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Abstract

The goal of this thesis is to study information about the difference between

two trees which we can obtain from the difference between their string rep-

resentations. First we focus on ideas of computing this difference between

two trees called distance presented in other papers. Then we discuss partic-

ular string encodings of trees. In this thesis we define a new string encoding

of trees. Relation between tree distance of two trees and string distance

of their representation given by this encoding is shown by proofs of lower

and upper bounds for this encoding. From particular encoding of trees to

strings it looks like we cannot get the exact information about tree distance

from string distance of its representations. This thesis contains proof that

for every encoding ψ, satisfying some natural properties, it is impossible to

compute the exact tree distance from the string distance of codes coded by ψ.

Formally, there exist trees F and G such that τ(F,G) = Ω(h)δ(ψ(F ), ψ(G))

is true, where τ is a tree distance, δ is a string distance and h is the minimal

height of trees F and G.
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Chapter 1

Introduction

The problem of comparing trees occurs in several diverse areas such as com-

paring XML documents, tree data structures, molecules in chemistry, closed

shapes by representing them as a tree and others. Trees are very often stored

as strings and we mentioned the example of XML documents. This thesis is

focusing on what information we can get about the difference between two

trees from studying differences between their string representations.

The measure used for computing the difference between two trees is often

the tree edit distance. The tree edit distance is extended from the string edit

distance. The string edit distance is a well studied problem. The string edit

distance computes the distance or difference between two strings. The tree

edit distance was introduced by Tai in the late 1970’s [1]. Let F and G be two

rooted treed with a left-to-right order among siblings and where each vertex

is assigned a label from an alphabet ΣT . The tree edit distance between

F and G is the minimum cost of transforming F into G by a sequence of

elementary operations consisting of deleting and relabeling existing nodes

as, well as inserting new nodes (allowing at most one operation at a time

to be performed on a node). These operations are illustrated by Figure 1.1.

Formally, given a node v ∈ F with parent v′, relabel changes the label of v,

delete removes a non-root node v and sets the children of v as the children

of v′ (the children are inserted in the place of v as a sub-sequence in the left-

2



CHAPTER 1. INTRODUCTION 3

Figure 1.1: Elementary edit operations on vertex of tree. (a) Relabeling of

the node (b) Deleting the node (c) Inserting a node

(a)

(b)

(c)

l1 l2

l1 l1
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CHAPTER 1. INTRODUCTION 4

to-right order of the children of v′), and insert (the complement of delete)

connects a new node v as a child of some v′ in F making v the parent of a

consecutive sub-sequence of the children of v′. The well researched difference

of trees uses cost of elementary operations equal to 1. In this thesis we

also use this definition. So the distance between two trees is the number of

elementary operations, necessary to transform one tree into the other.

The problem studied in this thesis is the relation between the tree edit

distance and the string edit distance of strings representing the trees. The

string edit distance is defined similarly to the tree edit distance. Let us

consider strings over finite or infinite alphabet ΣS. For string s and integer

i, s[i] denotes the i-th character of the string s, s[i...j] denotes s[i]...s[j], and

|s| denotes the length of s. The edit distance between two strings s1 and s2

is defined as the minimum number of operations to transform s1 into s2. In

this paper δ(s1, s2) is used to denote the edit distance between s1 and s2.

This thesis starts by a survey of results from other papers. Chapter 2

contains short description of ideas for computing tree edit distance. How

these ideas helped to improve algorithms for computing tree edit distance.

In Chapter 3 we start to focus on encoding trees to strings. The first part

of this chapter is dedicated to encodings from other works, but then we

introduce new encoding with upper and lower bound proofs for it. At the

end of this chapter we present the worst case scenario for these encodings

in relation to information about the tree edit distance. Chapter 4 contains

proof of a generalized property of codings that we could see in particular

codings. Unfortunately this natural property of encodings allows us to prove

that for nice encodings the string distance of the codes will not give us exact

information about the tree distance of the trees represented.



Chapter 2

Tree edit distance

To compute the tree edit distance faster there has been made a lot of research.

As we can see on the Table 2.1 the first algorithm described in 1979 by Tai

in [1] needed O(n6) time in the worst case. However recent results in [5] show

that computing the tree edit distance can by done in Θ(n3).

This work is focusing on relation between tree edit distance and string

edit distance of string representations of that trees. The result from [5] that

tree edit distance can be computed in Ω(n3) tells us something about the

relation. Because string edit distance could be computed in O(n2) and even

better. At first it tells us the very obvious proposition that tree structure

stores something more valuable then string structure. Also these results show

us that we should not be able to construct ideal string representation of a

tree. In this context ideal string representation of two trees will have the same

string distance as the tree distance of the coded trees for every two trees. If

such a representation of a tree exists it should be very hard to construct or

the process of coding trees to this ideal representation and computing tree

edit distance is somehow omitting the Decomposition strategy used in the

proof of bound Ω(n3) for time needed to compute tree edit distance. Hard to

construct means Ω(n3) of time complexity to compute string representation

of a tree. These are the only two ways for that the lower bound could be

true.

5



CHAPTER 2. TREE EDIT DISTANCE 6

Table 2.1: Results of Time and Space cost for computing Tree edit distance

Author [Reference] Time Space Worst Time

Tai [1] O(n2
lm

2
l nm) O(n2

lm
2
l nm) O(n6)

Shasha and Zhang [2] O(nhlmhlnm) O(nm) O(n4)

Klein [3] O(m2n log n) O(nm) O(n3 log n)

Duluq and Touzet [4] Ω(nm log n logm) Ω(n2 log2 n)

Demaine at al. [5] O(nm2(1 + log n
m

) O(nm) O(n3)

Demaine at al. [5] Ω(nm2(1 + log n
m

) Ω(n3)

Notation:

n,m - sizes of input trees F,G ordered so that n ≥ m

nl, ml - number of leaves in F , G; nh, mh - height of F ,G

nhl = min{nh, nl}, mhl = min{mh,ml}

Because of such a strong relation between these results and the main goal

of this thesis, this chapter contains the main ideas of these results. Here is

only a survey of ideas and algorithms. Better detailed algorithms and proofs

can be found in the previous works that are listed in Bibliography.

2.1 Shasha and Zhang’s Algorithm [2]

Given two forests F and G of sizes n and m respectively, the following lemma

is easy to verify. Intuitively, the lemma says that in any sequence of edit

operations the two rightmost roots in F and G must either be matched with

each other or else one of them is deleted.

Lemma 1. τ(F,G) can be computed as follows:

τ(∅, ∅) = 0

τ(F, ∅) = τ(F − rF , ∅) + cdel(rF )

τ(∅, G) = τ(∅, G− rG) + cdel(rG)
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τ(F,G) = min


τ(F − rF , G) + cdel(rF ),

τ(F,G− rG) + cdel(rG),

τ(R◦F , R
◦
G) + τ(F −RF , G−RG) + cmatch(rF , rG)

Notation: The unique empty forest/tree is noted ∅. Fv denotes the sub-tree

of F rooted at v. F − v denotes the forest F after deleting v. The special

case of F − root(F ) where F is a tree and root(F ) is its root is denoted F ◦.

The leftmost and rightmost trees of a forest F are denoted LF and RF and

their roots lF and rF . F − LF denotes the forest F after deleting the entire

left most tree LF ; similarly F −RF .

Lemma 1 yields an O(m2n2) dynamic program algorithm. If we index

the vertices of the forests F and G according to their left-to-right postorder

traversal position, then entries in the dynamic program table correspond to

pairs (F ′, G′) of subforests F ′ of F and G′ of G where F ′ contains vertices

{i1, i1 + 1, . . . , j1} and G′ contains vertices {i2, i2 + 1, . . . , j2} for some 1 ≤
i1 ≤ j1 ≤ n and 1 ≤ i2 ≤ j2 ≤ m.

However, as we will presently see, only O(min{nh, nl}min{mh,ml}nm)

different relevant subproblems are encountered by the recursion computing

τ(F,G). We calculate the number of relevant subforests of F and G inde-

pendently, where a forest F ′ (respectively G′) is a relevant subforest of F

(respectively G) if it occurs in the computation of τ(F,G). Clearly, multi-

plying the number of relevant subforests of F and of G is an upper bound

on the total number of relevant subproblems.

We now count the number of relevant subforests of F ; the count for

G is similar. First, notice that for every node v ∈ F , FvO is a relevant

subproblem. This is because the recursion allows us to delete the rightmost

root of F repeatedly until v becomes the rightmost root; we then match v

(i.e., relabel it) and get the desired relevant subforest. A more general claim

is stated and proved later on in Lemma 2. We define

keyroots(F ) = {the root of F} ∪ {v ∈ F |v has a left sibling}

It is easy to see that every relevant subforest of F is a prefix (with respect

to the postorder indices) of F ◦v for some node v ∈ keyroots(F ). If we define
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cdepth(v) to be the number of keyroot ancestors of v, and cdepth(F ) to be

the maximum cdepth(v) over all nodes v ∈ F , we get that the total number

of relevant subforest of F is at most

∑
v∈keyroots{F}

|Fv| ≤
∑
v∈F

cdepth(v) ≤
∑
v∈F

cdepth(F ) = |F |cdepth(F )

This means that given two trees, F and G, of sizes n and m we can

compute τ(F,G) in O(cdepth(F )cdepth(G)nm) = O(nhmhnm) time. Shasha

and Zhang also proved that for any tree T of size n, cdepth(T ) ≤ min{nh, nl},
hence the result. In the worst case, this algorithm runs in O(m2n2) = O(n4)

time.

2.2 Klein’s algorithm [3]

Klein’s algorithm is based on a recursion similar to Lemma 1. Again, we

consider forests F and G of sizes |F | = n ≥ |G| = m. Now, however, instead

of recursing always on the rightmost roots of F and G, we recurse on the

leftmost roots if |LF | ≤ |RF | and on the rightmost roots otherwise. In other

words, the “direction” of the recursion is determined by the (initially) larger

of the two forests. We assume the number of relevant subforests of G is

O(m2); we have already established that this is an upper bound.

We next show that Klein’s algorithm yields only O(n log n) relevant sub-

forests of F . The analysis is based on a technique called heavy path decom-

position introduced by Harel and Tarjan [6]. Briefly: we mark the root of

F as light. For each internal node v ∈ F , we pick one of v’s children with

maximal number of descendants and mark it as heavy, and we mark all the

other children of v as light. We define ldepth(v) to be the number of light

nodes that are ancestors of v ∈ F , and light(F ) as the set of all light nodes

in F . By [6], for any forest F and vertex v ∈ F , ldepth(v) ≤ log |F |+O(1).

Note that every relevant subforest of F is obtained by some i ≤ |Fv| consec-

utive deletions from Fv for some light node v. Therefore, the total number

of relevant subforests of F is at most
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∑
v∈light(F )

|Fv| ≤
∑
v∈F

1 + ldepth(v) ≤
∑
v∈F

(log(|F |) +O(1)) = O(|F | log |F |)

Thus, we get an O(m2n log n) = O(n3 log n) algorithm for computing

τ(F,G).

2.3 Decomposition Strategy Framework [4]

Both Klein’s and Shasha and Zhang’s algorithms are based on Lemma 1. The

difference between them lies in the choice of when to recurse on the rightmost

roots and when on the leftmost roots. The family of decomposition strategy

algorithms based on this lemma was formalized by Dulucq and Touzet in [4].

Definition 1. Let F and G be two forests. A strategy is a mapping from

pairs (F,G) of subforests of F and G to set {left , right}. A decomposition

algorithm is an algorithm based on Lemma 1 with the directions chosen

according to a specific strategy.

Each strategy is associated with a specific set of recursive calls (or a

dynamic programming algorithm). The strategy of Shasha and Zhang’s al-

gorithm is S(F ′, G′) = right for all F ′ , G′ . The strategy of Klein’s algorithm

is S(F ′, G′) = left if |LF ′ | ≤ |RF ′|, and S(F ′, G′) = right otherwise. Notice

that Shasha and Zhang’s strategy does not depend on the input trees, while

Klein’s strategy depends only on the larger input tree. Dulucq and Touzet

proved a lower bound of Ω(mn logm log n) time for any decomposition strat-

egy algorithm.

The following lemma states that every decomposition algorithm computes

the edit distance between every two root-deleted subtrees of F and G.

Lemma 2. Given a decomposition algorithm with strategy S, the pair

(F ◦v , G
◦
w) is a relevant subproblem for all v ∈ F and w ∈ G regardless of

the strategy S.
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Proof. First note that a node v′ ∈ Fv (respectively, w′ ∈ Gw) is never deleted

or matched before v (respectively, w) is deleted or matched. Consider the

following specific sequence of recursive calls:

• Delete from F until v is either the leftmost or the rightmost root.

• Next, delete from G until w is either the leftmost or the rightmost root.

Let (F ′, G′) denote the resulting subproblem. There are four cases to con-

sider.

(1) v and w are the rightmost (leftmost) roots of F ′ and G′, and S(F ′, G′) =

right(left). Match v and w to get the desired subproblem.

(2) v and w are the rightmost (leftmost) roots of F ′ and G′, and S(F ′, G′) =

left(right). Note that at least one of F ′, G′ is not a tree (since otherwise

this is case (1)). Delete from one which is not a tree. After a finite number

of such deletions we have reduced to case (1), either because S changes

direction, or because both forests become trees whose roots are v, w.

(3) v is the rightmost root of F ′, w is the leftmost root of G′. If S(F ′, G′) =

left, delete from F ′ ; otherwise delete from G′. After a finite number of

such deletions this reduces to one of the previous cases when one of the

forests becomes a tree.

(4) v is the leftmost root of F ′, w is the rightmost root of G′. This case is

symmetric to (3).

2.4 Demaine et al.’s Algorithm [5]

Demaine et al.’s algorithm for computing τ(F,G) given two trees F and G

of sizes |F | = n ≥ |G| = m recursively uses a decomposition strategy in a

divide-and-conquer manner to achieve O(nm2(1 + logm)) = O(n3) running
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time in the worst case. For clarity I describe the algorithm recursively and

analyze its time complexity. Demain et al. proved that the space complexity

of a bottom-up non recursive implementation of the algorithm is O(mn) =

O(n2).

Before presenting this algorithm, let me try to develop some intuition.

We begin with the observation that Klein’s strategy always determines the

direction of the recursion according to the F -subforest, even in subproblems

where the F -subforest is smaller than the G-subforest.

However, it is not straightforward to change this since even if at some

stage we decide to choose the direction according to the other forest, we

must still make sure that all subproblems previously encountered are entirely

solved. At first glance this seems like a real obstacle since apparently we

only add new subproblems to those that are already computed. Our key

observation is that there are certain subproblems for which it is worthwhile

to choose the direction according to the currently larger forest, while for

other subproblems we had better keep choosing the direction according to

the originally larger forest.

The heavy path of a tree F is the unique path starting from the root

(which is light) along heavy nodes. Consider two trees, F and G, and assume

we are given the distances τ(F ◦v , G
◦
w) for all v ∈ F and w ∈ G. By Lemma 2,

these are relevant subproblems for any decomposition strategy algorithm.

How would we go about computing τ(F,G) in this case? Using Shasha and

Zhang’s strategy would require O(|F ||G|) time, while using Klein’s strategy

would take O(|F ||G|2) time. Let us focus on Klein’s strategy since Shasha

and Zhang’s strategy is independent of the trees. Note that even if we were

not given the distance τ(F ◦v , G
◦
w) for a node u on the heavy path of F , we

would still be able to solve the problem in O(|F ||G|2) time. To see why,

note that in order to compute the relevant subproblem τ(Fu, Gw), we must

compute all the subproblems required for solving τ(F ◦v , G
◦
w) even if τ(F ◦v , G

◦
w)

is given.

Demaine et al. defines the set TopLight(F ) to be the set of roots of the
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Figure 2.1: A tree F with n nodes.The black nodes belong to the heavy path.

The white nodes are in TopLight(F ), and the size of each subtree rooted at

a white node is at most n
2
. Note that the root of the tree belongs to the

heavy path even thought it is light.

(F )

forest obtained by removing the heavy path of F . Note that TopLight(F )

is the set of light nodes with ldepth(1) in F (see the definition of ldepth in

Klein’s algorithm section). This definition is illustrated in Figure 2.1. It

follows from Lemma 2 that if we compute τ(Fv, G) for all v ∈ TopLight(F ),

we would also compute all the subproblems τ(F ◦v , G
◦
w) for any w ∈ G and v

not on the heavy path of F . Note that Klein’s strategy solves τ(Fv, G) by

determining the direction according to Fv even if |Fv| < |G|. We observe

that we can do better if in such cases we determine the direction according

to G. It is important to understand that making the decisions according to

the larger forest when solving τ(F ◦v , G
◦
w) for any v ∈ F and w ∈ G (i.e.,

regardless of whether v is on the heavy path or not) would actually increase

the running time. The identification of the set TopLight(F ) is crucial for

obtaining the improvement.

Given these definitions, the recursive formulation of Demain et al.’s algo-

rithm is simply:
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Algorithm τ(F,G) can be computed recursively as follows:

(1) If |F | < |G|, compute τ(G,F ) instead.

(2) Recursively compute τ(Fv, G) for all v ∈ TopLight(F ).

(3) Compute τ(F,G) using the following decomposition strategy: S(F,G) =

left if F is a tree, or if F is not the heavy child of its parent. Otherwise,

S(F,G) = right. However, do not recurse into subproblems that were

previously computed in step (2).

The algorithm’s first step makes sure that F is the larger forest, and the

second step makes sure that τ(F ◦v , G
◦
w) is computed and stored for all v not

in the heavy path of F and for all w ∈ G. Note that the strategy in the third

step is equivalent to Klein’s strategy for binary trees. For higher valence trees,

this variant first makes all left deletions and then all right deletions, while

Klein’s strategy might change direction many times. They are equivalent in

the important sense that both delete the heavy child last. The algorithm is

evidently a decomposition strategy algorithm, since for all subproblems, it

either deletes or matches the leftmost or rightmost roots. The correctness

of the algorithm follows from the correctness of the decomposition strategy

algorithms in general.

Demaine et al. proved that this algorithm is running in O(nm2(1+log n
m

))

time and O(nm) space. They also proved the tighter lower bound Ω(nm2(1+

log n
m

)) for any decomposition based algorithm. So the algorithm is the best

time running algorithm in decomposition based algorithms for computing

tree edit distance. The proofs can be found in [5].



Chapter 3

Encoding trees by strings

Almost every tree structure we store as a string. In computer memory or in

hard disk, the tree structures are stored as a sequence of memory blocks or

characters. The best example is that of XML documents which are widely

used. So it is obvious we have thought let us compute distance of this rep-

resentations. However from the previous chapter we know this is not what

will be working exactly. It looks we can not compute the exact tree distance

from distance of their representations.

There has been made a research in this area. We can tell that string

distance of coded trees is something different then tree distance of these

trees for all the researched codings. However these two distances are tied

together but no too tight. The relation between these distances on some

researched codings is shown in Table 3.1.

This chapter contains short description of these encodings. First three

encodings namely Euler String, modified Euler String and Binary Tree Code

1 are researched in [7, 10, 12]. In these references the proofs of bounds

presented in Table 3.1 can be found. The last encoding Binary Tree Code 2

is new and is defined in this thesis. So this chapter contains description of

this coding and proofs of bounds for this coding too. End of this chapter is

given to description of tightness of upper bounds for all codings mentioned

here except the modified Euler String. The worst case of trees for upper

14
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Table 3.1: Bounds of tree representations

Name of coding Lower and Upper Bounds

Euler string 1
2
δ(ψ(F ), ψ(G)) ≤ τ(F,G) ≤ (2h+ 1)δ(ψ(F ), ψ(G))

mod. Euler string 1
6
δ(ψ(F ), ψ(G)) ≤ τ(F,G) ≤ O(n

3
4 )δ(ψ(F ), ψ(G)

Binary tree code 1 1
2
δ(ψ(F ), ψ(G)) ≤ τ(F,G) ≤ (h+ 1)δ(ψ(F ), ψ(G)) + h

Binary tree code 2 1
2
δ(ψ(F ), ψ(G)) ≤ τ(F,G) ≤ 2(h+ 1)δ(ψ(F ), ψ(G)) + 2h

Notation:

ψ(T ) is the corresponding coding function of tree T to string. For example

in lower and upper bounds for the Euler String ψ means ψE

bound of these codes is the same so it is described together for all codings.

Before the description of particular codings, we should say what coding

and code is. It is good to properly define what we are meaning by these

words.

Definition 2 (Coding, Coding function). Let T be set of rooted, ordered

trees with labels on vertices from alphabet ΣT . Let S be a set of strings with

letters from alphabet ΣS. Function ψ defined as:

ψ : T → S

we will call coding function of a tree (shortly coding function, or simply

coding) if:

1. ψ is an injective function

2. ψ is computable

3. ψ−1 is computable if the argument is a string ψ(T ) for some tree T

In what follows ψ is also called encoding and ψ−1 decoding.
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By computable we mean we can describe the process of encoding or de-

coding the tree to string. This description could be only words that have

meaning to people but can also be translated to programming language un-

derstandable to computers.

Definition 3 (Code, Representation). String ψ(T ) for some tree T we will

call code of a tree or string representation of a tree (shortly code, or repre-

sentation).

3.1 Euler String

Transformation from a tree to a string is based on the Euler string [3], which

is obtained by traversing a tree using the Euler tour. This section contains

review of the Euler string coding.

For simplicity, let us treat each tree T as an edge labeled tree: the label of

each nonroot node v in the original tree is assigned to the edge {u, v} where

u is the parent of v. It should be noted that information on the label on the

root is lost in this case. But, it is not a problem because the roots are not

deleted or inserted. In what follows, we assume that the roots of two input

trees have identical labels (otherwise, we just need to add 1 relabel operation

to the distance). If we really want to save information about root we can add

a new dummy vertex and new edge between this new vertex and the root.

So that this edge will have then information about the former root. Label

on new dummy root is not important, because it will not be stored in code.

The depth-first search traversal of T (i.e., visiting children of each node

according to their left-to-right order) defines an Euler tour of a tree T . That

is, the depth-fist search gives an Euler path beginning from the root and

ending at the root where each edge {w, v} is traversed twice in the opposite

directions. Let ΣS = {a, a|a ∈ T} , where a 6∈ ΣT . Let (e1, e2, . . . , e2n−2) be

the sequence of directed edges in the Euler path of a tree T with n nodes.

From this, we create the Euler string ψE(T ) of length 2n− 2. Let e = {u, v}
be an edge in T , where u is the parent of v. Suppose that ei = (u, v) and
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Figure 3.1: Construction of Euler string for tree T1

a

b

d

e

b c

b

d

e
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bddbebbcce

T1 :

ψE(T1) :

ej = (v, u) (clearly, i < j ). We define i1(e) and i2(e) by i1(e) = i and

i2(e) = j, respectively. That is, i1(e) and i2(e) denote the first and second

positions of e in the Euler tour, respectively. Then, we define ψE(T ) by

letting ψE(T )[i1(e)] = L(e) and ψE(T )[i2(e)] = L(e), where L(e) is the label

of e (see also Figure 3.1).

Theorem 1. ψE(T1) = ψE(T2) ⇔ τ(T1, T2) = 0. Moreover, we can

reconstruct T from ψE(T ) in linear time.

Proof of this theorem and more about Euler string coding can be found

in [7, 8].

3.2 Modified Euler String

Modified Euler String has the best results for the worst case scenario. Be-

cause if h = n, then for all other codings the right side of the boundary

inequation the multiplier is n. But for modified Euler string the multiplier

is n
3
4 . Although of this qualities, this coding has some serious shortcomings.

The biggest shortcoming is that this coding is not a coding function as de-

fined in Definition 2. Because it needs as an argument two trees not only

one, and it creates two strings coding these two trees.

Modified Euler String is a modification of Euler String. It works like

Euler strings but it modifies some labels on special nodes. The special nodes

are vertices that have a small amount of siblings. Small amount is exactly
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α =
√
n =

√
max{|T1|, |T2|}. This number is computed from both trees.

The boundary is based on the fact that α is not the constant but
√
n. So

this function can not create from one tree T1 its representation. And this

function can give different coding for T1 if the T2 changes.

For this reasons the modified Euler String is not taken into consideration

as much as the other codings.

3.3 Binary Tree Code 1

Every tree can be represented by a binary tree. The Binary Tree Code 1 uses

a modified version of a binary tree representation with two kinds of dummy

nodes. The Binary Tree Code 1 is a string obtained by traversing the binary

tree representation of a tree in preorder.

Definition 4 (binary tree representation 1). Let T be a tree with the root

r. Then, a binary tree representation b1(T ) of T is a binary tree obtained

by setting, for v ∈ T − {r}, the first child of v in T (or ⊥ if there does not

exist) as the left child of v in b1(T ) and the next sibling of v in T (or > if

there does not exist) as the right child of v in b1(T ). In particular, if v is the

root r of T , then r is also the root of b1(T ) and left child is the first child of

v in T and right child is >.

For a tree T , the string of nodes in T obtained by traversing in preorder

denotes c(T ).

Definition 5 (binary tree code 1). Let T be a tree. Then, the binary tree

code 1 of T is the string c(b1(T )), and we denote it by ψbc1(T ).

Example 1. Consider trees T2 and T3 in Figure 3.2 (upper). Then, the

binary tree representation of Ti is described as Figure 3.2 (lower). Hence, we

obtain the binary tree code ψbc1(Ti) of Ti as follows:

ψbc1(T2) = aba⊥b⊥>a⊥cbba⊥b⊥>>a⊥>>>
ψbc1(T3) = aaba⊥b⊥>>ca⊥bba⊥b⊥>>a⊥>>>
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Figure 3.2: A Tree Ti (upper) and a binary tree representation b1(Ti) of Ti

(lower) for i = 2, 3
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3.4 Binary Tree Code 2

Binary Tree Code 2 uses binary tree representation also as Binary Tree Code

1. But instead of dummy symbols the information about nodes without left

or right child is stored in the label of the particular vertex.

Definition 6 (binary tree representation 2). Let T be a tree with the root

r. Then, a binary tree representation b2(T ) of T is a binary tree obtained

by setting, for v ∈ T − {r}, the first child of v in T as the the left child of

v in b2(T ) and the next sibling of v in T as the right child of v in b2(T ).

In particular if v is the root r of T , then r is also the root of b2(T ). Let

Σb2(T ) = {a, a, a, a|a ∈ ΣT} where a, a, a 6∈ ΣT . For each node we will change

label from a to

• a - if node does not have left child in b2(T )

• a - if node does not have right child in b2(T )

• a - if node does not have any child in b2(T )

Definition 7 (binary tree code 2). Let T be a tree. Then, the binary tree

code 2 of T is the string c(b2(T )), and we denote it by ψbc2(T ).

Example 2. Consider trees T2 and T3 in Figure 3.3 (upper). Then, the

binary tree representation of Ti is described as Figure 3.3 (lower). Hence, we

obtain the binary tree code b2(Ti) of Ti as follows:

ψbc2(T2) = ababacbbaba

ψbc2(T3) = aababcabbaba

It is obvious that the Binary tree code 1 and the Binary Tree code 2 are

very similar. But the Binary tree code 2 has shorter code. At Figure 3.2

and Figure 3.3 are the trees named T2 and T3 the same. But the length of

the Binary tree code 2 is half of the Binary tree code 1. But the Binary tree

code 2 must extend the alphabet ΣS more. In Binary tree code 2 there is
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Figure 3.3: A Tree Ti (upper) and a binary tree representation b2(Ti) of Ti

(lower) for i = 2, 3
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overlined and underlined letter for every label from ΣT . But for Binary tree

code 1 we just add two dummy letters.

The biggest difference can by found in the Table 3.1. Here we see that

the upper bound is multiplied by 2. This reflects the fact that the Binary

tree code 2 is shorter and the distance between two code strings gives us an

estimate on the distance of the corresponding trees which is twice worse then

the estimate obtained vie the Binary tree code 1. The Binary tree code 1

was introduced in [12] during the time we worked on this thesis. The Binary

tree code 2 we introduced has similar properties and illustrates the impact

of little changes on the result.

3.5 Lower and Upper Bounds for Binary Tree

Code 2

We shall now present several Lemmas and Definitions necessary for the proofs

of two Theorems that describe relation of τ(T1, T2) and δ(ψbc2(T1), ψbc2(T2))

mentioned in the table in the introduction to this chapter.

Lemma 3. It holds that |b2(T )| = |ψbc(T )| = |T |.

Proof. It is straightforward.

Lemma 4. The binary tree code ψbc2(T ) can be constructed from a tree T

in O(|T |) time. Conversely, the tree T can be constructed from a binary tree

code ψbc2(T ) in O(|T |) time.

Proof. The first statement is obvious.

For the proof of the second statement, let us use the Binary Tree Code 1.

This Lemma is in [12] proved for Binary Tree Code 1. So it is only necessary

to prove that Binary Tree Code 1 can be constructed from Binary Tree Code

2 in O(|T |) time.

Putting ⊥ after every underlined symbol and > after left subtrees of

overlined symbol will construct Binary Tree Code 1.



CHAPTER 3. ENCODING TREES BY STRINGS 23

Lemma 5. For trees T1 and T2, it holds that τ(T1, T2) = 0 ⇔ ψbc2(T1) =

ψbc2(T2).

Proof. By the definition of ψbc2(T ) and by the proof of Lemma 4, it holds

that ψbc2(T1) = ψbc2(T2)⇔ T1 = T2, so the statement holds.

Lemma 6. Let v be a substring relation (overlined, underlined and simple

symbols are recognized as the same in v). For a binary tree code ψbc2(T ), we

can decode a subtree of T from ψbc2(T ) inductively as follows.

1. a v ψbc2(T ) is a subtree of T . In this case, a is a leaf of T .

2. If s1, . . . , sk v ψbc2(T ) are subtrees in T , then as1 . . . si . . . sk v ψbc2(T )

is a subtree of T . Where i is the most right while the substring relation

is true.

Proof. Let T be a tree and ψbc2(T ) a binary tree code of T . Also let Σ be

the set of all labels of nodes in T . By construction of Binary Tree Code 2,

underline represents some node v in T has no children, so the statement 1

holds. On the other hand, overline represents some node v in T has no right

siblings, so the parent v′ of v in T is the root of some subtree of T . Since

ψbc(T ) is the preorder traversal of b2(T ), v′ is corresponding to the nearest

left symbol in ψbc2(T ), so the statement 2 holds.

Theorem 2. It holds that δ(ψbc2(T1), ψbc2(T2)) ≤ τ(T1, T2).

Proof. It is sufficient to show that δ(ψbc2(T1), ψbc2(T2)) changes by at most 2

when an edit operation is applied.

(1) Substitution: Suppose that T2 is obtained from T1 by changing a label

u ∈ T1 into a label v ∈ T2. Then, it is obvious that δ(ψbc2(T1), ψbc2(T2)) =

1.

(2) Deletion: Suppose that T2 is obtained from T1 by deleting a node v ∈ T1,
where the root of T1 is r. Let v0 be the parent of v in T1 and v1, . . . , vn

the children of v in T1 . Deleting v in T1, will cause deletion of v in code
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ψbc2(T1) and if the node v0 has children that are right siblings of v, this

will be the right children of vn that has no right child and must change

from overlined to be without overline.

So at most 2 changes must be done in binary tree codes.

For the upper bound on τ(T1, T2) for δ(ψbc2(T1), ψbc2(T2)) let us define

similar notions given in [7, 12]. Let (ψbc2(T1)
′, ψbc2(T2)

′) be an alignment

giving from δ(ψbc2(T1), ψbc2(T2)). Also let MSP and MSSP be the following

sets of pairs obtained from the alignment (ψbc2(T1)
′, ψbc2(T2)

′).

1. MSP is the set {(p11, p21), . . . , (p1d, p2d)} of maximal substring pairs,

each of which is corresponding to a maximal consecutive region in

(ψbc2(T1)
′, ψbc2(T2)

′) without insertions, deletions or substitutions.

2. MSSP is the set {(t11, t21), . . . , (t1b , t2b)} of maximal subtree string pairs,

each of which is corresponding to a maximal subtree of Ti by decoding

ψbc2(Ti) in Lemma 6.

Note that MSSP is determined uniquely from the alignment

(ψbc2(T1)
′, ψbc2(T2)

′). For an MSSP , we construct the mapping M from

the nodes in t1i to ones in t2i (with ignoring underline and overline).

Lemma 7. M is a bottom-up mapping between T1 and T2.

Proof. It is straightforward.

Lemma 8. If |MSP | = d, then it holds that d ≤ δ(ψbc2(T1), ψbc2(T2)) + 1.

Proof. Let MSP be {(p11, p21), . . . , (p1d, p2d)}. Then, there exist at least d − 1

gaps in the alignment (ψbc2(T1)
′, ψbc2(T2)

′). Hence, it holds that d − 1 ≤
δ(ψbc2(T1), ψbc2(T2)), so the statement holds.

Let REST (pji ) be the total number of positions in substring pji that do

not appear in MSSP . Also let h be the minimum height of T1 and T2.

Lemma 9. For every pji , it holds that REST (pji ) ≤ h.
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Proof. Let Ph+1 be a path a0 . . . ah with height h (h + 1 nodes), where the

root is a0. Then, it holds that bc′(Ph+1) = a0a1 . . . ah−1ah. Consider the

case that pji = a0a1 . . . ah−1ah and tli = ah (for some 1 ≤ l ≤ b) Then, no

substring of pji except tli is decoded as a subtree of Ph+1 , so it holds that

REST (pji ) = h, which is the worst case for REST (pji ).

Lemma 10. Let k be δ(ψbc2(T1), ψbc2(T2)). Then, it holds that

d∑
j=1

|pji | ≥ |Ti| − k

Proof. By Lemma 3, it holds that |ψbc2(Ti)| = |Ti| and the length of ψbc2(Ti) is

the sum of |ψbc2(Ti)| and the number of gaps. Since k(= δ(ψbc2(T1), ψbc2(T2)))

is greater than the number of gaps, which is |Ti| −
∑d

j=1 |pji | the statement

holds.

Theorem 3. Let h be the minimum height of T1 and T2. Then, it holds that

τ(T1, T2) ≤ 2(h+ 1)δ(ψbc2(T1), ψbc2(T2)) + 2h.

Proof. Let M be a bottom-up mapping as in Lemma 7. Then, M is corre-

sponding to the elements of tl1 and tl2. Also let k be δ(ψbc2(T1), ψbc2(T2)).

For pji (1 ≤ j ≤ d), the number of positions assigned by M is at least

|pji | −REST (pji ), and also at least |pji | −h by Lemma 9. Then, the following

sequence holds for i = 1, 2.

|M | ≥
d∑

j=1

(|pji | − h) =
d∑

j=1

|pji | − dh

|M | ≥
d∑

j=1

|pji | − h(k + 1) (by Lemma 8)

|M | ≥ |Ti| − k − h(k + 1) (by Lemma 10)

|M | ≥ |Ti| − k(h+ 1)− h
Hence, the following sequence holds.

τ(T1, T2) ≤ |T1|+ |T2| − |M | − id(M) = |T1|+ |T2| − 2|M |
≤ |T1|+ |T2| − (|T1|+ |T2| − 2k(h+ 1)− 2h)

= 2k(h+ 1) + 2h.

So τ(T1, T2) ≤ 2(h+ 1)δ(ψbc2(T1), ψbc2(T2)) + 2h.
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Figure 3.4: The worst case of tree sets for tree distance and string distance

of their representation
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3.6 Upper Bound is tight

For Euler String and Binary Tree Codes 1 and 2 the upper bound shown

in Table 3.1 is tight. The proved upper bounds for this codings can not be

better. The following example shows the worst case when the string distance

of tree codes for the particular coding is almost equal to the upper bound.

Example 3. Trees on Figure 3.4 have tree edit distance equal to h. Because

we must change the label of at least one vertex for every level. But string

distances of tree encodings is constant. Let us look at these encodings.

Euler String:

ψE(F ) = (eaaebb)m(ddecce)m = (eaaebb)mdde(ccedde)m−1cce

ψE(G) = (eaaebb)mdd(ccedde)m= (eaaebb)mdd (ccedde)m−1ccedde
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String distance of these codes is δ(ψE(F ), ψE(G)) = 4.

Binary Tree Code 1:

Obvious codes from the figure:

ψbc1(F ) = (ea⊥eb⊥)m(d⊥>c⊥>)m>
ψbc1(G) = (ea⊥eb⊥)md⊥(c⊥>d⊥>)m>

Aligned codes for better distance computing:

ψbc1(F ) = (ea⊥eb⊥)md⊥>(c⊥>d⊥>)m−1c⊥> >
ψbc1(G) = (ea⊥eb⊥)md⊥ (c⊥>d⊥>)m−1c⊥>d⊥>>

String distance of these codes is δ(ψbc1(F ), ψbc1(G)) = 4 too.

Binary Tree Code 2:

ψbc2(F ) = eaeb(eaeb)m−1(dc)m = eaeb(eaeb)m−1d(cd)m−1c

ψbc2(G) = eaeb(eaeb)m−1d(cd)m= eaeb(eaeb)m−1d(cd)m−1cd

String distance for this encoding is δ(ψbc2(F ), ψbc2(G)) = 2. We just need

to overline d and insert one d at the end.

String distances for these codes are always constant independent from

variable m. But height of the tree is dependent on m. So we have two set of

trees from which we can always choose two, one from each set, for that string

distance of tree codes will be constant and tree distance will be minimal

height of trees. And the height of trees we can have whatever we want. So

for these trees F and G this is true:

τ(F,G) = Θ(h) · δ(ψ(F ), ψ(G))



Chapter 4

Relating tree and string

distances

Relation between tree distance and string distance of their codes we discussed

already in the chapter before. However in chapter before we discussed this

relation for particular codings. In this chapter we will discuss this relation

in general.

This chapter contains main proof of this thesis that for codings with some

nice properties we can not get rid of h in the upper bound of distances. But

where do we get these nice properties? This is discussed before the main

proof. First section contains coding with very bad properties that result in

bad bounds between distances. Although these coding have bad results we

can learn what circumstances we must try to avoid in the definition of nice

properties for coding in general. Next section contains definitions of nice

properties with motivations for them and short descriptions what they give

us. And end of this chapter is of course given to the proof.

4.1 Enlightenment from bad case

Sometimes we can learn from something bad. Here is such an example of

this case. In my research I discovered a coding with very bad boundaries.

28
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Figure 4.1: Example of some trees to show Level Code
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Although we can say this is bad coding, there is something we can learn from

it. This coding helps me to discover the requirements needed to prove the

Theorem 4.

Following content of this section contains description of this bad coding

we will call Level Code. We shall provide examples demonstrating the un-

desirable behavior of this coding. This coding helped us to identify ”bad

features” we would like to avoid in ”good codes”. Despite these bad prop-

erties the Level Code overcomes one of the problems encountered in codes

mentioned in Chapter 3, namely dependence of the worst case error on the

height of the trees.

Definition 8 (Level Code). Level Code we will construct from tree T like

this. We will store vertices as they are in the levels. The first level is the

root. The second level is its children. The third level is their children. The

order we can get from the tree because it is an ordered tree. Next we must

put some extra information so we can reconstruct the tree from its code. For

vertices without children we can use underline. For vertices that is the last

child of its parent we will use overline. Root will be overlined too so we can

easily represent forest. Notation for function creating level code is ψlc.

Example 4. Level codes for trees shown in Figure 4.1 are the following:
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ψlc(T2) = abacabbabab

ψlc(T3) = aacbabaabbab

Example 5 (Bad case for others, not for Level Code). Now let us consider

trees from Figure 3.4 that represent the worst case for other codings because

string distance of codes was constant. Level code of these trees looks like

this:

ψlc(F ) = eaecbedaecbed . . . aecbd

ψlc(G) = eaedbecaedbec . . . aedbdc

It is obvious that δ(ψlc(F ), ψlc(G)) = h. Which is an interesting result.

Now let us look why this coding is mentioned as bad. For now it looks

like a good coding. We can encode tree into string. We can decode tree from

a correct code of a tree. String distance of the worst case for other codes is

better, because as we have seen it is equal to the tree distance.

Example 6 (Lower bound of Level Code). Consider trees T4, T5 at Fig-

ure 4.2. Tree T5 we get from T4 by removing vertex with label a2. One

elementary operation to get one tree from other means τ(T4, T5) = 1. Let us

look at the Level Codes of these trees.

ψlc(T4) = aa1a2a3a4a5a6a7a8 . . .

ψlc(T5) = aa1a4a3a6a5a8a7 . . .

Distance between these two trees is dependent on h. It is also n
2

because in

this case h = n
2
.

Trees T6, T7 on Figure 4.2 shows that h is not significant. These trees

have constant height. Tree distance is too 1 because T7 we get from T6 by

removing vertex with label a2. Level Codes of these trees:

ψlc(T6) = cc1c2c3c4 . . . cn
2
. . .

ψlc(T7) = cc1cn
2
. . . c3c4 . . .

It is obvious that δ(ψlc(T6), ψlc(T7)) = n− 2. First two letters are the same.

To change the other we can rename n−2 characters, or delete and insert half

of the vertices. Either way we use the same number of elementary operations.
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Figure 4.2: Trees showing bad lower bound for Level Code
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Figure 4.3: Tree T8 showing bad lower bound for Level Code

T8 :

a

a1

a2

a3

a4

From this example we see that lower bound for Level Code is:

1

n
δ(ψlc(F ), ψlc(G)) ≤ τ(F,G)

This is really a bad result. The codings before has a constant multiplier

instead of n like here. For codings before elementary operations on trees

causes constant change for the code. In Level Code the change could be up

to almost the number of vertices.

Now we will focus on the upper bound. The following example shows this

coding is worse them codings described in the previous chapter in the upper

bound too.

Example 7 (Upper bound of Level Code). We will use tree T4 from lower

bound example at Figure 4.2 and compare it with tree T8 shown at Figure 4.3.

Let us see their codes.

ψlc(T4) = aa1a2a3a4a5a6a7a8 . . .
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ψlc(T8) = aa1a2a3a4a5a6a7a8 . . .

The difference in these codes is an overline above a2 and first code must

contain one more underlined letter at the end. So δ(ψlc(L1), ψlc(U)) = 2.

But tree distance is depended on n.

Upper bound for Level Code:

τ(F,G) ≤ n · δ(ψlc(F ), ψlc(G))

Why bother with such a bad code? This code has much worse bound-

aries than codes noted before. So why study this code? This encoding gives

us a special knowledge. How to describe in general the difference between

this code and good codes? Thinking about this difference lead me to Defini-

tion 11. This definition avoids coding like this. If we look to the definition

the difference is obvious. In Level Coding codes of children of some vertex

v is after all nodes in the same level. This means children of node v appear

in the code after siblings of node v. In good codes if v is a sibling between

vertices w and z children of v are in the code between vertices w and z.

4.2 Requirements

To prove that upper bound is multiplied by Ω(h) in general, we need to

formulate some natural requirements for coding functions to satisfy. These

requirements are mentioned here as three definitions. This section also con-

tains motivations and descriptions of ideas that led to these requirements.

First of these requirements is a stability of coding. By defining stable

coding we are trying to avoid codings that change order of storing vertices as

a result of changing a label of some vertex. All codes mentioned in Chapter 3

satisfy this. The structure of these codings does not depend on labels of

vertices.

Definition 9 (Stable coding). Let ψ be a coding as defined in Definition 2.

Let F,G be trees with these properties: F has a distinct labels on vertices.
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And G is constructible from F by relabeling its vertices. Formally:

∃h : ΣTF
→ ΣTG

such that h(F ) = G

So h is a homomorphism from labels of F to labels of G and G can be

constructed applying h to labels of vertices from F .

ψ is stable ⇐⇒ ∃h′ : ΣSF
→ ΣSG

such that

h′/ΣTF
= h and h′(ψ(F )) = ψ(G)

The second requirement we shall define below is the elementary inversibil-

ity of the coding. With this definition we are avoiding codings that are trying

to accumulate information to one spot in the code. Elementarily inversibile

coding produces code such that we can assign one letter of this code to at

most one vertex of tree. It is obvious that all the codes mentioned here sat-

isfy this. A letter of these codes is storing information about at most one

vertex of the tree.

Before we define elementarily inversibile coding we need to describe an

assignment function a. For every coding ψ we can define an assignment

function for positions of letters in code s = ψ(T ). An assignment function

will assign every position in s a set of vertices from T such that relabeling

a node from this set will change the letter in that position. The assignment

function is denoted by a.

a(i) = {v1, v2, . . . , vk} ⇐⇒ ∀j=1,2,...k relabeling of vj changes s[i]

Definition 10 (Elementarily inversibile coding). Coding ψ is elementarily

inversibile ⇐⇒ ∀T ∀i=1,2,...,length(s)|a(i)| ≤ 1

The third requirement is the projecting tree structure feature. Motivation

and ideas leading to this property is described in the previous section. We

are trying to force the coding to store vertex and its offspring between the

code of its siblings.
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We will use inversion of the assignment function a. It will be used to

identify all positions in the code which are influenced by a particular vertex

of a tree.

a−1(v) = {i1, i2, . . . , ik} such that ∀l=1,2,...,ks[il] is code of v in ψ(T )

We shall now define a property of codings which ensures that the tree

structure is suitably represented by subword structure. Namely, all symbols

related to a particular vertex (and its descendants) occuring in the code

appear between those of its siblings.

Definition 11 (Projecting tree structure). Let ψ be a coding. Let T be a tree

and vertices v, w, x ∈ T be siblings ordered v, w, x. Let T (w) be a vertices of

Tw, a subtree of T rooted at w. Coding ψ is projecting tree structure when

∀i ∈ a−1(v) ∀k ∈ a−1(x) ∀z ∈ T (w) ∀j ∈ a−1(z) i ≤ j ≤ k

or

∀i ∈ a−1(v) ∀k ∈ a−1(x) ∀z ∈ T (w) ∀j ∈ a−1(z) i ≥ j ≥ k

holds.

In other words if ψ is projecting tree structure then the code can be

divided like this ψ(T ) = s1 · S1 · s2 · S2 · s3 where S1, S2 are letters coding

vertices v, x and letters coding vertex w and its children are contained only

in string s2.

For elementary inversibile coding holds that for two different vertices v, w

is a−1(v) ∩ a−1(w) = ∅. In detail ∀i∈a−1(v)∀j∈a−1(w) i 6= j. If coding ψ is

elementary inversibile and projecting tree structure then it holds

∀i ∈ a−1(v) ∀k ∈ a−1(x) ∀z ∈ T (w) ∀j ∈ a−1(z) i < j < k

or

∀i ∈ a−1(v) ∀k ∈ a−1(x) ∀z ∈ T (w) ∀j ∈ a−1(z) i > j > k

These properties give us powerful tools for analyzing codings that is useful

for us in general.



CHAPTER 4. RELATING TREE AND STRING DISTANCES 36

4.3 General Proof

Everything is set to begin the proof. First we prove Lemma 11 that gives us

better and more usable tool for stable property which we will use later in the

proof of Theorem 4.

Lemma 11. Let ψ be a stable coding function. Let T, F,G be a trees, where T

has distinct labels on vertices and F,G can be constructed from T by relabeling

vertices. Let f, g be the homomorphisms that construct F,G from T . If

∀a ∈ ΣF ∃b ∈ ΣG f−1(a) ⊆ g−1(b)

then there exist homomorphisms h, h′ such that h(F ) = G, and h′(ψ(F )) =

ψ(G) hold.

Proof. We must construct h and h′ and show that h · f = g and h′ · f ′ = g′.

First h. Because f(T ) = F and g(T ) = G so if h · f = g than it means

that h · f(T ) = h(f(T )) = h(F ) = G = g(T ). So we will construct h like

this:

h = g · f−1 in detail h(a) = g(f−1(a)).

f−1(a) is a set. But preposition of this lemma says that

∀a∈F∃b∈G f−1(a) ⊆ g−1(b). So for every a ∈ ΣF we get b ∈ ΣG for that

g(f−1(a)) = b. So h is a properly defined homomorphism.

Now h′. From stability we got homomorphisms f ′, g′ that are extensions of

homomorphisms f, g for the same coding ψ. This means that the proposition

will hold for extensions too, and we could construct h′ from f ′, g′ as we did

h from f, g.

Theorem 4. Let ψ be a coding function with these properties:

• ψ is a stable coding function (Definition 9)

• ψ is an elementarily inversibile coding (Definition 10)

• ψ is projecting tree structure (Definition 11)
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• ∃ constant k ∀ trees T, U δ(ψ(T ), ψ(U)) ≤ k · τ(T, U)

then there exist sets of trees F ,G such that

∀F ∈ F ∀G ∈ G τ(F,G) = Ω(h) · δ(ψ(F ), ψ(G))

where h is the minimal height of trees F,G.

Proof. The same tree sets for the generalized proof will be used that were

used earlier for concrete codings. These pictures are shown at Figure 3.4.

Let us think about how ψ(F ) and ψ(G) will look. They could not be

described exactly, but only what we can say from F , G and properties of

coding ψ.

ψ(F ): From tree structure projecting property we know that there must be

coding of the top vertices labelled a and c and between them must be their

brother vertex labelled e and all its children. Although we do not know the

exact a and c order in the ψ(F ), we can suppose that the order is a in the

left and c in the right side of the code. This is thanks to the stability of the

code. Because if the coding gives us the opposite coding we can switch the

label between a and c and stability gives us the same code with the switched

order of these two vertices. And the proof will be the same. The tree sets

will be different, but the codes will have the same order.

Formally ψ(F ) will look like this:

ψ(F ) = a1 · A1 · z1 · C1 · c1 where a1, z1, c1 are strings

A1, C1 are codes of vertices labeled: a, c

We can continue to properly describe z1 so the second thought will look like

this:

ψ(F ) = a1 · A1 · b2 ·B2 · z2 ·D2 · d2 · C1 · c1
And we can continue like this.

ψ(G): The code will look like this: Gab ·Dh ·Gcd

Starting Gab means code that contains no vertices labelled c or d. Similarly

Gcd means code that does not contain vertices labelled a or b.
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Figure 4.4: Construction of Fab
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Let us now look how will look the code of the tree Fab that can be con-

structed from F by one adding operation. Tree Fab is shown on Figure 4.4.

τ(F, Fab) = 1 because F 6= Fab and Fab is constructable by one adding oper-

ation from F .

δ(ψ(F ), ψ(Fab) ≤ k1τ(F, Fab) = k1 · 1 = k1 for some constant k1

ψ(Fab): comparing Fab with G that there exist homomorphism h1 for that

Fab = h1(G), because h1 could be simply defined like this h1(c) = d,h1(d) = c

and for other labels it is identical. Using the Lemma 11 we can say that there

exist homomorphism h′1 extended from h1 that affects the coding. So for h′1

it holds that ψ(Fab) = h′1(ψ(G))

ψ(Fab) = h′1(ψ(G)) = h′1(Gab ·Dh ·Gcd) = Gab · h′1(Dh ·Gcd)
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Figure 4.5: Construction of Fcd
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Fcd :

Gab is not affected by h′1 because it does not contain codings of labels c or

d. And for the labels other than codes of c or d the h1 is defined as identical

homomorphism and also the h′1 will not affect the code of these vertices.

Now let us think about tree Fcd that is shown on Figure 4.5. Fcd can be

constructed from F by 6 elementary edit operations: 2 remove, 1 relabel and

3 add operations. So τ(F, Fcd) ≤ 6

δ(ψ(F ), ψ(Fcd)) ≤ k2 · τ(F, Fcd) ≤ k2 · 6 = 6k2 for some constant k2

Using the same reasoning as for Fab we get:

ψ(Fcd) = h′2(Gab) ·Dh ·Gcd

where h2 is homomorphism such that h2(a) = b and h2(b) = a and it is

identity for other labels. And h′2 is extended homomorphism from homomor-
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phism h2 from Lemma 11. So we have

ψ(Fab) = Gab · h′1(Dh ·Gcd) where δ(ψ(F ), ψ(Fab)) ≤ k1

ψ(Fcd) = h′2(Gab) ·Dh ·Gcd where δ(ψ(F ), ψ(Fcd)) ≤ 6k2

Let ψ(F ) = F1 · F2 where

F1 - minimal part of the ψ(F ) code that contains all the vertices that are

labelled a or b

F2 - rest of the code δ(ψ(F1), ψ(Gab)) ≤ k1 + k3 = K1 where K1 is constant

c3 - constant needed to remove rest of the vertices labelled c or d from the

right side that can be mixed with vertices labelled a or b. Constant one could

be mixed because for higher level the tree structure projective property can

be used.

δ(ψ(F2), ψ(Dh ·Gcd)) ≤ 6k2 + k4 = K2 where K2 is constant

c4 - constant needed to add rest of the last vertices labelled c or d that were

in F1. To sum it up:

δ(ψ(F ), ψ(G)) ≤ k1 + 6k2 + k3 + k4 = K1 +K2 = constant

τ(F,G) = h+ 1



Chapter 5

Conclusions

It seems that comparing representations of trees does not give us exact infor-

mation about tree distance. Proof in this thesis shows us that ideal coding

for trees probably does not exist. We say probably because we had very

strong requirements for coding to prove this result. Maybe someone will find

coding that does not have all this properties and it will be good coding for

him. Because it has features we want.

One way is definition of our coding. The Modified Euler String is a

function that does not fulfil our definition of coding. As we could see it

brings better results than codings that fulfil our definition. Improving of

these results could bring some new results.

Another way of studying this area is to take a better look at the require-

ments mentioned right before the proof. Definitions of properties like stable

coding, elementarily inversibile, projecting tree structure, or requirement of

lower bound are these requirements. Do we need all of them? Could three

of them imply the fourth? Is there a nice encoding we want to study that

does not satisfy the properties in these definitions? These are the questions

for further study.
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January 24 - 30, 2009). M. Nielsen, A. Kučera, P. B. Miltersen, C.
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Abstrakt

Cielom tejto práce je preskúmat’ akú informáciu o rozdiele dvoch stromov

môžeme źıskat’ z rozdielu ich textových reprezentácíı. Najskôr sa zameriame

na nápady ako poč́ıtat’ rozdiel dvoch stromov nazývaný vzdialenost’, ktoré

boli publikované v iných prácach. Potom prejdeme k jednotlivým textovým

reprezentáciám stromov. V tejto práci definujem nové kódovanie. Vzt’ah me-

dzi stromovou vzdialenost’ou dvoch stromov a ret’azcovou vzdialenost’ou ich

reprezentácíı źıskaných týmto kódovańım je viditel’ný z dôkazov dolného a

horného ohraničenia pre toto kódovanie. Z jednotlivých kódovańı stromov

na ret’azce to vyzerá tak, že my nemôžeme źıskat’ presnú informáciu o stro-

movej vzdialenosti zo vzdialenosti ich textových reprezentácíı. Táto práca

obsahuje dôkaz, že pre každé kódovanie ψ, ktoré sṕlňa niektoré prirodzené

vlastnosti, plat́ı, že nemôžeme źıskat’ presnú informáciu o stromovej vzdia-

lenosti zo vzdialenosti kódov kódovaných ψ. Formálne, existujú stromy F

a G, pre ktoré plat́ı, že τ(F,G) = Ω(h)δ(ψ(F ), ψ(G)). Kde τ je stromová

vzdialenost’, δ je ret’azcová vzdialenost’ a h je minimálna výška stromov F a

G.
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