M shall
compute #†T (w) the exact number of † written on the display of T (w).
We shall show, that M will not need more then dlg (k + 1)e oracle queries

4We use the term lg x instead of log2 x.

24

to achieve this. Then M shall use only one more query to compute the
acceptance of A.

Since LE†(T (w), n) can be computed using only one query (due to Lemma
3.2.2). M can determine the value of #†T (w) by performing a binary search
on the set {0, 1, . . . , k}. This shall obviously take no more than dlg (k + 1)e
oracle queries.

Now, M should �nd the display T (w) of T and whether it is in C. We
shall show that this can by achieved by using only one query. M shall ask the
query, whether there exists a number t, that after t steps of T , all convergent
display squares have come to the point that they will not be altered in the
forthcoming computation. Furthermore, M will determine whether the word
obtained by replacing the non convergent squares by † symbols is in C. We
can write this in a formal way.

Let S = {i1, i2, . . . , ik−#†T (w)+1} denote a set of all indices of squares of
the display tape, that contain a non�† symbol in T (w). Let

P (v1, v2, · · · , vm, i1, i2, · · · , im)

denote a word of length k such, that its il-th symbol is vl and all other
symbols (whose indices are not in the list) are †. Let t denote the time, by
which all the convergent squares of the display contain the correct result that
will not change any more.

Thus given S and t, the question we want to ask is whether5

P
(
di1 (t) , di2(t), · · · , dik−#†T (w)+1

(t), i1, i2, · · · , ik−#†T (w)+1

)
∈ C (3.1)

To verify that a given t has all the properties laid on it, the following predicate
must be true

(∀m ∈ N) : (i ∈ S ⇒ di(t) = di(t + m)) (3.2)
5di(t) denotes the content of the i-th square of the display tape after t computational

steps.

25

Thus the question M should ask is

(∃S)(∃t ∈ N) : ((3.2) ∧ (3.1)) .

Since we know the size and domain of S, we can compact the two quanti�ers
to one by encoding the variables i1, i2, · · · , t into one integer t′. Then the
question M should ask is whether there is such an integer t′, that encodes
an correct list of values i1, i2, · · · , t. We shall use coding into composite
numbers, where exponents of primes represent the encoded integers. Let
pi; i ∈ N denote the i-th prime (p0 = 2).

To verify if t′ is the code of an list of appropriate length, the following
predicate must be truet′ = pt

0 ·
k−#†T (w)+1∏

i=1

pαi
i

 ∧

k−#†T (w)+1∧
i=1

αi 6= 0

 . (3.3)

Here, the zeroth exponent represents t and all the successive exponents rep-
resent S.

Thus the question M needs to ask could be written as

(∃t′ ∈ N)((3.3) ∧ (3.2) ∧ (3.1))

By expanding each of the terms 3.1, 3.2, 3.3 and placing the universal quan-
ti�er to the front we obtain the predicate

(∃t′ ∈ N)(∀m ∈ N) :t′ = pt
0 ·

k−#†T (w)+1∏
i=1

pαi
i

 ∧

k−#†T (w)+1∧
i=1

αi 6= 0

 ∧

k−#†T (w)+1∧
i=1

dαi
(t) =

= dαi
(t + m)

 ∧ P
(
dα1(t), dα2(t), · · · , α1, α2, · · · , αk−#†T (w)+1

)
∈ C(A)

 .

Since the body of this predicate is recursive, the whole predicate refers to a
set in Σ2 and thus, we need only one oracle query to obtain the answer to
our �nal question. �

26

In the previous proof, we used the coding of lists of numbers into expo-
nents of primes. Of course, we could have used any other numbering function.

We shall now show how to simulate an oracle machine that uses at most
k oracle calls by using an exponentially long tape. This is somehow to be
expected given the previous Lemma.
Lemma 3.2.4. Let M be an oracle machine that is allowed to make at most
k oracle calls (to a Σ2 oracle). Then L(M) ∈ L(T †

2k+1−1
,R)

Proof. We shall �nd a TMDC A = (T, C) simulating M . The proof is based
on the following idea. Let O be the oracle used and w its input. We have seen
(Corollary 3.1.1), that an TMD is able to compute the answer to an Σ2 query
by using only one square of the display tape. Since we know, that the number
of queries is not greater then k, T can enumerate all possible computations
of M on w with an arbitrary oracle. These computations shall form a binary
tree and at each branching point, there shall be an oracle query. We shall call
this tree a computation tree. Since the number of queries to O is bounded
by k, the tree has at most 2k − 1 branching points. All that we need to do
in order to ensure that we can correctly simulate M with O is to compute
the answer to each query in the computation tree of M on w. We shall also
compute the result of M for each possible path of the computation. Since
there are 2k leaves, there are 2k possible computational paths (after the last
query, there can still be some computation). To write all this information
(the result of each query and the result of each computational path), T needs
a display tape of length 2k+1 − 1.

Having this information, A can easily determine the true computation of
M on w with O as its oracle6.

We can e�ectively number each node in the computation tree. Let Ti

compute the output of the query with number i and print 1 if the answer
is positive and † if it is negative. The existence of such Ti is guaranteed by
Corollary 3.1.1. Since each of the 2k possible computational paths has a �xed
unique combination of k query answers, there is no problem to simulate the

6The results of the oracle queries (starting from the �rst query) form the true compu-
tational path of M . The required information is retrievable, since there is the result of
each possible computational path written on the display tape.

27

result of each such computation by a standard Turing machine. Let T ′
i be

a display Turing machine which simulates the i-th computational path and
prints the symbol 1 on the i-th display square if the computation accepts.

By the use of the Concatenation Lemma (Lemma 3.2.1), we can construct
a TMD such that the content of the i-th output square is the output of Ti

if i < 2k or the output of T ′
i−2k+1

otherwise7.
Let C be the set of words of length 2k+1−1 that are codes of computational

trees as described above, for which the correct computational path accepts.
Since this set is �nite, it is surely in R.

Thus (T, C) is a TMDC simulating M . �

The results presented so far give us an idea of how strong the Display
Turing Machine with Control with constant size of the display tape are. By
using Lemma 3.2.4 we can see that with a display tape of size 2k+1 − 1 we
could compute more, then we could with a 2k − 1 squares long tape. But is
it true that if we increased the maximum size of the display tape just by one
square, we would obtain greater computational power? We shall show, that
there is an a�rmative answer to this question.

In fact, our computational model with �xed size display tape is similar to
the model of a Turing machine making parallel queries presented by Richard
Biegel in [Bie95] [BGH89]. So we shall try to use similar proof techniques to
achieve our goal.

We shall start by examining the properties of the predicate PAR T (w)

which is true if the number of non�† symbols in T (w) is even.
Lemma 3.2.5. Let (T, S) ∈ (T †

k ,R). Then L = {w|PAR T (w)} ∈ L(T †
k ,R).

Proof. Let A = (T, S ′) where S ′ = {v|#non�† symbols in v is even}. Obvi-
ously L(A) = L. �

Lemma 3.2.6. If (∀m ∈ N)(∃n ∈ N)(∃T ∈ Tn) : (PAR T 6∈ L(T †
m,R)) then

(∀i ∈ N) : L(T †
i ,R) (L(T †

i+1,R)8.
7Thus the content of the 2k-th square shall be the result of T ′

1
8By PAR T we mean the language of all words w, for which PAR T (w) is true.

28

Proof. Let n′ be the maximum, for which all the machines in T ′
n have their

PAR language acceptable by a machine from L(T †
m,R). By the assumption,

such a n′ surely exists for each m ∈ N. Formally let

n′ = max{n|(∀T ∈ Tn)(PAR T ∈ L(T †
m,R))}.

Thus there exists a T ′ ∈ Tn′+1 such, that

PAR T ′ 6∈ L(T †
m,R).

Using the Concatenation Lemma (Lemma 3.2.1) we know, that there are
machines Tn and T1 such that T ′ = Tn · T1 where Tn has its display tape of
size n and T1 has its display tape of size 1. Since

PAR Tn ∈ L(T †
m,R) ∧ PAR T1 ∈ L(T †

1 ,R)

we can �nd a machine in (T †
m+1,R) accepting PAR T ′. If (T0, S) is the ma-

chine accepting PAR Tn then we shall construct the machine A for accepting
PAR T ′ as follows:

A = (T0·T1, S ′); S ′ = {w′| (w′ = wv) ∧ ((w ∈ S ∧ v = †) ∨ (w 6∈ S ∧ v ∈ ΓT1))} .

Thus, PAR T ′ 6∈ L(T †
m,R) and PAR T ′ ∈ L(T †

m+1,R). If there exists a T ′

for each m, then L(T †
a ,R) (L(T †

a+1,R) for all a. �

We shall now show, that the assumption of the previous Lemma is true
and thus is its consequence true as well.
Lemma 3.2.7. Let n ∈ N and let bini(n) denote the i-th bit in the binary
encoding of n. Then bini(n) = bin0

(
n
2i

).
We shall not provide proof of this Lemma, since it is a well known com-

binatorial property.
Lemma 3.2.8. If (∀T ∈ T)(PAR T ∈ L(T †

m,R)) then (∀T ∈ Tk)(∃(T ′, f) ∈
L(Tm·dlg ke, TM) computing #†T).

29

Proof. T ′ shall use PAR T to compute #†T (w) bit by bit. Obviously if
PAR T (w) is true, then the last bit of #†T (w) is 1. (Since the parity of †
symbols is 1 − PAR T (w)). Let n denote the number of non-† symbols in
T (w). Obviously

n = k −#†T (w) .

Let Ti denote the display machine computing the content of the i-th output
square of T . Let S be a subset of {1, 2, · · · , k}. Let TS be a display machine
returning 1 if (∀i ∈ S)(Ti(w) 6= † and returning † otherwise. (Such a display
machine obviously exists).

We shall prove, that if S2j is the set of all 2j element subsets of {1, · · · , k}
and T2j is the machine

T2j =
⊙

S∈S
2j

TS

(where ⊙ denotes the concatenation operator) then

PAR T2j(w) = binj (n) .

Let S ∈ S2j . If there is an i in S such that Ti(w) returns the symbol †
then TS(w) returns † as well. On the other hand, if there is no such i in S,
then TS(w) returns the symbol 1. Let n denote the number of non-† symbols
in T (w). We shall now compute the number of sets in S for which TS(w) 6= †.
Since the size of each S is 2j, there are (

n
2j

) such sets. By Lemma 3.2.7 we
can see, that

PAR T2j(w) = bin0

(
n

2j

)
= binj(n).

This way, (T ′, f) can compute n in the following way.
Let PAR Tl = (TPAR Tl

, C). Let us presume, that TPAR Tl
always pro-

duces an output of size m (we can achieve this by adding necessary padding
and appropriately changing the set C). Let Jk be the set of all powers of 2

smaller or equal to k. Then

T ′ =
⊙
l∈Jk

(TPAR Tl
) .

Since each PAR needs only m squares, T ′ needs m · dlg ke squares. All that

30

needs to be done now is the calculation of n and then #†T (w). This is
the task for f . Since A is a �nite set and the size of output of each PAR

is normalized to m, f can transform each block of length m to a 0 or 1

depending on its correspondence to A and thus compute n. Since k is �xed,
#†T (w) can be computed as

#†T (w) = k − n.

Since T and k are �xed, there can always exist a (T ′, f) as described above.
�

Lemma 3.2.9. (∀m ∈ N)(∃n ∈ N)(∃T ∈ Tn) : (PAR T 6∈ L(T †
m,R))

Proof. By contradiction.
Let (∃m ∈ N)(∀n ∈ N)(∀T ∈ Tn) : (PAR T ∈ L(T †

m,R)) be true. Then
by Lemma 3.2.8 for each T ∈ Tk there is a M = (T ′, f) ∈ (Tm·dlg ke, TM)

computing #†T . We shall construct an oracle machine M ′ simulating A =

(T,C) with only dlg(m·dlg ke+1)e+1 oracle queries. There is a big similarity
between the computation of M ′ and the machine used in Lemma 3.2.3. The
main di�erence shall be, that M ′ shall use T ′ to compute #†T .

M ′ shall at �rst compute the output of T ′. To do this M ′ shall �rst
enumerate the number of † symbols in the output of T ′(w). Since

|T ′(w)| = m · dlg ke

this can be done by
dlg(m · dlg ke+ 1)e

queries. Now M ′ shall compute the output of T ′, calculate #†T and then
simulate the output of T . This computation can be realized by on oracle
machine M ′′ using a Σ1 oracle. The result of M ′′ can be obtained by one
query of M ′. The computation of M ′′ is equivalent to this predicate9 (we
use similar notation as in Lemma 3.2.3), where m · dlg ke − #†T

′(w) + 1 is
denoted # and f

(
P

(
dT ′

α1
(t), dT ′

α2
(t), · · · , α1, α2, · · · , α#

)) is denoted fT ′

1:# :

9Commentary is provided below.

31

(∃t′ ∈ N)(∀l ∈ N) :

((
t′ = pt

0 ·
∏#+fT ′

1:#

i=1 pαi
i

)
∧

(∧#+fT ′
1:#

i=1 αi 6= 0

)
∧(∧#

i=1 dT ′
αi

(t) = dT ′
αi

(t + l)
)
∧

(∧#+k−fT ′
1:#

i=#+1 dT
αi

(t) = dT
αi

(t + l)

)
∧

P
(
dT

α#+1
(t), dT

α#+2
(t), · · · , α#+1, α#+2, · · · , α#+k−fT ′

1:#

)
∈ C

)
.

This predicate di�ers from the one in Lemma 3.2.3 in that we also need
to �compute� the value of #†T and then use it. Thus the number t′ is not
only the coding of t and the appropriate indices of non�† symbols in T (w),
but also the indices of non�† symbols T ′(w).

The predicate (3.2) is enriched by conditions checking, if the indices of
non�† symbols in T ′(w) are correct.

The actual value of #†T is computed by

f
(
P

(
dT ′

α1
(t), dT ′

α2
(t), · · · , α1, α2, · · · , α#

))
and denoted fT ′

1:#.
Since there is only one set of indices of all non�† symbols in T ′(w), there

is also only one result of f(· · ·) and thus the predicate is true only if w is in
C.

Let M0 be a Turing machine with a Σ2 oracle such that M0 needs 2i oracle
calls to accept L(M0) and that there is no Σ2 oracle machine M1 accepting
L(M0) with less then 2i oracle calls. Due to results in [BGH89] there is such
an M0 for each i. Then by Lemma 3.2.4

L(M0) ∈ L(T †
22l+1−1

,R).

But if this is true, then by the previous construction L(M0) can be computed
by making only

dlg(m · dlg 22i+1 − 1e+ 1)e ≤ dlg(m · 2i + 1 + 1)e ≤ dlg m + i + 1e ≤ m + i + 1

queries. Since m is a constant, there exists an i big enough to make the
following inequality hold

m + i + 1 < 2i.

32

But this is a contradiction, since there cannot exist a machine M1 accepting
L(M0) by making only m + i + 1 queries. �

Theorem 3.2.1. k < l ⇒ L(T †
k ,L) (L(T †

l ,L)

Proof. The proof is a straightforward consequence of Lemma 3.2.6 and Lemma
3.2.9. �

We can see, that there is an in�nite hierarchy of machines with constant
display tape sizes. In the next section, we shall let the tape size more lose,
but shall stress the conditions laid on the Control language. This way we
shall form a new and di�erent hierarchy.

3.3 The Extended Chomsky Hierarchy

In this section we shall examine the impact on TMDC computational power
by placing di�erent constrains on the Control language. We shall not only
work with Control languages, but also (and most by) with machines accepting
these languages. We shall refer to these machines as Control Machines.

It is obvious, that if do not put a bound on neither of the machines (the
display machine or the control machine) we can get unlimited computational
power (we could accept any language just by using that language as the
Control language and using a display machine, that only rewrites the input
onto the output). In the following study, we shall also put a `small' bound
on the display machine. We shall demand it to always produce an output of
�nite size.
Notation 3.3.1. By T †

<ω we denote the set of all TMD having for each v

on input an output on the display tape of �nite size.
We shall show (for some Control sets), that the stronger the Control is, the

more languages we can accept. In our proofs, we shall use the diagonalization
argument.
Lemma 3.3.1 (diagonalization). Let C be a class of machines and let there
exist a code for each machine from this class. Then no machine in C can
accept the language consisting of codes of machines rejecting their own codes.
We shall denote this language by DC and call it the diagonal language for C.

33

Proof. By contradiction.
Let A be such a machine. Does A accept its own code? If this was the case,
then the code of A could not be in L(A) since this is the language of all codes
that are rejected by machines they represent. Thus A cannot accept it own
code.

But if A does not accept its own code, then the code of A must be in
L(A), since this is the language of all codes that are rejected by machines they
represent. Thus A must accept its own code. Since this is a contradiction,
there cannot be such A. �

We shall now start to examine the relations between particular Control
classes by showing, that regular Controls are weaker then context�free Con-
trols. This result shall be achieved by providing a machine using a context�
free Control accepting DL(T †

<ω ,R).

Lemma 3.3.2. DL(T †
<ω ,R) ∈ L(T †

<ω,LCF)

Proof. Let A be a �nite automaton with its code < A > and let T be a
TMD with code < T >. Thus M = (T, L(A)) ∈ (T †

<ω,R) and < T >< A >

is a proper code of M . The machine MD = (TD, L(AD)) (where AD is a
push�down automaton) accepting the diagonal language shall work in the
following way. Given < T >< A > on input, TD shall output the output of
T concatenated with all words of size T (< T >< A >) (we shall denote this
number by P) and for each such word there shall be the information, if A

accepts it. For better understanding look at the following �gure:

T (< T >< A >) wR
1 A(w1) wR

2 A(w2) · · · wR
P A(wP)

Then AD shall read the output T (< T >< A >) into its bu�er and continue
to move along the display tape. If AD should read (< T >< A >)R (AD

can �nd this out using non-determinism) then it shall compare it letter by
letter with the content of its bu�er. After verifying, that the block read
was really (< T >< A >)R AD reads the next letter. It is the symbol 1 if
< T >< A >∈ L(A) and 0 otherwise. If it was the symbol 0, AD enters an
accepting state, reads the remaining part of the display tape and accepts. If

34

the symbol read by AD was 1, then the automaton enters a non accepting
state, reads the remaining content of the display tape and rejects.

Thus we created a machine TD ∈ (T †
<ω,LCF) accepting D.

Some technical notes: The codes of A and T can be understood as codes
of the respective Turing machine or the display machine. The computation
of TD proceeds in the following way. If T should come to the point, that it
needs more display tape (i.e., it would be rewriting a B symbol on its display
tape), TD can rewrite the contents of its display tape following after the
output of T by all possible words of the required length. Since the output
of T is always �nite, there are no problems with this and no unwanted †
symbols will be created.

Once all the words of the appropriate size are written, T may simulate
A on their reverses and print the output of each such simulation after the
respective word.

After all this has been done, TD may continue in the simulation of T .
Since the output of T is �nite the output of TD shall be also �nite, thus
TD ∈ T<ω.

Some more technical notes: Since TD cannot create a † symbol in �nite
time, it would seem impossible to both generate all possible outputs of T and
then simulate A on them. Although this can be done by using two squares
of TD's display tape to encode one square of the display tape of T . For
example, we might code a square containing letter X by a pair of squares
XX. This way, we can also code the † symbol by a pair of letters not used
so far. Naturally, TD shall simulate A by treating two letters as one.

To avoid ambiguity, TD shall use delimiters on its display tape to separate
the output of T , all its possible outputs and results of each machine. We can
use another so far unused pair of letters to represent the delimiter. This also
means, that AD must work with pairs of letters and interpret them correctly,
but this is obviously no problem.

Thus MD = (TD, L(AD)) is a machine in L(T †
<ω,LCF) accepting D. �

Now, we can proof our �rs result.
Theorem 3.3.1. L(T †

<ω,R) (L(T †
<ω,LCF)

35

Proof. The fact that L(T †
<ω,R) is a subset of L(T †

<ω,LCF) is obvious. If it
was true, that

L(T †
<ω,R) = L(T †

<ω,LCF)

then by Lemma 3.3.2 D ∈ L(T †
<ω,R). But this cannot be true due to the

digitalization argument. �

Lemma 3.3.3. DL(T †
<ω ,LCF) ∈ L(T †

<ω,LECS)

Proof. Let the code of a machine M = (T, L(A)) ∈ (T †
<ω,LCF) be the string

< T >< A > where < T > is the code of the display machine T and
< A > is the code for the push-down automaton accepting L(A). Then
the machine MD = (TD, L(AD)) ∈ (T †

<ω,LECS) for accepting the diagonal
language operates the same way as in the previous proof, only the reverses
are not necessary any more and TD simulates the computation of a push�
down automaton. �

Theorem 3.3.2. L(T †
<ω,LCF) (L(T †

<ω,LECS)

Proof. The fact that L(T †
<ω,LCF) is a subset of L(T †

<ω,LECS) is obvious. If
it was true, that

L(T †
<ω,LCF) = L(T †

<ω,LECS)

then by Lemma 3.3.3 D ∈ L(T †
<ω,LCF). But this cannot be true due to the

digitalization argument. �

Lemma 3.3.4. DL(T †
<ω ,LECS) ∈ L(T †

<ω,LREC)

Proof. Since LECS ⊂ LREC , for each linearly bonded automaton (LBA)
there exists a Turing machine halting on all its inputs accepting the same
language. Let the code of a machine M = (T, L(A)) ∈ (T †

<ω,LECS) be the
string < T >< A > where < T > is the code of the display machine T and
< A > is the code for always halting Turing machine accepting L(A). Then
the machine MD = (TD, L(AD)) ∈ (T †

<ω,LREC) works in the following way.
The output of TD shall be < A > followed by a delimiter and the output

of T . Since there exists a universal Turing machine U , AD shall simulate this
machine on < A >. Since < A > always halts, the computation of U halts
with the same result. AD halts with accepting if A rejected and vice versa.
�

36

Theorem 3.3.3. L(T †
<ω,LECS) (L(T †

<ω,LREC)

Proof. The fact that L(T †
<ω,LECS) is a subset of L(T †

<ω,LREC) is obvious. If
it was true, that

L(T †
<ω,LECS) = L(T †

<ω,LREC)

then by Lemma 3.3.4 D ∈ L(T †
<ω,LECS). But this cannot be true due to the

digitalization argument. �

Lemma 3.3.5. DL(T †
<ω ,LREC) ∈ L(T †

<ω,LRE)

Proof. Let the code of a machine M = (T, L(A)) ∈ (T †
<ω,LREC) be the string

< T >< A > where < T > is the code of the display machine T and < A >

is the code for always halting Turing machine accepting L(A). Then the
machine MD = (TD, L(AD)) ∈ (T †

<ω,LRE) works in the following way.
The output of TD shall be < A > followed by a delimiter and the output

of T . Since there exists a universal Turing machine U , AD shall simulate this
machine on < A >. Since < A > always halts, the computation of U halts
with the same result. AD halts with accepting if A rejected and vice versa.
�

Theorem 3.3.4. L(T †
<ω,LREC) (L(T †

<ω,LRE)

Proof. The fact that L(T †
<ω,LREC) is a subset of L(T †

<ω,LRE) is obvious. If
it was true, that

L(T †
<ω,LREC) = L(T †

<ω,LRE)

then by Lemma 3.3.5 D ∈ L(T †
<ω,LREC). But this cannot be true due to the

digitalization argument. �

Thus, we have proved the existence of a Chomsky like hierarchy. We shall
call it the Extended Chomsky hierarchy.

L(T †
<ω,R) (L(T †

<ω,LCF) (L(T †
<ω,LECS) (L(T †

<ω,LREC) (L(T †
<ω,LRE)

37

Chapter 4

Conclusion

To conclude our study we shall prove, that by increasing the power of the
Control as shown in the previous section, the models remain in the domain
of the Σ3 level of the arithmetical hierarchy. In fact, they are all in ∆3.
Theorem 4.0.5. L(T †

<ω,LRE) ⊂ Σ3

Proof. Let A = (T,C) be a machine in (T †
<ω,LRE). As we have seen in the

�rst section, an oracle machine M with a Σ2 oracle needs only one query to
determine, if the content of the i-th output square of T is the † symbol. If T

is working over the alphabet Γ it can be easily seen, that M needs at most
|Γ| + 1 queries to determine the exact output of the i-th query (by simply
asking, for each symbol in the alphabet). Since T ∈ T<ω, the output T (w)

has a �nite size for each input. Thus, the machine M needs at most

|T (w)| · |Γ|+ 1

queries to determine the output of T .
Since there is a standard Turing machine accepting C, M needs only one

more query to �nd out, if T (w) is in C. This implies, that M is an always
halting machine, thus L(T †

<ω,LRE) ⊂ ∆3. �

We can now summarize all our results. In Section 2, we showed that there
is a Tape�size hierarchy. Since all the control languages in the tape size hi-
erarchy are regular, one can easily see that all classes of this hierarchy are in

38

the lowest level of the Extended Chomsky hierarchy. So by combining all our
results we can have a more precise insight to the Σ3 level of the Arithmetical
hierarchy. Its structure is shown in the following �gure:

Σ3

∆3

L(T †
<ω,LRE)

L(T †
<ω,LREC)

L(T †
<ω,LECS)

L(T †
<ω,LCF)

L(T †
<ω,R)
...

L(T †
3 ,R)

L(T †
2 ,R)

Π2 ∪ Σ2 = L(T †
1 ,R)

Σ2 = L(T1,R)

Our work shows, that one could continue our studies by examining the prop-
erties of more machines coupled together, i.e., using one TMDC as control in
another TMDC. On the other hand, it would be tempting to show, that each
degree of the arithmetical hierarchy contains its own Extended�Chomsky hi-
erarchy.

39

Bibliography

[BGH89] Richard Biegel, Williaam I. Gasarch, and Louise Hay. Bounded
query classes and the di�erence hierarchy. Archive for Mathemati-
cal Logic, 29(2), 1989.

[Bie95] Richard Biegel. Query-limited reducibilities. Dissertation at Stan-
ford University, 1995.

[EN02] G. Etesi and I. Németi. Non-turing computations via malament-
hogarth space-times. Int. J. Theor. Phys, 41, 2002. see also:
http://arXiv.org/abs/gr-qc/0104023.

[HL00] J.D. Hamkins and A. Lewis. In�nite time turing machines. Journal
of Symbolic Logic, 65(2), 2000.

[HR92] Jr. Hartley Rogers. Theory of Recursive Functions and E�ective
Computability. The MIT Press, 1992.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[Ord02] Toby Ord. Hypercomputation: computing more then the turing
machine. Honours Thesis, University of Melbourne, 2002. see also:
http://arxiv.org/pdf/math.LO/0209332.

[SS92] H. Siegelmann and E. Sontag. Neural networks with real weights:
Analog computational complexity. Technical Report SYCON-92-
05, Rutgers Center for Systems and Control, Rutgers University,
1992.

40

[SS95] Hava T. Siegelmann and Eduardo D. Sontag. On the computational
power of neural nets. Journal of Computer and System Sciences,
50(1):132�150, 1995.

[WvL01] Ji°í Wiedermann and Jan van Leeuwen. Beyond the turing limit:
Evolving living systems. 2001.

[WvL02] Ji°í Wiedermann and Jan van Leeuwen. Relativistic computers and
non-uniform complexity theory. 2002.

41

Abstrakt

V posledných rokoch sa na scéne teoretickej informatiky objavili viaceré
výpo£tové modely, ktorých výpo£tová sila prekonáva silu Turingových stro-
jov. Tieto modely nesú spolo£ný anglický názov Hypermachines alebo Super
Turing machines.

V úvode práce stru£ne predstavíme niektoré takéto modely, pokúsime sa
ich vo©ne porovna´ a poukáza´ na rozdiely ako aj spolo£né £rty. V ¤a©²ej £asti
sa zameriame na nekone£ne dlhé výpo£ty. Predstavíme vlastný model, ktorý
nám umoºní ich podrobné skúmanie. Ná² model sa skladá z £asti realizujúcej
nekone£ný výpo£et a z £asti spracuvajúcej výsledok tohto výpo£tu.

V práci skúmame vplyv ve©kosti informácie získanej nekone£ným výpo£-
tom na silu ná²ho modelu. Tieº sa zapodievame otázkou vplyvu zloºitosti
výstupov nekone£ného výpo£tu na výpo£tovú silu modelu.

Ukáºeme, ºe nami zade�nované stroje (resp. jazyky nimi ur£ené) s vy²²ie
spomenutými obmedzeniami (obmedzenia ve©kosti, alebo zloºitosti informá-
cie získanej nekone£ným výpo£tom) tvoria hierarchiu, ktorá je vnorená do
stup¬a Σ3 aritmetickej hierarchie. Ukáºeme, ºe najspodnej²ie poschodie tejto
novovzniknutej hierarchie je totoºné s triedou Σ2 a ºe ²truktúra horných pia-
tich poschodí pripomína Chomského hierarchiu.

K©ú£ové slová: Super Turing computation, aritmetická hierarchia, ne-
kone£né výpo£ty, Chomského hierarchia.

42

