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Abstract

We prove several new closure properties of the classes of languages recognized by 1.5-way and 2-
way quantum finite state automata (1.5QFA and 2QFA) and 2-way finite automata with quantum
and classical states (2QCFA). We show that none of these classes of languages is closed under
homomorphism, the classes of languages recognized by 1.5QFA and by simple 2QFA are closed
under inverse non-erasing homomorphism and the class of languages recognized by simple 1.5QFA
is closed under general inverse homomorphism. We also show that the homomorphic closures of the
classes of languages recognized by 1.5QFA, 2QFA and 2QCFA are equal to the class of recursively
enumerable languages and the homomorphic closure of the class of languages recognized by 1-way
quantum finite state automata (1QFA) is equal to the class of regular languages.

Keywords: Quantum computation, Quantum finite automata, 1.5QFA, 2QFA, 2QCFA.
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Chapter 1

Introduction

The phenomena of quantum mechanics give us a new kind of computational power over the
classical mechanics. Very remarkable successes in the theory of quantum computing are Peter
Shor’s algorithms for factoring and discrete logarithm in polynomial time for quantum computers
[Sho94, Sho97] and Grover’s quantum algorithm for searching an unordered list of size n with only
O(

√
n) accesses to the list [Gro96, Gro98].
However, these algorithms use the power of universal quantum machines, such as quantum

Turing machines [Deu85, BV93], quantum circuits [Deu89, Yao93] or quantum cellular automata
[Mar86, Wat95]. Recent experimental quantum computers are much less powerful, as the most
successful realizations of quantum computers have so far only up to 7 quantum bits [VSB+01].
In this thesis we consider quantum finite automata – a simpler model of quantum computation

which may be easier to implement than universal quantum machines. Different models of quantum
finite automata have been studied. The simplest ones are one-way quantum finite state automata
(1QFA) introduced by Kondacs and Watrous [KW97]. This very simple model of quantum auto-
mata is not very powerful and the class of languages recognized by it is a proper subset of the class
of regular languages. In the same paper, Kondacs and Watrous introduced also a more powerful
model – two-way quantum finite state automata (2QFA). These automata can simulate any de-
terministic finite automaton and even recognize some non-regular languages. Therefore, 2QFA are
strictly more powerful than 1QFA. More recently, Amano and Iwama [AI99] introduced a varia-
tion of 2QFA – 1.5-way quantum finite state automata (1.5QFA) – which cannot move their head
to the left. A limitation of 1.5QFA and 2QFA is that they allow superpositions of different head
positions on the tape and hence the number of their quantum states grows with the growing length
of the input word. This probably could make the models more difficult to implement. Ambainis
and Watrous [AW02] introduced two-way finite automata with quantum and classical states – a
model where the size of the quantum part does not depend on the input word length and still is
strictly more powerful than finite state automata. 2QCFA can be seen as an intermediate model
between 1QFA and 2QFA.
Many properties of quantum finite automata have been studied so far. Every 1QFA can be

simulated by a classical finite automaton, and there is no 1QFA recognizing the regular language
{a, b}∗a [KW97]. The class of languages recognized by 1QFA is closed under complement and
inverse homomorphism [BP02] and is not closed under homomorphism [BP02] nor any binary
Boolean operation with both arguments significant [AĶV01]. Although 1QFA can recognize the
language a∗b∗ with probability approximately 0.68 [AF98], which cannot be recognized by any
reversible finite automaton, every language recognized by 1QFA with probability greater than
roughly 0.78 is recognized by some reversible finite automaton [AĶ03]. Sometimes, 1QFA can be
much more space-efficient than deterministic and even probabilistic finite automata. There is an
1QFA checking divisibility by a prime number p with only O(log p) states, what is equivalent to
O(log log p) quantum bits of memory [AF98].
On the contrary to 1QFA, 2QFA and 2QCFA are strictly more powerful than classical finite

automata. Beyond the regular languages they can recognize the language {akbk | k ≥ 0} [KW97,
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14 CHAPTER 1. INTRODUCTION

AW02]. 2QCFA can also recognize the language of all palindromes {w ∈ {a, b}∗ | w = wR} [AW02],
which cannot be recognized even by any two-way probabilistic finite automaton [DS90, KF91].
1.5QFA can also recognize some non-regular languages, however, it is not known whether they
recognize all regular languages or not. The classes of languages recognized by these three models
are trivially closed under complement and the class of languages recognized by 2QCFA is also
closed under inverse homomorphism [Koš05]. All these three classes are rather complicated, as
even the emptiness problem is undecidable for all these three models [AI99, Fre81].
In this thesis we prove several new closure properties of different models of quantum finite

automata. We show that the classes of languages recognized by 1.5QFA and simple 2QFA are
closed under inverse non-erasing homomorphism and the class of languages recognized by simple
1.5QFA is closed under general inverse homomorphism. Further we show that none of the classes
of languages recognized by 1.5QFA, 2QFA nor 2QCFA is closed under homomorphism.
As neither 1QFA, 1.5QFA, 2QFA nor 2QCFA recognize a class of languages closed under ho-

momorphism, a natural question is, what are the smallest classes closed under homomorphism
containing these classes as subsets. We show that the homomorphic closures of the classes of lan-
guages recognized by 1.5QFA, 2QFA and 2QCFA, respectively, are equal to the class of recursively
enumerated languages, and the homomorphic closure of the class of languages recognized by 1QFA
is equal to the class of regular languages. This shows a significant gap between the homomorphic
closures of 1.5QFA, 2QFA and 2QCFA on one hand, and the homomorphic closure of 1QFA on
the other hand.
The remainder of this thesis has the following organization. In chapter 2, we shortly present

preliminaries of quantum computating theory. In chapter 3, we provide formal definitions of the
four models of quantum finite automata. In chapter 4, we discuss closure properties of 1.5QFA,
simple 1.5QFA and simple 2QFA under inverse homomorphism. chapter 5 deals with the homo-
morphic closure of the class of languages recognized by 1.5QFA and chapter 6 shortly generalizes
this result for the case of 2QFA and 2QCFA and discusses the homomorphic closure of 1QFA.
Finally, in chapter 7, we conclude with mention of some open problems.



Chapter 2

Preliminaries

In this chapter we shortly present preliminaries of the quantum computing theory we use in the
rest of this thesis. To fully understand details of the quantum computing theory, we encourage
the reader to read the books [Gru99, NC00], which provide a detailed overview of a wide range of
quantum computing topics.

2.1 Hilbert spaces

Closed quantum systems are well modeled by Hilbert spaces. We use them as a basic mathematical
framework to formally describe the principles of quantum mechanics. Hilbert spaces are complex
vector spaces with inner products 〈ψ|φ〉.

Definition 2.1 An inner-product space H over a field F is a vector space over the field F with
an inner product 〈·|·〉:H×H → C satisfying

1. 〈ψ|φ〉 = 〈φ|ψ〉∗, (conjugate symmetry)

2. 〈ψ|ψ〉 ≥ 0 and 〈ψ|ψ〉 = 0 if and only if ψ = 0, and (positive definiteness)

3. 〈ψ|c1φ1 + c2φ2〉 = c1〈ψ|φ1〉+ c2〈ψ|φ2〉, (right linearity)

for each ψ, φ, φ1, φ2 ∈ H and c1, c2 ∈ F .

The inner product 〈ψ|φ〉 of the inner-product space H introduces on the space H for every
φ ∈ H the norm

‖φ‖H =
√

〈φ|φ〉,
and for every φ, ψ ∈ H the metric

distH(φ, ψ) = ‖φ− ψ‖.

If there is no ambiguity we usually write just ‖φ‖ and dist(φ, ψ) instead of ‖φ‖H and distH(φ, ψ),
respectively. The notion of metric allows us to introduce a metric topology and concepts such as
continuity on H. Vectors of the inner-product space H with unit norm are called (pure) states of
the space H.

Definition 2.2 An inner-product space H is complete if for any sequence {φj}∞j=1 with all φj ∈ H
such that limj,k→∞ ‖φj − φk‖ = 0 there is a unique element φ ∈ H, for which we have

lim
j→∞

‖φ− φj‖ = 0.

Definition 2.3 Hilbert space is a complete inner-product space over the field C of complex num-
bers.

15



16 CHAPTER 2. PRELIMINARIES

There are many different kinds of Hilbert spaces in the quantum theory. To model the quantum
systems used in this thesis, we use the so-called `2(D) Hilbert spaces. We define them as follows.

Definition 2.4 Let D be a countable set. We say, that `2(D) is the vector space of all complex
valued functions on D bounded by the so-called `2-norm, i.e.

`2(D) =






x:D → C

∣
∣
∣
∣
∣
∣

√
∑

j∈D

x(j)
(
x(j)

)∗
<∞






.

For any countable set D, the vector space `2(D) is a Hilbert space with respect to the inner
product 〈·|·〉: `2(D)× `2(D)→ C, defined by

〈x1|x2〉 =
∑

j∈D

(
x1(j)

)∗
x2(j).

The concept of orthogonality is very important in the inner-product space theory. The main
role of orthogonality in quantum computing is that only mutually orthogonal quantum states are
well distinguishable by quantum measurements.

Definition 2.5 Vectors φ and ψ of an inner-product space H are orthogonal, denoted by φ ⊥ ψ,
if 〈φ|ψ〉 = 0. A subset S of H is orthogonal if every two elements of S are orthogonal. The set S
is orthonormal if it is orthogonal and all its elements have norm 1.

Definition 2.6 An orthonormal subset Θ of an inner-product space is its orthonormal basis if
none of its proper supersets is orthonormal.

We can show that all bases of an inner-product space H have the same cardinality. This
cardinality is called the dimension of the space H. If the cardinality is finite, we say that the
inner-product space is finite-dimensional. Otherwise, we say that the space is infinite-dimensional.

Definition 2.7 A subspace E of an inner-product space H is a subset of H closed under addition
and scalar multiplication.

By a simple verification of the conditions from definition 2.1 we can show that a subspace of
an inner-product space is itself an inner-product space.

Lemma 2.8 For every complete subspace E of a complete inner-product space H there is a unique
subspace E⊥ such that 〈φ1|φ2〉 = 0 for each φ1 ∈ E and φ2 ∈ E⊥, and each ψ ∈ H can be uniquely
written is the form ψ = φ1 + φ2, where φ1 ∈ E and φ2 ∈ E⊥. We write H = E ⊕ E⊥ and say that
E and E⊥ form an orthogonal decomposition of the inner-product space H.

We can generalize the concept of orthogonal decomposition of a complete inner-product space
H to an orthogonal decomposition

H = E1 ⊕ . . .⊕ Ek

of H into k mutually orthogonal subspaces E1, . . . , Ek, such that each ψ ∈ H has a unique repre-
sentation ψ = φ1 + . . .+ φk, where φj ∈ Ej for all j with 1 ≤ j ≤ k.

2.2 Dirac’s notation

For any Hilbert spaceH and any its state φ a linear mapping fφ:H → C can be defined by assigning
fφ(ψ) = 〈φ|ψ〉. Moreover, we can show that for any continuous linear mapping f :H → C there
is a unique state φf ∈ H, such that f(ψ) = 〈φf |ψ〉 for all ψ ∈ H. The space of all such linear
mappings of the Hilbert space forms a Hilbert space again. We call this space a dual Hilbert space
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or a conjugate Hilbert space and denote it as H∗. The inner product of the conjugate Hilbert
space is defined for all f, g ∈ H∗ by

〈f |g〉 = 〈φf |φg〉.
Thanks to the duality between the Hilbert space H and its conjugate Hilbert space H∗ the

Dirac’s bra-ket notation can be introduced. A vector φ of the Hilbert space H is denoted by a
ket-vector |φ〉. The corresponding mapping fφ of the conjugate Hilbert space is denoted by a
bra-vector 〈φ|. For every φ, ψ ∈ H we have

〈φ| (|ψ〉) = fφ(ψ) = 〈φ|ψ〉.

In the case of an n-dimensional Hilbert space, we can indetify the ket-vector |ψ〉 with an
n-dimensional column vector and a bra-vector 〈φ| with an n-dimensional row vector. The inner
product 〈φ|ψ〉 is then a complex number, while the outer product |ψ〉 〈φ| is an n× n matrix. For
the outer product we have

|ψ〉 〈φ| (|ω〉) = |ψ〉(〈φ|ω〉) = 〈φ|ω〉|ψ〉

for all ψ, φ, ω ∈ H.

2.3 Linear operators

A linear operator of a Hilbert space H is a linear mapping A:H → H. An application of the
linear operator A of the Hilbert space to a vector |φ〉 from that space is denoted by |Aφ〉 or simply
by A|φ〉. Any linear operator A of the Hilbert space H is also a linear operator of the conjugate
Hilbert space H∗. It maps every linear mapping 〈ψ| of the conjugate space to a linear mapping
denoted by 〈φ|A.
We can represent any linear operator A of an n-dimensional Hilbert space H with the basis

Θ = {|θj〉}n
j=1 by an n-dimensional matrix with the number 〈θj |A|θk〉 in its j-th row and k-th

column. In this case the j-th row of the matrix is the vector 〈θj |A and the k-th column of the
matrix is the vector A|θk〉.
Projection operators are of special importance among linear operators. If H = E1⊕. . .⊕Ek is an

orthogonal decomposition of a Hilbert space H, then every vector φ from the space H has a unique
representation φ = φ1+ . . .+φk with φj ∈ Ej for all j, where 1 ≤ j ≤ k. The mappings defined by
the identities PEj

(φ) = φj for all j are called projection operators onto the corresponding subspaces
Ej .
A special role among linear operators have adjoint and self-adjoint operators. We define them

in the following two definitions.

Definition 2.9 The norm of a linear operator A of a Hilbert space H is defined as

‖A‖ = sup
{
‖A|φ〉‖

∣
∣ φ ∈ H ∧ ‖φ‖ = 1

}
.

If ‖A‖ is finite, then the operator A is called bounded.

Definition 2.10 The adjoint operator to a bounded linear operator A of a Hilbert space H is an
operator A∗ such that

〈ψ|Aφ〉 = 〈A∗ψ|φ〉
for all ψ, φ ∈ H. If A = A∗, then the operator A is called self-adjoint.

The self-adjoint operators correspond to Hermitian matrices, i.e., the matrices A with A = A∗.
A bounded linear operator A is unitary, if AA∗ = A∗A = I, where I is an identity operator.
A self-adjoint operator A of a finite dimensional Hilbert space H has a so-called spectral re-

presentation. If λ1, . . . , λk are its distinct eigenvalues, then we can express the operator A in the
form A = λ1PE1 + . . . + λkPEk

, where Ej is the subspace of the Hilbert space H spanned by the
eigenvectors corresponding to λj .
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2.4 Evolution of quantum systems

In the evolution of a quantum system some transformation of the initial state is performed. In
the formal representation of the quantum system, some operator A is used to map one state
into another. An evolution of an isolated quantum system corresponds to a transformation by a
unitary operator in its Hilbert space. As unitary operators preserve the norm, they can be seen
as performing rotations on quantum states.
For a finite dimensional quantum system, we can show that any linear operator representing

quantum evolution in that system has to be unitary as follows: A quantum evolution operator A
has to map quantum states into quantum states. Therefore, for any state x of the quantum system
the identity 〈Ax|Ax〉 = 〈x|x〉 = 1 holds. As a consequence we have 〈x|x〉 = 〈A∗

Ax|x〉 and hence

A
∗
A = I.

Therefore, the operator A is unitary.
Note, that the equality A∗A = I corresponds to the condition that row vectors of A are ort-

honormal and the equality AA∗ = I corresponds to the assertion that column vectors of A are
orthonormal. If A is a finite dimensional, then AA∗ = I if and only if A∗A = I.
In the general case, the evolution of a quantum system is described by the linear Schrödinger

equation

i~
∂|ψ(t)〉
∂t

= H(t)|ψ(t)〉,

where ~ is the Planck constant, H(t) is an observable of the system called Hamiltonian of the
system in time t, and |ψ(t)〉 is the state of the system in time t. If the Hamiltonian is time
independent, the formal solution of the Schrödinger equation has the form

|φ(t)〉 = U(t)|φ(0)〉,

where U(t) = e−Ht/~ is an evolution operator that can be represented by a unitary matrix.

2.5 Observables and measurements

In order to extract information from a quantum system we have to observe the system – to perform
a measurement of the system. In this thesis we consider only so-called sharp observables, which
correspond to projection measurements.
The numerical outcome of a measurement of a pure state |ψ〉 of a Hilbert space H with respect

to an observable specified by a self-adjoint operator A is one of the eigenvalues λj of A. As the side
effect of the measurement the state |ψ〉 collapses into a state |φ〉. The eigenvalue λj is obtained
with probability

P (λj) = ‖PEj
|ψ〉‖2 = 〈ψ|PEj

|ψ〉,
where Ej is the subspace of H spanned by the eigenvectors corresponding to λj . The new state
|φ〉, into which |ψ〉 collapses, has the form

|φ〉 = PEj
|ψ〉

√
〈ψ|PEj

|ψ〉
.

The measurement of |ψ〉 with respect to A irreversibly destroys ψ, unless ψ is an eigenvector of A.

An equivalent approach to model the observation through a special orthogonal decomposition,
called observable, of the Hilbert space can be done.

Definition 2.11 An observable of a Hilbert space H is a pair O = ({Ej}k
j=1, µ), where E1⊕ . . .⊕

Ek = H is an orthogonal decomposition of the Hilbert space H and µ: {Ej}k
j=1 → R is an injective

mapping.
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Let |φ〉 be a state and O = ({Ej}k
j=1, µ) be an observable of a Hilbert space H. We can express

|φ〉 uniquely as a linear superposition of its projections with respect to corresponding subspaces
of the orthogonal decomposition of the Hilbert space

|φ〉 =
k∑

j=1

αj |φEj
〉,

where |φEj
〉 is a projection of |φ〉 into Ej . A measurement of |φ〉 by the observable O has the

following consequences:

1. One of the subspaces E1, . . . , Ek, say Ej , is selected, and the value µ(Ej) is acquired. The
probability of selecting the subspace Ej is |αj |2.

2. After the measurement, the state |φ〉 collapses into the state |φEj
〉

‖|φEj
〉‖ .

3. The only classical information obtained by the measurement is the value µ(Ej) of the function
µ. Any information not in |φEj

〉 is irreversibly lost.

A measurement with respect to the observable O = ({Ej}k
j=1, µ) causes the quantum system

to behave randomly and to destroy its original state φ unless the state belongs entirely into one
of the subspaces of the orthogonal decomposition of the Hilbert space.
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Chapter 3

Models of quantum finite
automata

In this chapter, we formally define the models of quantum automata discussed in this thesis. In
section 3.1, we define two-way quantum finite state automata introduced in [KW97], which are the
quantum analogue of classical two-way finite state automata. The following two sections define two
special cases of 2QFA. In section 3.2 we define 1.5-way quantum finite state automata introduced
in [AI99], which are forbidden to move their head to the left, but still may let their head stationary
on the currently read tape symbol. In section 3.3 we define the last variant of 2QFA, namely one-
way quantum finite state automata introduced in [KW97], which are forced to move their head
to the right in every evolution step. Only the last one of these three models is purely finite, since
evolution of 2QFA and 1.5QFA may lead into a large superposition of many heads on different
tape symbols and so the size of their quantum memory may be proportional to the input word
length.
Finally, in section 3.4 we define two-way finite automata with quantum and classical states, an

intermediate model between 1QFA and 2QFA, introduced in [AW02]. This model is a generalized
classical or probabilistic two-way finite state automaton, which is extended by additional finite
quantum memory.

3.1 Two-way quantum finite state automaton

The model of two-way quantum finite state automata introduced by Kondacs and Watrous in
[KW97] is a quantum analogue to the classical two-way finite automata. In this section we provide
a formal definition of this model.

Definition 3.1 A two-way quantum finite state automaton (2QFA) we define as a sextuple M =
(Q,Σ, δ, q0, Qacc, Qrej), where Q is a finite set of states, Σ is a finite input alphabet, δ:Q×Γ×Q×
D → C is a transition function, q0 ∈ Q is an initial state, and Qacc ⊆ Q and Qrej ⊆ Q are sets of
accepting and rejecting states, respectively. It is assumed that Qacc ∩Qrej = ∅, q0 6∈ Qacc ∪Qrej,
symbols c, $ 6∈ Σ, Γ = Σ ∪ {c, $} and D = {−1, 0, 1}.
Elements of Qacc and Qrej are called halting states and elements of Qnon = Q \ (Qacc ∪Qrej)

non-halting states. Symbols c and $ are used to mark the left and the right end of an input word,
respectively. These symbols together with the input alphabet form tape alphabet Γ.
The 2QFA M ran on an input word w ∈ Σ∗ can be seen as it were operating on a circular

tape. This tape is circular in the sense that moving to the right from the last tape square the
automaton head jumps to the first tape square. Reversely, moving to the left from the first tape
square the automaton head jumps to the last tape square. For the non-empty input word w, the
corresponding tape x has length |w| + 2 and takes the form x = cw$. For technical reasons, if
w = ε the corresponding tape is x = c$$.

21
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Definition 3.2 The set of configurations of 2QFA M on a tape x of length n is CM
n = Q× Zn.

A superposition of M on this tape is any norm 1 element of the finite-dimensional Hilbert space
HM

n = `2(C
M
n ). For clarity, we write any base element |(q, k)〉 of HM

n with q ∈ Q and k ∈ Zn as
|q, k〉 only.

By CM
n,acc (C

M
n,rej , C

M
n,non) we mean the set of accepting (rejecting, non-halting) configurations

of 2QFA M on tape x of length n (i.e. CM
n,acc = QM

acc × Zn, C
M
n,rej = QM

rej × Zn, and C
M
n,non =

QM
non × Zn).
We use the Dirac notation to express superpositions. For every c ∈ CM

n , |c〉 denotes the unit
vector with value 1 at c and 0 elsewhere. Any other element of HM

n may be expressed as a linear
combination of its basis vectors. For a superposition |φ〉 = ∑c∈CM

n
αc|c〉, the number αc is the

amplitude associated with c in the superposition |φ〉. We have defined Hilbert spaces in chapter
2. For a detailed overview of Hilbert spaces theory, see [NC00] or [Gru99].

Notation 3.3 For a word w by notation (w)i, where 0 ≤ i < |w|, we mean the i-th symbol
of the word w counting from zero (i.e. (abcd)1 = b). By notation (w)i...j we mean the subword
(w)i . . . (w)j of the word w, and by notation #α(w) we mean the number of symbols α in the word
w.

The transition function δ of the 2QFA M is to be interpreted, such that for each q, p ∈ Q,
α ∈ Γ and d ∈ D, the number δ(q, α, p, d) represents the amplitude with which the automaton
in state q currently scanning symbol α changes its state to p and moves its head in direction d.
For a tape x the transition function induces a time-evolution operator of M for the tape x on the
Hilbert space HM

|x|.

Definition 3.4 For a 2QFA M on a tape x of length n we define a time-evolution operator UM
x

on the Hilbert space HM
n as follows:

U
M
x |q, k〉 =

∑

p∈Q

d∈D

δ(q, (x)k, p, d)|p, (k + d) mod n〉, where (q, k) ∈ CM
n , (3.1)

and extend to all vectors of HM
n by linearity.

Definition 3.5 A 2QFA M is well-formed if for every tape x ∈ Γ3Γ∗ the corresponding operator
U

M
x defined by definition 3.4 is unitary.

The time-evolution operator UM
x specifies how the automaton M evolves on the tape x, assu-

ming that the automaton superposition is not observed by any outside observer. To yield informa-
tion about automaton evolution it uses an observable which correspond to determining whether
the automaton is in an accepting, rejecting or non-halting state.

Definition 3.6 For a 2QFA M on a tape x of length n let OM
n be an observable corresponding

to the decomposition EM
acc ⊕ EM

rej ⊕ EM
non of HM

n , where EM
acc = Span({|c〉 | c ∈ CM

n,acc}), EM
rej =

Span({|c〉 | c ∈ CM
n,rej}) and EM

non = Span({|c〉 | c ∈ CM
n,non}). Outcome of this observation is

“accept”, “reject” or “non-halting” accordingly.

Definition 3.7 Evolution of a well-formed 2QFA M on a tape x of length n begins in the super-
position equal to |q0, 0〉. In every step of the evolution the unitary transformation UM

x is applied on
the superposition, followed by a measurement using the observable OM

n . The evolution continues
until the result of the measurement is “accept” or “reject”, when the evolution halts.

Notation 3.8 For a given well-formed 2QFA M we write the probability that the evolution of
M on the input word w halts with result “accept” (“reject”) as PM

acc(w) (P
M
rej(w)).

If there is no ambiguity we omit M in the symbols defined in previous paragraphs and write
only Cn, Hn, Ux, On and Pacc(w) instead of C

M
n , HM

n , U
M
x , OM

n and P
M
acc(w), respectively.
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Definition 3.9 A well-formed 2QFA M recognizes a language L ⊆ Σ∗ with bounded error if for
every word w ∈ Σ∗ we have PM

acc(w) + P
M
rej(w) = 1, and there is ε > 0, such that for every word

w ∈ L is PM
acc(w) > 1/2 + ε and for every word w ∈ Σ∗ \ L is PM

rej(w) > 1/2 + ε.

Notation 3.10 If there is a language a well-formed 2QFA M recognizes, we denote this language
by L(M). Note, that for every well-formed 2QFA there is at most one language recognized by it.

Kondacs and Watrous [KW97] introduced an effective criterion for well-formedness of 2QFA.
This criterion is analogous to Bernstein and Vazirani’s criterion for well-formedness of quantum
Turing machines [BV93].

Lemma 3.11 [KW97, Proposition 1] A 2QFA M = (Q,Σ, δ, q0, Qacc, Qrej) is well-formed if and
only if for every α, α1, α2 ∈ Γ and q1, q2 ∈ Q the following hold:

∑

p∈Q, d∈D

δ∗(q1, α, p, d)δ(q2, α, p, d) =

{
1 if q1 = q2
0 if q1 6= q2 (3.2)

∑

p∈Q

δ∗(q1, α1, p, 1)δ(q2, α2, p, 0) + δ
∗(q1, α1, p, 0)δ(q2, α2, p,−1) = 0 (3.3)

∑

p∈Q

δ∗(q1, α1, p, 1)δ(q2, α2, p,−1) = 0. (3.4)

The condition (3.2) of the previous lemma is the local probability and orthogonality condition
of the automaton evolution unitarity. The other two conditions (3.3) and (3.4) are the separability
conditions. These three conditions together are equivalent to the requirement that the evolution
of M is unitary on every tape.

Verification of the well-formedness conditions from the previous lemma may be in general a
relatively tedious task. Kondacs and Watrous introduced a method, by which some well-formed
automata can be specified more easily. We call them simple. However, it is still an open question,
whether the class of languages recognized by simple 2QFA is equal to the class of languages
recognized by all 2QFA.

Definition 3.12 A 2QFA M = (Q,Σ, δ, q0, Qacc, Qrej) is simple, if for each α ∈ Γ there is a
linear operator Vα on the Hilbert space `2(Q) and a function D:Q → {−1, 0,+1} such that for
each p, q ∈ Q, α ∈ Γ and d ∈ D

δ(q, α, p, d) =

{
〈p|Vα|q〉 if D(p) = d
0 if D(p) 6= d. (3.5)

Informally, the method decomposes the transition function of the automaton into two parts,
one transforming the states and the other moving the tape head.

It is easy to see, from lemma 3.11, that for a simple 2QFA the following holds.

Lemma 3.13 A simple 2QFA M is well-formed if and only if for every q1, q2 ∈ Q and α ∈ Γ is
∑

p∈Q

〈p|Vα|q1〉∗ 〈p|Vα|q2〉 =
{
1 if q1 = q2
0 if q1 6= q2.

This holds if and only if every operator Vα is unitary.

Notation 3.14 We write the class of languages recognized by 2QFA as L2QFA and the class of
languages recognized by simple 2QFA as Lsimple−2QFA.
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3.2 1.5-way quantum finite state automaton

Amano and Iwama [AI99] defined 1.5QFA as a special case of 2QFA which cannot move its head
to the left. However, they did not restrict 1.5QFA to move its head to the right from the right
end-marker and, due to the tape circularity, allowed the head to return back to the left end-marker
and read the input word once again.

As 1.5QFA is meant to be a model of quantum automata which head should read the input word
just once, we narrow the Amano’s and Iwama’s definition of 1.5QFA, such that the automaton
may not move its head beyond the right end-marker symbol. Nevertheless, the results showed in
[AI99] hold for the narrowed definition of 1.5QFA, too.

Definition 3.15 An 1.5-way quantum finite state automaton (1.5QFA) we define as a 2QFA
M = (Q,Σ, δ, q0, Qacc, Qrej), such that for every q, p ∈ Q and α ∈ Γ is δ(q, α, p,−1) = 0 and for
every q ∈ Qnon and p ∈ Q is δ(q, $, p, 1) = 0.

Note, that we allow δ(q, $, p, 1) 6= 0 for q ∈ Qacc ∪ Qrej , as the amplitude of the automaton
being in any halting state is zero at the beginning of every evolution step. This allows us to extend
the definition 3.12 of simple 2QFA to the 1.5QFA case. If we asked δ(q, $, p, 1) be zero for all
q ∈ Q, it would be impossible to construct the unitary operator V$ satisfying the condition from
the following definition.

Definition 3.16 An 1.5QFA is simple, if it is a simple 2QFA and 〈p|V$|q〉 = 0 for all q ∈ Qnon

and p ∈ Q with D(p) = 1.

As a special case of lemma 3.11 we can formulate a criterion for well-formedness of 1.5QFA.

Lemma 3.17 An 1.5QFA M = (Q,Σ, δ, q0, Qacc, Qrej) is well-formed if and only if for every
α, α1, α2 ∈ Γ and q1, q2 ∈ Q the following hold:

∑

p∈Q, d∈{0,1}
δ∗(q1, α, p, d)δ(q2, α, p, d) =

{
1 if q1 = q2
0 if q1 6= q2 (3.6)

∑

p∈Q

δ∗(q1, α1, p, 1)δ(q2, α2, p, 0) = 0. (3.7)

Notation 3.18 We write the class of languages recognized by 1.5QFA as L1.5QFA and the class
of languages recognized by simple 1.5QFA as Lsimple−1.5QFA.

3.3 One-way quantum finite state automaton

One-way quantum finite state automaton is a special case of 2QFA which may move its head
only to the right. Moreover, the evolution of 1QFA may not continue after reading the right end-
marker. Therefore, its superposition after reading this end-marker must be fully halting and so it
must belong to the subspace Eacc ⊕Erej . We achieve this by zeroing the amplitude with which the
automaton in a non-halting state reading the right end-marker symbol changes its state to any
non-halting state.

Definition 3.19 An one-way quantum finite state automaton (1QFA) we define as a 2QFA M =
(Q,Σ, δ, q0, Qacc, Qrej), such that for every q, p ∈ Q and α ∈ Γ is δ(q, α, p,−1) = δ(q, α, p, 0) = 0
and for every q, p ∈ Qnon is δ(q, $, p, 1) = 0.

It is not difficult to show that for any well-formed 1QFA, the following lemma holds.
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Lemma 3.20 Let M = (Q,Σ, δ, q0, Qacc, Qrej) be a well-formed 1QFA. For every α ∈ Γ there is
a unitary operator Vα on the Hilbert space `2(Q), such that

δ(q, α, p, d) =

{
〈p|Vα|q〉 if d = 1
0 if d 6= 1

for all p, q ∈ Q and d ∈ D.

As 1QFA are allowed to move their heads only to the right, they never get into a superposition
of two or more heads reading different tape symbols.

Evolution of a well-formed 1QFA M = (Q,Σ, δ, q0, Qacc, Qrej) on a tape x, may be seen as an
evolution performed in the Hilbert space `2(Q). This evolution starts in the superposition equal
to |q0〉. In its k-th step, where 0 ≤ k < |x|, the operator V(x)k , as defined in the previous lemma,
is applied on the current superposition. This transformation is followed by a measurement by
the observable corresponding to the orthogonal decomposition Eacc ⊕ Erej ⊕ Enon of `2(Q), where
Eacc = Span({|q〉 | q ∈ Qacc}), Erej = Span({|q〉 | q ∈ Qrej}) and Enon = Span({|q〉 | q ∈ Qnon}).
If the result of the measurement is in the subspace Eacc or Erej the automaton accepts or rejects,
respectively. Otherwise it continues in the next evolution step by applying the next Vα operator.
Note, that after applying the operator V$ the evolution halts, as V$|q〉 ∈ Eacc ⊕ Erej for any
|q〉 ∈ Enon.

On the contrary to 2QFA and 1.5QFA, every 1QFA uses only a constant size of quantum
memory. The 2QFA and 1.5QFA can be in large superpositions of many heads on different tape
symbols and so their quantum memory can be proportional to the input word length.

Notation 3.21 We write the class of languages recognized by 1QFA as L1QFA.

3.4 Two-way finite automaton with quantum and classical

states

A two-way finite automaton with quantum and classical states is a classical two-way finite state
automaton which has an additional quantum memory of a constant size. The size of this memory
is independent of the input word. The automaton may perform quantum transformations and
measurements on its quantum memory. The transformations and the measurements performed by
the automaton are determined by the classical states of the automaton and the read symbols. The
results of the measurements determine how the classical part of the automaton evolves.

Notation 3.22 For a finite set A we denote by Operators(A) the set of all unitary operators acting
on the Hilbert space `2(A), and by Decompositions(A) the set of all orthogonal decompositions of
`2(A) into |A| (not necessarily proper) subspaces represented by |A|-tuples (E1, . . . , E|A|), where
Ej are the particular subspaces.

Definition 3.23 A 2-way finite automaton with quantum and classical states (2QCFA) is an
octuple M = (Q,S,Σ, δ, q0, s0, Sacc, Srej), where Q and S are finite sets of quantum and classical
states, respectively, Σ is a finite input alphabet, δ:S × Γ→ Operators(Q)×Decompositions(Q)×
S|Q| ×D|Q| is a transition function, q0 ∈ Q and s0 ∈ S are initial quantum and classical states,
respectively, and Sacc ⊆ S and Srej ⊆ S are sets of accepting and rejecting classical states,
respectively. It is assumed that Sacc∩Srej = ∅, symbols c, $ 6∈ Σ, Γ = Σ∪{c, $} and D = {−1, 0, 1}.

Elements of Sacc and Srej are called halting states and elements of Snon = S \ (Sacc ∪ Srej)
non-halting states. Symbols c and $ are used to mark the left and the right end of an input
word, respectively. These symbols together with the input alphabet form the tape alphabet Γ. The
automaton operates on a tape. For the input word w, the corresponding tape has the form cw$.
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Definition 3.24 Let M be a 2QCFA. A configuration of M on an input word w is a quadruple
(s, |φ〉, cw$, k), where s ∈ S is the current classical state, |φ〉 ∈ `2(Q) is the current superposition
of the quantum memory, cw$ is the automaton tape content, and k with 0 ≤ k ≤ |w| is the current
position of the automaton head on the tape.

A configuration containing accepting classical state is an accepting configuration. Similarly, a
configuration with rejecting classical state is a rejecting configuration. All other configurations are
non-halting configurations.

Definition 3.25 Let (s, |φ〉, x, k) be a non-halting configuration of a 2QCFA M . If δ(s, (x)k) =
(V, (E1, . . . , E|Q|), (s1, . . . , s|Q|), (d1, . . . , d|Q|)), then one evolution step of the automaton M in this
configuration consists of applying the operator V on the superposition |φ〉 followed by a measure-
ment by the observable corresponding to the orthogonal decomposition E1 ⊕ . . .⊕ E|Q| of `2(Q). If
the result of the measurement is in the subspace Ej, where 1 ≤ j ≤ |Q|, the automaton changes its
classical state to the state sj and moves its head in direction dj. The resulting configuration of the
automaton is (sj ,PjV|φ〉, x, k + dj), where Pj is a normalized projection operator to subspace Ej.

Remark 3.26 We assume that the transition function of any 2QCFA is defined such that the
automaton head never moves to the left when reading the left end-marker symbol c, and similarly
never moves to the right when reading the right end-marker symbol $. Formally, for every s ∈ S
we assume that δ(s, c) ∈ Operators(Q) × Decompositions(Q) × S |Q| × {0, 1}|Q| and δ(s, $) ∈
Operators(Q)×Decompositions(Q)× S |Q| × {−1, 0}|Q|.

Definition 3.27 A 2QCFA M on an input word w begins its evolution with the configuration
(s0, |q0〉, cw$, 0). It performs evolution steps, as defined in the previous definition, until it reaches
any accepting or rejecting configuration, when it halts and accepts or rejects, respectively.

Notation 3.28 For a given 2QCFA M we write the probability that M accepts (rejects) on the
input word w as PM

acc(w) (P
M
rej(w)). If there is no ambiguity we omit the symbolM in the notation.

Definition 3.29 A 2QCFA M recognizes a language L ⊆ Σ∗ with bounded error if for every word
w ∈ Σ∗ we have PM

acc(w) + P
M
rej(w) = 1, and there is ε > 0, such that for every word w ∈ L is

PM
acc(w) > 1/2 + ε and for every word w ∈ Σ∗ \ L is PM

rej(w) > 1/2 + ε.

Notation 3.30 If there is a language a 2QCFA M recognizes, we denote this language by L(M).
Note, that for every 2QCFA there is at most one language recognized by it.

Notation 3.31 We write the class of languages recognized by 2QCFA as L2QCFA.



Chapter 4

Closure under inverse
homomorphism

Brodsky and Pippenger [BP02] showed that the class of languages recognized by one-way quan-
tum finite state automata is closed under general inverse homomorphism. The class of languages
recognized by two-way finite automata with quantum and classical states is closed under general
inverse homomorphism [Koš05], too. In this chapter, we investigate this closure property for the
case of 1.5-way and 2-way quantum finite state automata.

4.1 1.5QFA and inverse non-erasing homomorphism

We prove that the class of languages recognized by 1.5QFA is closed under inverse non-erasing
homomorphism. Take a well-formed 1.5QFAM = (Q,Σ, δ, q0, Qacc, Qrej) recognizing the language
L(M), and a homomorphism h: Σ′∗ → Σ∗, such that |h(α)| ≥ 1 for all α ∈ Σ′. We construct a new
1.5QFA M ′ recognizing the language h−1(L(M)).

The new automaton ran on an input word w will simulate the original automaton on the input
word h(w). For each symbol α of its input word, it will keep the superposition of the original
automaton heads reading any symbol of the subword h(α) in a superposition of heads reading the
symbol α. The different positions of the simulated heads within the word h(α) will be distinguished
by different states of the heads reading the symbol α of the new automaton input word.

Figure 4.1: 1.5QFA M ′ on the input word abcaa, with h(a) = 011, h(b) = 10 and h(c) = 0.
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Let Γ′ = Σ′ ∪ {c, $}, extend the non-erasing homomorphism h to Γ′∗ → Γ∗ such that h(c) = c
and h($) = $, and let s = max{|h(α)| | α ∈ Γ′}. We define the new automaton M ′ as the sextuple
(Q′,Σ′, δ′, q′0, Q

′
acc, Q

′
rej), where Q

′ = Q×Zs, q
′
0 = (q0, 0), Q

′
acc = {(q, k) | q ∈ Qacc ∧ k ∈ Zs} and

Q′
rej = {(q, k) | q ∈ Qrej ∧ k ∈ Zs}. The transition function of M ′ for every p, q ∈ Q and α ∈ Γ′

27
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we define as follows:

δ′((p, k), α, (q, k), 0) = δ(p, (h(α))k, q, 0); 0 ≤ k < |h(α)|, (4.1)

δ′((p, k), α, (q, k + 1), 0) = δ(p, (h(α))k, q, 1); 0 ≤ k < |h(α)| − 1, (4.2)

δ′((p, k), α, (q, 0), 1) = δ(p, (h(α))k, q, 1); k = |h(α)| − 1, (4.3)

δ′((p, k), α, (p, k), 0) = 1; |h(α)| ≤ k < s, (4.4)

δ′(anything else) = 0. (4.5)

As the automaton M is an 1.5QFA, δ(q, $, p, 1) = 0 for all q ∈ Qnon and p ∈ Q. There-
fore, by definition of M ′, δ′((q, k), $, (p, j), 1) = 0 for all (q, k) ∈ Q′

non and (p, j) ∈ Q′. Also,
δ′((q, k), α, (p, j),−1) = 0 for all (q, k), (p, j) ∈ Q′ and α ∈ Γ′. Hence, the constructed automaton
M ′ meets all conditions of definition 3.15 and so M ′ is an 1.5QFA.
To prove the closure property of the class of languages recognized by 1.5QFA we need to show

that the constructed 1.5QFAM ′ is well-formed and recognizes the language L(M ′) = h−1(L(M)).
We show it in the following two lemmas.

Lemma 4.1 The 1.5QFA M ′ is well-formed.

Proof: As the automaton M is a well-formed 1.5QFA the identities (3.6) and (3.7) of lemma 3.17
holds for it. We prove these identities for the constructed automaton M ′, too.
As the first one we prove the equality (3.6) of lemma 3.17. Let α ∈ Γ′ and (q1, k1), (q2, k2) ∈ Q′.

Without loss of generality, we can assume that k1 is not greater then k2. To cover all instances of
the identity it is sufficient to consider only tree cases. Namely if |h(α)| ≤ k2, if k1 = k2 = |h(α)|−1,
and if k1 < |h(α)| − 1 ∧ k2 ≤ |h(α)| − 1.

• If |h(α)| ≤ k2, then

(3.6) =
∑

(p,j)∈Q′

δ′∗((q1, k1), α, (p, j), 0)δ
′((q2, k2), α, (p, j), 0) +

+
∑

(p,j)∈Q′

δ′∗((q1, k1), α, (p, j), 1)δ
′((q2, k2), α, (p, j), 1)

(4.5)
=

= δ′∗((q1, k1), α, (q2, k2), 0)δ
′((q2, k2), α, (q2, k2), 0) + 0

(4.4),(4.5)
=

=

{
1 · 1 + 0 = 1 if q1 = q2 ∧ k1 = k2
0 · 1 + 0 = 0 if q1 6= q2 ∨ k1 6= k2.

• If k1 = k2 = |h(α)| − 1, then

(3.6) =
∑

(p,j)∈Q′

δ′∗((q1, k1), α, (p, j), 0)δ
′((q2, k1), α, (p, j), 0) +

+
∑

(p,j)∈Q′

δ′∗((q1, k1), α, (p, j), 1)δ
′((q2, k1), α, (p, j), 1)

(4.5)
=

=
∑

p∈Q

δ′∗((q1, k1), α, (p, k1), 0)δ
′((q2, k1), α, (p, k1), 0) +

+
∑

p∈Q

δ′∗((q1, k1), α, (p, 0), 1)δ
′((q2, k1), α, (p, 0), 1)

(4.1),(4.3)
=

=
∑

p∈Q

d∈{0,1}

δ∗(q1, (h(α))k1 , p, d)δ(q2, (h(α))k1 , p, d)
(3.6) for M
=

{
1 if q1 = q2
0 if q1 6= q2.
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• Finally, if k1 < |h(α)| − 1 and k2 ≤ |h(α)| − 1, then

(3.6) =
∑

(p,j)∈Q′

δ′∗((q1, k1), α, (p, j), 0)δ
′((q2, k2), α, (p, j), 0) +

+
∑

(p,j)∈Q′

δ′∗((q1, k1), α, (p, j), 1)δ
′((q2, k2), α, (p, j), 1)

(4.5)
=

=
∑

p∈Q

δ′∗((q1, k1), α, (p, k1 + 1), 0)δ
′((q2, k2), α, (p, k1 + 1), 0) +

+
∑

p∈Q

δ′∗((q1, k1), α, (p, k1), 0)δ
′((q2, k2), α, (p, k1), 0) = ♥.

To state the value of the previous expression, we need to consider the following three relations
between k1 and k2:

– If k1 = k2, then

♥ (4.2)
=

∑

p∈Q

δ∗(q1, (h(α))k1 , p, 1)δ(q2, (h(α))k1 , p, 1) +

(4.1)
+

∑

p∈Q

δ∗(q1, (h(α))k1 , p, 0)δ(q2, (h(α))k1 , p, 0)
(3.6) for M
=

{
1 if q1 = q2
0 if q1 6= q2.

– If k1 + 1 = k2, then

♥ (4.2),(4.1),(4.5)
=

∑

p∈Q

δ∗(q1, (h(α))k1 , p, 1)δ(q2, (h(α))k1+1, p, 0)
(3.7) for M
= 0.

– And if k1 + 2 ≤ k2, then ♥ (4.5)
= 0 + 0 = 0.

So far, we have proved the equality (3.6) of the lemma 3.17. We prove the other equality of
the lemma. For α1, α2 ∈ Γ′ and (q1, k1), (q2, k2) ∈ Q′ we have

(3.7) =
∑

(p,j)∈Q′

δ′∗((q1, k1), α1, (p, j), 1)δ
′((q2, k2), α2, (p, j), 0)

(4.5)
=

=
∑

p∈Q

δ′∗((q1, k1), α1, (p, 0), 1)δ
′((q2, k2), α2, (p, 0), 0) = ♦.

If k1 6= |h(α1)|−1 or k2 6= 0, then by (4.5) is ♦ = 0. In the following we assume that k1 = |h(α1)|−1
and k2 = 0:

♦ =
∑

p∈Q

δ′∗((q1, |h(α1)| − 1), α1, (p, 0), 1)δ′((q2, 0), α2, (p, 0), 0)
(4.3),(4.1)
=

=
∑

p∈Q

δ∗(q1, (h(α1))|h(α1)|−1, p, 1)δ(q2, (h(α2))0, p, 0)
(3.7) for M
= 0.

By proving the equalities of lemma 3.17 we have showed that the constructed automaton M ′

is well-formed. �

Lemma 4.2 The 1.5QFA M ′ recognizes the language L(M ′) = h−1(L(M)).

Proof: Let w ∈ Σ′∗ be an input word of 1.5QFA M ′ and x the corresponding tape of length n.
We show that the evolution of the automaton M ′ on the tape x mimics the evolution of M on the
tape h(x).
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Denote m = |h(x)| and fj = |h((x)0...j−1)|, for all j with 0 ≤ j ≤ n. It is easy to see that

(h((x)j))l = (h(x))fj+l, for 0 ≤ j < n ∧ 0 ≤ l < |h((x)j)|, and (4.6)

f(j−1) mod n + |h((x)(j−1) mod n)| − 1 = (fj − 1) mod m, for 0 ≤ j < n. (4.7)

Write P t
acc (P

t
rej , P

t
non) the probability that the result of the measurement using the observable

OM
m in the t-th step of the evolution of M is “accept” (“reject”, “non-halting”). Similarly, for the
automaton M ′ and the observable OM ′

n , write such probability R
t
acc (R

t
rej , R

t
non). Now, assume

|φt〉 =
∑

q∈Q, j∈Zm

at
q,j |q, j〉 (4.8)

is the superposition of M after t steps of its evolution on the tape h(x). We prove by induction
on t that

|ψt〉 =
∑

(q,k)∈Q′

j∈Zn

btq,k,j |(q, k), j〉, where btq,k,j =

{
at

q,fj+k if k < |h((x)j)|
0 if k ≥ |h((x)j)|

(4.9)

is the superposition of M ′ after t steps of its evolution on the tape x. As a consequence we show
that P t

♥ = R
t
♥ for every t ≥ 1 and ♥ ∈ {acc, rej, non}.

By definition 3.7, the superposition of the automaton M at the beginning of its evolution is
|φ0〉 = |q0, 0〉. Similarly, by the same definition, the superposition of M ′ at the beginning of its

evolution is |ψ0〉 = |q′0, 0〉
def. of M ′

= |(q0, 0), 0〉. As a0q,j 6= 0 only for q = q0 and j = 0 and b0q,k,j 6= 0
only for q = q0, k = 0 and j = 0, (4.9) holds for t = 0.
In the inductive case, we assume (4.9) holds for t and show it for t+1. In the t+1-st step of the

evolution of M the unitary transition UM
h(x) is applied on the superposition |φt〉. This application

leads to the superposition

U
M
h(x)|φt〉 (4.8)=

∑

q∈Q

j∈Zm

at
q,jU

M
h(x)|q, j〉

(3.1)
=

∑

q∈Q

j∈Zm

at
q,j

∑

p∈Q

d∈{0,1}

δ (q, (h(x))j , p, d) |p, (j + d) mod m〉 =

=
∑

p∈Q

j∈Zm

∑

q∈Q

d∈{0,1}

δ
(
q, (h(x))(j−d) mod m, p, d

)
at

q,(j−d) mod m|p, j〉 =
∑

p∈Q

j∈Zm

ctp,j |p, j〉. (4.10)

Analogically, the superposition after applying the unitary transition UM ′

x in the t + 1-st step
of the evolution of M ′ is

U
M ′

x |ψt〉 =
∑

(p,l)∈Q′

j∈Zn

∑

(q,k)∈Q′

d∈{0,1}

δ′
(
(q, k), (x)(j−d) mod n, (p, l), d

)
btq,k,(j−d) mod n|(p, l), j〉 =

=
∑

(p,l)∈Q′

j∈Zn

dt
p,l,j |(p, l), j〉.

Amplitudes dt
p,l,j of particular configurations in the superposition U

M ′

x |ψt〉 may be expressed
by means of the amplitudes ctp,j of U

M
h(x)|φt〉. We have three cases to consider:

• If 0 < l < |h((x)j)|, then

dt
p,l,j

(4.5)
=

∑

q∈Q

(

btq,l,jδ
′((q, l), (x)j , (p, l), 0) + b

t
q,l−1,jδ

′((q, l − 1), (x)j , (p, l), 0)
)

=

(4.1)
=

∑

q∈Q

(

btq,l,jδ(q, (h((x)j))l, p, 0)
(4.2)
+ btq,l−1,jδ(q, (h((x)j))l−1, p, 1)

)

=

IH,(4.6)
=

∑

q∈Q

(

at
q,fj+lδ(q, (h(x))fj+l, p, 0) + a

t
q,fj+l−1δ(q, (h(x))fj+l−1, p, 1)

)
(4.10)
= ctq,fj+l.
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• Assume, that l = 0. To simplify the expressions let j ′ = (j−1) mod n and l′ = |h((x)j′)|−1.
In this case, we have

dt
p,l,j

(4.5)
=

∑

q∈Q

(

btq,0,jδ
′((q, 0), (x)j , (p, 0), 0) + b

t
q,l′,j′δ′((q, l′), (x)j′ , (p, 0), 1)

)

=

(4.1)
=

∑

q∈Q

(

btq,0,jδ(q, (h((x)j))0, p, 0)
(4.3)
+ btq,l′,j′δ(q, (h((x)j′))l′ , p, 1)

)

=

IH,(4.6)
=

∑

q∈Q

(

at
q,fj

δ(q, (h(x))fj
, p, 0) + at

q,fj′+l′δ(q, (h(x))fj′+l′ , p, 1)
)

=

(4.7)
=

∑

q∈Q

(

at
q,fj

δ(q, (h(x))fj
, p, 0) + at

q,(fj−1) mod mδ(q, (h(x))(fj−1) mod m, p, 1)
)

=

(4.10)
= ctq,fj

.

• Finally, if l ≥ |h((x)j)|, then dt
p,l,j

(4.5)
= btp,l,jδ

′ ((p, l), (x)j , (p, l), 0)
IH,(4.4)
= 0 · 1 = 0.

Therefore, the superposition UM ′

x |ψt〉 we can write as

U
M ′

x |ψt〉 =
∑

(p,l)∈Q′

j∈Zn

dt
p,l,j |(p, l), j〉, where dt

p,l,j =

{
ctp,fj+l if l < |h((x)j)|
0 if l ≥ |h((x)j)|.

(4.11)

Now, let ♥ ∈ {acc, rej, non} and compare the probabilities of particular results of the measu-
rements in the t-th step of the evolutions of M and M ′ on the respective tapes:

Rt
♥ =

∑

(q,k)∈Q′
♥

j∈Zn

‖dt
q,k,j‖2

(4.11)
=

∑

q∈Q♥
j∈Zn

∑

0≤k<|h((x)j)|

‖ctq,fj+k‖2 =
∑

q∈Q♥
j∈Zm

‖ctq,j‖2 = P t
♥. (4.12)

Let PM
non (P

M ′

non) be a normalized projection operator projecting the Hilbert space HM
m (HM ′

n )
to its subspace EM

non (EM ′

non). This operator represents a transformation done by a measurement
using the observable OM

m (OM ′

n ) with the result “non-halting”. For the superposition of M after
t+ 1 steps of its evolution on the tape h(x) we have:

|φt+1〉 = PM
nonU

M
h(x)|φt〉 (4.10)

= P
M
non

∑

q∈Q

j∈Zm

ctq,j |q, j〉 =
∑

q∈Qnon
j∈Zm

ctq,j
√

P t
non

|q, j〉.

In sequel to previous and (4.8) the amplitudes of the configurations in the superposition |φt+1〉
for j ∈ Zm are

at+1
q,j =

{
ct

q,j√
P t

non

for q ∈ Qnon

0 for q 6∈ Qnon.
(4.13)

Similarly, the superposition of the automaton M ′ after t+ 1 steps of its evolution on the tape
x is:

|ψt+1〉 = P
M ′

nonU
M ′

x |ψt〉 (4.11)
= P

M ′

non

∑

(q,k)∈Q′

j∈Zn

dt
q,k,j |(q, k), j〉 =

∑

(q,k)∈Q′
non

j∈Zn

dt
q,k,j

√

Rt
non

|(q, k), j〉
(4.11),
(4.12)
=

=
∑

q∈Qnon
j∈Zn

∑

0≤k<|h((x)j)|

ctq,fj+k
√

P t
non

|(q, k), j〉 (4.13)
=

∑

q∈Q

j∈Zn

∑

0≤k<|h((x)j)|

at+1
q,fj+k|(q, k), j〉.
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Therefore, the amplitudes of the configurations in the superposition |φt+1〉 correspond to (4.9)
and the inductive case is proved. For (q, k) ∈ Q′ and j ∈ Zn we have:

bt+1q,k,j =

{
at+1

q,fj+k if k < |h((x)j)|
0 if k ≥ |h((x)j)|.

Thus, it is proved that for any given input word w the probabilities P t
♥ and R

t
♥ are equal for

every t ≥ 1 and ♥ ∈ {acc, rej, non}. Let ♥ ∈ {acc, rej}. Since for any input word w the probability
PM ′

♥ (w) that the evolution of M
′ halts with the result ♥ is

PM ′

♥ (w) =
∑

k≥1

(
∏

1≤t<k

Rt
non

)

Rk
♥
(4.12)
=

∑

k≥1

(
∏

1≤t<k

P t
non

)

P k
♥ = PM

♥ (h(w)),

the language L(M ′) recognized by M ′ is equal to the language h−1(L(M)). �

Theorem 4.3 The class of languages recognized by 1.5QFA is closed under inverse non-erasing
homomorphism.

Proof: According to the previous two lemmas, for every well-formed 1.5QFA recognizing the lan-
guage L over the alphabet Σ and every non-erasing homomorphism h: Σ′∗ → Σ∗, there is a
well-formed 1.5QFA recognizing the language h−1(L). �

4.2 Simple 2QFA and inverse non-erasing homomorphism

In this section, we deal with the class of languages recognized by simple 2QFA. We prove that
this class is closed under inverse non-erasing homomorphism. Take a well-formed simple 2QFA
M = (Q,Σ, δ, q0, Qacc, Qrej) recognizing the language L(M) and a homomorphism h: Σ′∗ → Σ∗,
such that |h(α)| ≥ 1 for all α ∈ Σ′. We construct a new simple 2QFA M ′ recognizing the language
h−1(L(M)).
The new simple 2QFA works similarly to the 1.5QFA constructed in the previous section. On

an input word w it simulates the original automaton on the input word h(w). For each symbol α of
the input word, it keeps the superposition of the original automaton heads reading any symbol of
the subword h(α) in a superposition of heads reading the symbol α. The different positions of the
simulated heads within the word h(α) are distinguished by different states of the heads reading
the symbol α.
To implement left head moves correctly, the automaton head must recognize which state it

should change to when moving to the left. As homomorphic images of different symbols may have
different lengths, the automaton cannot determine the length of the homomorphic image of the
symbol, say γ, one square to the left from the currently read symbol. Thus it may not know which
states represent the last symbol of h(γ). To allow left head moves, the new automaton uses a
special set of states representing last symbols of homomorphic images. We distinguish these states
by •. All other symbols of homomorphic images are represented as previously.
Let Γ′ = Σ′ ∪ {c, $}, extend the non-erasing homomorphism h to Γ′∗ → Γ∗ such that h(c) = c

and h($) = $, and let s = max{|h(α)| | α ∈ Γ′}. Furthermore, for every α ∈ Γ′ define function gα

as follows:

gα(k) =







• if k = −1
k if 0 ≤ k < |h(α)|
0 if k = |h(α)|.

According to definition 3.12 of simple 2QFA and lemma 3.13, there is for every α ∈ Γ a uni-
tary linear operator Vα on the Hilbert space `2(Q) and a function D:Q → {−1, 0, 1} such
that (3.5) holds for the transformation function δ of M . We define the new simple 2QFA as
M ′ = (Q′,Σ′, δ′, q′0, Q

′
acc, Q

′
rej), where Q

′ = Q × (Zs ∪ {•}), Q′
acc = Qacc × (Zs ∪ {•}) and

Q′
rej = Qrej × (Zs ∪{•}). If D(q0) = −1, we declare q′0 = (q0, •), otherwise q′0 = (q0, 0). We define
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Figure 4.2: States of the new simple 2QFA distinguished by the function D.
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Figure 4.3: Transitions of the constructed simple 2QFA M ′.

c a a

↑ ↑ ↑

V
′
a|q, 0〉

c a a

↑ ↑ ↑

V
′
a|q, 1〉

c a a

↑ ↑ ↑

V
′
a|q, 2〉, V′a|q, •〉

b c a

↑ ↑ ↑

V
′
c|q, 0〉, V′c|q, •〉

the transition function δ′ of M ′ with help of operators V′
α, where α ∈ Γ′, and function D′ as

in definition 3.12. For clarity, we omit the parentheses in vectors |(q, k)〉 ∈ `2(Q
′) and write just

|q, k〉, instead.
For every α ∈ Γ′ define the operator V′

α on the Hilbert space `2(Q
′) as follows: for each k ∈ Zs

and q ∈ Q, such that 0 ≤ k < |h(α)| − 1 or k = |h(α)| − 1 ∧D(q) 6= − 1, let

V
′
α|q, k〉 =

∑

p∈Q

〈p|V(h(α))k |q〉|p, gα(k +D(p))〉, (4.14)

for each q ∈ Q, such that D(q) = −1, let

V
′
α|q, •〉 =

∑

p∈Q

〈p|V(h(α))k |q〉|p, gα(k +D(p))〉, where k = |h(α)| − 1, (4.15)

and for all other q ∈ Q and k ∈ Zs ∪ {•} let

V
′
α|q, k〉 = |q, k〉. (4.16)

Furthermore, define function D′:Q′ → {−1, 0, 1}, such that for each (q, k) ∈ Q′ we have

D′(q, k) = −1, if D(q) = −1 ∧ k = •,
D′(q, k) = 1, if D(q) = 1 ∧ k = 0, and
D′(q, k) = 0, otherwise.

Lemma 4.4 The simple 2QFA M ′ is well-formed.
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Proof: According to lemma 3.13, the simple 2QFA M ′ is well-formed if and only if all V′
α are uni-

tary. Take a symbol α from Γ′. We show that vectors V′
α|q, k〉, where (q, k) ∈ Q′, are orthonormal.

Let A = {(q, k) ∈ Q′ | 0 ≤ k < |h(α)| − 1}, B = {(q, k) ∈ Q′ | k = |h(α)| − 1 ∧D(q) 6= − 1},
C = {(q, •) ∈ Q′ | D(q) = −1}, and E = Q′ \ (A ∪ B ∪ C). For each (q, k) ∈ A ∪ B we have
‖V′α|q, k〉‖2 =

∑

p∈Q ‖ 〈p|V(h(α))k |q〉‖2 = 1 by (4.14) and unitarity of V(h(α))k . Similarly, we have
‖V′α|q, •〉‖ = 1 for each (q, •) ∈ C. For all (q, k) ∈ E we have ‖V′

α|q, k〉‖ = 1 directly from (4.16).
Hence, all vectors V′

α|q, k〉 have norm 1.
Let (q, k) ∈ A∪B ∪C and (p, j) ∈ E. We see that 〈p, j|V′

α|q, k〉 = 0, by inspection. Therefore,
the vector V′α|p, j〉 is orthogonal to the vector V′

α|q, k〉. So are vectors V′
α|q, k〉, where (q, k) ∈ E,

to each other. Now, let (p, k), (q, k) ∈ A with p and q different. By unitarity of V(h(α))k we have
∑

r∈Q

(
〈r|V(h(α))k |q〉

)∗ (〈r|V(h(α))k |p〉
)
= 0, and hence V′α|p, k〉 ⊥ V′α|q, k〉. Similarly, V′α|p, j〉 ⊥

V
′
α|q, k〉 for (p, j), (q, k) ∈ B ∪ C with p and q different. For every (p, j), (q, k) ∈ A ∪ B ∪ C with

j and k different, there is no base vector |r, l〉 with (r, l) ∈ Q, such that both 〈r, l|V′
α|p, j〉 and

〈r, l|V′α|q, k〉 are non-zero. Therefore, the vectors V′
α|p, j〉 and V′α|q, k〉 are orthogonal.

We have showed that all vectors V′
α|q, k〉, where (q, k) ∈ Q′, are orthogonal and have norm 1.

Hence, all V′α are unitary and M
′ is well-formed. �

Lemma 4.5 The simple 2QFA M ′ recognizes the language h−1(L(M)).

Proof: Let w ∈ Σ′∗ be an input word of 2QFA M ′ and x the corresponding tape of length n. By a
similar argument as in the proof of lemma 4.2, we can show that the evolution of the automaton
M ′ on the tape x mimics the evolution of M on the tape h(x).
Denote m = |h(x)| and fj = |h((x)0...j−1)|, for all j with 0 ≤ j ≤ n, and let sets A, B, C and

E be defined as in the proof of the previous lemma. Now, assume that

|φt〉 =
∑

q∈Q, j∈Zm

at
q,j |q, j〉

is the superposition of M (on the Hilbert space HM
m ) after t steps of its evolution on the tape

h(x). Similarly as in lemma 4.2, we can prove by induction on t that

|ψt〉 =
∑

(q,k)∈Q′

j∈Zn

btq,k,j |(q, k), j〉, where btq,k,j =







at
q,fj+k if (q, k) ∈ A ∪B
at

q,fj+|h((x)j)|−1 if (q, k) ∈ C

0 if (q, k) ∈ E

is the superposition of M ′ (on the Hilbert space HM ′

n ) after t steps of its evolution on the tape x.

As a consequence, the probability that the result of the measurement using the observable
OM

m in the t-th step of the evolution of M is “accept” (“reject”, “non-halting”) is equal to the
probability that the result of the measurement using the observable OM ′

n in the t-th step of the
evolution of M ′ is “accept” (“reject”, “non-halting”). Therefore, the probabilities of accepting
(rejecting) the word w by M ′ and the word h(w) by M are equal and the language recognized by
M ′ is equal to the language h−1(L(M)). �

Theorem 4.6 The class of languages recognized by simple 2QFA is closed under inverse non-
erasing homomorphism.

Proof: According to the previous two lemmas, for every well-formed simple 2QFA recognizing the
language L over the alphabet Σ and every non-erasing homomorphism h: Σ′∗ → Σ∗, there is a
well-formed simple 2QFA recognizing the language h−1(L). �

Note that if the automaton M is simple 1.5QFA, so is the automaton M ′. Therefore, the class
of languages recognized by simple 1.5QFA is closed under inverse non-erasing homomorphism, too.
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4.3 Simple 1.5QFA and general inverse homomorphism

In the previous section we have shown that the class of languages recognized by simple 2QFA
is closed under inverse non-erasing homomorphism. Now, we prove a stronger result for simple
1.5QFA, namely we prove that the class of languages recognized by simple 1.5QFA is closed under
general inverse homomorphism.

Definition 4.7 We call a homomorphism h: Σ∗
1 → Σ∗

2 length-nonincreasing if |h(α)| ≤ 1 for all
α ∈ Σ1.

Foremost, we show that the class of languages recognized by simple 1.5QFA is closed under
inverse length-nonincreasing homomorphism, and then we generalize the result for any inverse
homomorphism. Take a well-formed simple 1.5QFA M = (Q,Σ, δ, q0, Qacc, Qrej) recognizing the
language L(M) and a homomorphism h: Σ′∗ → Σ∗, such that |h(α)| ≤ 1 for all α ∈ Σ′. We
construct a new simple 2QFA M ′ recognizing the language h−1(L(M)).
The new automaton ran on the input word w simulates the automaton M on the word h(w).

Its evolution on symbols with non-empty homomorphic image is the same as the evolution of M .
On symbols with homomorphic image equal to ε, the automaton moves all its heads immediately
to the right. If α is an input symbol with k preceding symbols mapped onto ε, the evolution on
this symbol is delayed by k evolution steps.
Let Γ′ = Σ′ ∪ {c, $} and extend the homomorphism h to Γ′∗ → Γ∗ such that h(c) = c and

h($) = $. For every α ∈ Γ there is a unitary linear operator Vα on the Hilbert space `2(Q) and
a function D:Q → {−1, 0, 1}, such that (3.5) holds for δ. We define the new simple 2QFA as
M ′ = (Q,Σ′, δ′, q0, Qacc, Qrej), where δ

′ is the transition function defined bellow. For each α ∈ Γ′
with |h(α)| = 1 let operator V′

α = Vh(α), and for each α ∈ Γ′ with |h(α)| = 0 let operator V′
α = I,

where I is the identity operator. With help of the operators V′
α and the function D let δ

′ be defined
as in (3.5). As all Vh(α) are unitary, the operators V

′
α are unitary, too, and the automaton M

′ is
well-formed.

Lemma 4.8 The simple 1.5QFA M ′ recognizes the language h−1(L(M)).

Proof: Let w ∈ Σ′∗ be an input word of 2QFA M ′ and x the corresponding tape of length n. By a
similar argument as in the proof of lemma 4.2, we can show that the evolution of the automaton
M ′ on the tape x mimics the evolution of M on the tape h(x).
Denote m = |h(x)|, and ej = j − |h((x)0...j−1)|, for all j with 0 ≤ j ≤ n. The number ej is

the number of symbols from the prefix (x)0...j−1 mapped onto ε by the homomorphism h. Assume
that

|φt〉 =
∑

q∈Q, j∈Zm

at
q,j |q, j〉

is the superposition of M (on the Hilbert space HM
m ) after t steps of its evolution on the tape

h(x). Similarly as in lemma 4.2, we can prove by induction on t that

|ψt〉 =
∑

q∈Q, j∈Zn

btq,j |q, j〉, where btq,j =







a
t−ej

q,j−ej
if ej ≤ t ∧ h((x)j) 6= ε

a
t−ej

q,j−ej
if ej ≤ t ∧ h((x)j) = ε ∧D(q) = 1

0 if ej > t or h((x)j) = ε ∧D(q) 6= 1

is the superposition of M ′ (on the Hilbert space HM ′

n ) after t steps of its evolution on the tape x.
As a consequence, we can prove that the probabilities of accepting (rejecting) the word w by

M ′ and the word h(w) byM are equal and the language recognized byM ′ is equal to the language
h−1(L(M)). �

Lemma 4.9 The class of languages recognized by simple 1.5QFA is closed under inverse length-
nonincreasing homomorphism.
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Proof: According to lemma 4.8, for every well-formed simple 1.5QFA recognizing the language
L over the alphabet Σ and every length-nonincreasing homomorphism h: Σ′∗ → Σ∗, there is a
well-formed simple 1.5QFA recognizing the language h−1(L). �

Having proved the closure under inverse non-erasing and inverse length-nonincreasing homo-
morphism, we can prove the closure under general inverse homomorphism.

Lemma 4.10 For every general homomorphism h: Σ∗
1 → Σ∗

2 there is a non-erasing homomorp-
hism h1 and a length-nonincreasing homomorphism h2, such that h

−1(L) = h−11 (h
−1
2 (L)) for every

language L ⊆ Σ∗
2.

Proof: Without loss of generality, assume that the symbol e does not belong to Σ2. The lemma
holds for non-erasing homomorphism h1: Σ

∗
1 → (Σ2 ∪ {e})∗ and length-nonincreasing homomorp-

hism h2: (Σ2 ∪ {e})∗ → Σ∗
2 defined as follows:

h1(α) = h(α), if h(α) 6= ε,
h1(α) = e, if h(α) = ε,

and
h2(α) = α, for α 6= e,
h2(e) = ε.

�

Theorem 4.11 The class of languages recognized by simple 1.5QFA is closed under general in-
verse homomorphism.

Proof: According to the previous lemma, for every homomorphism h there is a non-erasing homo-
morphism h1 and a length-nonincreasing homomorphism h2, such that h

−1(L) = h−11 (h
−1
2 (L)) for

every language L.
For every well-formed simple 1.5QFA recognizing the language L there is, according to lemma

4.9, a well-formed simple 1.5QFA recognizing the language h−1
2 (L). For this 1.5QFA there is, ac-

cording to the paragraph after theorem 4.6, a well-formed simple 1.5QFA recognizing the language
h−11 (h

−1
2 (L)). �



Chapter 5

Homomorphic closure of 1.5QFA

In this chapter we investigate the class of languages defined by homomorphic closure of the class
of languages recognized by 1.5QFA. We prove that H(L1.5QFA) is equal to the class of recursively
enumerated languages LRE . As a consequence of the proof we show that the class of languages
recognized by 1.5QFA is not closed under homomorphism. As 1.5QFA are a special case of 2QFA,
the same also holds for the class of languages recognized by 2QFA.
The class of recursively enumerated languages is defined as a class of languages accepted by

Turing machines, see [HU90]. In the proof we construct for every Turing machine an 1.5QFA and a
homomorphism, such that the homomorphic image of the language recognized by the constructed
1.5QFA is equal to the language accepted by the Turing machine. We construct the 1.5QFA such
that it recognizes the set of somehow encoded accepting computations of the Turing machine.
Before we proceed on construction of the 1.5QFA we introduce the encoding we use to encode

computations of the Turing machine.

5.1 Encoding input words

Turing machines work with infinite tapes of symbols. For a particular Turing machine the tape
contains symbols from a finite set of tape symbols, say Γ. We call this set a tape alphabet. The
tape alphabet contains one special symbol to mark untouched squares of the tape. We call this
symbol blank and write it as b.
At the beginning of the computation of the Turing machine, its tape contains a finite input

word written on it. All other squares of the tape are blank. The input word may be empty or
may contain any symbols from the input alphabet, say Σ. The input alphabet is limited to the
tape alphabet and may not contain the blank symbol (i.e., b 6∈ Σ). In any moment during the
computation, only finitely many symbols of the tape are non-blank. Therefore, in every step of
the computation, the tape may be represented by a finite word over the tape alphabet.
In this and the following sections we encode automata tapes extensively. To encode a tape, we

encode the word written on the tape. To define the encoding of words over the tape alphabet Γ we
take an enumeration function ·: Γ→ Z|Γ| of symbols from Γ with b = 0 and extend it to ·: Γ∗ → N

such that the code of a word w ∈ Γ∗ is the number w, where

ε = 0

va = |Γ| · v + a

for v ∈ Γ∗ and a ∈ Γ. Note that bw = w for every word w and the code of a word w is equal to
the code of the word w with trimmed all left blanks. This property of the encoding function lines
up words representing the same tape together.
Having defined the encoding function of words over Γ we are prepared to introduce the encoding

of input words of the Turing machine. We use this encoding in construction of the desired 1.5QFA.
We design the encoding such that

37
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1. it is possible for an 1.5QFA to check if a given word is a valid code of an input word,

2. it is possible for an 1.5QFA to recognize for a word and a (unary encoded) number, if the
word is a code of the same input word as the word written on a tape encoded by the number,

3. the input word may be picked up from its code by a homomorphism.

To accomplish the third requirement we design the encoding such that the code of a word contains
the encoded word as a subsequence. Further, to accomplish the second requirement, the code of
an input word contains a code of the tape with the input word written on as a subword. Together
with the code of this tape, the code of the input word contains for every prefix of the input word
a code of the tape with this prefix written on as a subword. The codes (numbers) of these tapes
are unary encoded and concatenated one by one separated from each other by last symbols of the
corresponding prefixes.
To make the encoding clear in detail we provide its formal definition. For an input alphabet

Σ ⊆ Γ, with l 6∈ Σ, we say that the code of a word w ∈ Σ∗ is the word I(w), where

I(ε) = ε

I(va) = I(v)alva
(5.1)

for v ∈ Σ∗ and a ∈ Σ. For instance the code of the word abc is alablabclabc.
It is easy to see that for homomorphism h: ({l} ∪Σ)∗ → Σ∗, where h(l) = ε and h(α) = α, for

α ∈ Σ, we have h(I(w)) = w, for every word w ∈ Σ∗. Also, as we prove in section 5.3.2 the other
two requirements on the encoding are fulfilled, too.

5.2 Encoding configurations

A computation of a Turing machine is a finite sequence of its configurations. Every such configu-
ration is represented by a state of the Turing machine, value of the machine tape and position of
the machine head on the tape. The tape symbol on the tape square just under the machine head
is called currently read symbol. This symbol splits the tape into two parts – the left tape part of
symbols to the left and the right tape part of symbols to the right from the currently read symbol.
As the tape contains only finitely many non-blank symbols, we may look on both its parts as on
finite words over the tape alphabet. The first symbols of these two words are the symbols one
square next to the currently read symbol.
A configuration of the Turing machine we encode as a word containing information about the

machine state and the currently read symbol and the codes of both parts of the tape. The first
symbol of this word encodes the state and the currently read symbol. We call this symbol a head
of the configuration code. The rest of the configuration code encodes its tape. For practical reasons
in construction of the desired 1.5QFA we actually encode in a configuration code head besides the
actual state and the read symbol also the states and the read symbols of the last two configurations
of the computation prior to the encoded configuration. If there are no prior configurations to the
encoded configuration we mark this fact in the code of this configuration, too.
Formally, for a Turing machine (K,Σ,Γ, δ, q0, F ) we define a code of its configuration as a

word of the form C{l, r}∗, where C is a set of all possible code heads. There are three kinds
of code heads we need to consider, 1) code heads of initial configurations with no preceding
configurations, 2) code heads of configurations with only one preceding configuration, and 3) code
heads of remaining configurations. We denote the sets of these three kinds of heads by C1, C2 and
C3, respectively. Obviously the set of all possible code heads C is a union of these three sets. We
define these sets as follows:

C1 =

{
2

4

•
•

q0 b

3

5

}

, C2 =

{
2

4

•
q0 b

q1 a1

3

5

∣
∣
∣
∣
q1 ∈ K ∧ a1 ∈ Γ ∧ δ1(q0,b) = q1

}

, and

C3 =

{
2

4

q1 a1
q2 a2
q3 a3

3

5

∣
∣
∣
∣
q1, q2 ∈ K \ F ∧ q3 ∈ K ∧ a1, a2, a3 ∈ Γ ∧ δ1(q1, a1) = q2 ∧ δ1(q2, a2) = q3

}

,
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where the function δ1:K × Γ → K projects the respective part of the transition function of the
Turing machine δ:K × Γ→ K × Γ× {−1, 0, 1}. Note, that the state q0 in the previous definition
is the initial state of the Turing machine, while the other three states are arbitrary states of
the Turing machine. The heads of configurations codes obey the state part (δ1) of the transition
function because they represent real computation steps which obey the transition function.

Also note, that we assume that a computation of the Turing machine starts in the initial state
reading a blank symbol from the square one square to the right from the rightmost symbol of
the input word and continues until it reaches an accepting state. We assume the computation
halts upon reaching an accepting state for the first time and thus, there are no accepting states
during the computation prior to the last computation configuration. Classical definitions of Turing
machines, as in [HU90], define the initial configuration of the Turing machine slightly differently.
They assume the computation starts with the machine head reading the first symbol of an input
word. However, it is easy to see that this difference is not significant and the class of languages
accepted by the machines of these two definitions are the same.

Finally, take a configuration reached during a computation of the Turing machine. If the
configuration has state q ∈ Q, currently read symbol a ∈ Γ and left and right parts of the machine
tape equal to words wl ∈ Γ∗ and wr ∈ Γ∗, respectively, its code is the word

?
2

4

q a

3

5w, with w ∈ {l, r}∗ ∧ #l(w) = wl ∧ #r(w) = wr,

where ‘?’ represents the first two lines of the code head which depend on the two preceding
configurations during the computation as described in definition of the set C.

5.3 Constructing the automaton

For a Turing machine we construct an 1.5QFA recognizing the set of all encoded accepting com-
putations of the Turing machine. The computations we encode using the encoding of input words
defined in section 5.1 and the encoding of machine configurations defined in section 5.2.

We encode the computation of the Turing machine on an input word as the code of the input
word followed by codes of all computation configurations. In the code of the last (accepting)
configuration we omit the tape code as its value is irrelevant to the computation. The resulting
code is a concatenation of these codes.

Take a Turing machine T = (KT ,ΣT ,ΓT , δT , qT
0 , F

T ), such that qT
0 6∈ FT , T implements only

move-left and move-right steps (i.e. δT (q, α) 6= (p, β, 0), for all p, q ∈ KT and α, β ∈ ΓT ), and the
computation of T begins on the right side of the input word. We can make this assumption on the
Turing machine without loss of generality, because it is easy to see that for every Turing machine
there is an equivalent Turing machine meeting these conditions.

Before formally defining the encoding we use to encode computations of the Turing machine
we introduce few auxiliary definitions that help us hereinafter to simplify our notations. For
the transition function of the Turing machine we define three functions δT

1 :K
T × ΓT → KT ,

δT
2 :K

T × ΓT → ΓT and δT
3 :K

T × ΓT → {−1, 0, 1} projecting respective parts of the transition
function. We call them the state part of the transition function, the writing part of the transition
function and the motion part of the transition function, respectively. Furthermore, let B = |ΓT |
be the number of the tape symbols, define an enumeration function · of these symbols meeting
the conditions from section 5.1 and extend it to all words over the tape alphabet in sense of that
section, and define the encoding function I as is defined in that section. Finally, let C, C1, C2 and
C3 be defined as in section 5.2 for the Turing machine T .

The set of codes of all accepting computations of the Turing machine T is the following language
over the alphabet {l, r} ∪ ΣT ∪ C:
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L =

{

I(v)

γ0∈C1
︷ ︸︸ ︷
2

4

•
•

q0 a0

3

5w0

γ1∈C2
︷ ︸︸ ︷
2

4

•
q0 a0
q1 a1

3

5

(
k∏

j=2

wj−1

γj∈C3
︷ ︸︸ ︷
2

6

4

qj−2 aj−2
qj−1 aj−1

qj aj

3

7

5

) ∣
∣
∣
∣
∣

(5.2)

(i) k > 0 ∧ qk ∈ FT ∧ v ∈ ΣT∗ ∧
(

∀j < k:wj ∈ {l, r}∗ ∧ cj = δ
T
2 (qj , aj) ∧ lj = #l(wj) ∧ rj = #r(wj)

)

∧

(ii) l0 = v ∧ r0 = 0 ∧

(iii)
(

∀j < k − 1:
(

δT
3 (qj , aj) = 1 → B · lj + cj = lj+1 ∧ rj = B · rj+1 + aj+1

)

∧
(

δT
3 (qj , aj) = −1 → lj = B · lj+1 + aj+1 ∧ B · rj + cj = rj+1

))
}

.

Note, that according to the definitions of C1, C2 and C3, for every word in L we have q0 = qT
0 ,

a0 = b and for every j < k is qj 6∈ FT and qj+1 = δ
T
1 (qj , aj).

Every code of a computation of the Turing machine from this language begins with code I(v) of
the input word v. The code of the input word is followed by codes of all computation configurations.

The codes of the first two configurations have the forms
2

4

•
•

qT
0 b

3

5w0 and
2

4

•

qT
0 b

q1 a1

3

5w1, respectively, as

they do not have enough preceding configurations, while all others configurations have the form
2

6

4

qj−2 aj−2
qj−1 aj−1

qj aj

3

7

5
wj . Note, that every computation has at least two configurations as the machine initial

state does not belong to the set of accepting states. As we already mentioned, we omit the tape

code in the code of the last (accepting) configuration
2

4

qk−2 ak−2
qk−1 ak−1

qk ak

3

5. The computation begins with the

input word written on the tape, hence the code of the tape in the first configuration must encode
such a tape. This is ensured by the second condition (5.2-ii) in the definition of the language L.
The third condition (5.2-iii) in the previous definition guarantees that the tape of each compu-

tation whose code belongs to L obeys the writing and the motion parts of the transition function
of the Turing machine. In other words, that the tapes of any two consecutive configurations differ
only in the symbol written by the machine head and the head’s new position. The left part of the
tape is prolonged by the currently written symbol and the first symbol of the right tape part is
taken off if the machine head moves right. Conversely, if the machine head moves left, the first
symbol is taken off the left tape part and the symbol written by the head is pushed to the right
tape part.
After a brief inspection we can see that the language L represents exactly the set of all accepting

computations of the Turing machine T and there is a homomorphism h whose image of this
language is equal to the language accepted by the Turing machine, i.e., h(L) = L(T ). Namely, the
equality holds for the homomorphism h: ({l, r} ∪ ΣT ∪ C)∗ → ΣT∗, where

h(α) =

{
α for α ∈ ΣT

ε for α 6∈ ΣT .
(5.3)

Therefore, the following lemma holds:

Lemma 5.1 For the homomorphism h mentioned in the previous paragraph we have h(L) = L(T ).

We construct the 1.5QFA recognizing the language L of the codes of all accepting computations
of the Turing machine by incorporating seven subautomata. Each of these seven subautomata
recognizes a subset of the properties of the codes from the language L. The resulting automaton
recognizes the intersection of the languages recognized by the subautomata in some manner.
The first of these subautomata recognizes codes of computations with a proper structure which

satisfy all local conditions of a correct accepting computation. Every such computation must begin
in the initial and end in an accepting configuration of the Turing machine. Also, every step of the
computation must be performed according to the state part of the machine transition function.
However, this subautomaton does not take care of the machine tape and does not check if tape
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codes change according to the transition function. Furthermore, the subautomaton checks if the
first two lines of configurations codes heads correspond to states and currently read symbols of
the two preceding configurations. The language recognized by this subautomaton is actually the
language L eased to only the first condition (5.2-i) in the definition of L with taking no care of
the input word code.
The next two subautomata check if computations codes begin with a proper input word code.

They check for a computation code if the prefix terminated by the code head of the first configu-
ration is a valid code of an input word as defined in section 5.1. Applying the condition (5.2-ii)
they also ensure that the tape code of the first computation configuration is a code of a tape
containing the input word. The subautomata check these conditions in such a way that the first
of them checks the equality (5.1) for even symbols and the other one for odd symbols of the input
word. We check the equality (5.1) by a method similar to the method to recognize the language
{aibi | i ≥ 0} on 2QFA introduced in [KW97].
The remaining subautomata verify that tape codes of all configurations of a computation

change according to the transition function of the Turing machine. These subautomata check for
every computation code from the language recognized by the first subautomaton if the condition
(5.2-iii) holds. Two of these subautomata check behavior of the left tape part while the other two
subautomata behavior of the right tape part. The equalities of (5.2-iii) are tested by a method
similar to the method used in previous two subautomata checking the structure of the input word
code.
In following sections we primarily construct the auxiliary subautomata and then finally in

section 5.4 we construct the desired 1.5QFA.

5.3.1 Subautomaton checking local conditions

As the first component of the desired 1.5QFA we construct an automaton recognizing a language of
codes of all computations of the Turing machine that satisfy local conditions of a correct accepting
computation. This is the language of codes of all accepting computations eased to only the first
condition (5.2-i) with taking no care of the input word code. We can write this language as follows:

L1 =

{

v

γ0∈C1
︷ ︸︸ ︷
2

4

•
•

q0 a0

3

5w0

γ1∈C2
︷ ︸︸ ︷
2

4

•
q0 a0
q1 a1

3

5

(
k∏

j=2

wj−1

γj∈C3
︷ ︸︸ ︷
2

6

4

qj−2 aj−2
qj−1 aj−1

qj aj

3

7

5

) ∣
∣
∣
∣
∣

v ∈
(
ΣT ∪ {l}

)∗ ∧ k > 0 ∧
∧ qk ∈ FT ∧ (∀j < k:wj ∈ {l, r}∗)

}

.

Do not forget, as already mentioned, that according to the definitions of C1, C2 and C3, for every
word in L1 we have q0 = qT

0 , a0 = b and for every j < k is qj 6∈ FT and qj+1 = δT
1 (qj , aj). Also

note, that each word in L1 contains exactly one symbol from C1 and exactly one symbol from C2.
The task of the automaton we are about to construct is to ensure that every word of the

language it recognizes

1. begins with prefix vγ0w0γ1, where v ∈
(
ΣT ∪ {l}

)∗
, w0 ∈ {l, r}∗, γ0 ∈ C1 and γ1 ∈ C2,

2. keeps the histories of preceding states and read symbols in heads of configurations codes
consistent, and

3. ends with a code head of an accepting configuration (with no subsequent ls or rs).

There is no need to check if there are any codes of accepting configurations before the last one,
because the consistency of histories in the second condition together with definition of C guarantees
there are no such configurations.
The first condition says that a computation code starts with something that may be an input

word code followed by codes of the first two configurations. Heads of these two configurations
are from C1 and C2, respectively. By “something may be an input word code” we mean it is a
word, which is not necessarily an input word code, but is over the alphabet input words codes
are. Checking this condition is quite straightforward. The automaton uses states p and q to check
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it. It starts in a superposition |p〉, and skims all symbols from the input words codes alphabet
{l} ∪ ΣT until its head arrives to a symbol from C1, where it changes its superposition to |q〉. In
this superposition the automaton skims all ls and rs until arriving to a symbol from C2, where it
begins to check the second condition. Whenever the automaton discovers an illegal symbol in the
input word it changes its superposition to |pR〉 or |qR〉 and rejects.
To verify the second condition of a computation code we need to compare the code heads of

every two consecutive configurations of the computation. For every two such configurations the
last two lines of the code head must be equal to the first two lines of the following code head. To
compare such pairs of lines of configurations heads the automaton uses a set of states carrying
information about these pairs. On the head of the former of the two consecutive configurations
the automaton state changes to a state representing the last two lines of this configuration head
and moves toward the head of the latter configuration. If the first two lines of this head do not
correspond to the lines carried in the state, the automaton rejects. Otherwise, it continues with
the next two consecutive configurations. For details about making this part of the automaton
transition function reversible see its formal definition in algorithm 5.1.
To carry pairs of lines from configurations codes heads the automaton uses the following set

of states:

H =
{

»

q1 a1
q2 a2

–

∣
∣
∣ q1 ∈ KT \ FT ∧ q2 ∈ KT ∧ a1, a2 ∈ ΓT ∧ δT

1 (q1, a1) = q2

}

.

In addition to these states the automaton uses their accepting and rejecting versions HA =
{αA | α ∈ H} and HR = {αR | α ∈ H}, respectively.
If the carried pair of lines comes from an accepting configuration the state in the second line of

the pair belongs to the set of accepting states of the Turing machine. To verify the third condition
it suffices to ensure that the automaton accepts only if such a pair of lines is carried over the right
end-marker $. Also, it must be ensured that no such pair of lines is carried over any other symbol.
To recognize these pairs of lines we define a subset of H representing them:

F =
{

»

q1 a1
q2 a2

–

∣
∣
∣ q1 ∈ KT \ FT ∧ q2 ∈ FT ∧ a1, a2 ∈ ΓT ∧ δT

1 (q1, a1) = q2

}

.

Before defining the automaton recognizing L1 we introduce two auxiliary functions P1:C3 → H
and P2:C2 ∪ C3 → H projecting the appropriate pair of lines of a configuration code head. P1
projects the first two lines and P2 the last two lines of the code head. Namely:

P1

(
2

4

q1 a1
q2 a2
q3 a3

3

5

)

=
»

q1 a1
q2 a2

–

, P2

(
2

4

•
q2 a2
q3 a3

3

5

)

=
»

q2 a2
q3 a3

–

, and P2

(
2

4

q1 a1
q2 a2
q3 a3

3

5

)

=
»

q2 a2
q3 a3

–

.

Define 1.5QFA M1 as the sextuple (Q,Σ, δ, p,Qacc, Qrej), where Σ = {l, r} ∪ ΣT ∪ C, Q =
{p, q, pR, qR} ∪H ∪HA ∪HR, Qacc = HA and Qrej = {pR, qR} ∪HR. According to definition 3.1
the tape alphabet of this automaton is equal to Γ = Σ ∪ {c, $}. For each α ∈ Γ let Vα take values
as in algorithm 5.1 and arbitrarily extend it to be unitary on the Hilbert space `2(Q). Also define
D as in algorithm 5.1, and let δ be defined as in (3.5). Since each Vα is unitary, M1 is well-formed
by lemma 3.13. Note, that this automaton never goes to a superposition of two or more different
states nor to a superposition of two or more different head positions. We prove that this automaton
recognizes language L1.

Lemma 5.2 If w ∈ L(M1) then there are v ∈ (ΣT ∪ {l})∗, w0 ∈ {l, r}∗, γ0 ∈ C1 and γ1 ∈ C2
such that vγ0w0γ1 is a prefix of w.

Proof: Take a word w ∈ Σ∗, for which there are no v ∈ (ΣT ∪ {l})∗, w0 ∈ {l, r}∗, γ0 ∈ C1 and
γ1 ∈ C2 such that vγ0w0γ1 is a prefix of w. As the the word w does not have such prefix it may
have only one of the following four forms:

1. w ∈ (ΣT ∪{l})∗: In this case the automaton’s initial superposition |p〉 does not change while
reading word w. Upon arriving on the right end-marker $ the superposition changes to |pR〉
and the automaton rejects. Therefore, w 6∈ L(M1).
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Algorithm 5.1 Subautomaton M1 checking local conditions.

β ∈ C1:
Vβ |p〉 = |q〉,
Vβ |α〉 = |αR〉, α ∈ {q} ∪H,

β ∈ C2:
Vβ |q〉 = |P2(β)〉,
Vβ |α〉 = |αR〉, α ∈ {p} ∪H,

β ∈ C3 ∧ P1(β) = P2(β):
Vβ |α〉 = |αR〉, α ∈ {p, q},
Vβ |α〉 = |αR〉, α ∈ H \ {P1(β)},
Vβ |α〉 = |P2(β)〉, α = P1(β),
Vβ |αR〉 = |α〉, α ∈ H \ {P1(β)},
Vβ |αR〉 = |αR〉, α = P1(β),

β ∈ C3 ∧ P1(β) 6= P2(β):
Vβ |α〉 = |αR〉, α ∈ {p, q},
Vβ |α〉 = |αR〉, α ∈ H \ {P1(β)},
Vβ |α〉 = |P2(β)〉, α = P1(β),
Vβ |αR〉 = |α〉, α ∈ H \ {P1(β), P2(β)},
Vβ |αR〉 = |αR〉, α = P1(β),
Vβ |αR〉 = |P1(β)〉, α = P2(β),

Vl|α〉 = |α〉, α ∈ {p, q} ∪H \ F,
Vl|α〉 = |αR〉, α ∈ F,
Vr|α〉 = |α〉, α ∈ {q} ∪H \ F,
Vr|α〉 = |αR〉, α ∈ {p} ∪ F,

σ ∈ ΣT :
Vσ|p〉 = |p〉,
Vσ|α〉 = |αR〉, α ∈ {q} ∪H,

Vc|p〉 = |p〉,
V$|α〉 = |αA〉, α ∈ F,
V$|α〉 = |αR〉, α ∈ {p, q} ∪H \ F,

D(α) = 0, α ∈ Qacc ∪Qrej ,
D(α) = 1, α ∈ Q \Qacc \Qrej .

2. w has prefix u ∈ (ΣT ∪{l})∗({r}∪C2∪C3): Again, while reading symbols from ΣT ∪{l} the
automaton remains in superposition |p〉 and upon arriving on a symbol from {r} ∪ C2 ∪ C3
changes to superposition |pR〉 and rejects. Therefore, w 6∈ L(M1).

3. w ∈ (ΣT ∪ {l})∗C1{l, r}∗: After reading a prefix of the form (ΣT ∪ {l})∗C1 the automaton
superposition changes to |q〉. Then while reading ls and rs the superposition does not change
and upon reading the right end-marker $ it changes to |qR〉. Therefore, the automaton rejects
and w 6∈ L(M1) again.

4. w has prefix u ∈ (ΣT ∪ {l})∗C1{l, r}∗(ΣT ∪C1 ∪C3): After reading all symbols of the prefix
u except the last one the automaton superposition is |q〉. Reading its last symbol (a symbol
from ΣT ∪C1 ∪C3) the automaton changes its superposition to |qR〉 and rejects. Again, we
have w 6∈ L(M1).

Hence, every word accepted by the automaton M1 has the required prefix. �

Lemma 5.3 Let w = v

γ0∈C1
︷ ︸︸ ︷
2

4

•
•

q0 a0

3

5w0

γ1∈C2
︷ ︸︸ ︷
2

4

•
q0 a0
q1 a1

3

5

(
k∏

j=2

wj−1

γj∈C3
︷ ︸︸ ︷
2

6

4

qj−2 aj−2
qj−1 aj−1

qj aj

3

7

5

)

, where k ≥ 1, v ∈ (ΣT ∪{l})∗, and

wj ∈ {l, r}∗ for all j < k. After reading prefix w of a word with such prefix, the automaton M1 is

in superposition |P2(γk)〉 =
∣
∣
∣

»

qk−1 ak−1
qk ak

–

〉

.

Proof: We prove this lemma by induction on k. For k = 1 the word w = vγ0w0γ1, where v ∈
(ΣT ∪ {l})∗, w0 ∈ {l, r}, γ0 ∈ C1 and γ1 ∈ C2. While reading v the automaton does not change
its initial superposition |p〉. Reading γ0 changes its superposition to |q〉. This superposition does
not change until reading γ1, when it changes to |P2(γ1)〉 = |P2(γk)〉.
Now, assume the lemma holds for k = n ≥ 1, we prove it holds for k = n + 1, too. For

k = n + 1 we have w = vγ0w0γ1w1 . . . γnwnγn+1. We know that the Turing machine state qn

in the third line of γn is equal to the state in the second line of γn+1. As γn+1 ∈ C3 the state
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qn is not an accepting state of the Turing machine T . By induction hypothesis the automaton
is in superposition |P2(γn)〉 after reading prefix u = vγ0w0γ1w1 . . . γn. As qn 6∈ FT , the state
P2(γn) belongs to H \F and therefore, the automaton does not change its superposition |P2(γn)〉
while reading the word wn ∈ {l, r}∗. Upon reading symbol γn+1 the superposition changes to
|P2(γn+1)〉 = |P2(γk)〉 as P2(γn) = P1(γn+1). �

Lemma 5.4 Let w ∈ Σ∗. If w ∈ L1 then M1 accepts w with probability 1 and if w 6∈ L1 then M1
rejects w with probability 1.

Proof: If w ∈ L1 we know, by lemma 5.3, that the automaton after reading word w is in su-
perposition |P2(γk)〉, where γk is the last configuration code head. Since the last configuration
of an accepting computation is accepting, P2(γk) ∈ F and reading the right end-marker $ the
superposition changes to |P2(γk)A〉 and the automaton accepts with probability 1.
Now, assume that w 6∈ L1 and M1 accepts w. By lemma 5.2, the word w has prefix vγ0w0γ1,

where v, w0 and γs are in the sense of L1 definition. By lemma 5.3, the superposition of the
automaton after reading this prefix is |P2(γ1)〉. If the rest of w contains any symbol from ΣT ∪
C1 ∪ C2 the superposition changes after the first such symbol to |αR〉 for some α ∈ H and the
automaton rejects for sure. Therefore, we have a contradiction with the assumption that the
automaton accepts. (Note, that the automaton may have rejected earlier because of some other
reason, but may not have accepted.) Hence, the rest of w contains only symbols from {l, r} ∪ C3
and w has the form of vγ0w0γ1w1γ2w2 . . . wk−1γku for some k ≥ 1, where u and all ws are from
{l, r}∗, γ0 ∈ C1, γ1 ∈ C2 and γj ∈ C3 for j ≥ 2. There are only tree kinds of reasons why the word
w does not belong to the language L1:

1. There are two consecutive configurations encoded in w with inconsistent states and/or read
symbols information in their codes heads. Take the first such inconsistency. I.e., take the
smallest j with 1 ≤ j < k such that P2(γj) 6= P1(γj+1). According to lemma 5.3, after reading
prefix vγ0w0γ1 . . . γj of w the automaton is in superposition |P2(γj)〉. Reading wj does not
change the superposition, however, reading γj+1 changes the superposition to |P2(γj)R〉 as
P2(γj) 6= P1(γj+1). As the result, the automaton rejects for sure and we have a contradiction.

2. All consecutive configurations encoded in w are consistent, but the last configuration is not
an accepting one, i.e., P2(γk) 6∈ F . By lemma 5.3, after reading prefix vγ0w0γ1 . . . γk the
automaton is in superposition |P2(γk)〉. Reading u does not change the superposition, but
reading the right end-marker $ changes the superposition to |P2(γk)R〉 as P2(γk) ∈ H \ F
and the automaton rejects for sure. Therefore, we have a contradiction.

3. All consecutive configurations are consistent, the last configuration is accepting, but there are
trailing ls and/or rs after the last configuration code head. In other words u 6= ε. Again, by
lemma 5.3, after reading prefix vγ0w0γ1 . . . γk the automaton is in superposition |P2(γk)〉.
As P2(γk) ∈ F reading a symbol l or r changes the superposition to |P2(γk)R〉 and the
automaton rejects with probability 1. Hence, we have a contradiction again.

We have shown that every evolution of M1 on a word w 6∈ L1 is rejecting. Therefore, M1 rejects
every w 6∈ L1 with probability 1. �

Lemma 5.5 The automaton M1 halts on every word w ∈ Σ∗ after O(|w|) evolution steps.

Proof: As for every non-halting state q is D(q) = 1 the automaton reaches the end of the input
word and halts in |w|+ 1 evolution steps unless it halts sooner. �

5.3.2 Subautomata checking input word code

In this section we construct two components of the final 1.5QFA. These two components recognize
two languages whose intersection is a language of computations codes with properly encoded input
words.
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Algorithm 5.2 1.5QFA recognizing L′ = {axbay | c1 + d1 · x = c2 + d2 · y}.
1 ≤ k ≤ N :

Vc|Zk〉 = 1√
N

∑N
j=1 ω

kj |pj,c1·j〉,
Vc|pk,j〉 = |pk,j−1〉, 1 ≤ j ≤ c1 · k,
V$|pk,0〉 = |Rk〉,
V$|qk,0〉 = 1√

N

∑N
j=1 ω

kj |Zj〉,

D(α) = 1, α ∈ {pk,0, qk,0 | 1 ≤ k ≤ N},
D(α) = 0, α ∈ Q \ {pk,0, qk,0 | 1 ≤ k ≤ N},

Va|pk,0〉 = |pk,d1·k〉,
Va|pk,j〉 = |pk,j−1〉, 1 ≤ j ≤ d1 · k,
Va|qk,0〉 = |qk,d2·(N−k+1)〉,
Va|qk,j〉 = |qk,j−1〉, 1 ≤ j ≤ d2 · (N − k + 1),

Vb|pk,0〉 = |qk,c2·(N−k+1)〉,
Vb|qk,j〉 = |qk,j−1〉, 1 ≤ j ≤ c2 · (N − k + 1),
Vb|qk,0〉 = |Rk〉.

Notation 5.6 In this and the following section we mean by notation ωN for a given positive
number N the N -th root of 1, namely ωN = e

2πi/N . If there is no ambiguity we omit the symbol
N in notation ωN .

Before constructing the subautomata checking whether a computation code begins with a
properly encoded input word we describe a routine we extensively use in the subautomata. Let c1,
d1, c2 and d2 be natural numbers. By a method similar to the method to recognize the language
{aibi | i ≥ 0} introduced in [KW97] we construct an 1.5QFA recognizing the language L′ =
{axbay | c1 + d1 · x = c2 + d2 · y}. Actually, for every ε > 0, we construct an 1.5QFA recognizing
the language L′ with error bounded by ε. The language L′ can be seen as the set of all solutions of
the equation c1+ d1 ·x = c2+ d2 · y with unknowns x and y. Inspired by this view of the language
L′ we call this routine the equation routine.
For every N ≥ 3, define 1.5QFA MN = (Q,Σ, δ, ZN , Qacc, Qrej), where Σ = {a, b}, Q =

{Zk, Rk, pk,j , qk,j | 1 ≤ k ≤ N ∧ 0 ≤ j ≤ max{c1, d1, c2, d2} · N}, Qacc = {ZN} and Qrej =
{Zk | 1 ≤ k < N} ∪ {Rk | 1 ≤ k ≤ N}. The tape alphabet of the automaton is Γ = Σ ∪ {c, $}.
For each α ∈ Γ let operator Vα take values as in the algorithm 5.2 and extend it arbitrarily to be
unitary on `2(Q). Also define function D as in the algorithm 5.2, and let δ be defined as in (3.5).
Since Vα is unitary for each α ∈ Γ, the automaton MN is well-formed.

Lemma 5.7 Let N ≥ 3 and w ∈ Σ∗. If w ∈ L′ then MN accepts w with probability 1, and
otherwiseMN rejects w with probability at least 1−1/N . The automaton accepts in a superposition
of one head in the state ZN reading the right end-marker.

Proof: At the beginning of the automaton evolution on a word w, its head branches into a super-
position of N heads each with amplitude 1/

√
N . The k-th (1 ≤ k ≤ N) of these heads starts in

the state pk,c1·k and deterministically moves along the input word toward the right end-marker.
This head remains c1 · k steps of the evolution on the left end-marker c and then moves right. On
each following symbol a the head remains stationary for d1 ·k steps until reaching the first symbol
b, where it remains stationary for c2 · (N − k + 1) steps and changes its state from pk,j series to
qk,j series. On each latter symbol a the head stays for d2 · (N − k + 1) steps. If there are no or
more than one bs in the input word the head rejects in state Rk and the automaton rejects with
probability 1. If there is exactly one b in the input word, the word has the form axbay and the
k-th head requires exactly

sk = (1 + c1k) + (1 + d1k)x+ (1 + c2(N − k + 1)) + (1 + d2(N − k + 1))y

steps to move from the left to the right end-marker. Under the assumption that k 6= k′, we have
sk = sk′ if and only if c1+d1 ·x = c2+d2 ·y. Therefore any two different heads in the superposition
reach the right end-marker $ in the same step of the evolution if and only if c1+d1 ·x = c2+d2 ·y.
Upon reaching the right end-marker, the k-th head of the superposition again splits according

to the quantum Fourier transformation. If the input word has the form w = axbay, with c1+d1 ·x =
c2 + d2 · y, all heads of the automaton superposition reach the right end-marker in the same step
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of the evolution. In this case, the superposition of the automaton after performing the quantum
Fourier transformation is

1

N

N∑

k=1

N∑

j=1

ωkj |Zj〉 = |ZN 〉.

Hence, the automaton accepts with probability 1.
If the input has the form w = axbay, with c1 + d1 · x 6= c2 + d2 · y, each of the N heads

reaches the right end-marker in a different evolution step and so no quantum cancellation between
the rejecting states happens. In the step, when the k-th head reaches the right end-marker, the
probability that the outcome of the observable OMN is “accept” is 1/N2. The total probability
that the automaton accepts w is 1/N . �

In this and the next section we use this routine in various modifications as a part of different
algorithms. Generally, we use the routine on subwords of longer and more complex words, where
the tape symbols of MN are represented by other symbols. When using the routine, we may fix
its coefficients c1, d1, c2 and d2 and explicitly specify them in the automaton transition function,
or let the automaton determine the coefficients on the fly from its input word. If the automaton
determines the coefficients on the fly we must ensure it uses the same coefficients in all evolution
steps of one routine instance. Sometimes it is worth to use a slightly modified version of the routine,
in which the k-th head of the superposition stays for c1 ·k and c2 ·(N−k+1) steps of the evolution
on symbols b and $ instead of on symbols c and b, respectively. Such version is useful especially if
the automaton needs to determine the coefficients c1 and c2 of the routine on the fly from symbols
representing symbols b and $. As all these modifications are very minor, we usually do not say in
descriptions of algorithms which variant of the routine the described algorithm uses. However, this
should be clear from formal definitions of automata we use these routines in. Similarly, despite we
provided a proof of the previous lemma only for the original version of the routine, it holds for
all mentioned modifications of the routine and we use this lemma in any context of an automaton
using any of the mentioned modifications of the routine.

Now we construct the two subautomata checking whether computations codes begin with a
proper input word code. For every computation code they check if its prefix terminated by the
first configuration code head is a valid code of an input word. We discussed in section 5.1 how
to encode input words. They also verify if the tape code of the first computation configuration is
a code of a tape containing the input word. However, these subautomata do not care of the rest
of computations codes. The intersection of the languages recognized by these subautomata is the
following language:

Le =
{
I(v)γ0l

vγ1u | v ∈ ΣT∗ ∧ γ0 ∈ C1 ∧ γ1 ∈ C2 ∧ u ∈ ({l, r} ∪ ΣT ∪ C)∗
}
.

According to the definition of I(v) in section 5.1 the subautomata need to verify a number of
equalities to recognize this language. Namely, for a given input word v they need to check if the
input word code equals to

I(v) = le0(v)0l
e1(v)1l

e2 . . . (v)|v|−1l
e|v| ,

where e0 = 0 and ej+1 = B · ej + (v)j for all j < |v|. (5.4)

In addition to these equalities the subautomata must also check if the number of ls at the end of
the input word code is equal to the number of ls between γ0 and γ1, i.e., if the tape code of the
first configuration equals to le|v| = lv.
We construct these subautomata in such a way that the first one checks the equalities ej+1 =

B · ej + (v)j for j even and the other one for j odd. We name the subautomata M
even
e and Modd

e ,
respectively. The odd version also verifies if e0 = 0. Which of these subautomata checks if the tape
code of the first configuration equals to le|v| depends on the parity of the input word length. If the
length of the input word is even, M even

e checks it, otherwise Modd
e checks it.
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Algorithm 5.3 Subautomata checking input word code.

even version: Vc|ZN 〉 = 1√
N

∑N
j=1 |pj,0〉,

odd version: Vc|ZN 〉 = 1√
N

∑N
j=1 |qj,0〉,

both versions:

σ ∈ ΣT ∧ 1 ≤ k ≤ N :

Vσ|Zk〉 = 1√
N

∑N
j=1 ω

kj |pj,0〉,
Vσ|pk,0〉 = |qk,σ·k〉,
Vσ|qk,j〉 = |qk,j−1〉, 1 ≤ j ≤ σ · k,
Vσ|qk,0〉 = 1√

N

∑N
j=1 ω

kj |Zj〉,
Vσ|rk,0〉 = |Rk〉,

1 ≤ k ≤ N :
Vl|pk,0〉 = |pk,B·k〉,
Vl|pk,j〉 = |pk,j−1〉, 1 ≤ j ≤ B · k,
Vl|qk,0〉 = |qk,N−k+1〉,
Vl|qk,j〉 = |qk,j−1〉, 1 ≤ j ≤ N − k + 1,
Vl|rk,0〉 = |rk,B·(N−k+1)〉,
Vl|rk,j〉 = |rk,j−1〉, 1 ≤ j ≤ B · (N − k + 1),

D(α) = 1, α ∈ {pk,0, qk,0, rk,0 | 1 ≤ k ≤ N},
D(α) = 0, α ∈ Q \ {pk,0, qk,0, rk,0 | 1 ≤ k ≤ N},

γ ∈ C1 ∧ 1 ≤ k ≤ N :
Vγ |ZN 〉 = |A〉,
Vγ |pk,0〉 = |rk,0〉,
Vγ |qk,0〉 = 1√

N

∑N
j=1 ω

kj |Zj〉,
Vγ |rk,0〉 = |Rk〉,

γ ∈ C2 ∧ 1 ≤ k ≤ N :
Vγ |ZN 〉 = |A〉,
Vγ |pk,0〉 = |Pk〉,
Vγ |qk,0〉 = |Qk〉,
Vγ |rk,0〉 = 1√

N

∑N
j=1 ω

kj |Zj〉,

α ∈ {r, $} ∪ C3 ∧ 1 ≤ k ≤ N :
Vα|pk,0〉 = |Pk〉,
Vα|qk,0〉 = |Qk〉,
Vα|rk,0〉 = |Rk〉.

Both subautomata check the equalities by sequentially running the routine to solve equations
presented in the beginning of this section. The coefficients c1, d1, c2 and d2 of the routine are
chosen according to the equality the automaton is going to check. For instance, checking the
equality ej+1 = B · ej + (v)j the coefficients would be c1 = (v)j , d1 = B, c2 = 0 and d2 = 1.
Note, that the automaton can determine the coefficient c1 from symbol the (v)j on the fly, while
checking the particular equality. If the routine rejects while checking an equality the automaton
rejects, too. However, if the routine accepts the automaton synchronizes its superposition to just
one head in state ZN and continues on the next equality by running another instance of the routine
instead of just accepting. The automaton accepts after checking all equalities it needs to check.

At the beginning of the evolution the automaton checks equalities considering only the input
word code. It checks only these equalities until it arrives on the first occurrence of a symbol from
C1 in the input word – the symbol γ0. Upon moving over the symbol γ0 during execution of the
routine the automaton knows it is in the middle of checking the equality considering the first
configuration tape code. The coefficients for this equality are c1 = 0, d1 = B, c2 = 0, d2 = B.
Note, that only one of the automata happens to check this equality.

To provide a formal definition, for each N ≥ 3 we define M even
e,N = (Q,Σ, δeven, ZN , Qacc, Qrej)

and Modd
e,N = (Q,Σ, δ

odd, ZN , Qacc, Qrej), where Q = {A} ∪ {Zk, Pk, Qk, Rk, pk,j , qk,j , rk,j | 1 ≤
k ≤ N ∧ 0 ≤ j ≤ B · N}, Σ = {l, r} ∪ ΣT ∪ C, Qacc = {A} and Qrej = {Zk | 1 ≤ k <
N} ∪ {Pk, Qk, Qk | 1 ≤ k ≤ N}. The tape alphabets of the defined automata are Γ = Σ ∪ {c, $}.
For each α ∈ Γ let Vα take values as in the even version of algorithm 5.3 and arbitrarily extend
it to be unitary on `2(Q). Also define D as in algorithm 5.3, and let δ

even be defined as in (3.5).
Now, similarly let values of Vα be as in the odd version of algorithm 5.3 and arbitrarily extend it
to be unitary on `2(Q). Define D the same way as before and let δ

odd be defined as in (3.5), again.
Since Vα is unitary for each α ∈ Γ in both cases, the constructed automata M even

e,N and Modd
e,N are

well-formed.

Lemma 5.8 Let N ≥ 3 and w = ∏k−1
j=0 l

e2ja2j l
e2j+1a2j+1, where k ≥ 0, a2k−1 ∈ ΣT ∪ C1 and

aj ∈ ΣT for all j < 2k− 1, with e2j+1 = B · e2j + a2j for all j < k. Running the automaton M even
e,N
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on an input word with prefix w eventually leads to a superposition of one head in state ZN reading
the last symbol of w, or if the word w = ε reading the left end-marker c.

Proof: We prove the lemma by induction on k. If k = 0, the word w is empty and the initial
superposition of the automaton leads on one step to a superposition that has the required form.
If k = 1, the input word has prefix w = le0a0l

e1a1. The superposition after the first evolution
step of the automaton consists of one head in state ZN reading the left end-marker c. By lemma
5.7, running one instance of the equation routine discussed in the beginning of this section with
symbols a, b and $ exchanged by symbols l, a0 and a1, respectively, for coefficients c1 = a0, d1 = B,
c2 = 0 and d2 = 1, leads on the prefix l

e0a0l
e1a1 of the input word with e1 = B · e0 + a0 to a

superposition with one head in state ZN reading the symbol a1.
Now, assume the lemma holds for all prefixes w with k = n ≥ 1, we prove it for a prefix w

with k = n + 1, too. The prefix w of an input word has the form w =
∏n

j=0 l
e2ja2j l

e2j+1a2j+1

with all aj ∈ ΣT , where j < 2n + 1. As it also has prefix
∏n−1

j=0 l
e2ja2j l

e2j+1a2j+1, running the
automaton M even

e,N on the input word, by induction hypothesis, eventually leads to a superposition
of one head in state ZN reading the symbol a2n−1. Again, by lemma 5.7, running an instance of
the equation routine from this superposition with symbols c, a, b and $ exchanged by symbols
a2n−1, l, a2n and a2n+1, respectively, for the same coefficients as previously, leads on the subword
a2n−1le2na2nl

e2n+1a2n+1 with e2n+1 = B · e2n + a2n to a superposition with one head in state ZN

reading the symbol a2n+1, which is the last symbol of w. �

Lemma 5.9 Let N ≥ 3 and w = le0a0
∏k−1

j=0 l
e2j+1a2j+1l

e2j+2a2j+2, where k ≥ 0, e0 = 0, a2k ∈
ΣT ∪ C1 and aj ∈ ΣT for all j < 2k, with e2j+2 = B · e2j+1 + a2j+1 for all j < k. Running the
automaton Modd

e,N on an input word with prefix w eventually leads to a superposition of one head
in state ZN reading the last symbol of w.

Proof: This lemma we prove by induction on k, too. If k = 0, we have w = a0. The automaton
Modd

e,N on an input word with prefix a0 performs a slight variation of the equation routine. It splits
the head to a superposition of N heads on the left end-marker c and instantly, on the next symbol,
it merges the heads back into a one head in state ZN reading the symbol a0.
The inductive case of this lemma can be proved in the same way as in lemma 5.8. �

Lemma 5.10 Let N ≥ 3 and w ∈ Σ∗. If w ∈ Le then both M
even
e,N and Modd

e,N accept w with

probability 1 and if w 6∈ Le then either M
even
e,N or Modd

e,N rejects w with probability at least 1− 1/N .

Proof: If w ∈ Le, we have w =
(
∏k−1

j=0 l
ejaj

)

lekγ0l
ekγ1u, with k ≥ 0. Without loss of generality

we assume that k is even. The proof for k odd is similar. As k is even, by lemma 5.9, running
the automaton Modd

e,N on the word w leads to a superposition of one head in state ZN reading
the symbol γ0. In the next evolution step the only head of the automaton superposition changes
from state ZN to state A and the automaton accepts with probability 1. Similarly, by lemma 5.8,
running the automaton M even

e,N on the word w leads to a superposition of one head in state ZN

reading the symbol ak−1 if k > 0, or reading the left end-marker c if k = 0. In either case, by lemma
5.7, running an instance of the equation routine with symbols c, a, b and $ exchanged by symbols
ak−1 (or c if k = 0), l, γ0 and γ1, respectively, for coefficients c1 = c2 = 0 and d1 = d2 = B, leads
on the subword lekγ0l

ekγ1 to a superposition with one head in state ZN reading the symbol γ1. In
the next evolution step the only automaton head state changes from ZN to A and the automaton
accepts for sure.
Now assume the input word w 6∈ Le. If the input word does not have the form of ({l} ∪

ΣT )∗C1{l}∗C2Σ∗, both automata reject the input word for sure upon moving their heads over the
first unexpected symbol in w. (Under the assumption the automaton does not reject earlier for
any other reason. Note, that the automaton may not have accepted the input word earlier.) They
reject the word in a superposition of N heads in one of these three series of states: Pk, Qk or Rk. If

the input word has the correct form, we can write w =
(
∏k−1

j=0 l
ejaj

)

lekγ0l
ekγ1u, for some k ≥ 0,
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aj ∈ ΣT , γ0 ∈ C1, γ1 ∈ C2 and u ∈ Σ∗. There are only three reasons that may cause the input
word w not to belong to the language Le:

1. e0 > 0: The first instance of the equation routine during the evolution of the automaton
Modd

e,N on the input word w verifies if e0 = 0. It is a slightly modified version of the routine,
instead of comparing numbers of symbols in two bunches of ls, the modified version compares
the number of symbols in just one such bunch of ls with a constant given explicitly by the
transition function. In this case the constant is 0. By a similar proof as to lemma 5.7, we
can show, that if e0 > 0 the automaton M

odd
e,N rejects the input word w with probability at

least 1− 1/N .

2. e0 = 0, but at least one of the equalities ej+1 = B ·ej+aj does not hold: Take the first of the
equalities that does not hold, i.e., take a minimal j for which ej+1 6= B · ej +aj . Assume j is
even. By lemma 5.8, running the automaton M even

e,N on the word w leads to a superposition
of one head in state ZN reading the symbol aj−1 if j > 0, or reading the left end-marker
if j = 0. By lemma 5.7, running the equation routine on the subword lejaj l

ej+1α, where
α = aj+1 if j < k − 1, or α = γ1 if j = k − 1, leads to rejecting the input word by M even

e,N

with probability at least 1− 1/N . Similarly, if j is odd we can prove with help of lemma 5.9,
that the automaton Modd

e,N rejects the word w with probability at least 1− 1/N .

3. e0 = 0 and all equalities from the previous case hold, but the number of ls between γs does
not correspond to the number of ls between ak−1 and γ1: By a proof similar to the proof
from the previous case we can show that at least one of the automata rejects the word w with
probability at least 1− 1/N . Which of the automata happens to reject the word depends on
the parity of k.

Therefore, every word that does not belong to Le is rejected by at least one of the subautomata.
�

Lemma 5.11 Let N ≥ 3. Both automata M even
e,N and Modd

e,N halt on every word w ∈ Σ∗ after
O(|w|) evolution steps.

Proof: We can easily see from algorithm 5.3 that whole amplitude of a head in any state q with
D(q) = 1 reading any input symbol α accepts, rejects or moves to the next tape square in at
most B · N + 1 evolution steps. Also, whole amplitude of a head in the initial state reading
the left end-marker symbol c moves to the next tape square in one step. To say this formally,
(AVα)

B·N+1|q〉 = 0 for all q ∈ Q with D(q) = 1 and α ∈ Σ, and AVc|ZN 〉 = 0, where the function
A: `2(Q)→ `2(Q) is defined such that:

A

(∑

p∈Q

γp|p〉
)

=
∑

p∈Q\Qacc\Qrej

D(p)=0

γp|p〉

Furthermore, any head in a state q with D(q) = 1 reading the right end-marker symbol rejects
in one evolution step. Formally, V$|q〉 ∈ Span({p | p ∈ Qrej}) for every q ∈ Q with D(q) = 1.
As a consequence of these two properties, both automata on an input word w halt in at most
(B ·N + 1) · |w|+ 2 steps. �

5.3.3 Subautomata checking tape code progress

Finally we construct the remaining four subautomata that verify whether tape codes of computati-
ons configurations change according to the transition function of the Turing machine. Two of these
subautomata check behavior of the left tape part. The other two subautomata check behavior of
the right tape part.
First, we present the former two subautomata. For every two consecutive configurations of a

computation they check whether the left tape part of the latter configuration may be obtained by
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one computation step of the Turing machine from the left tape part of the former configuration.
The computation step is determined by the state and the currently read symbol encoded in the
code head of the former configuration. Every such step rewrites the currently read symbol by a
new symbol and moves the Turing machine head one square right or left. Remember, we chose the
Turing machine such that it always moves its head. Moving the machine head one square right
extends the left tape part by the newly written symbol. Moving the machine head one square left
shortens the the left tape part by the new currently read symbol – the currently read symbol of
the latter configuration.
These two subautomata recognize two languages with the following common intersection with

the language L1:

Ll =

{

v

γ0∈C1
︷ ︸︸ ︷
2

4

•
•

q0 a0

3

5w0

γ1∈C2
︷ ︸︸ ︷
2

4

•
q0 a0
q1 a1

3

5

(
k∏

j=2

wj−1

γj∈C3
︷ ︸︸ ︷
2

6

4

qj−2 aj−2
qj−1 aj−1

qj aj

3

7

5

) ∣
∣
∣
∣
∣
k > 0 ∧ qk ∈ FT ∧ v ∈ (ΣT ∪ {l})∗ ∧

∧
(

∀j < k:wj ∈ {l, r}∗ ∧ cj = δ
T
2 (qj , aj) ∧ lj = #l(wj) ∧ rj = #r(wj)

)

∧

∧
(

∀j < k − 1:
(

δT
3 (qj , aj) = 1 → B · lj + cj = lj+1

)

∧
(

δT
3 (qj , aj) = −1 → lj = B · lj+1 + aj+1

))
}

.

Note, that according to the definition of C1, C2 and C3, for every word in Ll we have q0 = qT
0 ,

a0 = b, and qj 6∈ FT and qj+1 = δT
1 (qj , aj) for all j < k. The intersected language L1 is the

language recognized by the automaton M1 defined in section 5.3.1.
To recognize if a word from L1 belongs to the above language the automata need only to verify

the following set of equalities:

B · lj + cj = lj+1 for all j < k − 1 with δT
3 (qj , aj) = 1, and

lj = B · lj+1 + aj+1 for all j < k − 1 with δT
3 (qj , aj) = −1.

(5.5)

They verify the equalities using the equation routine from the previous section with symbols c, a,
b and $ exchanged by symbols γj , l, γj+1 and γj+2, respectively. The coefficients to the routine
are c1 = cj , d1 = B, c2 = 0 and d2 = 1 if δ

T
3 (qj , aj) = 1, and c1 = 0, d1 = 1, c2 = aj+1 and d2 = B

if δT
3 (qj , aj) = −1. The automata can easily determine the coefficients c1 and c2 on the fly from

symbols γj and γj+1, respectively.
We construct the automata such that the first one checks the equalities for j even and the other

one for j odd. We name the automata M even
l and Modd

l , respectively. Both automata sequentially
run one instance of the routine for every other two consecutive configurations of the computation
until they reach the end of the input word, where they accept. The even version of the automaton
begins with comparing the configuration γ0w0 to γ1w1. The odd version begins with comparing
γ1w1 to γ2w2. If any instance of the routine rejects the automaton running this instance rejects, too.
However, if an instance of the routine accepts, the automaton instead of just accepting proceeds to
another instance of the routine, comparing the next two consecutive configurations. The automaton
accepts on the right end-marker after checking all equalities it needs to check.
We define for each N ≥ 3 the automata M even

l,N = (Q,Σ, δeven, s,Qacc, Qrej) and M
odd
l,N =

(Q,Σ, δodd, s,Qacc, Qrej), where Q = {s, S, Zk, P
+
k , P

−
k , Q

+
k , Q

−
k , p

+
k,j , p

−
k,j , q

+
k,j , q

−
k,j | 1 ≤ k ≤ N ∧

0 ≤ j ≤ B · N}, Σ = {l, r} ∪ ΣT ∪ C, Qacc = {P+k , P−
k , Q

+
k , Q

−
k | 1 ≤ k ≤ N} and Qrej =

{S,Zk | 1 ≤ k < N}. The tape alphabets of the defined automata are Γ = Σ ∪ {c, $}. For each
α ∈ Γ let Vα take values as in the even version of algorithm 5.4. All these operators are unitary on
`2(Q), by inspection. Also define D as in algorithm 5.4, and let δ

even be defined as in (3.5). Now
similarly let values of Vα as in the odd version of algorithm 5.4. All these operators are unitary
on `2(Q), too. Define D the same way as previously and let δ

odd be defined as in (3.5), again.
Since Vα is unitary for each α ∈ Γ in both cases, the constructed automata M even

l,N and Modd
l,N are

well-formed.
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Algorithm 5.4 Subautomata checking progress of the left tape part

We define the following for all k, where 1 ≤ k ≤ N , with operators acting as identities on all
remaining base states. In the following we write m as a shortcut for N − k+1, c as a shortcut for
δT
2 (q3, a3), d as a shortcut for δ

T
3 (q3, a3) and e as a shortcut for δ

T
3 (q1, a1).

even version:

γ =
2

4

•
•

q3 a3

3

5 ∈ C1 ∧ d = 1:

Vγ |s〉 = |ZN 〉,
Vγ |Zk〉 = 1√

N

∑N
j=1 ω

kj |p+j,c·j〉,
Vγ |p+k,j〉 = |p+k,j−1〉, 1 ≤ j ≤ c · j,
Vγ |p+k,0〉 = 1√

N

∑N−1
j=1 ω

kj |Zj〉+ |s〉√
N
,

γ =
2

4

•
•

q3 a3

3

5 ∈ C1 ∧ d = −1:
Vγ |s〉 = |ZN 〉,
Vγ |Zk〉 = 1√

N

∑N
j=1 ω

kj |p−j,0〉,
Vγ |p−k,0〉 = 1√

N

∑N−1
j=1 ω

kj |Zj〉+ |s〉√
N
,

γ =
2

4

•
q2 a2
q3 a3

3

5 ∈ C2:

Vγ |p+k,0〉 = |q+k,0〉,
Vγ |q+k,0〉 = |p+k,0〉,
Vγ |p−k,0〉 = |q−k,a3·m〉,
Vγ |q−k,j〉 = |q−k,j−1〉, 1 ≤ j ≤ a3 ·m,
Vγ |q−k,0〉 = |p−k,0〉,

odd version:

γ =
2

4

•
q2 a2
q3 a3

3

5 ∈ C2 ∧ d = 1:

Vγ |s〉 = |ZN 〉,
Vγ |Zk〉 = 1√

N

∑N
j=1 ω

kj |p+j,c·j〉,
Vγ |p+k,j〉 = |p+k,j−1〉, 1 ≤ j ≤ c · j,
Vγ |p+k,0〉 = 1√

N

∑N−1
j=1 ω

kj |Zj〉+ |s〉√
N
,

γ =
2

4

•
q2 a2
q3 a3

3

5 ∈ C2 ∧ d = −1:
Vγ |s〉 = |ZN 〉,
Vγ |Zk〉 = 1√

N

∑N
j=1 ω

kj |p−j,0〉,
Vγ |p−k,0〉 = 1√

N

∑N−1
j=1 ω

kj |Zj〉+ |s〉√
N
,

Continued on the next page. . .

Lemma 5.12 Let N ≥ 3 and w = vγ0w0γ1w1 . . . wk−1γk ∈ Ll, with k > 0, v ∈ (ΓT ∪ {l})∗,
wj ∈ {l, r}∗ for all j < k, γ0 ∈ C1, γ1 ∈ C2 and γj ∈ C3 for all j with 2 ≤ j ≤ k. For each
m with 0 ≤ 2m ≤ k, running the automaton M even

l,N on the input word w eventually leads to a
superposition of one head in the state ZN reading the symbol γ2m.

Proof: We prove the lemma by induction on m. The automaton starts its evolution in a superpo-
sition of one head in state s. It keeps the head in this state while reading the whole prefix v of the
input word. Upon arriving on the symbol γ0 the state of the only superposition head changes to
ZN . Hence, the lemma proposition holds for m = 0.

In the inductive case we assume the proposition holds for m = n with 0 ≤ n ≤ k− 2, we prove
it holds for m = n + 1, too. By induction hypothesis running the automaton on the input word
w leads to a superposition of one head in the state ZN reading the symbol γ2n. The symbol γ2n
is the head of a configuration code. If n = 0 then γ2n ∈ C1 and γ2n =

2

4

•
•

q3 a3

3

5 for q3 ∈ KT and

a3 ∈ ΓT , or if n > 0 then γ2n ∈ C3 and γ2n =
2

4

q1 a1
q2 a2
q3 a3

3

5 for q1, q2, q3 ∈ KT and a1, a2, a3 ∈ ΓT . In

either case q3 represents the state and a3 the currently read symbol of the configuration encoded
by γ2nw2n.

If δT
3 (q3, a3) = 1 the automaton runs an instance of the equation routine with symbols c, a, b

and $ exchanged by symbols γ2n, l, γ2n+1 and γ2n+2, respectively, for coefficients c1 = δT
2 (q3, a3),

d1 = B, c2 = 0 and d2 = 1. The states used to perform this instance of the routine have the form
p+x,y and q

+
x,y. Running such an instance of the routine on the subword γ2nw2nγ2n+1w2n+1γ2n+2

with δT
2 (q3, a3)+B ·#l(w2n) = #l(w2n+1) from a superposition with one head in state ZN reading

the symbol γ2n eventually leads to a superposition with one head in state ZN reading the symbol
γ2n+2 = γ2m.

Similarly, if δT
3 (q3, a3) = −1 the automaton runs an instance of the routine with the symbols
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Algorithm 5.4 Continued

both versions:

γ =
2

4

q1 a1
q2 a2
q3 a3

3

5 ∈ C3 ∧ d = 1:

Vγ |Zk〉 = 1√
N

∑N
j=1 ω

kj |p+j,c·j〉,
Vγ |p+k,j〉 = |p+k,j−1〉, 1 ≤ j ≤ c · k,
Vγ |p+k,0〉 = |q+k,0〉,
Vγ |p−k,0〉 = |q−k,a3·m〉,
Vγ |q−k,j〉 = |q−k,j−1〉, 1 ≤ j ≤ a3 ·m,
Vγ |q+k,0〉 = 1√

N

∑N
j=1 ω

kj |Zj〉,
}

e = 1
Vγ |q−k,0〉 = |p−k,0〉,
Vγ |q+k,0〉 = |p−k,0〉,
Vγ |q−k,0〉 = 1√

N

∑N
j=1 ω

kj |Zj〉,

}

e = −1

Vl|p+k,0〉 = |p+k,B·k〉,
Vl|p+k,j〉 = |p+k,j−1〉, 1 ≤ j ≤ B · k,
Vl|p−k,0〉 = |p−k,k〉,
Vl|p−k,j〉 = |p−k,j−1〉, 1 ≤ j ≤ k,

Vl|q+k,0〉 = |q+k,N−k+1〉,
Vl|q+k,j〉 = |q+k,j−1〉, 1 ≤ j ≤ m,

Vl|q−k,0〉 = |q−k,B·(N−k+1)〉,
Vl|q−k,j〉 = |q−k,j−1〉, 1 ≤ j ≤ B ·m,

γ =
2

4

q1 a1
q2 a2
q3 a3

3

5 ∈ C3 ∧ d = −1:
Vγ |Zk〉 = 1√

N

∑N
j=1 ω

kj |p−j,0〉,

Vγ |p+k,0〉 = |q+k,0〉,
Vγ |p−k,0〉 = |q−k,a3·m〉,
Vγ |q−k,j〉 = |q−k,j−1〉, 1 ≤ j ≤ a3 ·m,
Vγ |q+k,0〉 = 1√

N

∑N
j=1 ω

kj |Zj〉,
}

e = 1
Vγ |q−k,0〉 = |p+k,0〉,
Vγ |q+k,0〉 = |p+k,0〉,
Vγ |q−k,0〉 = 1√

N

∑N
j=1 ω

kj |Zj〉,

}

e = −1

V$|p+k,0〉 = |P+k 〉, V$|P+k 〉 = |p+k,0〉,
V$|p−k,0〉 = |P−

k 〉, V$|P−
k 〉 = |p−k,0〉,

V$|q+k,0〉 = |Q+k 〉, V$|Q+k 〉 = |q+k,0〉,
V$|q−k,0〉 = |Q−

k 〉, V$|Q−
k 〉 = |q−k,0〉,

V$|s〉 = |S〉, V$|S〉 = |s〉,

D(α) = 1, α ∈ {s, (p+k,0), (p
−
k,0), (q

+
k,0), (q

−
k,0) | 1 ≤ k ≤ N}

D(α) = 0, α ∈ Q \ {s, (p+k,0), (p
−
k,0), (q

+
k,0), (q

−
k,0) | 1 ≤ k ≤ N}

exchanged in the same way as previously, for coefficients c1 = 0, d1 = 1, c2 = a4 and d2 = B, where
a4 is the currently read symbol of the configuration encoded by γ2n+1w2n+1 – the bottom right
symbol from its head code γ2n+1. For this routine instance the automaton uses the states of the
form p−x,y and q

−
x,y. Running this instance of the routine on the subword γ2nw2nγ2n+1w2n+1γ2n+2

with #l(w2n) = a4 + B ·#l(w2n+1) from a superposition with one head in state ZN reading the
symbol γ2n eventually leads to a superposition with one head in state ZN reading the symbol
γ2n+2 = γ2m.
It is important to note that the third line of γ2n is equal to the first line of γ2n+2, and therefore

the automaton knows if its superposition contains states of the p+x,y and q
+
x,y or the p

−
x,y and q

−
x,y

form when reading the symbol γ2n+2. This allows the automaton to decide according to the symbol
γ2n+2, which of these two forms of states map onto the state ZN using the last quantum Fourier
transformation of the equation routine. �

Lemma 5.13 Let N ≥ 3 and w = vγ0w0γ1w1 . . . wk−1γk ∈ Ll, with k > 0, v ∈ (ΓT ∪ {l})∗,
wj ∈ {l, r}∗ for all j < k, γ0 ∈ C1, γ1 ∈ C2 and γj ∈ C3 for all j with 2 ≤ j ≤ k. For each m
with 1 ≤ 2m + 1 ≤ k, running the automaton M odd

l,N on the input word w eventually leads to a
superposition of one head in the state ZN reading the symbol γ2m+1.

Proof: The proof of this lemma is similar to the proof of the previous lemma. The only difference
worth mentioning is that the odd version of the automaton remains in its initial superposition of
one head in state s until arriving on the symbol γ1 unlike the even version which keeps the head
in state s only until reading the symbol γ0. �

Lemma 5.14 Let N ≥ 3 and w ∈ L1. If w ∈ Ll then both M
even
l,N and Modd

l,N accept w with

probability 1 and if w 6∈ Ll then either M
even
l,N or Modd

l,N rejects w with probability at least 1− 1/N .
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Proof: As w ∈ L1 we can write it as w = vγ0w0γ1w1 . . . wk−1γk, with k ≥ 1, v ∈ (ΓT ∪ {l})∗,
wj ∈ {l, r}∗ for all j < k, γ0 ∈ C1, γ1 ∈ C2 and γj ∈ C3 for all j with 2 ≤ j ≤ k.

Assume that w ∈ Ll. If k is even then running the even version of the automaton leads to a
superposition of one head in state ZN reading the symbol γk, by lemma 5.12. This head on the
symbol γk splits to N heads, each of which in one of the states p

+
x,y or p

−
x,y according to the last

line of the code head γk of the configuration encoded by γkwk. In the next few evolution steps (at
most B ·N + 1) each of these N heads moves one square right onto the right end-marker symbol,
where it accepts in a state of the form P+x or P

−
x . Therefore the automaton M

even
l,N accepts for

sure.

If k is odd then running the automaton M even
l,N leads to a superposition of one head in state

ZN reading the symbol γk−1. Similarly, as in the previous case, the only head of the superposition
splits on the symbol γk−1 to N heads, each of which is in one of the states p+x,y or p

−
x,y. All these

heads after reading the subword wk−1γk change their states from a state of the form p+x,y or p
−
x,y

to a corresponding state of the form q+x,y or q
−
x,y. Upon moving any of the heads over the right

end-marker $ it accepts in one of the states Q+x or Q
−
x . Therefore the automaton M

even
l,N accepts

for sure again.

By lemma 5.13, we can similarly show that the automaton M odd
l,N accepts each word from Ll

for sure, too.

Now, assume that w 6∈ Ll. Since w ∈ L1, the only reasons why w 6∈ Ll is that at least one of
the equalities (5.5) does not hold for this word. Take the first such equality – i.e., take the minimal
number j for which (5.5) does not hold. If j is even, then by lemma 5.12, running the even version
of the automaton leads to a superposition of one head in state ZN reading the symbol γj . In the
next instance (as described in the inductive case of lemma 5.12) of the equation routine, according
to lemma 5.7, the automaton M even

l,N rejects with probability at least 1−1/N . Similarly, by lemma
5.13, if j is odd running the odd version of the automaton leads to a superposition of one head in
state ZN reading the symbol γj . In the next instance of the routine, according the same lemma as
previously, the automaton M odd

l,N rejects w with probability at least 1−1/N . Therefore every word
from L1 \Ll is rejected by at least one of the two automata with probability at least 1− 1/N . �

In lemma 5.14 we proved that the automata recognize for all words from L1 whether they
belong to Ll. However, we have not yet showed how the automata behave on words not from L1.
The next lemma proves that both of the automata eventually halt on every input word, although
we do not care what answer the automata halt with for words not it L1.

Lemma 5.15 Let N ≥ 3. Both automata M even
l,N and Modd

l,N halt on every word w ∈ Σ∗ after
O(|w|) evolution steps.

Proof: By the exactly same argument as in the proof of lemma 5.11. �

The automata checking behavior of the right tape part are very similar to the automata
checking behavior of the left tape part. They work in the same manner as the former two, with
the only difference that they check the following equalities instead:

rj = B · rj+1 + aj+1 for all j < k − 1 with δT
3 (qj , aj) = 1, and

B · rj + cj = rj+1 for all j < k − 1 with δT
3 (qj , aj) = −1.

(5.6)

The intersection of the languages recognized by these automata and the language L1 is the language
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Lr =

{

v

γ0∈C1
︷ ︸︸ ︷
2

4

•
•

q0 a0

3

5w0

γ1∈C2
︷ ︸︸ ︷
2

4

•
q0 a0
q1 a1

3

5

(
k∏

j=2

wj−1

γj∈C3
︷ ︸︸ ︷
2

6

4

qj−2 aj−2
qj−1 aj−1

qj aj

3

7

5

) ∣
∣
∣
∣
∣
k > 0 ∧ qk ∈ FT ∧ v ∈ (ΣT ∪ {l})∗ ∧

∧
(

∀j < k:wj ∈ {l, r}∗ ∧ cj = δ
T
2 (qj , aj) ∧ lj = #l(wj) ∧ rj = #r(wj)

)

∧

∧
(

∀j < k − 1:
(

δT
3 (qj , aj) = 1 → rj = B · rj+1 + aj+1

)

∧
(

δT
3 (qj , aj) = −1 → B · rj + cj = rj+1

))
}

.

For a given N ≥ 3 we construct the automata M even
r,N and Modd

r,N in a similar way we constructed

the automata M even
l,N and Modd

l,N , respectively.

Lemma 5.16 Let N ≥ 3 and w ∈ L1. If w ∈ Lr then both M
even
r,N and Modd

r,N accept w with

probability 1 and if w 6∈ Lr then either M
even
r,N or Modd

r,N rejects w with probability at least 1− 1/N .

Lemma 5.17 Let N ≥ 3. Both automata M even
r,N and Modd

r,N halt on every word w ∈ Σ∗ after
O(|w|) evolution steps.

5.4 Putting everything together

Having constructed all seven necessary subautomata we can combine them into the final automaton
recognizing the language L. The final automaton randomly chooses which of the seven subautomata
to run and then simulates the chosen one. Each of the subautomata is chosen equally probable.
The evolution of the final automaton halts as soon as the simulated subautomaton halts. It halts
with the same answer as the simulated one. In addition to simulating the new automaton, it may
in its first evolution step decide to reject immediately.
The automaton decides to reject immediately with probability 6/13 and to simulate any of the

subautomata with probability 1/13. Therefore if any of the subautomata rejects an input word
with probability close to 1 the new automaton rejects it with probability close to 7/13. Similarly, if
all the subautomata accept the input word for sure the new automaton accepts it with probability
exactly 7/13.
For a given N , in effort to make notations clearer, number the subautomata M1, M

even
e,N ,

Modd
e,N , M

even
l,N , M

odd
l,N , M

even
r,N and Modd

r,N with numbers 1 to 7, respectively. Also let V
k
α, D

k and

Mk = (Qk,Σ, δk, qk
0 , Q

k
acc, Q

k
rej) represent the respective objects of the k-th subautomaton as

defined in previous sections.
For every N ≥ 3 define the automaton MN = (Q,Σ, δ, q0, Qacc, Qrej), where Q = {q0, qr} ∪

{(k, p) | 1 ≤ k ≤ 7 ∧ p ∈ Qk}, Σ = {l, r} ∪ ΣT ∪ C, Qacc = {(k, p) | 1 ≤ k ≤ 7 ∧ p ∈ Qk
acc}

and Qrej = {qr} ∪ {(k, p) | 1 ≤ k ≤ 7 ∧ p ∈ Qk
rej}. The tape alphabet of the constructed

automaton is Γ = Σ ∪ {c, $}. Define functions Ak: `2(Q
k) → `2(Q), where 1 ≤ k ≤ 7, such that

A
k
(
∑

q∈Qk γq|q〉
)

=
∑

q∈Qk γq|(k, q)〉, and let Vc for |q0〉 as follows:

Vc|q0〉 =
√
6√
13

|qr〉+
7∑

k=1

1√
13
A

k
V

k
c |qk
0 〉,

and arbitrarily extend it to be unitary on the Hilbert space `2(Q). For each α ∈ Γ \ {c} and
(k, q) ∈ Q let Vα|(k, q)〉 = Ak

V
k
α|q〉, Vα|q0〉 = |q0〉 and Vα|qr〉 = |qr〉. As all Vk

α are unitary on
`2(Q

k), the defined operators Vα are unitary on `2(Q), too. Further, define function D as follows:

D(q0) = 0, D(qr) = 0, and D((k, q)) = D
k(q), for all (k, q) ∈ Q,

and let δ be defined as in (3.5). Since all Vα are unitary, the constructed automaton is well-
formed. We defined the automaton such that if it does not reject immediately, it performs the
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first evolution step of the simulated subautomaton and then passes the evolution control to the
simulated automaton.

Lemma 5.18 Let N ≥ 27 and w ∈ Σ∗. If w ∈ L then MN accepts w with probability 7/13 and if
w 6∈ L then MN rejects w with probability at least 7/13− 1/N . Moreover, PMN

acc (w)+P
MN

rej (w) = 1
and hence the automaton MN recognizes the language L.

Proof: From definitions of the languages from previous sections we know that L = L1∩Le∩Ll∩Lr.
The automaton MN rejects w with probability 6/13 immediately in its first evolution step, or it
starts to simulate one of the seven subautomata by performing its first evolution step. Simulating
any of the automata happens with probability 1/13.

If w ∈ L then w belongs to all of the languages L1, Le, Ll and Lr. By lemmas 5.4, 5.10, 5.14
and 5.16 all of the subautomata accept w with probability 1. Therefore the automatonMN accepts
w with probability 7/13. If w 6∈ L then w does not belong to at least one of the languages L1, Le,
Ll and Lr. If w 6∈ L1 then by lemma 5.4 the automaton M

1 rejects w for sure. If w 6∈ Le then by
lemma 5.10 at least one of M 2 and M3 rejects w with probability at least 1 − 1/N . Similarly if
w 6∈ Ll (w 6∈ Lr) then by lemma 5.14 (5.16) at least one of M

4 and M5 (M6 and M7) rejects w
with probability at least 1 − 1/N . In either case at least one of the seven subautomata rejects w
with probability at least 1− 1/N . As the automaton MN happens to simulate this subautomaton
with probability 1/13 it rejects in such a simulation with probability at least 1/13(1 − 1/N) >
1/13− 1/N . Total probability of rejecting w by MN is at least 7/13− 1/N .
By lemmas 5.5, 5.11, 5.15 and 5.17 all the automata halt with probability 1 and therefore we

have PMk

acc (w) + P
Mk

rej (w) = 1 for all k with 1 ≤ k ≤ 7. Hence:

PMN
acc (w) + P

MN

rej (w) =
6

13
+

7∑

k=1

1

13

(

PMk

acc (w) + P
Mk

rej (w)
)

= 1.

As 7/13− 1/N > 1/2 for N ≥ 27 the automaton MN recognizes L. �

Lemma 5.19 Let N ≥ 3. The automaton MN halts on every word w ∈ Σ∗ after O(|w|) evolution
steps.

Proof: A straightforward consequence of lemmas 5.5, 5.11, 5.15 and 5.17. �

We constructed the automaton recognizing the language L with probability of a correct answer
7/13 − ε. As the reader can see, the subautomata M even

e and Modd
e stop their work where the

subautomata M even
l and Modd

l start their work. Therefore, it is possible for the pairs of the
subautomata to concatenate their work and construct only two subautomata recognizing languages
with the same intersection as the languages recognized by the original four subautomata, with the
same probability of a correct answer. Furthermore we can let the work done by the subautomaton
M1 be done by any other of the subautomata as this subautomaton is actually just an one-way
reversible finite automaton.

This method allows us to reduce the number of subautomata of the final automaton to just
four. The probability of a correct answer of such final automaton would be 4/7 − ε. However, to
make the construction more understandable, we decided to present its simplified version.

Theorem 5.20 For every Turing machine T there is an 1.5QFA M and a homomorphism h such
that h(L(M)) = L(T ).

Proof: For the machine T , there is an equivalent Turing machine T ′ = (KT ,ΣT ,ΓT , δT , qT
0 , F

T ),
such that q0 6∈ FT , T ′ implements only move-left and move-right steps and the computation
of T ′ begins on the right side of the input word. For the Turing machine T ′ and N = 47, we
construct all seven subautomata from previous sections and then construct the automaton M47
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as described above. According to lemma 5.18, the automaton M47 recognizes the language L. For
homomorphism h: ({l, r} ∪ ΣT ∪ C)∗ → (ΣT )∗ defined as follows:

h(α) = ε, for α ∈ {l, r} ∪ C, and
h(α) = α, for α ∈ ΣT ,

we have h(L(M47)) = h(L) = L(T
′) = L(T ), by lemma 5.1. �

Corollary 5.21 Homomorphic closure of the class of languages recognized by 1.5QFA is equal to
the class of recursively enumerated languages.

Corollary 5.22 The class of languages recognized by 1.5QFA is not closed under homomorphism.

Proof: Trivially L1.5QFA ( LRE and hence L1.5QFA ( H(L1.5QFA). �



Chapter 6

Homomorphic closure of other
classes

The result from the previous chapter we can generalize for the case of two-way quantum finite
state automata and the case of two-way finite automata with quantum and classical states, too.
Also, we can prove a similar result for the class of languages recognized by one-way quantum finite
state automata. In section 6.3 we show that the homomorphic closure of this class is equal to the
class of regular languages. This property introduces a significant gap between the homomorphic
closures of the classes of languages recognized by 1.5QFA, 2QFA and 2QCFA on one hand, and
the homomorphic closure of the class languages recognized 1QFA on the other hand.

6.1 Homomorphic closure of 2QFA

Although theorem 5.20 from section 5.4 is sufficient to show that the homomorphic closure of the
class of languages recognized by 2QFA is equal to the class of recursively enumerated languages,
and hence is not closed under homomorphism, there is a better 2QFA to recognize the language
L defined in section 5.3 than the 1.5QFA MN defined there.
The 1.5QFA MN defined in the section 5.4 randomly chooses which of the subautomata to

simulate and recognizes the language L with probability of a correct answer 7/13− ε (or 4/7− ε
according to the paragraph before theorem 5.20). A 2QFA, thanks to its ability to move its head
back to the left end-marker symbol, can simulate all seven subautomata sequentially and recognize
the language L with probability of correct answer 1− ε.
To construct such a 2QFA we need to patch the subautomata such that each of them accepts

every word from the language it recognizes at one moment (in one evolution step) in a superposition
of just one head in a particular state (independent of the input word) reading the left end-marker
symbol, instead of accepting in many different evolution steps or in a superposition of many
different states on many different tape symbols.
The automaton M1 accepts every word from the language L1 in a superposition of one head

reading the right end-marker, but the head may be in any of many different states. Fortunately,
the state of this head depends only on the last symbol of the accepted input word and hence the
automaton may synchronize the head state by returning back to this symbol and then moving its
only head back to the left end-marker. The new 2QFA recognizing the language L will simulate
this subautomaton as the first one, so that all the next subautomata may rely on the form of the
input word.
The automata M even

e,N and Modd
e,N accept every word from the language Le in a superposition of

one head in state A reading the first occurrence of a symbol from C1 or C2 depending on the parity
of the number of symbols from ΣT before. To recognize between the two cases, the automaton can
move its only head over the prefix of the accepted input word terminated by the first occurrence
of a symbol from C1 or C2 again, and count the parity of the number of symbols from Σ

T in this
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prefix. Using this parity the automaton can ensure it halts in a superposition of one head in some
specific state reading the left end-marker.
The remaining four subautomata checking the progress of the tape accept the words from Ll

and Lr, respectively, in possibly N different evolution steps, such that in each of them several
superposition heads accepts on the right end-marker. Each of the heads accepts in a different
state. However, they always accept during one instance of the equation routine. To synchronize
the superposition to only one head during the equation routine, the automaton can “undo” the
part of the routine already done. Each head of the equation routine superposition upon reaching
the right end-marker changes its state to a symmetric one (i.e., p+x,y to p

+
N−x+1,y) and undoes all

previously done steps. By this approach, all the heads of the superposition meet in one moment
at the symbol where the routine began and synchronize into a superposition of one head in state
ZN . So far, the automaton halts on every accepted word in a superposition of one head in state
ZN reading the last or the last but one input word symbol from C, depending on the parity of the
input word. Similarly as previously, the automaton can ensure it halts in a superposition of one
head in some specific state reading the left end-marker by counting the parity of the number of
symbols from C in the input word located to the left from the symbol, where the undone instance
of the equation routine started.
Each of the patched subautomata begins and halts its evolution in a superposition of one head

in some particular state reading the left end-marker symbol, hence a 2QFA can easily simulate all
the subautomata sequentially.

Lemma 6.1 For every ε > 0 there is a 2QFA such that it accepts every word from L with
probability 1 and rejects every word from Σ∗ \ L with probability at least 1− ε. Moreover, it halts
on every word w ∈ Σ∗ in O(|w|) evolution steps.
Theorem 6.2 For every Turing machine T there is a 2QFA M and a homomorphism h such that
h(L(M)) = L(T ).

Corollary 6.3 Homomorphic closure of the class of languages recognized by 2QFA is equal to the
class of recursively enumerated languages.

Corollary 6.4 The class of languages recognized by 2QFA is not closed under homomorphism.

Proof: Trivially L2QFA ( LRE and hence L2QFA ( H(L2QFA). �

6.2 Homomorphic closure of 2QCFA

For the class of languages recognized by 2QCFA, we can also show that its homomorphic closure
is equal to the class of recursively enumerated languages, and hence the class is not closed under
homomorphism. For every Turing machine we can construct a 2QCFA recognizing the language L
(5.2) and a homomorphism (5.3) defined in section 5.3, such that the homomorphic image of the
language L is equal to the language accepted by the Turing machine.
In section 5.4, we constructed the 1.5QFA recognizing the language L. The automaton re-

cognized the language with help of seven subautomata each of which recognized a subset of the
properties of the language L. The first of the subautomata M1, defined in section 5.3.1, recogni-
zed the language L1 of codes of all Turing machine computations satisfying local conditions of a
correct accepting computation without taking any care of the Turing machine tape codes. This
automaton is actually an one-way reversible finite automaton, and so it may be easily simulated
by a 2QCFA.
The remaining six subautomata, defined in sections 5.3.2 and 5.3.3, recognized the respective

languages by checking the equalities (5.4) of a correct input word code and the equalities (5.5) and
(5.6) guaranteeing a progress of the Turing machine tape that correctly obeys the Turing machine
transition function.
A 2QCFA performing the task of these six subautomata can be constructed, such that it checks

all the equalities checked by these subautomata by a method based on the method to recognize
the language {akbk | k ≥ 0} introduced in [AW02].
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Lemma 6.5 [AW02, Theorem 5] For every ε > 0, there is a 2QCFA M that accepts every w ∈
{akbk | k ≥ 0} with probability 1 and rejects every w 6∈ {akbk | k ≥ 0} with probability at least
1− ε. The automaton halts in expected time O(|w|4).

By a slight variation of this method we can construct a 2QCFA recognizing the language
{axbay | c1+ d1 ·x = c2+ d2 · y} for any natural numbers c1, d1, c2 and d2, and use it as a routine
of the 2QCFA performing the task of the mentioned subautomata. This routine is a version of the
equation routine from section 5.3.2 for the 2QCFA case.

Lemma 6.6 For every ε > 0 there is a 2QCFA that accepts every word from L with probability
1 and rejects every word from Σ∗ \ L with probability at least 1 − ε. Moreover, it halts on every
word w ∈ Σ∗ in O(|w|4) evolution steps.

Theorem 6.7 For every Turing machine T there is a 2QCFA M and a homomorphism h such
that h(L(M)) = L(T ).

Corollary 6.8 Homomorphic closure of the class of languages recognized by 2QCFA is equal to
the class of recursively enumerated languages.

Corollary 6.9 The class of languages recognized by 2QCFA is not closed under homomorphism.

Using the method introduced by Freivalds in [Fre81] to recognize the language {akbk | k ≥ 0}
and the language {aj1bj1aj2bj2 . . . ajkbjk | k ≥ 0 ∧ (∀l ≤ k: jl ≥ 1)} by two-way probabilistic finite
state automata (2PFA) in exponential time, we can generalize our result for 2QCFA to the case
of 2PFA, too. For a definition of 2PFA see [Kuk73].

Lemma 6.10 [Fre81, Lemma 1] For every ε > 0 there is a 2PFA that accepts every word from L
with probability at least 1− ε and rejects every word from Σ∗ \ L with probability at least 1− ε.

Theorem 6.11 For every Turing machine T there is a 2PFA M and a homomorphism h such
that h(L(M)) = L(T ).

Corollary 6.12 Homomorphic closure of the class of languages recognized by 2PFA is equal to
the class of recursively enumerated languages.

Corollary 6.13 The class of languages recognized by 2PFA is not closed under homomorphism.

6.3 Homomorphic closure of 1QFA

In [BP02], it is shown that the class of languages recognized by 1QFA is not closed under ho-
momorphism. A natural question is, what is the smallest class of languages containing the class
L1QFA as a subset and closed under homomorphism. We show that this class is equal to the class
of regular languages.
The class of regular languages is the class of languages accepted by one-way (deterministic)

finite automata (1FA). For the definition and properties of 1FA see [HU90]. We show that for
every 1FA there is an 1QFA and a non-erasing homomorphism, such that the homomorphic image
of the language recognized by the 1QFA is equal to the language recognized by the 1FA. The
constructed 1QFA will recognize the language of all accepting computations of the 1FA.
Take an one-way deterministic finite automaton A = (K,Σ, δ, q0, F ) with no ε-moves. We

construct an 1QFA recognizing the language

L =

{
k−1∏

j=0

(qj , αj , qj+1)

∣
∣
∣
∣
∣
k ≥ 0 ∧ (∀j < k: (qj , αj , qj+1) ∈ Γ′) ∧ qk ∈ F

}

.

Let KA = {qA | q ∈ K} and KR = {qR | q ∈ K} be two sets of new symbols and define 1QFAM =
(Q,Σ′, δ′, q0, Qacc, Qrej), where Q = K∪KA∪KR, Σ

′ = {(p, α, r) | p, r ∈ K∧α ∈ Σ∧δ(p, α) = r},
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Algorithm 6.1 1QFA recognizing computations of a finite automaton.

(p, α, r) ∈ Σ′ ∧ p 6= r:
V(p,α,r)|q〉 = |qR〉, q ∈ K \ {p},
V(p,α,r)|p〉 = |r〉,
V(p,α,r)|rR〉 = |p〉,

(p, α, p) ∈ Σ′:
V(p,α,p)|q〉 = |qR〉, q ∈ K \ {p},
V(p,α,p)|p〉 = |p〉,

Vc|q〉 = |q〉, q ∈ K,
V$|q〉 = |qA〉, q ∈ F,
V$|q〉 = |qR〉, q ∈ K \ F,

Qacc = KA and Qrej = KR. According to definition 3.1 the tape alphabet of this automaton is
equal to Γ′ = Σ′ ∪ {c, $}. For each α ∈ Γ′ let Vα take values as in algorithm 6.1 and arbitrarily
extend it to be unitary on the Hilbert space `2(Q). Also define D(q) = 1 for all q ∈ Q, and let δ′

be defined as in (3.5). Since each Vα is unitary, M is well-formed by lemma 3.13.

Lemma 6.14 Let w =
∏k−1

j=0 (qj , αj , qj+1), where k ≥ 0, (qj , αj , qj+1) ∈ Σ′ for all j < k and q0
is the initial state of the automaton A. The automaton M is after reading the prefix w of a word
with such prefix in the superposition |qk〉.

Proof: We prove the lemma by induction on k. If k = 0, the word w is empty and the initial
superposition |q0〉 of the automaton has the required form. Now, assume the lemma holds for all
prefixes w with k = n ≥ 0, we prove it for a prefix w with k = n + 1, too. The prefix w of an
input word has the form w =

∏n
j=0(qj , αj , qj+1). As it also has prefix w

′ =
∏n−1

j=0 (qj , αj , qj+1), the
automaton M is after reading the prefix w′ in the superposition |qn〉, by induction hypothesis. As
the symbol following the prefix w′ – the last symbol of w is equal to the symbol qn, the automaton
after reading this symbol changes its superposition to |qn+1〉 = |qk〉. �

Lemma 6.15 Let w ∈ Σ∗. If w ∈ L, the automaton M accepts w for sure and if w 6∈ L, it rejects
w for sure.

Proof: If w ∈ L, by lemma 6.14, the automaton M is after reading the input word w in the
superposition |q〉, where (p, α, q) is the last symbol of w. Reading the right end-marker $ the
automaton changes its superposition to |qA〉 and accepts, as q ∈ F .
Now assume the input word w 6∈ L. As w does not belong to the language L, there are two

consecutive symbols in w of the form (p, α, q)(r, β, s) with q 6= r, or the the last symbol of w has
the form (p, α, q) with q 6∈ F .
If there are two consecutive symbols of the form (p, α, q)(r, β, s) with q 6= r in the word w,

take the first such pair. By lemma 6.14, the automaton M is after reading the prefix terminated
by the first symbol of this pair in the superposition |q〉. As q 6= r, reading the symbol (r, β, s) the
automaton changes its superposition to |qR〉 and rejects.
If no two consecutive symbols of w has the mentioned form and w 6∈ L, the last symbol of w

has the form (p, α, q) with q 6∈ F . After reading the input word w the automaton M , by lemma
6.14, is in the superposition |q〉. As q 6∈ F , reading the right end-marker $ the automaton changes
its superposition to |qR〉 and rejects. �

Theorem 6.16 For every one-way deterministic finite automaton A with no ε-moves there is an
1QFA M and a non-erasing homomorphism h such that h(L(M)) = L(A).

Proof: Construct the automaton M for the 1FA A as described above. According to lemma 6.15,
the automaton M recognizes the language L. For the non-erasing homomorphism h: Σ′∗ → Σ∗

defined, such that h((p, α, r)) = α for all (p, α, r) ∈ Σ′, we have h(L(M)) = h(L) = L(A). �

Corollary 6.17 Homomorphic closure of the class of languages recognized by 1QFA is equal to
the class of regular languages.

Proof: As L1QFA ⊆ R [KW97] and the class of regular languages is closed under homomorphism,
we have H(L1QFA) ⊆ R. Therefore, H(L1QFA) = R. �
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Conclusion

In this thesis we have proved several new closure properties of different quantum finite automata.
However, a number of questions have been left open.
What other closure properties the discussed models of quantum finite automata have? Is the

class of languages recognized by 1.5QFA closed under general inverse homomorphism? Is the class
of languages recognized by 2QFA closed under inverse non-erasing homomorphism, or even under
general inverse homomorphism? How about the class of languages recognized by simple 2QFA?
We have shown that the classes of languages recognized by 1.5QFA, 2QFA and 2QCFA are

not closed under general homomorphism. Are they closed under non-erasing homomorphism?
Our 1.5QFA in section 5, by which we have shown that the homomorphic closure of the class of
languages recognized by 1.5QFA is equal to the class of recursively enumerable languages, has a
quite large error probability. Is it possible to reduce it, or is the homomorphic closure of the class
of languages recognized by 1.5QFA with small error probability different than the homomorphic
closure of the class of languages recognized by 1.5QFA with large error probability?
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Slovenský abstrakt

V tejto diplomovej práci sme dokázali niekoľko nových uzáverových vlastnosti tried
jazykov rozpoznávaných jeden-a-pol-smernými a dvojsmernými konečnými kvan-
tovými automatmi (1.5QFA a 2QFA) a dvojsmernými konečnými automatmi s
kvantovými a klasickými stavmi (2QCFA). Ukázali sme, že žiadna z týchto tried
jazykov nie je uzavretá na homomorfizmus. Ďalej sme dokázali, že triedy jazykov
rozpoznávaných pomocou 1.5QFA a zjednodušených 2QFA (simple 2QFA) sú uzav-
reté na inverzný nevymazávajúci homomorfizmus a trieda jazykov rozpoznávaných
pomocou zjednodušených 1.5QFA (simple 1.5QFA) je uzavretá na všeobecný in-
verzný homomorfizmus. Tiež sme dokázali, že homomorfné uzávery tried jazykov
rozpoznávaných pomocou 1.5QFA, 2QFA a 2QCFA sú zhodné s triedou rekurzívne
vyčísliteľných jazykov a homomorfný uzáver triedy jazykov rozpoznávaných pomo-
cou jednosmerných konečných kvantových automatov (1QFA) je zhodný s triedou
regulárnych jazykov.

Kľúčové slová: Kvantové výpočty, Konečné kvantové automaty, 1.5QFA, 2QFA,
2QCFA.
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