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Abstrakt

Hlavným zámerom tejto práce je formálne poṕısať konečnú approximáciu nekonečného

jazyka, dokázať niektoré užitočné vlastnosti našej formálnej defińıcie a zaviesť pojem

vzdialenosti pre túto konštrukciu. Prvým krokom je úprava gramat́ık s energiou z diplo-

movej práce Jánoš́ıka, aby umožnili jednostrannú approximáciu daného jazyka. Defin-

ujeme pojem postupnosti approximácie pre daný jazyk a dokážeme niektoré vlastnosti

tejto konštrukcie. Zavedieme niektoré operácie pre postupnosti approximácie a zadefin-

ujeme silnú a slabú formu vzdialenosti medzi postupnosťami approximácie. V práci je

zavedená metóda vypoč́ıtania vzdialenosti medzi dvoma postupnosťami approximácie

v pŕıpade, keď vieme ako boli tieto postupnosti vytvorené, pomocou akých operácíı.

Uvedieme ako súvisia gramatiky s energiou postupnosti approximácie, a definujeme

triedu postupnosti approximácíı generovaných pomocou gramat́ık s energiami. Ako

poslednú vec dokážeme, že silná forma vzdialenosti za istých podmienok úzko súviśı s

gramatikami s energiou.

KĽÚČOVÉ SLOVÁ: gramatika s energiou, monotonné postupnosti konečných jazykov,

postupnosti approximácie, vzdialenosť medzi jazykmi
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Abstract

The main goal of this thesis is to define the finite approximation of infinite languages,

prove some useful properties of this formal definition, and introduce the distance mea-

sure on this construction. As the first step, we needed to modify the definition of

grammars with energy from Jánoš́ık’s thesis, allowing one-sided approximations of the

given language. We define the monotone sequences of finite languages, which are used

as sequences of approximations for a given language. We introduce operations on these

sequences, and prove some of their properties. We also define the string and weak dis-

tance measure between monotone sequences of approximations. In this thesis we show

how the strong and the weak distance measures behave, when we can obtain additional

information about the monotone sequences being measured. Later we show how can

grammars with energy generate sequences of approximations, and we introduce classes

of sequences of approximations generated by grammars with energy. Finally, we show

that under specific conditions the strong distance measure is related to the strict gram-

mars with energy.

KEYWORDS: Grammars With Energy, Monotone Sequences of Finite Languages,

Sequences of Approximations, Distances on Languages
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Introduction and Motivation

This thesis is dedicated to make the first step to define a distance measure between

languages as well as grammars. Our intention is to generalize one of the distance mea-

sures existing between words. This new distance measure should help us to highlight

the similarities and differences between the languages (or grammars) being measured.

Our solution is based on approximations of the given language by finite languages.

This idea, introduced by Jánoš́ık in Thesis [4], gives us a tool to approximate infinite

languages by finite ones for context-free languages. This tool is called grammar with

energy, which is a modification of context-free grammars.

A new structure is introduced, called monotone sequence of finite languages, which

is a generalization of the construction created by grammars with energy, and can be

used also to describe the length-based approximations, taking into account the length of

words from the language. We prove the basic properties of this structure and introduce

some operations on them.

Each monotone sequence of finite languages is a sequence of approximations for a

specific language.

Later we introduce the distance measure between the monotone sequences in general

as well as two specific distance measures later used in this thesis called strong and weak

distance measure. We prove some basic properties of these defined distances, and the

relation between chosen operations and the distance measure in general, too.

As our intention is introduce a distance measure between the grammars and lan-

guages itself, we introduce and examine new classes of monotone sequences of finite

languages, similarly to the classes of languages which can be created by some strict

grammar with energy. We introduce three basic classes based on the complexity of

grammars generating the monotone sequences. These classes are regular, linear, and

context-free sequences of approximations.

In the later chapters of this thesis we analyze properties of these classes of sequences

of approximations, and show some advanced properties of the strong distance measure

for these classes as well.
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Chapter 1

Grammars With Energy

This chapter contains the definition and basic properties of grammar with energy and

strict grammar with energy as well as some examples. The second part of this chapter

contains a derivation of some useful properties associated with strict grammars with

energy.

1.1 Definitions

Grammars with energy were introduced by Jánoš́ık in Thesis [4]. They were used to

define finite approximations of context-free languages. On the other hand, approxima-

tions in [4] may contain words, which do not belong into the language being approxi-

mated. In this thesis we present a modification of grammars with energy allowing only

approximation by finite subsets of the language being approximated.

Definition 1.1.1. A grammar with energy is a 4-tuple G = (N,Σ, P, σ), where

i) N and Σ are disjoint finite sets of non-terminal and terminal symbols respectively;

ii) P is a finite subset of N × ((N × (0, 1)) ∪ Σ)∗, where (0, 1) denotes the open real

interval. The elements of P are called rewrite rules;

iii) σ in N is the starting non-terminal symbol.

After the definition of the grammar with energy itself, we define the application of

rewrite rules from P . For this purpose we explain our notations first:

Notation 1.1.2. Similarly to [4], let ξ[k] denote non-terminal symbols from the right

side of the rewrite rules, where k is a coefficient of this non-terminal symbol. Otherwise

let ξe denote non-terminal symbols in the sentential form, where e is a real number from

(0, 1]. In this case e is the energy level of non-terminal symbol ξ in the sentential form.

2



CHAPTER 1. GRAMMARS WITH ENERGY 3

Notation 1.1.3. Similarly to [4], let Ĝ denote the underlying context-free grammar

of the grammar with energy G obtained by omitting the real numbers associated with

non-terminals.

Definition 1.1.4. The derivation step for a grammar with energy G with minimal

energy level e written as ⇒G,e is a relation defined on the set V = ((N × (0, 1]) ∪Σ)∗,

where (0, 1] is a real interval, open from left, closed from right.

u⇒G,e v ⇐⇒ ∃n ∈ N;x, y, v′ ∈ V ; v1, v2, . . . , vn+1 ∈ Σ∗;

A,A1, A2, . . . , An ∈ N ; eA, e1, e2, . . . , en ∈ (0, 1]; k1, k2, . . . , kn ∈ (0, 1); eA ≥ e such that

the following statements hold:

i) u = xAeAy;

ii) v′ = xv1A
e1
1 v2A

e2
2 . . . vnA

en
n vn+1y;

iii) A→ v1A
[k1]
1 v2A

[k2]
2 . . . vnA

[kn]
n vn+1 ∈ P ;

iv) For all i from 1, 2, . . . , n ei = kieA holds;

v) v is obtained from v′ by a substitution of each Ai, where ei < e, by some word

from the given finite set of words ΨAi = {w|w ∈ Σ∗, Ai ⇒∗Ĝ w}. The words in ΨAi

are terminal words, which can be derived in the context-free grammar Ĝ from the

non-terminal symbol Ai.

Definition 1.1.5. Let G = (N,Σ, P, σ) be a grammar with energy. The language

generated by G with a minimal energy-level (or energy-threshold) e is

Le(G) = {w ∈ Σ∗|σ1 ⇒∗G,e w}.

This general definition of grammars with energy is specified in the definition of

strict grammars with energy.

Definition 1.1.6. Grammar with energy G is called strict grammar with energy, iff

i) Every non-terminal symbol is accessible: ∀ξ ∈ N : ∃a, b ∈ (N ∪ Σ)+ : σ ⇒∗ aξb;

ii) Every non-terminal symbol is productive: ∀ξ ∈ N : ∃w ∈ Σ∗ : ξ ⇒∗ w;

iii) In⇒G,e part v), when ei < e the shortest word is substituted to the sentential form

, which is produced by the corresponding non-terminal symbol Ai in Ĝ.

When there are more shortest words, all of them is substituted one by one into the

sentential form and each substitution creates a new derived sentential form similarly

to the application of the rewriting rules in the context-free grammars.
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All of these restrictions are algorithmically constructable: The first and the second

condition is a part of the standard normal-form for the context-free grammars, there-

fore these are constructable algorithmically. The following lemma says that the third

condition is algorithmically constructable as well.

Lemma 1.1.7. Let G = (N,Σ, P, σ) be a context free grammar without inaccessible

and unproductive non-terminal symbols. We can algorithmically compute the set of

shortest words produced by an arbitrary non-terminal symbol.

Proof. Without loss of generality ξ in N . So we are searching for all shortest words

in the context free language G = (N,Σ, P, ξ). We prove, that for all shortest words

there is a derivation with no cycle within its derivation. Proof by contradiction. Let

w be one of the shortest words. Let us assume, that there is a cycle within every

derivation of this shortest word. So the shortest derivation of this shortest word shall

be: ξ ⇒∗G u1ξrv1 ⇒∗G u2ξrv2 ⇒∗G w, where ξr is a non-terminal symbol causing the

cycle. But with omitting this cycle we obtain a word w′, which is at most as long

as w, because no rewrite rule can delete a terminal symbol from the sentential form.

Therefore |w| = |w′| can hold only, if |u1| = |u2| and |v1| = |v2| and because context-free

grammars can not alter the terminal symbols in the sentential form there is a possible

derivation, where u1 = u2 and v1 = v2. So the cycle is not producing terminal symbols.

This is a contradiction, because either |w′| < |w|, so w is not one of the shortest words

or there is a derivation shorter than the shortest derivation mentioned above.

From the lemma above follows, that we can algorithmically obtain the set of shortest

words derivable from ξ in the context-free grammar G = (N,Σ, P, σ). For this we shall

compute all derivation trees of grammar G = (N,Σ, P, ξ) to the depth |N | + 1 and

choose all shortest terminal words from there.

Now we shall show the usage of these definitions on examples. First, we can notice,

that strict grammars with energy are not equivalent to the general definition. Be-

cause of the good properties of these strict grammars with energy, we shall use strict

grammars with energy instead of the general definition in this paper.

Example 1.1.8. Let G = {N = {σ, α, β} ,Σ = {a, b, c} , P, σ} be a strict grammar

with energy with a set of rules

P =
{
σ → σ[0.9]α[0.8] | σ[0.9]β[0.8] | ab | bc, α→ aα[0.8]b | ab, β → bβ[0.8]c | bc

}
.

The shortest words produced by the non-terminal symbols are ab and bc for σ; ab

and bc for α and β respectively. The following words can be derived by this grammar
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with an energy threshold 0.95:

σ1 ⇒G,0.95 σ
0.9α0.8 ⇒G,0.95 abab

σ1 ⇒G,0.95 σ
0.9α0.8 ⇒G,0.95 bcab

σ1 ⇒G,0.95 σ
0.9β0.8 ⇒G,0.95 abbc

σ1 ⇒G,0.95 σ
0.9β0.8 ⇒G,0.95 bcbc

Word ababbcaabb can be derived by this grammar as well with an energy threshold

0.75. One of the possible derivation is:

σ1 ⇒G,0.75 σ
0.9α0.8 ⇒G,0.75 σ

0.81β0.72α0.8 → σ0.81bcα0.8 ⇒G,0.75

⇒G,0.75 σ
0.729α0.64bcα0.8 → ababbcα0.8 ⇒G,0.75 ababbcaα

0.64b→ ababbcaabb

⇒G,0.75 is the derivation step and → refers to the last action of the derivation step,

namely the substitution of the shortest word generated by the non-terminal symbol

without enough energy. The underlined non-terminals are used in the given step of

derivation.

Figure 1.1: The derivation tree for the word ababbcaabb with energy threshold 0.75.

The blue words are the shortest terminal words, which can be derived from the given

non-terminal symbol. (The energy levels of the non-terminal symbols are rounded.)

1.2 Basic Properties

Theorem 1.2.1. For every context-free language Ḡ a strict grammar with energy G

exists such that:
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(i) For all e ∈ (0, 1) : ∀w ∈ Le(G)⇒ w ∈ L(Ḡ);

(ii) For all w ∈ L(Ḡ)⇒ ∃e ∈ (0, 1)x ∈ Le(G).

Proof. Without loss of generality let Ḡ be a context-free grammar with only accessible

and productive non-terminal symbols.

(i) The first statement holds, because every rewrite rule in G is a rewrite rule in Ḡ

as well, moreover the set of shortest words is derived from the rewrite rules of Ḡ

too.

(ii) This part is proved in [4], the basic idea of this proof is, that we can set such a

low energy-threshold e, that the whole derivation in Ḡ becomes available in G

too without reaching the energy-threshold e.

Theorem 1.2.2. Let G be a strict grammar with energy. Let 0 < e1 < e2 < 1 be real

numbers. The following statement holds:

Le2(G) ⊆ Le1(G).

Proof. We have to prove, that every word in Le2(G) is derivable in Le1(G). In other

words we have to prove, that every word derivable with the higher energy threshold is

derivable with a lower energy threshold too.

w ∈ Le2(G)⇒ w ∈ Le1(G)

We have three cases:

(i) While deriving w with an energy threshold e2, the substitutions (of shortest

words) are not required. In this case every non-terminal symbol in every sen-

tential form of this derivation has more energy, than e2. Which means every

non-terminal symbol has a higher energy level, than e1 too, because e2 > e1.

Therefore during the usage of rewrite rules with energy threshold e1 there is

no substitution required too. In this situation the following statement holds:

σ1 ⇒∗G,e2 w implies σ1 ⇒∗G,e1 w.

(ii) In this case, we have to substitute at least one non-terminal symbol while using

a rewrite rule with the energy-threshold e2. Let us divide this situation into two

cases. In this case we shall assume, that when using these substitutions every

non-terminal symbol has lower energy level than e1 too. (e1 < e2). Then every

substitution made with the energy-threshold e2 is made with the energy-threshold

e1 too. So in this case every rewrite rule used in σ1 ⇒∗G,e2 w has the same effect

in the derivation σ1 ⇒∗G,e1 w.
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(iii) In this, last case, we have to assume, that at least one non-terminal symbol is

substituted, moreover this non-terminal symbol has energy between e1 and e2.

Without loss of generality the first non-terminal symbol in derivation where the

energy is between e1 and e2 is ξ has energy eξ, and it holds: e1 < eξ < e2. So we

have the following situation σ1 ⇒∗G,e2 xξ
eξy ⇒∗G,e2 w, where x, y ∈ (N×(0, 1)∪T )∗.

From the (i) and (ii) we know, that σ1 ⇒∗G,e1 xξ
eξy holds too. So we have to prove,

that the shortest words, substituted into this sentential form are derivable with

energy-threshold e1 too.

Without loss of generality one of these shortest words is s. There are two cases

now.

First, when e1 has such a low energy, that the whole derivation ξ ⇒∗
Ĝ
s is enabled

without substitutions in energy-threshold e1. In this situation we have no problem

with the derivation with energy threshold w in e1 we can produce the same part

of word w, which is substituted in the application of rewrite rule.

On the other hand, let us have such energy level e1, that within ξeξ ⇒∗G,e1 s
′

substitution is used somewhere. Let us prove, that s′ = s by contradiction. So let

us assume, that s′ 6= s. In ξeξ ⇒∗G,e1 s
′ the same rewrite rules, as in ξ ⇒∗

Ĝ
s are

used, but there is a point, where one non-terminal symbol has less energy than

e1. In this case the shortest words are substituted, and because every rewrite rule

is context-free, these substituted words are not further modified. So we know,

that s′ has the form s′ = x1y1x1y2 . . . xn, where each xi (for i = 1 to n) is derived

from the rewrite rules of Ĝ, so these parts of words are parts of s too. On the

other hand all yi (for i = 1 to n − 1) are the parts, which are substituted. So

s = x1q1x1q2 . . . xn. Where for all i = 1, 2 . . . (n − 1) : qi is derived from the

rewrite rules of Ĝ. Now we know, that every yi is the shortest possible word.

But yi cannot be shorter than qi, because that would be a contradiction: a word

shorter than s derivable from ξ (for example s′). So every yi has the same length

as qi. (The second implication holds, because of the fact, that yi are the shortest

words derivable.) In grammars we are always substituting every possible choice,

so there is a situation, where for all i = 1, 2 . . . (n− 1) : qi = yi. So the statement

holds in this case too.



Chapter 2

Monotone Sequences of Finite

Languages and Sequences of

Approximations

In this chapter we introduce a new model for approximation of languages called se-

quence of approximations. Our motivation is to find a model, which includes all ap-

proximations by the length of the words as well as approximations generated by strict

grammars with energy. The following two examples illustrate some important prop-

erties of approximations. These properties are used in the definition of sequences of

approximations.

Example 2.0.3. Consider the linear language L = {anbn|n ≥ 0}. We can define a finite

set (finite language) Lk = {aibi|k ≥ i ≥ 0} for every k. In this case every Lk can be con-

sidered as an approximation of language L. As an example L3 = {ε, ab, aabb, aaabbb},
which can be considered as a beginning of the language L in some ordering.

Note that for all k Lk ⊆ L and Lk ⊆ Lk+1.

Example 2.0.4. Similar languages can be defined not only for the linear languages,

but for not context-free languages as well. For example L = {anbncn|n ≥ 0} is not

a context-free language. On the other hand L9 = {ε, abc, aabbcc, aaabbbccc} consists

those words from L, which are not longer then 9 characters.

First we introduce how can we approximate a language using the length of the words

from the given language. We can define the following finite sets for every language L

and for every natural number n: Ln = {w ∈ L||w| ≤ n}. With growing n the finite

language Ln is “better and better” approximation of the original language L. It is easy

to see, that Ln is a finite language for every n and can not reach L. On the other hand,

8



CHAPTER 2. MONOTONE SEQUENCES AND SEQUENCES OF APPROXIMATIONS9

as it is shown in [4] we can define the limit of approximation similarly to limes inferior

or limes superior.

Another observation is, that for every pair of numbers n and m, where n ≤ m for

the corresponding sets it holds: Ln ⊆ Lm.

In the Example 2.0.3 we defined such sequence of finite sets (namely Lk for every

natural number k), which satisfies the conditions above. On the other hand we can

see, that the conditions will hold even if we skip some of the natural numbers. For

example a sequence of sets L1, L3, L4, L6, L8, . . . satisfies the conditions above as well.

In this case we expect, that {anbn|n ≥ 0} will be the “limit” of these sequences.

Now consider strict grammars with energy. In the previous chapter we have already

shown that Le2(G) ⊆ Le1(G) for every strict grammar with energy G and for two real

numbers 0 < e1 < e2 < 1. This property corresponds to the last property from above.

We can easily see, that Le(G) is a finite subset of L(G) for every real number 0 < e < 1

and grammar with energy G. The limit mentioned above is defined in Thesis [4] for

grammars with energy. We shall define it below for sequences of approximations in

general.

2.1 Definitions

Now we define the sequence of approximations satisfying the following three properties

(mentioned above):

1. every language in the sequence of approximations is finite;

2. every language in the sequence of approximations is a superset of all previous lan-

guages;

3. there is a way to describe the “limit” of the approximation.

Definition 2.1.1. The sequence of finite languages Φ = {Li}∞i=1 is called monotone,

iff for all i ≥ 1 : Li ⊆ Li+1.

Definition 2.1.2. LΦ := lim
i→∞

Φ = lim
i→∞

Li =
⋃∞
i=1 Li is called a limit of the monotone

sequence of finite languages.1

Definition 2.1.3. A monotone sequence of finite languages Φ is a sequence of approx-

imations for language L iff LΦ = L. (We shall also say that Φ is approximating the

language L.)

Languages Li ∈ Φ are called finite approximations of L.

1This limit is a simpler variant of the definition from [4], because we do not allow words not

included in the language.
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Lemma 2.1.4. Let Φ be a monotone sequence of finite languages. Then for a language

L the following two conditions hold iff L = LΦ:

(i) For all w ∈ L exists i, such that w ∈ Li;

(ii) For all i and for all w ∈ Li: w ∈ L.

Proof. We have to prove, that those conditions are equivalent to
⋃∞
i=1 Li.

L ⊆
⋃∞
i=1 Li: From the first condition for all w ∈ L exists such i that w ∈ Li, thus

for all w ∈ L : w ∈
⋃∞
i=1 Li.⋃∞

i=1 Li ⊆ L: This part of the proof is almost identical to the part above.

The second implication (⇐=) is trivial from the properties of union.

Example 2.1.5. Now we show, that the languages Lk from Example 2.0.3 indeed

approximate {anbn|n ≥ 1} i.e. Φ = {Lk}∞k=1 is a sequence of approximations for

language {anbn|n ≥ 0}. Recall that Lk is defined as Lk = {anbn|k ≥ n ≥ 0}. It is easy

to see, that Lk is finite for every k. Lk ⊂ Lk+1 holds as well.

Now we show, that language L = {anbn|n ≥ 0} is the limit of this monotone sequence

of finite languages. We need to check two conditions:

(i) For all w ∈ L exists k ∈ N, where w ∈ Lk;

(ii) For all k ∈ N and for all w ∈ Lk: w ∈ L.

The second condition holds because for every natural k Lk is a subset of L. The first

condition holds as well, because for every word w in L (words can not be infinite) has

to be contained in the set L|w|/2.

This is an example, that our definitions describe what we expected from them.

Example 2.1.6. One more example for a sequence of approximations. As we pointed

out we can define sequences of approximations even for languages, which are not

context-free. Consider the language L = {w|w ∈ {a, b, c}∗∧#a(w) = #b(w) = #c(w)}.
We can construct Lk = {w|w ∈ {a, b, c}∗∧#a(w) = #b(w) = #c(w)∧|w| ≤ k} for every

natural number k. It is easy to see that Φ = {Lk}∞k=1 is a sequence of approximations

for the language L (the proof is similar to the one in the example above).

Notation 2.1.7. Let us use the following notation: whenever there are more monotone

sequences used they are distinguished by apostrophes on their notations. For example

Φ, Φ′ or Φ′′. Finite languages from a monotone sequence are marked by the same

number of apostrophes as the monotone sequence itself. So Li is from Φ, L′i is from Φ,

L′′i from Φ′′ and so on.
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Now we define a standard construction for creating a new sequence of approxima-

tions from an existing one.

Definition 2.1.8. Let Φ be a monotone sequence of finite languages and let I =

i1 < i2 < i3 < ... < ik < ... be a strictly increasing sequence of natural numbers. Then

Φ′ = {Lik}∞k=1 is a monotone sequence as well and Φ′ is called a monotone subsequence

of Φ. This fact is denoted by ΦI .

One way to see the subsequence of approximations for a particular sequence of

approximations is, that we want to ”speed up” the approximating process, so we skip

some of the steps from the original sequence. From this point of view the definition of

the sequence of approximations holds, because the definition above does not affect the

finiteness of approximations nor the subset ordering.

Moreover it is easy to see, that every monotone subsequence is approximating the

same language as the original monotone sequence. Every word from the limit of the

original sequence is in the subsequence as well, because it appears in the original

sequence. On the other hand every finite approximation in the monotone subsequence

is from the original sequence, which means every word from every finite approximation

is contained in the original monotone sequence.

So we can say:

Lemma 2.1.9. Let Φ be a monotone sequence of finite languages and let ΦI be its

subsequence. Then the following statement holds:

LΦ = LΦI .

Example 2.1.10. In Example 2.1.5 we show, that Φ = {anbn|k ≥ n ≥ 0}∞k=1 is a

sequence of approximations. Φ′ = {anbn|2k ≥ n ≥ 0}∞k=1 is a subsequence of approxi-

mations of Φ, thus Φ′ is a sequence of approximations approximating L = {anbn|n ≥ 0}.
We can consider Φ′ as a sequence of approximations, which is approximating L by the

length of the words in language L, but using only the even length for approximating

purposes.

Another common property is transitivity. Being a subsequence of some monotone

sequence is transitive, thus if Φ′ is a subsequence of Φ and Φ′′ is a subsequence of Φ′

implies that Φ′′ is a subsequence of Φ as well. Being a subsequence is reflexive and

antisymmetric as well.

Now we introduce another standard notation, which is the equivalence of two mono-

tone sequences of finite languages.
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Definition 2.1.11. Let Φ = {Li}∞i=1 and Φ′ = {L′i}∞i=1 be monotone sequences of finite

languages. We say, that Φ and Φ′ are equivalent iff from some n0 ∈ N for every n > n0

Ln = L′n. The notation for this fact is Φ ≈ Φ′.

Lemma 2.1.12. Let Φ and Φ′ be equivalent monotone sequences of finite languages

(Φ ≈ Φ′). Then the following statement holds:

LΦ = LΦ′ .

The proof of this lemma is trivial. It is easy to see as well, that the relation being

equivalent on the sequences of approximations is reflexive, symmetric and transitive,

thus it is a relation of equivalence.

2.2 Operations Defined on Monotone Sequences of

Finite Languages

Now we modify some of the usual language operations. We define the union, disjoint

union, prefix, suffix operations as well as an operation which allows us to take out

finite number of words from the monotone sequence. We show the definition of each

operation mentioned above in that particular order, and we show, how these operations

affect the limit of the approximation.

Definition 2.2.1. The union of two sequences Φ = {Li}∞i=1 and Φ′ = {L′i}∞i=1 is a

sequence denoted by Φ ∪ Φ′. Let Φ ∪ Φ′ be a sequence of sets {L′′i }∞i=1 where for each i

L′′i = Li ∪ L′i.

Definition 2.2.2. The disjoint union of two sequences Φ and Φ′ is a sequence denoted

by Φ]Φ′. If LΦ and LΦ′ are languages with no common symbol, then Φ]Φ′ = Φ∪Φ′.

Otherwise this operation is not defined.

Definition 2.2.3. Let Φ be a sequence and let w be a word. w is called as prefix of

Φ′ = wΦ = {L′i}∞i=1 when for every i L′i = w.Li. Similarly w is called as suffix of

Φ′ = Φw = {L′i}∞i=1 when for every i L′i = Li.w.

Definition 2.2.4. Let Φ be a sequence and let S be finite set of words from LΦ (S ⊂
LΦ). Then Φ′ = Φ − S is a sequence, where for every i L′i = Li \ S. The operation

described above is called finite deletion and marked as −.

Now let us show that the operations above are well defined for the monotone se-

quences as well.
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Proposition 2.2.5. Let Φ and Φ′ be monotone sequences of a finite languages, let w

be a word and let S ⊆ LΦ be a finite set. The following statements hold:

a) Φ ∪ Φ′ is a monotone sequence

b) Φ ] Φ′ is a monotone sequence

c) wΦ is a monotone sequence

d) Φw is a monotone sequence

e) Φ− S is a monotone sequence.

Proof. Let us prove the a) part of the proposition the other parts of the proof are

similar.

Now we have to prove, that Φ∪Φ′ is a monotone sequence. We have to show, that

every condition holds. Obviously all languages in Φ ∪ Φ′ are finite, because they are

unions of two finite languages. Now let us refer as {L′′i }∞i=1 to Φ ∪ Φ′, so L′′i ⊆ L′′i+1

needs to be proved. As Φ and Φ′ are monotone sequences Li ⊆ Li+1 and L′i ⊆ L′i+1

hold, therefore Li ∪ L′i ⊆ Li+1 ∪ L′i+1, which is exactly L′′i ⊆ L′′i+1.

Now let us show the limit of the monotone sequence, which is a result of the

operations above.

Proposition 2.2.6. Let Φ and Φ′ be monotone sequences of a finite languages, let w

be a word and let S ⊆ LΦ be a finite set. The following statements hold:

a) LΦ∪Φ′ = LΦ ∪ LΦ′

b) LΦ]Φ′ = LΦ ∪ LΦ′

c) LwΦ = wLΦ

d) LΦw = LΦw

e) LΦ−S = LΦ − S.

Proof. Similarly to the proof above let us prove the a) part of the proposition as the

other parts are analogical.

Every word from Li ∪ L′i is from LΦ ∪ LΦ′ . The second condition holds as well,

because every word w in LΦ ∪ LΦ′ is either from LΦ or from LΦ′ , so there is such i,

that Li ∪ L′i contains w.
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Example 2.2.7. We showed in the Example 2.0.3 and proved afterwise, that Φ =

{Lk}∞k=1 where Lk = {anbn|k ≥ n ≥ 0} is a sequence of approximations for language

{anbn|n ≥ 0}. Then cΦ is a sequence of approximations as well approximating language

L = {canbn|n ≥ 0}.
Similarly Φ− {ε, ab, aabb} is approximating L = {anbn|n ≥ 3}.

Figure 2.1: The visualization of the se-

quence of approximations (as a mono-

tone sequence) from Example 2.1.5.

Figure 2.2: The visualization of its sub-

sequence of approximations from Ex-

ample 2.1.10.
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Figure 2.3: The visualization of the monotone sequence which is created as an union

of two monotone sequences (one of left and one of right). The words included in both

prime monotone sequences are placed on the lane.



Chapter 3

Distances in General

3.1 Distances on Words

We can distinguish various distance measures between two words (strings or character

sequences). Some of them are defined and analyzed in Tomáš Kulich’s master’s Thesis

([7]). Let us now recall some facts about these distances on words.

The most common group of these distance measures is called edit-distances. They

are based on string operations such as insertion, deletion, substitution, etc. Edit-

distances are defined as a minimal number (or minimal cost) of those operations, which

is transforming one word to another. The edit-distance between two words is 0, iff the

two given words are the same, otherwise the edit-distance between two words can not

be 0.

The common (or basic) edit-distance, sometimes called as Levenshtein distance, is

analyzed in Thesis [7]. The common edit-distance is defined as the minimal number

of insertions, deletions and substitutions of one character. The common edit-distance

between two words can be computed as follows: d(u, v) = |u| + |v| − 2|LCS(u, v)|,
where LCS(u, v) is the longest common subsequence of the words u and v.

In Damerau–Levenshtein distance the transposition of two adjacent characters is

added to the three operations allowed by the common edit-distance. The only operation

allowed by the Hamming distance is substitution. Therefore this distance give us the

minimum number of substitutions required to alter one word to another.

We prefer to use the relative edit-distance, which is defined in Thesis [7], and com-

puted as d(u,v)
|u|+|v| , where d(u, v) is the common edit-distance. The relative edit-distance

expresses the importance of the operations which transform one word to the other word.

The basic idea is, that the same number of operations between two short words and

two longer words has to be distinguished, because short words with the same number

of operations will be less similar, than long words, where longer parts of the words are

16
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similar to each other.

There are some distance measures between two strings based on sequence alignment

used in bioinformatics motivated by the structures of DNA and RNA. In bioinformatics,

a sequence alignment is a way of arranging sequences of DNA, RNA or proteins to

identify regions of similarity that may be a consequence of functional, structural, or

evolutionary relationships between the sequences. Smith–Waterman algorithm is one

of the algorithms computing the sequence alignment.

The Google search engine uses its own distance measure between two words called

normalized Google distance. With this distance measure 0 means the two words are

practically the same, whereas two independent words have distance 1. There is a

possibility, that the normalized Google distance between two words is ∞, in which

case the two given words never appear together. The normalized Google distance is

analyzed in Paper [1].

The last distance mentioned here is the informed distance measure. Informed dis-

tance measure is the minimal information needed for the construction of x with a

knowledge of y. The formal definition and the analysis of this distance is in [9].

3.2 Distances Between a Word and a Language

Similarly to the geometric view there is a way to define the distance between a word

and a language. The distance between a word and a language is the minimal distance

between the word and every element (word) of the language.

However, the geometric distance between two languages based on this does not

give us information about the ”similarity” of the two languages, because when one

word is in both languages, the distance will be 0, even when these languages are

completely different except that particular word. As an example we can see that with

such approach each pair of languages would have a zero distance, which contain the

empty word ε.



Chapter 4

Distances on Monotone Sequences

We strive to define a distance measure between two languages. The basic idea of the

following definitions is the separation of this distance measure into three levels. The

basic level is defined on sequences of approximations of the given language. The second

level is defined on grammars and the highest level is defined on languages.

In this thesis we use the relative edit-distances from [7]. All definitions and theorems

are based on it, unless it is mentioned otherwise.

In this thesis we define the distance measure between two sequences of approxima-

tions in general, but we are using only some particular special cases of this distance,

which are mentioned below.

4.1 The Minimal Weight Maximal Matching

We base our definitions of distances between two sequences of approximations on the

minimal weight maximal matching on complete bipartite graphs. We first recall some

basic facts about the minimal weight maximal matching.

The minimal weight maximal matching is mentioned e.g. in papers [8], [2], [3], [5].

We show the definition of the corresponding objects similarly to [5].

Definition 4.1.1. Let G = (V,E) be a bipartite graph1 with the bipartition (A,B) and

weight function w : E → R. The maximum weight bipartite matching is a matching

M maximizing the weight of matching, given by w(M) =
∑
e∈M

w(e).

Definition 4.1.2. Let G = (V,E) be a bipartite graph with the bipartition (A,B) and

weight function w : E → R∪{∞}. The minimum weight perfect matching (also called

1Graphs are usually denoted by G just like grammars. Therefore, in this thesis bold characters

(G, H, etc.) consistently refer to graphs and normal characters (G, Ĝ, G1, etc.) refer to grammars.

18
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as minimal weight maximal matching) in bipartite graphs is a perfect matching M

minimizing w(M) =
∑
e∈M

w(e).

The minimal weight maximal matching can be defined for any graph in general.

In 1965 Edmonds introduced an algorithm, which finds the minimal weight maximal

matching on every graph. This algorithm is based on linear programming, generalizing

the idea of Kuhn (1955) called Hungarian Method. The Hungarian Method is based

on the proof of theorem from [3], proved by Dénes Kőnig. This algorithm works only

on bipartite graphs, therefore it is simpler than Edmonds’ algorithm. Our definitions

are based on bipartite graphs as well, so the Hungarian Method is sufficient for our

purposes.

These algorithms are not introduced in this section, due to the fact they are de-

scribed and proved in the papers above.

One of these results will be used several times in our proofs. We therefore state

here a version that best fits our needs.

Lemma 4.1.3. Let G = (V,E) be a bipartite graph with the bipartition (A,B) and

weight function w : E → R. Without loss of generality |A| > |B|. Let C denote

the set of unmatched vertices from A in a minimal weight maximal matching. For

every edge (a, b) from this minimal weight maximal matching, where a ∈ A \ C, b ∈ B
∀c ∈ C : w(a, b) ≤ w(c, b) holds.

Proof. By contradiction. Let M denote the minimal weight maximal matching from

the statement. Let us assume, that there is a vertex c in C and (a, b) in M , such

that w(a, b) > w(c, b). So we can construct another maximal matching M ′ as M ′ :=

M\(a, b) ∪ (c, b). M ′ is a maximal matching, which has less weight than M , because

we have substituted only one edge with another one with less weight. This is a contra-

diction.

4.2 The Abstract Definition and its Special Cases

As it is mentioned in the preface of this chapter we define the distance measure between

two monotone sequences in general. This abstract definition however is not used in

this thesis, because of its complexity. The idea behind this is to allow more different

distance measures between the sequences of approximations which have some similar

properties.

Definition 4.2.1. Let Φ and Φ′ be monotone sequences, let Ri ⊆ Li×L′i be a relation

on words in Li and L′i. Let f be a function assigning to each i and the set of pairs (u, v)
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in Ri a real number Di from the interval [0, 1], where [0, 1] is a closed real interval.

Then the distance between Φ and Φ′, denoted as D(Φ,Φ′), is defined as a limit of the

sequence {Di}∞i=1.

If such limit does not exist, then Φ and Φ′ are incomparable.

Note that the distance between two monotone sequences (if it exists) is a real

number from the interval [0, 1].

We now show some special cases of this definition. The strong and the weak distance

defined below are the main distance measures used in this thesis. We can define some

trivial distances by picking trivial functions f . For example if f is a constant function

e.g. f(X, i) = 0 or f(X, i) = 1 the distance measure will be trivial.

Dzero is defined by the function f(X, i) = 0. Dzero(Φ,Φ
′) = 0 for every pair of

monotone sequences.

Similarly we can define Done by f(X, i) = 1, which is a trivial distance Done(Φ,Φ
′) = 1

for every pair of monotone sequences.

We can define a distance, which is always undefined, which means all pairs of monotone

sequences are incomparable according to this distance. For this purpose we can define

the function f by

f(X, i) =

{
0 if i is an even number

1 if i is an odd number

and we can denote this distance as D⊥.

Definition 4.2.2. Let Φ and Φ′ be monotone sequences of finite languages. Let us

define the strong distance in the following way: the relation Ri is a minimal weight

maximal matching on the complete bipartite graph, where the partitions are Li and L′i

and each edge holds the value of the distance between the two words incident to the

particular edge; the function f is the average function.

So for every i D
(S)
i is the average value of the edges contained in the minimal weight

maximal matching between Li and L′i.

Notation: DS(Φ,Φ′)

We define the weak distance similarly to the strong.

Definition 4.2.3. Let Φ and Φ′ be monotone sequences of finite languages. Let us

define the weak distance in the following way: the relation Ri is a minimal weight

maximal matching on the similar graph as above, but the partitions are only the previ-

ously unmatched vertexes from Li and L′i, this matching is combined with the previous

relation (for Li−1 and L′i−1,). The function f is the average function.

Notation: DW (Φ,Φ′)
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We can see, that there are more ways to define the same distance measure. For

example the undefined distance D⊥ can be defined by using the reverse of the function

above. For every trivial distance shown above we can set the relation as we want, so

trivially Dzero, Done and D⊥ can be defined in more ways.

Notation 4.2.4. Let D(Φ,Φ′) be ∞ if the particular distance between Φ and Φ′ does

not exist.

4.3 Basic Properties of the Strong and the Weak

Distance

Lemma 4.3.1. If both the weak and the strong distance measures exist at the same

time between one pair of monotone sequences, then DS(Φ,Φ′) ≤ DW (Φ,Φ′).

Proof. In the ith step of the approximation there are two different maximal matchings

on the same graph. One of them is partially minimal weight matching, but the second

one is the minimal weight matching, so there is no matching with less weight than this

one. So for each step D
(S)
i ≤ D

(W )
i and each sequence is convergent, so for the limits

DS(Φ,Φ′) ≤ DW (Φ,Φ′) must hold as well.

The following two statements are without proof, because they are following directly

from the definitions, the properties of the minimal weight maximal matching and from

the sandwich theorem (squeeze lemma).

Lemma 4.3.2. The following statements hold:

∃DW (Φ,Φ′) and DW (Φ,Φ′) = 0⇒ ∃DS(Φ,Φ′) and DS(Φ,Φ′) = 0;

∃DS(Φ,Φ′) and DS(Φ,Φ′) = 1⇒ ∃DW (Φ,Φ′) and DW (Φ,Φ′) = 1.

Lemma 4.3.3. For the distances the reflexivity holds: DW (Φ,Φ) and DS(Φ,Φ) always

exist and have value 0. If DW (Φ,Φ′) or DS(Φ,Φ′) exists, then the symmetry holds too:

DW (Φ,Φ′) = DW (Φ′,Φ);

DS(Φ,Φ′) = DS(Φ′,Φ).

Lemma 4.3.4. Let Φ be a monotone sequence and ΦI its subsequence. Then DS(Φ,ΦI)

always exists and

DS(Φ,ΦI) = 0.
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Proof. From the definition of the subsequence we know, that for every j Lj ⊆ LIj . From

it follows, that we can match every word from Lj with itself, thus creating a maximal

matching with 0 weight. Better matching does not exists, so we have constructed an

infinite sequence of zeros, which is of course convergent to 0.

For the further analysis of the distances we need to define a particular sequence

corresponding to D
(W )
i and D

(S)
i , allowing us to use Cauchy-Bolzano convergence crite-

ria. So let us define two sequences ai and Ai for D
(W )
i and D

(S)
i respectively. Satisfying

D
(W )
r =

r∑
i=1

ai and D
(S)
r =

r∑
i=1

Ai thus a1 = D
(W )
1 and ar = D

(W )
r −D(W )

r−1 for each r ≥ 2.

Similarly A1 = D
(S)
1 and Ar = D

(S)
r −D(S)

r−1 for each r ≥ 2.

We must notice, that these sequences may include some positive and some negative

values too. In this way we can obtain a necessary and sufficient condition for ai and

Ai to be convergent. Cauchy-Bolzano convergence criterion from [6] has to hold:

The sequence
∞∑
i=1

ai is convergent iff

∀ε > 0,∃n0 ∈ N,∀n ∈ N, n > n0,∀p ∈ N : |an+1 + an+2 + . . .+ an+p| < ε.

Without the loss of generality n0 > 1. Replacing each ar by D
(W )
r −D(W )

r−1 we obtain

|
n+p∑
j=n+1

(D(W )
r −D(W )

r−1 )| = |
n+p∑
j=n+1

D(W )
r −

n+p−1∑
j=n

D(W )
r | = |D(W )

n+p −D(W )
n | < ε.

Thus we can state the following theorem.

Theorem 4.3.5. Sequence
∞∑
i=1

ai is convergent iff

∀ε > 0,∃n0 ∈ N, n0 > 1,∀n ∈ N, n > n0∀p ∈ N : |D(W )
n+p −D(W )

n | < ε.

Similarly sequence
∞∑
i=1

Ai is convergent iff

∀ε > 0,∃n0 ∈ N, n0 > 1,∀n ∈ N, n > n0∀p ∈ N : |D(S)
n+p −D(S)

n | < ε.

Theorem 4.3.6. Neither strong nor weak distance measure on monotone sequences is

a distance in a metric space.

Proof. The first condition of metric space is, that d(x, y) = 0 ⇐⇒ x = y. This

condition does not hold. For example for languages L1 = {anbn|n ≥ 0} and L2 =

{anbn∪ c|n ≥ 0} we can construct sequences of approximations as Φ′ = {aibi|i < n}∞n=1

and Φ′′ = {c ∪ aibi|i < n}∞n=1 respectively. DS(Φ′,Φ′′) = DW (Φ′,Φ′′) = Dzero(Φ
′,Φ′′),

but these two sequences of approximations are not equivalent, moreover the limit of

these sequences are different as well.
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The third condition, the triangle inequality does not hold too. In general, there are

cases, when the triangle inequality holds and there are cases, when it does not. We show

one example for both cases. Let Φ, Φ′ and Φ′′ be monotone sequences with pairwise

disjoint alphabets. Then the strong and weak distances exists for all pairs of monotone

sequences and are equal to 1. Therefore 2 = DS(Φ,Φ′) +DS(Φ,Φ′′) ≥ DS(Φ′′,Φ′) = 1

and 2 = DW (Φ,Φ′) +DW (Φ,Φ′′) ≥ DW (Φ′′,Φ′) = 1.

On the other hand let ΦIV = {c∪anbn|n < i}∞i=1, ΦV = {c∪xn|n < i}∞i=1 and ΦV I =

{c}∞i=1. Then DS(ΦIV ,ΦV I) = DS(ΦV ,ΦV I) = DW (ΦIV ,ΦV I) = DW (ΦV ,ΦV I) = 0

and DS(ΦIV ,ΦV ) = DW (ΦIV ,ΦV ) = 1. So 0 = DS(ΦIV ,ΦV I) + DS(ΦV ,ΦV I) 6≥
DS(ΦIV ,ΦV ) = 1 and 0 = DW (ΦIV ,ΦV I) +DW (ΦV ,ΦV I) 6≥ DW (ΦIV ,ΦV ) = 1.

Lemma 4.3.7. Let Φ and Φ′ be equivalent monotone sequences (Φ ≈ Φ′) and let Φ′′

be another monotone sequence. If DS(Φ,Φ′′) exists, then DS(Φ′,Φ′′) exists as well and

DS(Φ′,Φ) = DS(Φ,Φ′′).

Proof. From the assumption and from Theorem 4.3.5 we know, that for all ε there is

such n0, for which the difference between the element of the sequence D
(S)
i is less then

epsilon for Φ and Φ′′. From the definition of the equivalence we know, that there is point

n′0, from where sequences Φ and Φ′ are the same. It is satisfactory to choose the bigger

of numbers n0 and n′0 for all ε and we obtain, that DS(Φ′,Φ′′) always exists. Moreover

the new sequence of numbers is convergent to the same distance as DS(Φ,Φ′′).

From the fact, that DS(Φ,Φ) = 0 for every monotone sequences and from the

lemma above it holds:

Corollary 4.3.8. Let Φ and Φ′ be equivalent monotone sequences (Φ ≈ Φ′). DS(Φ,Φ′)

always exists and

DS(Φ,Φ′) = 0.

4.4 Special Languages for Strong and Weak Dis-

tance

In this section we show that the strong and the weak distance measures may behave

differently on the same pair monotone sequences and that sequences of approximations

for finite languages are trivial in terms of the strong and weak distance measure.

Lemma 4.4.1. For all sequences of approximations approximating finite languages

exists such n0 in N, that for all n > n0 : Ln = LΦ.



CHAPTER 4. DISTANCES ON MONOTONE SEQUENCES 24

Proof. Without loss of generality let k := |LΦ|, so the finite language approximated

consists of k words {w1, w2, ..., wk}.
For a given word wj let rj be the smallest index such that wj in Lrj . Clearly we can

create a finite set of numbers {r1, r2, ..., rk} containing the smallest indexes for every

word.

Let rmax be a maximal value of set {r1, r2, ..., rk}, so for every j ≥ rmax Lj = LΦ.

Theorem 4.4.2. For all finite language L, for all sequences of approximations Φ,Φ′

for L DW (Φ,Φ′) and DS(Φ,Φ′) exist.

Proof. From Lemma 4.4.1 there are n0 and n′0, from where all the sets of the sequences

Φ and Φ′ are the same. Without loss of generality n0 > n′0. So the following statement

holds: for all n > n0 : Ln = L′n = L. Therefore for all n > n0, D
(W )
n = D

(W )
n−1 and

D
(S)
n = D

(S)
n−1, because no word has been added to the approximations. So the condition

for the convergence |D(W )
n+p −D

(W )
n | = 0 < ε and |D(S)

n+p −D
(S)
n | = 0 < ε holds.

Lemma 4.4.3. Let Φ and Φ′ be sequence of approximations for finite languages L and

L′ respectively. Then DS(Φ,Φ′) exists and equals to the average of the values of the

minimal weight maximal matching on the two finite language L and L′.

Proof. We prove, that {D(S)
i }∞i=1 is convergent. From Lemma 4.4.1 we know that for

both sequences of approximations there is a point in the approximation where the

whole language is in the finite approximation. Let this index be n0 and n′0 for Φ and

Φ′ respectively. Without loss of generality let n0 ≥ n′0.

So from n0 every D
(S)
i holds the average value of the edges in the minimal weight

maximal matching between the two finite languages LΦ and LΦ′ . This sequence is

convergent (is constant), and the limit of such sequence is the same value as every D
(S)
i

from n0. Therefore {D(S)
i }∞i=1 is convergent.

Corollary 4.4.4. When the two sequences of approximations are approximating the

same finite language (so LΦ = LΦ′) we can additionally say, that DS(Φ,Φ′) = 0,

because the minimal weight maximal matching in this case is the identity matching, so

all edges from the matching have value 0, therefore the average is 0 as well.

Lemma 4.4.5. Let Φ be a sequence of approximation approximating a finite language

and Φ′ approximating an infinite one. In this case DS(Φ,Φ′) always exists.

Proof. Similarly to the lemma above we have to prove, that {D(S)
i }∞i=1 is convergent.

From Lemma 4.4.1 we know, that there is a point n0, from which Ln = LΦ for every

n > n0. Now we can find such k0 > n0, from where |L′k| > |LΦ| for every k > k0. Such

a k0 has to exist, because Φ′ is approximating an infinite language.
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Now we prove, that from k0 the sequence {D(S)
i }∞i=1 is monotone and bounded. This

sequence is trivially bounded, because we are working on the real closed interval [0, 1].

For every k > k0 the whole Lk is matched with one word from L′k. L
′
k ⊆ L′k+1 so the

words, which were used in the matching between Lk and L′k are still in L′k+1 as well,

thus the minimal weight maximal matching between Lk+1 = Lk and L′k+1 has to be

at least that good as a minimal weight maximal matching between Lk and L′k (This

matching is still maximal and so the minimal weight maximal matching should have

no more weight as this matching). Every maximal matching from k0 on have the same

cardinality, so D
(S)
k ≥ D

(S)
k+1.

Every monotone and bounded sequence is convergent, so {D(S)
i }∞i=1 is convergent

and DS(Φ,Φ′) exists.

For the weak distance measure the properties above do not have to hold:

Lemma 4.4.6. There exist a pair of sequences of approximations Φ and Φ′ for the

same finite language, such as LΦ = LΦ′ = L and DW (Φ,Φ′) = 1.

Proof. L = {a, b}, Φ = {{a}, {a, b}}, Φ′ = {{b}, {a, b}}. So D
(W )
1 = 1, because words

a and b have no common subsequence. In the next step b is matched to a, because

these are words, which were not used in a step 1. So the matching will be a− b, b− a
in the step 2. D

(W )
2 = 1. From now D

(W )
i = D

(W )
i−1 . So DW = 1 too.

Lemma 4.4.7. There exist a pair of sequences of approximations Φ and Phi′ for the

same infinite language, such as LΦ = LΦ′ = L and DW (Φ,Φ′) = 1.

Proof. The proof is almost identical with the one above. L = {an|n > 0}∪{bn|n > 0}.
Φ and Φ′ are sequences of approximations, where one word is added in each step.

Words al and bl is added into Φ and Φ′ respectively, when k = 2l. In the opposite case

bl and al is added into Φ and Φ′ respectively, when k = 2l− 1. So in each step one new

edge is added to the maximal matching with a value 1.

In this way we can even force regular languages to have significantly larger weak

distance than strong distance. So it would be better to have some restrictions for

these monotone sequences. Therefore we shall consider only those monotone sequences,

which are generated by grammars with energies (or sometimes by the length-based

approximation). These monotone sequences are examined starting in Chapter 6.



Chapter 5

Advanced Properties of Strong and

Weak Distance

In this chapter we show how the strong and the weak distance measures behave, when

we can obtain additional information about the monotone sequences being measured.

In this chapter we show how the strong and weak distances behave under some of the

operations defined for monotone sequences. Namely we consider the disjoint union for

both distances, the finite deletion for the strong distance and finite suffixes and prefixes

for the strong distance measure.

5.1 Strong Distance and Disjoint Union

In this section we show how the disjoint union behaves with the strong distance mea-

sure.

At first let us introduce some notation and assumptions needed in this section.

i) Let Φ,Φ′, Φ′′, and Φ′′′ be sequences of approximations approximating infinite

languages.

ii) Alphabets of Φ and Φ′ are disjoint with alphabets of Φ′′ and Φ′′′.

iii) Let {M1
i }∞i=1 and {M2

i }∞i=1 denote the matchings from the definition of the strong

distance measure between Li and L′i and between L′′i and L′′′i respectively. Let

{M3
i }∞i=1 denote one of the maximal cardinality matchings on unmatched vertices.

iv) DS(Φ,Φ′) and DS(Φ′′,Φ′′′) exist and we will refer to them as original distances in

this section.

v) Let {pi}∞i=1, {qi}∞i=1 and {ri}∞i=1 denote the sequences of the cardinalities of M1
i ,

M2
i and M3

i respectively. So pn := |M1
n|, qn := |M2

n| and rn := |M3
n|. The sequence

26
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of the proportions of these cardinalities is convergent to a non-zero number. So

{pn
qn
} is convergent to k1 > 0 and {pn

rn
} is convergent to k2 > 0. This condition is

equivalent to { qn
pn
} is convergent to 1

k1
> 0, { rn

pn
} is convergent to 1

k2
> 0, { qn

rn
} is

convergent to k2
k1
> 0 and { rn

qn
} is convergent to k1

k2
> 0.

Under these conditions we try to express DS(Φ]Φ′′,Φ′ ]Φ′′′) using DS(Φ,Φ′) and

DS(Φ′′,Φ′′′) as well as all ki.

Now let us describe, why are these assumptions needed. The first assumption

says that all the sequences of approximations are approximating infinite languages.

This condition is not a real restriction, because those sequences of approximations,

which are approximating finite languages are trivial in terms of the strong distance

measure. So when all sequences of approximations are approximating finite languages

the disjoint union of these sequences will approximate finite languages as well. On

the other hand when at least one of the sequences of approximations is approximating

infinite languages these sequences of approximations will dominate the other sequences

approximating finite languages. Therefore the only considerable non-trivial setup is

the one included in the first condition.

The second condition is enforcing the existence of the disjoint union between the

pairs of monotone sequences.

The third and the fourth assumption are related. The fourth assumption is enforc-

ing the existence of the strong distance measure between the corresponding pairs of

monotone sequences.

The fifth assumption is introducing a lot of notations, however this assumption is

a strict restriction, which enforces that the matchings between the pairs are growing

more or less at the same rate. Whenever this condition does not hold we can assume

that one of the distances (DS(Φ,Φ′) or DS(Φ′′,Φ′′′)) dominates the other.

Our intention is to prove, that the strong distance measure between Φ ] Φ′′ and

Φ′ ] Φ′′′ is a weighted average of the distances between the pairs of the monotone

sequences. Before we actually prove this we have to prove one lemma first which is

describing the minimal weight maximal matching between Φ ] Φ′′ and Φ′ ] Φ′′′.

Lemma 5.1.1. Let us consider monotone sequences, which are satisfying assumptions

i)-iii) above. One matching corresponding to the strong distance measures between

Li ∪ L′′i and L′i ∪ L′′′i is M1
i ∪M2

i ∪M3
i .

Proof. We have to prove, that M1
i ∪M2

i ∪M3
i is a minimal weight maximal matching.

Moreover we prove, that M1
i ∪M2

i ∪M3
i is a minimal weight maximal matching with

a minimal number of edges between Li and L′′′i and vica versa between L′′i and L′i, let

us call these edges cross side edges and each cross side edge by the definition holds the

value 1.
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The maximality of this matching is trivial (from the definition of matching M3
i ).

The minimal number of cross side edges is the minimum of ||L′′i |−|Li||, ||L′′′i |−|L′i||
or 0, because all these edges have to be covered by the maximal matching. We can see,

that M1
i ∪M2

i ∪M3
i is one of those matchings, which has the minimal possible number

of cross side edges. Let us prove first, that among those maximal matchings, which

has the minimal possible number of cross side edges matching M1
i ∪M2

i ∪M3
i has the

minimal weight.

By contradiction, let us assume, that there is another maximal matching M , with

the same number of cross side edges and less weight. We have two possibilities: All

unmatched vertices in the previous minimal weight maximal matchings are on the

same partition after the disjoint union, thus no cross side edge is needed. In this case

M1
i ∪M2

i ∪M3
i is trivially a minimal weight maximal matching, following from Lemma

4.1.3.

The second option is that the previously unmatched vertices are in the different parti-

tions after the disjoint union, thus some cross side edges are needed. The overall weight

of matching M is the sum of the weight of all cross side edges, one maximal matching

on Li and L′i (without the vertices used by the cross side edges) and another maximal

matching on L′′i and L′′′i (without the vertices used by the cross side edges). In this

case we know, that the choice of the edges used by the cross side edges does not effect

the value of this edge, but still effects the maximal matchings between L′′i and L′′′i and

Li and L′i. Thus M can not have less weight then matching M1
i ∪M2

i ∪M3
i .

Let us prove, then M1
i ∪M2

i ∪M3
i is a minimal weight maximal matching in general.

By contradiction, let us assume, that M1
i ∪M2

i ∪M3
i is not a minimal weight maximal

matching. Let us call M one of the minimal weight maximal matchings1, which have

minimal number of cross side edges.2

From the paragraph above we know, that M has more cross side edges then needed.

In this case we can do the following: Picking two cross side edges with a opposite

direction3. We can eliminate both cross side edges by rematching these four edges. In

this case either the matching will have less weight overall, which is a contradiction, or

there will be a matching with the same weight as M with less cross side edges used,

which is another contradiction. Therefore there are no two cross side edge with an

opposite direction in matching M , but this is in a contradiction with the maximality

of the matching M .

1M is not related to the matching used in the paragraph above
2There can be more then one minimal weight maximal matching and more then one with a minimal

number of cross side edges.
3For an edge between Li and L′′′

i an edge with the opposite direction is an edge between two

vertices from L′
i and L′′

i and vica versa.
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Therefore M1
i ∪M2

i ∪M3
i is one of the minimal weight maximal matching on Li∪L′′i

and L′i ∪ L′′′i .

Now we can prove the main theorem in this section:

Theorem 5.1.2. Let us consider monotone sequences, which are satisfying assump-

tions i)-v) above. Then the disjoint union of these monotone sequences has a strong

distance too, so DS(Φ ] Φ′′,Φ′ ] Φ′′′) exists and

DS(Φ ] Φ′′,Φ′ ] Φ′′′) =
k1k2DS(Φ,Φ′) + k2DS(Φ′′,Φ′′′) + k1

k1k2 + k1 + k2

.

Proof. We have to show, that the matching M1
i ∪M2

i ∪M3
i is convergent. From Theorem

4.3.5 it follows that the sequence of average values from the matching is convergent iff

∀ε > 0∃n0 ∈ N, n0 > 1,∀n ∈ N, n > n0,∀a ∈ N : |D(S)
n+a −D(S)

n | < ε.

Now we have to express D
(S)
n using matchings M1

n, M2
n and M3

i (where D
(S)1
n and

D
(S)2
n are the average values of matchings M1

n and M2
n respectively on the nth level).

These two sequences are satisfying Theorem 4.3.5, because distances between the cor-

responding pairs of the sequences of approximations exist. So

∀ε > 0,∃n0 ∈ N, n0 > 1,∀n ∈ N, n > n0,∀a ∈ N : |D(S)1
n+a −D(S)1

n | < ε;

∀ε > 0,∃n0 ∈ N, n0 > 1, ∀n ∈ N, n > n0,∀a ∈ N : |D(S)2
n+a −D(S)2

n | < ε.

From Lemma 5.1.1 D
(S)
n can be expressed by D

(S)1
n and D

(S)2
n as follows: D

(S)
n =

pnD
(S)1
n +qnD

(S)2
n +rn

pn+qn+rn
. 4 We have to bound |D(S)

n+a −D
(S)
n | by ε and find such n0, that for

every n from it |D(S)
n+a −D

(S)
n | < ε.

4Note, that all edges in M3
i has value 1.
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∣∣∣D(S)
n+a −D(S)

n

∣∣∣ =

∣∣∣∣∣pn+aD
(S)1
n+a + qn+aD

(S)2
n+a + rn+a

pn+a + qn+a + rn+a

− pnD
(S)1
n + qnD

(S)2
n + rn

pn + qn + rn

∣∣∣∣∣ =

=

∣∣∣∣∣ pn+aD
(S)1
n+a

pn+a + qn+a + rn+a

+
qn+aD

(S)2
n+a

pn+a + qn+a + rn+a

+
rn+a

pn+a + qn+a + rn+a

+

− pnD
(S)1
n

pn + qn + rn
− qnD

(S)2
n

pn + qn + rn
− rn
pn + qn + rn

∣∣∣∣∣ =

=

∣∣∣∣∣ pn+aD
(S)1
n+a

pn+a + qn+a + rn+a

− pnD
(S)1
n

pn + qn + rn
+

qn+aD
(S)2
n+a

pn+a + qn+a + rn+a

+

− qnD
(S)2
n

pn + qn + rn
+

rn+a

pn+a + qn+a + rn+a

− rn
pn + qn + rn

∣∣∣∣∣ ≤
≤

∣∣∣∣∣ pn+aD
(S)1
n+a

pn+a + qn+a + rn+a

− pnD
(S)1
n

pn + qn + rn

∣∣∣∣∣+

∣∣∣∣∣ qn+aD
(S)2
n+a

pn+a + qn+a + rn+a

+

− qnD
(S)2
n

pn + qn + rn

∣∣∣∣∣+

∣∣∣∣ rn+a

pn+a + qn+a + rn+a

− rn
pn + qn + rn

∣∣∣∣ =

=

∣∣∣∣∣ D
(S)1
n+a

1 + qn+a
pn+a

+ rn+a
pn+a

− D
(S)1
n

1 + qn
pn

+ rn
pn

∣∣∣∣∣+

∣∣∣∣∣ D
(S)2
n+a

pn+a
qn+a

+ 1 + rn+a
qn+a

+

− D
(S)2
n

pn
qn

+ 1 + rn
qn

∣∣∣∣∣+

∣∣∣∣∣ 1
pn+a
rn+a

+ qn+a
rn+a

+ 1
− 1

pn
rn

+ qn
rn

+ 1

∣∣∣∣∣
We can generalize the three subexpressions as follows:

∣∣∣ Dn+a
1+cn+a+c′n+a

− Dn
1+cn+c′n

∣∣∣,
where sequence D is staying for some sequence of numbers, which are convergent and

from the closed interval [0, 1], sequences c and c′ are fractions which are convergent

from condition v).

∣∣∣∣ Dn+a

1 + cn+a + c′n+a

− Dn

1 + cn + c′n

∣∣∣∣ =

=
1

1 + cn+a + c′n+a

∣∣Dn+a + cnDn+a + c′nDn+a −Dn − cn+aDn − c′n+aDn

∣∣ ≤
≤
∣∣Dn+a + cnDn+a + c′nDn+a −Dn − cn+aDn − c′n+aDn

∣∣ =

=
∣∣Dn+a −Dn + cn(Dn+a −Dn) + c′n(Dn+a −Dn)− (cn+a − cn)Dn − (c′n+a − c′n)Dn

∣∣ ≤
≤ |(Dn+a −Dn)(1 + cn + c′n)|+ |−(cn+a − cn)Dn|+

∣∣−(c′n−a − c′n)Dn

∣∣ =

= (1 + cn + c′n) |Dn+a −Dn|+Dn |cn+a − cn|+Dn

∣∣c′n+a − c′n
∣∣

In the last expression all three sequences used (eve thou are renamed) are convergent

and the coefficients (1+cn+c′n) and Dn are constants, which can be bounded as well. So
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∣∣∣ Dn+a
1+cn+a+c′n+a

− Dn
1+cn+c′n

∣∣∣ is convergent for every three setup from the original expression,

so the original expression is bounded by some ε.

Now we can evaluate DS(Φ ] Φ′′,Φ′ ] Φ′′′) as follows:

DS(Φ ] Φ′′,Φ′ ] Φ′′′) = lim
i→∞

D
(S)
i = lim

i→∞

piD
(S)1
i + qiD

(S)2
i + ri

pi + qi + ri

With growing i the limits of all used sequences are becoming more and more accu-

rate, thus

DS(Φ ] Φ′′,Φ′ ] Φ′′′) = lim
i→∞

piDS(Φ,Φ′) + pi
k1
DS(Φ′′,Φ′′′) + pi

k2

pi + pi
k1

+ pi
k2

=

=
k1k2DS(Φ,Φ′) + k2DS(Φ′′,Φ′′′) + k1

k1k2 + k1 + k2

.

First we can point out, that if one of the sequences of the fractions is divergent, then

the other sequence is divergent as well. In this case there is only one sequence, which

is convergent to a non-zero value. If one sequence of average values (D
(S)
i ) dominates

the others the distance will be equal to the distance corresponding to this dominating

sequence. If two sequences of average values dominate the third one, then the distance

will be the weighted average of these two distances.

We can specially point out, that if there is only a relatively small number of edges on

unmatched vertices, then these vertices are not modifying the overall distance between

the merged sequences of approximations.

We have to mention that our conditions are symmetrical, so our result should be

symmetrical as well. And this is the case even though it is not easy to see for the

first time. The weighted average in 5.1.2 is symmetrical, because the values of ki are

derived from the particular setup of the original distances. We have to add that k1k2

is only in the formula because we had not introduced a new symbol for k1
k2

, which is

the limit of rn
qn

.

At last we can say something about the union operation in general by omitting the

ii) condition. If the distance between Φ∪Φ′′ and Φ′∪Φ′′′ exists then it is less or equal to
k1k2DS(Φ,Φ′)+k2DS(Φ′′,Φ′′′)+k1

k1k2+k1+k2
, so the distance derived in Theorem 5.1.2 is an upper bound

for the distance measure, if exists.

In this and the following section we do not examine the situation, when the empty

word is a part of all monotone sequences. In the following section we show, that we

can delete some words from the monotone sequences without changing the distance

between them. So we can delete the empty word from all monotone sequences, then

apply the theorem above and then put the empty word back.
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5.2 Weak Distance and Disjoint Union

In this section we show how does the disjoint union behaves under the weak distance

measure. The idea of the proof will remain, but we have to consider, how the matching

in the weak distance measure looks like. We have one problem with the matching

introduced in the chapter above, namely that matching M3 will use up some vertices,

which can be matched later in the original matchings. In this case our matching can

not be considered as a matching in the definition of the weak distance measure. On

the other hand we can not omit M3 in general, because without M3 we can not build

a maximal matching after the union is done.

The solution is to consider those monotone sequences, for which the matching M3

is empty, thus all unmatched vertices on the original matchings are on the same side.

Now let us introduce the set of assumptions needed in this section. These assump-

tions are similar to the ones made in the previous section.

i) Let Φ,Φ′, Φ′′, and Φ′′′ be sequences of approximations approximating infinite

languages.

ii) Alphabets of Φ and Φ′ are disjoint with alphabets of Φ′′ and Φ′′′.

iii) Let {M1
i }∞i=1 and {M2

i }∞i=1 denote the matchings from the definitions of the strong

distance measure between Li and L′i and between L′′i and L′′′i respectively.

iv) DW (Φ,Φ′) and DW (Φ′′,Φ′′′) exist, and we will refer to them as original distances.

v) Let {pi}∞i=1 and {qi}∞i=1 denote the sequences of the cardinalities of M1
i and M2

i

respectively. So pn := |M1
n| and qn := |M2

n|. The sequence of the proportion of

these two cardinalities is convergent to a non-zero number. So {pn
qn
} is convergent

to k1 > 0. This condition is equivalent to { qn
pn
} is convergent to 1

k1
> 0.

Lemma 5.2.1. Let us consider monotone sequences, which are satisfying conditions

i-iii above. If |Li| ≥ |L′i| and |L′′i | ≥ |L′′′i | for each i, then the matching corresponding

to the distance measures between Li ∪ L′′i and L′i ∪ L′′′i is M1
i ∪M2

i .

Proof. This lemma follows from Lemma 5.1.1 in the following setup: M3 is empty

and we are considering only the vertices, which were added in the last step, so we are

searching for the minimal weight maximal matching between (Li ∪L′′i ) \ (Xi−1 ∪X ′′i−1)

and (L′i ∪ L′′′i ) \ (X ′i−1 ∪X ′′′i−1), where Xi denotes the vertices matched in step i.

Theorem 5.2.2. Let us consider monotone sequences, which are satisfying conditions

i-v above. If |Li| ≥ |L′i| and |L′′i | ≥ |L′′′i | for every possible i, then the disjoint union of
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these monotone sequences has a distance two, so DW (Φ ] Φ′′,Φ′ ] Φ′′′) exists and

DW (Φ ] Φ′′,Φ′ ] Φ′′′) =
k1DW (Φ,Φ′) +DW (Φ′′,Φ′′′)

1 + k1

.

Proof. This proof is almost identical to the proof of Theorem 5.1.2. We have to show,

that

∀ε > 0∃n0 ∈ N, n0 > 1,∀n ∈ N, n > n0,∀a ∈ N : |D(W )
n+a −D(W )

n | < ε.

From Lemma 5.2.1 D
(W )
n can be expressed by D

(W )1
n and D

(W )2
n , where D

(W )1
n and

D
(W )2
n stands for the average value of matchings M1 and M2 on the nth step respec-

tively, as follows: D
(W )
n = pnD

(W )1
n +qnD

(W )2
n

pn+qn
.

After a similar derivation to the one used in the proof of Theorem 5.1.2 we obtain:∣∣∣D(W )
n+a −D(W )

n

∣∣∣ ≤ ∣∣∣∣∣ D(W )1
n+a

1 + qn+a
pn+a

− D
(W )1
n

1 + qn
pn

∣∣∣∣∣+

∣∣∣∣∣ D(W )2
n+a

1 + pn+a
qn+a

− D
(W )2
n

1 + pn
qn

∣∣∣∣∣
Both expressions are in a form

∣∣∣ Dn+a1+cn+a
− Dn

1+cn

∣∣∣ and can be bounded:∣∣∣∣ Dn+a

1 + cn+a

− Dn

1 + cn

∣∣∣∣ ≤ (1 + cn) |Dn+a −Dn|+Dn |cn+a − cn|

Therefore |D(W )
n+a−D

(W )
n | is bounded as well, thus the weak distance between those

two monotone sequences exists.

Moreover DW (Φ ] Φ′′,Φ′ ] Φ′′′) = k1DW (Φ,Φ′)+DW (Φ′′,Φ′′′)
1+k1

.

5.3 Strong Distance and Finite Deletion

In this section we show, how does the finite deletion impact the strong distance mea-

sure. Similarly to the previous sections we consider only those sequences of approx-

imations, which are approximating infinite languages. This is not a real restriction,

because we know, that those sequences of approximations, which are approximating

finite languages are trivial in terms of the strong distance measure.

Now consider a pair of sequences of approximations Φ and Φ′, which are approx-

imating infinite languages with an existing strong distance; let S and S ′ be finite

sets of words from languages LΦ and LΦ′ respectively. Our intention is to derive

DS(Φ− S,Φ′ − S ′) using DS(Φ,Φ′).

The idea behind our derivation is, that a finite operation should not change a dis-

tance between two infinite objects, thus DS(Φ − S,Φ′ − S ′) = DS(Φ,Φ′). This is

equivalent to DS(Φ−S,Φ′) = DS(Φ,Φ′), because from this equality and from the sym-

metry we can get DS(Φ−S,Φ′−S ′) = DS(Φ,Φ′−S ′) = DS(Φ′−S ′,Φ) = DS(Φ′,Φ) =

DS(Φ,Φ′).
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S is a finite set, thus we can sort all words from S into a sequence w1, w2, ...wn.

By proving that DS(Φ − {w},Φ′) = DS(Φ,Φ′) for every word w from LΦ we prove

DS(Φ − S,Φ′) = DS(Φ,Φ′) as well, because we can delete the words wi one by one

from Φ without changing the original distance.

Lemma 5.3.1. Let Φ and Φ′ be two sequences of approximations approximating infinite

languages and let w be a word w in LΦ. If DS(Φ,Φ′) exists then

DS(Φ− {w},Φ′) = DS(Φ,Φ′).

Proof. In this proof our intention is to show, that at every level i the average value

of the minimal weight maximal matching is the same between Li and L′i and between

Li − {w} and L′i. Let us call these matching Mi and M ′
i respectively.

Let si be a sum of all edges in a minimal weight maximal matching between Li

and L′i. Similarly let ti be a sum of all edges in a minimal weight maximal matching

between Li − {w} and L′i. Let mi be the cardinality of the first matching5. From the

conditions we know, that si
mi

= D
(S)
i is convergent.

Figure 5.1: When w is not included in Mi the maximal matching remains the same.

At first, we do not have to consider those sets, where w is not from Li, because we

are not altering the original sets nor the minimal weight maximal matching.

Our aim is to bound ti using si. For this we examine all possibilities, how the word

w can be deleted from Li. At first consider, that w is not matched by Mi. In this case

Mi = M ′
i , thus ti = si.

We have two more cases, w is matched by Mi in both of them. The first case is

when we are deleting from the partition, which is fully matched by Mi. Let e in Mi

be the edge, with a value v(e) which is incident with word w. Mi − {e} is a maximal

matching between Li − {w} and L′i with a sum of weights si − v(e). Because of the

minimality of matching M ′
i : ti ≤ si − v(e) ≤ si.

5The cardinality of the second matching is almost the same.



CHAPTER 5. ADVANCED PROPERTIES 35

Figure 5.2: After excluding w from Li every vertex in Li remains matched, thus the

new matching is maximal.

The second case is when w is deleted from the partition, where there are some

unmatched vertices by Mi. Let one of them be w′. Let w1 be the word, which is

matched with w in Mi, let e be the edge between them with a value v(e). Let e′ be

the edge between w′ and w1 with value v(e′). In this case matching Mi − {e} ∪ {e′} is

a maximal matching between Li−{w} and L′i with a sum of weights si− v(e) + v(e′).

From the minimality of M ′
i it follows ti ≤ si − v(e) + v(e′) ≤ si + 1.

Figure 5.3: After excluding w from Li there is one more possible edge, which should

be added to create a maximal matching.

So in general ti ≤ si + 1 in all cases.

Now let us consider the opposite situation. We have the minimal weight maximal

matching between Li − {w} and L′i and we have a word w, which should be inserted

into Li. We have two cases. First case is, that L′i is fully matched by M ′
i , thus there is

no vertex in L′i which can be matched with w. In this case M ′
i is a maximal matching

between Li and L′i and from the minimality of Mi follows: si ≤ ti.

The second case is when there is a word in L′i, which is unmatched by M ′
i . Let w1
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be one of these words. Let e be the edge between w and w1 with value v(e). Then

M ′
i ∪ {e} is a maximal matching between Li and L′i and from the minimality of Mi it

follows: si ≤ ti + v(e) ≤ ti + 1.

So in all cases si ≤ ti + 1.

So in all cases it holds: si − 1 ≤ ti ≤ si + 1 for every i.6 We can now divide this

inequality by mi. Note, that the sequence {mi}∞i=1 is a monotone growing sequence, so

the sequence { 1
mi
}∞i=1 has limit 0.

si
mi

− 1

mi

≤ ti
mi

≤ si
mi

+
1

mi

ti
mi

is convergent to DS(Φ − {w},Φ′) as well, because matching M ′
i has the same

number of edges or one less edges then Mi, which does not effect the convergence. In

a limit ti
mi

is bounded and has the same upper and lower bound, thus it is converging

to this number. This number is the limit of si
mi

, which is DS(LΦ, LΦ′).

Now we introduce the main theorem of this section, without proof, because it

directly follows from Lemma 5.3.1 as it is stated in the preface of this section:

Theorem 5.3.2. Let Φ and Φ′ be two sequences of approximations approximating

infinite languages and let S ⊂ LΦ and S ′ ⊂ LΦ′ be finite sets of words. If DS(Φ,Φ′)

exists then

DS(Φ− S,Φ′ − S ′) = DS(Φ,Φ′).

It is not exactly shown, but this lemma and thus the theorem works in the opposite

way as well. When DS(Φ− S,Φ′ − S ′) exists DS(Φ,Φ′) as well and they are equal.7

5.4 Strong Distance and Finite Suffix and Prefix

In this section we derive, how prefixes and suffixes affect the strong distance measure.

We prove the theorem for prefixes, but the same theorem holds for suffixes as well. In

this section (similarly to the sections above we consider only the setup, where both

sequences of approximations are approximating infinite languages.)

We proceed step-by-step, first proving that the distance measure does not change

when using any prefix by length 1. Then we can add prefix of any length to the

given monotone sequences by adding the characters from the prefix one by one into

the monotone sequences.

6We only assumed w ∈ Li.
7In the lemma we bound the sequence of numbers corresponding to one distance with the sequence

of numbers corresponding to the other distance and this bound is symmetric.
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Now we prove, that whenDS(Φ,Φ′) exists for any two monotone sequences Φ and Φ′,

DS(aΦ, bΦ′) exists as well for any character a and b, moreover DS(aΦ, bΦ′) = DS(Φ,Φ′).

Note that we are adding one character into both monotone sequences as prefix, thus

we can add only prefixes with the same length in the general case.

First case, when a and b are different symbols.

Lemma 5.4.1. Let Φ and Φ′ be monotone sequences with an existing strong distance

measure, and a and b two different symbols. Then DS(aΦ, bΦ′) exists as well, and

DS(aΦ, bΦ′) = DS(Φ,Φ′).

Proof. Let Mi be a minimal weight maximal matching between Li and L′i and let M ′
i

be a minimal weight maximal matching between aLi and bL′i.

The relative edit distance between two words (w and w′) can be computed as
|w|+|w′|−2|LCS(w,w′)|

|w|+|w′| , where LCS is a longest common subsequence of the given words.

For our purposes let l := |w|, l′ := |w′| and c := |LCS(w,w′)|. Then the relative edit

distance between w and w′ is l+l′−2c
l+l′

.

Using this notation we can calculate the sum of the edges in the matchings Mi and

M ′
i . Moreover, we can calculate the sum of the edges of the matching Mi between aLi

and bL′i and M ′
i between Li and L′i. The reason behind this is that there is a bijective

correlation between the words from Li and aLi and between the words from L′i and

bL′i. For the same reason matchings Mi and M ′
i have the same cardinality.∑

(w,w′)∈Mi

|w|+|w′|−2|LCS(w,w′)|
|w|+|w′| =

∑
(w,w′)∈Mi

l+l′−2c
l+l′

is the sum of weight of matching

Mi between Li and L′i.∑
(w,w′)∈M ′i

|w|+|w′|−2|LCS(w,w′)|
|w|+|w′| =

∑
(w,w′)∈M ′i

l+l′−2c
l+l′

is the sum of weight of matching M ′
i

between aLi and bL′i, therefore from the minimality of matching Mi∑
(w,w′)∈Mi

l + l′ − 2c

l + l′
≤

∑
(w,w′)∈M ′i

l + l′ − 2c

l + l′
. (5.1)

∑
(aw,bw′)∈Mi

|aw|+|bw′|−2|LCS(aw,bw′)|
|aw|+|bw′| =

∑
(aw,bw′)∈Mi

2+l+l′−2c
2+l+l′

is the sum of weight of

matching Mi between aLi and bL′i.∑
(aw,bw′)∈M ′i

|aw|+|bw′|−2|LCS(aw,bw′)|
|aw|+|bw′| =

∑
(aw,bw′)∈M ′i

2+l+l′−2c
2+l+l′

is the sum of weight of match-

ing M ′
i between aLi and bL′i, from the minimality of the matching M ′

i∑
(aw,bw′)∈M ′i

2 + l + l′ − 2c

2 + l + l′
≤

∑
(aw,bw′)∈Mi

2 + l + l′ − 2c

2 + l + l′
. (5.2)

Now we prove, that the relative edit distance between aw and bw′ is bigger then
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the relative edit distance between the same w and w′.

2 + l + l′ − 2c

2 + l + l′
≥ l + l′ − 2c

l + l′

2(l + l′) + (l + l′)2 − 2c(l + l′) ≥ (l + l′)(2 + l + l′)− 2c(2 + l + l′)

−l − l′ ≥ −2− l − l′

0 ≥ −2

In the matching M ′
i the same edges are included in both cases (between Li and L′i

and between aLi and bL′i), moreover we know, that every edge between aLi and bL′i

holds the same or larger value as the same edge between Li and L′i. Thus the sum of

these edges is greater or equal to the sum of the same edges between Li and L′i.∑
(w,w′)∈M ′i

l + l′ − 2c

l + l′
≤

∑
(aw,bw′)∈M ′i

2 + l + l′ − 2c

2 + l + l′
. (5.3)

From Equations 5.1, 5.2 and 5.3 we obtain∑
(w,w′)∈Mi

l + l′ − 2c

l + l′
≤

∑
(aw,bw′)∈M ′i

2 + l + l′ − 2c

2 + l + l′
≤

∑
(aw,bw′)∈Mi

2 + l + l′ − 2c

2 + l + l′
(5.4)

All matchings have the same cardinality, therefore (from the sandwich theorem) if

we prove, that matching Mi is convergent between aΦ and bΦ′ and has the same limit

as matching Mi between Φ and Φ′ we obtain, that matching M ′
i is convergent between

aΦ and bΦ′ as well to the same number.
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∑
(aw,bw′)∈Mi

2 + l + l′ − 2c

2 + l + l′
=

=
∑

(aw,bw′)∈Mi

2

2 + l + l′
+

∑
(aw,bw′)∈Mi

l + l′ − 2c

2 + l + l′
=

=
∑

(w,w′)∈Mi

2

2 + l + l′
+

∑
(w,w′)∈Mi

l + l′ − 2c

2 + l + l′
=

= 2
∑

(w,w′)∈Mi

1

2 + l + l′
+

∑
(w,w′)∈Mi

l + l′ − 2c

2 + l + l′
l + l′

l + l′
=

= 2
∑

(w,w′)∈Mi

1

2 + l + l′
+

∑
(w,w′)∈Mi

l + l′ − 2c

l + l′
l + l′

2 + l + l′
=

= 2
∑

(w,w′)∈Mi

1

2 + l + l′
+

∑
(w,w′)∈Mi

l + l′ − 2c

l + l′
2 + l + l′ − 2

2 + l + l′
=

= 2
∑

(w,w′)∈Mi

1

2 + l + l′
+

∑
(w,w′)∈Mi

l + l′ − 2c

l + l′

(
1 +

−2

2 + l + l′

)
=

= 2
∑

(w,w′)∈Mi

1

2 + l + l′
+

∑
(w,w′)∈Mi

l + l′ − 2c

l + l′
+

∑
(w,w′)∈Mi

l + l′ − 2c

l + l′
−2

2 + l + l′
=

=
∑

(w,w′)∈Mi

l + l′ − 2c

l + l′
+ 2

∑
(w,w′)∈Mi

1

2 + l + l′
− 2

∑
(w,w′)∈Mi

l + l′ − 2c

l + l′
1

2 + l + l′

The first sum is the sum of the minimal weight maximal matching between Li and

L′i, thus divided by the cardinality of Mi is convergent to DS(Φ,Φ′). We have to prove,

that the other two sums divided by the cardinality of matching Mi are convergent to

0, thus the sequence of numbers derived from Mi between aLi and bL′i is convergent to

DS(Φ,Φ′).

So we have to prove, that
2
∑

(w,w′)∈Mi
1

2+l+l′

|Mi| and
2
∑

(w,w′)∈Mi
l+l′−2c
l+l′

1
2+l+l′

|Mi| is convergent

to 0. Both sequence contains non-negative numbers only, thus their limit can not be

negative.

Let min be the minimal value of all 2 + l + l′ within the matching Mi. Then we

can bound the sequences above as follows:

2
∑

(w,w′)∈Mi

1
2+l+l′

|Mi|
≤

2
∑

(w,w′)∈Mi

1
min

|Mi|
=

2
min

∑
(w,w′)∈Mi

1

|Mi|
=

2
min
|Mi|
|Mi|

=
2

min

Similarly:

2
∑

(w,w′)∈Mi

l+l′−2c
l+l′

1
2+l+l′

|Mi|
≤

2
∑

(w,w′)∈Mi

l+l′−2c
l+l′

1
min

|Mi|
=

2

min

∑
(w,w′)∈Mi

l+l′−2c
l+l′

|Mi|
≤

≤ 2

min
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Both sequences can be bound by 2
min

. Now we show, that this can be ignored. From

the last subsection we know, that we can erase a finite sequence of words from the

monotone sequences without altering the distance between them. limmin→∞
2

min
= 0.

For every value min = 1.. we erase all words from both monotone sequences which are

shorter the
⌈
min

2

⌉
. This is a finite set of words for every natural min. Thus as a limit

we can enforce that both sequences above are upper bounded by 0.

We can conclude, that every DS(aΦ, bΦ′) = DS(Φ,Φ′).

Now let us prove a similar lemma for the case when both prefixes are the same

character. The proof itself is a bit easier and similar to the proof above.

Lemma 5.4.2. Let Φ and Φ′ be monotone sequences with an existing strong distance

measure, and a be a symbol. Then DS(aΦ, aΦ′) exists as well, and

DS(aΦ, aΦ′) = DS(Φ,Φ′).

Proof. Similarly to the lemma above let Mi be a minimal weight maximal matching

between Li and L′i and let M ′
i be a minimal weight maximal matching between aLi

and aL′i.

The relative edit distance between two words (w and w′) can be computed as
|w|+|w′|−2|LCS(w,w′)|

|w|+|w′| , where LCS is a longest common subsequence of the given words.

For our purposes let l := |w|, l′ := |w′| and c := |LCS(w,w′)|. Then the relative edit

distance between w and w′ is l+l′−2c
l+l′

.

Using this notation we can calculate the sum of the edges in the matchings Mi and

M ′
i . Moreover, we can calculate the sum of the edges of the matching Mi between aLi

and aL′i and M ′
i between Li and L′i. The reason behind this is that there is a bijective

correlation between the words from Li and aLi and between the words from L′i and

aL′i. For the same reason matchings Mi and M ′
i have the same cardinality.

At first we prove, that the relative edit distance between aw and aw′ is at most

then the relative edit distance between the same w and w′.

l + l′ − 2c

2 + l + l′
≤ l + l′ − 2c

l + l′

1

2 + l + l′
≤ 1

l + l′

l + l′ ≤ 2 + l + l′

0 ≤ 2

From the inequality above the following inequality follows:
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∑
(w,w′)∈M ′i

l + l′ − 2c

l + l′
≥

∑
(w,w′)∈Mi

l + l′ − 2c

l + l′
≥

≥
∑

(aw,aw′)∈Mi

l + l′ − 2c

2 + l + l′
≥

∑
(aw,aw′)∈M ′i

l + l′ − 2c

2 + l + l′

Where all matchings have the same cardinality. The first and the last inequality

hold because M ′
i and Mi is the minimal weight maximal matching for a given sets.

Let us show now, that the average of the edges in matching Mi is convergent to the

same number as the average of the edges in M ′
i . The following inequality holds which

can be further modified as follows.

0 ≤
∑

(w,w′)∈Mi

l + l′ − 2c

l + l′
−

∑
(aw,aw′)∈M ′i

l + l′ − 2c

2 + l + l′
≤

≤
∑

(w,w′)∈M ′i

l + l′ − 2c

l + l′
−

∑
(aw,aw′)∈M ′i

l + l′ − 2c

2 + l + l′
=

=
∑

(aw,aw′)∈M ′i

(
l + l′ − 2c

l + l′
− l + l′ − 2c

2 + l + l′

)
=

=
∑

(aw,aw′)∈M ′i

(
(2 + l + l′)(l + l′ − 2c)− (l + l′)(l + l′ − 2c)

(l + l′)(2 + l + l′)

)
=

=
∑

(aw,aw′)∈M ′i

(
2(l + l′ − 2c) + (l + l′)(l + l′ − 2c)− (l + l′)(l + l′ − 2c)

(l + l′)(2 + l + l′)

)
=

=
∑

(aw,aw′)∈M ′i

2(l + l′ − 2c)

(l + l′)(2 + l + l′)
≤

∑
(aw,aw′)∈M ′i

2(l + l′)

(l + l′)(2 + l + l′)
=

=
∑

(aw,aw′)∈M ′i

2

(2 + l + l′)
= 2

∑
(aw,aw′)∈M ′i

1

(2 + l + l′)

It is shown in the lemma above that 1
(2+l+l′)

can be ignored, precisely limmin→∞
2

min
=

0 when min is the minimal length of the words in Φ and Φ′.

Therefore for growing min we have that

0 ≤
∑

(w,w′)∈Mi

l + l′ − 2c

l + l′
−

∑
(aw,aw′)∈M ′i

l + l′ − 2c

2 + l + l′
≤ 0.

Which means that both matchings have the same limit and both limits exist if one of

them exists.

So DS(aΦ, aΦ′) = DS(Φ,Φ′) holds.

From the lemmas in this section we have the following theorem:
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Theorem 5.4.3. Let Φ and Φ′ be monotone sequences with an existing strong distance

measure, and a and b two symbols, Then DS(aΦ, bΦ′) exists as well, and

DS(aΦ, bΦ′) = DS(Φ,Φ′).

Similar theorem holds for the finite suffixes as well as we are not using the fact,

that a and b are prefixes in our proof.

Theorem 5.4.4. Let Φ and Φ′ be monotone sequences with an existing strong distance

measure, and a and b two symbols, Then DS(Φa,Φ′b) exists as well, and

DS(Φa,Φ′b) = DS(Φ,Φ′).



Chapter 6

Sequences of Approximations

Generated by Strict Grammars

With Energy

In this chapter consider monotone sequences generated by strict grammars with energy

and prove some useful properties of these monotone sequences.

6.1 Definitions and Basic Relations

In this section we define monotone sequences generated by grammars with energy as

well as sequence of approximations based on the length of words and point out the

relationship between the subsequence relationship and between the generation process

of these monotone sequences.

Definition 6.1.1. Let {ei}∞i=1 be a monotone sequence of real numbers from the open

interval (0, 1) convergent to 0. Sequence {ei}∞i=1 with these properties will be called

sequence of threshold values.

Definition 6.1.2. Let G be a strict grammar with energy and {ei}∞i=1 be a sequence

of threshold values. The sequence of finite languages Φ(G, {ei}∞i=1) = {Lei(G)}∞i=1 is a

sequence of approximations for language L(Ĝ) generated by G using threshold values

{ei}∞i=1.1

We have to prove, that Φ(G, {ei}∞i=1) as defined above is a monotone sequence.

From Theorem 1.2.2 and from the monotonicity of sequence {ei}∞i=1 we know, that for

every i > 0 ei ≥ ei+1, so Lei(G) ⊆ Lei+1
(G), thus Φ(G, {ei}∞i=1) is a monotone sequence

of finite languages (each language Le(G) is finite).

1Ĝ is an underlying context-free grammar to G from Notation 1.1.3.

43
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Now we show, that the limit of Φ(G, {ei}∞i=1) is L(Ĝ). We have to show, that

(i) For all w in L(Ĝ) there exists such i, that w is in Lei(G);

(ii) For all i and for all w in Lei(G) it holds that w in L(Ĝ).

Condition (ii) is trivially true, because Lei(G) ⊂ L(Ĝ) for all i. Condition (i) holds

as well, because from Theorem 1.2.1 we know, that for every word w ∈ L(Ĝ) there

exists i such that w ∈ Lej(G) for each j ≥ i. From Theorem 1.2.1 we know, that there

exists a strict grammar with energy for every context-free grammar Ĝ, which satisfies

condition (i). In this case G is that strict grammar with energy as Ĝ is the underlying

grammar to G. The existence of such a low threshold is maintained by the convergence

of sequence {ei}∞i=1.

Definition 6.1.3. FCF = {Φ| there exist a strict grammar with energy G and a se-

quence of threshold values {ei}∞i=1 such, that Φ = Φ(G, {ei}∞i=1)}. We call FCF the

class of context-free sequences of approximations.

Similarly we can define the linear and regular classes of sequences of approximations.

Definition 6.1.4. FLN = {Φ| there exist a strict grammar with energy G, where

Ĝ is a linear grammar and a sequence of threshold values {ei}∞i=1 such, that Φ =

Φ(G, {ei}∞i=1)}. We call FLN the class of linear sequences of approximations.

Definition 6.1.5. FR = {Φ| there exist a strict grammar with energy G, where

Ĝ is a regular grammar and a sequence of threshold values {ei}∞i=1 such, that Φ =

Φ(G, {ei}∞i=1)}. We call FR the class of regular sequences of approximations.

Now we define those monotone sequences, which are corresponding to the approxi-

mation defined by the length of the words.

Definition 6.1.6. Let L be a language and {ki}∞i=1 be a monotone growing sequence

of natural numbers. The sequence of finite languages generated as Φ(L, {ki}∞i=1) =

{L≤ki}∞i=1, where L≤ki is a set of all words from L with a length less or equal to ki, is

a sequence of approximations for language L generated by the length-based approxi-

mation using {ki}∞i=1.

{L≤ki}∞i=1 is a monotone sequence of finite languages for every language L. It is

easy to see, that the limit of Φ(L, {ki}∞i=1) is the language L.

Lemma 6.1.7. (i) Let G be a grammar with energy and {ei}∞i=1 be a sequence of

threshold values. Let {e′i}∞i=1 be a subsequence of {ei}∞i=1, thus convergent to 0 as

well. Then Φ(G, {e′i}∞i=1) is a subsequence of Φ(G, {ei}∞i=1).
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(ii) Let L be a language and {ki}∞i=1 be a monotone growing sequence of natural num-

bers. Let {k′i}∞i=1 be a subsequence of {ki}∞i=1. Then Φ(L, {k′i}∞i=1) is a subsequence

of Φ(L, {ki}∞i=1).

Proof. The proof is identical for both cases, so we provide a proof for case (i) only.

We have to prove, that every Le′i is from Φ and that the order of the finite languages

in Φ′ is the same as in Φ. The first property directly follows from the fact, that {e′i}∞i=1

is a subsequence of {ei}∞i=1. The second property follows from the fact, that both

{ei}∞i=1 and {e′i}∞i=1 are monotone, thus the order of the numbers e′i is the same in both

sequence.

Now we define the subset of the class of context-free (regular, linear) sequences of

approximations, which is used later in this thesis.

Definition 6.1.8. FB−CF = {Φ| there exist a strict grammar with energy G and

a sequence of threshold values {ei}∞i=1 for which limi→∞
ei
ei−1

= 1 such, that Φ =

Φ(G, {ei}∞i=1)}. We call FB−CF the class of bounded context-free sequences of ap-

proximations.

Definition 6.1.9. FB−R(FB−LN) = {Φ| there exist a strict grammar with energy G,

where Ĝ is a regular (linear) grammar and a sequence of threshold values {ei}∞i=1 for

which limi→∞
ei
ei−1

= 1 such, that Φ = Φ(G, {ei}∞i=1)}. We call FB−R (FB−LN) the class

of bounded regular (linear) sequences of approximations.

The inclusions FB−CF ⊆ FCF , FB−LN ⊆ FLN and FB−R ⊆ FR directly follow from

the definition. Clearly FR ⊆ FLN ⊆ FCF and FB−R ⊆ FB−LN ⊆ FB−CF hold as well.

Lemma 6.1.10. For every Φ = Φ(G, {ei}∞i=1) every shortest word generated by σ in Ĝ

is in L1 = Le1(G).

Proof. So we have to prove, that every shortest word s derived from σ in Ĝ belongs to

L1. Without loss of generality s is one of the shortest words. There are two cases:

In the first case e1 is such that the whole derivation of s is doable from σ1 with

energy-threshold e1 without a substitution of the shortest words.

In the second case we have to substitute at least once the shortest word derived from

one non-terminal symbol. Let s be u1v1u2v2u3...vnun+1, where ui and vi are terminal

words or ε and the parts ui are derived with energy e1 and vi are the parts, where

shortest words are substituted. The situation is similar to Theorem 1.2.2, that we

can derive word u1v
′
1u2v

′
2u3...v

′
nun+1 from σ with energy-threshold e1 we obtain that

for every i |vi| = |v′i|. Because grammars are generating all possible words we have a

situation that vi = v′i, thus s is generated with energy-threshold e1.
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Lemma 6.1.11. For every Φ ∈ FX or Φ ∈ FB−X : LΦ ∈ LX , where X can be R, LN

and CF .

Proof. All proofs are identical, so we prove this lemma for CF .

Every Φ ∈ FCF or Φ ∈ FB−CF is generated by a strict grammar with energy G.

The underlying grammar Ĝ is context-free by the definition of FCF or FB−CF . From

the definitions above we know, that LΦ = L(Ĝ) and L(G) ∈ LCF .

Now we show the second subset relation:

Lemma 6.1.12. For every L ∈ LX there exists such sequence of approximation Φ,

that Φ ∈ FB−X , where X can be R, LN and CF .

Proof. For every (regular, linear, context-free) language exist a (regular, linear, context-

free) grammar without unreachable and unproductive non-terminal symbols. We can

add one random coefficient for each non-terminal symbol on the right side of the rewrit-

ing rules and so we create a strict (regular, linear, context-free) grammar with energy

G.

We can create Φ as Φ(G, {ei}∞i=1) where ei = 1
i
. From the definition Φ ∈ FB−X .

From the two lemmas above and the fact that R ⊂ LLN ⊂ LCF we obtain that

FB−R ⊂ FB−LN ⊂ FB−CF and FR ⊂ FLN ⊂ FCF .

Lemma 6.1.13. For every Φ ∈ FX approximating a finite language it holds Φ ∈ FB−X ,

where X can be R, LN and CF .

Proof. We prove the lemma for the regular sequences of approximations, the proof is

almost identical for the other two cases.

Φ ∈ FR =⇒ Φ(G, {ei}∞i=1) and G is a strict regular grammar with energy. Let k

be such a natural number, that Lk = LΦ. Let ek be the energy threshold related to

Lk. Now let us create sequence of thresholds {e′i}∞i=1 with property limi→∞
e′i
e′i−1

= 1.

{ 1
n
}∞n=1 is a monotone convergent sequence of real numbers. limn→∞

1
n
1

n−1

= limn→∞
n−1
n

=

1.

Let n0 be the first number, for which 1
n0
≤ ek.

Now we can define e′i as follows:

e′i =

{
ei for every i ≤ k

1
n0+i−k otherwise

Φ′ = Φ(G, {e′i}∞i=1) ∈ FB−R, because limi→∞
e′i
e′i−1

= 1.
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Now we show, that Φ = Φ′. For the first k finite approximations Li = Lei(G) =

L′i = Le′i(G) = Lei(G). The finite approximations in both sequences of approximations

are LΦ = LΦ′ from the same jmax, thus Φ and Φ′ are the same.

Φ ∈ FB−R.

Theorem 6.1.14. For every Φ ∈ FCF approximating a finite language it holds Φ ∈ FR.

Proof. We have to construct a strict regular grammar with energy G and a sequence of

energy-thresholds ei, which Φ = Φ(G, {ei}∞i=1). Without loss of generality L = {wj|1 ≤
j ≤ n∧n ≥ 1}. Now we can create a list of first occurrences for each word. So let f be

a function, which tell us the first occurrence of each word. So wj 6∈ Ll for l < f(wj),

but wj ∈ Lf(wj).

From Lemma 6.1.10 we know that the shortest words generated by the original

starting non-terminal symbol σ′ are in L1. Because we are approximating a finite

language these are the shortest words in general. Let s be one of the shortest words

from L, thus a f(s) = 1.

Now we construct a regular grammar with energy as follows:

1. We add a ”mid-rule“ for every word from L: σ → ξ
[ 1
f(wj)

]

j .

2. We add a ”production-rule“ for each word from L: ξj → wj.

3. We add a ”escaping-rule“ for each non-terminal ξj: ξj → s.

We construct the sequence of thresholds as follows: We construct a set of first

occurrences as F = {f1 < f2 < ... < fm}. So let us define the sequence of threshold

values: Let fl be the first number in the set F bigger then i. Then ei = 1
fl−1

.

Now we should prove, that Li = Lei(G), where Li inΦ.

1. Proof of Li ⊆ Lei(G). Each word in Li has its first occurrence prior to Li or in

Li. So each word has its f(w) ≤ i, so 1
f(w)
≥ 1

i
. Now we can do our first step

in a derivation: we obtain ξ
1
i
j for each ξj. From the fact that 1

f(w)
≥ 1

i
for every

word in L we obtain that the corresponding ξjs’ has enough energy to derive the

words from Li.

2. Proof of Lei(G) ⊆ Li. Every word in Lei(G) is either s (substituted because of

the energy threshold) or a word, which has higher coefficient then ei. s ∈ L1 from

Lemma 6.1.10, so s ∈ Li as well. Now the words, which have higher coefficient

then ei has a lower first occurrence then 1
ei
< fl. On the other hand fl is the first

number bigger then i which has a new first occurrence of some word, so 1
i
≤ i.

From this we see, that each word in Lei(G) has its first occurrence before Li in

Φ.
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Li = Lei(G) thus our proof is complete.

From the theorem and lemma above we obtain:

Corollary 6.1.15. For every Φ ∈ FCF approximating a finite language it holds Φ ∈
FB−R.

6.2 Difference Between Length-Based Approxima-

tion and Approximations Using Grammars With

Energy

Now we have tools to examine what is the difference between the length-based approxi-

mation a given language and between the approximations generated by grammars with

energy. The intuition is, that while approximating with grammars with energy we can

highlight some part of the grammar, which is ”more relevant” than other parts of the

grammar. This is something which can not be done by the length-based approxima-

tion, because in this case the languages are approximated, so the additional information

given by the grammar is lost.

6.2.1 Context-Free Sequences of Approximations

In this section we show that there is a context-free sequence of approximations, which

can not be generated by the length of the words. Later we show one monotone sequence

bounded by the length of the words included in finite approximations as well, which is

approximating context-free language but can not be generated by the grammar with

energy.

Let us show one example of monotone sequence of finite languages which is gener-

ated by grammar with energy and can not be generated by length-based sequences of

approximations.

Example 6.2.1. Let Φ = Φ(G, {ei}∞i=1) be a monotone sequence of finite languages

generated by grammar with energy G = (N,Σ, P, σ) where N = {σ, α, β} and

P =
{
σ → α[0.9] | β[0.8] | a | b, α→ aα[0.9] | a, β → bβ[0.8] | b

}
.

In this case Lei(G) contains words of two types a∗ and b∗. For every ei ≤ 0.9 there

are longer words of type a∗ then the words of type b∗. Moreover the language being

approximated is L = {an ∪ bn|n ≥ 1}, so Lei(G) is not a finite language containing

each word shorter then some number.
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On the other hand let us show an example of a sequence of approximation which

can not be generated by grammars with energy.

Example 6.2.2. Let L be the context-free language L = {anbncmdm | n ≥ 1}. Now

let us define the monotone sequence of finite languages as follows: Φ = {Li}∞i=1 where

Li = {w|∀w ∈ L ∧ |w| ≤ 2i}.
LΦ = L and L is a context-free language, so there is a context-free grammar Ĝ

generating this language, therefore there is a grammar with energy which has this

grammar as its underlying grammar. Now consider the structure of grammar Ĝ. From

the context-freeness of Ĝ there should be two nests of non-terminal symbols, each nest

generating the anbn and cmdm part respectively. These two nests can not interfere after

some finite amount of steps.

So let us consider the first i in a form i = n′+m′−1 which is after the finite amount

of steps where the two nests can interfere. In this situation Li contains both words

an
′
bn
′
cm
′−1dm

′−1 and an
′−1bn

′−1cm
′
dm
′

but does not contain word an
′
bn
′
cm
′
dm
′
. Now

is we consider any grammar with energy with two not interfering nests we need such

energy threshold e that Le(G) = Li. On the other hand both words an
′
bn
′
cm
′−1dm

′−1

and an
′−1bn

′−1cm
′
dm
′

has to be generated by G with energy threshold e and such both

an
′
bn
′

and cm
′
cm
′

can be generated in the respective nest with energy threshold e.

Therefore an
′
bn
′
cm
′
dm
′ ∈ Le(G).

In this example we abused the fact that the boundary put onto the length of the

words is a global condition, but the energy threshold for the non-terminal symbols is

a local condition for each nest.

6.3 Pumping Lemma

Now we prove the first lemma, the first necessary condition of the context-free sequences

of approximations, similar to the Pumping Lemma for the context-free languages. From

now on we refer to the Pumping Lemma for the context-free languages as original

Pumping Lemma.

Lemma 6.3.1 (Pumping Lemma). For every Φ in FCF exist some integer p, q ≥ 1

such that for every j in N, for every word w in Lj, with |w| > p exist such u, v, x, y, z

that the following four conditions hold:

1. w = uvxyz

2. |vxy| ≤ q

3. |vy| ≥ 1, and
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4. For every natural n ≥ 0 there exists a natural number i, such that uvnxynz ∈ Li.

Proof. We prove, that all conditions hold.

We know, that word w ∈ Lj ⊂ LΦ ∈ LCF is a word from a context-free grammar.

Let p and q be the constants correlated with LΦ from the original Pumping Lemma.

Then from the original Pumping Lemma we know, that the first three conditions hold.

We know, that for every n ≥ 0 uvnxynz ∈ LΦ. Let this word be wn := uvnxynz, thus

every wn ∈ LΦ.

From the definition of the limit of the sequence of approximations we know, that

for very word w′ from LΦ there is such k, that w′ in Lk. Thus for every wn there is

such a number i, that wn in Li, thus the fourth condition holds as well.

When n = 1, then uvnxynz = w, thus from the condition, that Lj is the first

occurrence of word w we obtain that i ≥ j.

6.4 Predecessor Lemma

The second necessary condition is from the opposite point of view to the Pumping

Lemma, which means, that every “new” word in Li+1 has to has a “predecessor” in Li.

Lemma 6.4.1 (Predecessor Lemma). For every Φ = Φ(G, {ei}∞i=1) ∈ FCF , for every

word w ∈ Li+1 \ Li, where i > 1 exists a word w′ in Li, such that w′ is obtained

by the substitution of the shortest words into the sentential form in w′′ ⇒G,ei w
′ and

w′′ ⇒∗G,ei+1
w. Word w′ is called a predecessor for word w.

Proof. By contradiction. Let w ∈ Li+1 \ Li be such a word, that w has no predecessor

in Li. Let σ1 ⇒G,ei+1
v1 ⇒G,ei+1

v2 ⇒G,ei+1
... ⇒G,ei+1

vn ⇒G,ei+1
w be one of the

derivations of word w with energy threshold ei+1 corresponding to set Li+1. w has no

predecessor in Li, thus when we transform this derivation2 into energy threshold ei

there is no need for a substitution of the shortest words for any of the non-terminals in

σ, v1, v2, · · · , vn, which are not substituted with the energy threshold ei+1 as well. But

from this we obtain, that σ1 ⇒G,ei v1 ⇒G,ei v2 ⇒G,ei ... ⇒G,ei vn ⇒G,ei w is a valid

derivation as well, thus w in Li, which is a contradiction.

There can be more then one predecessor for each word w ∈ Li+1 \Li in Li and each

word w′ in Li can be a predecessor for more then one word w ∈ Li+1 \ Li. Moreover

there can be words in Li, which are not predecessor for any word from Li+1 \ Li.
One interesting fact comes from this lemma as well: there is only a finite amount

of patterns, which can be “reverted” as the derivation goes on with a smaller energy

2Changing the energy threshold for all steps from ei+1 to ei.
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threshold. These patterns are all the shortest words, which can be substituted instead

of a non-terminal symbol with not enough energy.



Chapter 7

Strong Distance Measure on

Context-Free Sequences of

Approximations

In this chapter we show some additional properties of the strong distance measure on

the class of the context-free sequences of approximations.

It is obvious that when Φ = Φ(G, {ei}∞i=1) and Φ′ = Φ(G′, {e′i}∞i=1) are monotone

sequences on disjoint alphabets every edge will have value 1, thus DS(Φ,Φ′) = 1.

Similarly for the “almost” disjoint alphabets, with no non-trivial terminal in their

intersection. Non-trivial terminals are defined below.

Terminal symbols not included in both alphabets ΣL(Ĝ) and ΣL(Ĝ′) are irrelevant in

terms of the distance measure, because every such terminal symbol necessarily create

an “error” between the words. Therefore these symbols can be substituted by an error

mark : Φ for the sequence of approximations Φ. For example, instead of computing

the distance between akbk and akck we can write ak k
Φ and ak k

Φ′ .

We can split the set of terminal symbols included in both alphabets into two subsets:

• Terminal a in ΣL(Ĝ)∩ΣL(Ĝ′) is called trivial, when it occurs only in a finite number

of words.

• Terminal a in ΣL(Ĝ) ∩ ΣL(Ĝ′) is called non-trivial.

We can see from Theorem 5.3.2 that trivial terminal symbols do not affect the strong

distance measure, because we can simply delete those words from the sequences of

approximations, which contain these terminals, without changing the distance (or the

existence of the distance) of the two sequences of approximations.

52
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7.1 Existence

In this section we show that the strong distance measure does exist between every pair

of context-free sequences of approximations, satisfying some properties. At first, we

prove that the strong distance measure exists between each pair of monotone sequences,

which are generated by the same grammar with energy. In this case we prove that the

strong distance between these monotone sequences is always 0.

Furthermore we prove that the strong distance measure exists between every pair

of context-free sequences of approximations satisfying some property. In this case

however, we can not compute the exact value of this distance.

Lemma 7.1.1. Let G be a strict grammar with energy and Φ = Φ(G, {ei}∞i=1), Φ′ =

Φ(G, {e′i}∞i=1) two sequences of approximations generated by the same grammar G. Then

DS(Φ,Φ′) = 0.

Proof. The finite approximations are Li = Lei(G) and L′i = Le′i(G). From Theorem

1.2.2 we know, that Li ⊆ L′i or L′i ⊆ Li depending on the values of ei and e′i.
1

We create a maximal matching with overall weight 0, thus a minimal weight maxi-

mal matching between Li and L′i.
2 We have no restrictions for i, thus we can use this

matching for every i and create a sequence of zeros, which corresponds to the sequence

from the definition of the strong distance measure. This sequence is convergent and

its limit is 0.

The matching between Li and L′i will be the following: Without loss of generality

Li ⊆ L′i. Then match each word from Li to itself from L′i, these edges hold value 0.

The maximality of this matching is trivial.

The proof is finished, as we constructed a maximal matching with 0 total weight.

Theorem 7.1.2. For every pair Φ,Φ′ in FCF for which the following conditions hold

limi→∞
|Li|
|Li−1| = 1 and limi→∞

|L′i|
|L′i−1|

= 1 : DS(Φ,Φ′) exists.

Proof. From Lemmas 4.4.3, 4.4.5, and from the symmetry we know that the strong

distance measure exists when one of the sequences of approximations is approximating

a finite language. The only case, which is not proved is, when both sequences of

approximations are approximating infinite languages.

So let Φ and Φ′ approximate infinite languages. We prove, that from some n0 in N
the average value of edges in the minimal weight maximal matching between Li and

L′i is the same, as between Li+1 and L′i+1.

1Both of these inclusions can hold at the same time as well.
2There is no better matching between two fractional languages, because all edge between Li and

L′
i holds a non-negative value.
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We have two similar cases:

1. |Li| ≤ |L′i| and |Li+1| ≤ |L′i+1|

2. |Li| ≤ |L′i| and |Li+1| ≥ |L′i+1|

Because of the symmetry we can omit the case, where |L′i| ≤ |Li| and |L′i+1| ≤ |Li+1|.

Figure 7.1: The two main case of this proof.

Let Mi be a minimal weight maximal matching between Li and L′i and Mi+1 the

minimal weight maximal matching between Li+1 and L′i+1. Let si be a sum of edges in

Mi as well as si+1 be a sum of edges in Mi+1.

Let us bound si+1 using si for every i > n0 for both cases:

1. Let M ′
i+1 be a maximal matching created as follows: Mi ⊆ M ′

i+1, for every word

w in Li+1 − Li add a new edge for one of the previously unmatched words from

L′i. The maximality of M ′
i+1 follows from |Li+1| ≤ |L′i+1|. The sum of edges in this

matching is less or equal to si + |Li+1| − |Li|, because every edge added for words

w in Li+1 − Li can possibly have value 1.

From the minimality of matching Mi+1: si+1 ≤ si + |Li+1| − |Li|.

Now let M ′
i be a maximal matching created as follows: Delete from the matching

Mi+1 those edges, which have at least one incident word from Li+1−Li or L′i+1−L′i.
For every word w in Li, which is not matched after this deletion add an edge with

a previously unmatched word from L′i. The maximality follows from |Li| ≤ |L′i| and

the maximal number of such new edges is |L′i+1| − |L′i| (from the assumption for big

enough i this is much less then |Li|).

From the minimality of matching Mi: si ≤ si+1 − |L′i+1|+ |L′i| ≤ si+1.

Thus si ≤ si+1 ≤ si + |Li+1| − |Li|.
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si ≤ si+1 ≤ si + |Li+1| − |Li|
si
|Li+1|

≤ si+1

|Li+1|
≤ si
|Li+1|

+
|Li+1|
|Li+1|

− |Li|
|Li+1|

si
|Li|

|Li|
|Li+1|

≤ si+1

|Li+1|
≤ si
|Li|

|Li|
|Li+1|

+ 1− |Li|
|Li+1|

D
(S)
i

|Li|
|Li+1|

≤ D
(S)
i+1 ≤ D

(S)
i

|Li|
|Li+1|

+ 1− |Li|
|Li+1|

According to the assumption from this theorem: with growing i |Li|
|Li+1| will be more

and more precisely 1. Therefore with growing i D
(S)
i = D

(S)
i+1.

2. Similarly to the first case we define matching M ′
i+1: Add each edge from Mi and

add a new edge with a previously unmatched vertex for every word w in L′i+1, which

is not matched by Mi. The maximality of this matching is trivial.

From the minimality of Mi+1: si+1 ≤ si − |L′i+1|+ |Li|.

M ′
i is defined as in the first case. The maximal number of edges being added after

the deletion is |L′i+1| − |L′i|.

From the minimality of Mi: si ≤ si+1 − |L′i+1|+ |L′i| ≤ si+1.

Hence si ≤ si+1 ≤ si − |L′i+1|+ |Li|.

si ≤ si+1 ≤ si − |L′i+1|+ |Li|
si
|L′i+1|

≤ si+1

|L′i+1|
≤ si
|L′i+1|

−
|L′i+1|
|L′i+1|

+
|Li|
|L′i+1|

si
|Li|

|Li|
|L′i+1|

≤ D
(S)
i+1 ≤

si
|Li|

|Li|
|L′i+1|

− 1 +
|Li|
|L′i+1|

D
(S)
i

|Li|
|L′i+1|

≤ D
(S)
i+1 ≤ D

(S)
i

|Li|
|L′i+1|

− 1 +
|Li|
|L′i+1|

D
(S)
i

|Li|
|Li+1|

≤ D
(S)
i+1 ≤ D

(S)
i

|L′i|
|L′i+1|

− 1 +
|L′i|
|L′i+1|

From the conditions: with growing i |Li|
|Li+1| and

|L′i|
|L′i+1|

will be more and more precisely

1. Thus with growing i D
(S)
i = D

(S)
i+1.

So in each case with growing i → ∞ D
(S)
i = D

(S)
i+1 and that is why the sequence is

convergent, and DS(Φ,Φ′) exists.
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7.2 Strong Distance Only Depends on Grammar

With Energy

Now we prove, that the strong distance measure depends only on grammars with energy,

which generates context-free sequences of approximations.

To prove our main theorem in this section we need to define the concept of merging

two monotone sequences into one. Informally, merging is an operation defined on two

monotone sequences generated by the same strict grammar with energy, which creates a

third monotone sequence using only those finite approximations, which are used in the

two original monotone sequence. Moreover both original sequences are fully contained

in the third, merged sequence.

Definition 7.2.1. Let Φ and Φ′ be monotone sequences generated by the same strict

grammar with energy. The monotone sequence Φ′′ is called a merging of Φ and Φ′

denoted as Φ′′ in Φ on Φ′ iff

1. For every L′′i in Φ′′ at least one of the following statements hold: L′′i in Φ or L′′i in

Φ′.

2. For every Li in Φ (L′i in Φ′): Li in Φ′′ (L′i in Φ′′).

When Φ and Φ′ are generated by different grammars we do not define the merging.

For every Φ′′ in Φ on Φ′ Φ′′ is generated by the same grammar with energy as Φ

(Φ′).

The easiest way of merging two monotone sequence of finite languages is to create

Φ′′ in Φ on Φ′ as follows:

1. step: At the beginning let La := L1 and L′a′ := L′1 be the “actual” finite languages.

Let {e′′i }∞i=1 and Φ′′ be empty. Let j be the smallest natural number, that Φ′′

is created up to j. So j := 1.

2. step: From Theorem 1.2.2 at least one of the statement holds: La ⊆ L′a′ or L′a′ ⊆ La.

Without loss of generality let the first statement be true.

3. step: Add the La into Φ′′ at position j

4. step: Increase a by 1

5. step: Add ea into {e′′i }∞i=1 into position j

6. step: Increase j by 1

7. step: Repeat from step 2.
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Then Φ′′ = Φ(G, {e′′i }∞i=1), where Φ is generated by G.

We can see, that each finite language Li in Φ (L′i in Φ′) can be used more then once

in Φ′′ in Φ on Φ′.

Definition 7.2.2. Class of context-free sequences of approximations F ⊆ FCF is closed

under merging, when for every Φ,Φ′ in F generated by the same strict grammar with

energy Φ on Φ′ ⊆ F.

Theorem 7.2.3. Let G and Ḡ be strict grammars with energy. Let Φ = Φ(G, {ei}∞i=1),

Φ′ = Φ(G, {e′i}∞i=1), Φ̄ = Φ(Ḡ, {ēi}∞i=1) and Φ̄′ = Φ(Ḡ, {ē′i}∞i=1) and Φ,Φ′, Φ̄, Φ̄′ ∈ F,

where F is closed under merging. If for every pair Φ,Φ′ ∈ F exists the strong distance

measure, then for these monotone sequences

DS(Φ, Φ̄) = DS(Φ′, Φ̄′).

Proof. We prove this theorem by contradiction. Let d1 = DS(Φ, Φ̄) 6= DS(Φ′, Φ̄′) =

d2. We create a pair of context-free sequences of approximations, which are strongly

incomparable and are from F. We create these two monotone sequences by using clever

merging of Φ(1) in Φ on Φ′ as well as Φ(2) in Φ̄ on Φ̄′.

Each infinite subsequence of a convergent sequence is convergent to the same num-

ber as the original sequence. Thus we enforce by merging that the sequence of real

numbers corresponding to the strong distance measure between Φ(1) and Φ(2) contains

an infinite subsequence of both sequences used in a computation of DS(Φ, Φ̄) and

DS(Φ′, Φ̄′). Therefore the sequence of real numbers corresponding to the strong dis-

tance between Φ(1) and Φ(2) has no limit, so Φ(1) and Φ(2) are strongly incomparable,

which is a contradiction.

The existence of DS(Φ, Φ̄) and DS(Φ′, Φ̄′) is ensured by the conditions.

Now we show, how to create Φ(1) and Φ(2) by simultaneous merging of Φ and Φ′ as

well as Φ̄ and Φ̄′.

To ensure, that Φ(1) and Φ(2) are strongly incomparable, there must be from time

to time a pair of finite approximations within Φ(1) and Φ(2), which is from Φ and Φ̄ (Φ′

and Φ̄′). Formally there must be two infinite growing sequence of numbers {ki}∞i=1 and

{k′i}∞i=1, such that for every i L
(1)
ki

= Ln and L
(2)
ki

= L̄n and L
(1)

k′i
= L′n and L

(2)

k′i
= L̄′n for

some n.

We create such Φ(1) and Φ(2) by using so called synchronizing steps during the

merging:

The input for this synchronizing step is one of the following pairs: Φ and Φ̄; Φ′ and

Φ̄′, that states which pairs should be synchronized during the merging process in this

step.
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The setup before the synchronizing step:

Let j and j′ be such numbers that each finite approximation from Φ and Φ′ before Lj

and L′j′ is merged into Φ(1), but Lj is not in Φ(1) and L′j′ is not in Φ(1). Let similarly

define j̄ and j̄′ for Φ(2). The aim of the synchronizing step:

To merge Φ and Φ′ into Φ(1) and Φ̄ and Φ̄′ into Φ(2), that for some k and n > j and

n > j′ L
(1)
k = Ln and L

(2)
k = L̄n (for input Φ and Φ̄) and nothing more is merged.3

We show the algorithm for input Φ and Φ̄, for Φ′ and Φ̄′ the algorithm is similar,

just the indexes and corresponding sets should be exchanged.

1. step: The choice of n. Let choose such n, that Lj ⊆ Ln, L′j′ ⊆ Ln, L̄j̄ ⊆ L̄n and

L̄′j̄′ ⊆ L̄n is true at the same time.

2. step: Simple merging. Merge Φ and Φ′ into Φ(1) and Φ̄ and Φ̄′ into Φ(2) simulta-

neously4 as simply as it is introduced in the preface of this section until one

of the sets Ln or L̄n is in Φ(1) or Φ(2) respectively. Then stop the merging

process.

3. step: Without loss of generality let Ln = L
(1)
k1

. If L̄n = L
(2)
k1

holds as well then the

synchronizing step is done.

4. step: Without loss of generality let Ln = L
(1)
k1

and L
(2)
k1
⊆ L̄n. Now merge Φ̄ and Φ̄′

into Φ(2) as it is introduced in the preface of this section, but when a set is

added into Φ(2) add Ln into Φ(1), while in Φ(1) there will be as many Lns after

each other as needed. Stop the merging, when L̄n in Φ(2).

By using the synchronizing step above at first with input Φ and Φ̄ then Φ′ and Φ̄′

it is ensured, that the sequence of real numbers corresponding to the strong distance

between Φ(1) and Φ(2) will contain one element of both sequences for DS(Φ, Φ̄) and

DS(Φ′, Φ̄′). Hence such merging which is created by an iteration of this synchronizing

step creates such Φ(1) and Φ(2), what has no strong distance and this is a contradiction.

Corollary 7.2.4. Let G and Ḡ be strict grammars with energy. Let Φ = Φ(G, {ei}∞i=1),

Φ′ = Φ(G, {e′i}∞i=1), Φ̄ = Φ(Ḡ, {ēi}∞i=1) and Φ̄′ = Φ(Ḡ, {ē′i}∞i=1) all four fulfilling condi-

tion limi→∞
|Li|
|Li−1| = 1. Then for these monotone sequences

DS(Φ, Φ̄) = DS(Φ′, Φ̄′).

3After L
(1)
k the merging is not finished.

4Add one set to each Φ(1) and Φ(2) at the same time.
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Proof. We have to show, that when context-free sequences of approximations Φ and

Φ′ fulfill the condition limi→∞
|Li|
|Li−1| = 1, then every Φ′′ in Φ on Φ′ fulfill this condition,

too.
|L′′i |
|L′′i−1|

can be bounded for every i as follows: 1 ≤ |L′′i |
|L′′i−1|

. On the other hand, L′′i−1

is Lj or L′j for some j. Without loss of generality L′′i−1 = Lj. Then L′′i ⊆ Lj+1, thus
|L′′i |
|L′′i−1|

≤ |Li|
|Li−1| .



Conclusion

The main goal of this thesis was to introduce a distance measure between grammars

and languages. This is a third thesis dealing with this topic, since Jánoš́ık in Thesis

[4] and Kulich in Thesis [7] have already introduced grammars with energy and the

relative edit-distance between the words respectively.

Firstly, we modified the grammars with energy so they do not generate words

which are not included in the language being approximated. We also introduced strict

grammars with energy which were later used in this thesis and can be considered as a

“normal form” of the grammars with energy.

Besides we introduced monotone sequences of finite languages, which can be con-

sidered as better and better approximations of the given language. Therefore we can

call them sequences of approximations for the given language. Both of the terms are

referring to the same object, and we use them to highlight one desirable property from

all properties respectively. The term monotone sequence highlights the inner structure

of this object, sequence of approximations for a given language, on the other hand

highlights the language being approximated.

We also defined operations such as union, disjoint union of two monotone sequence a

finite deletion from a given monotone sequence and prefixes.

We introduced the distance measure between two monotone sequences in general

based on the relative distance measure used between words, as well as the strong

and weak distances, which are the main distances examined in this thesis. Non of

these distances are satisfying the properties of the metric space. This is related to the

following facts: the relative edit-distance is a number between 0 and 1 both included,

and we are working with infinite structures.

Later we show how can we compute a strong or weak distance measure, when

we know that the monotone sequence of finite languages is created by some of the

operations introduced.

As we would like to compare the grammars as well using this approach, we intro-

duced classes of sequences of approximations. These classes were defined similarly to

the classes of languages: regular, linear and context-free where the name of the class

60
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also refers to the complexity of the grammar with energy generating the particular

sequence of approximations. We introduced the bounded versions of these classes, too.

A modified version of Pumping Lemma was proven for the context-free sequences of

approximations, and the Predecessor Lemma was proven for the same class.

Finally, we showed that the distance measure exists between all the context-free

sequences of approximations, which are not growing too fast. We also showed that

under some conditions the distance measure between a pair of context-free monotone

sequences is related only to the grammars generating those sequences. These last two

theorems, mainly the second one can be considered as a foundation for the definition

of the distance measure between grammars with energy. For this purpose we should

generalize the theorem about the existence of the distance measure in the future.

This is the list of properties which are not proved in this thesis but can be considered

interesting in future branch researches:

- Transitivity: DS(Φ,Φ′) = d and DS(Φ′′,Φ′) = d ⇒ DS(Φ,Φ′′) = d.

- Specially for d = 0 or d = 1.

- Cardinality of sets generated by grammars with energy with fixed coefficients and

given but changing energy threshold. (The cardinality of Le(G))

- To examine some of the feasible normal forms of the context-free grammars, whether

they are applicable for the grammars with energy. The elimination of the chain rules

for example.

- To add the following clause to the Pumping Lemma:

Moreover, when Lj is the first set containing w in Φ and n > 0, then i ≥ j.

There are some topics which were left open in this thesis and can be considered as

follow up research topics:

- The equivalence of Linear Sequences of Approximations and approximations by the

length of the words - similarly to Subsection 6.2.1.

- Distances between the monotone sequences generated by different grammars with

energy with the same underlying grammar.

- To define the distance measure between two regular languages.

- To define the distance measure between two context-free languages.
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