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Abstract

This thesis is a study of internal working and interfaces of Linux kernel version 2.6.

It emphasizes differences towards kernel 2.4 and it tries to introduce this problems

to reader knowledgable only in common principles of operating systems.

The thesis starts with briefing of kernel subsystems and continues with deeper

analysis of important issues like various locking, semaphores and other synchroniza-

tion mechanisms, suitable data structures, interrupt handling, atomic operations,

device driver model and memory allocation.

Process management and new scheduler with support for multiprocessing and

NUMA architectures and preemption are explored deeply. The core of the work

is concluded with description of loadable kernel module creation together with an

exemplar module.
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Preface

Fall 2003 brought many testing version of Linux kernel 2.6 and the final 2.6.0 was

released on December 17th 2003. A lot of new interesting features and improved

hardware support were teasing user to try it.

Linux now scales pretty well on both ends: embedded platforms and large servers

with either SMP or NUMA support. The first has been achieved by merging ucLinux

(branch of Linux for embedded platforms) to main kernel, while the new scheduler

written during 2.5 development branch offers now preemption inside kernel and is

able to take full use of multiple CPUs. This new facts (together with unified driver

model) increase demands on device driver writers’ know-how.

There was very little documentation to be found concerning this new kernel at

the time I started working on this thesis. I did indeed start before the stable 2.6.0

came out. Also the documentation for older version was incosistent and scattered

throughout the whole web. My task was to study 2.6 kernel (with special attention

to new features in 2.6) and write documentation, that could help kernel beginners.

Reader is expected to have some preliminary knowledge about operating systems

and some basic understanding of hardware.

Thesis Contents

Chapter 1: An Informal Introduction to Operating Systems describes the

basic ideas behind an operating system, shows user the difference between

monolithic an mikrokernel and mentions Unix traditions. It also contains the

roughest introduction to Linux kernel and it’s development process.

Chapter 2: Subsystems Overview lists subsystems and describes each one with

particular attention to new features introduced in 2.6.

Chapter 3: Synchronization and Workflow Concurrency takes care about

locks, semaphores, mutexes and other synchronisation entities. Issues with

preemption are also mentioned, since existing locking mechanisms has been
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improved to cope with these issues. Also one very interesting mechanism

called read-copy-update is described. The last issues in this chapter are per-

CPU variables, disabling local interrupts and memory barriers.

Chapter 4: Linked Lists mentions linked lists, which are intensively used wher-

ever possible. The complicated variation protected by RCU is also included.

Chapter 5: Memory Allocation deals with allocating and releasing memory

using various approches, such as page allocation, slab allocation and virtual

memory allocation.

Chapter 6: Handling Interrupts contain all necessary information on how to

work with hardware interrupts and tasklet interface.

Chapter 7: Process management and Scheduling concerns in scheduler,

process life cycle and related issues.

Chapter 8: New Driver Model in 2.6 describes kernel object architecture and

sysfs hierarchy, interface for device driver writers and user space event delivery

mechanism.

Chapter 9: Common Routines and Helper Macros will introduce various

macros to access user space memory, manipulate strings and some other com-

mon routines.

Chapter 10: Modules contains an exemplary loadable kernel module that ex-

ports its parameter using sysfs and explains various macros that could help

with module development.

Typographic Conventions

Typographic conventions used in this thesis are simple and intuitive:

• Typewriter-like font denotes source code, function() or MACRO definitions
and related things.

• Notices are emphasized with slanted font.

• Warnings and important words are printed in bold.

• Files and directories like [kernel/sched.c]in Linux kernel source tree are
enclosed in square brackets.

• Include files are shown as in ordinary C source code: <linux/list.h>.
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Chapter 1

An Informal Introduction to

Operating Systems

Kernel of an operating system (OS) usually remains hidden beyond common user

space programs and system utilities (until some serious error occurs). Let’s start

with describing what’s happening inside your computer:

Your goal is to check for an e-mail. You run your favorite mail user agent and

order to get work done for you.

Operating system uses notion of a task, in this case your mail user

agent is a task for him. The word task was often used in past, but users

of modern Unixes prefer to use word process. OS provides environment

for this task/process by using some abstraction or emulation. 1

Instead of taking care for every detail, process let kernel to take care of some

details, but he takes care of details of his part of the task. Back to the mail agent:

there’s no need to take care of your video card, your keyboard, your mouse, or details

about how are the files stored on your hard drive.

Many operating systems exclude graphic routines from the kernel, leav-

ing implementation to user space programs. Your mail agent runs in

graphic mode, with colorful icons on buttons. It’s common on Unix-

like systems to use X server in order to run graphical applications, and

you’ve probably noticed, that these graphic services are not provided by

kernel.
1Emulation is scarce in Linux
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Chapter 1. An Informal Introduction to Operating Systems

Where does the kernel fit in? It provides mechanisms for processes to communicate

and to cooperate with each other. And sometimes also mechanisms to prevent

processes to hurt each other.

Presume you have video conference running in small window next to your mail

agent and a music player. How is it possible to run so many applications with only

one processor ? Remember the abstraction we mentioned above:

Each running task is provided environment like it’s the only one running

and kernel takes care of switching between tasks so quickly that you can’t

see that there is always only one task running and the others are stopped.

This was only a small list of kernel’s duties. When you start your computer up,

when you shut it down (except for killing him with power blackout), when you access

your files, it’s always there, watching over resources, time and memory assigned to

each process, handling events from outer world, providing needful trifles, but it is

also judge and police when some of your processes breaks the law.

1.1 Monolithic or Micro Kernel?

Linux was developed by Linus Torvalds in the beginning of 90s, at the time he used

Minix, developed by prof. Andrew Tanenbaum. Minix (providing similar syscall

interface like Unix systems) was internally designed as microkernel, while Linux is

monolithic (with ability to load external modules).

Microkernels have never gained much success in commercial sphere with probably

one exception: QNX2. They are more interesting from academic point of view.

Mikrokernels delegate responsibilities to user space processes instead of doing

everything needed right in the kernel. This leads to simpler and cleaner internal

architecture, modifying one subsystem consists of modifying a user space task and

not the kernel. These tasks (called daemons or servers) don’t run in privileged mode

as kernel does, which should improve stability of the system.

Monolithic kernels proved to be much faster. Linux, Windows (from NT 3.51

upwards), various BSD branches belong to this family. The problem is that serving

one syscall needs many context switches in microkernel model and modern processors

can gain performance from utilizing cache. This cache is not used efficiently during

context switch.
2QNX is a real time operating system and was intended for use with embedded hardware
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Chapter 1. An Informal Introduction to Operating Systems

Microkernel fans often accuse Linux of having dirty internal design. In reality

kernel developers try to clean any mess in unstable branch3.

Linux uses kernel threads and loadable kernel modules to increase flexibility.

Kernel threads are meant only for slow things (for example swapping) because of

two more context switches needed.

1.2 Concerning Traditional Unix Principles

Unix was created more than 3 decades ago and it’s often thought of as father of

modern operating systems. Original design offered two running processes, but this

was overcome. Developed in cooperation between university and commercial sector,

it soon included new ideas, such as TCP/IP networking. Its security increased

from nothing to some of the most secure systems available today, including various

security policy enhancements.

One of the most important Unix concepts is the notion of file. Files are not only

regular files; block and character devices, pipes, named pipes (also called FIFOs),

but symbolic links and TCP streams are also treated like special files. Pipe allow two

programs to cooperate. Unix users sometimes mention the KISS principle: Keep it

simple, small. The vast majority of traditional Unix tools does only one thing, but

they do it perfectly. Instead of accessing directly keyboard and screen, Unix prefers

to provide standard input, output (and error output), which can be redirected and

used to automate user tasks.

Preemptible multitasking allows tasks to be switched independently on the ’will-

ingness’ of the task, virtual memory provides process more memory that could be

allocated only using physical RAM. Processes don’t need to care about other pro-

cesses in memory4.

Many of these ideas seem to be low-level, yet they provide strong instrument to

developer. This is also often criticized, but building operating system on ground

not solid and stable does not enforce good security.

1.3 Overview of the Linux Kernel

Linux started as 386-specific system, but soon developers from other architectures

adopted the source and in time improved it to support 24 architectures. Writing

3Just have a look at the scheduler code in 2.6, all those routines and data structures, one’s

wishing to have an SMP machine to feel it running. . .
4This depends on hardware architecture, some Unixes running on embedded hardware does not

have this feature, because it’s impossible to implement it efficiently without hardware support.
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portable code and running Linux on many platforms helped to find and fix many

bugs. Most of the features are available on all architectures, but some (like address

space protection needs MMU5) are not.

Linux starts with the boot of the kernel, then it starts its most important inter-

nal routines and continues with hardware detection. Since kernel 2.5 (the unstable

branch) Linux has very good support for simultaneous multiprocessing. On architec-

tures supporting CPU hot plug Linux could start and stop CPU anytime is needed

and migrate assigned processes to other CPUs. In case you have multiprocessor

machine, other CPUs are started after boot.

Devices drivers can be compiled statically into the kernel or dynamically loaded

later. Not all Unix-like kernels support this, for example OpenBSD’s kernel devel-

opers deny loadable kernel modules as bad security practice.

Device support is very broad. Linux provides good Hardware Abstraction Layer

(HAL), but Hardware Emulation Layer (HEL) is almost non-existent with probably

except for sound support.

Linux supports many file-systems, and in the time of writing this, Linux started

supporting general user space file system implementation. Mounting remote Web-

DAV, FTP servers, SCP/SFTP or even local archive files and accessing them like

local directories is a feature every desktop user could use. Although this could

be standard feature in microkernel system, not many monolithic system support it

now6. This problem was traditionally addressed in various user space libraries in

desktop environments, but many Unix tools does not use these libraries.

It’s important for an operating system to have some file system mounted after

boot and Linux is not staying behind, it’s root file system / could be either real

file system from your hard disk drive, floppy, cdrom, USB key, or only created in

RAM. Mounting NFS as root file system is also possible, therefore Linux is great

for making disk-less network workstations.

Memory management takes care for virtual memory of all processes and also

the kernel memory. Demand loading is used to load into memory only those pages

which are really needed, paging is used to swap out pages which are supposed to by

not so important and more important ones are loaded instead. Pages can be also

shared to decrease memory footprint of a process and copied for each process only

later, when needed.

Basic security on Linux is provided by trinity user,group,other while some file

systems allows administrator to use Access Control Lists (ACL). User also has con-

5Memory Management Unit, part of the CPU
6Microsoft Windows supports IFS, which is Installable File System, but the developer fees are

very high and almost nobody is using it
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trol of his processes. Root is by default totally unrestricted7. Vanilla8 Linux kernels

now include SELinux extension to the default security model, BSD secure levels,

networking security hooks and there are also any others (mostly rule-set based)

extensions like GRSec, PaX, RSBAC or LOMAC available on Internet.

1.4 User Mode and Kernel Mode

The first CPUs allowed all programs to access all memory and I/O ports. At those

times a memory leak in text editor could crash whole system. Later CPUs allowed

to switch between two9 privilege levels, so the OS designers decided to divide OS

into two levels: kernel mode should work with critical data structures and manage

access to the hardware, while user mode should not access to the hardware, only

using calls to kernel. Crash in user mode would not cause crash of the whole system,

it would only kill the crashed application (and perhaps dump the memory of the

application for debugging purposes).

Switching from user mode to kernel mode could happen in using syscall or when

an interrupt or an exception occurs.

1.5 About Kernel and Its Development

Past Linux version numbering consisted of three dot-separated numbers, the first

one was the major version, the second one was the minor version. Even numbers in

minor version field meant stable kernel, odd ones mean unstable i.e. development

branch. The third field is number of patch. Patches are intended to fix some bug,

they almost never introduce new feature in stable kernel.

Kernel 2.6.11 used new numbering scheme: development is done in 2.6 branch,

the third number grows as new features are introduced. Patches that do not bring

new features (they should be less than 100 lines in length) increase the fourth num-

ber. If the fourth number is zero, it’s not written: first patch changes 2.6.16 to

2.6.16.1 and the next one to 2.6.16.2 and so on.

Submitting new patches and drivers became more formal than it was in the past.

[Documentation/SubmittingPatches] contain all necessary information how and

7BSD systems sometimes force root to change permissions of file when he can’t write to it,

Linux root can write immediately
8Vanilla kernel is kernel from [ftp://ftp.kernel.org] without any 3rd party patches
9Some processors such as i386 allowed 4 privilege levels, but usually only 2 are used: 0 as the

kernel mode and 3 as the user mode
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to whom should be the patch sent. A signature scheme exists since the beginning

of the SCO-Linux lawsuit to improve tracking who did what.

A patch arrives from developer to maintainer and if the maintainer decides not

to dump the patch then he (she) signs it off:

Signed-off-by: Random J. Developer rjd@example.org

This sign also means that the developer certifies the patch to be his own work

and he has the right to submit it under open source license, or that the patch was

provided to him (her) by someone who follows the forementioned rules. The list of

maintainers is in file [MAINTAINERS] in the root of the kernel source package.

The Linux kernel also has its coding style defined in [Document/CodingStyle],

which differs from GNU coding standards.

Not to be forgotten is the linux-kernel@vger.kernel.org mailing list which

contains kernel development discussion. The patches are also sent there as Cc: so

this mailing list generates much traffic and many e-mails.
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Chapter 2

Subsystems Overview

Kernel comprises of various subsystems; the code is split into subsystems logically

based on the function provided (i.e. function concerning memory management,

communication, file access. . .). These systems are bound together in monolithic

kernels (such as Linux) and provide interfaces to each other. Imagine each subsystem

as a library, but they sometimes call each other.

The most important kernel subsystems are process scheduler, memory manager,

virtual file system (VFS) and networking, but many others are also essential to any

functional kernel: system calls, interrupts and exceptions handling, various type of

locks etc.

2.1 System Calls

System call is a way for process running in user space to request some functionality

implemented in kernel. Kernel provides abstractions from hardware, manages shared

resources and perform some of the many network-related functions.

Syscall is also one of two usual ways of switching between user and kernel mode,

the other one is hardware driven interrupt or exception. Details of system calls are

architecture specific. The interface for system calls is stable on each architecture,

but it varies between CPU architectures. You can run old programs compiled long

ago and they will still run.

System call (often abbreviated to syscall) allows user mode to perform privi-

leged operations, if the checks in kernel allow to do it. Not everything in libc

is implemented as syscall, for example memory allocation is solved through map-

ping Copy-On-Write (COW) pages from [/dev/zero] into address space of calling

process.

7
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2.2 Process Management and Execution

Process management is mostly about creating (forking) and terminating pro-

cesses and switching between them. The first process is one of [/sbin/init],

[/etc/init], [/bin/init] or [/bin/sh] (executed in this order). All other pro-

cesses are forked from init or its children. Process management is also maintaining

process states, such as running, sleeping, zombie process.

Since invention of multitasking (and multithreading) various approaches were

tried. Preemptive multitasking was preferred to cooperative multitasking found in

some systems. Linux support for multithreading can be simply described as creating

more processes with shared virtual memory and some other resources, therefore

terms process and thread are sometimes mixed up in various Linux documents.

The process scheduler decides which process should run when and how long

should it run. It also allocates CPU for each process on machines with multiple

CPUs. Linux kernel 2.6 uses various techniques to distinguish between processor-

bound1 and I/O-bound processes and gives a slight advantage to the I/0 bound ones,

since they are supposed to be interactive. This should improve desktop responsive-

ness.

One of the biggest changes (and probably the most popular besides new hardware

drivers) is the new O(1) scheduler written by Ingo Molnar, which will be described

later in section 7.1.

Preemptible kernel aims to solve latency problem (from desktop user’s point of

view this can for example cause sound to crisp or) by allowing to switch tasks also

inside kernel. Without preemption the code inside kernel runs until it completes its

work (which is source of high latency) or it decides by itself to switch to other

process (schedule() function switches processes, this is usually done

when kernel decides the thread will sleep until some event occurs. If a

higher priority task becomes runnable, the preemption will make it run. This way

the higher priority task does its work when needed and not later.

Linux 2.6 also brings better support for symmetric multiprocessing (SMP) and

Non-Uniform Memory Access (NUMA) architectures, which aims to increase perfor-

mance by making multiple CPUs available to computer. One CPU can execute only

one task at a time2, so kernel must take care of properly assigning tasks to CPUs,

1A processor-bound process is process doing many calculations almost all the time, while I/O-

bound process does very little computations but it’s operations are I/O intensive (e.g. copying a

file can be described as sequence of read/write operations)
2This is not completely true for SMT and multicore CPUs, but we define CPU as virtual CPU,

not the physical one you can buy in a shop.
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migrating tasks between CPUs in order to balance the load and achieve maximal

performance. Some architectures also support CPU hot-plugging, where CPUs may

be added or removed and kernel must handle this situations so that no task is lost

with CPU removed.

2.3 Memory Management

Routines used for memory management could be divided into two groups, those

taking care of the memory belonging to process and those managing kernel memory

at the lowest level.

Basics of the memory management are covered by page management3. Many

modern CPUs offer segmentation as alternative to paging, but Linux is not using

this feature. Since pages (4 or 8KiB on most architectures) are too big for small

kernel data structures, kernel includes slab allocator. This allows kernel allocate

sub-page memory structures without fragmentation of memory.

Process memory management is based on pages as each page has its properties

(permissions, read-only flag, present flag. . .). Pages can be shared between processes

and they are the smallest elements that can be used to share or to be swapped out.

Whenever the process switches from user mode to kernel mode, the kernel change

Stack Pointer register to point to kernel stack of the process. This is needed because

the user mode stack can be swapped out. Swapping is technique used to lay aside

pages from process address space, it does not affect kernel pages.

The very first swapping implementation worked by monitoring amount of free

memory and whenever certain threshold was passed, they put whole address space

of affected process to disk. Pagination brought finer granularity and swapping out

pieces of address space instead increased performance. Which pages can be swapped

out ? Anonymous memory region pages of a process, modified pages (non-modified

are usually mmaped from some file and they can be reclaimed from that file, this

saves write operations to swap and also saves space) and IPC shared memory pages.

Linux supports multiple swap areas. Each area is divided into slots; whenever

kernel needs to swap out page it tries to find slot in areas with bigger priority first.

If there are more areas with the same priority, kernel uses them cyclically.

Page replacement has been extended in 2.6 to support one kswapd daemon per

each CPU node. Previous 2.4 version offered only one daemon shared by all nodes,

but Linux wishes to avoid penalty of freeing page on remote node.

3Systems without MMU don’t have this feature, they usually also miss shared memory and

process address space protection.
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IA-32 architecture supports more than just 4 KiB page size, but Linux uses this

pages by default only for mapping the actual kernel image. It is possible to use 4

MiB pages (referred to as huge pages) also for user space processes. The root of

the implementation is a Huge TLB File System hugetlbfs, a pseudo file system

based on ramfs. Any file that exists in that file system is backed by huge pages.

Huge pages can be accessed using shmget() (shared memory) or mmap() (memory

mapped file) on a file opened in this file system.

2.4 Interrupts and Exceptions

Interrupts are used to serve requests, usually from hardware devices (IRQs, inter-

rupt requests), or from CPU itself (these are the exceptions, e.g. page fault, math

coprocessor used and others invoked by various instructions) or syscall (on i386 ar-

chitecture, interrupt 0x80). IRQs are usually called when hardware device needs

to notify kernel about some change, while CPU invoked interrupts (save for syscall,

which has its own section in this chapter) are used to handle faults concerning pro-

cess. Some of these faults can be intentional, e.g. page fault could indicate either

that page is swapped out or that process tried to address the memory not belonging

to him.

Common exceptions include Page Fault, General Protection Fault, Invalid Op-

code, and various others concerning FPU, memory, debugging or simply division

by zero. Some of these exceptions are used not only to handle errors: FPU stack

contents needs not to be reloaded on each context switch (i.e. task switch from the

OS point of view) so coprocessor exceptions are used to indicate that it’s time to

change the FPU stack content. Page faults are likewise used to bring in swapped

out page.

2.5 Synchronization and Workflow Concurrency

Imagine two threads accessing a shared variable, e.g. counter of opened files. First

thread opens a file and wants to increase the counter. so it retrieves its current value

(for example 5), increases by value of one (the value is now 6) and stores the new

value. A bit later the second thread opens a file and does the same operation. The

final value of our counter is 7.

What if happens the following situation ? The first thread retrieves the value

(5), then scheduler decides to give opportunity to the second one and it also retrieves

the value and increases it by value of one and stores it back (6). Then the scheduler
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resumes the first process, which increases the value it has read before and stores the

new value (6). As we can see, the number of opened files is incorrect.

This is the problem of mutual exclusion. A common solution is usage of critical

regions: critical region is a region of code and when one is being executed other

threads/processes can’t enter their critical regions. The other solutions is usage of

atomic operations, (i.e. operations that can be executed so quickly that scheduler

can’t interfere). The first solution allows more complex operations to be done, but

is also more difficult to be used correctly.

Critical regions are protected by locks. Whenever a thead enters the critical

region, it locks the lock and when the other thread tries to enter the region and lock

behind itself it finds out that it must wait for the lock to be unlocked (some locks

prefer word ’sleep’ to word ’wait’).

The most simple locks used in Linux kernel are spinlocks. When a spinlock is

locked, the other process trying to lock the spinlock enters a busy loop and contin-

ually checks whether the lock did not become unlocked. This behavior condemns

to be used only to protect small critical regions which are supposed to be executed

quickly and without any blocking.

Kernel developer with need of critical region that could block or will take longer

time to execute should use semaphores (or newer mutexes). A semaphore can be

locked by more than one lock-holders at the same time, this number is set at initial-

ization. In case of being locked, the semaphore provides the advantage of switching

CPU from busy loop to some other (hopefully) more important work. The disad-

vantage is caused by unsuccessful locker falling asleep and then taking some more

time to wake up than spinlock.

The 2.6 branch of Linux kernel introduced two new notions: preemption and

futexes. Futex stands for fast userspace mutex and preemption is the ability to

switch threads also after they have entered kernel mode. These topics will be more

deeply discussed in chapter 3.

2.6 Time and Timers

Keeping current time and date and executing tasks at given time (or periodically

at some interval) is essential to modern computing. Preemptive process scheduling

wouldn’t work without correct use of timers.

Linux periodically updates current (system) time, time since system startup

(uptime), it decides for each CPU whether the process running on this CPU has

drained time allocated (scheduling timeslice, or quanta), updates resource usage
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statistics (track the system load, profile kernel. . .) and make statistics for BSD

process accounting and checks for elapsed software timers.

Software timers are based on jiffies, each timer has associated value of how

much ticks in the future (added to jiffies at timer start). The jiffie itself is

constant interval of time, but it’s different on each architecture.

2.7 Signals and Inter-Process Communication

Sometimes processes need to cooperate with each other to achieve a goal, various

mechanisms to solve this problem were introduced.

Signals are the oldest of all inter-process communication facilities, both user

space processes and kernel are using them to send a short message to process or a

group of processes. This message consists only of its identifier, i.e. integral number.

No arguments are used besides this number.

Signals are used either to make process aware of events or to force process to deal

with something. Process could specify signal handler which will handle the signal

using sigaction() system call. Signals could be generated by other processes and

sent to target process via system call, or by kernel (for example SIGSEGV sent to

process trying to access beyond its address space). Signals can cause process to

terminate, stop its execution or continue it again. Some signals could be blocked,

SIGKILL and SIGSTOP can’t.

Another inter-process communication facility common to all Unixes is pipe. Sys-

tem call pipe() returns two file descriptors. One is for reading only and the other

for writing. According to POSIX standard, process must close one of them before

communicating with the other one (half-duplex pipe), but Linux allows to read from

one and write to another.4 Writing and reading from pipe can be blocking call and

cause the process to sleep.

FIFOs could be best described as extension to pipes; they’re associated with a

filename on the filesystem, therefore any process knowing the name can access this

pipe, which implies the name ’named pipes’. They are created by issuing mknod()

system call with mode S IFIFO.

IPC in Linux was inspired by SystemV IPC: semaphores, message queues and

shared memory. All these entities are created/joined using key. The same key

used in different processes indicate that they want to share e.g. message queue.

Convenient way to generate keys is the function ftok(). Each mechanism provides

...get() function to acquire an entity and ...ctl() to change permissions and

4Some Unixes support full duplex pipes through both file descriptors.
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remove entity (and mechanism specific things).

Semaphores can be used to synchronize processes, their ’kernel-space relatives’

were described in chapter 3.2. A set of semaphores is allocated by semget(). IPC

Semaphore operations (semop() and semtimedop()) work on semaphore sets, the

advantage is that process is able to (un)lock arbitrary number of semaphores atom-

ically. This could prevent some situations leading to deadlock. Semaphore sets can

by controlled by semctl() function.

Message Queues can be created (msgget()) in kernel to allow processes to ex-

change messages. Message queue is created by some process, it can overlive its

creator and lives until it’s killed by msgctl(). Messages are appended to the queue

in order in which they’re sent (msgsnd(). Each one has its type set upon sending

(a positive number) and it’s reception (msgrcv()) is based on this type.

The last of IPC mechanisms described here is shared memory. One process cre-

ates shared memory (using shmget()) and other processes refers to it by its key.

Each process can map this shared memory into specific address inside its VM inde-

pendently on the other processes or let shmat() choose appropriate address. Note

that removing shared memory using shmctl() does not actually removes shared

memory, it only marks it to be removed. The shared memory itself is removed once

the last process detaches using shmdt(). If all processes detach themself without

destroying shared memory, it keeps on existing.

While System V introduced IPC, the BSD branch of unices has chosen sockets

as their main inter-process communication primitive. They appeared first in BSD

4.2. The API taken from BSD is supported on all unix and also on many non-unix

platforms.

Socket is end-point for communication, it has some type and one or more asso-

ciated processes. Sockets can send/receive data through streams, using datagrams,

raw packets and sequenced packet. The most interesting protocol/address families

are PF UNIX, PF INET, PF INET6, PF PACKET and PF NETLINK. For example infrared

and bluetooth devices also has their protocol families: PF IRDA and PF BLUETOOTH.

Linux implementation is based on sockfs file system and so some file operations

can be applied to opened sockets.

A stream socket (SOCK STREAM) can be viewed as network-transparent duplex

pipes, because it connects two distinct end-points, communication is reliable and

sequenced and ensures unduplicated data flow without record boundaries.

A datagram socket (SOCK DGRAM) does not promises to be reliable, sequenced and

unduplicated, but it allows sending broadcast or multicast packets. Data boundary

are preserved.

A raw socket (SOCK RAW) provides user access to the underlying protocols which
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support socket abstractions. They are usually datagram oriented and non-root user

is not allowed to use these.

A sequenced packet (SOCK SEQPACET) is like stream packet with the difference

that message boundaries are preserved, but it is based on datagrams.5.

socket() call creates socket descriptor for given address/protocol family, socket

type and protocol. This socket is created without any local name and therefore it

is not yet addressable. bind() call binds the socket e.g. to some local path (in case

of PF UNIX) or local address and port (in case of PF INET).

Next step could differ for SOCK STREAM and SOCK DGRAM, stream oriented sockets

are required to use connect() call to connect to remote endpoint, while datagrams

could either follow their ’stream cousins’ or use sendto() and recvfrom() without

being fixed on one remote endpoint. This is essential for broadcasting and multi-

casting.

The listening SOCK STREAM side will use listen() to indicate maximum number

of outstanding connections to be queued for processing. These connections are

picked from the queue using accept() call.

Linux allows the use of ordinary read() and write() calls to operate on sockets

after connect() or accept. Sockets also support their own calls send() and recv(),

which can be used for extended operations.

Connections are closed using close(), but they can be shut down prior to this

call using shutdown().

One nice advantage of having socket descriptors acting similarly to file descriptors

is that they can be processed by select() call and related functions and macros.

SOCK STREAM sockets do support out-of-band data, which is logically independent

transmission channel associated with each pair of stream socket endpoints. Data

inside this channel are delivered independently on data inside normal transmission

channel. Incoming out-of-band data are indicated by SIGURG signal and normal data

are indicated by SIGIO, just as it is with file interface. Sockets can be further tuned

by getsockopt() and setsockopt().

2.8 Virtual File System

Virtual File System (VFS) is layer providing abstraction of one file system, while

there may be many file systems of different types mounted at various places in

directory tree. This allows to access files independently on whether they are stored

on ext2 or umsdos or even on some remote computer. VFS separates applications

5Not implemented by PF INET
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from concrete implementation of file system, all data are stored in files separated

into directory tree6, whose root is marked as /.

The largest group of file systems can be described as disk based file systems,

its typical representants are ext2/3, reiserfs, xfs, vfat. . . These file systems use

some kind of block device to store information.

Network file systems smbfs, nfs, coda allow transparent access to files on remote

computers.

The last group are special file systems, like proc, sysfs. Many of them do

not store any real information, for example procfs offers information about pro-

cesses in the system (usually /proc/<pid>) or various system information. Other

interesting are bdev (block device filesystem), rootfs (used as root during boot-

strap), binfmt misc (miscellaneous binary executable file formats), pipefs (pipes

implementation) and sockfs (sockets implementation).

Linux kernel supports one really interesting file system since 2.6.14: FUSE, which

is file system in user space. This file system is more interesting for user space

developers than kernel developers.

How does the VFS work? The idea is based on object oriented programming

techniques: data and operations are encapsulated in objects, but since linux is

coded in plain C, developers used structures with pointers to functions to implement

methods.

Superblock object stores overall information about a mounted filesystem, inode

stores information about specific files (directory is special file that contains infor-

mation about other files and directories. Each inode has its unique inode number.

struct dentry object stores information about linking of a directory entry with the

corresponging file objects used by user mode processes. Kernel uses dentry cache

to speed up translation of a pathname to the inode. File object keeps information

about file opened by process (this object is only in memory, previous objects can

have their file system dependent representation on disk-based file systems). Linux

also features inode cache for better performance.

Each file system provides its struct file operations; this object offers meth-

ods such as open(), read(), linux-specific sendfile(), asynchronous aio ...()

operations and many others. When user mode process opens a file, kernel finds

the right file operations depending on the file system and newly created file

structure has pointer to this structure.7

6Hard links can’t link to directories, but symbolic links can, therefore directory structure with

symlinks can create cyclic graph.
7Users complaining that they cannot umount partition with opened files on it should always

think about pointers pointing to non-existing file operations structure. . .
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User process has its set of struct file opened files and struct fs struct,

because each process has its own root directory and current working directory.

fs struct also contains pointer to mounted filesystem of root directory and pointer

to mounted file system of current working directory.8 Structure fs struct is used

to map file descriptors to struct file objects.

Modern operating systems use various buffers to improve file system perfor-

mance, linux caches are called page cache and buffer cache. Page cache keeps pages

from memory-mapped files, pages read from block device directly, swapped-out pages

from user space processes, shared pages from IPC etc. The buffer cache saves pro-

cesses from suffering from slow block devices.

File locking is technique preventing simultaneous access to file. fcntl()-based

file locking (from POSIX) allows to lock whole files and portions of file, but it is just

advisory locking (affected processes must cooperate). Linux inheritance from BSD

brought flock() system call, which allows also mandatory locks (based on the file

system mount flags).

It’s common to say in unix circles that everything is a file and so are devices.

They’re treated as files and they traditionally had their major/minor numbers, while

udev is new way of managing devices in [/dev]. There are two types of devices:

block devices (they can be accessed randomly) and character devices (they can’t be

accessed randomly, they’re usually processed as streams).

epoll() is attempt to make select() and poll() system calls in more effective

way. It works by building data structure in kernel first, then each file descriptor is

added to it. This structure is built only once as opposed to forementioned syscalls,

which usually go through the three arrays and check each one and add it to its wait

queue.

Desktop systems often need to modify user about changes to files in directory

shown in opened window. Kernel developers decided to switch from dnotify mech-

anism to inotify. This new approach allows to watch both files and directories for

changes and does not cause any problems while umounting (inotify also notifies

about part of directory tree being unmounted). Dnotify required to open one file

descriptor per each directory watched and it did not notified about changes to files.

Inotify is not implemented using syscall, it’s based on /dev/inotify.

While it is sometimes sufficient to wait for an I/O, in some cases the process

would lose performance while sleeping. The situation gets worse with more I/O

requests pending at the same time. Asynchronous I/O (AIO) allows process to do

8Many of these constructions are used to speed up going through many structures, Linux kernel

uses sometimes duplicity of information to gain speed.
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some calculations while kernel performs I/O operations in the following manner:

process submits one more I/O requests and uses separate interface to check for

completed I/O operations. AIO works only with O DIRECT files and user space buffer

must be aligned in memory. Although according to POSIX signal can be delivered,

Linux does support neither RT signals for AIO nor listio notification, cancellation

of IO, sockets nor pipes. There are ongoing project aiming to implement complete

POSIX AIO.

2.9 New Driver Model and Sysfs

Past kernel versions included various disparate driver models. The new driver model

unifies them and consolidates set of data and operations into globally accessible data

structures. In this new model all devices are inserted into one global tree. The new

model is bus-centric with orientation towards seamless Plug’n’Play, power manage-

ment and hot plug. Most future buses will support these operations. Operations

common to all devices include probe, init, resume, suspend and remove calls. Two

same devices always use one driver.

This new tree-based approach evokes a directory tree; indeed sysfs was created

to export this device tree to user space. sysfs is tied closely to kobject infrastruc-

ture. Basic sysfs interface layers are devices, bus drivers and device drivers.

The kobject infrastructure implements basic functionality for larger data struc-

tures and subsystems: reference counting, maintaining sets of objects, object set

locking and userspace representation. Devices drivers are implemented around this

infrastructure.‘

2.10 Networking

Networking as inter-process communication solution was described in one of previous

sections. But strength of Linux lies also in its routing, firewalling and shaping

possibilities.

Computer networks are interconnected, this allows users to communicate even if

they aren’t in the same network. The solution to problem how to deliver packages

of data (called packets) to other network is routing. Router is a machine connected

to two networks, which is able to route packets between them. The routing is done

inside the kernel: packet arrives from one network interface adapter and kernel

decides whether it belongs to this computer (e.g. in TCP/IP networks this could

be done by comparing IP address, but there is also exception: network address
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translation). If the packet does not belong to this computer, it could be forwarded

(based on the settingsi, e.g. routing can be disabled) to the other network.

TCP/IP implementation relies on IP routing table, which is maintained from

user mode, but routing is done in kernel. There are also user space deamons for

more dynamic routing, but they’re not interesting from our point of view.

Opening networks to whole world provides opportunities to share computing

sources, but also enables malevolent forces to take over computers, steal data from

companies. . . The idea of ability to look inside packets being routed to our network

formed the idea of packet filter, which was initiallyr stateless and later became

stateful. Stateful packet filter (from now on abbreviated to PF) is aware of state of

(e.g. TCP) connections.

Packet filter decides what to do by looking inside the packet and to the known

state of this connection. These decision rules are stored in chains; packet traverses

the chain from beginning til end until it is matched by some rule. Common targets

are ACCEPT, REJECT or DROP, some others will be covered later. If the packet reaches

the end of the chain, default target (policy) for this chain is used.

PF implementation for Linux is called Netfilter. Netfilter contains four tables:

filter, nat, mangle and raw. The simplest table is filter which has three default

chains. INPUT chain checks the packets destined to local sockets, OUTPUT checks

locally generated packets. FORWARD chain takes care of packets trying to be routed

through this machine.

Table nat takes care of network address translation (therefore the abbreviation

NAT, which will be used from now). Linux has the possibility to do both source

and destination NAT, which makes Linux popular with ISPs nowadays. The last

two tables are outside of scope of this work.

The power of netfilter allowed to use connection tracking to create modules, that

allow more complex operation, such as FTP, IRC DCC or PPTP over NAT. This

could not be possible (or at least not so simply) with stateless PF.

Traffic control (or sometimes call shaping) is a mechanism to alter the traffic

characteristics. Slowing down chosen connections, bandwidth throttling, allowing

short and fast bursts of packets, it all can be done using Linux. Traffic control

inside Linux relies either on classless or classful queueing disciplines (from now on:

qdisc). Classless qdiscs don’t have any internal subdivisions, while classful ones can

compose whole trees of classes, of which some ones can contain further qdics (classful

or not). A packet is examined by classifier and sent to appropriate class and so on.

This approach provides very strong and flexible tool for system administrators.

Linux also has the ability to tunnel one protocol inside other protocol (or even

the same protocol: IPIP), to bind multiple physical links to aggregate bandwidth or
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provide higher availability, to bridge (almost) various network interfaces (and also

filtering bridge is available).

2.11 Linked Lists and Their Implementation

Linked lists are used throughout whole the kernel and it’s necessary for kernel de-

velopers to understand how to use them correctly. The essential file containing all

the list stuff is <linux/list.h>. Their API and implementation is described in

chapter 4.
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Chapter 3

Synchronization and Workflow

Concurrency

Data structures so complex, that modifying them by multiple writers at once could

break consistency, need to be protected. Solutions of this problems fall into category

of mutual exclusion. Critical region is the region of code which (when executed)

cannot be interrupted/preempted by other process or thread.

Linux kernel addresses problem of mutual exclusion using many techniques, de-

pending on many factors: how long will run the code in critical region, whether

IRQ handlers can access protected data structures or simply whether the mutual

exclusion wanted is in user mode or kernel mode.

Technique used to protect bigger pieces of code (and those, which will run for

longer time) is semaphore. Some semaphore implementation uses spinlocks or atomic

operations to access internals of semaphore structure, while the semaphore itself

could cause process to sleep and to schedule() another process to run. This is

unwanted in IRQ handler, in which only spinlocks should be used (and atomic

operations, as will be described later).

In 2.6.16 new mutexes were introduced, these are similiar to semaphores, but

have better debugging support and therefore should be prefered by developers.

Atomic operations are simple operations (such as subtract and test) that can

often be performed by one instruction with LOCK prefix, but C compiler could gen-

erate code consisting of more instructions and without LOCK, but that wouldn’t be

atomic. Implementation of atomic operations is always architecture dependent.

Futex is an abbreviation for Fast Userspace muTEXes. The basic thought is to

make system call only when there is contention between processes/threads access-

ing the same futex. Its implementation is based on some kind of shared memory

(mmap(), shared segments or simply because the threads share VM) and threads are
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using atomic operations on integer. When they find contention, they use system call

to arbitrate this case.

Special forms of locking are needed for preemptible kernel: both concurrency

and reentrancy could collapse kernel. However preemptive locking is based on SMP

locking mechanisms and we need only few additional functions/macros for this situ-

ations: per-CPU data needs protection (protection between processors is done with

SMP locking) and FPU state was saved only when user space tasks were switched.

3.1 Spinlock

The simplest and basic technique used is spinlock, to use it include

<linux/spinlock.h>. This mechanism prevents to enter critical section when

the lock is locked by entering busy loop until lock is unlocked. Spinlocks are imple-

mented by set of macros, some prevent concurrency with IRQ handlers while the

other ones not. Spinlock user should always decide which one is most suitable, since

incorrect usage could cause performance loss on SMP machines.

Spinlocks are suitable to protect small pieces of code which are intended to run

for a very short time. Spinlocks have been extended to support read/write spinlocks

to increase performace in case of many readers and one or very few writers.

Spinlock macros are in non-preemptible UP kernels evaluated to empty macros

(or some of them to macros just disabling/enabling interrupts). UP kernels with

preemption enabled use spinlocks to disable preemption. For most purposes, pre-

emption can be tought of as SMP equivalent.

spinlock_t some_lock=SPIN_LOCK_UNLOCKED;

spin_lock(&lock);

/* critical section goes here */

spin_unlock(&lock);

This example shows us the simplest usage of spinlock. If the data pro-

tected by this section can be changed in an interrupt handling routine, sim-

ply use spin lock irqsave(lock, flags) and spin lock irqrestore(lock,

flags. spin lock irqsave() saves the flags and disables IRQs and

spin lock irqrestore() restores the previous state of interrupts, i.e. if they were

disabled they will stay disabled and vice versa. The read... and write... versions

of spinlock are implementation of read/write spinlock, which allows either multiple

readers or one writer to enter the critical section at a time. This type of spinlock is

very suitable when there is a lot of readers and writing is performed scarcely.
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spin lock(lock),

read lock(lock),

write lock(lock)

If the spinlock is unlocked, lock it and enter the critical section. The read/write

spinlock locked for read does not stop read lock() from entering the critical

section; the readers counter is increased. Writer may lock r/w spinlock only

if there is no reader present in the critical section. If the lock is locked, spin

until it is unlocked (therefore the name spinlock).

spin lock bh(lock),

read lock bh(lock),

write lock bh(lock)

Same as the spin lock and derivates, but prevents execution of softIRQs (bh

is abbreviation for bottom halves, which is the older name for softIRQs).

spin lock irq(lock),

read lock irq(lock),

write lock irq(lock)

Lock the lock (for details look at spin lock) and in addition disable IRQs.

spin lock irqsave(lock, flags),

read lock irqsave(lock, flags)

write lock irqsave(lock, flags)

Lock the lock same as with spin lock() and friends, but in addition store

whether IRQs are enabled and disable them.

spin trylock(lock),

read trylock(lock),

write trylock(lock),

spin trylock bh(lock)

Try to lock the lock (for details see spin lock() and friends), but if it is not

possible to lock the lock exit with zero return value). Otherwise the return

value is non-zero.

spin unlock(lock),

read unlock(lock),

write unlock(lock)

Unlock the lock, in case of read lock decrease the readers counter. When this

counter reaches zero, the writer may enter the critical section.
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spin unlock bh(lock),

write unlock bh(lock),

read unlock bh(lock)

Unlock the lock locked by spin lock bh() or its appropriate cousin and allow

softirqs to be processed.

spin unlock irq(lock),

read unlock irq(lock),

write unlock irq(lock)

Unlock the lock and enable IRQs. ...unlock irqrestore() is more suitable

in most common cases. read unlock irq() enables IRQs after the last reader

has left critical section.

spin unlock irqrestore(lock, flags),

read unlock irqrestore(lock, flags),

write unlock irqrestore(lock, flags)

Unlock the lock and enable IRQs only if they were enabled before locking the

lock. read unlock irq() enables IRQs after the last reader has left critical

section.

Please note that spin lock irqsave() and similar macros should have their

unlocking counterparts in the same funcions, this is caused by limitations of SPARC

architecture. The other good reason is readability. Spinlock may not block, switch

context or enter idle loop.

3.2 Semaphores

This locking entity is deprecated since Linux 2.6.16.

Semaphore is defined in <asm/semaphore.h> and it’s represented by struc-

ture struct semaphore containing counter count of threads trying to acquire the

semaphore, number of sleepers in the wait queue wait. Semaphore structs can be

initalized using SEMAPHORE INITIALIZER(name, count) macro, or together with

declaration using DECLARE SEMAPHORE GENERIC(name, count).

void sema init(struct semaphore *sem, int val);

Initialize a semaphore’s counter sem->count to given value val and prepare

wait queue.

inline void down(struct semaphore *sem);

Try to lock the critical section by decreasing sem->count, if there are al-

ready enough threads inside the critical region, mark the current thread
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as TASK UNINTERRUPTIBLE and sleep (schedule())until it is woken up by

some thread exiting the critical section. Then mark current thread as

TASK RUNNING and enter the critical section.

inline int down interruptible(struct semaphore *sem);

This function does mostly the same operation as down(), but sleeping process

is marked as TASK INTERRUPTIBLE. If there are any signals pending for the

current thread, exit before entering sleep state.

inline int down trylock(struct semaphore *sem);

Try to acquire semaphore, if it fails return non-zero value, otherwise zero.

inline void up(struct semaphore *sem);

Release the semaphore and if there are any tasks sleeping on this semaphore,

wake them up.

Special case of semaphores are binary semaphores, also called mutexes. Unlocked

mutex can be declared using DECLARE MUTEX(name) macro and locked one using

DECLARE MUTEX LOCKED(name). There are also two functions with self-explaining

names for initalize mutexes: inline void init MUTEX(struct semaphore *sem)

and inline void init MUTEX LOCKED(struct semaphore *sem). The same op-

erations work on mutexes as they did on semaphores (since mutex is simply a

semaphore with initial count value of 1).

The schizophrenia of lock names was strengthened with arrival of 2.6.16: a new

Mutex was introduced (while this old one still exists). This new mutex is described

in its own section.

3.3 Read/Write Semaphores

Read/Write semaphores offer the possibility to have either one writer or any number

of readers at a time. struct rw semaphore contains member variable activity,

which indicates current status: any positive number means number of readers, -

1 means one writer and 0 means no activity. RW semaphore also features its

wait queue protected by spinlock. RW semaphore can be initalized either using

DECLARE RWSEM(name), which declares variable struct rw semaphore name; or by

assigning RWSEM INITIALIZER(name to variable.

void init rwsem(struct rw semaphore *sem)

Initialize rw semaphore internals.
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void down read(struct rw semaphore *rwsem),

void down write(struct rw semaphore *rwsem)

Acquire semaphore for reading (up write() for writing). If it’s not possible

at the moment, sleep until some thread exiting critical section wakes us up.

int down read trylock(struct rw semaphore *rwsem),

int down write trylock(struct rw semaphore *rwsem)

Try to acquire semaphore for reading (up write() for writing). If the

semaphore was acquired, return 1, otherwise 0.

void up read(struct rw semaphore *rwsem),

void up write(struct rw semaphore *rwsem)

Release previously acquired lock and wake up waiting threads.

void downgrade write(struct rw semaphore *rwsem)

Downgrade previously acquired write lock to read lock (and thus allow other

readers to enter critical section).

3.4 Completions

Completion is simple synchronization mechanism close to semaphore. Imagine two

cooperating threads: thread A needs to wait for thread B to finish some work. Idle

loop would be inefficient, thread A decides to sleep until thread B wakes him up.

Completion API is accessible through <linux/completion.h>

A completion is declared using DECLARE COMPLETION(work) macro, which de-

clares a variable of type struct completion:

struct completion {

unsigned int done;

wait_queue_head_t wait;

};

Member variable done will be explained later, wait is a waitqueue keeping all

waiters for this completion.

void init completion(struct completion *x);

Reinitialize the completion structure: both done and wait member vari-

ables. This function is used for dynamic initialization. For reinitialization see

INIT COMPLETION().
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INIT COMPLETION(x);

This macro initializes completion: only done member variable. wait is un-

touched, see init completion(). This macro should be used for fast reini-

tialization.

void wait for completion(struct completion *x);

Wait for completion: the task will become TASK UNINTERRUPTIBLE and will

sleep until woken up by someone (using complete() or complete all()).

int wait for completion interruptible(struct completion *x);

Wait for completion: the task will become TASK INTERRUPTIBLE and will sleep

until woken up by someone (using complete() or complete all()). The sleep

may be interrupted (and woken up) by a signal.

unsigned long wait for completion timeout(struct completion *x,

unsigned long timeout);

Wait for completion: the task will become TASK UNINTERRUPTIBLE and will

sleep until woken up by someone (using complete() or complete all()) or

timeout expires. Timeout is given in jiffies.

unsigned long wait for completion interruptible timeout(struct

completion *x, unsigned long timeout);

Wait for completion: the task will become TASK INTERRUPTIBLE and will sleep

until woken up by someone (using complete() or complete all()) or timeout

expires. Timeout is given in jiffies.

void complete(struct completion *);

Wake up one sleeper.

void complete all(struct completion *);

Wake up all sleepers.

Why the reinitialization ? What happens if the complete()-like call is called

before wait for completion()-like is called ? Nothing wrong, because this is the

reason why completion->done exists: when a thread calls wait for completion(),

done is first checked, if it’s true then the second thread has already completed its

part and there’s no need to sleep. If it’s false, the thread goes to sleep.
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3.5 New Mutexes

This new locking entity was introduced in 2.6.16, but the name conflicts a bit with

some macros concerning semaphores (mutexes were implemented as semaphores with

limit of only 1 thread being able to entry critical section). <linux/mutex.h> should

be included instead of deprecated semaphores (<asm/semaphore.h>).

Only one task may hold the lock and only the owner may unlock the mutex. Mul-

tiple unlocks and recursive locking are not permitted. Mutex must be initialized via

the API. A task may not exist with mutex held and memory areas where held locks

reside must not be freed. Held mutexes must not be reinitalized and finally mutexes

cannot be used in irq contexts. These rules are enforced, when DEBUG MUTEXES is

enabled, which helps tracking down locking bugs. See include/linux/mutex.h for

more details.

The non-debug version of mutex is simply a struct mutex with three fields:

atomic t count holding one of following values: 1 means unlocked, 0 means locked

and negative: locked, possible waiters. Next field is spinlock t wait lock which

protects struct list head wait list from being inconsitently modified.

The task waiting for a mutex to be unlocked is represented by struct

mutex waiter control structed, which contains only two self-explaining fields,

list head and struct task struct *task.

int mutex is locked(struct mutex *lock);

Return 1 if mutex is locked and 0 otherwise.

DEFINE MUTEX(name);

Macro to declare a struct mutex variable.

mutex init(mutex);

Initialize the mutex to unlocked state.

void mutex lock(struct mutex *lock);

Acquire mutex. Debug version of this function also checks if forementioned

rules are obeyed.

int mutex lock interruptible(struct mutex *lock);

Lock the mutex. If the lock has been acquired, return 0. If a signal arrives

while waiting for the lock, then this function returns with -EINTR.

int mutex trylock(struct mutex *lock);

Try to acquire the lock, if it’s locked then return value is 1 otherwise 0.
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void mutex unlock(struct mutex *lock);

Release previously acquired mutex.

Some inconsistency is in-

troduced by mutex trylock() and mutex lock interruptible(): if the lock is

successfully acquired, one function returns 1 while the other one returns 0.

3.6 Futexes

Futex is abbreviation for Fast user space mutex. Futex was designed to be as

fast as possible. Down and up operations are performed in userspace using atomic

assembler instructions. When there is no contention, there’s no need to use syscall

(and therefore this save expensive context-switches). If one there is contention, one

of the processes calls sys futex(). The API is provided by <linux/futex.h>.

sys futex(u32 user *uaddr, int op, int val, struct timespec

user *utime, u32 user *uaddr2, int val3);. uaddr points to 32bit inte-

ger in the user-space, op is the operation to be done with the futex. The meaning

of the rest of the arguments is depends on the operation op specified:

FUTEX WAIT

The kernel is asked to suspend the thread, return value is 0 in this case. Before

the thread is suspended value of *addr is compared to val and if they differ

the syscall is exited with error code EWOULDBLOCK.

The utime argument indicates whether the thread will sleep for an unlimited

time or whether it should be woken up with return code ETIMEDOUT.

If the thread falls asleep and a signal occurs, the syscall is exited with EINTR.

FUTEX WAKE

This operations wakes up val sleeping threads. To wake up all sleepers use

value of INT MAX. From the user mode point of view the thread waking up the

others does not know how many sleepers are there and which one will be woken

up, so usual val values is either 1 or INT MAX. The return value is number of

threads woken up.

FUTEX FD

This operation depends on val value:

If it is zero, the return value of this syscall is file descriptor, which can be

used to poll()/epoll()/select(). After the poll the revents are set to

POLLIN|POLLRDNORM if there are no waiters.
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If the val is non-zero the kernel associates it as signal with returned file de-

scriptor so that it is sent when the thread is woken while waiting on the futex.

FUTEX CMP REQUEUE

This operation allows to wake up a given number of waiters. Moreover the

threads that did not woke up are removed from addr futex’s wait queue and

are added to the wait queue of futex addr2. Pointer to timeout is typecasted

to int and used to limit the amount of threads to be requeued. Whole this

operation is started only if val3 equals to *addr, otherwise the syscall will

end up with return code EAGAIN.

FUTEX REQUEUE

This is predecessor to FUTEX CMP REQUEUE, but it’s now considered buggy,

broken and unstable. Use FUTEX CMP REQUEUE and prevent deadlocks.

FUTEX WAKE OP

This is the most complicated of all futex operations: Imagine having more

than one futex at the same time and a conditional variable implementation,

where we have to obtain lock before every operation. This would lead to

heavy context switching and thus performance degradation. The solution is to

have internal sleep array and waking up the thread only when the condition

is fulfilled.

Operators supported are set value, add, and bitwise or, and, and xor. Com-

parison operators are equivalence, non-equivalence, lesser than, lesser or equal,

greater than, greater or equal.

Whether the wakeup actually happens depends on the result of conditional

expression.

3.7 Preemption

The preemption is the ability to switch the threads also in kernel mode. The

implementation is mostly based on existing SMP-locking infrastructure, but

there are some special cases that need to be taken into account. Including

<linux/preempt.h> will provide developer macros for disabling/enabling preemp-

tion.

Preemption opens new locking issues inside the kernel. Existing locking

primitives are preempt-compatible (for example spinlocks implementation use

preempt disable() and preempt enable()). Problems appear, when thread is
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doing something CPU-dependent, for example modifying per-CPU data structure.

The thread could be preempted and woken up again on another CPU, therefore

modifications to per-CPU structures are not consistent.

Another case is when CPU state needs to be protected and some other process

preempts current one. FPU state is saved only when switching user space tasks, so

kernel routines using FPU must use kernel fpu begin() and kernel fpu end(),

which use preempt disable() and preempt enable().

Beginning of critical section is marked with preempt disable(), which de-

creases preempt counter. preempt enable no resched() increases the counter,

while preempt enable() unrolls forementioned macro and checks whether there

is opportunity to reschedule. This macros also mark end of critical section. The

check for need for rescheduling is performed by preempt check resched() macro.

Macro preempt count() is used to check preempt-counter, non-zero value means

that preemption is forbidden at this moment, otherwise it is allowed.

Preemption must be enabled by the same thread that disabled it. The reason

is that preempt count() is defined as current thread info()->preempt count,

which is local to this thread.

It is possible to prevent a preemption using local irq disable() and

local irq save(), but the danger is when an event occurs that would set

need resched and result int preemption check. There is no need to explicitly dis-

able preemption when holding any locks, but any spin unlock() decreasing the

preemption count to zero might trigger a reschedule (e.g. a simple printk() might

trigger a reschedule. The best practice is to disable preemption explicitly and only

for small areas of atomic code, it is not recommended to call complex functions from

inside these areas.

3.8 Seqlock and Seqcount

Seqlock is defined in <linux/seqlock.h>. Seqlocks are specialized primitive locks,

readers and writers are distinguished. Readers never block and they are willing to

retry if information changes. Writers do not wait for readers. This type of lock

should not be used to protect pointers, because writer could invalidate pointer that

a reader was using.

The implementation is a struct seqlock t containing spinlock t lock and

unsigned sequence. Seqlock can be initialized using seqlock init()macro, which

initalizes the seqlock to be unlocked. The sequence is always initialized to be 0 and

it is increased with each operation on seqlock.
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Behavior of writing routines is identical to spinlock (with addition of sequence

increasing each time):

static inline void write seqlock(seqlock t *sl);

Acquire the seqlock for writing.

static inline void write sequnlock(seqlock t *sl);

Release the seqlock previously acquired for writing.

static inline void write tryseqlock(seqlock t *sl);

Try to acquire the seqlock, returning non-zero value on success and zero oth-

erwise.

The difference is in behavior for readers, common use is as follows:

do {

seq=read_seqbegin(&my_seqlock);

...

} while (read_seqretry(&my_seqlock, seq));

Following routines are available to readers:

static inline unsigned read seqbegin(const seqlock t *sl);

Return sequence number.

static inline int read seqretry(const seqlock t *sl, unsigned seq);

Check whether the reader processed consitent/correct information. This check

first checks whether there was no writer at the time of acquiring the sequence

(odd seq means there was a writer) and if then check whether the seq and

sequence equal. Zero return value means that the information processed was

consistent, non-zero value otherwise.

The second ’locking’ type introduced in this section is not truly a locking prim-

itive: seqcount t does not uses any lock by itself.

The behavior from reader’s point of view is the same as it is with seqlock t,

only the routines have changed their names to read seqcount begin() and

read seqcount retry().

Writers are assumed to use their own locking (probably mutexes, because spin-

lock is implemented in seqlock t). There are two helper routines used to manipu-

late sequence number (sequence should not be changed directly, this routines use

smp wmb() memory barrier).
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static inline void write seqcount begin(seqcount t *s);

This routine should be called in the beginning of critical section.

static inline void write seqcount end(seqcount t *s);

This routine should be called at the end of critical section.

The file [<seqlock.h>] also include ... irq(),

... irqsave(), ... irqrestore() routines that save/disable and restore IRQs,

... bh() routines that disable and enable tasklets.

3.9 Atomic Operations

Atomic operations are simple operations that are guaranteed to be executed with-

out interruption or being interleaved by other operations. Since C compiler can’t

guarantee us atomicity, their implementation is highly architecture-dependent:

[asm/atomic.h].

These operations are based around structure atomic t. The initialization is

implemented by macro ATOMIC INIT:

atomic_t my_atomic_counter = ATOMIC_INIT(0);

Operations are also implemented as macros (at least on x86) for performance

reasons:

atomic read(v)

Atomically read the value of v.

atomic set(i, v)

Atomically set the value of v to i.

atomic add(i, v)

Atomically add the i to the value of v.

atomic sub(i, v)

Atomically subtract the i from the value of v.

atomic sub and test(i, v)

Atomically subtract i from v and return true if and only if the result is zero.

atomic inc(v)

Atomically increase value of v by 1.
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atomic dec(v)

Atomically decrease value of v by 1.

atomic dec and test(v)

Atomically decrease value of v by 1 and return true if and only if the result is

zero.

atomic inc and test(v)

Atomically increase value of v by 1 and return true if and only if the result is

zero.

atomic add negative(i, v)

Atomically add i to v and return true if and only if the result is negative.

atomic add return(i, v)

Atomically add the i to the value of v and return the result.

atomic sub return(i, v)

Atomically subtract the i from the value of v and return the result.

atomic inc return(v)

Atomically increase value of v by 1 and return the result.

atomic dec return(v)

Atomically decrease value of v by 1 and return the result.

3.10 Disabling Local IRQs

Previous kernel version contained cli() and sti() macros to disable and enable

IRQs. These macros together with save flags(flags), save cli flags(flags)

and restore flags(flags) are now deprecated.

From now on a better approach is to use spinlocks with spin lock irqsave(),

spin unlock irqrestore(), spin lock irq() and spin unlock irq(). They pro-

vide better readability, spinlock exactly shows the critical section. Spinlocks are

faster than global IRQ disabling.

Drivers that want to disable local IRQs (i.e. only on current CPU) can use

following macros from <asm/system.h>:

local irq disable();

Disable IRQs on current CPU.
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local irq enable();

Enable IRQs on current CPU.

local save flags(flags);

Save the current IRQ state on local CPU into flags. On most architecture

the state can be on and off, some ones are using even more bits than one.

local irq save(flags);

Save the current IRQ state on local CPU into flags and disable IRQs.

local irq restore(flags);

Restore previously saved IRQ flags.

3.11 Read-copy Update

Read-copy update is a synchronization mechanism optimized for mostly-read access.

Reader has to acquire and later to release the lock, but acquiring a lock never blocks.

Writer’s behavior is more complicated: update is split into two phases: removal

and reclamation. The removal phase removes reference to old data (possibly by

replacing them with new data) and can run concurrently with readers. RCU works

under presumption that updates are scarce and reader sometimes retrieves out-dated

information. The old data are freed during reclamation phase. Because this could

disrupt readers, the reclamation phase could not start until readers no longer hold

reference to old data.

Splitting the code into two phases allows the removal phase to start immediately.

The reclamation phase is deffered. Note that only readers, who were already active

before removal phase should be considered, subsequent readers are working with

new data.

Reader may not block, switch task context or enter idle loop. This indicates

that preemption is disabled inside the reader’s critical section.

Following code example declares variable foo var, which will be protected by

RCU:

struct foo {

...

};

DEFINE_SPINLOCK(foo_spinlock);

struct foo *foo_var;

34



Chapter 3. Synchronization and Workflow Concurrency

The spinlock is used to prevent race condition of multiple writers. Reader’s code:

rcu_read_lock();

some_var=rcu_dereference(foo_var);

rcu_read_unlock();

And writer’s code:

struct foo *new, *old;

// ’new’ points to new data

spin_lock(&foo_spinlock);

old=foo_var;

rcu_assign_pointer(foo_var, new);

synchronize_rcu();

spin_unlock(&foo_spinlock);

kfree(old);

As can be seen, the reader’s code is very simple. On UP machines without

preemption the macros rcu read lock() and rcu read unlock() are evaluated to

empty strings, thus as fast as possible.

Include <linux/rcupdate.h> to gain access to following API:

rcu read lock();

This macro marks the beginning of RCU protected section and disables pre-

emption on preemptible kernels.

rcu read unlock();

This macro marks the beginning of RCU protected section and enables pre-

emption on preemptible kernels.

rcu read lock bh();

This macro marks the beginning of RCU protected section, disables softIRQs

and also preemption on preemptible kernels.

rcu read unlock ();

This macro marks the beginning of RCU protected section, enables softIRQs

and also enables preemption on preemptible kernels.
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Note: RCU-read critical section may be nested.

rcu dereference(pointer);

Fetch a pointer protected by RCU. This macro must be used in RCU-read

critical section. This pointer may be dereferenced after rcu read unlock()

or equivalent. Memory barrier is used on some architectures.

rcu assign pointer(pointer, value);

Assign new value to pointer in the removal phase. Memory barrier is used

on some architectures.

codevoid synchronize rcu(); and void synchronize sched(); Wait until all af-

fected readers (i.e. those that acquired the old pointer) have left the critical

section. The other way is to use callback function to free old pointer when

time comes: call rcu() or equivalent.

void call rcu(struct rcu head *head, void (*func)(struct rcu head

*head))

; Queue an RCU reclamation callback. The callback will be called when all

affected reader (i.e. those working with the old pointer) have left the critical

section.

void call rcu bh(struct rcu head *head, void (*func)(struct rcu head

*head))

; Queue an RCU reclamation callback. The callback will be called when all

affected reader (i.e. those working with the old pointer) have left the critical

section. This version assumes that RCU-read critical section ends on comple-

tion of a softIRQ handler: therefore RCU-read critical sections may not be

interrupted by softIRQs.

Note: this mechanism is covered by some patents in U.S.A.

3.12 Per-CPU Variables

Per-CPU variables (<linux/percpu.h>) are extensively used in 2.6 kernel (sched-

uler being nice example). The idea is to hold array of pointers instead variable

of the same type, but this implementation is hidden behind a set of macros and

functions. The good is that there is no synchronisation needed, because each CPU

has its own value. The bad is that that some overhead is needed around critical

section for preemptible kernels. Moreover the per-CPU variable’s single values for
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each CPU are scattered in memory so that cache on SMP CPUs is not invalidated

by other CPUs.

DEFINE PER CPU(type, name);

This macro defines the a per-CPU variable name of given type.

get cpu var(var);

Mark var per-CPU variable accessible to this CPU. This in fact dis-

ables preemption on preemptible kernels. This is the beginning of crit-

ical section. Evaluates to l-value of the per-CPU variable, therefore

get per cpu(socket in use)++; works.

put cpu var(var);

Mark the end of critical section for per-CPU variable var, this also enables

preemption.

Per-CPU variables can be allocated in the runtime too. The essential data

structure is as follows:

struct percpu_data {

void *ptrs[NR_CPUS];

void *blkp;

};

Pointer array ptrs holds pointer to each instance of allocated type for each CPU

possibly available in the system. They’re not allocated as one array, if they were

then writing value to one item could invalidate cache on some other CPUs (especially

data types with small memory footprint).

void *alloc percpu(type);

Allocate per-CPU variable of given type and zero allocated memory. One

copy is allocated for each CPU.

void *free percpu(const void *objp);

Free a per-CPU variable previously allocated by alloc percpu().

per cpu ptr(ptr, cpu)

Access per-CPU variable of other cpu. Use with care and choose additional

locking.

If the variable is to be exported to modules, use one of the following macros:

EXPORT_PER_CPU_SYMBOL(variable);

EXPORT_PER_CPU_SYMBOL_GPL(variable);
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3.13 Memory Barriers

Designers of modern CPUs try to increase performance by executing instructions

out of order they are in memory. This includes memory loads and stores. The

reordering is not noticable by single thread, but CPUs in SMP machines accessing

the same data at once could find data incosistent (for example one CPU is writing

data out of order and the other is trying to read it in correct order).

The second part of the problem is compile-time optimization: gcc does the re-

ordering by itself

Memory barriers are in Linux implemented as architecture-dependent macros

(<asm/system.h>). The most common one are

barrier();

Prevent compile-time reordering by inserting optimalization barrier (empty

code, thus no performance loss).

mb();

Prevent read, write and optimalization reordering (SMP and UP).

rmb();

Prevent read and optimalization reordering (SMP and UP).

wmb();

Prevent write and optimalization reordering (SMP and UP).

smp mb();

Prevent read, write and optimalization reordering (SMP only).

smp rmb();

Prevent read and optimalization reordering (SMP only).

smp wmb();

Prevent write and optimalization reordering (SMP only).

The reason to implement barriers in so much macros is optimalization, for exam-

ple Intel CPUs does not do write reordering, so wmb(); accts only as optimalization

barrier.

38



Chapter 4

Linked lists

Double-linked lists are provided to kernel developer through <linux/list.h>.

Double-linked circular list is implemented around struct list head structure.

The list is anchored by one (initial) list head variable. How is it possible to

add other data structures into this list? A structure has to have member of type

list head, which will be part of the list. The next and prev members of struct

list head point to next and previous list heads (i.e. not to the structure contain-

ing struct list head, but to its member of type list head). This complicated

approach provides some flexibility (a structure may contain more members of type

list head and also be part of more than one linked list at one time). Access to

the original data structure (which the developer surely wanted to keep in the list)

is provided by list entry() macro.

The easiest way to define new list is the LIST HEAD() macro, which unrolls

itself into struct list head name=LIST HEAD INIT(name). As we can see in file

include/linux/list.h, list is a structure containing pointers to next and previous

items in list. The list is double-linked circular, macro LIST HEAD INIT(name) is

defined as { &name, &name }, thus the list is initialized as circle containing one item
pointing to itself in both directions. List can be also initialized after declaration

using INIT LIST HEAD(ptr), which provides the same functionality as described

above.

4.1 List API

Following macros/inline functions are defined to ease developer with list manipula-

tion:

void list add(struct list head *item, struct list head *head);

Add the item to the beginning of the list, i.e. right behind the anchoring
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list head.

void list add tail(struct list head *item, struct list head *head);

Add the item to the end of the list, i.e. insert it between head->prev and

head.

void list del(struct list head *item);

Delete item from list it’s contained in. prev and next are set to LIST POISON1

and LIST POISON2, which marks that the item has been deleted, but also

prevents list empty(entry) from returning true.

void list del init(struct list head *entry);

Removes the entry from list (the rest of the list is left untouched) and entry

is reinitialized as separate list.

void list move(struct list head *source item, struct list head

*target list);

Move the source item from its list to the beginning of list target list. It

is possible to move the source item from either other list to target list or

just move the source item from inside the list to the beginning.

void list move tail(struct list head *source item, struct

list head *target list); Move the source item from its list to the end

of list target list. See list move().

int list empty(const struct list head *head);

Checks whether a list is empty. head is the anchoring list head.

int list empty careful(const struct list head *head);

Test whether the list is empty and check that the list isn’t modified right

now. This function is safe only if the only activity that can happen is

list del init(). If some other CPU is adding items then it’s not safe and

some synchronization will be needed.

void list splice(struct list head *source list, struct list head

*target list);

Move source list to the beginning of target list, so that the last item of

source list will be just before target list’s first item. The source list’s

members next and prev are not changed, so it’s unsafe to use source list

after list splice(). See list splice init().
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list splice init(struct list head *source list, struct list head

*target list);

Move items in source list to the beginning of target list. See

list splice for details. In addition the source list is reinitialized to empty

list again.

list entry(pointer, type, member) This macro returns pointer to struc-

ture of type, which contains list head as its member variable. The pointer

argument points this member inside the structure we want to access. See gen-

eral description of linked lists in the beginning of this section and example in

list for each().

list for each(iterator, list)

Iterate over a list using given iterator. Common use of this macro is as

follows:

struct list_head *iter;

list_for_each(iter, init_task) {

struct task_struct *task=list_entry(iter,

struct task_struct, tasks);

/* do something with ’task’ here */

}

This code iterates over a task list (init task is the head of list of all pro-

cess descriptors in Linux) and ’does’ something for each task in the list.

struct task struct contains member variable struct list head *tasks,

which keeps it in list of tasks.

list for each() also does prefetching to speed up list processing.

list for each(iterator, list);

Iterate over a list using iterator. see list for each() for details, but this

macro does not do any prefetching, which makes it suitable only for very short

lists.

list for each prev(iterator, list);

Iterates backwards, see list for each() for details.
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list for each safe(iterator, helper, list);

Iterate over a list like list for each(), but this implementation adds

helper variable and is safe against removal of list entry.

list for each entry(type *iterator, list, member);

Iterate over a list. struct list head is hidden inside the type as member.

This macro can be viewed as union of list for each() and list entry.

Example from list for each() can be rewritten:

struct task_struct *task;

list_for_each_entry(iter, init_task, tasks) {

/* do something with ’task’ here */

}

list for each entry reverse(type *iterator, list, member);

The backward version of list for each entry().

list for each entry safe(type *iterator, type

*helper, list, member); Iterate over a list of give type. This version

is safe against removal of list entry.

list prepare entry(type *position, list, member); Prepare a start

point for iteration over list. position should be initialized to null pointer.

This macro checks the value of position and it it isn’t false then the position

is not initialized to correct pointer for iteration.

list for each entry continue(type *position, head, member); Iterate

over a list of given type starting (or continuing) from existing position.

4.2 RCU Protected Lists

Following functions are defined to help developer accessing RCU protected macros:

void list add rcu(struct list head *item, struct list head *head);

Add the item to the beginning of the RCU protected list, i.e. right behind

the anchoring list head. Writer synchronization (e.g. using spinlocks or

mutexes) is left on developer.

42



Chapter 4. Linked lists

void list add tail rcu(struct list head *item, struct list head

*head);

Add the item to the end of the RCU protected list, i.e. insert it between

head->prev and head. Writer synchronization (e.g. using spinlocks or mu-

texes) is left on developer.

void list del rcu(struct list head *item);

Delete item from an RCU protected list it’s contained in. prev and next are

set to LIST POISON1 and LIST POISON2, which marks that the item has been

deleted, but also prevents list empty(entry) from returning true. Deleted

item may not be freed immediately, instead use synchronize kernel() or

call rcu(). Writer synchronization (e.g. using spinlocks or mutexes) is left

on developer.

void list replace rcu(struct list head *old, struct list head *new);

Replace old entry by a new one. The entry may not be deleted, use

synchronize kernel() or call rcu(). Writer synchronization (e.g. using

spinlocks or mutexes) is left on developer.

list for each rcu(iterator, list);

Iterate over an RCU protected list using iterator. Whole iteration must

be protected using rcu read lock(), rcu read unlock() or equivalents.

list for each safe rcu(iterator, helper, list);

Iterate over an RCU protected list like list for each(), but this implemen-

tation adds helper variable and is safe against removal of list entry. Whole

iteration must be protected using rcu read lock(), rcu read unlock() or

equivalents.

list for each entry rcu(type *iterator, list, member);

Iterate over an RCU protected list. struct list head is hidden inside the

type as member. This macro can be viewed as union of list for each()

and list entry. Whole iteration must be protected using rcu read lock(),

rcu read unlock() or equivalents.

list for each continue rcu(position, list);

Iterate over an RCU protected list starting (or continuing) from

position. Whole iteration must be protected using rcu read lock(),

rcu read unlock() or equivalents.
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Memory Allocation

5.1 Slab Memory Allocation

Linux kernel offers to kernel routines two functions similar to user space malloc()

and free(). These functions are called kmalloc() and kfree() and they’re based

on slabs, therefore suitable only for allocating small buffers.

Mechanism used to allocate sub-page memory areas is calles slab allocator (SA).

Slab allocator takes care of caching freed memory so that future allocations can be

faster. The memory is allocated from physical contignuous memory and cannot be

swapped out. Slabs are usually smaller than one page.

This API is defined in <linux/slab.h>:

void *kmalloc(size t size, int flags);

Allocate buffer of size. The meaning of flag is as follows:

GFP KERNEL

Allocate the physical contignuous memory buffer in kernel space. Func-

tion may sleep and swap to free memory. This flag is allowed only in user

context.

GFP ATOMIC

This flag forbids the call to sleep, but may fail in case where GFP KERNEL

would swap to free memory. Function with this flag may be called from

interrupt context.

GFP DMA

Allocate memory in lower 16MB of memory. This is suitable for device

drivers using ISA bus.

Return value is the pointer to allocated buffer or NULL if memory allocation

failed.
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void *kzalloc(size t size, int flags);

Allocate buffer of size using kmalloc(). The arguments are the same, but

this call also zeroes allocated memory.

void *kmalloc node(size t size, gfp t flags, int node);

Allocate a buffer on given node (NUMA-specific call).

void kfree(const void *buffer);

Free memory buffer previously allocated by kmalloc().

void ksize(const void *buffer);

Return the size of buffer previously allocated by kmalloc.

The power of slab allocator lies in its cache: the slabs of the same size are not

freed from memory immediatelly, but they are held in cache. Slab cache is therefore

suitable only for allocations of small pieces of memory.

kmem cache t *kmem cache create(const char *name, size t size, size t

align, unsigned long flags,

void (*constructor)(void *, kmem cache t *, unsigned long),

void (*destructor)(void *, kmem cache t *, unsigned long));

Create a cache that will allocate, free and hold objects of given size. align

specifies memory alignment of allocated objects. The cache is identified by its

name (used in /proc/slabinfo). Possible flags are:

SLAB POISON

Poison the slab with pattern 0xa5 to catch references to uninitialized

memory.

SLAB RED ZONE

Insert red zones around allocated memory to check for buffer underruns

and overruns.

SLAB NO REAP

Don’t shrink memory when the system is looking for more available mem-

ory.

SLAB HWCACHE ALIGN

Align the object in this cache to match hardware cacheline.

The constructor(void *object, kmem cache t *cachep, unsigned long

flags) and destructor(void *object, kmem cache t *cachep, unsigned
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long flags) are optional. The constructor must be provided if the de-

structor is also given. Both callbacks may be implemented by the same

function as the constructor() is called with flag SLAB CTOR CONTRUCTOR.

The SLAB CTOR ATOMIC flag indicates that the callback may not sleep,

SLAB CTOR VERIFY indicates that this call is a verification call. Construc-

tor is called only for newly allocated objects, objects held in the cache and

return by allocation call do not gain constructor’s attention. Constructors and

destructors are very rarely used.

This function returns pointer to created cache or NULL if creation failed.

int kmem cache destroy(kmem cache t *cache);

Destroy a cache. The cache must be empty before calling this function.

The caller must take care that no allocation attempt will be made during

kmem cache destroy().

int kmem cache shrink(kmem cache t *cache);

Shrink cache, i.e. release as many slabs as possible. Zero return value indicates

that all slabs were released.

void *kmem cache alloc(kmem cache t *cache, gfp t flags);

Allocate an object from cache. For description of flags see kmalloc().

void *kmem cache alloc node(struct kmem cache t *cachep, gfp t flags,

int nodeid);

Allocate an object from cache on given node (NUMA-specific call).

void kmem cache free(kmem cache t *cache, void *object);

Release an object. This does not free memory, it only marks object as freed,

but the memory is kept in cache.

unsigned int kmem cache size(kmem cache t *cache);

Return the size of the objects allocated by this cache.

const char *kmem cache name(kmem cache t *cache);

Return pointer to the name of the cache.

kmem cache t *kmem find general cachep(size t size, gfp t gfpflags);

Find suitable cache from array of general caches. There are in fact two arrays,

one for DMA memory and the other for normal allocations.

Many subsystems use of this cache API and create their own caches, the most

common ones are:
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kmem cache t *vm area cachep;

Cache for vm area struct structures.

kmem cache t *files cachep;

Cache for files struct (table of open files).

kmem cache t *filp cachep;

Cache for struct file objects.

kmem cache t *fs cachep;

Cache for fs struct structures.

kmem cache t *signal cachep;

Cache for structures (signal struct).

kmem cache t *sighand cachep;

Cache for signal handler structures (sighand struct).

kmem cache t *dentry cachep;

Cache for directory entries (struct dentry).

5.2 Virtual Memory Allocation

Virtual memory allocation functions (<linux/vmalloc.h>) offer high level API for

allocating swappable memory. This API works with virtually contignuous memory

as opposed to slabs. There is usually no need to use physically contignuous memory

except for hardware devices, which don’t understand paging and virtual memory.

On the other side memory allocated using vmalloc-like functions is accessed through

Translation Look-aside Buffer (TLB) instead of direct access, which can result in

slight overhead when accessing this memory.

void *vmalloc(unsigned long size);

Allocate a virtually contignuous memory of given size. The allocated space

is rounded up to whole pages.

void *vmalloc exec(unsigned long size);

Allocate a virtually contignuous executable memory of given size. The allo-

cated space is rounded up to whole pages.

void *vmalloc 32(unsigned long size);

Allocate a virtually contignuous (32bit addressable) memory of given size.

The allocated space is rounded up to whole pages.
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void * vmalloc(unsigned long size, int gfp mask, pgprot t prot);

Allocate virtually contignuous memory buffer. The allocation takes enough

pages to cover whole buffer size. gfp mask contains mask of flags for page

level allocator (see <linux/gfp.h>) and prot contains protection mask for

allocated pages (see <asm/pgtable/h>).

void vfree(void *addr);

Release memory previously allocated by one of vmalloc functions. This func-

tion may not be called in interrupt context.

void *vmap(struct page **pages, unsigned int count, unsigned long

flags, pgprot t prot);

Map an array of pages into virtually contignuous space. count is the number

of pages to be allocated, prot contains protection mask. Possible flags:

VM MAP

Pages mapped by vmap().

VM ALLOC

Pages allocated by one of vmalloc functions.

VM IOREMAP

Mapped from hardware device.

void vunmap(void *addr);

Release mapping obtained by vmap. May not be called in interrupt context.

5.3 Page Allocation

Page allocation is the most elementar of all allocation methods. It’s hardware depen-

dent, but it’s sometimes the most suitable when writing a hardware device driver.

Following interface is defined in <linux/gfp.h> and <linux/mm.h>:

struct page *alloc pages(unsigned int gfp mask, unsigned int order);

Allocate pages. gfp mask is combination of following:

GFP USER

User allocation.

GFP KERNEL

Kernel allocation.

GFP HIGHMEM

Highmem allocation.

48



Chapter 5. Memory Allocation

GFP FS

Don’t call back into a file system. Without this option the allocator may

swap out some pages to free some more physical memory.

GFP ATOMIC

Don’t sleep, this also prohibits swapping out pages.

order is the power of two of allocation size in pages. Return the pointer to

the first page’s structure or NULL if allocation fails.

void *page address(struct page *page);

Return the logical address of the page.

unsigned long get free pages(unsigned int gfp mask, unsigned int

order)

; Allocate physical pages (see alloc pages()) and return the logical address

of the first of them.

struct page *alloc page(unsigned int gfp mask);

Allocate one page and return pointer to it’s page structure.

unsigned long get free page(unsigned int gfp mask);

Allocate one page and return it’s logical address.

unsigned long get zereod page(unsigned int gfp mask);

Allocate one zeroed page and return it’s logical address.

void free pages(struct page *pages,unsigned int order);

Free previously allocated pages.

void free pages(unsigned long addr, unsigned int order);

Free previously allocated pages.

void free page(unsigned long addr);

Free one page.
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Handling Interrupts

Interrupts signalize operating system about events that occured in hardware devices.

CPU knows how to handle each interrupt as it has pointers to interrupt handlers

stored in a table. This handlers are usually invoked with interrupts disabled1

Interrupt handlers need to be fast, because we don’t want to lose other pending

interrupts. The code is split in linux into two layers, the interrupt handler usually

just queues needed routines as softIRQs or taskqueues (both will be described later)

and quits. Taskqueues will be executed later with interrupts enabled2 and this way

no interrupt should be lost.

6.1 Hardware Interrupts

Hardware devices generate interrupt requests from time to time, the meaning of an

IRQ is to notice software (the kernel in our case) about some event: tick of timer,

arrival of packet from network. . . Understanding how to properly handle IRQs is

essential for device driver developers.

The kernel offers interrupt handlers to handle IRQs. The handler won’t be

entered by the same interrupt more than once, if the same IRQ is generated, it

is queued or dropped. The handler runs with interrupts disabled (this is done

automatically by CPU on or IRQ controller on some architectures) so it has to run

very fast and may not block. It’s usual to set a software interrupt and exit the

handler.
1Standard PCs have been using Programmable Interrupt Controller for a long time, this con-

troller takes care of (un)masking individual interrupts. MSDOS programmers probably remember

magic sequence, which wrote 0x20 to port 0x20, and thus allowing PIC to report interrupts to

CPU again.
2But taskqueues can disable interrupt while doing something critical.
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General rule: don’t call any blocking function waiting for IRQ handle that could

block while holding a resource that may be used by IRQ handler. Avoid deadlocks.

Interrupt lines may be shared by devices if all interrupt handlers are marked

with flag SA SHIRQ.

Include <linux/hardirq.h> to access following function and macros:

in irq();

Returns true if called in a hardware IRQ.

void synchronize irq(unsigned int irq);

Wait for pending IRQ handler exit for irq. This function may be called with

care from IRQ context.

void disable irq nosync(unsigned int irq);

Disable irq without waiting. Disables and enables are nested. This function

does not guarantee that any running handlers have exited before returning.

This function may be called from IRQ context.

void disable irq(unsigned int irq);

Disable irq and wait for any handlers to complete. Disables and enables are

nested. May be called from IRQ context.

void enable irq(unsigned int irq);

Enables irq. Enables and disables are nested. May be called from IRQ con-

text.

void free irq(unsigned int irq, void *device);

Remove interrupt handler from irq for given device. If the interrupt line is

not used by any other driver then the line is blocked. Caller must ensure that

interrupt is disabled on the device prior to calling this function. The function

does not wait for completion of any running handlers. It may not be called

from from IRQ context.

int request irq(unsigned int irq, irqreturn t (*handler)(int, void

*, struct pt regs *), unsigned long irqflags, const char

*devname, void *device);

Allocate an interrupt line irq with a handler. Flags can be:

• SA SHIRQ - Interrupt is shared. If there is already any handler bound to
this IRQ without this flag set, this request irq() will return with error

code -EBUSY. Otherwise the new interrupt handler is added to the end of

the interrupt handler chain.
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• SA INTERRUPT - Local interrupts are disabled while processing.

• SA SAMPLE RANDOM - Interrupt can be used for random entropy.

Argument devname is the ASCII name for the claiming device and device is a

cookie passed back to handler. device must be globally unique (e.g. address

of the device data structure). The interrupt line is enabled after allocation. If

the interrupt is shared, device must be non-NULL.

6.2 Softirqs and Tasklets

Servicing harware interrupt may not take too much time, so the work is split into

two parts: the minimal servicing is done in the hardware IRQ handler and the rest

is deffered. Previous kernel version used bottom halves (BH) to process the deferred

which didn’t take advantage in using multiple CPUs and developers decided to

switch to softIRQs. Some macros still contain bh substring as a remainder from the

past: local bh enable() and local bh disable(), though they actually disable

end enable softirqs.

Softirqs are statically created and there are 6 softIRQs defined in kernel 2.6.16:

HI SOFTIRQ

high priority tasklets

TIMER SOFTIRQ

timer interrupts

NET TX SOFTIRQ

network packet transmission

NET RX SOFTIRQ

network packet receiving

SCSI SOFTIRQ

SCSI-related processing

TASKLET SOFTIRQ

tasklets

Softirqs can be run by multiple CPUs at once, moreover one softirq can be run

by multiple CPUs at once. They’re also reentrant. Synchronization is essential.

Include <linux/interrupt.h> to access following macros and functions:
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in softirq();

Return true if in softIRQ. Warning: this macro returns true even if BH lock

is held.

in interrupt();

Return true if in hardware IRQ of softIRQ. Warning: this macro returns true

even if BH lock is held.

Tasklets (as opposed to softirqs) can be creating in runtime, so they’ll be of

bigger interest to us. They are executed from softirqs and kernel guarantees not to

execute one tasklet more than once on multiple CPUs. Tasklets of the same type

are serialized, but tasklets of different type may run concurrently. Tasklets are also

preferred way of doing things, they’re sufficient for most operations done by the

drivers.

The tasklet is built aroung following struct:

struct tasklet_struct

{

struct tasklet_struct *next;

unsigned long state;

atomic_t count;

void (*func)(unsigned long);

unsigned long data;

};

The next field is pointer to next tasklet in the list. func(data) will be called

once the tasklet is to be executed. The state can hold zero (meaning: tasklet not

in list) or combination of the following values:

TASKLET STATE SCHED

Tasklet is scheduled for execution. A tasklet without this flag will not start,

even if it’s in the tasklet list.

TASKLET STATE RUN

Tasklet is running (SMP only).

Tasklet can be easily declared using DECLARE TASKLET(name, func, data),

which declares struct tasklet struct of given name. Disabled tasklet is provided

by DECLARE TASKLET DISABLED(name, func, data).

void tasklet init(struct tasklet struct *t, void (*func)(unsigned

long), unsigned long data);
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Initialize a tasklet struct structure. This function is suitable for dynami-

cally allocated or reinitialized tasklets.

int tasklet trylock(struct tasklet struct *t);

Try to lock the tasklet: try to set TASKLET STATE RUN to t->state using

atomic operation. Returns true if the tasklet has been locked before the oper-

ation.

void tasklet unlock(struct tasklet struct *t);

Unlock the tasklet using atomic operation.

void tasklet unlock wait(struct tasklet struct *t);

Wait for tasklet to become unlocked. Warning: busy-loop implementation,

this function does not sleep.

void tasklet schedule(struct tasklet struct *t);

Activate the tasklet, i.e. put it into the beginning of tasklet list for current

CPU.

void tasklet hi schedule(struct tasklet struct *t);

Activate the tasklet, i.e. put it into the beginning of high priority tasklet list

for current CPU.

void tasklet disable nosync(struct tasklet struct *t);

Disable the tasklet, do not wait for termination of tasklet if it’s currently

running.

void tasklet disable(struct tasklet struct *t);

Disable the tasklet, but wait for termination of tasklet if it’s currently running.

void tasklet enable(struct tasklet struct *t);

Enable the disabled, but scheduled tasklet.

void tasklet kill(struct tasklet struct *t);

Kill a tasklet. This is done by clearing the state’s flag TASKLET STATE SCHED.

void tasklet kill immediate(struct tasklet struct *t, unsigned int

cpu);

Kill a tasklet. This is done by clearing the state’s flag TASKLET STATE SCHED.

Moreover, the tasklet is immediately removed from the list. The cpu must be

in CPU DEAD state.
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Note that scheduled tasklets are kept in per-CPU arrays (one for normal and

the second one for high priority tasklets). Before the tasklet is executed its

TASKLET STATE SCHED flag is cleared. If the tasklet wants to be executed in the

future, it’s TASKLET STATE SCHED flag must be set.
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Process Management and

Scheduling

Good process management is feature needed by every multitasking OS. This category

contains not only process creation and termination, but also switching between

processes, process state management, in-kernel preemption, kernel threads and many

other things. And everything must be done with maximal efficiency.

The process (or thread or task) itself may be in one of many states:

TASK RUNNING

The task is able to run, i.e. it will run when some CPU has time to run it.

TASK INTERRUPTIBLE

This task is sleeping, but it’s possible to wake it up using signals or expiration

of a timer.

TASK UNINTERRUPTIBLE

This task is sleeping, but it can’t be woken up by signals or timers.

TASK STOPPED

Task is stopped either due to job control or ptrace().

TASK TRACED

This task is being traced.

TASK NONINTERACTIVE

This task won’t be given any penalty or priority-boost due to average sleep

time.

The tasks may be even frozen, depending on power management state.
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set task state(task, state)

This macro sets the state to given task. The state should not be directly

assigned, this function uses memory barrier.

set current state(state)

This macro sets state to task currently running on local CPU.

Some structures that are used in many parts of process management are described

here for easier reference later.

struct task struct;

This very complicated structure holds all information concerning one process.

struct sched group;

Scheduling group, the load balancing algorithm tries to equally divide load

between groups in a single domain.

struct sched domain;

Scheduling domain create a tree. Each CPU is represented by its own domain

and is a leaf in the domain tree. This approach allows to make very complicated

load balancing even on NUMA machines.

struct user struct;

A structure for each user, which holds number of files opened, processes run-

ning, pending signals, inotify watches etc. and uid.

struct thread struct;

Low level per-architecture defined structure containing copy of some CPU

registers and similar non-portable things.

struct fs struct;

This structure represents a file system, it contains pointer to root, pwd (current

working directory) directory entries etc.

struct files struct;

Per-process structure of opened files.

struct dentry;

This structure represents directory entry.

struct mm struct;

Memory management information for a process, this may be shared by threads

in one process.
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struct vm area struct;

A VM area is a part of process virtual memory with a special rule for the

page-fault handlers. This structure describes one area.

There is one function that is mentioned fairly often within following sections:

schedule(). This function interrupts execution of current task and switches to

other one.

7.1 Scheduler

The role of the scheduler in multitasking (and multithreading) operating system is

to switch between tasks and to decide when to switch, which task will be woken up

and how long will it run until next task is woken up.

Scheduler also does load balancing on SMP/NUMA architectures. The goal of

load balancing is to divide computations equally to the CPU nodes.

NICE TO PRIO(nice) maps nice-value to static priority for internal use,

PRIO TO NICE(prio) maps static priority back to nice-value and TASK NICE(p) re-

turns nice-value of task p. The classic nice-value is converted to user static priority,

which can be easier to use internally in scheduler routines. However dynamic priority

is used when assigning timeslices to tasks.

The minimum timeslice is MIN TIMESLICE (currently 5 msecs or 1 jiffy, which one

is more), default timeslice is DEF TIMESLICE (100 msecs), maximum timeslice is 800

msecs. Timeslices get refilled after they expire. Tasks are executed in timeslices,

when all tasks run out of their assigned time they get refilled. Dynamic priority is

based on static priority, slightly modified by bonuses/penalties. Interactive tasks

get bonuses (we estimate that task is interactive, if it sleeps sometimes) and batch

tasks (also called cpu hogs) get penalties.

Each cpu has its own runqueue, which holds lists of tasks being run on this

cpu. There are two priority arrays, one for active tasks and the other for task with

already expired timeslices. When task runs out of its timeslice, we usually put it

to expired array. If a task is interactive, we reinsert it in the active array after its

timeslice has expired. However it wil not continue to run immediately, it will still

roundrobin with other interactive tasks. For each task a sleep avg value is stored,

which is increased by one for each jiffy during sleep and decreased while running.

SCALE PRIO scales dynamic priority values [ -20 ... 19 ] to time slice val-

ues. The higher a thread’s priority, the bigger timeslices it gets during one round

of execution. But even the lowest priority thread gets MIN TIMESLICE worth of

execution time. int task timeslice(task t *p) is the interface that is used by
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the scheduler. Dynamic priority can be at most 5 points more or less (depends on

interactivity) than static priority. 1

The task uses its timeslice in intervals of max TIMESLICE GRANULARITYmsecs and

then the scheduler tries to execute other tasks of equal priority from the runqueue2.

Thus the task uses its timeslice in parts (if the timeslice is long enough) before being

dropped from the active array).

Priority array contains list queue for each priority. The bitmap array keeps

in mind which list is empty, nr active is number of active tasks. As a lock-

ing rule is used the following: those places that want to lock multiple run-

queues (such as the load balancing or the thread migration code), lock ac-

quire operations must be ordered by ascending &runqueue. To make it simpler,

static void double rq lock(runqueue t *rq1, runqueue t *rq2) and static

void double rq lock(runqueue t *rq1, runqueue t *rq2) are provided.

Runqueue (runqueue t data type) is the main per-cpu data structure holding

number of running tasks, cpu load (only when compiled with CONFIG SMP, used when

migrating tasks between cpus to determine which cpu is heavily loaded and which

one is almost idle), number of context switches, expired timestamp and the best

expired priority priority (used to determine when is the time to return tasks from

expired array to active array, so that interactive tasks won’t starve non-interactive),

number of uninterruptible tasks, timestamp of last tick, pointers to current and idle

tasks, pointer to previously used mm struct (used when switchig kernel threads to

find out that sometimes there’s no need to switch address space), number processes

waiting for I/O, and the following under the assumption of CONFIG SMP being de-

fined: scheduling domain for this CPU/runqueue, whether balancing is active for this

runqueue (active balance), push cpu, migration thread and migration queue.

Following macros are being defined for accessing runqueues: cpu rq(cpu) rep-

resentes runqueue of given cpu, this rq() represents runqueue of this processor,

task rq(p) finds runqueue belonging to task p and finally cpu curr(cpu) is cur-

rently executed task on given cpu.

One of the changes introduced in kernel 2.6 is preemption. Prior to this the task

switching was possible in kernel only when process voluntarily rescheduled. With

1This approach is often criticised, especially the estimating whether a task is interactive.

There are attempts to write better scheduler/patch the existing one (e.g. Con Kolivas’s patches,

http://kerneltrap.org/node/view/780). Too little time for minimal timeslice could cause many con-

text switches and thus decreasing performance as the CPU cache is often reloaded. This approach

is in common better than the one in 2.4 and older kernels.
2This was added because applications like audio players tend to send e.g. 50ms buffer to

soundcard and then sleep, and if other task gains 100ms timeslice this led to audio dropouts
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preemption it is to switch task at almost any time. Preemptions uses SMP locking

mechanisms to avoid concurrency and reentrancy problems. See ”Locking” chapter

for details about preemption.

Next problem is protecting CPU state, e.g. FPU state: FPU should be used only

with preemption disabled (the kernel does not save FPU state except for user tasks,

so preemption could change the contents of FPU registers). kernel fpu begin()

and kernel fpu end() should be used around areas that use FPU. Note: some FPU

functions are already preempt-safe.

Externally visible scheduler statistics are in struct kernel stat kstat;, which

is defined per cpu. Exported symbol.

7.1.1 Priority

static int effective prio(task t *p);

Return the effective priority, i.e. the priority based on static priority but

modified by bonuses/penalties. Bonus/penalty range is +-5 points, thus we

use 25% of the full priority range. This ensures us that the +19 interactive

tasks do not preempt 0 nice-value cpu intensive tasks and -20 tasks do not get

preempted by 0 nice-value tasks.

static void recalc task prio(task t *p, unsigned long long now);

Recalculates priority of given task. User tasks that sleep a long time are

categorised as idle and will get just interactive status to stay active and to

prevent them suddenly becoming cpu hogs and starving other processes. The

lower the sleep avg a task has the more rapidly it will rise with sleep time.

Tasks with low interactive credit are limited to one timeslice worth of

sleep avg bonus. Tasks with credit less or equal than CREDIT LIMIT waking

from uninterruptible sleep are limited in their sleep avg rise as they are likely

to be cpu hogs waiting on I/O. This code gives a bonus to interactive tasks.

The boost works by updating the ’average sleep time’ value here, based on

->timestamp. The more time a task spends sleeping, the higher the average

gets - and the higher the priority boost gets as well.

void set user nice(task t *p, long nice);

Set nice value of task p. Lock of runqueue the task belongs in is locked during

execution. Exported symbol.

int can nice(const task t *p, const int nice);

Check whether task p can reduce its nice value.
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asmlinkage long sys nice(int increment);

Add to the priority of the current process increment value. This function is

available only with ARCH WANT SYS NICE defined.

int task prio(const task t *p);

Return the priority of a given task. Realtime tasks are offset by -200, normal

tasks are arounf 0, value goes from -16 to +15, this is the priority value as

seen by users in /proc

int task nice(const task t *p);

Return the nice value of a given task. Exported symbol.

asmlinkage long sys sched setparam(pid t pid, struct sched param

user *param);

Set/change the realtime priority of a thread to the values obtained from user-

space.

asmlinkage long sys sched getparam(pid t pid, struct sched param

user *param);

Get the realtime priority of a thread and store it to user-space. tasklist lock

is read-locked during execution.

asmlinkage long sys sched get priority max(int policy);

Return maximum realtime priority that can be used by a given scheduling

class.

asmlinkage long sys sched get priority min(int policy);

Return minimum realtime priority that can be used by a given scheduling

class.

7.1.2 Runqueues

static runqueue t *task rq lock(task t *p, unsigned long *flags);

This function locks the runqueue for a given task and disables interrupts.

Preemption is not disabled during execution of this function.

static inline void task rq unlock(runqueue t *rq, unsigned long

*flags);

This function unlocks the runqueue (possible locked by task rq lock)

static runqueue t *this rq lock(void);

Lock runqueue, the same case as with task rq lock(): we need to disable
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interrupts first and then lock the spinlock (due to SMP and preemption, details

in [kernel/sched.c])

static inline void rq unlock(runqueue t *rq);

Unlock the runqueue.

static void dequeue task(struct task struct *p, prio array t *array);

Remove a task from priority array, i.e. remove it from appropriate list and (if

needed) set the bit to indicate that list is empty.

static void enqueue task(struct task struct *p, prio array t *array);

Adds task to end of appropriate list and sets bit to indicate that the list is

surely not empty.

static inline void enqueue task head(struct task struct *p,

prio array t *array);

Adds task to beginning of appropriate list and sets bit to indicate that the list

is surely not empty. This is used by the migration code (that means migration

between cpus), we pull tasks from the head of the remote queue so we want

these tasks to show up at the head of the local queue.

static inline void activate task(task t *p, runqueue t *rq);

Move given task to given runqueue.

static inline void activate idle task(task t *p, runqueue t *rq);

Move idle task to the front of runqueue.

static void activate task(task t *p, runqueue t *rq, int local);

Move a task to the runqueue and do priority recalculation, update all the

scheduling statistics stuff (sleep average calculation, priority modifiers, etc.)

static void deactivate task(struct task struct *p, runqueue t *rq);

Remove a task from the runqueue.

static void resched task(task t *p);

need resched flag, on SMP it might also involve a cross-cpu call to triger the

scheduler on the target cpu. SMP version also does preempt disable in the

beginning and preempt enable in the end.

static runqueue t *find busiest queue(struct sched group *group);

Find the busiest runqueue among the CPUs in group. Only on SMP.
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Following functions are provided to prevent deadlock while locking runqueues’

spinlocks:

static void double rq lock(runqueue t *rq1, runqueue t *rq2);

Safely lock two runqueues. This does not disable interrupts like task rq lock,

you need to do so manually before calling. This function should be used to

prevent deadlock when locking two runqueues.

void double lock balance(runqueue t *this rq, runqueue t *busiest);

Lock the busiest runqueue, this rq is locked already. During execution it

may be unlocked and locked again later (to prevent deadlock). Only on SMP.

static void double rq unlock(runqueue t *rq1, runqueue t *rq2);

Safely unlock two runqueues, note that this does not restore interrupts.

7.1.3 Load Balancing and Migration

Following functions are intended for migration tasks between CPUs, therefore are

conditionaly compiled only if CONFIG SMP is defined. There are two possible types

of request (request type): REQ MOVE TASK (for migrating between processors) and

REQ SET DOMAIN (for setting scheduling domain)

Following struct (migration req t) is used to hold migration request details.

type keeps type of request: REQ MOVE TASK or REQ SET DOMAIN, task is the task

that is being moved to the dest cpu. The other case is setting the scheduling

domain sd. Completion mechanism is used for executing migration request.

Scheduling domains are new approach to SMT/SMP/NUMA scheduling. Each

cpu has its scheduling domain, these domains create a tree-like structure. Domain

has parent pointer, the root domain’s parent is NULL. Scheduling domains are per-

cpu structures as they are locklessly updated. Each domain spans over a set of

CPUs, registered in cpumask t span, these CPUs belong to one or more struct

sched group (pointed to by struct sched group *groups, which are organised as

one-way circular list. The union of CPU masks of these groups must be identical

to CPU mask of the domain and the intersection of any of these groups must be

empty. Groups are (unlike domains) shared between CPUs, they are read-only after

they’ve been set up.

Load balancing happens between groups. Each group has its load, which is sum

of loads of CPUs that belong into this group. When the load of a group is out of

balance, load balancing between groups occurs. rebalance tick() is the function

that is called by timer tick and checks if there is any need to do load balancing. If
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is is so, balance the domain and then check the parent domain, again check for need

for balancing and so forth.

Each scheduling domains can have set the following flags:

SD BALANCE NEWIDLE

Balance when about to become idle.

SD BALANCE EXEC

Balance on exec(), this is quite effective, since ’execed’ task is not cache hot

on any CPU.

SD BALANCE CLONE

Balance on clone().

SD WAKE IDLE

Wake to idle CPU on task wakeup.

SD WAKE AFFINE

Wake task to waking CPU

SD WAKE BALANCE

Perform balancing at task wakeup.

SD SHARE CPUPOWER

Domain members share cpu power, e.g. SMT architectures.

Migration routines:

static int migrate task(task t *p, int dest cpu, migration req t

*req);

Tries to migrate task p to given dest cpu. The task’s runqueue lock must be

held, returns true if you have to wait for migration thread.

void kick process(task t *p);

Causes a process which is running on another CPU to enter kernel-mode,

without any delay (to get signals handled).

static inline unsigned long source load(int cpu);

Returns a low guess at the load of a migration-source cpu. We want to under-

estimate the load of migration sources, to balance conservatively.

static inline unsigned long target load(int cpu);

Returns a high guess at the load of a migration-target cpu.
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struct sched group *find idlest group(struct sched domain *sd, struct

task struct *p, int this cpu);

Find and return the least busy CPU group within the domain sd.

static int find idlest cpu(struct task struct *p, int this cpu,

struct sched domain *sd);

Find the the idlest CPU i.e. least busy runqueue on SMP machine.

static struct sched group *find busiest group(struct sched domain

*sd, int this cpu, unsigned long *imbalance, enum idle type

idle);

Find and return the busiest cpu group within the domain. Calculate and re-

turn the number of tasks which should be moved to restore balance via the

imbalance parameter. Only on SMP.

int sched balance self(int cpu, int flag);

Balance the current task running on given cpu in domains that have flag set.

The least loaded group is selected. Target CPU number is returned or this

CPU if no balancing is needed. Preemption must be disabled prior to calling

this function.

static void sched migrate task(task t *p, int dest cpu);

If dest cpu is allowed for this process, migrate the task to it. This is accom-

plished by forcing the cpu allowed mask to only allow dest cpu, which will

force the cpu onto dest cpu. Then the cpu allowed mask is restored. Only

on SMP.

void sched exec(void);

Find the highest-level, exec-balance-capable domain and try to migrate the

task to the least loaded CPU. execve() is a good opportunity, because at this

point the task has the smallest effective memory and cachce footprint. Only

on SMP machines.

static inline void pull task(runqueue t *src rq, prio array t

*src array, task t *p, runqueue t *this rq, prio array t

*this array, int this cpu);

Move a task from a remote runqueue to the local runqueue, both runqueues

must be locked. Only on SMP.

static inline int can migrate task(task t *p, runqueue t *rq, int

this cpu, struct sched domain *sd, enum idle type idle);
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May the task p from runqueue rq be migrate onto this cpu ? We can’t migrate

tasks that are running or tasks that can’t be migrated due to cpus allowed

or are cache-hot on their current cpu. Only on SMP.

static int move tasks(runqueue t *this rq, int this cpu, runqueue t

*busiest, unsigned long max nr move, struct sched domain *sd,

enum idle typeidle);

Try to move up to max nr move tasks from busiest to this rq, as part of a bal-

ancing operation within domain. Returns the number of tasks moved. Must

be called with both runqueues locked, no unlocking is being done. Only on

SMP.

static int load balance(int this cpu, runqueue t *this rq, struct

sched domain *sd, enum idle type idle);

Check this cpu to ensure it is balanced within domain. Attempt to move

tasks if there is an imbalance. Must be called with this rq unlocked. Locks

of this rq and busiest runqueue in the domains may be locked during execu-

tions, but they are finally unlocked. Only on SMP.

static int load balance newidle(int this cpu, runqueue t *this rq,

struct sched domain *sd);

Check this cpu to ensure it is balanced within domain. Attempt to move

tasks if there is an imbalance. Called from schedule when this rq is about to

become idle (NEWLY IDLE). Beware: this rq is being locked and not unlocked

upon return. Only on SMP.

static inline void idle balance(int this cpu, runqueue t *this rq);

This function is called by schedule() if this cpu is about to become idle. It

attempts to pull tasks from other CPUs on SMP, on UP does nothing.

static void active load balance(runqueue t *busiest, int

busiest cpu);

This function is run by migration threads. It pushes a running task off the cpu.

It can be required to correctly have at least 1 task running on each physical

CPU where possible, and not have a physical / logical imbalance. Must be

called with busiest locked, however the lock is a few times relocked to ensure

there’ll be no deadlock.

static void rebalance tick(int this cpu, runqueue t *this rq, enum

idle type idle);
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This function will get called every timer tick, on every CPU on SMP.

Check each scheduling domain to see if it is due to be balanced, and ini-

tiates a balancing operation if so. Balancing parameters are set up in

arch init sched domains. On uniprocessors this function does nothing.

task t *idle task(int cpu);

Return idle task for given cpu.

static void setscheduler(struct task struct *p, int policy, int

prio);

Change priority, runqueue lock must be held.

asmlinkage long sys sched getscheduler(pid t pid);

Get the policy (scheduling class) of a thread. tasklist lock is read-locked

during execution.

static int setscheduler(pid t pid, int policy, struct sched param

user *param);

Change the scheduling policy and/or realtime priority of a task to the val-

ues obtained from user-space. During execution are disabled irqs, read-locked

tasklist lock, locked runqueue lock of appropriate task.

asmlinkage long do sched setscheduler(pid t pid, int policy, struct

sched param user *param);

Set/change the scheduler policy and realtime priority to the values obtained

from usermode.

asmlinkage long sys sched setscheduler(pid t pid, int policy, struct

sched param user *param);

Wrapper for do sched setscheduler().

asmlinkage long sys sched setaffinity(pid t pid, unsigned int len,

unsigned long user *user mask ptr);

Set the cpu affinity of a process. Values are obtained from user-space.

cpumask t cpu present map;

This represents all cpus present in the system. In systems capable of hotplug-

ging, this map could dynamically grow as new cpus are detected in the system

via any platform specific method. Exported symbol.

On SMP following cpu mask maps (cpumask t) are declared: cpu online map,

which is map of all online CPUs (initally CPU MASK ALL), cpu possible map, which
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is map of all possible CPUs (initially CPU MASK ALL) and nohz cpu mask, which is

map of CPUs with switched-off Hz timer (initally and on systems that do not switch

off the Hz timer CPU MASK NONE)

long sched getaffinity(pid t pid, cpumask t *mask)

Get the cpu affinity of a process. Cpu hotplugging is locked and

tasklist lock is read-locked.

asmlinkage long sys sched getaffinity(pid t pid, unsigned int len,

unsigned long user *user mask ptr);

Wrapper for sched getaffinity(). The mask is copied to userspace.

int set cpus allowed(task t *p, cpumask t new mask);

Change a given task’s CPU affinity. Migrate the thread to a proper CPU

(if needed i.e. the current task’s cpu is not enabled in the new mask) and

schedule it away if the CPU it’s executing on is removed from the allowed

bitmask. The caller must have a valid reference to the task, the task must not

exit() & deallocate itself prematurely. The call is not atomic, no spinlocks

may be held. Task’s runqueue lock is being held during execution and irqs are

disabled. Exported symbol, SMP only.

static void migrate task(struct task struct *p, int src cpu, int

dest cpu);

Move (not current) task off this cpu, onto dest cpu. We’re doing this because

either it can’t run here any more (set cpus allowed() away from this cpu,

or cpu going down when using hotplug), or because we’re attempting to rebal-

ance this task on exec (sched balance exec). Both source and destination

CPUs’ runqueue-locks are held. SMP only.

static int migration thread(void * data);

This is a high priority system thread that performs thread migration by bump-

ing thread off cpu then ’pushing’ onto another runqueue. data runqueue’s lock

is held during execution. SMP only.

static void move task off dead cpu(int dead cpu, struct task struct

*tsk);

This function moves task tsk from CPU dead cpu that went offline.

static void migrate nr uninterruptible(runqueue t *rq src);

Adds nr uninterruptible statistics from (rq src) to any online CPU. Some-

times nr uninterruptible is not updated for performance reasons and this
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way the sum of numbers of TASK UNINTERRUTIBLE tasks on all CPUs is correct.

IRQs are disabled and runqueues’ locks are locked while updating statistics.

static void migrate live tasks(int src cpu);

Run through task list on src cpu CPU and migrate tasks from it. IRQs are

blocked and tasklist lock is being held during this operation.

void sched idle next(void);

Schedule idle task to be the next runnable task on current CPU. It’s done by

boosting its priority to highest possible and adding it to the front of runqueue.

Used by cpu offline code. Current cpu’s runqueue lock is held during execution

and interrupts are disabled. SMP only.

void idle task exit(void);

Ensures that the idle task is using init mm right before its cpu goes offline.

static void migrate dead(unsigned int dead cpu, task t *tsk);

Migrate exiting task from dead CPU. The runqueue lock must be held before

calling this function and released afterwards. This lock is dropped around

migration.

static void migrate dead tasks(unsigned int dead cpu);

Migrate exiting tasks from dead CPU.

int migration call(struct notifier block *nfb, unsigned long action,

void *hcpu);

This is a callback that gets triggered when a CPU is added or removed. Mi-

gration thread for this new CPU is started and stopped here and tasks are

migrated from dying CPU.

static int migration call(struct notifier block *nfb, unsigned long

action, void *hcpu);

Callback that gets triggered when a CPU is added. Here we can start up the

necessary migration thread for the new CPU. When a new cpu goes up, new

migration thread is created and bind to that cpu. That cpu’s rq gets locked

for a while. When a new cpu goes online, wake up migration thread. If cpu’s

going up was canceled (this could happen only with cpu hotplugging) stop the

migration thread. When cpu dies, migrate all tasks somewhere else and stop

migration thread. Dead cpu’s runqueue gets locked for a while. SMP only.

int init migration init(void);

Start one migration thread for boot cpu and register cpu migration notifier.
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This thread has the highest priority so that task migration migrate all tasks

happens before everything else.

static int sd degenerate(struct sched domain *sd);

Return true if scheduling domain is not degenerate. Degenerate domain either

contains only one CPU, or if it supports internal load balancing and has only

one group, or if it has set any balacing flag concerning waking processes.

static int sd parent degenerate(struct sched domain *sd, struct

sched domain *parent);

Check whether the parent is not degenerated and compare CPU sets of parent

and sd and flags to find degeneration.

void cpu attach domain(struct sched domain *sd, int cpu);

Attach the scheduling domain to given cpu as its base domain. CPU hotplug

gets locked during execution, so does given cpu’s runqueue lock and irqs are

disabled. Only on SMP.

void init sched build groups(struct sched group groups[], cpumask t

span, int (*group fn)(int cpu));

Build a circular linked list of the groups covered by the given span.

int init migration cost setup(char *str);

This function sets up a migration cost table: unsigned long long

migration cost[MAX DOMAIN DISTANCE]; This table is a function of ’domain

distance’, i.e. the number of steps (when not implicitly given on command

line, this table is boot-time calibrated).

int init setup migration factor(char *str);

Set migration factor, i.e. retrieve the option given on kernel command line.

The migration factor is given in percents and measures the cost of migration.

unsigned long domain distance(int cpu1, int cpu2);

Estimated distance of two CPUs. Return value is the number of domains on

way between CPUs.

void touch cache(void * cache, unsigned long size);

Dirty a big buffer, so that L2 cache will miss and filled with values from this

buffer.

static unsigned long long measure one(void *cache, unsigned long

size, int source, int target);

This function returns the cache-cost of one task migration in nanoseconds.
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unsigned long long measure cost(int cpu1, int cpu2, void *cache,

unsigned int size)

; Measure the cache-cost multiple times for different cache sizes using

measure one() between cpu1 and cpu2. Then measure the cost on each CPU

itself and the difference is the extra cost that the task migration brings.

unsigned long long measure migration cost(int cpu1, int cpu2);

Measure migration cost between two given CPUs.

void calibrate migration costs(const cpumask t *cpu map);

This function calibrates migration costs for a set of CPUs.

int find next best node(int node, unsigned long *used nodes);

Find the next node to include in a given scheduling domain.

cpumask t sched domain node span(int node);

Get a CPU mask for a node’s scheduling domain.

static void init arch init sched domains(void);

Set up domains for each cpu and groups for each node. Assumptions:

CONFIG SMP and not ARCH HAS SCHED DOMAIN

If ARCH HAS SCHED DOMAIN is not defined then struct

sched group sched group cpus[NR CPUS] contains schedule group information for

each cpu and for each CPU is declared struct sched domain cpu domains. Since

these structures are almost never modified but they are fairly often accessed, they’re

copied for each CPU. If CONFIG NUMA defined and ARCH HAS SCHED DOMAIN undefined

then struct sched group sched group nodes[MAX NUMNODES] contains schedule

groups for each node and the struct sched domain contains schedule domains for

each cpu in node domains.

7.1.4 Task State Management and Switching

unsigned long nr running(void);

Return number of running processes.

unsigned long nr uninterruptible(void);

Return number of uninterruptible processes.

unsigned long long nr context switches(void);

Return number of context switches since bootup.
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unsigned long nr iowait(void);

Return number of processes waiting for I/O.

void wait task inactive(task t * p);

Waits for a thread to unschedule. The caller must ensure that the task will

unschedule sometime soon, else this function might spin for a long time. This

function can’t be called with interrupts off, or it may introduce deadlock with

smp call function() if an interprocessor interrupt is sent by the same process

we are waiting to become inactive.

static int wake idle(int cpu, task t *p);

This function

(conditonally compiled under assumption ARCH HAS SCHED WAKE IDLE being

defined) is useful on SMT architectures to wake a task onto an idle sibling if

we would otherwise if we would otherwise wake it onto a busy sibling inside a

scheduling domain. Returns the cpu we should wake onto. The other version

( ARCH HAS SCHED WAKE IDLE undefined) returns just cpu from argument.

static int try to wake up(task t * p, unsigned int state, int sync);

Wakes up a process. The arguments are: thread to be woken up (p), the

mask of task states that can be woken (state) and whether awakening

should be synchronous (sync). Put it on the run-queue if it’s not already

there. The current thread is always on the run-queue (except when the ac-

tual re-schedule is in progress), and as such you’re allowed to do the simpler

current->state=TASK RUNNING to mark yourself runnable without the over-

head of this. Returns failure only if the task is already active.

int fastcall wake up process(task t * p);

Just a wrapper to wake up a process using call to try to wake up() without

synchronisation, state mask to be woken allows to wake stopped, interruptible

or uninterruptible processes. This symbol is exported.

int fastcall wake up state(task t *p, unsigned int state);

Simple wrapper to call try to wake up(p, state, 0);

void fastcall sched fork(task t *p);

Performs scheduler related setup for a newly forked process p. Process

p is forked by current process. Timeslice of current proces is split in

two, one half goes to forked process p. The remainder of the first times-

lice might be recovered by the parent if the child exits early enough.

72



Chapter 7. Process Management and Scheduling

Local IRQs are being disabled inside this function and in the end en-

abled, preemption can also be disabled sometimes. This function also locks

spin lock init(&p->switch lock) but it doesn’t unlock it.

void fastcall wake up new task(task t *p, unsigned long clone flags)

Put the p task to runqueue, wake it up and do some initial scheduler statis-

tics housekeeping that must be done for every newly created process. Locks

task rq lock(current, &flags) and unlocks it in the end.

void fastcall sched exit(task t * p);

Retrieves timeslices from exiting p’s children back to parent. This way the

parent does not get penalized for creating too many threads. Disables local

irqs and locks runqueue of p’s parent during execution.

void prepare task switch(runqueue t *rq, task t *next);

Prepare to switch tasks from rq runqueue to next: locking and architecture

specific things. This should be called with runqueue lock held and interrupts

disabled. When the switch is finished, finish task switch() must be called.

void finish task switch(runqueue t *rq, task t *prev);

This function must be called after the context switch with runqueue lock

held and interrupts disabled. Locks locked by prepare task switch() are

unlocked and architecure specific things are done.

void finish task switch(task t *prev);

Does some clean-up after task-switch. Argument prev is the thread we just

switched away from. We enter this with the runqueue still locked, and

finish arch switch() (done in this function) will unlock it along with doing

any other architecture-specific cleanup actions. Note that we may have delayed

dropping an mm in context switch(). If so, we finish that here outside of

the runqueue lock by calling mmdrop() (Doing it with the lock held can cause

deadlocks, see schedule() for details.)

void schedule tail(task t *prev);

This is the first thing a freshly forked thread must call, the argument prev is

the thread we just switched away from. Calls finish task switch().

static inline task t *context switch(runqueue t *rq, task t *prev,

task t *next);

Switch to the new MM and the new process’s register state. Return previous

task.
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static inline int wake priority sleeper(runqueue t *rq);

If an SMT sibling task has been put to sleep for priority reasons reschedule

the idle task to see if it can now run.

void update cpu clock(task t *p, runqueue t *rq, unsigned long long

now);

Update task’s time since the last tick/switch.

unsigned long long current sched time(const task t *tsk);

Return time since last tick/switched that wasn’t added to p->sched time.

void account user time(struct task struct *p, cputime t cputime);

Account user cpu time to a process.

void account system time(struct task struct *p, int hardirq offset,

cputime t cputime);

Account system cpu time to a process.

void account steal time(struct task struct *p, cputime t steal);

Account for involuntary wait time.

void scheduler tick(int user ticks, int sys ticks);

This function gets called by the timer code, with HZ frequency. We call it

with interrupts disabled. It also gets called by the fork code, when changing

the parent’s timeslices. This CPU’s runqueue lock is locked during execution.

void wakeup busy runqueue(runqueue t *rq);

If an SMT runqueue rq is sleeping due to priority reasons wake it up.

unsigned long smt slice(task t *p, struct sched domain *sd);

Return number of timeslices lost to process running on multi-thread sibling

execution unit. (SMT CPU’s threads don’t run always at same speed, e.g.

shared FPU.. .)

static inline void wake sleeping dependent(int cpu, runqueue t *rq);

Only on SMT architectures, otherwise dummy function. The function resched-

ules idle tasks on cpus within domain of given runqueue. If an SMT sibling

task is sleeping due to priority reasons wake it up now.

static inline int dependent sleeper(int cpu, runqueue t *rq, task t

*p);

Only on SMT architectures, otherwise dummy. If a user task with lower static
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priority than the running task on the SMT sibling is trying to schedule, delay

it till there is proportionately less timeslice left of the sibling task to prevent

a lower priority task from using an unfair proportion of the physical cpu’s

resources. Reschedule a lower priority task on the SMT sibling, or wake it up

if it has been put to sleep for priority reasons.

asmlinkage void sched schedule(void);

This is the main scheduler function. First we manage here gathering interactive

credit of task currently being unscheduled, then we check if we’ve not run out

tasks in our runqueue, if it is so do balance. If all tasks assigned this CPU are in

expired array then switch expired and active array and set best expired priority

to hightest (rq->best expired prio = MAX PRIO;) so that high priority tasks

will be executed first (that also means interactive tasks have some advantage

due to higher dynamic priority). Note: We must be atomic when calling this

function, preemption is being disabled inside and this CPU runqueue’s lock is

held. Exported symbol.

asmlinkage void sched preempt schedule(void);

Only with preemptible kernels. This is is the entry point to schedule() from

preempt enable() if there is need to reschedule. Jump out if irqs are disabled

or preempt count() is non-zero. Exported symbol.

asmlinkage void sched preempt schedule irq(void);

This is improved preempt schedule(), which enables local IRQs before calling

schedule() and disables them afterwards.

int default wake function(wait queue t *curr, unsigned mode, int

sync, void *key);

Try to wake up current task from curr waitqueue. Exported symbol.

void fastcall complete(struct completion *x);

Wake up task from x->wait and increase x->done. x->wait.lock gets locked

(and irqs disabled) before and unlocked (and irqs restored) after waking up a

task. Exported symbol.

void fastcall complete all(struct completion *x);

Wake up task from x->wait and increase x->done by UINT MAX/2 value.

x->wait.lock gets locked (and irqs disabled) before and unlocked (and irqs

restored) after waking up a task. Exported symbol. Exported symbol.
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void fastcall sched wait for completion(struct completion *x)

If completion is not ’done’ then create waitqueue (with WQ FLAG EXCLUSIVE)

and chain x->wait to the tail of this new waitqueue. Set current task’s state to

TASK UNINTERRUPTIBLE and call schedule until we’re done. x->wait.lock is

held inside but unlocked before each schedule() call and locked upon return.

Also unlocked when exiting function. Exported symbol.

unsigned long fastcall sched wait for completion timeout(struct

completion *x, unsigned long timeout);

Improved version of sched wait for completion() that uses

schedule timeout().

unsigned long fastcall sched

wait for completion interruptible(struct completion *x);

Improved version of sched wait for completion() that uses interruptible

sleep.

unsigned long fastcall sched

wait for completion interruptible timeout(struct completion *x,

unsigned long timeout);

Improved version of sched wait for completion() that uses interruptible

sleep and schedule timeout().

void fastcall sched interruptible sleep on( wait queue head t *q );

Create new waitqueue, add current task, chain with q, call schedule() and

remove this new runqueue from q. q’s lock is held while manupulating q.

Exported symbol.

long fastcall sched interruptible sleep on timeout(

wait queue head t *q, long timeout);

Create new waitqueue, add current task, mark it as TASK INTERRUPTIBLE,

chain with q, call schedule timeout() and remove this new runqueue from

q. q’s lock is held while manupulating q. Exported symbol.

void fastcall sched sleep on(wait queue head t *q);

Create new waitqueue, add current task, mark it as TASK UNINTERRUPTIBLE,

chain with q, call schedule() and remove this new runqueue from q. q’s lock

is held while manupulating q. Exported symbol.

long fastcall sched sleep on timeout(wait queue head t *q, long

timeout);
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Create new waitqueue, add current task, mark it as TASK UNINTERRUPTIBLE,

chain with q, call schedule timeout() and remove this new runqueue from

q. q’s lock is held while manupulating q. Exported symbol.

asmlinkage long sys sched yield(void);

Yield the current processor to other threads by moving the calling thread to

the expired array. Realtime tasks will just roundrobin in the active array. If

there are no other threads running on this CPU then this function will return.

This CPU’s runqueue spinlock is locked during execution.

void sched cond resched(void);

Sets current task’s state to TASK RUNNIG and calls schedule(). Exported

symbol.

int cond resched lock(spinlock t *lock);

If a reschedule is pending, drop the given lock, schedule(), and on return

reacquire the lock. Exported symbol.

int sched cond resched softirq(void);

Conditionally reschedule with SoftIRQs enableed. Exported symbol.

void sched yield(void);

Yield the current processor to other threads. It is done via marking thread

runnable and calls sys sched yield(). Exported symbol.

void sched io schedule(void);

Mark this task as sleeping on I/O. Increment rq->nr iowait so that process

accounting knows that this is a task in I/O wait state. Don’t do that if it is

a deliberate, throttling IO wait (this task has set its backing dev info: the

queue against which it should throttle). Exported symbol.

long sched io schedule timeout(long timeout);

The same as io schedule but limited with timeout.

asmlinkage long sys sched rr get interval(pid t pid, struct timespec

user *interval);

Return the default timeslice od a process into the user-space buffer. A value

of 0 means infinity. tasklist lock is locked during execution.

static inline struct task struct *eldest child(struct task struct

*p);

Return the eldest child of a task.
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static inline struct task struct *older sibling(struct task struct

*p);

Return older sibling of a task.

static inline struct task struct *younger sibling(struct task struct

*p);

Return younger sibling of a task.

static void show task(task t * p);

Print (via printk) some information about given task: pid, parent’s pid, sib-

lings, eldest child process. . .

void show state(void);

Calls show task on all threads of all processes. tasklist lock is being held

during execution.

void devinit init idle(task t *idle, int cpu);

Move idle task to given cpu and make it idle (however the task is still marked

TASK RUNNING). Then the task si rescheduled. Both source and destination

runqueues are locked and irqs are disabled.

void might sleep(char *file, int line);

Helper funtion that writes warning about call to sleeping function from in-

valid context and dumps stack if IRQs are disabled and preemption disabled

and kernel not locked. Simple timeout is used to prevent message flooding.

Exported symbol. Only when CONFIG DEBUG SPINLOCK SLEEP defined.

void init sched init smp(void);

Call arch init sched domains() and sched domain debug() on SMP, oth-

erwise dummy function.

void init sched init(void);

Initialize runqueues and the first thread. The boot idle thread does lazy MMU

switching as well

int in sched functions(unsigned long addr);

Return true if addr is in memory range belonging to scheduler functions and

false otherwise.

task t *curr task(int cpu);

Return the current task for given cpu
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void set curr task(int cpu, task t *p);

Set the current task for a given cpu.

signed long sched schedule timeout(signed long timeout);

Sleep current task until timeout expires.

signed long sched schedule timeout interruptible(signed long

timeout)

Mark task as TASK INTERRUPTIBLE and sleep with timeout.

signed long sched schedule timeout uninterruptible(signed long

timeout)

Mark task as TASK UNINTERRUPTIBLE and sleep with timeout.

int idle cpu(int cpu);

Is a given cpu idle currently ? Exported symbol.

inline int task curr(const task t *p);

Is this task currently being executed on a CPU ?

7.2 Process Forking

Creation of new processes under unix-like operating systems is done by fork()

system call. Linux also supports clone() syscall and since 2.6.16 also unshare()

to unshare some parts of process context shared since clone().

The simplest operation is fork(), which forks one process into two processes.

Child receives zero return value and parental process receives the PID of the child.

The clone() syscall offers more options: the processes may share memory, file

descriptors, signal handlers. . . complete list is in <linux/sched.h>.

Almost everything that can be shared using clone() can be later unshared by

unshare() syscall, but some parts are not yet implemented.

Memory for task structures is allocated from slab caches: task struct, sig-

nal struct, sighand struct, files struct, fs struct, vm area struct and mm struct to

speed up memory allocations.

int nr threads;

Number of threads, the idle ones do not count. Protected by

write lock irq(&tasklist lock).

int max threads;

The maximal number of threads. Should be at least 20 (to be safely able to
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boot), however the default maximum is so big that the thread structures can

take up to half of memory.

unsigned long total forks;

Total number of forks done since boot.

unsigned long process counts=0;

Defined per CPU, holds number of processes for each CPU3.

rwlock t tasklist lock;

Read-write lock protecting access to task list and nr threads. Exported sym-

bol.

int nr processes(void);

Counts total number of processes (the sum of process counts for each CPU).

void *alloc task struct()

Allocate memory for task struct. Return value is pointer to allocated mem-

ory or NULL pointer in case of failure.

void free task(struct task struct *tsk);

Free memory allocated by task struct and its thread info.

void put task struct cb(struct task struct *tsk);

This is the RCU callback to free tsk. Warn when task is dead, zombie or

current.

void put task struct(struct task struct *t);

Decrease reference counter and free task if counter has dropped to zero.

void init fork init(unsigned long mempages);

Create a slab on which task structs can be allocated and set maximum

number of threads so that thread structures can take up to half of memory,

but at least 20 threads. Set the resource current and maximal resource limit

to max threads/2

static struct task struct *dup task struct(struct task struct *orig);

Duplicate task struct and its thread info. Return NULL if memory alloca-

tion fails. If needed save FPU state and disable preemption while preparing

to copy. Increase task struct->usage by 2 (one for us, one for whoever does

the release task() (usually parent)).

3As far as I found this is not changed when process migrates from between CPUs, for exact

numbers look at the runqueues
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static inline int dup mmap(struct mm struct *mm, struct mm struct

*oldmm);

Write-lock oldmm->mmap sem semaphore, duplicate mm struct and initialize

some fields and memory region descriptors of a mm struct. Add it to the

mmlist after the parent (mmlist lock spinlock held). If VM DONTCOPY is set

then don’t copy anything. Otherwise copy mem policy, page table entries etc4.

Locks mm->page table lock and ->vm file->f mapping->i mmap lock. Re-

turn zero on success. Note: this function is fully implemented only with

CONFIG MMU, otherwise return 0.

static inline int mm alloc pgd(struct mm struct *mm);

Allocate page directory structure, fill it with zeroes and if something fails

return -ENOMEM otherwise zero. Note: this function is fully implemented only

with CONFIG MMU, otherwise return 0.

static inline void mm free pgd(struct mm struct *mm);

Free page directory structure. Note: this function is fully implemented only

with CONFIG MMU, otherwise it is an empty macro.

void *allocate mm();

Allocate a struct mm struct from slab cache mm cachep.

void free mm(struct mm struct *mm);

Free previously allocated struct mm struct.

static struct mm struct *mm init(struct mm struct *mm);

Initialize mm struct: set number of users to one, unlock locks, and try to

allocate page directory. If the last fails free mm memory (note: this memory is

not allocated in this function) and return NULL otherwise mm.

struct mm struct *mm alloc(void);

Allocate, fill with zeros and initialize an mm struct. Return NULL on failure

and pointer to mm struct on success.

void fastcall mmdrop(struct mm struct *mm);

Called when the last reference to the mm is dropped: either by a lazy thread

or by mmput. Free the page directory and the mm. Warn when mm is init mm,

i.e. do not try to free the anchor of mmlist list.

4Too complex and too internal to spent more time on this function
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void mmput(struct mm struct *mm);

Decrement the use count and release all resources for an mm, exit all asyn-

chronous I/O operations and release all mmaps. Spinlock mmlist lock is held

while mm is removed and mmlist nr decreased.

struct mm struct *get task mm(struct task struct *task);

Return a struct mm struct for given task. This function also increases ref-

erence counter for return mm struct. NULL value is returned if flags con-

tain PF BORROWED MM or if the task has no mm. The proper way to release a

mm struct acquired by this function is mmput(). task->alloc lock is used

to ensure mutual exclusion inside this function.

void mm release(struct task struct *tsk, struct mm struct *mm);

This function is called after a mm struct has been removed from the current

process. Notify parent sleeping on vfork() (i.e. complete tsk->vfork done

completion, this disables IRQs and locks tsk->vfork done->lock while com-

pleting).

struct mm struct *dup mm(struct task struct *task);

Allocate a new mm struct and copy from task’s mm.

static int copy mm(unsigned long clone flags, struct task struct

*tsk)

Copy mm struct from current task to task tsk. If flag CLONE VM is set then

just set pointers tsk->mm and tsk->active mm to current->mm and return 0.

If CLONE VM si not set, then allocate memory for new mm struct and copy the

old one to it. Then call mm init() on the new copy, initialize new context and

call dup mmap(). If anything of these fails, return non-zero value otherwise

return zero.

static inline struct fs struct * copy fs struct(struct fs struct

*old)

Allocate memory for new struct fs struct, increase use count, set lock as

RW LOCK UNLOCKED and copy umask. The following is done with lock held for

reading: copy info about root mount point and current working directory.

If alternate root mount point is set, then copy it else make it NULL. Return

pointer to newly allocated structure. If allocation failed in the beginning then

return NULL.

struct fs struct *copy fs struct(struct fs struct *old);

Just a wrapper to call copy fs struct(). Exported symbol.
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static inline int copy fs(unsigned long clone flags, struct

task struct *tsk);

Copy struct fs struct from current task to task->fs. If CLONE FS is given

then just increase usage counter in current->fs->count.

static int count open files(struct files struct *files, int size);

Counts the number of open files by files struct.

struct files struct *alloc files();

Allocate a new structure files struct, set it’s reference counter to one and

initialize some of structure’s members: next file descriptor, maximal count of

FDs. . . and RCU head.

struct files struct *dup fd(struct files struct *oldf, int *errorp

Allocate a new files struct and copy contents from oldf.

static int copy files(unsigned long clone flags, struct task struct

*tsk);

If clone flags contains CLONE FILES then return with zero. Other-

wise allocate memory, set next file descriptor to 0 and spinlock state to

SPIN LOCK UNLOCKED. Also set maximal number of file descriptors, copy rel-

evant data fields and increase usage counter for file descriptors. Spinlock

current->files->lock is held inside while copying.

int unshare files(void);

This is helper to call copy files(), which isn’t exported. Exported symbol.

void sighand free cb(struct rcu head *rhp);

This is callback to free struct sighand struct containing given rcu head.

void sighand free(struct sighand struct *sp);

Free RCU-protected struct sighand struct.

static inline int copy sighand(unsigned long clone flags, struct

task struct *tsk);

If flags contain either CLONE SIGHAND or CLONE THREAD increase usage counter

and return, otherwise allocate memory for sighand struct, initialize spinlock,

set usage counter to 1 and copy action from current->sighand->action.

static inline int copy signal(unsigned long clone flags, struct

task struct *tsk);

If flags contain CLONE THREAD increase usage counter and return, otherwise
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allocate memory for struct signal struct and fill initial values, then copy

process group, tty and session. If the memory allocation fails return -ENOMEM,

otherwise return zero.

static inline void copy flags(unsigned long clone flags, struct

task struct *p);

Clear PF SUPERPRIV and set PF FORKNOEXEC to p->flags. If CLONE PTRACE is

not set, then set p->ptrace to zero to disable ptrace for p.

long sys set tid address(int user *tidptr);

Set pointer to thread ID. This should be called from user space.

struct task struct *copy process(unsigned long clone flags, unsigned

long stack start, struct pt regs *regs, unsigned long stack size,

int user *parent tidptr,int user *child tidptr);

This creates a new process as a copy of the old one, but does not actually

start it yet. It copies the registers, and all the appropriate parts of the pro-

cess environment (as per the clone flags). The actual kick-off is left to the

caller. In the beginning check corectness of the flags, such as that thread

groups must share signals, detached threads can only be started from within

group, if signal handlers are shared then VM must be implicitly shared too

etc. Duplicate task struct and then check whether we’re not going to cross

resource limit (max. number of processes, usually set so that task struct

take no more than half of memory, but never less than 20). Then increase

appropriate counters. Mark the process as yet not executed and copy flags.

If flag CLONE IDLETASK is not set (note: this is only for kernel only threads)

then allocate a pid, if needed (flag CLONE PARENT SETTID)set tid in the par-

ent. Initialize list of children and list of siblings and reset timers. Then copy

mempolicy and afterwards via security task alloc() and audit alloc()

(system call auditing) check the operation. If it is ok then copy semaphores,

files, fs, signals, memory structs, namespace and thread information. Set TID

and whether clear TID on mm release. Child also inherits execution from

parent process. Now perform scheduler related setup for our newly forked

process. Lock tasklist lock for writing and check for SIGKILL signal (e.g.

it is possible here to get SIGKILL from OOM kill). If CLONE PARENT flag is set

then reuse parent’s parent as our parent. If CLONE THREAD flag is set then lock

current->sighand->siglock and check for group exit. Copy thread group ID

from parent and also group leader and unlock current->sighand->siglock.

Attach PID (if the process is a thread group leader, also attach TGID, PGID
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and SID). Increase number of threads running nr threads and finally release

write-locked tasklist lock. On success return zero, otherwise free what we

allocated and return corresponding value.

struct pt regs *idle regs(struct pt regs *regs);

Zero whole structure and return pointer to it.

task t *fork idle(int cpu);

Clone the process with zeroed registers and no stack start and set it as an idle

process for given cpu. Then the process is unhashed from list of processes.

This function is used only during SMP boot.

static inline int fork traceflag(unsigned clone flags);

Extract trace flags from argument.

long do fork(unsigned long clone flags, unsigned long stack start,

struct pt regs *regs, unsigned long stack size, int user

*parent tidptr, int user *child tidptr);

This is the main fork routine. Check the trace flags modify if needed. Copy

the task, but check the pid for quick exit (OOM kill, etc). If CLONE VFORK is

set then initialize completion and set vfork done to this completion for the

new task. If task is traced or stopped, start with immediate SIGSTOP. If task

is not stopped, check whether it is a thread or a task and wake it up using

appropriate call. In case of stopped task get CPU (this disables preempt)

and set its internal state to TASK STOPPED, move to cpu we get and put the

cpu back (i.e. enable preempt). Increase number of forks done (for statistical

reasons). If task is traced, notify the tracer. If the fork was initiated by the

vfork() syscall, wait for completion of task and notify the tracer when the

task has exited. If it was not vfork() then set thread flag to reschedule. If

everything went all right, return pid.

void init proc caches init(void);

Initialize signal cachep, sighand cachep, files cachep, fs cachep,

vm area cachep and mm cachep.

void check unshare flags(unsigned long *flags ptr);

Check constraints on flags passed to unshare() syscall: unsharing a thread

implies unsharing VM, unsharing VM implies unsharing signal handler. Un-

sharing signal handlers from task created using CLONE THREAD implies unshar-

ing a thread. Finally unsharing a namespace implies unsharing filesystem

information.
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int unshare thread(unsigned long unshare flags);

Return -EINVAL no CLONE THREAD flag and zero otherwise. Unsharing of tasks

created with CLONE THREAD is not supported yet.

int unshare fs(unsigned long unshare flags, struct fs struct

**new fsp);

If CLONE FS flag is set, unshare file system information (represented by struct

fs struct).

int unshare namespace(unsigned long unshare flags, struct namespace

**new nsp, struct fs struct *new fs);

Unshare namespace if it’s requested by CLONE NEWNS flag.

int unshare sighand(unsigned long unshare flags, struct

sighand struct **new sighp);

Unshare sighand struct (signal handlers) if CLONE SIGHAND is set.

int unshare vm(unsigned long unshare flags, struct mm struct

**new mmp);

Unshare VM if CLONE VM is set.

int unshare fd(unsigned long unshare flags, struct files struct

**new fdp);

Unshare file descriptors if CLONE FILES is set.

int unshare semundo(unsigned long unshare flags, struct sem undo list

**new ulistp);

This function will unshare System V semaphore once it will be implemented.

The flag for this operation is CLONE SYSVSEM.

long sys unshare(unsigned long unshare flags);

This is implementation of the unshare() syscall, which allows a process to

’unshare’ part of its context that was originally shared since clone(). This

function modifies task struct *current and lock its current->alloc lock.

7.3 Process Termination

Whenever a process calls exit() syscall, multiple things occur: The kernel must

decide what to do with orphaned children processes, whom to inform about death,

whether to something with allocated memory before releasing it etc. All references

to process must be removed from all kernel structures.
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static void unhash process(struct task struct *p);

Detach PID from given task p and decrease number of threads in system. If

this thread was thread group leader then detach PGID and SID. tasklist lock

should be held before call to this function.

void release task(struct task struct * p);

Release entry in /proc, structures for signal handling and unhash process.

Stop any ptrace. If this thread is the last non-leader member of a thread

group and the leader is zombie, then notify the group leader’s parent process

if it wants notification. Locks used: tasklist lock and p->proc lock.

void unhash process(struct task struct *p);

Only used for SMP init, unhashes proc entry and process and locks

p->proc lock and tasklist lock (together with disabling IRQs).

int session of pgrp(int pgrp);

This function checks the process group, but falls back on the PID if no satis-

factory process group is found. tasklist lock is held for reading.

static int will become orphaned pgrp(int pgrp, task t *ignored task);

Determine if a process group is orphaned. Orphaned process groups are not

to be affected by terminal-generated stop signals. Newly orphaned process

groups are to receive a SIGHUP and a SIGCONT.

int is orphaned pgrp(int pgrp);

Lock tasklist lock, check whether process group will become or-

phaned, unlock the lock and return appropriate value (gotten from

will become orphaned pgrp()).

static inline int has stopped jobs(int pgrp);

Return non-zero value if there exists any thread in process group that is not

TASK STOPPED or it’s being ptraced and its exit code is not one of following:

SIGSTOP, SIGTSTP, SIGTTIN or SIGTTOU.

void reparent to init(void);

Reparent the calling kernel thread to the init task (i.e. stop ptracing of this

process, set parent and real parent to child reaper, which should represent

init task, set the exit signal to SIGCHLD so we signal init on exit, set nice

value to 0 (only with SCHED NORMAL), copy resource limit from init task,

switch uid to INIT USER and increase reference count for this structure.
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If a kernel thread is launched as a result of a system call, or if it already exits,

it should generally reparent itself to init so that it is correctly cleaned up on

exit. The various task state such as scheduling policy and priority may have

been inherited from a user process, so we reset them to sane values here.

Note: the reparent to init() gives the caller full capabili-

ties. tasklist lock locked for writing while reparenting, corectness of the

operation is checked with security task reparent to init().

void set special pids(pid t session, pid t pgrp);

If task process’s SID is not session then detach from the old session and

attach to session. If current task’s process group is not pgrp then detach

from the old one and attach to pgrp. This function does not acquires any

locks or tampers with IRQs, see set special pids().

void set special pids(pid t session, pid t pgrp);

Lock

tasklist lock for writing with disabling IRQs, call set special pids()

and restore IRQs.

int allow signal(int signal);

Allow given signal: the signal is enabled by exluding from set of blocked sig-

nals (current->blocked). Kernel threads handle their own signals, so prevent

dropping this signal or converting it to SIGKILL.

This operation is protected with current->sighand->siglock spinlock and

IRQs are disabled. Return value is zero if the sig is a valid signal number,

-EINVAL is reported otherwise. Exported symbol.

int disallow signal(int sig);

Disallows a signal by including its number sig into set of blocked signals

(current->blocked). Spinlock current->sighand->siglock is held and

IRQs are disable, protecting the body of the function. Return value is zero

if the sig is a valid signal number, otherwise -EINVAL is returned. Exported

symbol.

void daemonize(const char *name, ...);

Detach thread from userspace. If we were started as result of loading a module,

close all of the user space pages. We don’t need them, and if we didn’t close

them they would be locked in memory. Then block and flush all signals.

Clone fs struct from init, increase it’s usage counter and close all open file
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descriptors and steal from init. Finally reparent thread to init(). This puts

everything required to become a kernel thread without attached user resources

in one place where it belongs. Locking is done only in calls to subfunctions.

Exported symbol.

static inline void close files(struct files struct * files);

Enumerate through all open files in files and close all of them.

struct files struct *get files struct(struct task struct *task);

With task->alloc lock held increase task->files->count reference

counter. Return task->files.5

void fastcall put files struct(struct files struct *files);

Give up using files: atomicaly decrease and test files->count. If the usage

counter dropped to zero, close all file descriptors, free file descriptor arrays

and other memory used by this structures. Exported symbol.

static inline void exit files(struct task struct *tsk);

Give up using tsk->files and set it to NULL while holding lock

task->alloc lock. This function calls put files struct() to decrement

reference counter and eventually free memory.

void exit files(struct task struct *task);

Just a wrapper to call exit files(task).

static inline void put fs struct(struct fs struct *fs);

Decrement reference counter of fs and eventually free memory structures used

by it. If we’re the last user and decremented it to zero, we don’t need to lock

anything.

void put fs struct(struct fs struct *fs);

Wrapper to call put fs struct(fs).

static inline void exit fs(struct task struct *task);

Set task->fs to NULL value, decrease reference counter to it and potentially

free the memory. task->alloc lock is held while task->fs is being modified.

void exit fs(struct task struct *task);

Wrapper to call exit fs(tsk). Exported symbol.

5This function is not an exported symbol, but the following void fastcall

put files struct() is.
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static inline void exit mm(struct task struct *task);

Stop using task->mm, set it to NULL. This function serializes with any possi-

ble pending coredump. mm->mmap sem and task->alloc lock locks are used.

Reference counter to task->mm is decremented and memory is potentially re-

leased if we were the last user. Turn us into a lazy TLB process if we aren’t

already.

Warning: this function may sleep, it’s implementation uses semaphores.

void exit mm(struct task struct *tsk);

Wrapper to call exit mm(tsk). Exported symbol.

static inline void choose new parent(task t *p, task t *reaper,

task t *child reaper);

Reparent task p to parent child reaper if p is reaper of reaper is zombie,

otherwise reparent to reaper.

static inline void reparent thread(task t *p, task t *father, int

traced);

Move the child from its dying parent to the new one, modify appropriate struc-

tures needed for ptracing and if we’ve notified the old parent about this child’s

death (state == TASK ZOMBIE, thread group empty. . .) then also notify the

new one. If p is in other process group than father, and it was the only

connection outside, the p’s process group is now orphaned: if there are any

stopped jobs, send SIGHUP and SIGCONT to the process group

Note: this function is called from forget original parent(), which is called

from exit notify() with tasklist lock write-locked.

static inline void forget original parent(struct task struct *father,

list head *to release);

When we die, we re-parent all our children. Try to give them to another thread

in our thread group, and if no such member exists, give it to the global child

reaper process (child reaper i.e. init task).

static void exit notify(struct task struct *tsk);

Make init inherit all the child processes and check to see if any process groups

have become orphaned as a result of our exiting, and if they have any stopped

jobs, send them a SIGHUP and then a SIGCONT. If something other than our

normal parent is ptracing us, then send it a SIGCHLD instead of honoring

exit signal, which has special meaning only to real parent. Possibly used
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locks: tasklist lock and tsk->sighand->siglock, IRQs get enabled in the

end.

asmlinkage NORET TYPE void do exit(long code);

This function never returns as its purpose is to exit task. First check and

warn, if we’re trying to kill interrupt handler, idle task or init. If the task has

I/O context, release it. Do profiling and process accounting if needed and free

resources. If we’re session leader then dissociate with current tty. On NUMA

also free memory policy. As the last thing call schedule(). Exported symbol.

NORET TYPE void complete and exit(struct completion *comp, long

code);

Complete completion comp and exit current task using do exit(). Exported

symbol.

asmlinkage long sys exit(int error code);

Wrapper to call do exit().

task t fastcall *next thread(const task t *p);

Return next thread in group. Exported symbol.

NORET TYPE void do group exit(int exit code);

Take down every thread in the group. This is called by fatal sig-

nals as well as by sys exit group(). This kills every thread in the

thread group. Note that any externally wait4()-ing process will get

the correct exit code, even if this thread is not the thread group

leader. If current->signal->group exit is non-zero, the exit code used is

current->signal->group exit code instead of exit code argument. Used

locks: tasklist lock, current->sighand->siglock.

asmlinkage void sys exit group(int error code);

Wrapper to call do group exit().

static int eligible child(pid t pid, int options, task t *p);

This function is used in sys wait4() to check whether process pid is eligi-

ble to wait for if given options. We process negative/zero pid according to

description of sys wait4().

Wait for all children (clone6 or not) if WALL is set, otherwise, wait for clone

children only if WCLONE is set, otherwise wait for non-clone children only.

6Note: A clone child here is one that reports to its parent using a signal other than SIGCHLD.
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int wait noreap copyout(task t *p, pid t pid, uid t uid, int why, int

status, struct siginfo user *infop, struct rusage user

*rusagep);

Fill struct siginfo and struct rusage in user space. This is useful for

wait3(), wait4() and waitid() syscalls. Return zero on success.

static int wait task zombie(task t *p, unsigned int user

*stat addr, struct rusage user *ru);

static int wait task zombie(task t *p, int noreap,struct siginfo

user *infop, int user *stat addr, struct rusage user *ru);

This function handles sys wait4() work for one task in state TASK ZOMBIE.

We hold read lock(&tasklist lock) on entry. If we return zero, we still hold

the lock and this task is uninterestingi and we have filled user space structures.

If we return nonzero, we have released the lock and the system call should

return. We try to move the task’s state to TASK DEAD, if we fail this task is

not interesting to us. Then check whether we’re not in a race with ptraced

thread dying on another processor, if it is so then jump out. In this phase we

are sure that this task is interesting, and no other thread can reap it because

we set its state to TASK DEAD. We can unlock tasklist lock now and check

the state of resources.

If p->real parent != p->parent then write lock tasklist lock, unlink

ptrace for task p and set p’s state to TASK ZOMBIE.

If this is not detached task, notify the parent. If it’s still not detached after

that, don’t release it now. Finally unlock the tasklist lock. And done the

releasing potentially we needed after notifying parent before unlocking.

static int wait task stopped(task t *p, int delayed group leader,

unsigned int user *stat addr, struct rusage user *ru);

Handle sys wait4() work for one task in state TASK STOPPED. We hold

read lock(&tasklist lock) on entry.

If we return zero, we still hold the lock and this task is uninteresting and the

user space structures have been filled with data.

If we return nonzero, we have released the lock and the system call should

return.

If group stop is in progress and p is the group leader return zero. Now we are

pretty sure this task is interesting. Make sure it doesn’t get reaped out from
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under us while we give up the lock and then examine it below, so increase its

usage using get task struct(p). We don’t want to keep holding onto the

tasklist lock while we try to get resource usage and acquire data from user

space as this could possibly cause page faults. Relock task from read to write

lock and try to update p’s state with TASK STOPPED.

If we failed the task resumed and then died, so let the next iteration catch it

in TASK ZOMBIE7.

We check during next step whether exit code is zero, if it’s sok then other

function got it first or it resumed or it resumed and then died. So unlock

tasklist lock, decrease p’s usage counter and read-lock tasklist lock and

return with return value of zero. As the next step we move to end of parent’s

list to avoid starvation and unlock tasklist lock.

static int wait task continued(task t *p, int noreap, struct siginfo

user *infop, int user *stat addr, struct rusage user *ru);

This function handles do wait() work for one task in a live, non-stopped

state. This function must be called with read lock(&tasklist lock) ac-

quired. Zero return value indicates that this task is not interesting and lock

is still acquired.

Non-zero return value means that the lock has been released and the syscall

should return to user space (this non-zero return value is the pid).

int my ptrace child(struct task struct *p);

Return true if task p is ptraced by someone and the structures are currently

being modified.

long do wait(pid t pid, int options, struct siginfo user *infop,

int user *stat addr, struct rusage user *ru);

This suspends execution of the current process until a child as specified by

the pid argument has exited, or until a signal is delivered whose action is to

terminate the current process or to call a signal handling function.

Implementation of this function declares its own waitqueue, which is

added to current->wait chldexit and change current’s task state to

TASK INTERRUPTIBLE.

For each child of current task check if the child is eligible to wait for, if it

is not so, go on with next child. Based on the state of this child decide to

7exit code might already be zero here if it resumed and did exit(0). The task itself is dead

and it won’t touch exit code again, other processors in this function are locked out.
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use either wait task stopped() for TASK STOPPED or wait task zombie()

for TASK ZOMBIE.

If the waiting in one of these two functions finished successfully (i.e. return

value is non-zero), the tasklist lock is unlocked and we can remove our

waitqueue from the current->wait chldexit and return the PID of the child

that exited as return value. If we didn’t find any eligible child, we try to look

for one in list of ptraced children. If we suceeded then unlock tasklist lock

and based on options decide whether we found the child we were looking for or

whether we need to restart the whole search, in which case we call schedule()

before restarting the search.

Return value is the PID of the process we waited for or -ECHILD to indicate

that there is no child process we can wait for. -ERESTARTSYS means that this

syscall woulb block and WNOHANG option has been set.

asmlinkage long sys waitid(int which, pid t pid, struct siginfo

user *infop, int options, struct rusage user *ru);

Implementation of waitid() syscall. do wait() is called after a batch of

checks. See man 2 waitid.

asmlinkage long sys wait4(pid t pid, int user *stat addr, int

options, struct rusage user *ru);

Implementation of waitid() syscall. do wait() is called after a batch of

checks. See man 2 wait4.

asmlinkage long sys waitpid(pid t pid, unsigned user *stat addr,

int options);

Wrapper to call sys waitpid4(). sys waitpid() remains for compatibility.

waitpid() should be implemented by calling sys wait4() from libc. See

man 4 wait.

7.4 Waitqueues

Sometimes a task gets into state that forbids later execution until some event hap-

pens. Implementation using busy-loops is not effective8, so the task is inserted

into structure called wait queue t and delayed for later execution. Developer can

8It’s true that busyloops are used in kernel, e.g see spinlock implementation. However spinlocks

are held only for a short time, delaying task using waitqueue can cause bigger overhead: the need

for context switching, invalidating cpu cache etc.
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decide whether to use one of the already declared wait queues or define his own

using macro DECLARE WAIT QUEUE(name). This macro also declares variable of

name name, in case a variable was declared before assign to that variable macro

WAITQUEUE INITIALIZER(name, tsk).

The items held in wait queue are represented by structure wait queue head t,

which can be declared using macro DECLARE WAIT QUEUE HEAD(name) or initial-

ized using WAIT QUEUE HEAD INITIALIZER(name). Another option is to initialize

wait queue head t using func-

tion static inline void init waitqueue head(wait queue head t *q), func-

tionality is the same. wait queue t can be initialized with static inline

void init waitqueue entry(wait queue t *q, struct task struct *p), this

will use

the default wake function – for alternative wake function use static inline void

init waitqueue func entry(wait queue t *q, wait queue func t func).

static inline int waitqueue active(wait queue head t *q);

Check whether task list is empty and if it is so return true, otherwise return

false.

void fastcall add wait queue(wait queue head t *q, wait queue t

*wait);

Clear exclusive flag (WQ FLAG EXCLUSIVE) from wait and add wait to the wait

queue q. Spinlock q->lock is held and IRQs disabled while adding to q. Ex-

ported symbol.

void fastcall add wait queue exclusive(wait queue head t *q,

wait queue t *wait);

Set exclusive flag (WQ FLAG EXCLUSIVE) to wait and add wait to the wait

queue q. The exclusive flag means that the process will be woken alone and

no other process will be woken up. Spinlock q->lock is held and IRQs disabled

while adding q. Exported symbol.

void fastcall remove wait queue(wait queue head t *q, wait queue t

*wait);

Remove wait from wait queue q, q’s lock is held and IRQs disabled while

removing. Exported symbol.

static inline void add wait queue(wait queue head t *head,

wait queue t *new);
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Add new to the wait queue head head, to compare with add wait queue: this

function does not manipulate flags and does not make us of any spinlock.

static inline void add wait queue tail(wait queue head t *head,

wait queue t *new);

Add new to the tail of head, no locks are used or flags changed. Used for

wake-one threads.

static inline void remove wait queue(wait queue head t *head,

wait queue t *old);

Remove old from the wait queue head.

int default wake function(wait queue t *curr, unsigned mode, int

sync, void *key);

Try to wake up current task from curr wait queue. Exported symbol.

static void wake up common(wait queue head t *q, unsigned int mode,

int nr exclusive, int sync, void *key);

The core wakeup function. Non-exclusive wakeups (nr exclusive == 0) just

wake everything up. If it’s an exclusive wakeup (nr exclusive == small +

ve number) then we wake all the non-exclusive tasks and one exclusive task.

There are circumstances under which we can try to wake a task which has

already started to run but is not in state TASK RUNNING. try to wake up()

returns zero in this rare case, and we handle it by continuing to scan the

queue.

void fastcall wake up(wait queue head t *q, unsigned int mode, int

nr exclusive, void *key);

Wake up threads blocked on a waitqueue q. Lock q->lock is locked and irqs

distabled during execution. Exported symbol.

void fastcall wake up locked(wait queue head t *q, unsigned int

mode);

Same as wake up() but called with the spinlock in wait queue head t held.

void fastcall wake up sync(wait queue head t *q, unsigned int mode,

int nr exclusive);

Wake up threads blocked on a waitqueue. The sync wakeup differs that the

waker knows that it will schedule away soon, so while the target thread will

be woken up, it will not be migrated to another CPU - ie. the two threads

are synchronized with each other. This can prevent needless bouncing between
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CPUs. On UP it can prevent extra preemption. Lock q->lock is locked during

execution. Exported symbol.

Some of the following macros are using previous function for waking up:

wake up(x)

Wake up one exclusive TASK UNINTERRUPTIBLE or TASK INTERRUPTIBLE task.

wake up nr(x, nr)

Wake

up nr number of exclusive TASK UNINTERRUPTIBLE or TASK INTERRUPTIBLE

tasks.

wake up all(x)

Wake up all TASK UNINTERRUPTIBLE or TASK INTERRUPTIBLE tasks.

wake up all sync(x)

Synchronously wake up all TASK UNINTERRUPTIBLE or TASK INTERRUPTIBLE

tasks.

wake up interruptible(x)

Wake up one exclusive TASK INTERRUPTIBLE task.

wake up interruptible nr(x, nr)

Wake up nr number of exclusive TASK INTERRUPTIBLE tasks.

wake up interruptible all(x)

Wake up all TASK INTERRUPTIBLE tasks.

wake up locked(x)

Wake up one TASK INTERRUPTIBLE or TASK UNINTERRUPTIBLE task with spin-

lock in x->lock held and IRQs disabled.

wake up interruptible sync(x)

Synchronously wake up one TASK INTERRUPTIBLE task.

These are the new interfaces to sleep waiting for an event, the older ones are

documented later since they’re still in use, but developers should use these new

ones.

DEFINE WAIT(name)

This macro declares a wait queue of given name, initializes it and sets its wake

function to autoremove wake function().
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init wait(wait);

This macro initializes wait queue t and sets its wake function to

autoremove wake function().

wait event(wq, condition)

Declare a wait with autoremove function (i.e. remove task from queue

if task was successfully finished) and add wq to wait queue marked as

TASK UNINTERRUPTIBLE and wait for finishing wq while condition is not ac-

complished.

wait event(wq, condition)

First check the condition, if it is true then jump out else continue with

wait event(wq, condition).

wait event interruptible(wq, condition, ret)

Declare a wait with autoremove function (i.e. remove task from queue

if task was successfully finished) and add wq to wait queue marked as

TASK UNINTERRUPTIBLE and wait for finishing wq while condition is not ac-

complished. Right after checking the condition check for any pending signals.

If there are none try the cycle again otherwise return with -ERESTARTSYS. Note

that if we have successfuly fulfilled the condition we don’t change the ret

value, so it should not be -ERESTARTSYS in the beginning.

wait event interruptible(wq, condition)

Declare int ret = 0; and check condition. If the condition is no true, con-

tinue with wait event interruptible(wq, condition, ret), i.e. this

misses the possibility of bug -ERESTARTSYS in the beginning mentioned in

previous macro.

wait event interruptible timeout(wq, condition, ret)

Declare a wait with autoremove function (i.e. remove task from queue

if task was successfully finished) and add wq to wait queue marked as

TASK UNINTERRUPTIBLE and wait for finishing wq while condition is not ac-

complished. Right after checking the condition check for any pending signals.

If there are none, check the timeout (if we returned after timeout jump out)

and try the cycle again otherwise return with -ERESTARTSYS. Note that if we

have successfuly fulfilled the condition we set the ret to timeout value.

wait event interruptible timeout(wq, condition, timeout)

Declare int ret
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and initialize it to timeout and check condition. If the condition is not

true, continue with wait event interruptible timeout(wq, condition,

ret), i.e. this misses the possibility of bug -ERESTARTSYS in the beginning

mentioned in previous macro (the timeout should be a positive value).

wait event interruptible exclusive(wq, condition, ret)

Declare an exclusive wait with autoremove function (i.e. remove task from

queue if task was successfully finished) and add wq to wait queue marked as

TASK UNINTERRUPTIBLE and wait for finishing wq while condition is not ac-

complished. Right after checking the conditio check for any pending signals.

If there are none try the cycle again otherwise return with -ERESTARTSYS.

Note that if we have successfuly fulfilled the condition we don’t change the

ret value, so it should not be -ERESTARTSYS in the beginning.

wait event interruptible exclusive(wq, condition)

Declare int ret = 0; and check condition. If the condition

is not true, continue with wait event interruptible exclusive(wq,

condition, ret), i.e. this misses the possibility of bug -ERESTARTSYS in

the beginning mentioned in previous macro.

static inline void add wait queue exclusive locked(wait queue head t

*q, wait queue t *wait);

Mark wait as exclusive wake and add wait to the tail of q, no locks are used,

so must be called with the spinlock q->lock held.

static inline void remove wait queue locked(wait queue head t *q,

wait queue t *wait);

Remove wait for wait queue q, must be called with the spinlock q->lock held.

These are the old interfaces to sleep waiting for an event. I enlisted them just

for simplifying analysis of kernel 2.6. They can cause race condition. DO NOT use

them, use the wait event* interfaces above. It’s rumoured that this interfaces are

planned to be removed during 2.7:

void fastcall sched interruptible sleep on( wait queue head t *q);

Create new waitqueue, add current task, chain with q, call schedule() and

remove this new runqueue from q. q’s lock is held while manupulating q.

Exported symbol.

long fastcall sched interruptible sleep on timeout(

wait queue head t *q, long timeout);
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Create new waitqueue, add current task, mark it as TASK INTERRUPTIBLE,

chain with q, call schedule timeout() and remove this new runqueue from

q. q’s lock is held while manupulating q. Exported symbol.

void fastcall sched sleep on(wait queue head t *q);

Create new wait queue, add current task, mark it as TASK UNINTERRUPTIBLE,

chain with q, call schedule() and remove this new runqueue from q. q’s lock

is held while manupulating q. Exported symbol.

long fastcall sched sleep on timeout(wait queue head t *q, long

timeout);

Create new wait queue, add current task, mark it as TASK UNINTERRUPTIBLE,

chain with q, call schedule timeout() and remove this new runqueue from

q. q’s lock is held while manupulating q. Exported symbol.

Wait queues which are removed from the waitqueue head at wakeup time:

void fastcall prepare to wait(wait queue head t *q, wait queue t

*wait, int state);

Clear exclusive flag and if list wait->task list is empty add it to q and

set current task’s state to state, everything while holding q lock and IRQs

disabled. Exported symbol.

void fastcall prepare to wait exclusive(wait queue head t *q,

wait queue t *wait, int state);

Set exclusive flag and if list wait->task list is empty add it to q and set

current task’s state to state, everything while holding q->lock and IRQs

disabled. Exported symbol.

void fastcall finish wait(wait queue head t *q, wait queue t *wait);

Set current task’s state to TASK RUNNING, check if list wait->task list is

empty and if it is not: lock wait queue spinlock and disable IRQs, delete

head, reinitialize wait as new, unlock wait queue spinlock and restore previous

IRQ state. Note: Checking for emptiness is done without any locking using

list empty careful(). Exported symbol.

int autoremove wake function(wait queue t *wait, unsigned mode, int

sync, void *key);

Try to wake up wait, if successful then delete head of wait and reinitialize it

as new. On success return true, otherwise false. Exported symbol.
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7.5 Workqueues and Kernel Threads

Work queues are generic mechanism for defining kernel helper threads for running

arbitrary tasks in process context. Work queues are based on wait queues, but they

are not as frequently used as wait queues.

The most basic structure struct work struct represents work to be done with

following attributes: pending is non-zero if work is currently pending, entry,

pointer to function func that will be called with parameter data, pointer to

cpu workqueue struct this work belongs to and timer to be used with delayed

work.

Another basic structure is cpu workqueue struct. The contents is protected by

its member spinlock lock. The worklist keeps list of work that need to be done.

run depth is used in run workqueue() to check whether recursion is not too deep9

Workqueues are tied together in structure workqueue struct, which contains

per-CPU cpu workqueue struct cpu wq[NR CPUS], name of the workqueue and

list of all per-CPU workqueues in the system.10

Reasonable API to these functions and macros is provided by

<linux/workqueue.h> and kthread.h.

All the per-CPU workqueues on the system are protected by single spinlock

workqueue lock and they’re held in workqueues list. This list is modified on the

fly as the CPUs come and go.

There

are three functions defined in <linux/workqueue.h>: WORK INITIALIZER(n, f,

d), which initializes struct work struct n and sets callback function to f with

argument d. The next is DECLARE WORK(n, f, d), which does the same, but also

declares the variable n. And the last one is PREPARE WORK( work, func, data),

which only sets callback function func and its argument data.

static inline int is single threaded(struct workqueue struct *wq);

Returns true if workqueue struct is singlethreaded.

static void queue work(struct cpu workqueue struct *cwq, struct

work struct *work);

Add work to the tail of queue cwq and save cwq to work->wq data so that we

can easily find which cpu workqueue struct we belong to. Increase counter of

’works’ in queue (the insert sequence), and try to wake up some work from

9The stack available in kernel is limited, 4 or 8 kB on i386
10Note that this list is empty if the workqueues are single-threaded.
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queue. Body of this function is executed with IRQs disabled and cwq->lock

held. Preemption should be disabled before calling this function.

int fastcall queue work(struct workqueue struct *wq, struct

work struct *work);

Queue work on a workqueue wq. Return non-zero if it was successfully added.

The work is queued to the CPU it was submitted by (except when wq is sin-

glethreaded), but there is no guarantee that it will be process by that CPU.

Preemption is disabled during the execution, the work is added if there is

no work pending on wq. If wq is singlethreaded, add work to the first CPU,

otherwise to current one. Exported symbol.

static void delayed work timer fn(unsigned long data);

Queue work (struct work struct *) data to workqueue belonging to cur-

rent CPU ((struct work struct

*) data->wq data->cpu wq[smp processor id()]). If the workqueue is

singlethreaded, add to the first CPU as usual. This is timer callback and

shouldn’t be called directly.

int fastcall queue delayed work(struct workqueue struct *wq, struct

work struct *work, unsigned long delay);

If there is no work/timer pending, store in work->wq data the workqueue we

want to insert the work into. Then set the timer to expire at jiffies+delay

time, set the callback to be delayed work timer fn and add timer. This way

the work will get enqueued in wq as soon as at least delay jiffies pass. Non-zero

return value means success. Exported symbol.

static inline void run workqueue(struct cpu workqueue struct *cwq);

Increase run depth in cpu workqueue struct and check whether the recursion

is not too deep (i.e. more than 3, if it is so bug user and dump stack).

Otherwise cycle through cwq->worklist, remove work structs one by one,

clear pending bit and call work struct->func on each. After completing one

increase the remove sequence counter and wake up work done. Then repeat if

there is more work to be done. Spinlock cpu workqueue lock is held together

with IRQs disabled.

static int worker thread(void * cwq);

Set PF NOFREEZE flag to current process and renice it to -10. Then block and

flush all signals and set mark state of current thread as TASK INTERRUPTIBLE.
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While kthread should stop()11 is false, we stay inside the cycle and try to

perform work enqueued in current CPU’s runqueue. If the list is empty, we

call schedule(). While we’re doing some work, current thread is marked as

TASK RUNNING. In the end (i.e. kthread should stop() is true) mark current

process as TASK RUNNING. Return value is always zero.

static void flush cpu workqueue(struct cpu workqueue struct *cwq);

In the first place we check whether the keventd is not trying to flush its own

queue. If it is so, simply call run workqueue(cwq) to avoid deadlock. In

the other case lock cwq->lock and disable irqs. Prepare cwq->work done to

wait and (after unlocking spinlock and restoring IRQs) call schedule() so

that waiting task could be waken up, after return from schedule() again

lock the spinlock and disable IRQs. Repeat this cwq->insert sequence -

cwq->remove sequence times to do all work enqueued here. When done reini-

tialize the list (cwq->work done) to be empty, unlock spinlock and restore

IRQs.

void fastcall flush workqueue(struct workqueue struct *wq);

Ensure that any scheduled work has run to completion: if workqueue is single-

threaded then continue with flush cpu workqueue() for CPU 0, otherwise

lock cpu hotplug and for each online CPU call flush cpu workqueue(). When

done unlock CPU hotplug and return. This function forces execution of the

workqueue and blocks until completion (typically used in driver shutdown

handlers). It will sample each workqueue’s current insert sequence number

and will sleep until the head sequence is greater than or equal to that. This

means that we sleep until all works which were queued on entry have been

handled, but we are not livelocked by new incoming ones. Exported symbols.

static struct task struct *create workqueue thread(struct

workqueue struct *wq, int cpu);

Create kthread to handle worker thread for given cpu. Also set

insert sequence and remove sequence to zeros and init more work and

work done. Return newly created kthread’s task struct on success (oth-

erwise NULL).

struct workqueue struct * create workqueue(const char *name, int

singlethread);

Create workqueue: allocate memory for workqueue struct, clear it with zeros

11see kthread stop() for details
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and set its name (set pointer, no string copying, don’t free the string mem-

ory too early). Lock the cpu hotplug, we don’t need race condition. In case

we want single-threaded processing of workqueues we just init list wq->list

and call create workqueue thread() and wake up newly created kthread.

In case of multi-thread processing of workqueues we add workqueues to the

list and for each online CPU create one kthread, bind it to CPU and wake

it up. When we’re done with all CPUs, we can unlock cpu hotplug. Return

value on success is the workqueue struct we just created else NULL in the

other case. Exported symbol. Note: <linux/workqueue.h> defines macro

create workqueue(name) as create workqueue((name), 0) and macro

create singlethread workqueue(name) as create workqueue((name),

1).

static void cleanup workqueue thread(struct workqueue struct *wq, int

cpu);

Stop kthread belonging to workqueue of cpu. Locks that workqueue’s spinlock

and disables IRQs while retrieving pointer to task struct (and setting it to

NULL)

void destroy workqueue(struct workqueue struct *wq);

Flush workqueues, lock cpu hotplug and clean workqueue thread for each

cpu up. If using multi-threaded processing of workqueues, hold lock

workqueue lock while deleting wq->list12. Unlock cpu hotplug and free

memory used by wq. Exported symbol.

static struct workqueue struct *keventd wq;

Keventd’s workqueue.

int fastcall schedule work(struct work struct *work);

Queue work to keventd wq. Exported symbol.

int fastcall schedule delayed work(struct work struct *work, unsigned

long delay);

Queue work to keventd wq with delay jiffies delay. Exported symbol.

int fastcall schedule delayed work on(int cpu, struct work struct

*work, unsigned long delay);

Queue a work on given cpu with given delay (in jiffies).

12Remember that for single-threaded processing is this list always empty.
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int schedule on each cpu(void (*func)(void *info), void *info);

Schedule given function on each cpu.

void flush scheduled work(void);

Flush keventd wq workqueue. Exported symbol.

void cancel rearming delayed workqueue(struct workqueue struct *wq,

struct work struct *work);

Kill work and if it resisted then flush the waitqueue.

void cancel rearming delayed workqueue(struct work struct *work);

Kill work or flush keventd workqueue.

int keventd up(void);

Return true if keventd wq is up.

int current is keventd(void);

Return non-zero if current process on this CPU is keventd.

static void take over work(struct workqueue struct *wq, unsigned int

cpu);

Take the work from cpu that went down in hotplug. Lock of workqueue as-

signed to incriminated is held and IRQs are disabled protecting the body of

function. Only with CONFIG HOTPLUG CPU

static int devinit workqueue cpu callback(struct notifier block

*nfb, unsigned long action, void *hcpu);

This is callback for handling CPU hotplug events. Prepare workqueue threads

for CPUs that are preparing to go up, wake thier worker threads when the

CPU goes online or when going up was canceled bind the kthread to current

CPU and clean its workqueue up. When a CPU dies, take its work to current

CPU. Only with CONFIG HOTPLUG CPU

void init workqueues(void);

Register callback for cpu hotplug events and create keventd’s waitqueue

(keventd wq) with name events.

static inline int cancel delayed work(struct work struct *work);

Kill off a pending schedule delayed work(). Note that the work callback

function may still be running on return from cancel delayed work(). Run

flush scheduled work() to wait on it. The function returns whether it has

deactivated a pending timer or not.
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struct task struct *kthread create(int (*threadfn)(void *data), void

*data, const char namefmt[], ...);

This helper function creates and names a kernel thread. The thread will be

stopped: use wake up process() to start it. See also kthread run() and

kthread create on cpu(). When woken, the thread will run threadfn()

with data as its argument. threadfn can either call do exit() directly if

it is a standalone thread for which noone will call kthread stop(), or return

when kthread should stop() is true (which means kthread stop() has been

called). The return value should be zero or a negative error number: it will

be passed to kthread stop(). Returns a task struct or ERR PTR(-ENOMEM).

The namefmt argument contains a printf-style name for the thread. Exported

symbol.

define kthread run(threadfn, data, namefmt, ...)

This macro is wrapper for kthread create() followed by wake up process().

Returns the kthread’s task struct, or ERR PTR(-ENOMEM). Arguments are

identical with those of kthread create().

void kthread bind(struct task struct *k, unsigned int cpu);

Bind a just-created kthread k to given cpu. This function is equivalent to

set cpus allowed(), except that cpu doesn’t need to be online, and the

kthread k must be stopped (ie. just returned from kthread create(). Ex-

ported symbol.

int kthread stop(struct task struct *k);

Stop a kthread k created by kthread create(): set kthread should stop()

for k to return true, wakes it, and waits for it to exit. The threadfn() must

not call do exit() itself if you use this function. This can also be called after

kthread create() instead of calling wake up process(): the thread will exit

without calling threadfn(). The return value is the result of threadfn(), or

-EINTR if wake up process() was never called.13 Exported symbol.

int kthread stop sem(struct task struct *k, struct semaphore *s);

Stop a thread created by kthread create(). The up operation on semaphore

s is used to wake up k.

int kthread should stop(void);

When someone calls kthread stop() on your kthread, it will be woken and

13Thread stopping is done by setting struct kthread stop info kthread stop info, mutex

kthread stop lock serializes multiple kthread stop() calls.
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this will return true. Your kthread should then return, and your return value

will be passed through to kthread stop(). Exported symbol.

static void kthread exit files(void);

Gives up files struct and fs struct and adopt ones from init task.

static int kthread(void * create);

Exit files, block and flush all signals and mark as to be allowed to run on any

CPU by default. Then change the state to TASK INTERRUPTIBLE and wait for

either stop or wake-up. After rescheduling check if someone stopped us, or if

the thread has exited on its own without kthread stop() and deal with this

situation (the return value is zero in this case).

static void keventd create kthread(void * create);

Create new kernel thread via arch-specific call kernel thread() and following

completion, uses kthread().

7.6 PIDs

Processes are identified by PIDs, which are unique numbers. No two processes at

any moment can share PID. On the other side since simple data types are always

able to hold exactly one value from a finite set, PIDs need to be reused. If we

can guarantee that the set is greater than the biggest possible number of running

processes, we can use any free pid at any time.

There are currently four types of PIDs (from <linux/pid.h>):

PIDTYPE TGID

is the process PID as defined in POSIX.1: it’s the ID of whole group of threads

inside one process. Threads inside one process share this ID.

PIDTYPE PID

is the same for standalone processes and for leader threads, it’s different for

threads, i.e. each of six xmms14 threads has it’s own PID.

PIDTYPE PGID

is the process group PID. Process groups are used for distribution of signals,

e.g. processes joined by pipe on a command line will belong to one process

group.

14Xmms is media player application
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PIDTYPE SID

is the session ID. When a tty is lost all processes belonging to affected session

receive SIGHUP followed by SIGCONT.

Following functions are defined in [kernel/pid.c]:

fastcall void free pidmap(int pid);

Mark bit as free in pidmap table.

int alloc pidmap(void);

Try to allocate PID from pidmap, on success return new PID value, on failure

return -1.

fastcall struct pid *find pid(enum pid type type, int nr);

Find struct pid for given type and number nr of pid.

int fastcall attach pid(task t *task, enum pid type type, int nr);

Attach task to PID nr of given type. Always return 0.

static inline int detach pid(task t *task, enum pid type type);

Detach task from PID it belongs to. Return number of PID.

void fastcall detach pid(task t *task, enum pid type type);

Detach PID via detach pid() and check if there is any type of PID asociated

with the number of PID from which we released the task. If there isn’t any

then free pid via free pidmap().

task t *find task by pid(int nr);

Return task that belongs to given PID nr. Exported symbol.

void switch exec pids(task t *leader, task t *thread);

This function switches the PIDs if a non-leader thread calls sys execve().

This must be done without releasing the PID, which a detach pid() would

eventually do.

void init pidhash init(void);

Initialize pid hash, pidhash shift and pidhash size. The pid hash table is

scaled according to the amount of memory in the machine. From a minimum

of 16 slots up to 4096 slots at one gigabyte or more.

void init pidmap init(void);

Allocate memory for pidmap array->page and set PID 0 as used (so that the

first PID used will be 1) and accordingly decrease number of free PIDs. Finally
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associate current task with PID 0 (remember that this is done at boot and the

only thread is the one doing all initializations)

The API (<linux/pid.h> contains prototypes for

attach pid(), detach pid(), find pid(), alloc pidmap(), free pidmap() and

switch exec pids(). Moreover later mentioned macros are declared.

pid task(pids, type) return pointer to struct task struct if elem is

pids[type]->pid list inside task struct.

Enumeration through all PIDs of some type can be done using these two

macros: do each task pid(who, type, task) and while each task pid(who,

type, task). Arguments to these macros should be the same:

do_each_task_pid(tty->session, PIDTYPE_SID, p) {

// do something with whole PID session

} while_each_task_pid(tty->session, PIDTYP_SID, p);

This code was inspired by [drivers/char/tty io.c], because TTY layer is the

biggest user of PIDs.

7.7 Process Accounting for Linux

Process accounting is a way of keeping (recording) accounting information for pro-

cesses regarding (in version 2) user/group id, real user/group id, control terminal,

process creation time, user time, system time, elapsed time, average memory us-

age, characters transfered, blocks read or written, minor and major pagefaults and

number of swaps, exitcode, command name, elapsed time and various flags. Process

accounting is somewhat different from BSD.

Possible flags are AFORK (process forked but didn’t exec), ASU (superuser privi-

leges), ACORE (core dumped), AXSIG (killed by signal) and big/little endianness.

Changes between versions consist mainly of new binary format and parent pro-

cess id was added between version 2 and 3. Later the developers added up to 6

possible logging formats, but without any additions to accounted items.

Process accounting is controlled by acct() syscall and by amount of free space.

Initially it is suspended whenever there is less then 2% of free space and it is resumed

again when the free space crosses 4%. The check is performed every 30 seconds (these

values are controllable by acct parm).

struct acctglbs {

spinlock_t lock;
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volatile int active;

volatile int needcheck;

struct file *file;

struct timer_list timer;

};

Accounting globals are protected by spinlock acct glbs->lock, accounting is

active when acct->active holds nonzero value. The accoung information is being

written to acct->file.

static void acct timeout(unsigned unused);

This function is being called whenever timer says to check free space. It’s

internal function consists of setting acct globals.needcheck to 1, which is

being checked in following function:

static int check free space(struct file *file);

This funcion first checks if free space needs to be checked (see acct timeout)

and if it is so it performs accordingly. Finally it deletes old timer and regis-

ters new one using timeout from ACCT TIMEOUT (actually this macro refers to

acct param[2], which can be changed in runtime).

void acct file reopen(struct file *file);

Close the old accounting file, if any open, and open a new one (if file is non-

NULL). If there is an old file open, it deletes timer and resets the rest of

acct glbs to initial values. If there is a new file open, it sets it as accounting

file in acct globals, sets the accounting to active state and starts new timer.

In the end it does one last accounting and closes old file. acct globals.lock

must be held on entry and exit, altough it is unlocked before last accounting

to old file, closing old file and afterwards it is locked again.

int acct on(char *filename);

Open a file filename for appending and check whether it’s ok to write to this

file. Finally call acct file reopen() to close old file and use new one. This

function returns either 0 if no error occured or -EACCESS if the permissions do

not allow accounting to write to this file or -EIO in case of any other error.

asmlinkage long sys acct(const char user *name);

This system call starts accounting (or stops in case of NULL parameter).

If the name argument is not NULL the file is opened in write and append
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mode. Then the security acct(file) is used to check permission to ac-

count. If we don’t have permission to do accounting, the file is closed. Fi-

nallyacct file reopen(file) is being called with acct globals.lock is be-

ing held.

void auto close mnt(struct vfsmount *m);

Turn off accounting if it’s done on m file system.

void acct auto close(struct super block *sb);

If the accounting is turned on for a file in the filesystem pointed to by sb,

turn accounting off. The acct globals.lock lock is being held during call to

acct file reopen((struct file *)NULL).

static comp t encode comp t(unsigned long value);

Encodes an unsigned longto comp t.

static comp2 t encode comp2 t(u64 value);

If ACCT VERSION is defined as 1 or 2 then this function encodes unsigned 64-bit

integer into comp2 t.

static u32 encode float(u64 value);

If ACCT VERSION is defined as 3 then this function encodes unsigned 64-bit

integer into 32-bit IEEE float.

static void do acct process(long exitcode, struct file *file);

This function does the real work. Caller holds the reference to file. It starts

with checking, whether there’s enough free space to continue the accounting.

If it is so, fill the structure with the needed values as recorded by the various

kernel functions. Then the accounting structure is written to file; resource

limit limiting filesize (FSIZE) is disabled during this operation.

void acct process(long exitcode);

Handle process accounting for an exiting file. This function is just a wrapper

for do acct process() with some checks done first.

void acct update integrals(struct task struct *tsk);

Update tsk->mm integral fields: RSS and VM usage.

void acct clear integrals(struct task struct *tsk);

Clear the tsk->mm integral fields.
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7.8 Thread API

To enumerate through the all threads use following construction:

do_each_thread(g, p) {

// do something with ’p’

} while_each_thread(g, p);

To exit from forementioned loop use goto and not break, because these macros

work as two loops: the outer one iterate through the list of tasks and the inner one

iterates through the threads for each task.

Thread flags (based on i386 architecture):

TIF SYSCALL TRACE

Syscall trace is active.

TIF NOTIFY RESUME

Resumption notification is requested.

TIF SIGPENDING

A signal is pending.

TIF NEED RESCHED

Rescheduling is necessary.

TIF SINGLESTEP

Restore singlestep on return to user mode. This is useful for ptrace.

TIF IRET

Return with iret instruction.

TIF SYSCALL EMU

Syscall emulation is active. Useful for ptrace.

TIF SYSCALL AUDIT

Syscall auditing is active.

TIF SECCOMP

Secure computing is active, i.e. thread is allowed to do only some syscalls:

read, write, close. . .15 TIF RESTORE SIGMASK Restore the signal mask in

15This feature will allow to create inetd-like daemon that would accept connectionis, fork()

and then limit abilities to those few allowed in secure computing mode. Then the server itself will

be executed to serve the request.
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do signal(). TIF POLLING NRFLAG True if poll idle() is polling on

TIF NEED RESCHED. This is power consuming and should be used carefully.

TIF MEMDIE This thread is freeing some memory so don’t kill other thread in

OOM-killer.

Following methods use these flags:

void set tsk thread flag(struct task struct *tsk, int flag);

Set thread flag (TIF ...) in structure of other task.

void clear tsk thread flag(struct task struct *tsk, int flag);

Clear thread flag (TIF ...) in structure of other task.

int test and set tsk thread flag(struct task struct *tsk, int flag);

Set thread flag and return previous value.

int test and clear tsk thread flag(struct task struct *tsk, int

flag);

Clear thread flag and return previous value.

int test tsk thread flag(struct task struct *tsk, int flag);

Return value of a flag.

void set tsk need resched(struct task struct *tsk);

Set TIF NEED RESCHED flag.

void clear tsk need resched(struct task struct *tsk);

Clear TIF NEED RESCHED flag.

int signal pending(struct task struct *p);

Return true if a signal is pending.

int need resched(void);

Return true if TIF NEED RESCHED is set.

7.9 Various Other Process Management Func-

tions

int on sig stack(unsigned long sp);

Return true if we are on alternate signal stack.

void mmdrop(struct mm struct *mm);

Decrease mm’s reference counter and it it drops to zero then free the memory.
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next task(p)

This macro returns the next task to task p.

prev task(p)

This macro return the previous task to task p.

for each process(p)

Enumerate through list of all processes.

task struct *thread group leader(task struct *p);

Return true if p is leader of a thread group.

int thread group empty(task t *p);

Return true if p has empty thread group.

void task lock(struct task struct *p);

Lock the p->alloc lock and protect fs, files, mm, ptrace, group info, comm

and cpuset member variables of p. This lock also synchronizes with wait4().

void task unlock(struct task struct *p);

Unlock the p->alloc lock, see task lock() for details.

struct thread info *task thread info(struct task struct *task);

Return pointer to task’s thread info. The struct thread info is on the

stack.

unsigned long *task stack page(struct task struct *task);

Return pointer to thread’s stack page. The struct thread info is on the

stack, so the stack is calculated using this structure.

void setup thread stack(struct task struct *p, struct task struct

*original);

Copy struct thread info from original to p, but maintain correct struct

task struct::task.

unsigned long *end of stack(struct task struct *p);

Return pointer to end of stack.

int need lockbreak(spinlock t *lock);

This macro returns true if a critical section we’re currently in needs to be

broken because of another task waiting.
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int lock need resched(spinlock t *lock);

Return one if critical section needs to be broken either due to another task

waiting or preemption is to be performed.

unsigned int task cpu(const struct task struct *p);

Current CPU for given task p.

void set task cpu(struct task struct *p, unsigned int cpu);

Assign task p to given cpu. This only sets struct task info::cpu, but does

not migrate anything.

int frozen(struct task struct *p);

Check if a thread has been frozen (due to system suspend).

int freezing(struct task struct *p);

Check whether thread p is to be frozen now.

void freeze(struct task struct *p);

Freeze the thread p. Warning: It’s forbidden on SMP to modify other thread’s

flags. This could be fixed in future versions.

int thaw process(struct task struct *p);

Wake up a frozen thread. This should be OK even on SMP, because frozen

thread isn’t running. Return zero if process was not frozen before calling this

function.

void frozen process(struct task struct *p);

The process is frozen now, change status from freezing to frozen.

int try to freeze(void);

Return true if the process is trying to freeze.

pid t process group(struct task struct *task);

Return process group of given task.

int pid alive(struct task struct *p);

Check whether a task is not zombie. If this test fails then pointers within the

task struct are stale and may not be referenced.

int freezeable(struct task struct *p);

Return true if task p is freezable. This means that the task is not current,

zombie, dead, does not have PF NOFREEZE flag set and may be neither stopped

nor traced.
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void refridgerator();

This function with interesting name freezes current task and enters the fol-

lowing cycle: set task’s state to TASK UNINTERRUPTIBLE and call schedule().

This is repeated until task is unfrozen by other task (thaw process()). Ex-

ported symbol.

int freeze processes(void);

Iterate through all processes and their threads and try to freeze them. Return

number of processes we could not freeze.

void thaw processes()

Thaw frozen processes.
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New Driver Model in 2.6

The Linux kernel driver model introduced in 2.6 aims to unite various driver models

used in the past. The idea behind is that devices have something in common: they’re

connected to some type of bus, they often support power management. . . The driver

model adheres to tradition of displaying hardware in tree-like structure.

This model offers better communication with userspace and management of ob-

ject lifecycles (the implementation hidden behind does reference counting, and it

acts like object oriented).

Both buses and devices have their common operations and properties: power

management, plug and play, hot-plug support. The common ones were moved from

specific bus/device structures to bus type or struct device.

The third primitive used by driver mode is class. Let’s explain relations between

these three entities:

Devices like network card or sound card are usually connected to PCI bus. Most

computers have only one PCI bus1, so this two devices share a bus. The PCI bus is

able to do power management together with compliant devices.

Another exemplary bus is USB, with it’s support for plug-and-play, power man-

agement and hot-plugging. When you unload module for your USB optical mouse,

its sensor stops shining and the mouse is without electric power.

These devices have something in common, but they all belong to different classes:

network, input (mouse), sound, pci bus and usb.

This hierarchy of hardware devices is represented by new file-system also intro-

duced during 2.5 development cycle: the sysfs. This file-system (usually mounted

at /sys/) is completely virtual and contains at its root directories like [bus/],

[class/], [devices/], which contain other items based on the HW structure of

the system (or logically sorted in class).

1AGP acts like second logical PCI bus with only device connected to it: the graphics adapter
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The graphics adapter connected to AGP would be [class/graphics/], but it

will also appear in somewhere [class/pci bus/...]. There are symbolic links to

the devices deep in the directory [class/].

The API is defined in <linux/device.h>. A device is controlled by a driver,

that knows how to talk to this particular type of hardware. The device is imple-

mented in struct device, its driver in struct device driver and the class is in

struct class.

8.1 From Kobject to Sysfs

Kobject is the base type for whole driver model, all classes, devices, drivers, ksets

and subsystems are base on kobject. It uses reference counted life cycle management.

Kobjects can create hierarchical structures, or they can be embedded into ksets (and

further into subsystems). This whole hierarchy is represented by directory tree in

sysfs and thus exporting the hierarchy to userspace.

8.1.1 Kref API

Whole kobject infrastructure works thanks to reference counting, implemented in

struct kref. This structure has only one member variable: atomic t refcount,

which is the reference counter itself. The API to manipulate this data type (defined

in <linux/kref.h>) is simple:

void kref init(struct kref *kref);

Initialize reference counter.

void kref get(struct kref *kref);

Increment reference counter.

int kref put(struct kref *kref, void (*release)(struct kref *kref));

Decrement reference counter. Whne the reference counter drops to zero, the

release() callback is used to clean up object. This function returns 1 if the

object was released.

8.1.2 Kobject API

A struct kobject defined in <linux/kobject.h> is basic object of driver model.

It’s not used directly, but it’s embedded in larger objects2.

The internals of struct kobject are following:

2Recall container of() macro mentioned in Common routines chapter.
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const char *k name;

Name of kobject if longer than KOBJ NAME LEN.

char name[KOBJ NAME LEN];

Name of kobject if shorter than KOBJ NAME LEN.

struct kref kref;

Reference counter.

struct kobject *parent;

The parent of kobject.

struct kset *kset;

The kset into which does this kobject belong. If there’s no parent for this

kobject, then the kset is used in sysfs hierarchy.

struct kobj type *ktype;

The type of the kobject.

struct dentry *dentry;

sysfs directory entry.

A kobject basic API is as follows:

void kobject init(struct kobject *kobj);

Initialize a kobject (reference is set to 1 and initialize some of its internals).

int kobject set name(struct kobject *kobj, const char *fmt, ...);

Set name for the kobject, the arguments are in printf()-like format.

const char *kobject name(const struct kobject *kobj);

Get the name of kobject.

struct kobject *kobject get(struct kobject *kobj);

Increase reference counter.

void kobject put(struct kobject *kobj);

Decrease reference counter and potentially release the object (if the reference

counter has falled to 0).

void kobject cleanup(struct kobject *kobj);

Free object resources.

int kobject add(struct kobject *kobj);

Add object to the sysfs hierarchy.
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void kobject del(struct kobject *kobj);

Delete object from the sysfs hierarchy.

int kobject rename(struct kobject *kobj, const char *new name);

Change the name of the object.

int kobject register(struct kobject *kobj);

Initialize and add an object.

void kobject unregister(struct kobject *kobj);

Remove from hierarchy and decrease reference count.

char *kobject get path(struct kobject *kobject, gfp t gfp mask);

Return path associated with given kobject. The buffer is allocated using

gfp mask3 The result must be freed with kfree().

Each kobject has associated type (represented by struct kobj type with it.

The type take care of sysfs file operations, destructor (when freeing an kobject) and

holds attributes.

Kobject is represented by subdirectory in sysfs. This directory is a subdirectory

of directory that belongs to parent of this kobject. All kobjects in kernel are exported

to userspace via sysfs. A kobject whose parent member variable has NULL value

is toplevel object in sysfs hierarchy.

8.1.3 Kset API

Kobject can be gathered into sets (named ksets, struct kset). Kset is also a kob-

ject of some and it is able keep kobject of one type. The kset belongs to subsystem

(which is also kset, but with a semaphore, as will be explained later). The kset is

internally protected by spinlock.

Kobjects are used to simulate hierarchies of objects, either using parent pointer

or ksets. The ksets are further part of the subsystems.

void kset init(struct kset *k);

Initialize a kset for use (also the internal spinlock).

int kset add(struct kset *k);

Add a kset k to hierarchy.

int kset register(struct kset *k);

Initialize and add kset.
3See Memory allocation chapter for gfp t.

120



Chapter 8. New Driver Model in 2.6

void kset unregister(struct kset *k);

Remove from hierarchy and decrease reference counter.

struct kset *to kset(struct kobject *kobjectj)

Return pointer to kset in which is the kobject embedded.

struct kset *kset get(struct kset *k);

Increate reference counter.

void kset put(struct kset *k);

Decrease pointer and potentially release kset.

struct kobj type *get ktype(struct kobject * k);

Return the type of the object. If the object is in a set and the set has type

set, return this one. Otherwiser return kobject’s type.

struct kobject *kset find obj(struct kset *k, const char *name);

Find a kobject in kset by its name. Lock internal spinlock and iterate over a

list of kobjects. If a kobject is found, increase its reference counter and return

pointer to it. The lock is unlocked before return.

set kset name(str);

This macro is an initializer, when name is the only kset’s field to be initialized.

8.1.4 Subsystem API

Subsystem (struct subsystem) contains only two member variables, a kset and rw

semaphore rwsen. Subsystem can contain attribute (struct subsys attribute),

which are controllable from userspace. Each subsys attribute contains two call-

backs: show() to display and store() to store attribute. These attributes are

exposed to user space through sysfs.

Subsystem operations are mostly wrapped kset ones:

decl subsys(name, type, uevent ops);

Declare a subsystem of name subsys name, with given type and uevent ops.

kobj set kset s(obj, subsystem);

This macro sets kset for embedded kobject obj to be the same as is set in

subsystem. obj is pointer to kobject, but subsystem is not a pointer.

kset set kset s(obj, subsystem);

This macro sets kset for embedded kset. obj is pointer to kobject, but sub-

system is not a pointer.
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subsys set kset(obj, subsysten);

This macro sets kset for subsystem. obj is pointer to kobject, but subsystem

is not a pointer.

void subsystem init(struct subsystem *subsys);

Initialize internal rw semaphore and kset.

int subsystem register(struct subsystem *subsys);

Register subsystem, this makes kset point back to subsystem

void subsystem unregister(struct subsystem *subsys);

Unregister internal kset.

struct subsystem *subsys get(struct subsystem *s);

Increase reference counter.

void subsys put(struct subsystem *s);

Decrease reference counter and if reference count drops to zero, release sub-

system’s kset.

int subsys create file(struct subsystem *s, struct subsys attribute

*a);

Export sysfs attribute file.

void subsys remove file(struct subsystem *s, struct subsys attribute

*a);

Remove sysfs attribute file.

8.1.5 Kernel to User Space Event Delivery

Kobject

void kobject uevent(struct kobject *kobj, enum kobject action

action);

Notify user space by sending an event. The action is one of following:

KOBJ ADD

An object has been added (usable exclusively by kobject core).

KOBJ REMOVE

An object has been added (usable exclusively by kobject core).

KOBJ CHANGE

Device state has changed.
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KOBJ MOUNT

Mount event for block devices. Comment in 2.6.16 source code says it’s

broken.

KOBJ UMOUNT

Umount event for block devices. Comment in 2.6.16 source code says it’s

broken.

KOBJ OFFLINE

Device is offline.

KOBJ ONLINE

Device is online.

If there is netlink socket opened, the notification is first sent through it. More-

over if uevent helper is set then it’s executed with subsystem as it’s first

argument. The environmental variables are set to describe the event.

int add uevent var(char **envp, int num envp, int *cur index, char

*buffer, int buffer size, int *cur len, const char *format,

...);

Helper for creating environmental variables. envp is pointer to table of en-

vironmental variables, num envp is the number of slots available, cur index

is the pointer to index into envp (i.e. points to the first free slot in envp.

This index should be initialized to 0 before first call to add uevent var()).

buffer points to buffer for environmental variables as passed into uevent()

method. cur len is pointer to current length of space used in buffer. format

is printf()-like format.

This helper return 0 if environmental variable was added successfully or

-ENOMEM if there wasn’t enough space available.

8.2 Bus

The bus API is accessible through <linux/device.h>. The basic type is the

bus type structure, which contains the name of the bus e.g. ”pci”, list of devices

and drivers and attributes, but the most interesting are its operations:

int (*match)(struct device *dev, struct device driver *drv);

This callback is called whenever a new device is added to the bus. It is called

multiple times and each time it compares device (dev) with one driver (drv).
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If they match, i.e. the driver is able to manage the device, this callback should

return non-zero value.

int (*uevent)(struct device *dev, char **envp, int num envp, char

*buffer, int buffer size);

This callback is useful for sending events to user space, for example to load

some module, configure the device etc. See kobject API.

int (*probe)(struct device *dev);

Probe for a device.

int (*remove)(struct device *dev);

Remove device from the bus.

void (*shutdown)(struct device *dev);

Shutdown the device.

int (*suspend)(struct device *dev, pm message t state);

Power management: suspend device.

int (*resume)(struct device * dev);

Resume the device. For example on PCI this first resumes PCI config space,

then enable the device and finally if the device has been bus master before

make it bus master again.

The API concerning bus management is as follows:

int bus register(struct bus type * bus);

Register a bus with the system.

void bus unregister(struct bus type * bus);

Unregister the child subsystems and the bus itself.

void bus rescan devices(struct bus type * bus);

This functions scans the bus for devices without assigned drivers and tries to

match the devices with existing drivers. If any device/driver pair matches,

device attach() attaches device to driver.

struct bus type *get bus(struct bus type * bus);

Increment reference counter for bus object.

void put bus(struct bus type *bus);

Decrement reference counter for bus object.
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struct bus type *find bus(char *name);

Find bus by given bus name, return pointer to found bus type or NULL if the

bus was not found.

int bus for each dev(struct bus type *bus, struct device *start, void

*data, int (*fn)(struct device *, void *));

Iterate over a bus’s list of devices starting from start. fn(device, data)

callback is called for each device. Return value of fn() is checked after each

call, non-zero value breaks iteration and this function will return that value.

Reference counter for device that broke iteration is not incremented, it must

be done in callback if it’s needed. If the iteration is successfully finished, the

return value is 0.

struct device * bus find device(struct bus type *bus, struct device

*start, void *data, int (*match)(struct device *, void *));

This function is similar to bus for each(), but it tries to find particular de-

vice. The match(device, data) callback returns non-zero when the device is

found and this function exits with return value pointing to struct device of

found device. If no suitable device was found, return value is NULL.

int bus for each drv(struct bus type *bus, struct device driver

*start, void * data, int (*fn)(struct device driver *, void *));

Iterate over a bus’s driver list. Return value of callback fn(driver, data) is

checked after each call and if it’s zero the iteration is broken and this return

value is also return by bus for each drv(). Otherwise the return value is

zero. If the caller needs to access struct device driver that caused itera-

tion to fail, its reference counter must be manually increased in callback.

int bus create file(struct bus type bus*, struct bus attribute

*attribute);

Create an attribute file for given attribute of a bus in codesysfs.

void bus remove file(struct bus type *bus, struct bus attribute

*attribute);

Remove attribute file from sysfs.

An attribute is a struct bus attribute, it’s a mechanism to provide some

interface to user space for setting/getting values. The bus attribute supports two

operations: show() to show value kept inside and store() to store a new value.

New attribute can be declarede using BUS ATTR(name, mode, show, store), which

declares struct bus attribute of name bus attr name .
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8.3 Drivers

Driver (represented in our model by struct device driver) has a name and is con-

nected to some particular bus. It keeps pointer to module in which it’s implemented.

The driver has its operations and attributes, which can be (as in other object in this

model) exported to user space. The driver uses struct completion unloaded to

unload itself only if reference count has dropped to zero.

The device offers following operations for probing, removing, suspending and

resuming devices (see bus type operations):

int (*probe)(struct device *dev);

int (*remove)(struct device *dev);

void (*shutdown)(struct device *dev);

int (*suspend)(struct device *dev, pm_message_t state);

int (*resume)(struct device *dev);

Driver attributes contain reader and writer routines to show() the value to user

space or retrieve a new one using and store() it back to attribute. Driver attribute

can be declared using macro DRIVER ATTR(name, mode, show, store), the vari-

able will be named driver attr name .

Driver API is following:

extern int driver register(struct device driver *driver);

Register a driver with a bus and initialize completion.

extern void driver unregister(struct device driver * drv);

Remove driver from the system: the completion will block us until reference

count drops to zero.

extern struct device driver * get driver(struct device driver

*driver);

Increase reference counter of given driver.

extern void put driver(struct device driver *drv);

Decrease reference counter of given driver.

extern struct device driver *driver find(const char *name, struct

bus type *bus);

Find a driver on a bus by its name.

int driver create file(struct device driver *driver, struct

driver attribute *attribute);

Create a file in sysfs for given attribute.
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void driver remove file(struct device driver *driver, struct

driver attribute *attribute);

Remove a file from sysfs for given attribute.

int driver for each device(struct device driver *driver, struct

device *start, void *data, int (*fn)(struct device *, void *));

Iterate through devices bound to driver, starting from start device.

fn(device, data) callback will be called for each device found.

struct device * driver find device(struct device driver *driver,

struct device *start, void *data, int (*match)(struct device *,

void *));

Iterate throiugh devices bound to driver similarly as in

driver for each device(). The difference is in callback: match(device,

data) returns zero for device that doesn’t match and non-zero for a matching

device. The matching device is returned as the return value of this function

(the first match also cancels iteration). If no device was matched, return NULL.

void driver attach(struct device driver *drv);

Walk through the device list of the bus this driver is attached to and try to

match the driver with each device. If driver probe device() returns 0 and

device->driver is set, a compatible pair was found and the driver will now

manage the device.

8.4 Classes

A device class provides higher level view of a device. Classes allow user space

software to work with devices based on ’what they are’ or ’what they do’ rather

than ’which bus are they connected to’. Each class is also a subsystem.

Basic data type representing class is struct class, which contains:

const char *name;

The name of the class.

struct module *owner;

Pointer to struct module which owns the class.

struct subsystem subsys;

Subsystem for this class.
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struct semaphore sem;

Semaphore that locks both the children and the interface lists.

struct class attribute *class attrs;

Pointer to array of class attributes. The last attribute must have empty name.

struct class device attribute *class dev attrs;

Pointer to array of class device attributes. The last attribute must have empty

name.

int (*uevent)(struct class device *dev, char **envp, int num envp,

char *buffer, int buffer size);

This callback is useful for sending events to user space.

void (*release)(struct class device *device);

This callback is called when a device is going to be released from this device

class.

void (*class release)(struct class *class);

This callback will be called on class release.

The API for device class manipulation is following:

int class register(struct class *class);

Register a new device class, create attribute files in sysfs and create a sub-

system for this class.

void class unregister(struct class *class);

Unregister class and its subsystem and remove corresponding files.

struct class *class create(struct module *owner, char *name);

Create a struct class with given owner and name. This is used to create a

class that can be used in calls to class device create(). The newly created

class is also registered. The release() and class release() callback are

initialized.

This structure should be destroyed using class destroy() call.

void class destroy(struct class *class);

Destroy a class previously created with class create()

struct class *class get(struct class *class);

Increment reference counter for given class and return pointer to it.
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void class put(struct class *class);

Decrement reference counter for given class and release it if the counter has

dropped to zero.

Each class can have an array of accompanying attributes. Each attribute is

represented by struct class attribute with show() and store() callbacks to

get and set the attribute value:

ssize_t (*show)(struct class *, char *);

ssize_t (*store)(struct class*, const char *buf, size_t count);

Class attribute can be declared using CLASS ATTR(name, mode, show, store)

macro, which declares and initializes variable class attr name . show() and

store() are attribute access functions as described before.

int class create file(struct class *class, const struct

class attribute *attribute);

Create a file representing given attribute.

void class remove file(struct class *class, const struct

class attribute *attribute);

Remove file for attribute.

8.5 Class Devices

Class devices are devices belonging to particular class. struct class device con-

tain following member variables:

struct class *class;

Pointer to the parent class for this class device. Required in all instances.

struct class device attribute *devt attr;

For internal use by the driver core only.

struct class device attribute uevent attr;

Attribute that represents events for user space.

struct device *device;

Points to struct device of this device, this is represented by symlink in

sysfs hierarchy.
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void *class data;

Class device specific data, driver developer may use this field for anything.

Use class get devdata() and class set devdata() to access this field.

struct class device *parent;

Parent of this device if there is any. If NULL then this device will show up at

this class’ root in sysfs hierarchy.

void(*release)(struct class device *dev);

This callback is used during release of struct class device. If it’s set, it

will be called instead of the class specific release() callback. The developer

should use in cases like releasing nested class device structures.

int(*uevent)(struct class device *dev, char **envp, int num envp,

char *buffer, int buffer size);

This callback is used to send event notifications to user space. If this pointer

to function is not set, the class-specific uevent() callback will be used.

char class id[BUS ID SIZE];

Unique ID for this class.

The API for struct class device manipulation is similar to other kobject

APIs:

void *class get devdata(struct class device *dev);

Return pointer to class specific data.

void class set devdata(struct class device *dev, void *data);

Set pointer to class specific data.

void class device initialize(struct class device *dev);

Initialize the class device. See class device register() for most cases.

int class device register(struct class device *dev);

Initalize the class device and add it to it’s class. (see class device add()).

void class device unregister(struct class device *dev);

Unregister the class device and if the reference counter for this structure has

is zero, release the structure.

int class device add(struct class device *device);

Add device to concerned class and configure user space event notification.

Create files for attributes. At the end an event KOBJ ADD is signalled to user

space.
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void class device del(struct class device *dev);

class id, parent class and dev member variables must be set before this

call is made.

int class device add(struct class device *device);

Remove device from parent class, remove symlinks and attribute files and

issue KOBJ REMOVE event to user space.

int class device rename(struct class device *dev, char *name);

Rename the class device.

struct class device *class device get(struct class device *dev);

Increment the reference counter for this structure.

void class device put(struct class device *dev);

Decrement the reference counter and release the structure when it reaches

zero.

struct class device *class device create(struct class *cls, struct

class device *parent, dev t devt, struct device *device, char

*fmt, ...);

Create a class device and register it with sysfs hierarchy. cls is the pointer

to class that this device should be registered to. parent class device may

be NULL pointer. dev t devt is for character device to be added, device

points to struct device associated with this class device. fmt and following

arguments represent printf-like description of this class device’s name.

This function can be used by character device classes, struct class device

will be allocated, initialized an registered inside this function.

void class device destroy(struct class *cls, dev t devt);

Remove a class device that was created with class device create(). cls is

the class to which the class device belongs and devt identifies the device.

Class device attribute (struct class device attribute) offers the same func-

tionality as other attributes in this driver model: show() and store() operations.

The attribute can be conveniently declared using CLASS DEVICE ATTR(name, mode,

show, store) macro, which declares class device attr name variable and initial-

izes it’s operations to given callbacks.

int class device create file(struct class device *dev, const struct

class device attribute *attribute);

Create a file in sysfs hierarchy representing given attribute.
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void class device remove file(struct class device *dev, const struct

class device attribute *attribute);

Remove a file representing an attribute.

int class device create bin file(struct class device *dev, struct

bin attribute *attribute);

Create a file in sysfs hierarchy representing given binary attribure

void class device remove bin file(struct class device *dev, struct

bin attribute *attribute);

Remove a file associated with attribute.

A binary attribute is similar to forementioned attributes, but it stores binary

data and it’s operations are as follows:

ssize t (*read)(struct kobject *kobj, char *buffer, loff t offset,

size t size);

Read size chars from offset of binary attribute to buffer. kobj is the object

to which this attribute belongs.

ssize t (*write)(struct kobject *kobj, char *buffer, loff t offset,

size t size);

Write size chars from buffer to binary attribute from given offset and

size. kobj is the object to which this attribute belongs.

int (*mmap)(struct kobject *kobj, struct bin attribute *attr, struct

vm area struct *vma);

Map binary attribute to user space memory, vma is the VM area to be used,

attribute is the attribute belonging to kobj object.

8.6 Class Interface

The last structure introduced in class section is struct class interface, which

contains four interesting pointers:

struct list head node;

This instance’s entry into list of observers of concerned class.

struct class *class;

Points to class to which is this interface bound and on which we monitor

adding and removing of devices.
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int (*add) (struct class device *dev, struct class interface

*interface);

add points to function which will be called when some device is added to

observed class. dev is the device that is to be added.

void (*remove) (struct class device *device, struct class interface

*interface);

This pointer points to function that will be called upon device removal. dev

is the device that will be removed.

This structure represents observer that gets notification about device adding and

removal, the only API for manipulation with observer are functions for registering

an unregistering an interface.

int class interface register(struct class interface *observer);

Add an observer to chain of observers. The class which will be observed is

observer->class.

void class interface unregister(struct class interface *iface);

Remove an observer.

8.7 Devices

Let’s describe struct device:

struct device *parent;

This is the parent device, i.e. the device to which is this device attached,

usually a bus. A NULL parent means top-level device.

struct kobject kobj;

The kobj keeps this device in the sysfs hierarchy.

char bus id[BUS ID SIZE];

Unique string identifying this device on the bus.

struct device attribute uevent attr;

Attribute, that has store()

struct semaphore sem;

A semaphore to synchronize calls to driver.

struct bus type *bus;

The bus this device is connected on.
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struct device driver *driver;

The driver managing this device.

void *driver data;

Private driver data.

struct dev pm info power;

Power state of the device.

void (*release)(struct device *dev);

This method releases the device, when the reference counter drops to zero.

The common driver API is following:

int device register(struct device *device);

Register a device with the sysfs hierarchy, first initialize the device and then

add it to system (i.e. to the bus). This function also sets many internal

member variables inside struct device.

void device unregister(struct device *device);

Release the device from all subsystems and then decrement the reference count.

If it has dropped to zero, the device is released by device release(). Other-

wise the structure will be hanging around in memory until its reference count

drops to zero.

void device initialize(struct device *device);

Initialize struct device and prepare device to be woken up. See

device add() and note about device register().

int device add(struct device *device);

Adds the device to sysfs hierarchy (bus etc). This function is usually preceded

by device initialize(), which is what device register() exactly does.

device register() is the preferred way.

void device del(struct device *device);

Remove the device from lists it’s kept in, notify power management and plat-

fom dependent functions about removal. This should be called manually only

if device add() was also called manually, see device unregister().

int device for each child(struct device *parent, void *data, int

(*fn)(struct device *, void *));

Iteratate over a list of children of parental device and call fn(child device,
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data) on each one. If the fn() returns non-zero value, break the iteration and

return this value.

void device bind driver(struct device *dev);

Manually attach a driver: dev->driver must be set. This function does not

manipulate bus semaphore nor reference count. This function must be called

with dev->sem held for USB drivers.

void device release driver(struct device *dev);

Manually release driver from device. This function does not manipulate bus

semaphore nor reference count. This function must be called with dev->sem

held for USB drivers.

int device attach(struct device *dev);

Walk the list of the drivers attached to bus on which is the device connected

and call driver probe device() for each one. If a compatible pair is found,

break iteration and bind the driver to this device. This function returns 1 if

the driver was bound to this device, 0 if no matching device was found or error

code otherwise.

struct device *get device(struct device *dev);

Increase the reference counter.

void put device(struct device *dev);

Decrease the reference counter.

void device shutdown(void);

Shut down all devices. System devices are shut down as the last ones. This

calls shutdown() operation on each device.

void *dev get drvdata (struct device *dev);

Get driver specific data for this device.

void dev set drvdata(struct device *dev, void *data);

Set driver specific data for this device.

int device is registered(struct device *dev);

Return whether a device is registered.

Each device also has its set of attributes (just like bus, subsystem. . .) for import-

ing an exporting values. Device attribute (struct device attribute) is declared
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using DEVICE ATTR(name, mode, show, store) macro, which declares and initial-

izes variable named dev attr name . show() and store() operations are available

for getting/setting values from user space.

int device create file(struct device *device, struct device attribute

*entry);

Create a file in sysfs that will represent given attribure.

void device remove file(struct device *device, struct

device attribute *attr);

Remove file in sysfs that representing given attribure.

8.8 Extended structures

Existing buses have their own bus type variables: pci bus type (<linux/pci.h>),

mca bus type (<linux/mca.h>), ide bus type (<linux/ide.h>), eisa bus type

(<linux/eisa.h>) and usb bus type (<linux/usb.h>).

A driver is tied tightly to a bus and most of existing buses use extended versions

of struct device driver, e.g. struct usb driver, struct pci driver, struct

mca driver, struct ide driver s (or ide driver t) and struct eisa driver.

We’ll look more closely on some member variables of struct usb driver:

const char *name;

This is the driver name, it should be unique among USB drivers and it also

should be the same as the module name.

int (*probe) (struct usb interface *intf, const struct usb device id

*id);

This callback is called to check whether the driver is willing to manage a

particular interface on a device.

If it is so, zero is returned and dev set drvdata() from the device API to

associate driver specific data with the interface.

It the driver is not willing to manage the device, it must return negative error

value.

void (*disconnect) (struct usb interface *intf);

This callback is called when an interface is no longer available: either the

device has been unplugged or the driver is being unloaded.
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int (*ioctl) (struct usb interface *intf, unsigned int code, void

*buf);

Handler for usbfs events, this provides more ways to provide information to

user space.

int (*suspend) (struct usb interface *intf, pm message t message);

Called when the device is going to be suspended (power management).

int (*resume) (struct usb interface *intf);

Called when the device is going to be resumed (power management)¿

struct device driver driver;

This is the device driver’s structure for driver model.

Wary reader surely noticed struct usb interface. This structure contains

both struct device and struct class device and some other internals.

It’s common for <linux/name of a bus.h> files to offer API for that particular

type of a bus, developer should look inside those files as detailed description is behind

scope of this work.
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Common Routines and Helper

Macros

9.1 String Manipulation

Following routines accessible through <linux/kernel.h>:

int printk(const char* format, ...);

Output the message to console, dmesg and syslog daemon. For formatting

options see man 3 printf. The output should contain priority, which can be

added in the following manner:

printf(KERN_WARNING "%s: module license ’%s’ taints kernel.\n",

mod->name, license);

These priorities are defined also in [kernel.h]:

KERN EMERG

Defined as <0>, means ”system is unusable”.

KERN ALERT

Defined as <1>, means ”action must be taken immediately”.

KERN CRIT

Defined as <2>, means ”critical conditions”.

KERN ERR

Defined as <3>, means ”error conditions”.

KERN WARNING

Defined as <4>, means ”warning conditions”.
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KERN NOTICE

Defined as <5>, means ”normal but significant condition”.

KERN INFO

Defined as <6>, means ”informational”.

KERN DEBUG

Defined as <7>, means ”debug-level messages”.

This function internally calls vprintk, which uses 1024 byte buffer and does

not check for overruns.

int printk(const char *format, va list args); This is the kernel mode equivalent of

vprintf, first see man 3 vprintf and then explanation of printk() above.

sprintf(char *buf, const char* format, . . .); The kernel mode equivalent of usual

user space sprintf().

vsprintf(char *buf, const char* format, va list args); The kernel mode equivalent

of usual user space vsprintf().

snprintf(char *buf, size t size, const char* format, . . .); The kernel mode equivalent

of usual user space snprintf().

vsnprintf(char *buf, size t size, const char* format, va list args); The kernel mode

equivalent of usual user space vsnprintf().

sscanf(const char *buf, const char *format, . . .); The kernel mode equivalent of

usual user space sscanf().

vsscanf(const char *buf, const char *format, va list args); The kernel mode equiv-

alent of usual user space vsscanf().

int get option(char **string, int *value);

Parse an integer value from an option string. A subsequent comma (if any)

is skipped and string pointer is modified to point behind the parsed int.

Return 0 if there’s no integer in string, 1 if int was found without comma and

2 if comma was found too.

char *get options(const char *string, int nints, int *ints);

Parse a string containing comma-separated list of integers into a list of in-

tegers. string is the string to be parsed, nints is the size of integer array

ints. Integers parsed are stored into ints from index 1, ints[0] contains

the number of integers successfully parsed. Return value is the character in
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the string which caused end of parsing. If it’s null then the string was parsed

completely

char *kstrdup(const char *s, gfp t gfp); Allocate space to hold dupli-

cate of strin s and copy the string. gfp is the mask of flags used in kmalloc()

call. Prototype is in <linux/string.h>

9.2 Various Helper Macros

might sleep() This macro works as an annotation for function that can sleep,

it prints a stack trace if it’s executed in an atomic context (spinlock,

irq handler. . .). It’s intended for debugging purposes to help find out whether

the function (which shouldn’t sleep) sleeps.

might sleep if(condition) First evaluate the condition and if it’s true then evaluate

might sleep macro described above.

min(x,y), max(x,y), min t(type, x,y), max t(type, x,y) Macros that return

minimal or maximal value of given pair. min() and max() also does strict

type checking. min t() and max t() allow developer to specify a type, both

x and y will be type-casted to it.

container of(pointer, type, member)

If pointer points to member variable inside the structure of given type, return

the pointer to the structure itself. See list entry() and list implementation

for an example.

typecheck(type, variable)

Check at compile time that variable is of given type. Always evaluates to

value 1.

typecheck fn(type, function)

Check at compile time that function is of a certain type or a pointer to that

type. typedef must be used to specify for function type.

BUG()

This macro (with CONFIG BUG defined) prints message about bug and it’s lo-

cation and then kernel panics. This macro can be used to check various con-

ditional branches that shouldn’t be executed.

BUG ON(condition)

This macro first checks the condition and if it’s true then calls BUG().
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WARN ON(condition)

This macro (with CONFIG BUG) prints message about it’s location in file and

function on which line it’s been placed.

likely(condition) and unlikely(condition)

These macros advise compiler which branch is prefered, so the resulting as-

sembly coded will be optimized for this branch.

9.3 User Space Memory Access

Kernel code sometimes needs to access data in user space memory. The file

<asm/uaccess.h> provides all necessary inline function, macros or prototypes:

access ok(type, addr, size)

Verify whether the memory area specified by addr and size is accessible for

given type of access: VERIFY READ for reading and VERIFY WRITE for writing.

Writing is superset of reading. Returns true if the memory is valid. This

macro is only valid in user context.

get user(kernel variable, umode ptr)

Copy a simple variable (char, int. . .) from user space memory to given

kernel variable. Returns true on success and -EFAULT on error. This macro

may sleep and it’s valid only in user context.

put user(kernel variable, umode ptr)

Copy a simple variable (char, int. . .) from kernel variable to address at

given user space memory. Returns true on success and -EFAULT on error. This

macro may sleep and it’s valid only in user context.

get user(kernel variable, umode ptr)

Copy a simple variable (char, int. . .) from user space memory to given

kernel variable with less checking. Returns true on success and -EFAULT on

error. This macro may sleep and it’s valid only in user context.

put user(kernel variable, umode ptr)

Copy a simple variable (char, int. . .) from kernel variable to address at

given user space memory with less checking. Returns true on success and

-EFAULT on error. This macro may sleep and it’s valid only in user context.

unsigned long copy to user inatomic(void user *to, const void

*from, unsigned long n);
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Copy a block of data into user space. to is the destination in user space, from

is source in kernel space, n is number of bytes to copy. This function is valid

only in user context. Caller must check the specified block with access ok()

before calling this function. Returns the number of bytes that cannot be

copied, i.e. zero on success. This function might sleep.

unsigned long copy from user inatomic(void *to, const void user

*from, unsigned long n);

Copy a block of data from user space. to is the destination in kernel space,

from is source in kernel space, n is number of bytes to copy. This func-

tion is valid only in user context. Caller must check the specified block with

access ok() before calling this function. Returns the number of bytes that

cannot be copied, i.e. zero on success. This function might sleep.

unsigned long copy from user(void *to, const void user *from,

unsigned long n);

Wrapper that calls copy from user inatomic().

unsigned long copy to user(void user *to, const void *from,

unsigned long n);

Copy data from kernel space to user space. Valid in user context only. This

function may sleep. Return value is the number of bytes that could not be

copied, zero on success.

unsigned long copy from user(void *to, const void user *from,

unsigned long n);

Copy data from user space to kernel space. Valid in user context only. This

function may sleep. Return value is the number of bytes that could not be

copied, zero on success.

long strncpy from user(char *dst, const char user *src, long

count);

Copy a NULL terminated string from user space to kernel space, destination

dst must be at least count bytes long. Return value is lenght of the string

(NULL omitted), otherwise -EFAULT. If count is too small, copy count bytes

and return count. This function might sleep.

long strnlen user(const char user *s, long n);

Get the size of the string s in user space. n is the maximum valid length.

Return value is the lengh of the string or zero in case of error. If string is too

long, the return value is n.
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strlen user(str);

Get the size of the string s in user space. Return value is the lengh

of the string or zero in case of error. This is a macro evaluates to

strnlen user(str,MAXINT).

unsigned long clear user(void user *mem, unsigned long len);

Zero a block in user memory. mem is destination, len is the length of the

block in bytes. Return the number of bytes that could not be cleared, zero on

success.
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Modules

A module is an object file (but with extension .ko instead of .o), which can be

dynamically inserted to (or removed from) the kernel. The module is dynamically

linked with the rest of the kernel and other modules at the insertion time. This

implies that modules have dependencies between themselves.

Each module goes through three phases while it’s loaded in kernel: initialization,

normal operation and clean-up. Initialization phase is usually implemented by sim-

ple function which sets up some hooks, which will be used during normal operation.

These hooks are unhooked during clean-up phase.

10.1 An Exemplary Module

Let’s build an exemplary module named mousepad.ko, which will be driver for

mouse pad:

#include <linux/module.h>

#include <linux/kernel.h>

static char mpad_init[] __initdata="initialized";

static char mpad_exit[] __exitdata="exiting";

static int __init mousepad_init()

{

printk(KERN_INFO "Mouse pad %s.\n", mpad_init);

return 0;

}

static void __exit mousepad_exit()
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{

printk(KERN_INFO "Mouse pad %s.\n", mpad_exit);

}

module_init(mousepad_init);

module_exit(mousepad_exit);

MODULE_LICENSE("Dual BSD/GPL");

MODULE_AUTHOR("Jaroslav Soltys");

MODULE_DESCRIPTION("Mouse Pad driver");

MODULE_SUPPORTED_DEVICE("mousepad");

This driver contains two functions: mousepad init() is used in the initialization

phase. Our example just prints string "Mouse pad initalized." (probably to

[/var/log/messages]). The module init() macro selects which function is called

during initialization. Remember, if initializing function does not return zero, the

module is unloaded.

The other function is used before unloading of module from kernel.1 It simply

prints "Mouse pad exiting.". This exit-function is selected by module exit().

Drivers which made it to official kernel can be either selected to be compiled

as modules or they can be built-in. A driver that is built-in cannot be unloaded,

therefore exit function is never used. To save memory exit macro was introduced,

which decides at compile time whether to include exit function or not.

Similar memory-saving is done with init functions: initmacro marks functions

used only during initialization phase and then the memory is freed. This is the cause

for message

Freeing unused kernel memory: 4486k freed

during kernel initialization. Once the initialization is completed, the functions

marked with init and variables marked with initdata are freed from mem-

ory. This is accomplished by putting init functions to .init.text section in-

side object file, initdata to .init.data section, exit puts the functions to

.exit.data section and exitdata puts variables used only from within exit con-

text to .exit.data.
1You can think of these init and exit functions as constructors and destructors in OOP.
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10.2 Kernel Purity

Kernel 2.4 introduced tainted kernels. A tainted kernel is a kernel containing code,

which is neither under GPL license nor under any ’compatible’ free/open software

licenses.

The license of a module is specified by MODULE LICENSE() macro. Kernel purity

is indicated by following licenses:

"GPL"

The module is under General Public license version 2 or later.

"GPL v2"

The module is under GPL version 2 license.

"GPL and additional rights"

GNU GPL version 2 rights and more.

"Dual BSD/GPL"

GNU GPL version 2 or BSD license.

"Dual MPL/GPL"

GNU GPL version 2 or Mozilla license code.

Proprietary modules can either use MODULE LICENSE("Proprietary") or any-

thing other than forementioned GPL strings is considered proprietary. Once a kernel

becomes tainted, it remains tainted until reboot.

Kernel may be tainted by loading proprietary module, forcing loading or un-

loading of module, using SMP with CPUs not designed for SMP, machine check

experience or bad page. The purity status of a kernel is exported to user space

using procfs. /proc/sys/kernel/tainted returns 1 for tainted kernel.

10.3 Module Properties

Module properties (such as MODULE LICENSE) can be seen using modinfo command.

MODULE AUTHOR declares module’s author, MODULE DESCRIPTION describes what a

module does.

MODULE SUPPORTED DEVICE("device") is not yet implemented, but it might be

used in the future to say that this module implements [/dev/device]. However

developers should use this macro for documentation purposes.
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10.4 Module Parameters

Modules used to take parameters since time of ISA bus, because earlier versions

of this bus did not support plug and play operation. It was necessary to specify

e.g. port, DMA channel and IRQ for a sound card driver. Modern hardware is

usually able to operate without any parameters, but these interface still provides

the possibility to send parameters to a module.

Let’s augment our existing code:

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/init.h>

#include <linux/stat.h>

#include <linux/moduleparam.h>

static char mpad_init[] __initdata="initialized";

static char mpad_exit[] __exitdata="exiting";

static int height=15;

module_param(height, int, S_IRUSR|S_IWUSR);

static int width=20;

module_param(width, int, S_IRUSR|S_IWUSR);

#define COLOR_STR_LEN 80

static char color[COLOR_STR_LEN]="deep blue";

module_param_string(color, color, COLOR_STR_LEN, S_IRUSR|S_IWUSR);

#define VER_LEN 3

static int version[VER_LEN]={-1, -1, -1};

static int ver_len=VER_LEN;

module_param_array(version, int, &ver_len, S_IRUSR|S_IWUSR);

static int __init mousepad_init()

{

int i;

printk(KERN_INFO "Mouse pad %s.\n",mpad_init);
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printk(KERN_INFO "The mouse pad is version ");

for(i=0; i<ver_len; i++)

printk("%i.", version[i]);

printk("\n" KERN_INFO "It’s size is %ix%i.\n", width, height);

printk(KERN_INFO "Mouse pad colour: %s\n", color);

return 0;

}

static void __exit mousepad_exit()

{

int i;

printk(KERN_INFO "The mouse pad is version ");

for(i=0; i<ver_len; i++)

printk("%i.", version[i]);

printk("\n" KERN_INFO "It’s size is %ix%i.\n", width, height);

printk(KERN_INFO "Mouse pad colour: %s\n", color);

printk(KERN_INFO "Mouse pad %s.\n", mpad_exit);

}

module_init(mousepad_init);

module_exit(mousepad_exit);

MODULE_LICENSE("Dual BSD/GPL");

MODULE_AUTHOR("Jaroslav Soltys");

MODULE_DESCRIPTION("Mouse Pad driver");

MODULE_SUPPORTED_DEVICE("mousepad");

MODULE_PARM_DESC(height, "Mouse pad height");

MODULE_PARM_DESC(width, "Mouse pad width");

MODULE_PARM_DESC(color, "Mouse pad color");

MODULE_PARM_DESC(version, "Version of a mouse pad");

We introduced parameters height and width to hold size of a mouse pad, color

of the pad and version number that consists of up to three dot-separated numbers.

Each parameter can be set at command line:
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insmod mousepad.ko height=15 width=20

color=red version=1,2,3 mousepad init() writes values of these variables to

/var/log/messages. If there are only two numbers in version=1,2 parameter,

then var len is modified accordingly. Module with parameter version more than

three numbers can’t be loaded into kernel. Similarly color is string with limited

length, if you try to load module with longer string, the module will fail to load.

Let’s describe the simplest type firstr. int height is declared as ordinary vari-

able, but it’s made accessible as module parameter thanks to module param(name)

macro.

This macro takes three arguments: name is the first one, it’s the name of the

variable to be used as module parameter and it’s also the name of the parameter.

The second one is type, which can be one of simple types like byte, short, ushort

(unsigned short), int, uint (unsigned int), long, ulong (unsigned long), charp

(char *), bool and invbool (inverted boolean), more complex types will be described

later. The third argument describes file permission in sysfs.

Sysfs has a directory called /sys/module/mousepad/parameters for our

mousepad.ko module, which offers virtual file for each parameter. These param-

eter may be read or written, all of our parameters are RW for owner (root). cat

version prints version, while echo 4,5 > version sets first and second numbers

of version array and also sets ver len to 2. You must always set at least one

number in array, and you can’t skip any number.

To export an array of simple types as module

parameter, use module param array() macro with four parameters: name, type

of a single item inside an array, array length (this must be pointer to int variable,

as this value can be decreased when shorter array is sent from user space) and again

file permissions.

The last type described is string color. The strings are exported using

module param string(), which uses four parameters: name, string, buffer size (to

prevent buffer overrun, kernel won’t allow you to load module with longer param-

eter or write to belonging file more bytes than this limit allows) and finally file

permissions.

For example echo red > color starts internal kernel mechanism that stores

zero-terminated string "red" into color buffer.

Each parameter has a description assigned to it, MODULE PARM DESC(version,

"Version of a mouse pad"); says what’s the meaning of a parameter. Use

/sbin/modinfo to display this information.
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10.5 Building Modules

It’s convenient to include a Makefile with your module’s source code. Kbuild in

2.6 makes building modules using makefiles easier then ever:

obj-m+=mousepad.o

KDIR=/lib/modules/$(shell uname -r)/build

all:

make -C $(KDIR) M=$(PWD) modules

clean:

make -C $(KDIR) M=$(PWD) clean

install:

make -C $(KDIR) M=$(PWD) modules_install

If you’re not building module for current kernel, change KDIR variable to point

it to relevant kernel source.

Kbuild offers ready-to-use makefiles, which take following variables (only those

interesting are listed):

obj-m

List of modules you want to build ([mousepad.o] in our case).

modulename -y

List of object files that will be linked to create the module, if the module is

split into multiple files.

obj-y

List of modules that will be built-in in the kernel. (this is not interesting for

external modules).

obj-n

List of modules that won’t be built.

INSTALL MOD DIR

The relative path inside the kernel’s module collection and selects where will

be the module located. If this variable is not set then [extra/] is used as

default.

The most important make targets are:
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modules

Build modules.

clean

Clean target .ko and temporary files.

modules install

Install the module into

[/lib/modules/ùname -r/̀extra/]. See INSTALL MOD DIR to place module

somewhere else than into [extra/] directory.

See [Documentation/kbuild/] for more in-depth information.

10.6 Exporting Symbols

When a module is loaded into kernel it needs to resolve references to some kernel

functions. These symbols can be exported using one of following macros:

EXPORT SYMBOL(name)

This macro exports symbol of given name. This symbol can be used by any

module. This macro also for documentation purposes marks the symbol as

external.

EXPORT SYMBOL GPL(name)

This macro exports symbol of given name to GPL-complatibly licensed mod-

ules. This symbol is internal for documentation purposes. Modules under

proprietary licenses cannot access this module.
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Conclusion

My goal was to describe Linux kernel 2.6 internals. There were no books available

and only a few resources describing 2.6 at the time I started working on this thesis.

There was even no stable kernel 2.6 released. Studying Linux kernel is a hard nut

to crack in the beginning, and this thesis aims to fill some of the gaps between

theoretical knowledge of operating systems’ inner working and practical expertise of

Linux kernel.

Writing about software under heavy development is like shooting at the moving

target. Some of the internal interfaces mentioned here were changed after I described

them for the first time. Some other interfaces became deprecated in favor of other

ones, other ones evolved in some way.

The assignment proved to be too general, yet I have describe task scheduler and

process management deeper than just the API. Inner working of scheduler can be

of great interest for people studying optimization of parallel algorithms.

I put strong emphasis on locking issues and therefore I delved deeper into various

techniques provided.

Description of other subsystems should be sufficient to understand basics of

how the subsystem works and the API needed for module developers to use the

functionality provided by particular subsystem. Interesting and comprehensive is

the description of driver infrastructure.

This thesis however does not drain every possible information from Linux ker-

nel, there are plenty of opportunities for deeper studies: networking infrastructure,

virtual file system or memory management internals would make a theses by them-

selves.

I learned many things while I was studying the kernel and I hope that this thesis

will help me to share this knowledge with others. Time spent with kernel source, the

view of changes, new features and performance improvements introduced to kernel
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have convicted me that Linux has very bright future.
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Glossary

• i386 - Processor architecture compatible with Intel 80386 processor.

• ACL - Access Control List

• AIO - Asynchronous Input/Output

• API - Application Program Interface

• BSD - Originally Berkeley Software Distribution, this abbreviation refers either
to one of many BSD derivates of Unix or to BSD license.

• CPU - Central Processing Unit

• DCC - Direct Client-to-Client connection used on IRC network either to transfer
files or to chat directly (i.e. not through the server).

• FD - File Descriptor

• FTP - File Transfer Protocol

• GDT - Global Descriptor Table, i386-specific table used to access segments of
memory

• HAL - Hardware Abstraction Layer

• HEL - Hardware Emulation Layer

• ICMP - Internet Control Message Protocol

• IFS - Installable File System, an IFS-kit enables developer to write a new
filesystem for Windows family of operating systems.

• I/O - Input/Output

• IP - Internet Protocol

• IPIP - IP in IP tunneling

157



Glossary

• IPX - Internetwork Packet eXchange

• IRC - Internet Relay Chat

• IRQ - Interrupt ReQuest

• ISP - Ineternet Service Provider

• KISS - Keep It Simple, Small

• LDT - Local Descriptor Table

• MMU - Memory Management Unit, a part of processor that takes care of pagi-
nation and segmentation of memory, access right etc.

• NAT - Network Address Translation

• NFS - Network File System

• NUMA - Non-Uniformed Memory Access - rather specific set of multiprocessing
machines that has shared memory, but the memory is closer to some processors

than to other and thus more optimization in scheduler is needed.

• OOM - Out-Of-Memory killer kills a process if OS runs out of memory. While
some OSes prefer to stop all processes and panic, others simply crash, Linux

kills processes using OOM-killer since 2.4.

• OS - Operating System

• PF - Packet Filter, an engine that evaluates set of rules on each packet it
receives and choses either to pass the packet further or to drop or reject it.

• PGD - Page Global Directory, i.e. the first of three levels of table structures
used in memory pagination.

• PIC - Programmable Interrupt Controller

• PMD - Page Middle Directory

• POSIX - Portable Operating System Interface. The X signifies the Unix heritage
of the API.

• PPTP - Point-to-Point-Tunneling-Protocol used for creating VPNs

• qdisc - Queueing discipline for Linux network traffic shaping
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• RAM - Random Access Memory, type of physical memory that can be read from
and written to.

• RSS - Resident Set Size - The part of the process’ virtual memory that is
currently in RAM, i.e. not swapped out.

• RT - Real Time, computing with dead-line constraints to response

• RTOS - Real Time Operating System

• RW - Read/Write

• SCP - Secure Copy Protocol, substitute for rcp implemented in OpenSSH

• SFTP - Secure FTP, substitute for ftp implemented in OpenSSH

• SMP - Symmetric Multi-Processing, i.e. multi-processing in which no memory
is closer to one processor that to other as in NUMA.

• SSH - Secure SHell

• syscall - A way to call certain function implemented in kernel.

• TCP - Transmission Control Protocol

• TID - Thread ID

• UDP - User Datagram Protocol

• UP - Uniprocessing, architecture or machine with only one processor (one pro-
cessor core)

• VFS - Virtual File System

• VM - Virtual Memory

• VPN - Virtual Private Network

• WebDAV - Web-based Distributed Authoring and Versioning, an extended
HTTP protocol that allows users to collaboratively edit and manage files.

• x86 - Processor architecure/family compatible with Intel 8086 processor
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Abstract in Slovak Language

Práca sa zaoberá vnútorným fungovaním jadra operačného systému Linux verzie

2.6. Snaží sa zdôrazniť rozdiely oproti jadru 2.4 a uviesť do problematiky aj človeka

znalého iba všeobecných princípov operačných systémov.

Popísaný je prehľad subsystémov jadra, hlbšie rozobraté sú dôležité stavebné

kamene jadra ako napr. rôzne zámky, semafory a iné synchronizačné mechanizmy,

vhodné dátové štruktúry, obsluha prerušení, atomické operácie, rozhranie novej ar-

chitektúry ovládačov zariadení a alokácia pamäte.

Veľmi podrobne preskúmaná je aj správa procesov a nový plánovač s dobrou pod-

porou viacprocesorových a NUMA architektúr a preemptívneho prepínania procesov.

Jadro práce uzatvára popis tvorby jadrových modulov aj s ukážkovým modulom.
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