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Assignment: Study available papers about real-time visualization of com-

plex (e.g. glossy) BRDFs. Choose a method allowing dynamic change of

lighting, BRDF and viewing position. Implement chosen method in form

of a visualization tool. Try to use GPU for computations if it would bring

significant speed up. Implement virtual glossmeter, compare and validate

its measurement to measurements of a real-world glossmeter.
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Abstract: This thesis is devoted to the problem of representing bidirec-

tional reflectance distribution functions (BRDF) as ordinary functions and

also representing precomputed radiance transfer data of a static scene, be-

cause these data (light transfer operator) is among other the derivative car-

rier of informations about BRDF used. Later we discuss the need and prin-

ciples of industrial apearance measurement attributes (mainly gloss). An-

other part of our work is the implementation of the environment mapping

using efficient wavelet rotation. This technique allows dynamic change of

lighting, viewpoint and BRDF while preserving all-frequency details. Other

implemented feature is the virtual glossmeter. As a feedback to the user it

provides gloss unit value measured from the used parametrizable BRDF. In

the end we experiment with possible speedup by means of GPU computa-

tions and presence of mult-core CPUs.

Keywords: GPU, spherical harmonics, real-time rendering, BRDF, wavelets,

appearance, gloss, virtual glossmeter

Abstrakt: Táto práca sa venuje problémom reprezentácie obojsmerných

distribučnýchch funkcií (BRDF) ako funkcií takých i reprezentáciou dát

predpočítaného prenosu radiancie v statickej scéne, pretože tieto dáta (op-

erátor prenosu svetla) sú okrem iného sekundárnymi nositel’mi informácií

o použitej BRDF. Neskôr sa v texte zaoberáme potrebou a princípmi priemy-

selných meraní vizuálnych atribútov (predovšetkým lesku) skúmaných ma-

teriálov. Súčast’ou práce je implementácia pohl’adovo závislého mapovania

s využitím rotačných transformácií vlnkových koeficientov. Táto metóda

umožňuje dynamickú zmenu osvetlenia, polohy pozorovatel’a, BRDF ob-

jektov scény a zachováva vo všetkých. Súčast’ou softvérového diela je aj

implementácia virtuálnho leskomera, ktorý nám ako spätnú väzbu posky-

tuje hodnotu lesku nameranú z použitej používatel’om parametrizovatel’nej

BRDF. V experimentálnej časti práce sa zaoberáme možnost’ami urýchlenia

implementácie pomocou vykonávania výpočtov na GPU a využívania viac-

jadrových procesorov.

Kl’účové slová: GPU, sférické harmonické funkcie, renderovanie v reál-

nom čase, BRDF vlnkové transformácie, vzhl’ad, lesk, virtuálny leskomer.
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Chapter 1

Introduction

1.1 Definition of the Problem

Detailed realistic lighting, materials, interreflections and all-frequency shad-

ows are important effects in realistic image synthesis. Conventional ren-

dering methods (running on computers with limited computing power)

for integrating over large-scale lighting environments are impractical for

real-time rendering like games or they greatly increases the design cycle in

applications for appearance industry.

Real-time, realistic global illumination encounters three obstacles:

• it shall model the complex, spatially-varying BRDFs of real materials

(BRDF complexity)

• it requires integration over the hemisphere of lighting directions at

each point (light integration)

• it shall account for bouncing/occlusion effects, like shadows, due to

intervening matter along light paths from sources to receivers (light

transport complexity)

Much research has focused on extending BRDF complexity (e.g., glossy

and anisotropic reflections), solving the light integration problem by repre-

senting incident lighting as a sum of directions or points.

A second line of research samples radiance and preconvolves it with ker-

nels of various sizes. This solves the light integration problem but ignores
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light transport complexities like shadows since the convolution assumes the

incident radiance is unoccluded and unscattered. Finally, clever techniques

exist to simulate more complex light transport.

From the other side, appearance of a product often determines the ac-

ceptability of a product to the end-user. The appearance of an object is

the result of a complex interaction of the light incident on the object, the

optical characteristics of the object, and human perception.

Appearance engineering rely on accurate physically based models of

light interaction. Fast and accurate techniques for visualization of complex

materials under realistic lighting may greatly decrease the design cycle of

materials (coatings) in appearance industry.

1.2 Our contribution

In our work we implemented the method of efficient wavelet rotation for

environment mapping in the form of visualization tool preserving all fre-

quencies in BRDF and lighting environments. Our contribution to the orig-

inal work lies in the support of multi-core CPUs, which speeds up the pre-

computation and rendering code almost linearly to the number of cores

available.

Another contribution is the profit from the presence of fast programmable

graphic processor, which we use to perform tileboarded nonstandard Haar

wavelet transform. This is a step toward more dynamic changes of the

lighting environment and it also overcomes the need of keeping rotation

matrices in the memory, thus lowers the overall consumed memory.

In summary, we implemented standalone visualization tool enabling us

to render highly specular materials under natural detail lighting environ-

ments at interactive rates, employing multi-core CPU and fast GPU to speed

up computation, while giving the virtually measured numerical specular

gloss value of rendered material as feedback to the user.
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Figure 1.1: Spherical coordinate system

1.3 A Little of Math

1.3.1 Spherical coordinates

In lighting equations usually functions parametrized by direction appear

(e.g. BRDF). A direction indicated by the unit vector can be represented by

a point on the unit sphere. Spherical (polar) coordinates are natural for

describing positions on a sphere.

Directions ~ω can be used interchangeably with spherical coordinates

(θ, φ), where θ denotes the azimuthal angle in the xz-plane from the x-axis

with 0 ≤ θ ≤ 2π and similarly φ denotes the polar angle from the y-axis

with 0 ≤ φ ≤ π as can be seen on Figure 1.1.

The complete spherical coordinates consist also of the distance (radius)

r from a point on a sphere to the origin. As we are not interested in distance

but just the direction (we assume the lighting to be at infinity) we ignore

this by setting r equal to 1.

(x, y, z) = (sinθ sinφ, cosφ, cosθ sinφ)

(θ, φ) = (arctan
x

z
, arccos

y√
x2 + y2 + z2

)

3



1.3.2 Basis Functions/Projection/Reconstruction

Let f1, f2, . . . , fn is a set of 1D functions. We say that such functions are

orthogonal if they satisfy

∫
fi(x)fj(x) dx =

cij = 0 i 6= j

cij 6= 0 i = j

If c = 1 we say the functions are orthonormal. Given some function f(x)

and set of orthonormal basis functions Bi(x) We can project function f(x)

into basis functions space getting coefficients

ci =

∫
f(x)Bi(x) dx =: 〈f(x), Bi(x)〉

Reconstruction of the original function

f(x) =
∑

ciBi(x)

In most cases we just want to approximate the original function f(x) with

function f̃(x) using less coefficients which also usually means introducing

some error:

f̃(x) =
N∑

i=0

ciBi(x)

Figure 1.2: Example reconstruction with sinusoidal linear basis

We define coupling coefficients:

cij =

∫
S2

ψi(ω)ψj(ω) dω

As long as we use orthonormal basis functions cij = δij - Kronecker deltas.
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Thus following simplification is possible:

B =

∫
S2

(∑
i

LiΨi(ω)

)(∑
i

TiΨi(ω)

)
dω (1.1)

=
∑

i

∑
j

LiTj

∫
S2

ψi(ω)ψj(ω) dω

=
∑

i

∑
j

LiTjcij =
∑

i

∑
j

LiTjδij =
∑

i

LiTi

= T · L

Now we can clearly see that the double product integral of orthonormal

functions simplifies to dot product of their approximation coefficients.

1.3.3 Spherical Harmonics (SH)

Spherical harmonics define an orthonormal linear basis over the sphere.

The real-valued SH basis function is traditionally represented by symbol

ym
l :

ym
l =


√

2Km
l cos(mθ)Pm

l (cosφ) m > 0,
√

2Km
l sin(−mθ)P−m

l (cosφ) m < 0,

K0
l P

0
l (cosφ) m = 0.

where Pm
l are the associated Legendre polynomials andKm

l =
√

(2l+1)(l−|m|)!
4π(l+|m|)!

are normalization coefficients.

Spherical harmonics are not suitable for nonlinear approximation, be-

cause they don’t localize well in space domain. Small areas (high frequen-

cies) would still need many harmonic coefficients for accurate approxima-

tion. Additionally, they have expensive rotation computation.

1.3.4 Wavelets

Wavelets are basis functions which represent a given function at multiple

levels of detail. Due to their local support in both space and frequency do-

main, they are suited for sparse (i.e. they only require a small number of

nonzero coefficients) approximations of (high frequency) signals. Locality
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in space follows from their compact support, while locality in frequency

follows from their smoothness (decay towards high frequencies) and van-

ishing moments (decay towards low frequencies). This allows compression

and efficient computations.

Wavelets are generally considered to be superior at approximating high-

frequency signals, such as detailed HDR image used for image based light-

ing in our case).

With their help function is expressed in terms of coarse shape plus mul-

tiple levels of details. Multiresolutional analysis is a mathematical frame-

work for studying wavelets. The starting point of this framework is a se-

quence of closed nested vector subspaces Vi

V0 ⊂ V1 ⊂ V2 ⊂ · · ·

with finer spaces (functions from them are of better resolution) hav-

ing higher index and the coarser spaces having lower index with the most

coarsest space V0. The basis functions of space Vi are referred to as scaling
functions. Wavelets . The basic idea of wavelets is that they encode dif-

ference between level of approximation i.e. they form a basis for a space

complementing Vi in Vi+1. Such space is denoted Wi so that Vi+1 = Vi⊕Wi.

Scaling functions and wavelets both satisfy refinement relations.

Fast O(n) algorithms exist to calculate wavelet coefficients, making the

use of wavelets efficient for many computational problems.

1dD scaling function is defined as:

φ(x) =

1 for 0 ≤ x < 1,

0 otherwise.

while 1D Haar wavelet function defined as:

ψ(x) =


1 for 0 ≤ x < 1

2
,

−1 for 1
2
≤ x < 1,

0 otherwise.

Normalized scaling and wavelet functions at level l are given by equa-
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tions

φl,i(x) = 2
l
2φ(2lx− i)

ψl,i(x) = 2
l
2ψ(2lx− i)

Nonstandard two-dimensional Haar wavelet transform alternates be-

tween 1D Haar wavelet transform on all row and all columns. Two-dimensional

nonstandard basis functions can be enumerated as follows

φφ(x, y) := φ(x)φ(y)

φψ(x, y) := φ(x)ψ(y)

ψφ(x, y) := ψ(x)φ(y)

ψψ(x, y) := ψ(x)ψ(y)

and finally define the wavelets for the level l:

φφ0,0,0(x, y) = φφ(x, y)

φψl,i,j(x, y) = 2lφψ(2lx− i, 2ly − j)

ψφl,i,j(x, y) = 2lψφ(2lx− i, 2ly − j)

ψψl,i,j(x, y) = 2lψψ(2lx− i, 2ly − j)

Each triplet (l, i, j) defines a wavelet square at level l and offset (i, j).

Squares at level l have area 1
4l and are disjoint. For a square image of size

n with N = n× n pixels, there are log2 n levels: 0, 1, . . . , (log2 n− 1) and 4l

squares at level l

Nonlinear Wavelet Approximation

Ng et al. [NRH03] first proposed non-linear wavelet approximation of the

lighting in the context of precomputed radiance transfer (PRT) Wavelets

due to their compact support approximate lighting with features at all fre-

quencies. Many works show, that just really small fraction of coefficients

are necessary to approximate detailed photographed lighting, and even

lower number of coefficients for synthetic lighting. Also only linear time

for wavelet transform algorithm is necessary. Reasonable low number of
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Figure 1.3: Nonstandard 2D Haar wavelet basis functions for V 2 (grey color
represents zero, white positive and black negative values)

terms.

Methods of selecting the coefficients proposed by Ng et al. in [NRH03]:

Unweighted selection - importance of each coefficient is determined sim-

ply by absolute value of its magnitude - this is optimal choice for

minimizing L2 error

Area-weighted selection - importance of each wavelet coefficient is scaled

by its area

Spherical Wavelets

Since functions involved in rendering equation, illumination, visibility and

BRDF are all (hemi-)spherical functions it makes more sense to represent

them in their intrinsic spherical domain. Schröder et al. [SS95] are the first

who introduced efficient representation of functions defined over sphere

8



with spherical wavelets. Authors describe a simple technique for biorthog-

onal wavelets construction with customized properties as instances of a

more general lifting scheme. The consider two important families of wavelet

bases, interpolating and generalized Haar. They demonstrate how the lift-

ing process can be used to improve wavelet basis properties so they can

lead to better compression ratio. Subdivision schemes - geodesic subdivi-

sion scheme for several levels, beginning with the icosahedron (for reduc-

ing the least imbalance in area between constituent spherical triangles.

The bad thing about spherical wavelet or wavelets as such is that we still

don’t have analytical means to rotate them. In [WNLH06] and idea of com-

putational rotation via rotation matrices was presented. Such rotation ma-

trices are fundamental notion of linear algebra and they may be very large

depending on the number of coefficients of source and destination domain.

Rotations by matrix-vector multiplication would be deprecated due to its

time cost. Fortunately, thanks to localization feature of wavelet domain

those matrices are very sparse, which brings them back to the game.

1.3.5 Clustered Principal Component Analysis (CPCA)

Dimensionality reduction techniques have been widely adopted to analyze

and compress data in computer graphics. Perhaps the most popular ap-

proach is the traditional PCA, which is a linear model and often is computed

using singular value decomposition (SVD).

In PCA, data samples are transformed from a high-dimensional space

into another low-dimensional sub-space spanned by only a few principal

components (PCs). Thus, the original samples can be approximated by

projecting them onto these PCs and expressing the original samples as a

linear combination of PCs. A major drawback of the traditional PCA is

the error of the approximation, because the whole data set (which may

contain really large spectrum of data) is approximated by few principal

components, and some of the original data could be approximated only

very roughly. This is what the clustered principal component analysis tries

to overcome.

CPCA resembles regular PCA, but we first partition signals (vectors,

samples) into fewer each approximating the signal as an affine subspace.
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We create clusters using vector quantization (VQ) in order to get clusters

of data with similar statistical characteristics and consequently PCA is per-

formed for each cluster separately, exploiting local linearity and thus re-

ducing the error of approximation.

Let xp is an n-dimensional signal at some sample point p on the surface.

xp stores the exiting radiance as a linear operator on light vector and usu-

ally has a form of vector for diffuse materials or matrix for glossy ones. In

order to approximate the signal, we partition its samples into clusters and

each cluster is approximated by an affine subspace.

xp ≈ x̃p = x0 + w1x1 + w2x2 + · · ·+ wn′xn′

with wi being specific to each concrete sample xp. Vectors x0, x1, . . . , xn′

are constant over and bound to this concrete cluster. We call x0 the cluster
mean and it together with other n′ vectors form representative vectors of

the cluster. In order to reduce signal dimensionality, we set n � n′. PCA

can be seen as a trivial application of CPCA using only one cluster.

Various approaches have been studied to reduce error, from the simple

methods like clustering the signal with LBG vector quantization, to more

sophisticated methods like iterative PCA [SHHS03].

1.4 Compendium on PRT Methods

Under assumption that the object is not emissive, it is common to view light

transport as a linear operator [SKS02] [NRH04]. The light that arrives to

observer eye is a linear transformation of the distant incident lighting.

This operator L, which we call the light transport operator, encodes the

effects of the material properties and light transport interactions between

different patches of the object. Thus we can describe the exit radiance

B(~x, ωo) at a point ~x (on the object) along the outgoing (viewing) direc-

tions ωo) as the result of applying out integral operator L on the (distant)

incident lighting L

B(~x, ωo) = (LL)(~x, ωo) =

∫
S

T~x,ωo(ωi)L(ωi) dωi

10



where T~x,ωo is the integration kernel of L, also sometimes called the

transport function. For fixed ~x and ωo, T~x,ωo is a 2D function parametrized

over the sphere S of incoming directions. It describes, for direction ωi, the

contribution of L(ωi) to the total reflected radiance leaving ~x along ωo. Sub-

stituting for the integration kernel we can derive the familiar reflectance

equation for direct lighting.

With

T~x,ωo = fr(ωi, ωo)V~x(ωi)(~n~x)

where ωi is the incoming directions ~n~x is the surface normal at ~x, V~x is

a binary visibility functions, fr is the bidirectional reflectance distribution

functions, we get

B(~x, ωo) =

∫
Ω

fr(ωi, ωo)V~x(ωi)(~n~x)L(ωi) dωi

However, the integration kernel T~x,ωo is not limited to direct illumination,

and can describe many other complex transport effects such as interreflec-

tions, refraction, self-occlusion, caustics, subsurface scattering, and other

indirect lighting.

Unfortunately, direct evaluation of LL is feasible. Even assuming the

distant lighting, light transport is 6D (two dimensions for each, lighting

(assumed to be at infinity) and view direction and two dimensions for the

surface position) and fundamentally all previous PRT work is concerned

with approximating and compressing some slice of the light transport op-

erator.

Precomputed light transport techniques compute a pixel color at render-

time based on a precomputed approximation of the light transport operator,

which evaluates the contribution of all lighting directions for a given spatial

location on a mesh and a given view direction.

The key issue common to all PRT techniques is the representation of the

light transport operator. There are several criteria used to judge the quality

of any proposed representation: rendered visual quality, compactness, stor-

age costs, efficient integration/evaluation, angular and spatial frequency

bandwidth (sharpness) of the illumination effects.

View-dependent effects are harder to address because they involve vari-

11



ation over the full 6D domain, and highlights can vary quickly over space

and view direction

The precomputed radiance (PRT) algorithm [SKS02] has recently at-

tracted much attention owing to its ability to allow real-time rendering of

complex objects under dynamic lighting environments.

First PRT methods (SH based) either only handled low-frequency light-

ing environments, or suffer from the unwieldy size of PRT data sets even

after compression. For dynamic scenes, the amount of PRT data sets further

expands to an impractical degree for real-time applications. The enormous

PRT data sets often prohibit high-quality rendering, subsequently restrict-

ing practical application of the PRT algorithm.

Typically, the transport operator is represented by linear basis functions

such as spherical harmonics or wavelets, and the number of coefficients

directly constrains the sharpness of the effects that can be handled.

Compression techniques such as the nonlinear truncation of linear basis

or the use of separable approximations improve on both storage and com-

putation, but the number of coefficients required to handle high-frequency

effect remains large and the rendering cost is directly proportional.

The PRT algorithm can capture self-shadowing and self-interreflection

effects from dynamic lighting environments. As a preprocess, PRT precom-

putes a solution to the light transport of a scene, and records the simulation

results.

To decrease data storage and computational costs, the recorded data

are compressed for efficient rendering at run-time. Low-frequency methods

projected the per-vertex light transfer functions onto the spherical harmon-

ics basis [SKS02] [LK03].

The coherence among vertices was then exploited using principal com-

ponent analysis or CPCA [SHHS03] [LK03].

By contrast the all-frequency PRT methods [NRH03] [NRH04] [LSSS04]

approximated the densely-sampled PRT data with sophisticated compres-

sion techniques, such as non-linear wavelet approximation [NRH03] [NRH04]

[TL04] and BRDF factorization [TL04] [LSSS04].

However, previous compression schemes are inadequate for harnessing

the power of PRT. Based on the SH basis, the low-frequency PRT algorithms

may take tens of thousands of terms to represent all-frequency lighting and

12



shadowing effects.

As for the all-frequency PRT algorithms, the compressed data are still

cumbersome for real-time rendering of objects with glossy BRDFs.

A more complex integral captures how a concave object shadows itself,

where the integrand is multiplied by an additional transport factor repre-

senting visibility along each direction.

Improvements have been presented to incorporate more complex BRDFs

[KSS02] [LK03], but the use of the spherical harmonics basis still limits

these approaches to low-frequency incident lighting. Even with compres-

sion [SHHS03] the lighting cannot be high-frequency and compressed data

are still cumbersome for real-time rendering of objects with glossy BRDFs.

Ng et al. [NRH03] use nonlinear approximation (truncation) of wavelets

as basis function instead of spherical harmonics. With as few as 100 coef-

ficients, they are able to incorporate high-frequency lighting effects (for

diffuse surfaces or static view only). The significant coefficients are se-

lected based on incident lighting which prevents the use of highly glossy

surfaces. Arbitrary BRDFs can be incorporated using a method to evalu-

ate triple product integrals [NRH04], but is limited to direct lighting only.

Arbitrary BRDFs and wavelets can be combined using separable BRDFs be-

cause precomputation is done on a per-BRDF basis (multiple BRDFs also

incur additional memory consumption and storage costs). Furthermore,

high-frequency BRDFs can only be represented using prohibitively many

terms in the separable approximation [LSSS04].

1.4.1 SH Based Methods

Sloan et al. were the first who presented in [SKS02] new real-time method

for rendering diffuse and glossy object in low-frequency lighting environ-

ments that captures soft shadows, interreflections and caustics.

By representing both incident radiance (lighting) and transfer functions

using using low-order spherical harmonics linear basis, authors exploit the

linearity to reduce the light integral to a simple dot product between corre-

sponding coefficient vectors (diffuse receivers) or a simple linear transform

of the lighting coefficient vector through a small transfer matrix (glossy

receivers).
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If the object is diffuse, a transfer vector at each point on the object

is dotted with the lighting’s coefficients to produce correctly self-scattered

shading. If the object is glossy, a transfer matrix is applied to the lighting

coefficients to produce the coefficients of a spherical functions representing

self-scattered incident radiance at each point. This functions is convolved

with the object’s BRDF and then evaluated at the view-dependent reflection

direction to produce the final shading.

Dynamic, local lighting is handled by sampling it close to the object ev-

ery frame; the object can also be rigidly rotated with respect to the lighting

and vice versa.

This avoids aliasing and evaluates efficiently on graphics hardware by

reducing the shading integral to a dot product of coefficient vector for dif-

fuse receivers.

Authors further introduce functions for radiance transfer from a dy-

namic lighting environments through a preprocessed object to neighboring

point in space. These allow soft shadows and caustics from rigidly moving

object to be cast onto arbitrary, dynamic receivers.

Variations of SH basis:

Hemispherical Basis Functions The main bottleneck of spherical har-

monics is that they describe spherical functions. On the other hand we want

to describe BRDFs which are defined over a hemisphere. So when using

SH, there is some data redundancy and discontinuities in the spherical do-

main at the boundary of the hemisphere. Few attempts were taken to over-

come this problem of hemispherical function representation. Sloan et al.
[SHHS03] proposed ESH (Even reflection SH) - padding of hemispheri-

cal function with a mirrored copy of the function itself. This significantly

improves the accuracy, but on the other hand such coefficients doesn’t rep-

resent original function and thus dot product with another SH coefficients

yields erroneous result. Another technique for representing hemispherical

functions from the same paper is LSOSH (Least Squares Optimal SH) - this

also improves accuracy of the upper hemisphere and also suffers from the

problem as above. Bespoke solution - hemispherical basis - which ensures a

more accurate representation of hemispherical functions was introduced in
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[GKPB04]. This basis can be combined with SH with minimal effort which

allows it to be used in existing implementation instead of SH.

Zonal Spherical Harmonics Precomputed radiance transfer (PRT) using

SH captures realistic lighting effects from distant, low-frequency environ-

mental lighting but has been limited to static models or precomputed se-

quences. This work [SLS05] by Sloan et al. is focused on PRT for local

effect suchs as bumps, wrinkles or other detailed features, but extend it to

handle arbitrary geometric deformations.

Zonal harmonics (ZH) approximate spherical functions as sum of cir-

cularly symmetric Legendre polynomial around different axes (which re-

sebmle lobes on the sphere pointing to some directions). More important,

it can be trivially rotated (only the direction of lobe is rotated) whereas SH

rotation is expensive and unsuited for dense per-vertex or per-pixel eval-

uation. This property allows, for the first time, PRT to be mapped onto

deforming models which re-orient the local coordinate frame.

This nonlinear approximation of the transport by spatially varying both

the axes and coefficients of ZH basis functions is fitted using a greedy

method combined with local BFGS optimization step [PTVF92].

Although the ZH basis may yield a more compact representation than

SH basis, it is still restricted to low-frequency signals and lighting envi-

ronments, which has been shown [NRH03] to require large numbers of

coefficients to represent all-frequency lighting content.

1.4.2 All-frequency Precomputed Radiance Transfer for

Glossy Objects

Authors in [LSSS04] present a novel PRT formulation which factors glossy

BRDFs into purely view-dependent and light-dependent parts, achieving

reasonable accuracy with only m = 10 dimensional factors. They then

tabulate an m × nL transfer matrix at each surface vertex as a preprocess,

representing the object’s response to this lighting. Because this surface is

so high dimensional, reducing m is crucial for making practical both the

preprocessing and run-time. To compress the transfer matrices, authors

divide the cubemap into 24 lighting segments and apply the Haar wavelet
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transform in each segment to provide sensible quantization. Then CPCA is

applied to each PRT segment to approximate it as a linear combination of a

few representative transfer matrices within a small set of clusters over the

surface. This exploits spatial coherence to compress very effectively. Most

important, it maintains fast rendering rates with 2-3 orders of magnitude

more lighting coefficients than previous methods, which increases accuracy

and avoids temporal artifacts in high-frequency lighting environments.

source lighting is represented by a cube map at resolution nL = 6×32×
32.

Segmentation doesn’t constrain the lighting in any way. It is merely a

device to speed compression of the signal by an a priori division of it into

parts that are likely to be coherent.

BRDF Factorization

BRDF is factored into the sum of products of m functions depending only

on the light direction with m depending on the view direction only. Unlike

past BRDF factorization methods, authors do account for shadows rather

than assuming that source lighting arrives entirely unoccluded. This factor-

ing yields PRT matrices with m rows that are specialized to the particular

object’s surface reflectance. With a small m(= 10), they obtain accuracy

that would require many more coefficients using unspecialized bases (such

as SH).

The factoring of the BRDF functions f(v, s) is initiated by forming a

matrix Q whose components are Qij = f(vi, sj), with nv view samples, vi,

and ns, light samples, sj. Both types of directions are parametrized using

parabolic map.

The singular value decomposition (SVD) is then performed on the ma-

trix Q and set all but the largest m singular values to zero. Then

Qij ≈
m∑

k=1

GikσkFkj

absorbing a square root of the diagonal matrix formed by the singular val-

ues σk into both left and right side factors, one obtain desired two functions
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G(v) and F (s) via

f(vi, sj) ≈
m∑

k=1

Gk(vi)Fk(sj) = G(vi) · F (sj)

1.4.3 Efficient Wavelet Rotation

There was an extensive previous work on rotation of functions represented

by spherical harmonics. There was and still is a will to develop efficient

rotation of wavelets. Analytical solutions is in the time of writing this

work still unknown. An efficient computational solution for wavelet ro-

tation was introduced in [WNLH06]. This approach uses precomputed

rotational matrices to perform the transformation (in this case rotation)

of source wavelet coefficients into destination wavelet coefficients. Since

wavelets functions used to compress (approximate) light maps have com-

pact support, these matrices are very sparse, enabling thrifty storage and

fast matrix-vector computation. Efficient wavelet rotation now eliminates

the need of environment maps prefiltering and is thus faster and more ap-

propriate to work with high frequency lighting and shadows. The view-

point, model, lighting environment, and BRDFS can be modified at inter-

active speeds.

Wavelet rotation matrices are bound to used parametrizations of spher-

ical and hemispherical functions. Although there is no restriction on these

parametrization. Authors of the paper chose octahedral [PH03] and hemi-

octahedral (a.k.a pyramidal) parametrization, because of their good L2

stretch efficiency and both can be unfolded into a square map, which is

convenient for later wavelet transform. We add one more advantage for

the pyramidal map and that is straightforward efficient implementation on

the GPU.

This technique use reflection equation in this form

B(~n, ωo) =

∫
Ω(~n)

L̃(~n, ω)fr(ω, ωo)(ω · y) dω

where B is the reflected light, integral over upper hemisphere at a local

frame induced by normal ~n. ~n is expressed in global frame, incident direc-
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(a) Pyramidal map (b) Octahedral map

Figure 1.4: Spherical parametrizations

tion ~ω and viewing direction ωo are both expressed in local frame. Cosine

term (ω · y) is baked into BRDF.

Note, that this techniques doesn’t integrate the visibility function dis-

carding the possibility to handle self-shadowing.

In the beginning an on any change to the lighting environment the

global lighting is sampled in octahedral parametrization and local lighting

slice for every sampled normal is created using the matrix transformations.

Similarly BRDF slices are evaluated for every viewing sample. Both local

lighting and BRDF slices are in pyramidal parametrization of the same size

and Haar wavelet transformed. They are stored as sparse vectors of result-

ing coefficients. In the rendering routine the rendering equation integral

simplifies to dot product. Vertex normal is used to index the local lighting

slice. Similarly global viewing direction is transformed into local frame of

a vertex and this direction is used to sample BRDF slice. The dot product

of those two sparse vectors determines the color of corresponding vertex.

This is repeated for every vertex.
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1.4.4 Triple Product Relighting (Integrals)

At each vertex we must compute an integral over the incident hemisphere

of three factors: the lighting, visibility and BRDF, each one of them repre-

sented in form of wavelet coefficients. Previous method do not handle the

visibility function.

Double products integrals of functions are simple to evaluate because

they reduce to a dot product of coefficients approximating functions in

question.

Assuming integral of three functions

L(ω) =
∑

i

LiΨi(ω) V (ω) =
∑

i

ViΨi(ω) ρ̃(ω) =
∑

i

ρ̃iΨi(ω)

authors define tripling coefficients in analogy to coupling coefficients:

cijk =

∫
S2

ψi(ω)ψj(ω)ρ̃k(ω) dω

Ng et al. presented and proved Haar tripling coefficient theorem, which

characterizes the tripling coefficients for non-standard Haar basis. This the-

orem, to be brief, says that a majority of coefficients is zero (it even tells us

the exact number). Triple product are considerably more complicated. Au-

thors developed an efficient sublinear algorithm in Haar wavelets and they

emphasize that the theorem and algorithm holds just for nonstandard Haar

tripling coefficient and can’t be used for other bases. Later in [MHL+06]

another authors presented tripling coefficients theorem for spherical wavelets.
Reflection equation with direct lighting has to be evaluated

B(~x, ωo) =

∫
Ω2π

L(~x, ω)ρ(~x, ω, ωo)V (~x, ω)(ω · ~n) dω

integral over the visible hemisphere indicated by normal ~n. The cosine term

ω · ~n is incorporated into the BRDF.

For rendering, proposed algorithm for evaluating triple coefficients is

used.

In [MHL+06] authors proposed similar implementation using spherical

wavelets with per-pixel computation running on GPU.
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1.4.5 Nonlinear Gaussian Functions

Green et al. in [GKMD06] proposed hybrid PRT method for static scenes

incorporating new representation of light transport operator T~x,ωo based on

sum of weighted isotropic Gaussians

T̃~x,ωo(ωi) =
N∑
k

wkG(ωi;µk, σk)

where G is a 2D spherical Gaussian centered around µk with standard

deviation σk and weight wk.

The spherical Gaussians are parametrized by a RGB color, mean direc-

tion and variance. Even for accurate approximation they typically use a

small number of Gaussians, between one and three, which leads to small

storage cost.

The parameters preserve the qualitative shape of the kernel across in-

terpolation which leads to a good visual reproductions of highlights. In

particular, the nonlinear effect of the mean direction µk permits better in-

terpolation and prevents cross-fading artifacts and the nonlinear effect of

the variance σk parameter allows for direct encoding of scale, thereby af-

fording arbitrary bandwidth (all-frequency effects).

These nonlinear parameters make a significant departure from the pre-

vious work based on nonlinear approximation [NRH03] that starts with

linear basis and sets the small coefficients to zero. Key to sparse represen-

tation is that interpolation of the Gaussian parameters closely matches the

behavior of integration kernels.

The visual quality of the former techniques depends heavily on the tes-

sellation of the model because high frequency effects require a fine tes-

sellation, otherwise cross-fading effects are visible. This method prevents

this through nonlinear interpolation of transport functions instead of using

linear blending.

Light transport data is evaluated for all views (92 fixed viewing direc-

tions obtained by icosahedron subdivision) and mesh vertices in precompu-

tation. Computation of light transport data is not specific to this technique.

Authors have chosen the way of an optimization approach because it

provides the flexibility to directly incorporate various energy coherence
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terms (minimizing L2 error with data, alignment of means, etc.) enforc-

ing artifact-free interpolation of Gaussians parameters between neighbor-

ing views and mesh vertices.

However fitting the precomputed light transport data to this new rep-

resentation requires solving a nonlinear regression problem, that is more

involved than traditional linear and nonlinear (truncation) approximation.

Authors do not focus on view-independent (diffuse) component of light

transport because it can be handled by well known techniques (e.g.. SH,

wavelets).

Rendering involves integrating the lighting L(ωi) against the the ap-

proximated and interpolated transport functions T̃~x,~v(ωi) for every visible

point ~x:

B(~x, ωo) =

∫
S

(
N∑
k

wkG(ωi;µk, σk)

)
L(ωi)dωi

This integral can be evaluated with small number of texture lookups

to Gaussian-prefiltered mip-mapped environment maps (various locations

and scales can be precomputed in such way, where each level corresponds

to a Gaussian variance) [MLH02]. Per-pixel interpolation of the transport

functions, which is critical to achieve high visual quality, is performed using

barycentric interpolation of the Gaussian directions and variance parame-

ters.

The closest PRT technique to this work was proposed by Sloan et al.
[SLS05], but the main goal of their work is the ability to efficiently rotate

the representation in order to handle local geometric deformations. Fun-

damentally they are limited to the same class of low frequency transport

functions as spherical functions, which require large number of coefficients

to represent all-frequency lighting as has been shown in [NRH03].

This technique requires prefiltering of the environment maps and thus

is not currently suitable to support dynamic lighting. From our point of

view the main disadvantage of this method for possible implementation

in our work was its typical precomputation time – 60 computer-hours –

which might be too difficult to implement and test due to our time/financial

limitations of this master thesis.

Additionally, this method is currently restricted to model specular ef-
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fects with Gaussian functions, and it is unclear, as the authors do not discuss

the fact explicitly, whether other all-frequency effects, such as all-frequency

shadows, could be handled, as pointed by Tsai et al. in [TS06] where they

put their approach in contrast by the possibility of rendering objects with

all-frequency shadows in their unified framework, which is indeed a more

general approach of using spherical radial basis functions for approximating

light transfer operator.

1.4.6 Clustered Tensor Approximation and Radial Basis

Functions

in [TS06] new data representation and compression technique for PRT was

introduces. The light transfer functions and light sources are modeled with

spherical radial basis function (SRBFs). A SRBF is a rotation-invariant func-

tions that depends on the geodesic distance between two points on the

unit sphere. Rotating functions in SRBF representation is as straightfor-

ward as rotating the centers of SRBFs. Moreover, high frequency signals

are handled by adjusting the bandwidth parameters of SRBFs. To exploit

inter-vertex coherence, the light transfer functions are further classified it-

eratively into disjoint clusters, and tensor approximation is applied within

each cluster. Compared with previous methods, the proposed approach

enables real-time rendering with comparable quality under high-frequency

lighting environments. The data storage is also more compact than previ-

ous all-frequency PRT algorithms.

Authors adopt for SRBFs for three reasons:

• the spatial localization property of SRBFs allows high frequency sig-

nals to be handled efficiently

• SRBFs are circularly axis-symmetric and rotation-invariant functions

defined on the unit sphere. Radiance functions can be modeled in

their intrinsic domain and it is also simple to rotate and convolute

functions represented in SRBFs

• similar to radial basis functions (RBFs) SRBFs are naturally applicable

to interpolate and extrapolate scattered data.
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Spherical radial basis functions are special RBFs defined on the unit

sphere. Their intrinsic nature in the spherical domain and other appealing

properties, such as rotational invariance and positive definiteness, make

them appropriate for modeling and analyzing spherical data without in-

troducing any artificial boundaries or distortions. When combined with

multi-resolution approaches, such as spherical wavelets [SS95], SRBFs be-

come a powerful tool for analyzing scattered data on a sphere, including

information measured by satellites and observed stations on entire globe.

Tensor approximation methods allow a higher compression ratio than

the traditional PCA. CTA approach overcomes the major drawbacks of pre-

vious all-frequency PRT algorithms, and achieves real-time rendering per-

formance without sacrificing much image quality. Experimental results re-

veal that SRBFs are effective in dealing with high-frequency signals, and

provide an intrinsic representation for PRT data sets in spherical domain.

To investigate inter-vertex data coherence, the approximated results of

diffuse and glossy objects are further compressed using clustered principal
component analysis (CPCA) [SHHS03] and clustered tensor approximation
(CTA), respectively. For glossy objects, the CTA algorithm classifies the light

transfer function into groups to reduce inter-cluster variance. Since the PRT

data sets within each cluster are intrinsically a multi-dimensional array, au-

thors retain their original structure, and analyze the coherence along each

dimension with tensor approximation. Additionally, a technique for iter-

atively updating cluster members is introduced to minimize least-squares

errors.

1.4.7 Normal Mapping

This is not a standalone technique but merely an enhancement to other

methods which select lighting data according vertex normal. Sloan [Slo06]

introduced the possibility of use normal mapping along with PRT. The main

advantage of normal mapping is the reduction of amount of 3D data by

simulating the fine details by simple normal modification (more general

technique than bump mapping). The information within bump maps is

stored as greyscale image height map. On contrary, normal map is stored

in three (R, G, B) channels with each channel holding one coordinate of
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normal vector direction. Such vector is used to modulate normal vector

with help of tangential space. Normal mapping in relation to PRT was

only successful when simulating diffuse materials, lately also with more

sophisticated methods that use local frame and use normal to index light

precomputed data [MHL+06].

1.4.8 Per-vertex and per-pixel shading

In [MHL+06] the use of per-pixel shading and visibility textures for effi-

cient GPU implementation was introduced. If rendering is performed on a

per-vertex base, even if the flat surface typically requires fine tessellation

to capture visibility variation Better solution is to pass the computation to

the more powerful pixel shaders for noticeably faster GPU implementation.

Authors sample the visibility function over a surface and store it in a visi-

bility texture. After this the former fine tessellated mesh is replaced with a

coarser one with additional visibility texture along with per-pixel shading.

In order to convert per-vertex shading into per-pixel shading, the key is to

store the visibility coefficients in texture.

For each texel pt in the texture space it is necessary to find its corre-

sponding point pm in the model space and then use pm and its local frame

to sample the visibility. After applying projection of the visibility function

into linear basis , store the coefficients back to pt.

1.4.9 Prefiltered Environment Maps

Because of inefficiency of computing lighting integral at real-time speeds,

this problem was usually managed by prefiltering environment maps offline

(as it is rather expensive computation) to later simulate glossy reflections

in real-time. Expensiveness of prefiltering excludes the possibility of dy-

namical change of light. Various techniques were developed to speed up

prefiltering, but they are limited to specific BRDFs and thus not general

and this is the feature we are looking for. Technique proposed by Green

[Gre86] observed that an environment map prefiltered by a BRDF could be

used to simulate diffuse and even glossy reflections. There has been a large

amount of related research, but none of these methods handle shadowing

24



or indirect lighting.

1.4.10 Reflectance Prefiltering

Reflectance prefiltering was pioneered by Fournier [1992 - normal distri-

bution functions and multiple surfaces. He uses nonlinear optimization to

approximate distributions of microfacet normals at multiple resolutions us-

ing a sum of cosine lobes. Recently Tan [TLQ+05] proposed multiresolution

reflectance filtering using Gaussian mixture model. They use well known

EM algorithm to estimate parameters.
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1.5 Appearance

The appearance of an object is the result of a complex interaction of the

light incident on the object, the optical characteristics of the object, and

human perception.

Appearance often determines the acceptability of a product to the end-

user. The quality and consistency of the appearance of a product is psycho-

logically related to its expected performance and useful life. It therefore

determines its acceptance (or rejection) by potential purchasers.

The three elements of human perception – light, object and observer,

can be quantified and further reduced to a set of colorimetric specifica-

tions. These colorimetric values can be converted into a variety of color

and difference scales which can be used for numerical specifications.

Various methods of measurement are highlighted including the basic

CIE optical geometrics for colorimeters and spectrophotometers, gloss me-

ters, goniophotometers, gonio-spectrophotometers and image analysis.

All those methods require careful attention in selecting the specimen,

measurement techniques, instrument calibration, standardization and veri-

fication and validation. This will provide means for more objective appear-

ance communication thus minimizing disagreements and product returns.

There are active programs to standardize such observations and mea-

surements, in the American Society for Testing and Materials (ASTM) and

in a joint BAM and DIN Committee in Germany.

Appearance prediction and appearance engineering both rely on accu-

rate physically based models of light interaction.

Metallic and pearlescent colors are rendered using three aspecular mea-

surements defined in a proposed standard for goniochromatic color. West-

lund et al. [WM01] try to apply appearance standards (gloss, haze) to light

reflection models (Phong, Ward, Cook-Torrance). Gloss and haze are ap-

pearance attributes resulting from the first surface reflection. Gloss is an

uncomplicated appearance attribute – an object is either glossy or matte.

Gloss is a measure of the magnitude of the specular reflection and haze

captures the width of the specular lobe.

Metallic paints and plastics have been widely used but relevant scientific

concepts and terminology to describe the appearance of these materials
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has not yet been established and are still evolving. By metallic we identify

paints and plastics containing metal flake pigments rather than object made

of metal which is a common understanding for the term.

The attributes of appearance of these materials are of two kinds, those

observed at a distance of several meters and those observed at reading

distance. The first kind may be called macro appearance, the second micro
appearance.

Hunter in his seminal work on gloss measurement differentiated no less

than six types of gloss:

• specular gloss

• sheen

• contrast gloss (or luster)

• absence-of-bloom gloss

• distinctness of image gloss

• surface-uniformity gloss.

As experts tried to find attributes which would describe appearance of

object, two branches revealed: computer graphics researches have made

an effort to develop the most general robust surface reflection model and

to build sophisticated reflection measurement devices. This, as we know,

led to introduction of various BRDFs with many driving parameters and

for example spectrogoniophotometer as a device used to measure surface

quality attributes.

On contrary, appearance industry professionals attempted to determine

the minimum number of measurements and attributes to cover the largest

possible set of appearance problems. This, in fact, caused the birth of one-

dimensional scales of attributes (e.g. gloss, haze,...) and measurement de-

vices such as glossmeter. This resulted in a set of appearance measurement

standards. The use of a standard appearance scales instead of complex

BRDF parameters, also provides a more intuitive way of selecting the re-

flection model parameters and a reflection model independent method of

specifying appearance.
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Figure 1.5: Glossmeter measurements at various angles

1.5.1 Virtual light meter

The measure of a gloss is a simplification of the BRDF to single appearance

related attribute. A virtual light meter was constructed for the purpose

of correspondence between BRDF model parameters and standard appear-

ance measurements. In fact, it a customized 2D integration tool which uses

numerical quadrature of particular BRDF over subdivided light source and

detector apertures, which simulates the work of a real-life virtual light me-

ter - the light source light hits the surface being measured and the detector

catches the reflected light and evaluates the numerical result.

Virtual light meter can be used to evaluate know standards (specular

gloss, haze, etc.) and can be customized for other measurements. In our

work we implemented glossmeter. The measurement of specular gloss con-

sists of comparing the luminous reflectance from tested specimen to that

from a gloss standard, under some geometric and spectral conditions well

defined by national or international standards (e.g. ISO 2813).

Those standards usually prescribe the measurements to be taken at an-

gles 20◦, 60◦and 85◦as illustrated at Figure 1.5,because these degrees of

specular gloss measurements offer numerical values which are roughly lin-

early correlated over a range of values to perceived gloss of high-gloss,

medium-gloss, and low-gloss surfaces respectively. The numerical gloss

value, assigned to a surface typically ranges from 0 (low gloss) to 100

(high gloss).
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1.6 Color & Light Representation

Most CG computation are computed with RGB values, as this is sufficient

for most purposes. Spectrum-based rendering improves the tristimulus rep-

resentation (RGB, XYZ,...) by incorporating spectral power distributions

allowing more advanced visual effects (e.g. thin film effect). In [DK05] a

framework for spectrum-based rendering on GPU was introduced. It was

demonstrated on Phong model extended with spectral information, and

also the ability to hand multilayered thin film interference effects. In both

cases scene was lit by an area light obtained through spectral cube map. Au-

thors proposed method for conversion of regular tristimulus environment

map into a spectral one.

As we were searching in area of spectrum-based rendering we found

an interesting project http://www.imageval.com providing high dynamic

range spectral (HDRS) image database, which offers complete spectral ap-

proximations of the light radiance field. We would like to use this, or pro-

duce similar data on our own in our future work.

[Pee93] proposed general linear method for handling full spectral infor-

mation by expressing it in a linear basis so it can speed computations and

lower the cost storages.

1.6.1 High dynamic range imaging

High dynamic range imaging is an emerging field borrowing ideas from sev-

eral fields that study light and color. The intention of HDRI is to accurately

represent the wide range of intensity levels found in real scenes ranging

from direct sunlight to the deepest shadows. The range of values afforded

by a conventional image is about two orders of magnitude, stored as a

byte for each of the RGB channels per pixel. The visual quality of high dy-

namic range images is vastly higher than conventional low-dynamic-range

images.

It is not possible to directly print or display images with a much higher

dynamic range. Indeed there is possibility to display HDR images on new

HDR display devices. But these are more involved and expensive and we

rather limit ourselves to conventional low dynamic range display devices.
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Thus, to simulate the effect of reducing an HDR image to within a dis-

playable range, we reduce a conventional photograph in dynamic range to

well below two orders of magnitude.

One problem with HDR has always been in viewing the images. CRTs,

LCDs, prints, and other methods of displaying images only have a limited

dynamic range. Thus various methods of "converting" HDR images into a

viewable format have been developed, generally called "tone mapping".

Early methods of tone mapping were simple. They simply showed a

"window" of the entire dynamic range, clipping to set minimum and maxi-

mum values. However, more recent methods have attempted to show more

of the dynamic range. The more complex methods tap into research on

how the human eye and visual cortex perceive a scene, trying to show the

whole dynamic range while retaining realistic colour and contrast.

Many works use HDR image as a source of lighting because the image

than carries radiance i.e. radiometric quantity denoting the flux (power)

incident, passing through or leaving a unit surface area dA from a unit set

of direction[Wm−2sr−1].

For instance, the combination of shutter, lens, and sensor in digital cam-

era restricts incoming light in this fashion. When a picture is taken, the

shutter is opened for a small amount of time (exposure). During that time,

light is focused through a lens that limits the number of directions from

which is light received. The image sensor is partitioned into small cells,

so that each cell records light over a small area. Because camera records

radiance, it is therefore possible to relate the voltage extracted from the

camera sensor to radiance, provided pixels are neither under- nor overex-

posed. To support spectral based rendering the radiance may be defined

per unit wavelength interval, which is then rreferredas spectral radiance.

1.7 Streaming SIMD processing on CPU & GPU

Scalar processing - one operation produces one result SIMD processing - one

operation (with multiple inputs) produces multiple results

Streams are collections of records requiring similar computation (vertex

position, pixel RGBA quadruples, etc.). Records or elements of the stream
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shall have a few or better no dependencies between each other in order to

exploit data parallelism.

Streaming computations can be characterized as being highly parallel

and computationally intensive with little reuse of input data. However,

many computations are both parallel and computationally intensive, but

exhibit significant per element use.

Kernels are functions which are applied to each element in the stream

(transform vertex position, modify pixel color, etc.) A streaming processor

executes a kernel over all elements of an input stream, placing the results

into output stream.

Streams are categorized into four types:

Input streams - that contain read-only data for kernel processing.

Output streams - store the result of the kernel computation.

Gather streams - permit arbitrary indexing to retrieve stream elements.

They are read-only.

While kernel provide a mechanism for applying a function to a set of

data (streams), reduction provide a data-parallel method for calculating a

smaller stream or even to a single value from a set of records. Examples of

reduction operations include arithmetic sum, computing maximum, SAXPY.

In order to perform the reduction in parallel, we require the reduction

operation to be associative (i.e. a ◦ (b ◦ c) = (a ◦ b) ◦ c). This allows the

system to evaluate the reduction in whichever order is best suited for the

underlying architecture and/or algorithm.

The notion of arithmetic, or more general computational intensity is a

ratio between time spent in kernel computation K on one stream element

and the amount of time spent on transferring one stream element (i.e. I =
K

Ttransfer
). The higher the computational intensity I is (significant amount of

computation relative to the short time spent transferring data), the better

suited it is for stream computation.

SIMD (Single Instruction Multiple Data) is the primary performance fea-

ture on most platforms.
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1.7.1 CPU

SSE (Streaming SIMD Extensions) is a powerful and versatile implementa-

tion of SIMD on CPU.

Authors of [MY02] discuss the possibility of using SSE for 3D geometry

processing. SSE2 data types can hold anything that fits to 128 bits (e.g. 4

floats, 8 word, 16 bytes). SSE/SSE2 loads/store expect data aligned on 16-

byte boundary; otherwise crash! There are unaligned load/store versions,

but these are significantly slower.

Another important feature of the SSE is the memory streaming instruc-

tion extensions, which allow programmers to prefetch data into a speci-

fied level of the cache hierarchy. Most multimedia applications present the

streaming data access pattern; that is, data are accessed sequentially and

seldom reused. Therefore, prefetching this type of data into the L2 cache is

an effective way to improve the memory system performance.

Memory layouts:

Array of Structures (AoS) - mostly used layout for example in images (RGBA),

but, unfortunately, defeats SIMD efficiency.

Structure of Arrays (SoA) - provides maximum parallelism

Hybrid structure - also SSE and memory friendly

We find SSE restriction to fixed maximum vector length (4), assumption

of AoS memory layout and alignment too limiting and we avoid using it in

our work.

1.7.2 GPU

The GPU on commodity video cards has evolved into an extremely flex-

ible and powerful processor. The emergence of programmable graphics

hardware has led to increasing interest in offloading numerically inten-

sive computations to GPUs. The combination of high-bandwidth memories

and hardware that performs floating point arithmetic at significantly higher

rates than conventional CPUs makes graphics processors attractive target

for highly parallel numerical workloads.
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Figure 1.6: Memory layouts (braces denote span of a structure)

Vertex processors are responsible for primitive construction, that is con-

vert input vertices into primitives (of specified type) with area (e.g.. lines,

triangles, quadrilaterals). Each vertex may have some standard attributes

associated with it (like color, normal, texture coordinates, etc.) or new user

specified (for example temperature).

Vertex processor can be seen as a programmable (SIMD or in nowadays

even MIMD) which can process 4-vectors (RGBA) It is capable of scatter

operation as it may change the resulting window position of vertex pro-

cessed, but is not able to read data from any other vertices and thus not

support gather operations (recently made available to GPGPU applications

using ATI/AMD CTM and NVIDIA CUDA vertex texture fetch).

Fragment processor is responsible for rasterization, that is conversion

of geometric primitives supplied by vertex processor to image primitives

consisting of pixels or more generally fragments (pixel + associated data:

color, depth, stencil, etc.) In the process of rasterization per-vertex at-

tributes are interpolated across pixels within the primitive being rasterized

(it is mostly useful for interpolating addresses - texture coordinates)

Fragment Processor can be also seen programmable (SIMD/MIMD) pro-

cessor which likewise processes 4-vectors, contrary to vertex processor, it is

able to gather information (access data for reading in textures on any posi-

tion) texture fetch, while output address is fixed to a specified fragment. It
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is generally more useful than vertex processor because it has more pipelines

than in vertex processor and it is at the end of a processing pipeline.

Usually we can look at texture memory as a read-only memory inter-

face optimized for coherent 2D access, or when using extensions enabling

rendering to texture, it can be seen as write-only memory interface.

Many applications beyond traditional graphics have been demonstrated

to run on GPUs. Particularly, algorithms that can be structured as stream-

ing operations often realize notable performance gains. The combination

of regular, predictable data access with the independence of each kernel

invocation maps very nicely to graphics architectures.

The map operation has simple logic to iterate over the elements of a

given stream meanwhile applying kernel function f(x) to element of input

stream and storing the result in an output stream. function f(x) and input

stream Si(e0, e1, . . . , en) So(f(e0), f(e1), . . . f(en))

GPU implementation is pretty straightforward: Si is a texture, e are

texels, fragment shader F implements f(x). We then draw the rectangle

with as many pixels as texels in Si with fragment shader F active. Rendered

(= computed) output is then stored in another texture.

High level shading languages for programming GPU are Cg, HLSL, OpenGL

Shading Language. They resemble C-like languages, but are enhanced with

vector data types, etc..
The problem with general purpose programming on the GPUs is their

difficult usage caused by their original purpose design – for real-time ras-

terization of geometric primitives in CG and game industry. In relation

to this their programming interfaces provide programmers with unusual

model and idioms tied exactly to CG. Up to few months ago there was no

possibility to simply port CPU code GPU without completely rewriting it to

the constrained environment provided by shading languages.

High-level languages for GPGPU usually extend base language e.g. C++

to support stream programming by including various simple data-parallel

constructs (e.g.. float[2,3,4], input/output streams), meanwhile they hide

details on graphics API and often the same source code can be compiled to

run on CPU or GPU, or those backend may be chosen even at runtime. This

transparency and new data types allows programmers to focus on the algo-

rithm and do not force them to solve low-level implementation problems.
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To mention such languages:

• Accelerator (Microsoft Research, http://research.microsoft.com/research/downloads/)

• CTM (ATI/AMD http://ati.amd.com/companyinfo/researcher/documents.html)

• CUDA (NVIDIA http://www.NVIDIA.com/object/cuda.html)

• Peakstream (http://www.peakstreaminc.com)

• RapidMind (Commercial follow-on to Sh)

• Sh (Stanford http://www.libsh.org)

• Brook for GPUs (http://graphics.stanford.edu/projects/brookgpu)

Lefohn et al. in [Lef06] presents Glift, an abstraction and generic tem-

plate library for defining complex, parallel random-access data structures

(stack, quadtree, and octree, etc.) on GPUs.

Performance tuning of algorithms on graphics hardware is difficult be-

cause vendors do not disclose specific architecture details, such as cache

parameters or the physical layout of texture data in memory.

An experiment which explored the cache architecture of GPUs was done

in [GLGM06].

1.8 OpenMP

The goal of OpenMP is to provide a standard and portable API for writing

shared memory parallel programs. It works in conjunction with C/C++

(and also Fortran) and is comprised of a set of compiler directives (to be

more specific - #pragma directives - instructional notes to a compiler placed

directly in code) that describe the parallelism in the source code, along with

a supporting library of subroutines available to applications. Pragmas have

special benefit that if the compiler does not recognize particular pragma,

the directive is simply ignored and in case of OpenMP directives the code

in question would be compiled normally – as a single-threaded operation.

This approach allows the same code base to be used for development on

both single-processor and multi-processor platforms. Incremental approach
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- starting from a sequential program, the programmer can embellish the

same existing program with directives that express parallel execution.

An OpenMP program always begins with a single initial thread (called

master thread) of control that has an execution context (data environment)

associated with it. The master thread an its execution context exist for

the duration of the entire program. When the master thread encounters

a parallel construct, new threads of execution are created along with an

execution context for each thread. Each thread has its own stack within its

execution context.

Parallel construct is a #pragma directive of form:

#pragma omp parallel [clause[ [, ]clause] ...] new-line

structured-block

Here is an example of OpenMP parallel for work-sharing construct

that, as its name suggests, parallelizes the for loop:

int i;

#pragma omp parallel for

for ( i = 0; i < ARRAY_SIZE; i++);

array[i] += i;

The pragma, located just before the outer-most for-loop, tells the com-

piler to parallelize the loop. In case the compiler does support OpenMP,

it generates a lot of invisible threading code, e.g. it will insert code that

determines the best number of threads to use on the execution platform

and then break up the loop across that number of threads. We develop our

software on a dual-core system, so it would create two threads, each one

processing its half of loop sequentially.

At the end of the for loop (which forms an implicit barrier), multiple

threads join and the code returns to single threaded until, for exemple,

another OpenMP pragma is encountered.

From other commonly used features of OpenMP we will mention the

ability of parallel constructs to choose either to share a single copy be-

tween all the threads or to provide thread with its own private copy for the

duration of the parallel construct and may vary from one parallel construct
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to another. It is specified via scoping clauses for individual variables. A

variable may have one of three basic attributes: shared, private or reduction
(variable is a target for arithmetic reduction).

Languages with single program multiple data (SPMD) constructs, work-

sharing constructs, and synchronization constructs, and they provide sup-

port for the sharing and privatization of data.

Covers only user-directed parallelization, wherein the user explicitly

specifies the actions to be taken by the compiler and runtime system in

order to execute the program in parallel.

Notice that this pragma has removed a lot of overhead and housekeep-

ing, such as: The pragma approach of OpenMP simplifies the creation of

multi-thread applications by allowing user to concentrate on solving a real

problem rather than to fighting the annoying explicit function-based multi-

thread libraries (like POSIX pthreads, etc.).

But as in the case conventional multi-thread libraries the OpenMP-compliant

implementations are not required to check for dependencies, conflicts, dead-

locks, race conditions, or other problems that may appear in the realm

of multi-thread programming. The user is the one responsible for using

OpenMP in his applications to produce a conforming program. Addition-

ally OpenMP does not cover compiler-generated automatic parallelization

(also know as vectorization).

However, it is undeniable that all the work OpenMP executes on your

behalf is done in the background. This fact makes debugging OpenMP

applications somewhat more difficult.

37



Chapter 2

Design & Implementation

2.1 Short Architecture Review

Figure 2.1: Simple block diagram of software components

Here follows a simple description of Figure 2.1:

3D Model Loader is the part responsible for loading 3D models for fur-

ther processing and viewing.

Project Loading/Saving is part of the IO, that is responsible for load-

ing and saving user data.

GUI Graphical user interface that allows user to load/remove 3D models

and/or lightings and it is also comprised of following subparts:

38



Scene Viewer is a simple 3D scene viewer allowing us to do basic rigid

operations to scene - rotating, zooming of the whole scene and rotating the

3D model and lighting separately.

BRDF Input provides use with the one- or two-lobe version of Cook-

Torrance model.

Virtual Glossmeter simulates the behavior of a real-world glossmeter.

2.2 Beginning

In the early stage of work, after we finished compendium on the related

works, we began implementing low-level data structures. The core consists

of templated structures for 2-, 3- and 4-vector which provide the standard

behaviour of these mathematical entities (scalar multiplication, dot prod-

uct, etc.). Another math elements are 3- and 4- matrices, which are also

implemented as templated structures with interface allowing common ma-

trix operations (matrix-matrix multiplication, matrix-vector multiplication,

inverse matrix, and so on). In our code we use float version of these struc-

tures.

The most CG related data structure is obviously a 2D image buffer. We

are aware, that there are plenty of such implementations available, but they

usually offer up to 4 channels (RGBA). We aimed to develop image buffers,

which could hold image with arbitrary number (set at compilation time at

least) of channels. Such request resulted from one of our possible goal -

augment current PRT techniques to support spectrum-based effects. Such

channels could hold coefficient representing approximation of the spectrum

in particular chosen basis as discussed in Section 1.6 on page 29. They

are implemented as templated arrays parametrized over element type and

number or channels per pixel. Indeed we implemented various buffers with

slightly different interface (1D or 2D indexing of elements, etc.)
As a starting exercise we implemented SH with fixed number of 36 co-

efficients, with dot product computation running on the GPU. We are able

to display model with 120k vertices in about 20 FPS (this program can
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be found in tests directory under the name gpusphericalharmonics. This

method offers only simulation of diffuse reflections. Our shader performs

dot product in the for cycle across 1D vectors, which is not cache efficient.

It would be probably more efficient to implement it as a parallel reduction

over 2D blocks (of size 6× 6 = 36).

We use vertex buffer object (VBO) to store vertex data. VBO is an

OpenGL extension intended to enhance the performance of OpenGL by pro-

viding the benefits of vertex array and display list, while avoiding down-

sides of their implementations. VBOs allows vertex array data to be stored

in high-performance graphics memory on the server side and promotes ef-

ficient data transfer. VBOs provide control over the mappings and unmap-

pings of buffer objects and define the usage type of the buffers. This allows

graphics driver to optimize internal memory management and choose the

best type of memory – such as cached/uncached system memory or graph-

ics memory – in which to store the buffers.

After this little exercise we started implementing method described in

the paper All-Frequency Precomputed Radiance Transfer for Glossy Objects

[LSSS04]. We implemented SVD, CPCA, parabolic parametrization and

wavelet transforms, we encountered the paper Efficient Wavelet Rotation

for Environment Map Rendering, which allows dynamic change of lighting,

BRDF and viewing direction. This freedom does matter more for us than

the ability to have realistic GI data baked (with significatly slower precom-

putation).

As the method is pretty straightforward, we will recall it in coarse de-

tails. We implemented pyramidal and octahedral parametrization of hemi-

sphere and sphere, respectively. Example images can be seen in Figure 1.4

on page 18. We developed functions to enumerate ith nonstandard 2D

Haar basis functions in particular order. This function also fetch the basis

function to allocated memory. Rotation matrix for each sampled normal

is then created by enumerating basis functions, wich are reparametrized

from octahedral to pyramidal map to compute the resulting elements of

the transformation matrix.

We store these matrices in sparse format. Sparse vectors are simply

implemented as a composition of two vectors – one vector of float values

and one vector of integers to hold positions. Sparse matrix is stored in
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N M NO
Computation

time
Size of zlib file

(MB)
Load time

(sec)
256 64 4096 9s 2.1 0.5

1024 256 1024 35s 13 2.6
1024 256 4096 2m 30s 51 9
4096 1024 1024 9m 30s 74 12
4096 1024 4096 37m 294 76

Table 2.1: Statistics of rotational matrices computation. N is the number of
pixels of global lighting map, of the local lighting slice. NO is the number
of sampled normal. Computations were performed on double-core CPU

compressed row format as vector of sparse rows (vectors).

Lighting and BRDF data are converted to sparse structures performing

the nonlinear compression by index sorting of coefficients magnitudes and

only few with the highest magnitude and their corresponding positions in

original dense vector are stored. We also experimented replacing sorting

by quick select (also known as kth select) which should be asymptotically

better than sorting, but this was not true as there are only few non-zero

coefficients and the algorithms tries to sort the nearly zero coefficients.

In the rendering routine, we proceed with each vertex: we determine its

visibility to the observer by its normal. If it is visible, we use the normal to

index local lighting slice. With help of vertex tangent vectors, we transform

global viewing direction into the local one. We use this direction to sample

the BRDF slice. Then we perform three dot products of sparse vectors for

each RGB channel and store the resulting color into local buffer. Once

every vertex is processed we send the buffer with colors to GPU to update

the actual colors of VBO holding the vertex data on the graphics card.

In our work we do not use quantization neither in CPU nor GPU com-

putation in contrary to original work.

Some statistics about precomputation of rotation matrices is shown in

Figure 2.1.

We use OpenMP for parallelizing loops in several places of our code -
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name of model # of vertices FPS
Armadillo 34k 10
Bunny 36k 10
Suzanne 32k 11
Suzanne 126k 2
icosphere 15k 24
icosphere 61k 6

Table 2.2: Performance results of our WENV implementation

in computation of rotational matrices, processing (sampling, wavelet trans-

forming and storing slices of) global environmental lighting and BRDFs.

Listing below shows a skeleton of the computation of rotational matri-

ces.

f l o a t ∗ ndata = 0;

#pragma omp p a r a l l e l private ( ndata ) shared ( totalnNNZ )

{

ndata = new f l o a t [WENV_n∗WENV_n] ;

. . .

#pragma omp for

for ( in t normIndex = 0; normIndex < WENV_NO; ++normIndex ) {

. . .

#pragma omp c r i t i c a l

{

++totalNNZ ;

}

. . .

}

delete [] ndata ;

. . .

}

We specify the ndata variable to be private for every spawned thread, ssub-

sequentlyallocating memory for it in the parallel block so every thread will

have its private chunk of memory for ndata. Likewise we delete this mem-

ory before the end of the parallel block so there are no memory leaks. The
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critical block int the sample above is what it’s name suggests – it is an criti-

cal section where only one thread at a time may pass through. In this case,

threads are explicitly synchronized at this point and they correctly incre-

ment the number of non-zero coefficients totalnNNZ for our statistics. For

this purpose totalnNNZ has to be declared as shared among the threads.

Indeed, we can conclude that the speed has doubled (for our double core

implementation) comparing to single threaded implementation.

On the other hand, in display routine we use OpenMP construct with

dynamic scheduling, because the computing of vertex colors depends on

visibility condition – if the vertex belongs to some back-facing triangle, it

is discarded (set to black color), otherwise the dot product of BRDF and

light sparse vectors is carried out. This exploits uneven distribution of time

needed to compute colors of vertices. If we would use simple #pragma

omp for directive as above, one thread would compute color for first half

of mesh vertices, second thread for the rest of vertices. It could happen,

that vertices processed by first thread would be invisible to the observer

and their computed instantly, but still we would have to wait for the sec-

ond thread to process it’s data. Luckily for us, OpenMP provides directive

clause to enable dynamic scheduling – if specified, the iterations are guided

assigned to threads in chunks as the threads request them. The thread exe-

cutes the chunk of iterations, then requests another chunk, until no chunks

remain to be assigned. In the following listing the chunk size is set to 100:

#pragma omp p a r a l l e l for schedule ( dynamic , 100)

for ( in t i = 0; i < currentModel_−>numOfVertices ( ) ; ++i ) {

. . .

}

In this case the speed up was significant, but not clearly doubled as in pre-

computation of rotational matrices, obviously due to scheduling overhead.

The noniterative work-sharing sections construct contains a set of struc-

tured blocks (section) that will be divided among, and executed by, the

threads in a team. Each structured block is executed only once by one of

the threads in the team.

#pragma omp p a r a l l e l s e c t i o n s

{
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#pragma omp s e c t i o n

{

// p r o c e s s R channe l data
}

. . .

// same f o r G and B channe l
. . .

}

We do not use SSE2 CPU capability because of the restrictions discussed

in 1.7.1 on page 32. Instead we bet on new autovectorization enhancement

of g++ compiler. The Vectorizer is enabled by the flag -ftree-vectorize.

Information on which loops were or were not vectorized and why, can be

obtained using the flag -ftree-vectorizer-verbose. For our disappoint-

ment, only very few loops had been vecorized and indeed they were no

that crucial for the overall speedup.

2.3 GPGPU Nonstandard Haar wavelet transform

The need of storing rotation matrices in the memory for all the time was

bothering us from the first time. Once the lighting changes it is transformed

to local slices induced by normal directions. These slices are then indexed

and dotted with BRDF slices in rendering routine. We came with an idea

to bypass the transforming the global light to many local slices, dropping

the memory consuming transformation matrices, and sample and wavelet

transform slices on the GPU. We usually use the setup of 32 × 32 normal

samples (in octahedral parametrization) and the size of local slice also 32×
32. Easy calculation can prove, that if we tiled local slices side by side, row

by row, we would end up with tileboard of size 1024× 1024 wich fits int the

GPU memory.

For each tile = slice induced by normal we first sample the lighting in

the direction of this normal. Those HDR image data are stored on graphics

card until the whole Haar transform is performed and only after that those

data are send to system memory, where there are transformed to sparse
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vectors as in purely CPU version. Haar transform is performed in the frag-

ment shader by horizontal and vertical steps on all the tiles.

For this we use the well known ping pong technique of two image buffers

(textures) - we use first texture as a source for the shader. Assuming hor-

izontal step we execute shader for this with parameters indicating level of

the transform (i.e. what data to transform and what data just to pass un-

changed). We render the results in the second texture using framebuffer

extension. After this the role of the texture is swapped. We use the second

texture as input for the first and perform vertical step, and so on. For better

understanding you may have a look at Figure 2.2

We encountered slow-down when using shader with if nested in another

if statement to determine what operation (averaging, difference of pass)

has to be performed for pixel in question by fragment shader, so we rather

precomputed these conditions into RGB texture as can be seen in Figure 2.3

- for every pixel we now compute all branches, but the branch which will

be eventually stored as a result is determined by the value of corresponding

pixel in corresponding precomputed texture (level of the transform). This

technique of getting rid off branching (or marginal states) is called domain
decomposition. This helped us to speed up dynamic change of lighting by

factor of 2-3.

We implemented test for dot product of dense vectors on the GPU, but

this would be slower including the transfers between GPU and CPU. Dot

product of two sparse vector is not well parallelizable, so there would be no

speed up of such computation on GPU. The case dot product computation

with dense vector stored in graphics hardware memory
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(a) Precomputed directions (b) Sampled lighting slices

(c) First iteration of Haar transform (d) Corresponding transformed lighting slices

Figure 2.2: Visualization of GPU Haar transformation tileboards (cropped)
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Figure 2.3: Domain decomposition for GPU Haar transform (red denotes
positions where low-pass filter results are stored, green high-pass and blue
identical values

2.4 BRDF

We implemented multi-lobe form of the physically derived Cook-Torrance

model [CT81] that has shown to perform well with many materials. Here

follows the BRDF definition

fr(ωi, ωo) =
Kd

π
+

N∑
i=1

KsiFri
Dmi

G

π(~n · ωi)(~n · ωo)

whereN is the number of specular lobes, Kd andKsi are the diffuse and

specular parameters, respectively, and m and r are the parameters for the

distribution and Fresnel terms, respectively. We use Beckmann distribution

function for roughness D of the surface.

Although for purpose of this thesis there is only possibility to choose

between one- and two-lobe model from our graphic user interface.

2.5 Virtual Glossmeter

Specular gloss is widely used in paint, paper, plastic and textile industries

for the characterization of mirror-like appearance of a surface by specific re-

flectance measurements. We have choosen wavelet environment mapping

for visualization, because it preserves high frequencies in view-dependent

specular highlights.

Those highlights are rather glossy than mirror-like, but this is sufficient

for a large spectrum of materials. Because of this we are interested in the

numerical gloss value of 3D model being displayed as a feedback.
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To implement virtual glossmeter we need a 2D integration tool to com-

pute the equation for the total exitant flux ΘS,D(ρ) passing through the

detector aperture

ΘS,D(ρ) = ALS

K∑
k=1

J∑
j=1

ρ(~sj, ~dk)(~sj · ~n)(~dk · ~n)

for derivation, please, have a look at original paper [WM01]. Westlund

et al. used the Cubpack++ library to compute cubature in their work. In

our work we have chosen the library Cuba.

The Cuba library offers a choice of four independent routines for mul-

tidimensional numerical integration: Vegas, Suave, Divonne, and Cuhre.

They provide methods for deterministic/Monte Carlo integration with dif-

ferent strategies of variance reduction. Cuba has not such large support for

predetermined primitives as Cubpack++ (e.g. rectangle, plane, strip, etc.)
and instead is designed to compute only Riemann integrals on hypercube

If :=

∫ 1

0

ddxf(~x)

where it is assumed that f(~x) is given as a function or subroutine that can

be sampled at arbitrary points xi ∈ [0, 1]d.

Though this is not a serious restriction since most integrands can be

easily transformed to the unit hypercube:

∫ b1

a1

· · ·
∫ bd

ad

=

∫ 1

0

ddxf(~x)
d∏

i=1

(bi − ai)

where xi = ai + (bi − ai)yi.

With help of Cuba library we integrate over the rectangle aperture of

the detector so that we set the fixed direction from the point on detector

(in global frame) and then we perform nested integration over the rectan-

gle aperture of a light source using the stored direction from the detector

and directions to the light source rectangle. Cuba also takes care of adap-

tive subdivision during the integration. We convert RGB triplet to single

luminance value applying coefficients (0.2126, 0.7152, 0.0722).

In order to compute gloss value, we need to compute and compare the
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total exitant flux of measured surface and total exitant flux of a standard

surface and divide them

G = 100

∑K
k=1

∑J
j=1 ρ(~sj, ~dk) dΩSj

dΩDk∑K
k=1

∑J
j=1 F (~n,~sj)δ(mirror(~sj)− ~dk) dΩSj

The numerical gloss value, G, is measured in so called gloss units (GLU)

and typically ranges from 0 (low gloss) to 100 (high gloss).. The evalua-

tion time of our virtual glossmeter takes from fractions of a second to few

second, depending on the measurement angle and BRDF parameters.

By definition, the ultimate standard surface for gloss measurements is a

smooth black glass surface having a refractive index of 1.567 for the wave-

length 589.26 nm for all angles. For all angles of incidence this surface by

definition has an assigned gloss value of 100 GLU. The blackness limits the

exitant flux to first standard reflection and smoothness ensures presence of

reflections only in specular direction. Corresponding specular reflectance

values at 20◦, 60◦and 85◦computed using the Fresnel equations are approx-

imately 0.049, 0.998, 0.619.

Our implementation of virtual glossmeter is fully customizable. User

can change size and location of apertures, specular angle and surface ori-

entation.

Unfortunately, we could not find real reference images of complex mate-

rials with measured gloss value and supplied BRDF model with parameters

(for synthetic reconstruction). Thus we were not able to compare and vali-

date the results of our virtual glossmeter to results of a real glossmeter. For

now we show off few BRDF setups with corresponding measured gloss unit

results in Figure 2.4

The GUI allows to zoom and rotate scene utilizing quaternion math to

overcome gimbal lock.

3D model is imported within our own Wavefront .obj file loader. We

assume rather simplified version of that format – only definition of ver-

tex data (position, normal, texture coordinates) and triangular faces are

supported. Our 3D models do not come with tangent space vectors be-

side vertex normal. So the computation of tangent and bitanget vector is

necessary.

Please note, we are referring to bitangent. We emphasize this, because
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(a) (3.515, 2.649, 4.843) (b) (53.935, 53.407, 42.7448)

(c) (19.432, 27.598, 44.393) (d) (3.060, 3.096, 10.349)

Figure 2.4: Example virtual glossmeter measurements at 20◦, 60◦and
85◦angles in gloss units. Scene with Stanford Armadillo model and Ennis
lighting environment.
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for some reason the word binormal is often used with the same meaning.

This is an error since binormal is term used in study of curves.

The tangent vector ~t at some vertex is computed by Gram-Schmidt or-

thonormalizing process using vertex normal and global reference vector

(set to (1, 1, 1)) and bitangent vector ~b is then given by ~b = (~t × ~n). The

absence of intrinsic tangent spaces and using the global reference vector to

compute them yields visual artifacts in the direction of the reference vec-

tor and opposite one (i.e. (1, 1, 1) and (−1,−1,−1)). However, this is not

defect of the visualization method itself and can be solved by providing

correct tangent spaces within a 3D model.

2.6 HDRI & Post-processing

Another implemented feature is loading of the HDR images. We support

RGBE and OpenEXR formats with various parametrization: panoramatic,

cube cross and angular probes.

We use these HDR environment maps to light the scene. Consequently

we have to deal with the rendered HDR images. Tone mapping is the task

to represent this high dynamic range on low dynamic range displays ap-

propriately. Many different algorithms were proposed, unfortunately, most

of them are not suited for realtime rendering due to their time costs. To

circumvent these problems we choose a simple logarithmic compression

of the dynamic range [RWPD05], which may in fact compete with more

complex operators when applied to medium-dynamic-range images.

The logarithm is a compressive function for values larger that 1, and

therefore range compression may be achieved straightforward by mapping

luminances as follows

Ld(x, y) =
log10(1 + Lw(x, y))

log10(1 + Lmax)

where Lw and Lmax are the world luminance of a particular pixel and max-

imum luminance (of the whole image), respectively. Lw is computed from

the RGB triplet by the dot product with coefficients (0.2126, 0.7152, 0.0722).

Ld is the resulting display luminance. To get the compressed image we

have to recombine luminance values into a color image via (Rd, Gd, Bd) =
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Ld

Lw
(Rw, Gw, Bw).

The tone mapping routine is done on the GPU. We do not compute Lmax

from the image, because it would probably taken some parallel reduction

for finding the maximum, hence slowing the frame rate of the display rou-

tine. Instead we choose the way of providing slider in our GUI to change

the Lmax value. Effects can be seen at Figure 2.5
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(a) Under-exposed (b) Good exposure

(c) Over-exposed

Figure 2.5: Effects of global logarithmic tone mapping operator on scene
with Stanford Armadillo model and Ennis lighting environment.
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2.7 Data organization

Our visualization tool works with projects, which can be saved to and

loaded from a file. Each project consists of arbitrary number of HDR light-

ings and 3D models. Each model may have assigned BRDF along with

corresponding parameters. Only one lighting and one model can be dis-

played at a time. Project data file is stored as zlib compressed binary data

stream.This is implemented via boost serialization library and the data

may not be portable between different architectures (different endianness,

etc.).

2.8 Project Directory Structure

• brdf - BRDF related code

• core - global project constants, color, etc.

• generators - generators of random samples (used by SH)

• gpu - OpenGL Shading Language wrapper, common functions

• helpers - function used as intermediate product (function objects)

• io - loading of 3D models and HDR images

• math - small vectors (2, 3, 4), small matrices (3x3, 4x4), generic fixed

size vector, Haar wavelet transform etc.

• memory - various templated memory structures

• methods - now only wavelet rotation environment mapping

• misc - index sorting, quick select, trackball

• numerical - sparse vectors, sparse and dense matrices, CPCA

• projections - projections to basis functions (only SH)

• scene - containers holding lightings and models

• shaders - GPU shaders
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• solvers - GI solvers (only for SH)

• tests - various purpose-built tests

• widgets - GUI related code
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2.9 Working Environment

We use g++ from GNU Compiler Collection (GCC) of version 4.1.1. Al-

though OpenMP support in GCC is scheduled for version 4.2 it is already

include in 4.1 versionwhichh comes with Fedora Core 6.

For tracking and managing changes of our source code we use the Sub-

version (SVN). The goal of the Subversion project is to build a version

control system that is a modern compelling replacement for Concurrent

Versioning System (CVS) which is probably the most spread system in the

open source community.

SVN is better than CVS having many features, to mention few: commits

are truly atomic operations; directories, renames, and file metadata are

versioned etc..
We adopt the basic SVN repository paradigm - repository consists of

the trunk (main development branch), tags (for tagged snapshots) and

branches (experimental branches...) directory.

For building Build (construction) tools – Autotools – which is de facto
most spread building solution in the open source development projects.

2.10 Asset preparation

For preparation of digital assets we use mainly two software product:

Blender - for preparation of 3D models and exporting to .obj format.

pfstools - for manipulation (resizing) of HDR images. All programs in the

package exchange data using unix pipes and a simple generic HDR

image format (pfs).

pfsinrgbe input_file_name | pfssize -r scale_ratio | \

pfsoutrgbe output_file_name
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Chapter 3

Results, Conclusion & Future
Work

We implemented environment mapping visualization tool preserving all

frequencies in BRDF and lighting environments. Our contribution to the

original work lies in the support of multi-core CPUs, which speeds up the

precomputation and rendering code almost linearly to the number of cores

available.

Another contribution is the profit from the presence of fast programmable

graphic processor, which we use to perform tileboarded nonstandard Haar

wavelet transform. This is a step toward more dynamic changes of the

lighting environment and it also overcomes the need of keeping rotation

matrices in the memory, thus lowers the overall consumed memory.

In summary, we implemented standalone visualization tool enabling us

to render highly specular materials under natural detail lighting environ-

ments at interactive rates, employing multi-core CPU and fast GPU to speed

up computation, while giving the virtually measured numerical specular

gloss value of rendered material as feedback to the user.

As we were developing under Linux only, we were not able to use profile

tools for our shader code – Nvidia NVPerfKit is tied with much older Linux

kernel as we are using and gDebugger is for Windows platform only. We

hope NVPerfKit for Linux will be better supported in the future so we could

get the maximum from our GPU code.

In the future we would like to extend environment mapping technique
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to triple product integral scene relighting and thus incorporating seft-shadowing

of objects. Also we would like to switch from per-vertex to per-pixel com-

putation, performed on the GPU. We are looking to implement spherical

wavelet transform with help of new geometric shaders, which now come

within newest graphic cards.
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Appendix A

Libraries & Tools

In this appendix we list libraries that we actively use in our software prod-

uct Tools used to prepare assets. Stuff we found useful to complete my

thesis:

A.1 Tools

Subversion

http://subversion.tigris.org License: Subversion License

The goal of the Subversion project is to build a version control system

that is a modern compelling replacement for Concurrent Versioning System

(CVS) which is probably the most spread version control system in the open

source community.

Blender

http://www.blender.org License: GNU GPL

Blender is the free open source 3D content creation suite, available for

all major operating systems under the GNU General Public License.

pfstools

http://www.mpi-inf.mpg.de/resources/pfstools License: GNU LGPL

pfstools package is a set of command line programs for reading, writing,

manipulating and viewing high-dynamic range (HDR) images and video

frames.
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A.2 Libraries

gtkmm

http://www.gtkmm.org License: LGPL

gtkmm is an C++ wrapper for the Gtk+ library. We have chosen it

because this is the GUI library we used in recent projects and are most

familiar with.

gtkglextmm

http://gtkglext.sourceforge.net/ License: LGPL

gtkglexmm is addition to gtkmm. It allows gtkmm to use OpenGL

through additional GDK widgets.

Boost

http://www.boost.org License: Boost Software License

The Boost C++ libraries are a collection of peer-reviewed, open source

libraries that extend the functionality of C++. Boost libraries are intended

to be widely useful, and usable across a broad spectrum of applications

(providing the programmer with smart pointers to more involved high-level

C++ template metaprogramming framework). Part of it will hopefully

become part of a C++ in the future versions of C++ standard.

OpenMP

http://www.openmp.org License:

The OpenMP (Open Multi-Processing) is an industry-standard API for

multi-platform shared memory multiprocessing programming in C/C++

and Fortran on many architectures.

OpenGL & OpenGL Shading Language

http://www.opengl.org License:

OpenGL is the premier environment for developing portable, interactive

2D and 3D graphics applications. Currently there is specification for version

2.1.

OpenEXR

http://www.openexr.com License: modified BSD
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OpenEXR is a high dynamic-range (HDR) image file format developed

by Industrial Light & Magic for use in computer imaging applications.

Cuba

http://www.feynarts.de/cuba/ License: LGPL

Cuba is a library for multidimensional numerical integration offering

four independent methods of integration - deterministic/Monte Carlo with

different strategies of variance reduction.
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