
Department of Computer Science
Faculty of Mathematics, Physics and Informatics

Comenius University in Bratislava

Code Generation from AML to Jadex
(Master's thesis)

Attila Mészáros

 Thesis Advisor:
 Mgr. Radovan Červenka, PhD. Bratislava, 2010

Code Generation from AML to Jadex

Master's thesis

Attila Mészáros

Department of Computer Science
Faculty of Mathematics, Physics and Informatics

Comenius University in Bratislava

9.2.1 Informatics

Thesis Advisor

Mgr. Radovan Červenka, PhD.

BRATISLAVA 2010

Hereby I declare that the work presented in this thesis is my own, written only by help
of referenced literature.

 Bratislava, May 2010

 …..............................

 Attila Mészáros

i

I would like to thank my thesis advisor Mgr. Radovan Červenka, PhD for guidance,
advices and suggestions.

ii

Abstract
Development and maintaining a large-scale multi-agent system is a very complex
problem and a challenge for software engineering. Analysis, design, implementation,
testing and maintenance of such systems could be very difficult to realize. Modeling
of such systems in analysis and design is a crucial instrument to cope with
complexity. In addition, automatic code generation simplifies the transition of
analysis and design models to implementation artifacts, and therefore, can make
development of software systems more effective.

Agent Modeling Language (AML) is a comprehensive agent-oriented modeling
language that is used to capture the various aspects of multi-agent systems, therefore
facilitates their development. In this work we implement a code generator that
produces source code from AML models to an agent development framework, based
on DBI software model, called Jadex. We define a mapping from AML to Jadex, and
introduce a simple extension to AML that allows to generate high detailed source
code. We provide implementation of code generation using Acceleo engine, following
a very flexible approach that enables realization of code generation independently
from CASE tools, using XMI files.

Keywords: Code generation, AML, Jadex, mapping, XMI.

iii

Table of Contents
1 Introduction..1

1.1 Model Driven Engineering...1
1.2 Modeling Multi-Agent Systems...2
1.3 Overview of Agent Platforms ..2
1.4 Model-Driven Code Generation...3
1.5 Tasks and Objectives..4
1.6 Related Work..4
1.7 Structure of the Document..5

2 Overview of AML..6
2.1 Introduction..6
2.2 Language Architecture of AML ..6
2.3 Elements of AML...7

2.3.1 Mental Package...7
2.3.2 Architecture Package..10
2.3.3 Behaviors Package..11

3 Overview of Jadex..12
3.1 The BDI Software Model...12
3.2 The Jadex Reasoning Engine..13
3.3 The Programming Model..15

3.3.1 The Agent Definition File ..15
3.3.2 Plan Implementation...19

4 AML to Jadex Mapping...20
4.1 Mental Aspects...20

4.1.1 DecidableGoal...20
4.1.2 Plan ..22
4.1.3 Belief ..23
4.1.4 Mental Association...24
4.1.5 Contribution..24
4.1.6 MentalConstraintKind...26

4.2 Architectures...27
4.2.1 AgentType...27
4.2.2 EntityRoleType...27
4.2.3 PlayAssociation...28

4.3 Behaviors..28
4.3.1 CommunicationMessagePayload..28

4.4 Additional Extensions...30
4.4.1 Configure..30
4.4.2 Configuration..30
4.4.3 Initialize..31
4.4.4 Belief Base..32
4.4.5 Parameter..33
4.4.6 Assign...34
4.4.7 Use Message...35
4.4.8 Triggers...36

iv

4.5 Summary...37
5 Examples..38

5.1 Elements of an Agent and Mental Relations..38
5.2 Configurations..40
5.3 Include from a Capability...42

6 Description of the Implementation...45
6.1 Overview of Approaches ...45
6.2 Code Generation From XMI...46

6.2.1 The XMI Document format..46
6.2.2 Realization of code generation from XMI..46

6.3 Code Generation Supporting Tool Overview...48
6.3.1 Code Generation Frameworks..48
6.3.2 Supplementary technologies...49

6.4 Code Generation Using Acceleo..49
6.4.1 XMI Compatibility..49
6.4.2 Templates ...50
6.4.3 Services...51
6.4.4 Execution Chains..51

6.5 Implementation Details...52
6.5.1 Description of Templates..52
6.5.2 Problems with XMI Transformations...54

7 Possible Extensions..55
7.1 Reverse Engineering...55
7.2 Source Code Generation from Standard UML Models....................................56

7.2.1 Class Diagrams...56
7.2.2 State Machine Diagrams...56
7.2.3 Activity Diagrams...57
7.2.4 Evaluation...57

8 Conclusion and Future Work...58
9 Appendix..59
 Abstract ...63

v

1 Introduction
In this section we give a short introduction to the context of our work. We give a more
abstract view about technologies, methodologies that served as motivation for us. In
addition we define the tasks and objectives of this thesis, and examine closely related
works.

1.1 Model Driven Engineering

Building large scale systems is a complex and challenging problem in software engineering.
A number of software development methodologies and techniques were introduced in the
last decades in order to cope with designing, implementation, testing and maintaining such
systems. These methodologies were used to facilitate, thus structure, plan and control the
process of development. Modeling is a crucial aspect of most software development
methods, models are used to describe different layers of abstraction of a system, and
capturing essential and/or critical aspects of a system. It provides a mechanism that
simplifies the whole process of software development. Models are developed through
extensive communication among the product managers, designers and development teams,
in this sense modeling also promotes the communication, and understanding of the system.

One of the well known families of software system development methodologies, that is
based entirely on models, is Model Driven Engineering (MDE). It focuses on creating
models and assists the whole process of software development. In these methodologies the
whole process of software development can be interpreted as transformation of models from
one to another, from model of requirement through models of analysis, design and
implementation to model of testing. The best known initiative of MDE is Model Driven
Architectures (MDA) [44], product of Object Management Group (OMG) [58]. MDA
provides a set of guidelines for structuring specifications expressed as models, thus defines
system functionality in platform-independent model (PIM) which is then translated to
platform-specific models (PSM), that represent the system in the scope of the target
platform where the system will be executed (MDA inspired us also from view of code
generation, therefore it is described in more detailed way in section 1.4).

Model Driven Engineering became very popular with the introduction of the Unified
Modeling Language (UML) [57], which as a general-purpose modeling language nowadays
serves as a standard implemented by most Computer-Aided Software Engineering (CASE)
tools. These applications implement features and functionalities that cover all aspects of
development of software, i.e. analysis, design and programming. UML is a general-purpose
language, so it is intended to capture every aspect of a software-system: structural,
behavioral views and interactions of its components. In addition, it is designed to be
extendible, UML Profiles provide a mechanism for customizing UML for a target domain
or platform (see [56] for details).

1

1.2 Modeling Multi-Agent Systems

Models play an important role in developing of information systems in general, it is also a
crucial part of multi-agent system (MAS) development. Development of a large and
complex multi-agent system faces analogous challenges as development of an information
system. However, in case of open multi-agent systems the situation can be even more
complicated, as denoted in [18]. Problems can emerge like heterogeneity (agents may have
different possibly inconsistent goals), communication problems (different communication
protocols could be used by agents), and security problems (thus authentication and
authorization of agents). To solve this problem an active research has been undertaken in
this field in the last two decades in order to create languages, abstractions and methods and
also toolkits that facilitate the whole development process of such systems. Results of this
research formed the paradigm of Agent-Oriented Software Engineering (AOSE). Thus to
cope with the specific features of agent-based system new modeling languages and
methodologies were created, such as Gaia [14], Tropos [55], MAS-ML [23], AOR [54], etc.
Another family of agent-oriented modeling languages is based on UML. These languages
are implemented as extensions of the UML metamodel, such as AUML [53] or MESSAGE
[21]. The Agent Modeling Language (AML) is also a member of this family, it is a semi-
formal visual modeling language for specifying, modeling and documenting systems in
terms of concepts drawn from MAS theory [18]. In comparison with other languages, AML
covers a wide variety of aspects of multi-agent systems, is well documented, and is
supported by modeling and other automation tools.

1.3 Overview of Agent Platforms

Agent-oriented approach facilitates the design of complex systems, because it gives a
possibility to have the same concept, i. e. agent, as the central one, in the problem analysis
and the solution design and implementation. Development of a software system with AOSE
usually involves utilization of an agent middleware or platform. Agent platform is a
technological architecture providing the environment in which agents can actively exist and
operate to achieve their goal. An agent platform may additionally support the development
of agents and agent based applications. In this section we provide a short overview of agent
platforms and related terms.

One of the crucial aspects of agent frameworks are standards. To facilitate interoperability
between platforms, and to specify how agents themselves should communicate and interact
a set of standards was created. The most known standards are provided by Foundation for
Intelligent Physical Agents (FIPA) [52]. This organization currently provides 25
specifications. A sub-set of these is already completed the process of standardisation. Other
international standards exist like OMG MASIF [51] or Mobile Agent Facility [50], but
FIPA is the most prominent one.

On of the best known example standard of FIPA is the Agent Communication Language
(ACL) [49]. The purpose of this language is to make agents understand each other; they
have to not only speak the same language, but also to have a common ontology.

In following we will introduce a few prominent agent frameworks:

• Java Agent Development Framework (JADE) [48] is one of the best known agent
frameworks, that allows the development and coordination of multiple FIPA

2

compliant agents. It uses the standard FIPA-ACL language. JADE is opensource,
implemented in Java programming language.

• Jadex [2] is Java based, opensource, FIPA compliant, agent environment, that
follows the BDI model. Jadex provides a framework and a set of development tools
that facilitates the creation and testing of agents. Jadex is one of the central subjects
of this thesis, we provide detailed overview of it in section 3.

• Grasshopper [47] is an open Java-based mobile intelligent agent platform. It
includes two optional open source extensions providing the OMG MASIF and FIPA
standard interfaces for agent/platform interoperability.

• Cougaar [46] is an example of not FIPA based agent platform, which is also an
agent based distributed platform. It is a highly scalable framework implemented in
Java.

There is a large number of commercial or not commercial agent platforms, however a
complete overview or evaluation of them is out of the scope of this thesis. A list of available
FIPA compliant agent platforms can be found at [45]. A comparison and performance
evaluation can be found in [20].

1.4 Model-Driven Code Generation

The promise of modeling has been to shift the focus from implementation to design. Models
serve as mechanisms to get a better understanding but they can also be an input for code
generators. This automates development leading to improved productivity, quality and
complexity hiding. The generator specifies how information is extracted from the models
and transformed into code.

One of the currently best known and accepted code generation approach is based on Model
Driven Architectures (MDA) [44]. In fact MDA defines a more abstract approach to
development of system, it provides a set of guidelines for specifications, the specifications
are expressed in model, usually in a high level modeling language like UML. MDA
separates the business or application logic from the underlying platform. From the technical
point of view it is related to set of standards, including Unified Modeling Language (UML)
[56] , Meta-Object Facility (MOF) [43] , XML Metadata Interchange (XMI) [42] and the
Common Warehouse Metamodel (CWM) [41]. These technologies are used to transform a
model to engineering artifacts, in our case to source code. MDA defines some high level
steps and how models are transformed, until with the last step of transformation the source
code is generated.

As illustrated on Figure 1, the Platform Independent Model (PIM) specifying system
requirements, functionality and behavior undistorted by technological details is created as

3

Figure 1: The MDA process

Platfrom
Idependent

Model

Platform
Specific
Model

Templates Code

first. Then, a mapping is applied to generate a Platform Specific Model (PSM). This model
captures in addition some details of the target platform. In other words the goal of this step
and model is to bring closer the business requirement or the logic of the system to the target
platform. In the last step we generate target source code using predefined templates. For
additional information see [44].

MDA was one of the main sources of inspiration for code generation, however we will not
strictly follow its guidelines.

1.5 Tasks and Objectives

The first goal of this thesis is to discover relations between AML and the Jadex agent
platform. In our case this means that we will define a mapping of AML elements to artefacts
of Jadex. Focus of our examination will be the Mental package of AML, which is used to
model mental attitudes of autonomous entities, since the main and distinguishing
characteristic of Jadex is that it implements a reasoning engine based on BDI software
model (see section 3.1). In Jadex the mental aspects of an agent are explicitly described
using Agent Description Files (ADF).

Our next goal is to specify an extension to AML that allows to describe the rest of principal
aspects of Jadex system, which would be hard to capture using strict AML or standard UML
elements. This enables to generate high detailed source code; focused on ADF files and
other artefacts.

In the practical part of the work our goal is to implement a code generator that generates
executable source code from AML models to Jadex platform. To carry out this task we will
use a not so widespread approach, code generation from XMI files. We will also examine
the possibilities and limits of this concept.

1.6 Related Work

In this section we examine the relations to a work which has a subject very similar to the
subject of this thesis.

In his work Jiří Bělohlávek and Petr Knoth describe a translationn [7] between Prometheus
[11] methodology and Jadex. However this work is rather a short demonstration of
capabilities of Jadex for implementation of Multi Agent Systems designed using
Prometheus Methodology.

Michal Kostič introduced his master's thesis [15] in 2006, with title “AML Code
generation”. This work specifies a mapping between AML and agent platform Jade. The
author also provides an implementation using CASE tool inner mechanisms, and explores
some code generation related topics. The concepts of our and his work are close to each
other. However, this thesis can be rather interpreted as a complementary work, in sense:

• in [15] the mapping is provided from Architecture and Behavior packages of AML.
The author identifies members of Mental package as elements which are not suitable
for code generation, what is reasonable in case of code generation to Jade. However,
in our work we introduce code generation mostly from this package. There is no
contradiction, we are enabled to do so by characteristics of Jadex as described in
section 4,

4

• in addition we use a different approach to code generation. While Kostič in his work
follows a CASE tool dependent approach, thus implements the code generator as an
add-in, that uses the CASE tools API to access the model. Our implementation
follows a different approach: it generates source code using the XMI file format (see
section 6).

Therefore some parts of our work, like mapping in section 4, we describe in a similar form
as was provided in [15].

1.7 Structure of the Document

The document is structured to 7 main sections. In the first section we give an introduction to
the context of the work and related terms. In section 2 and 3 we give an overview of the
systems that are the central subjects of this theses. We describe elements of Jadex and AML
that are closely related to this work. These elements are used in section 4, where we
introduce the theoretical part of our contribution. In this section we provide a mapping from
AML to Jadex, which is then illustrated in section 5. Examples in section 5 clarifies how the
mapping is used to generate source code from AML models to Jadex. In section 6 we give a
description of our implementation, also an overview of the approach what is followed by
our implementation. In section 7 we describe possible extensions or complementary
solutions that are close to the subject-matter of this thesis.

5

2 Overview of AML
In this section we will provide an overview of Agent Modeling Language. We will give an
introduction to the language, to its packages, and a more detailed description of AML
Mental package, which is in the focus of our interest from the scope of code generation. For
more detailed description refer to [17], or for formal specification see [6].

2.1 Introduction

The language specification [16] defines AML as: “The Agent Modeling Language (AML) is
a semi-formal visual modeling language for specifying, modeling, and documenting
systems in terms of concept drawn from MAS theory.” As the definition says, the primary
application context of AML are systems, which design principles are adopted from multi-
agent systems. The scope of AML also facilitates business modeling, requirements
specification, analysis and design of software systems, that uses MAS paradigm. The
support for requirements specification and analysis of complex problems covers mental
aspects, which can be used to model goal based requirements, problem decomposition, etc..
Also covers contexts, which are used for situation based modeling. Support of AML for
abstraction of behavioral and architectural concepts covers topics like:

• social aspects,

• communicative interactions,

• services,

• behavioral abstraction and composition,

• or mental aspects.

2.2 Language Architecture of AML

AML is based on UML 2.0 superstructure, it is defined at two distinct levels:

• AML Metamodel and Notation – this level defines the AML abstract syntax, its
semantic and notation. The metamodel is further also structured into two packages.
First of them is the AML Kernel package, where the core language constructs are
defined. This is a conservative extension of UML. The other package is UML
Extension for AML, which adds meta-properties and structural constraints to the
standard UML elements. This package is a non-conservative extension of UML, and
its an optional package of AML

• AML Profiles – there are two UML profiles defined, one for UML 1.* and an other
for UML 2.0.

6

The AML Profiles packages enable the implementation AML within CASE tools, which are
based on UML 1.* and UML 2.0. As it is described in [18], users are free to define their
own language extensions to customize AML for their needs. These extensions can be
defined also as UML 1.* or UML 2.0 profiles, commonly referred as AML Profile
Extensions. Such an extension is core part of this thesis.

2.3 Elements of AML

In this section we will give an overview of AML packages and elements that are closely
related to our work.

2.3.1 Mental Package

The AML specification [18] describes this package as: “The Mental package defines
metaclasses which can be used to

 support analysis of complex problems/systems, particulary by:

• modeling intentionality in use case models,

• goal-based requirements modeling,

• problem decomposition, etc.

 model mental attitudes of autonomous entities, which represents their informational,
motivational and deliberative states.”

The Mental package can be divided to more sub-packages, as shown on Figure 3.

7

Figure 2: Levels of AML Specification (from [16])

Metal States package defines fundamental metaclasses, which are used to specify
metaclasses in other sub-packages. Beliefs, Goals, Plans sub-packages as their name
denotes, define elements for capturing corresponding terms, as can be seen this structure
corresponds to BDI paradigm (see section 3.1). The Mental Relationship sub-package
defines relations between mental elements (more precisely between Mental States, see [18])
to support reasoning processes.

Belief
Stereotype: <<belief>>

Belief is specialized MentalClass used to model a state of affairs, proposition, or other
information relevant to the system and its mental model. The specification of information is
expressed by the owned constraint. It is possible to specify attributes and/or operations for a
Belief, to represent its parameters and functions, which can both be used in the owned
constraint as static or computed values.

Goal
Stereotype: Goal is an abstract element, therefore has no general notation.

Goal is an abstract element, introduced to define the common features of all its subclasses
that are used to model concrete types of goals. It defines common semantics of a AML
Goals, that can be characterized as conditions or states of affairs, with which the main
concern is their achievement or maintenance. The Goals can thus be used to represent
objectives, needs, motivations, desires, etc.

DecidableGoal
Stereotype: <<dgoal>>

DecidableGoal is used to model goals for which there are clear-cut criteria according to
which the goal-holder can decide whether the DecidableGoal (particularly its
postCondition) has been achieved or not. The DecidableGoal rectangle can contain special
compartments <<commit>>,<<pre>>, <<inv>>, <<cancel>>, and <<post>> for the

8

Figure 3: The structure of mental package

Beliefs Goals Plans Mental
Relationships

Mental
States

contained MentalConstraints, these represent predefined MentalConstraintKinds (see
definition of MentalConstraintKind below) . These compartments may be omitted and can
be specified in any order.

UndecidableGoal
Stereotype: <<ugoal>>

UndecidableGoal is a specialized concrete Goal used to model goals for which there are no
clear-cut criteria according to which the goal-holder can decide whether the postCondition
of the UndecidableGoal is achieved or not.

Plan
Stereotype: <<plan>>

Plan is used to model capabilities (of MentalSemiEntityTypes of AML) which represents
either:

• predefined plans, i.e. kinds of activities a mental semi-entity’s reasoning
mechanism can manipulate in order to achieve Goals, or

• fragments of behavior from which the plans can be composed (also called plan
fragments).

In addition to UML Activity, Plan allows the specification of commit condition, cancel
condition, and invariant (for details see MentalConstraintKind), which can be used by
reasoning mechanisms.

For modeling the applicability of Plans, in relation to given Goals, Beliefs and other Plans,
the Contribution relationship is used.

Contribution
Stereotype: <<contributes>>

Contribution is a specialized MentalRelationship and DirectedRelationship (from UML)
used to model logical relationships between MentalStates and their MentalConstraints. The
manner in which the contributor of the Contribution relationship influences its beneficiary is
specified by values of meta-attributes of the particular Contribution.

MentalAssociation
Stereotype: MentalAssociation is depicted as a binary UML Association with the stereotype
<<mental>>

MentalAssociation is introduced to enable modeling of MentalProperties in the form of
association ends. It is used to specify that mental semi-entities have control over Goal and
Belief instances.

MentalConstraintKind
MentalConstraintKind is an enumeration which specifies kinds of MentalConstraints, as
well as kinds of constraints specified for contributor and beneficiary in the Contribution
relationship.

9

Value Keyword Semantics
commitCondition commit An assertion identifying the situation under which an

autonomous entity commits to the particular
ConstrainedMentalClass (if also the precondition
holds).

preCondition pre The condition that must hold before the
ConstrainedMentalClass can become effective (i.e. a
goal can be committed to or a plan can be executed).

commitPreCondition commpre AND-ed combination of commitCondition and
preCondition. Used only within Contribution.

invariant inv The condition that holds during the period the
ConstrainedMentalClass remains effective.

cancelCondition cancel An assertion identifying the situation under which an
autonomous entity cancels attempting to accomplish the
ConstrainedMentalClass.

postCondition post The condition that holds after the Constrained-
MentalClass has been accomplished (i.e. a goal has been
achieved or a plan has been executed).

2.3.2 Architecture Package

The Architecture package defines the metaclasses used to model architectural aspects of
multi-agent systems. These aspects are captured in more sub-packages like Agents,
Resources, Environments etc.. However just few of these concepts are related to our work.

AgentType
Stereotype: <<agent>>

AgentType is a specialized AutonomousEntityType used to model a type of agents, i.e. self
contained entities that are capable of autonomous behavior within their environment.

AgentType can use all types of relationships allowed for UML Class, e.g. associations,
generalizations, dependencies, etc., with their standard semantics, as well as inherited
AML-specific relationships.

EntityRoleType
Stereotype: <<entity role>>

EntityRoleType is used to represent a coherent set of features, behaviors, participation in
interactions, it is introduced to model roles in multi-agent systems.

10

2.3.3 Behaviors Package

The Behaviors package defines the AML metaclasses used to model behavioral aspects of
multi-agent systems, as behavior decomposition, mobility, communicative interactions.

CommunicationMessagePayload
Stereotype: <<cm payload>>

CommunicationMessagePayload is a specialized Class (from UML) used to model the type
of objects transmitted in the form of CommunicationMessages.

11

3 Overview of Jadex
In this section we first provide a short description of the BDI software model, that served as
a motivation for architecture of Jadex. Then we will introduce a detailed description of
Jadex system and its programming model. We will omit details which are not relevant to the
scope of this thesis. Some programming model elements will be described in more detail,
because are necessary for understanding the system's relation to AML. For more detailed
documentation refer to Jadex homepage [2]. Most parts of this section are based on Jadex
User Guide [1] and Jadex Tutorial [10].

3.1 The BDI Software Model

The Belief-Desire-Intention model is a software architecture for development of intelligent
software agents. In these architecture, the internal design and the process of choosing a
course of action, is driven by mental attitudes. The advantage of this approach, thus using
mental attitudes for design or realization, is that it provides a more human-like abstraction,
therefore simplifies the understanding of system. This concept was first introduced by
Michael Bratman [13].

The idealized components of a BDI agent are:

• Beliefs – represent the agent's thoughts about the world, or informational state of an
agent. Term belief, instead of knowledge, denotes that agent's beliefs are not
necessary true.

• Desires – represent the objectives, or motivations of an agent. A special type of
desire is Goal, which assumes that the active desires of an agent are consistent.

• Intentions – represent the deliberative state of an agent, thus desires that agent
committed to do. In software systems these intentions are kind of plans, thus set of
actions, which might lead to accomplishing one or more of its intentions. Plans
could be separated to more sub-plans.

• Events – are kind of triggers that has impact on agents beliefs, desires, intentions.
Event can be external, received by sensors, or internal generated by reasoning
system.

There can be described a general reasoning system of an agent, that can perform complex
tasks in dynamic environments. A very simplified version can be denoted as an infinite loop
consisting of 3 steps: sense, select, act – where an agent observes its environment, it selects
and executes an action.

This BDI model is closely related to both systems that are in focus of our observation.

12

3.2 The Jadex Reasoning Engine

Jadex is an Agent oriented reasoning engine based on BDI paradigm, described above. It
can be used together with kinds of agent middleware, that provides basic agent services,
such as communication infrastructure or management facilities.

Rational agents in Jadex have explicit representation of their environment and objectives
that they are trying to achieve. In this case rationality means that agent always performs the
most promising step to achieve its objectives. In Jadex belief, goals and plans are first class
objects, that can be accessed inside an Agent.

The reasoning in Jadex can be described as a process consisting of two interleaved
components. On one hand, the agent reacts to incoming messages, internal events and goals,
by selecting and executing plans. On the other hand, the agent continuously deliberates
about its current goals, to decide about consistent subset, which should be pursued.

Jadex specific Beliefs are arbitrary java objects which can be stored in “beliefbase”. The
“beliefbase” stores these objects as believed facts, it is also an access point for agent to its
data. The belief representation is very simple, the “beliefbase” contains strings which are
identifiers to a specific Belief or its value.

Goals are kind of motivations which inspires the Agents behavior. They are central
components of Jadex, which follow the concept that goals are the actual desires of the
agents. Therefore the agent will be directly engage into suitable actions until the goal is
reached, or is unreachable, or not desired any more. Jadex does not assume that all adopted
goals are need to be consistent to each other, it provides a life-cycle management for goals,
which defines three states for goals: option, active, and suspended (see Figure 5). The
system also provides an application specific goal deliberation mechanism, which is
responsible for managing state transitions of all adopted goals. Additionally a goals state

13

Figure 4: Jadex Abstract Architecture (from [1])

depends on context determined by agent's beliefs. When a context is invalid the depending
goal is suspended until it is valid again.

The system defines four basic types of goals:

• Perform goal – denotes that something needs to be done, but there is no explicit
desirable result defined.

• Achieve goal – describes a target state to be reached, but it not specifies how to
reach it. Therefore agent may try different alternatives.

• Query goal – indicates that some information needs to be acquired. If the
information is not available, plans are executed to reach them.

• Maintain goal – describes some state that should be kept after once it is achieved. It
is the most abstract goal in the system. It abstracts from actions needs to be done to
achieve the goal, and decouples the creation and adoption of the goal from time-
point when it is executed.

There is also a semantically distinct type of goal, called Meta goal, which is used for meta
level reasoning. For example if there are multiple plans matching for a goal then
corresponding metal level plans are executed to achieve the Meta goal, thus to make a
selection between them.

As we mentioned before, one aspect of rational behavior is that agent can pursue multiple
goals in parallel. The system provides an architectural framework for deciding how goals
interact and how an agent can autonomously decide which goal to pursue. This process is
called goal deliberation. Jadex supports a goal deliberation strategy called easy deliberation,
which is a simple and elegant way to allow developers to specify relationships between
goals in intuitive manner. It is based on goal cardinality, which restrict the number of goals
of a given type that can be active at once, and goal inhibitions, which prohibit certain other
goal to be pursued in parallel.

Plans can be interpreted as recipes for achieving goals. Plans consist of two parts, the header
and the body. Header is a kind of definition of a plan, where some attributes and conditions
of execution are specified. The body itself is implemented in java programming language,
giving the system high flexibility. Plans are instantiated at runtime. Activation triggers in

14

Figure 5: Goal Life-cycle (from [1])

header are used to specify when a plan should be instantiated. In addition some initial plans
can be executed when the agent is born. During the execution, plans have also possibility
not just execute arbitrary java code, but also dispatch sub-goals or to respond to events.

3.3 The Programming Model

Development of agents consists of creation of two types of files: plan implementations in
Java programming language, and an XML file called the Agent Definition File (ADF). In
ADF an agent itself is described. If we start an agent first this file is loaded and
corresponding belief, goals, and plans are created as specified.

3.3.1 The Agent Definition File

The ADF can be interpreted as a specification of an agent. The general structure of the file
is shown on Figure 6. The name of the agent type is defined in name attribute of the root
(<agent>) tag. This name is also a prefix for the name of the ADF XML file and should be
followed with “.agent.xml”. An other important attribute is package which should
correspond to location of the file, also it is used as “classpath” where system searches for
the required classes.

Imports
In imports section classes and packages are defined, which can be used by Java expressions
in ADF. In addition paths to non-Java artifacts like agent xml or capabilities are specified
this way.

15

Figure 6: The structure of Agent Definition Files (from [1])

Capabilities
In Jadex Capabilities are used to modularize common agent behaviors. Practically they are
agents without own reasoning process – also their definition is almost same, just the agent
tag is replaced by capability tag. Every agent has at least one capability, its own
beliefs, goals and plans. Also an agent can be seen as a collection of capabilities and an
additional reasoning process between them. Agents and Capabilities can have an arbitrary
number of sub-capabilities, defined under capabilities tag. To use a capability, we
must specify its definition file, and a name through which it can be referenced.

Beliefs

Beliefs are facts known by an agent, which can be modified inside a plan. To define a single
or multivalued belief the corresponding belief or beliefset tag is used. Developer
has to specify class and name of a belief with identical attributes. The default or initial
beliefs are supplied in enclosed fact tags, in case of multivalued beliefs the list of these
elements is enclosed in facts tag.

Goals
In Jadex the four goal kinds are strongly typed, all of them is expressed in ADF with
corresponding tag: maintaingoal, achievegoal, performgoal, querygoal.
However all of them are semantically different, but they share some common attributes. All
of the attributes can be identified by its name. All parameters of the goal have to be declared
in the XML file. These declarations of parameters resemble the specification of beliefs, thus
the single and multivalued parameters are distinguished. Also parameter values can be
defined using expressions. The system distinguishes in, out, and inout parameters
specified by direction attribute, depending on when a parameter is used, or when it is set.
The unique tag for a goal denotes that only one instance of a goal can be adopted at same
time.

To describe situations when a goal has to be automatically instantiated, the
creationcondition is used. To denote situations when the goals needs to be
suspended or dropped the contextcondition and dropcondition elements are
used. Specific goals has also their own specific types of elements and attributes, for
example Maintain goal has its special maintaincondition element. For detailed
specification please refer to Jadex documentation [1].

16

<belief name="simpbeliefbase" class="int">
<fact>222</fact>

</belief>
<beliefset name="simpBeliefList" class="String">

<facts>getStrings()</facts>
</beliefset>

Figure 7: Example of a simple Belief

Goal deliberation
The goal deliberation settings are included in the goal specification, using the
deliberation tag (see Figure 8). The cardinality is specified as an integer value with
cardinality attribute, by default this value is unlimited. Inhibition is denoted using ref
attribute within inhibits tag. This reference specifies the goal to inhibit. Additionally an
condition can be specified as content of inhibit element. The inhibition only takes effect
when this condition is true.

Plans
Inside plans element an arbitrary number of plan headers can be defined using plan
elements. Each plan can have several attributes. The name attribute is mandatory. The
priority attribute is also important to define preferences between plans. For each plan
the body element has to be provided, which specifies the implementing java class. Within
this element a java expression can be defined that creates the instance, or simply we can
specify the name of the class that implements the plan, using the class attribute.

To indicate when a plan is applicable or shall be created, the trigger element can be
used. The most common situation for triggering a plan is reacting to a goal actualization, but
Jadex introduces a more general model, thus with sub-tags of the trigger element we
can specify also internal-, message events for which a plan is applicable. In addition it is

17

<achievegoal name="achievecleanup" retry="true" exclude="when_failed">
<parameter name="waste_location" class="Location">

<value>$beliefbase.known_waste_location</value>
</parameter>
<creationcondition>
 $beliefbase.getBeliefSet("known_waste_locations").size()>0
</creationcondition>
<contextcondition>

$beliefbase.daytime
</contextcondition>
<dropcondition>

!$beliefbase.carrieswaste
</dropcondition>
<deliberation cardinality="1">

<inhibits ref="performlookforwaste"/>
<inhibits ref="achievecleanup"/>

</deliberation>
</achievegoal>

Figure 8: Example of a goal definition in ADF

<plan name="moveto">
<body class="MoveToLocationPlan"/>
<trigger>

<goal ref="achievemoveto"/>
</trigger>
<contextcondition>
 $beliefbase.chargestate > 0
</contextcondition>

</plan>
Figure 9: Example of a plan definition in ADF

also possible to define data driven execution by using condition tag. To generalize the
concept also precondition and context condition can be introduced with corresponding tags.

Events
Agent have the property to react to different kind of events. Jadex differentiates two kind of
events. Internal events are kind of one-way communication of occurrences inside of agent.
A typical use case of this event is a GUI update. The other type, which is more interesting
for us, are message events, which are used for communication between autonomous agents.
All messages has to be specified in ADF, and as goals has arbitrary number of parameters.
Messages has several properties and flags, which follow the FIPA-ACL [49] standard
(Jadex is not restricted only on this type of messages, however only these are available in
current release). The templates of messages are defined in events section, using
messageevent element. All the FIPA-ACL parameters are created automatically, a
detailed description about them you can see in [1] or in FIPA-ACL specification. The
direction attribute is used to define if an agent wants to send, receive or both, the given
event. The content parameter is used to define the data transmitted by the message.

The actual sending and receiving a message is realized within plans, through corresponding
methods.

Configurations
Within configurations element in ADF, “initial” and/or “end” state of an agent type
can be defined. Initial instances of elements like goal or plan can be declared, thus are
created when the agent is started. On the other hand “end” elements can be specified, which
are instantiated when the agent is going to be terminated. Instances of elements always have
to refer some already declared element using ref attribute. Arbitrary number of
configurations can be defined for an agent or capability; each of them must have a name for
identification purpose. When starting an agent an arbitrary configuration can be choose, also
a default configuration can defined by attribute with identical name. Configurations allow
us to specify elements like capabilities, beliefs, goals, plans and events.

Within capabilities element the initial configuration of a referenced capability can be
set. A capability can also have more configurations, when it is included, by
initialcapability attribute can be specified which one to use. In the beliefs
section initial beliefs of belief sets can be altered. Thus we can newly introduce the facts in
referenced beliefs using initialbelief and initialbeliefset elements. Within
goals and plans elements, as we told before, “initial” and “end” goals and plans can be

18

<messageevent type="fipa" name="SampleMessage" direction="send"
posttoall="true" randomselection="true">

<parameter name="performative" class="String"
direction="fixed">

<value>SFipa.INFORM</value>
</parameter>
<parameter name="content" class="TransferData">

<value>new TransferData()</value>
</parameter>

</messageevent>
Figure 10: Example of a message event definition

defined, furthermore values of their parameter can be redefined. In events section
“initial” and “end” events can be specified, which are instantiated when the agent is born.

3.3.2 Plan Implementation

As we told before Plans are implemented using Java programming language. There are two
types of plans in the system, standard and mobile plans. When we implement one of them,
we extend jadex.runtime.Plan in case of standard plans, and
jadex.runtime.Mobile plan in case of mobile plans. The code of standard plan is
placed in body() in the other case to action(IEvent) method. Jadex provides a
library that allows us to access the object described in ADF. For more detailed description
see [1].

19

<configuration name="benchmark">
<capabilities>

<initialcapability ref="SampCapability" configuration="ConfigA"/>
</capabilities>
<beliefs>

<initialbelief ref="quiet">
<fact>true</fact>

</initialbelief>
</beliefs>
<plans>

<endplan ref="benchmark">
<parameter ref="goals">

<value>500</value>
</parameter>

</endplan>
</plans>

</configuration>
Figure 11: Example of a configuration in ADF

4 AML to Jadex Mapping
This section is the theoretical part of our contribution. Here we specify a mapping between
AML and Jadex platform. In the focus of our discussion is the relation between Mental
package of AML and Agent Definition Files (ADF). As can be seen from overview of Jadex
and AML Mental package the semantics of their elements are close to each other, since both
of them follow the BDI paradigm. Wee will see that the mapping between these systems
allow us to generate detailed source code.

Jadex plans, which are other components used to develop agents within the system, are
implemented in Java programming languages, using libraries provided in Jadex. Detailed
code generation of these files is beyond the scope of this thesis, since it goes behind scope
of AML Mental package. On the other hand Jadex, has only a very general specification of
these files, thus no additional strict implementation constraints are defined, therefore
detailed generation of such files is very close to problem of code generation from UML
models to Java language. We will cover this topic in section 7.2.

As we mentioned before our goal is to generate highly detailed Agent Definition Files. To
achieve this goal we additionally specify an extension of AML profile or variant of AML.
We introduce some extensions in form of tagged values for existing elements. In addition
we define stereotypes that capture elements of ADF, that cannot be properly described using
elements of AML either UML, thus there are no constructs with corresponding semantics,
but are fundamental parts of Jadex agents.

The specification of mapping is structured as follows:

• Mapping – mappings of AML elements to corresponding Jadex source code
fragments.

• Extensions – extensions for AML profile with Jadex platform related platform
specific elements, and their mapping specifications to source code fragments.

• Constraints – describes rules or constraints that have to be followed to achieve
correct code generation.

• Rationale – additional explanations, discussions and justification for mapping.

4.1 Mental Aspects

Mapping of elements from Mental package.

4.1.1 DecidableGoal

Mapping
• DecidableGoal is mapped to Achieve goal in ADF (in case the goaltype tagged

20

value is not specified).

• MentalConstraints of DecidableGoal are mapped as defined in section 4.1.6.

Extensions
• To denote that the DecidableGoal is kind of Jadex specific goal we use tagged value

with tag name goaltype, its value is one of five types of goals with lowercase
letters: achievegoal, performgoal, querygoal, maintaingoal,
metagoal. Depending on this tagged value the corresponding XML element is
generated into ADF.

• In addition the common goal attributes: retry, retrydelay, exclude,
posttoall, randomselection, recur, recurdelay are denoted as tagged
values, with identical name. These are generated as attributes of corresponding
goal tag, their value is translated without modification. For detailed description of
these attributes see [1].

• The unique boolean tagged value, is introduced to denote the goal is unique. It is
mapped to unique empty sub-element of a goal element, in case its value is true.

• The cardinality tagged value is introduced to denote cardinality of a goal; it is
mapped to cardinality attribute of deliberation sub-element of Jadex
specific goal elements.

• The exported tagged value is introduced, to denote that the goal is exported
within a capability. It is mapped to exported attribute of the goal tag, with
identical name and value.

• The abstract boolean tagged value is introduced, to denote that a goal is abstract
within a capability. In case its value is true, it is mapped to an empty abstract
sub-element of the goal. In this case it is not the standard goal tag that is generated,
but its reference name within a capability, for example achievegoalref instead
of achievegoal.

• The Attributes with Parameter stereotype are mapped as described in section
4.4.5.

Constraints
A goal is a reusable standalone element which can be associated with more agents or
capabilities. To denote which AgentType or EntityRoleType has the specified
DecidableGoal, a MentalAssociation is used. For more details see the mapping of
MentalAssociation in section 4.1.4

Tagged values exported and abstract are used for code generation only in case that
DecidableGoal is associated with EntityRoleType.

Rationale
AML has two specialized concrete goals, DecidableGoal and UndecidableGoal.
DecidableGoals are used to model goals for which the goal-holder can decide whether it has
been achieved or not; in contrary with UndecidableGoals which cannot be decided. The

21

semantic of DecidableGoal element corresponds to Jadex's general goal concept, thus in
Jadex all goals are decidable in sense that all their specific conditions can be evaluated at
any time.

Achieve goal is selected as default goal to be generated, since it is the most intuitive type of
goal in Jadex.

There is no corresponding notion to a goal's degree in Jadex, what in AML denotes kind of
reliability or confidence; we can interpret goals in Jadex as goals with maximal degree.

4.1.2 Plan

Mapping
• Plan is directly mapped to Jadex plan element in ADF. The name of the plan is

mapped to name attribute of plan element in ADF.

• The degree attribute of AML Plan is mapped to priority attribute of plan tag.

• The skeleton of the class implementing the Jadex plan is generated from AML Plan.
In case it is not specified explicitly by an extension, skeleton of standard plan is
generated. The name of the plan is mapped to the name of the class which
implements the plan (with upper-case first letter according to Java naming
conventions).

• MentalConstraints of Plan are mapped as defined in section 4.1.6

Extensions
• To denote the name of the class which implements the plan, we introduce

bodyclass tagged value, which is used also to generate the class attribute of
body element in ADF (but only in case the body tagged value is not presented, see
the following extension).

• In case the more specific instantiation of the implementing class is required, the
body tagged value is introduced, its value is mapped to the value of the body
element.

• To differentiate between two kinds of Jadex plans the plantype tagged value is
introduced. In case its value is mobile then mobile plan, in case its value is
standard then standard plan is generated. The type of the plan is denoted also in
ADF, by the type attribute of body tag; this attribute is also generated from this
tagged value. In case this tagged value is not specified, skeleton of a standard plan is
generated.

• The exported tagged values are introduced with identical usage as defined in
extension section of DecidableGoal.

• The Attributes are mapped using Parameter stereotype, as described in section 4.4.5.

Constraints
Plan is a reusable standalone element which can be associated with more agents or

22

capabilities. To denote which AgentType or EntityRoleType has the specified Plan the
MentalAssociation is used.

AML does not specify either the syntax or semantics of degree value, however in Jadex the
priority attribute is an arbitrary integer value, we assume that the value is provided in form
according to Jadex specification.

Rationale
AML Plan semantically corresponds to Jadex Plan.

In Jadex the class which implements a plan can be specified by introducing its name or, in a
more general way, by introducing a Java code snippet which instantiates it, for example a
constructor call. Our intent was to cover both cases with body and bodyclass tagged
values.

4.1.3 Belief

Mapping
The constraint of Belief is mapped to a Jadex condition element:

• name of the Belief is mapped to name attribute of the condition,

• value of the constraint is mapped as value of the condition element.

The Attributes of Belief with beliefbase stereotype are mapped as defined in section
4.4.4.

Constraints
There must be a MentalAssociation between AgentType (in case of capability between
EntityRoleType) and Belief.

Rationale
Semantics of AML Belief differ from semantics of beliefs in Jadex, in the sense that an
AML Belief is rather a logical expression which can be evaluated; on the other side Jadex
beliefs are data objects holding information state of an agent. Therefore semantics of AML
Belief correspond more to Jadex conditions, which are monitored boolean expressions as
defined in [1]. However, in both cases, these conditions may be dependent on attributes of
belief, therefore Jadex beliefs are also generated from AML Belief, thus from their
Attributes.

There is not a corresponding notion to Belief degree in Jadex, what in AML denotes kind of
reliability or confidence; we can interpret beliefs in Jadex as beliefs with maximal degree.

23

4.1.4 Mental Association

Mapping
The default constraints and mapping of MentalAssociation is denoted in constraints section
of DecidableGoal, Plan and Belief mapping. Here we define additional extensions for
certain situations.

Extensions
The following extensions are used to capture the case when a plan, goal, or a belief is
exported from a capability and included to an agent. The MentalAssociation between
AgentType and above mentioned MentalClasses may have the following tagged values:

• fromcapability boolean tagged value (if it is true) denotes that the
corresponding plan, goal or belief is included from a capability, or it is assigned to a
corresponding abstract element of a capability.

• capabilitylocalname tagged value is introduced to denote the name of the
capability from which the specified element is included.

Rationale
AML defines MentalAssociation as a specialized association (from UML) between a
MentalSemiEntityType, in this case the EntityRoleType, and between a MentalClass, in this
case a DecidableGoal, Plan or Belief. This is a typical usage of this connector, see examples
in [18].

Extensions are defined in order to facilitate code generation in situation:

• Where a concrete goal or belief (the imported element) is imported from a capability
that exports it. In this case the element is connected using MentalAssociations both
with the EntityRoleType (the capability where the element is defined), and with the
AgentType (or EntityRoleType; where it is imported).

• Where a concrete goal or belief is assigned to a corresponding abstract element of a
capability. For further description see section 4.4.6.

The capabilitylocalname tagged value is introduced since there could be a situation
when an imported element is associated with more capabilities that are included to the
agent. By defining this tagged value we avoid the possible ambiguities.

To clarify these extension see example in section 5.3.

4.1.5 Contribution

Mapping
Contribution is mapped into:

1. Trigger of a Goal, in case it is between a DecidableGoal and a Plan. Thus goal sub-
element of trigger element of a plan. The name of the DecidableGoal is mapped

24

to ref attribute of goal tag.

2. Condition of a trigger, in case it is between a Belief and a Plan. Thus condition
sub-element of trigger element of a plan. The constraint of Belief is mapped
to value of condition element.

3. Condition of a goal, in case it is between a Belief and a DecidableGoal. The type of
the condition element is determined from the BeneficiaryConstraintKind according
to section 4.1.6.

4. Inhibition, in case it is between two DecidableGoals. Thus to inhibition sub-
element of deliberation element of a goal. This is a negative Contribution, thus
contributor inhibits the beneficiary. The inhibition element is generated to goal
definition of beneficiary.

5. Trigger of meta goal, in case it is between a goal witch is not a meta goal, and
between a meta goal. Thus goal sub-element of trigger element of meta goal)
The name of the non meta goal is mapped to ref attribute of goal tag.

Extensions
For case 4, we introduce invariant tagged value to express condition of inhibition;
in addition we introduce inhibit tagged value to express the identical attribute of
inhibition tag, with possible values of when_active or when_in_process.

Constraints
In case 3, combination of more sufficient and necessary Contributions is allowed, that is
translated as defined in [18]. The necessary Contributions on same MentalConstraintKinds
are logically AND-ed, and sufficient MentalConstraintKinds are logically OR-ed. It is
assumed that only Contributions with identical ContributionKinds affect on one
MentalConstraintKind of a DecidableGoal.

Rationale
Contribution has generic semantics in AML. It is used to model various kinds of mental or
logical relations. The manner in which the contributor of the Contribution relationship
influences its beneficiary is specified by values of meta-attributes of the particular
contribution. Although meta-attributes does not influence the generated code (except case
3), in the following we specify them according to mappings, thus we clarify whether a
certain situation is modeled properly, to be semantically correct:

1. In general sense, from the point of view of Jadex, this is a sufficient contribution,
where the ContributorConstraintKind is CommitPreCondition, and the
BeneficiaryConstraintKind attribute of contribution is CommitCondition. This
means that the CommitCondition stands for the trigger of a plan in Jadex. Thus in
Jadex terminology, if the goal is committed (pre- and commit conditions hold) it is
sufficient for the execution of the plan. This also corresponds to situation when there
are more triggers defined for the plan; in this case the triggers are logically OR-ed in
Jadex.

The value of the degree attribute depends on the actual situation. Lets assume that
there are more plans associated with a goal, in this case a meta level reasoning could

25

be executed for selecting the appropriate plan, therefore value of the degree depends
on the implementation of an actual reasoning.

2. Analogous to the first case, only the ContributorsConstraintKind is unspecified.
According to Contributions definition in this case the Belief's constraint is
considered to contribute.

3. The ContributionKind is optional. However if only one Belief contributes to a
condition, then from aspect of Jadex it is a logical equivalence.

The ContributorsConstraintKind is unspecified. According to the definition of
Contribution, in this case the Belief's constraint is considered to contribute. The
BeneficiaryConstraintKind is optional. According to these rules the degree of the
contribution, if there is only one Belief that contributes to the condition, is maximal.
In other cases it depends on the situation.

4. In this case due to the easy deliberation mechanism implemented by Jadex,
ContributionKind is sufficient, thus there is no additional constraint that must hold
to inhibit the contributor. The degree is minimal, in other words this is negative
contribution. Due to the nature of this relation between Jadex goals, the
ContributorsConstraintKind and the BeneficiaryConstraintKind is not defined.

5. This is a sufficient Contribution, thus in this case dispatching such goal is sufficient
for execution of Meta Goal. In this sense the ContributorConstraintKind is
CommitPreCondition and the BeneficiaryConstraintKind is CommitCondition of
Contribution. The degree of Contribution is naturally maximal.

4.1.6 MentalConstraintKind

Mapping
The following table defines how the MentalConstraintKind attributes are mapped to Jadex
elements.

MentalConstrain
tKind / Jadex
Elements

Achieve
goal

Perform
goal

Query
goal

Maintain
goal

Meta
goal

Plan

preCondition Pre-
condition

commitCondition Creation
condition

Creation
condition

Creation
condition

Creation
condition

Condition
of Trigger

invariant Context
condition

Context
condition

Context
condition

Maintain
condition

Context
condition

Context
condition

cancelCondition Failure
condition

Drop
condition

Drop
condition

Drop
condition

Failure
condition

postCondition Target
condition

Target
condition

Target
condition

26

Rational
The MentalConstraintKind is defined in [17] as an “enumeration which specifies kind of
MentalConstraints, as well as kinds of constraints specified for contributor and beneficiary
in Contribution relationship”. Literals of this enumeration have their semantically similar or
corresponding representatives in Jadex, as defined by the table above. Some of the Jadex
goals, like Maintain goal and Achieve goal, define their special condition, additionally to
common conditions. These special conditions has priority to common conditions, in case
more of Jadex conditions could be represent a MentalConstraintKind, for example the
Invariant MentalContraint could be represented by Context condition but also by Maintain
condition in Achieve goal. In this case we gave priority to Maintain condition because its
denotes a specific property of this goal.

4.2 Architectures

Mapping of elements from Architectures package.

4.2.1 AgentType

Mapping
• AgentType is mapped to an Agent Description File. The file name will have the

form: the name of agent followed by “.agen.xml” suffix. The root agent element
is generated to ADF with static parts as schema definition and schema location.

• Name of AgentType is mapped to name attribute of agent tag.

• The Namespace of the AgentType is mapped to package attribute of agent tag.

Rationale
In AML AgentTypes are used to model types of agent, thus self-containing entities that are
capable of autonomous behavior within their environment, what corresponds to a Jadex
agent.

4.2.2 EntityRoleType

Mapping
• EntityRoleType is mapped to Capability, in an Agent Description File. The file

name will have the form: name of the capability followed by “.capability.xml”
suffix. The root capability element is generated to ADF with static parts like
schema definition and schema location.

• The name of the EntityRoleType is mapped to name attribute of capability tag.

• The Namespace of the EntityRoleType is mapped to package attribute of capability
tag.

27

Constraints
There must be a PlayAssociation between an AgentType and EntityRoleType to denote the
agent plays the role, thus in Jadex terms it includes the Capability.

Rationale
EntityRoleType in AML is used to represent a coherent set of features behaviors,
participation in interaction, or services offered or required by behavioral entities. This
definition corresponds to Capability in Jadex, what is basically an agent but without an own
reasoning process, thus a collection of features as goals, plans, etc..

4.2.3 PlayAssociation

Mapping
• If PlayAssociation is between AgentType and EntityRoleType or between two

EntityRoleTypes, then a capability include is generated to the ADF.

• The name of the EntityRoleType is mapped to name attribute of capability tag.

• The value of file attribute of capability tag is created from concatenation of
namespace of destination EntityRoleType and its name is separated with a dot.

Constraints
In case PlayAssociation is between two EntityRoleTypes it must be a directed association,
to denote only the source capability includes the target capability.

Rationale
PlayAssociation as explained in AML, is introduced to model the possibility of playing
entity roles by behavioral entities. Therefore, this case is a typical usage of PlayAssociation.

4.3 Behaviors

Mapping of Elements from Behaviors package.

4.3.1 CommunicationMessagePayload

Mapping
• CommunicationMessagePayload is mapped to a Message Event (meesageevent

sub-element of events element in ADF), its name is mapped to name attribute of
messageevent tag.

• The performative tagged value is mapped to a special parameter of Message
Event. The value of name attribute will be performative, value of type

28

attribute will be fipa, and value of direction attribute will be fixed. The value of
performative tagged value is mapped to the value of value sub-element of the
parameter.

• In case no attribute with parameter stereotype and name content is introduced
and the value of abstract tagged value is not true, attributes that have no
Parameter stereotype are mapped to fields of a Java class that represents the data
transferred by the Message Event (encapsulation methods for fields also generated,
the name of the CommunicationMessagePayload is mapped to name of the Java
class). If there are no such Attributes no Java class is generated. The corresponding
content parameter is generated to ADF, that defines that the content of the
Message Event will be the generated class.

Extensions
• The Attributes with parameter stereotype are mapped as defined in section 4.4.5.

List of valid parameters for Message Events can be found in Jadex User Guide [1].

• The direction tagged value is introduced with possible values of send,
receive and send_receive, to denote the identical attribute of
messageevent tag.

• The type tagged value is introduced to denote the identical attribute of
messageevent tag. The default value of this tag is fipa since this is the only
type of message supported by Jadex.

• To denote match sub-element of messageevent element the match tagged
value is introduced.

• The posttoall and randomselection boolean tagged values are introduced,
to denote attributes of messageevent with identical name.

• The abstract and exported tagged values are introduced with identical usage
as defined in extension section of DecidableGoal.

Constraints
There must be a Dependency with usemessage (defined in section 4.4.7) stereotype
between AgentType and a CommunicationMessagePayload, or between EntityRoleType
and a CommunicationMessagePayload, to denote that the agent or capability uses the
specified Message Event for communication.

Rationale
Description of messages in Jadex has close semantics to CommunicationMessagePayload,
where CommunicationMessagePayload are used to model objects transmitted by
CommunicationMessages. Within CommunicationMessagePayload the Attributes specify
the content of the messages, as defined in AML specification. The representation of this
data is generated to a single Java class in form of fields, except for the attributes that have
stereotype parameter, what represents parameters of a Message Event in Jadex.

The content parameter represents the data that is transferred by the Message Event,
therefore when it is explicitly introduced, no data class is generated.

29

4.4 Additional Extensions

In this section we introduce additional extensions to AML used to model fundamental
elements of Jadex, that have no semantically close representatives in AML.

We introduce Configure, Configuration, and Initialize stereotypes to model configurations
of a Jadex agent. Parameter stereotype is used to generate parameters for various Jadex
elements. The Beliefbase stereotype is used to extend Attribute to generate more specific
Jadex beliefs. The Assign stereotype to model assignment of abstract elements. Additionally
we define Use Message and Triggers connectors to model relations of Message Event.

We provide an informal definition of our extensions in additional Semantics section.
Although the whole specification could be provided here, the Extensions section has
remained for better readability.

4.4.1 Configure

Semantics
Stereotype: <<configure>>

Configure is a specialized Dependency (from UML) between a MentalSemiEntityType and
a Configuration, used to model relationship between an AgentType and a Configuration or
between an EntityRoleType and a Configuration.

Mapping
The Configure connector is used to map a Configuration to a configuration sub-
element of configurations element in ADF.

Constraints
Source Code is generated only in case that Configure is between an AgentType and a
Configuration, or between an EntityRoleType and a Configuration.

Rationale
Configure is used to model a relationship between an agent and its configuration, or
between a capability and its configuration. In other words, it is used to specify the possible
configurations of selected MentalSemitEntityTypes.

4.4.2 Configuration

Semantics
Stereotype: <<configuration>>

Configuration is a specialized Class (from UML) that represents a possible configuration of
an AgentType or an EntityRoleType.

30

Mapping
Configuration is mapped to a configuration element to ADF, the name of the
Configuration is mapped to the name attribute of configuration tag.

Extensions
One of the basic and important features that is provided by configurations is that the facts of
beliefs and values of parameters can be redefined within a configuration. We model
redefinition of these properties as follows:

• To model redefinition of a parameter of a goal, plan or a message event, a
parameter (attribute with parameter stereotype) needs to be introduced within
a configuration. The name of this parameter must have the form: name of the
element that has the target parameter, and the name of the parameter separated by a
dot. The new value of the result parameter is then generated from this parameter as
defined in section 4.4.5.

• To model redefinition of a fact of a belief a beliefbase (attribute with
beliefbase stereotype) needs to be introduced within the Configuration. The
name of this beliefbase must have the form: name of the belief that has the
target beliefbase, and the name of the beliefbase separated by a dot. The
value of the result initialbelief or initialbeliefset is generated then
from this beliefbase as defined in section 4.4.4.

The both cases are illustrated on an example in section 5.2.

Constraints
In both cases, for attributes with parameter stereotype and/or for attributes with
beliefbase stereotype, the referenced elements have to be connected with Configuration
using Initialize connector.

Rationale
An agent or capability in Jadex may have several configurations, that define the initial and
end states of an agent instance; Configuration represent such a configuration, together with
Initialize connector defines the set of initial and end elements of an agent or capability.
Specifying parameter values or redefining facts of a belief are key aspects of Configuration,
such mapping of attributes as defined above provides a simple way to capture this aspect.

4.4.3 Initialize

Semantics
Stereotype: <<initialize>>

Initialize is a specialized Dependency between a Configuration and one of MentalClass,
EntityRoleType or CommunicationMessagePayload. It is used to model relation of specified
elements with configurations, thus it specifies which element is initialized if an agent is
instantiated or going to be terminated.

31

Mapping
The supplier of Initialize connector is mapped to:

• initialgoal or endgoal element of a configuration (depending on inittype
tagged value, see extensions), in case that the supplier is a DecidableGoal. The name
of the supplier is mapped to ref attribute of the generated element's tag. The
initname tagged value is mapped to the name attribute of of generated element's tag.

• initialplan or endplan element of a configuration (depending on inittype
tagged value), in case the supplier is a Plan. The name of the supplier is mapped to
ref attribute of generated elements tag.

• initialcapability element, in case supplier is an EntityRoleType. The
initialconfig tagged value is mapped to configuration attribute.The name of the
EntityRoleType is mapped to ref attribute of initial capability.

• initialmessageevent or endmessageevent (depending on inittype tagged
value), in case supplier is a DecoupledMessagePayload. The name of the supplier is
mapped to ref attribute of generated elements tag.

In case supplier is a Belief initialbelief or initialbeliefset element of a
configuration that is generated from attributes of the Belief. For how the facts of beliefs are
redefined see mapping of element Configuration.

Extensions
• The inittype tagged value is introduced, with possible values of init and end,

to denote when to initialize a component, thus when an agent is started or going to
be terminated. The init value denotes that the supplier of Initialize dependency is
instantiated when the agent is initialized.

• The initname tagged value is used to introduce a specific name for a goal
instance that are specified in configurations.

• The initialconfig is used to specify the initial configuration of a capability
that is initialized when an agent is started.

Constraints
Source code is generated only if the supplier of Initialization is one of the type:
DecidableGoal, Belief, Plan, CommunicationMessagePayload, EntityRoleType.

Rationale
The Initialize connector is used to specify the initialized elements within a configuration.

4.4.4 Belief Base

Semantics:
Stereotype: <<beliefbase>>

32

Is a specialized Attribute (from UML) used to extend attributes, to generate belief and/or
beliefset elements.

Mapping
Attribute with beliefbase stereotype is mapped to belief or beliefset element (in
case the upper bound of attribute multiplicity not equals to 1), as following:

• The name of the attribute is mapped to name attribute of belief or beliefset
tag.

• The type of the attribute is mapped to class attribute of the generated tag.

• If upper bound of the attribute multiplicity is 1, its initial value is mapped to fact
sub-element of parameter.

Extension
• To model facts that are introduced as expression we introduce expressionfact

tagged value that is mapped to fact or facts element depending on Attributes
multiplicity.

• In case the upper bound of attribute not equals to 1, values can be specified by
initialfactlist tagged value separated by “|” character.

• The evaluationmode tagged value is introduced to denote wheter the value of
the fact is static or needs to be evaluated (it is dynamic). Its possible values are
static and dynamic. It is mapped to identical attribute of fact or facts sub-
element of belief or beliefset elements.

• To denote how often a fact needs to be evaluated the updaterate tagged value is
introduced. It is mapped to updaterate attribute of belief or beliefset tag.

• The abstract and exported tagged values are used as defined first in section 4.1.1

Constraints
This stereotype can be applied only on attributes of a Belief.

Rationale
The beliefbase stereotype extends Attribute of UML, to specify more detailed beliefs
within an ADF.

4.4.5 Parameter

Semantics
Stereotype: <<parameter>>

Is specialized Attribute (from UML) used to extend attributes, to generate Jadex specific
parameters.

33

Mapping
Attribute with parameter stereotype is mapped to Jadex parameter or
parameterset element (in case the upper bound of attribute multiplicity not equals to 1),
as following:

• The name of the attribute is mapped to name attribute of parameter or
parameterset tag.

• The type of the attribute is mapped to class attribute of the generated tag.

• If upper bound of the attribute multiplicity is 1, its initial value is mapped to value
sub-element of parameter.

Extensions
• The direction tagged value is introduced to denote direction attribute of

parameter or pamameterset tag.

• In case the upper bound of attribute not equals to 1, values can be specified by
initialfactlist tagged value separated by “|” character.

• To model values that are introduced as expression we introduce
expressionfact tagged value, that is mapped to value or values element
depending on Attributes multiplicity.

• The evaluationmode tagged value is introduced to denote wheter the value of a
parameter is static or needs to be evaluated (it is dynamic). Its possible values are
static and dynamic. It is mapped to identical attribute of value or values
sub-element of parameter or parameters element.

• To denote how often a value needs to be evaluated the updaterate tagged value
is introduced. It is mapped to updaterate attribute of parameter or
parameterset tag.

Rationale
The parameter stereotype extends Attribute of UML, to specify Jadex like parameters,
that are commonly used by elements like Goals, Plans and/or Message Events.

4.4.6 Assign

Semantics
Stereotype: <<assign>

Assign is a specialized dependency between two DecidableGoals, between two Beliefs, or
between two CommunicationMessagePayloads. It is used to model that an abstract element
defined in a capability is assigned from an element defined in an agent, or in an other
capability.

34

Mapping
This connector is mapped to an assign sub-element to the element that is generated from
the dependent DecidebaleGoal, Belief, or CommunicationMessagePayload.

Constraints
An element can be assigned to only one abstract element, but more elements can be
assigned to an abstract element (see [1]) .

In case of beliefs, all attributes (with beliefbase stereotype) of the dependent Belief, must
have corresponding abstract attributes in the supplier Belief. (In this case the belief and
beliefset elements are generated from the beliefbases of the Belief.) The concrete and
abstract beliefs should not be mixed, thus one Belief should have only abstract or only not
abstract (concrete) beliefbases.

Rationale
When an abstract element is defined within a capability, its body is assigned from a
concrete element of an agent (or a capability). However an abstract element could be
assigned, or specified, by more agents. Thus to model a concrete element we use a separate
element that is assigned to an abstract element, using this Assign dependency. To clarify
this situation see example in section 5.3.

4.4.7 Use Message

Semantics
Stereotype: <<usemessage>>

Uses is specialized Dependency between a MentalSemiEntityType and a
CommunicationMessagePayload, used to model that the CommunicationMessagePayload is
used by the MentalSemiEntityType, for various (not further specified) purposes.

Mapping
The default usage of this connector is defined in constraints section of
CommunicationMessagePayload. Here we define only additional extensions for certain
situations.

Extensions
The following extensions used to capture the case when Message Event is exported from a
capability and included to an agent. The MentalAssociation between AgentType and
CommunicationMessagePayload may have the following tagged values:

• fromcapability boolean tagged value (in case its value is true) denotes that the
corresponding message event is included from a capability, or it is assigned to an
abstract message event of a capability.

• capabilitylocalname tagged value is introduced to denote the name of the

35

capability from which the specified element is included.

Constraints
Source code is generated only in cases when the MentalSemiEntityType is an AgentType or
an EntityRoleType.

Extensions are defined in order to facilitate code generation in situation:

• Where a concrete message event (the imported element) is imported from a
capability that exports it. In this case the concrete element is connected using Use
Message dependency both with the EntityRoleType (the capability where the
element is defined), and to the AgentType (or EntityRoleType; where it is
imported).

• Where a message event is assigned to a corresponding abstract element of a
capability. For further description see section 4.4.6.

The capabilitylocalname tagged value is introduced since there could be a situation
when an imported element is associated with more capabilities that are included to the agent
(or capability). By defining this tagged value we avoid the possible ambiguities.

To clarify these extension see example in section 5.3.

Rationale
This connector plays a similar role as MentalAssociation, thus describes relations with a
reusable element and an Agent or Capability. Events or message events are key features in
BDI model, also in Jadex. However in ADF message events are specified in a general way,
thus the concrete usage or behavior facilitated by a message events is not described (the
only exception is when they serves as plan triggers, see next section).

4.4.8 Triggers

Semantics
Stereotype: <<triggers>>

Trigger is specialized Dependency (from UML) between a Plan and a
CommunicationMessagePayload, used to model a relation that describes that the client, the
CommunicationMessagePayload, serves as a trigger for the supplier, a Plan.

Mapping
Trigger is mapped to a messageevent sub-element of trigger element of a plan.

The name of the CommunicationMessagePayload is mapped to ref attribute of
messageevent tag.

Rationale
Connector trigger is used to model that a Plan is reacting on a specified Message Event, this
is a common and natural behavior of Jadex, since the message events are handled or

36

processed inside a plan.

4.5 Summary

In this section we introduced a mapping of AML elements, mostly from Mental package to
Jadex source code fragments, also extension to AML elements, in form of tagged values,
which allows a generation of high detailed ADF. In addition other artifacts, skeletons of
Plan implementations, and Java classes that represents data types that are transmitted in
form of messages events, can be generated. With Mental package of AML, and few
elements from other packages, using our simple extensions the major portion of BDI
concept implementation in Jadex can be modeled, therefore can be transformed to
corresponding source code representation in Jadex, thus ADF.

We introduced additional stereotypes as extensions that serve to model features that are
more Jadex specific, like agents configurations, which can be generated with using
Configure, Configuration and Initialize stereotypes, Jadex like parameters with Parameter
stereotype, and some Jadex specific connectors related to Message Events, etc.

Other elements like internal events, imports, properties that are used in special cases (GUI
update, etc) is out of scope of our discussion. Additionally we do not introduce extension
for every type of plan trigger, and plan parameter mapping, that are used in some special
cases, and for some more elements. However our goal with extension was not to generate a
complete code, or Agent Definition Files, but to allow capture the major aspects of the
system, thus allow generation of high detailed code. However with more additional
extensions a complete generation of ADF could be reached, but a definition of such
extensions and their mapping is out of limits of this thesis.

37

5 Examples
In this section we provide examples of code generation based on mapping, defined in
previous section. First we introduce a model and describe how it is translated to target
source code. Because of the simplicity of generated Java classes, we introduce only
generated Agent Definition Files. Every example captures an aspect of agents definition.
The not related elements are excluded from the diagram, as not relevant connectors, or
tagged values that are not specified.

5.1 Elements of an Agent and Mental Relations

In our first example we describe an agent that is partially inspired by the “Cleanerworld”
example (see [10]). The first diagram (Figure 12) describes an agent that has two goals, first
is to maintain its battery loaded and the second is to clear a room. It has a Belief that tells
the agent if there is a waste left in the room, and a plan for cleaning a room. The mapping of
the elements on the diagram is defined in sections 4.1.1, 4.1.2, 4.1.3.

On the second diagram (Figure 13) the mental relations are modeled. The mapping of these

38

Figure 12: Defining elements of an agent

«agent»
CleanerAgent

«dgoal»
CleanRoom

«param eter»
+ room num ber: i nt

tags
abstract = fa l se
goal type = ach ievegoal

«plan»
CleanRoomPlan

tags
bodyclass = CleanRoom PlanIm pl
p lantype = standard

«dgoal»
MaintainBatteryLoaded

tags
abstract = fa lse
exclude = never
goal type = m ainta ingoal
invarian t = batteryPower > 20
unique = true

«bel ie f»
IsWasteLeft

«bel ie fbase»
+ num berofwaste: in t = 5

tags
constra in t = $bel ie fbase.num berofwaste == 0

«m enta l»

«m enta l»
«m ental»

«m enta l»

Contributions is defined in section 4.1.5 (cases 1,3,4). The model contains tree types of
contribution. The Contribution between two goal denotes an inhibition, thus the
MaintainBatteryLoaded goal inhibits the ClearRoom goal if its maintain condition
(invariant tagged value on diagram, see section 4.1.6) not holds.

The Contribution between CleanRoom goal and the CleanRoomPlan, denotes that the
goal serves as a trigger for the specified plan.

The third contribution between IsWasteLeftBelief and CleanRoom decidable goal,
where the value beneficiaryConstrainKind (not shown on diagram) of the Contribution is
post that is resulted in target condition of the CleanRoom goal is ADF.

The generated ADF can be seen on Figure 14.

39

Figure 13: Mental relations

«plan»
CleanRoomPlan

tags
bodyclass = CleanRoom PlanIm pl
plantype = standard

«dgoal»
CleanRoom

tags
abstract = fa lse
goal type = ach ievegoal

«bel ief»
IsWasteLeft

tags
constraint = $be l iefbase.num berofwaste == 0

«dgoal»
MaintainBatteryLoaded

tags
abstract = fa lse
exclude = never
goal type = m ainta ingoal
invariant = batteryPower > 20
unique = true

«contributes»

«contributes»«contributes»

5.2 Configurations

The diagram in our second example describes a configuration of the agent introduced in the
first example. The DefaultConfiguration of the agent initializes the
MaintainBatteryLoaded and CleanRoom goals when an agent is created (tagged
values of Initialize dependency are not shown on diagram). The configuration specifies a
value for parameter roomnumber of CleanRoom goal, and a specifies an initial fact for
numberofwaste belief. The mapping of the elements is defined is sections 4.4.1, 4.4.2,
4.4.3. The generated source code of ADF can be seen on Figure 13.

40

<agent ... name="CleanerAgent">
<beliefs>

<belief name="numberofwaste" class="int">
<fact>5</fact>

</belief>
</beliefs>
<goals>

<achievegoal name="CleanRoom">
<parameter name="roomnumber" class="int" >

<value></value>
</parameter>
<targetcondition>

$beliefbase.numberofwaste == 0
</targetcondition>

</achievegoal>
<maintaingoal name="MaintainBatteryLoaded" exclude="never">

<unique/>
<deliberation>

<inhibits ref="CleanRoom"></inhibits>
</deliberation>
<maintaincondition>batteryPower>20</maintaincondition>

</maintaingoal>
</goals>
<plans>

<plan name="CleanRoomPlan" >
 <body type="standard" class="CleanRoomPlanImpl"/>

 <trigger>
 <goal ref="CleanRoom"/>
 </trigger>
 </plan>

</plans>
. . .
</agent>

Figure 14: The generated Agent Description File

41

Figure 15: Agents default configuration

«agent»
CleanerAgent

«configuration»
DefaultConfiguration

«param eter»
+ CleanRoom.room num ber: in t = 55

«beliefbase»
+ IsWasteLeft.numberofwaste: int = 15

«dgoal»
CleanRoom

«parameter»
+ roomnum ber: in t

«dgoal»
MaintainBatteryLoaded

«bel ief»
IsWasteLeft

«bel iefbase»
+ numberofwaste: in t = 5

«configure»

«in i tia l ize»

«in i tia l ize»

«ini tial ize»

<agent ... >
...

<configurations>
<configuration name="DefaultConfiguration">

<beliefs>
<initialbelief ref="numberofwaste">

<fact>15</fact>
</initialbelief>

</beliefs>
<goals>

<initialgoal name="InitialMaintainBatteryLoaded"
ref="MaintainBatteryLoaded">

</initialgoal>
<initialgoal name="InitClearRoom" ref="CleanRoom">

<parameter ref = "roomnumber">
<value>55</value>

</parameter>
</initialgoal>

</configuration>
</configurations>

</agent>
Figure 16: The generated configurations element in ADF

5.3 Include from a Capability

Our last example (Figure 17) illustrates the situation when some elements of an agent are
included from a capability. There are two possible forms of include, their description and
mapping are defined in sections 4.1.4, 4.4.6 and 4.4.7.

In the first case, the AbstractGoal goal is abstract within the capability. When an
element is abstract within a capability, its definition or body is assigned from a concrete
element, in our example from the GoalToAssign element, using Assign dependency. The
tagged value fromcapability of mental association between Agent1 and
GoalToAssign denotes that the goal is assigned to an element in this case to
AbstractGoal is included from a capability.

In the second case, when the specified element, on our example the ConcreteMessage,
is defined within a capability and included as a concrete element to an agent. In this
situation the value of fromcapability tagged value of usemessage dependency
between Agent1 and ConcreteMessage also needs to be true, and the
fromcapability tagged value needs to be specified. In this situation the
ConcreteMessage element is defined within the capability (as denoted using
MentalAssocioation), and it is only referenced from Agent1 using concrete element.

In both cases there must be a PlayAssociation between the AgentType and the
EntityRoleType. The result source code of the generated agent and capability can be seen on
Figure 18 and Figure 19.

42

43

<agent ... name="Agent1">
...
<capabilities>

<capability name="Capability1" file="packagename.Capability1"/>
</capabilities>
...
<goals>

<achievegoal name="GoalToAssign" >
<assignto ref="Capability1.AbstractGoal"/>
<parameter name="attribute1" class="int" >

<value>10</value>
</parameter>
<targetcondition>sampleCondition</targetcondition>

</achievegoal>
</goals>
...
<events>

<messageeventref name="ConcreteMessage" exported="true" >
<concrete ref="Capability1.ConcreteMessage"/>

</messageeventref>
</events>
...

</agent>
Figure 18: The generated agent

Figure 17: Example of includes from capability

«agent»
Agent1

«enti ty role»
Capability1

«dgoal»
AbstractGoal

tags
abstract = true
exported = true

«cm payload»
ConcreteMessage

«param eter»
+ content: String
+ recievers: AgentIdenti fier [1..*]

tags
direction = send
exported = true
perform ative = SFipa.INFORM
type = fipa

«dgoal»
GoalToAssign

«param eter»
+ attribute1: int = 10

tags
abstract = fa lse
goaltype = achievegoal
postCondi tion = sam pleCondition

«usem essage»
«usemessage»

«m ental»
«m ental»

«assign»

44

<capability ... name="Capability1">
...
<goals>

<achievegoalref name="AbstractGoal" exported="true" >
<abstract/>

</achievegoalref>
</goals>
...
<events>

<messageevent type="fipa" direction="send" name="ConcreteMessage"
exported="true" >

<parameter name="performative" class="String"
 direction="fixed">

<value>SFipa.INFORM</value>
</parameter>
<parameter name="content" class="String" direction="fixed" >

<value></value>
</parameter>
<parameterset name="recievers" class="AgentIdentifier"

direction="fixed">
<value>FirsdAID</value>
<value>SecondAID</value>

</parameterset>
</messageevent>

</events>
...

</capability>
Figure 19: The generated capability

6 Description of the Implementation
Code generations from models is one of the key features of Model Driven Engineering.
Implementation in this case denotes a realization of code generation from models. In this
section we provide an overview of approaches which can be followed by implementation,
and introduce our implementation that generates code from AML to Jadex, based on our
theoretical explorations introduced in section 4. Our solution follows an approach that
generates source code from XMI files, therefore we also present a more detailed analyzes of
this approach.

6.1 Overview of Approaches

Code generation from models can be implemented by following one of the architectural
approaches presented in this section. Each of them has their advantages and disadvantages,
we introduce only a general overview, a detailed analyzes can be found in [15].

Using CASE Internal Tools
This approach uses tools that are built in a CASE tool. A common idea behind CASE tools
is that the functionality of the tool should cover the projects life-cycle, thus the code
generation, also reverse engineering etc. One of the disadvantages of this approach is the
tight integration with the CASE tools, also that these generators are designed to generate
code for general cases, and simple patterns.

Add-in Producing Intermediate Language
The common scenario for this approach is that we implement code generation using Add-in
for a CASE tool that produces intermediate language. The Add-in uses the tool's API that
provides access to a model. The intermediate language is then transformed to target
platforms code. Both code generation steps should be simpler than a direct translation. This
approach is much more flexible than a direct translation, however a significant disadvantage
is that an intermediate language has to be designed which should separate the frontend and
backend generators in a well-balanced manner.

Add-in Producing Target Language
This approach is very similar to the previous one only the intermediate language generation
step is excluded, thus no intermediate language has to be defined, the code is generated
directly to target system. However this gives up also the flexibility which separated a part of
the implementation from CASE tool. The implementation of this approach usually demands
a huge amount of work.

45

Exported XMI
Code generation from XMI documents is the last approach that we mention here. It is very
flexible way that allows us to separate completely implementation from CASE tools. This
approach will be described in detail in the following sections.

6.2 Code Generation From XMI

In this section first we give a short introduction to XMI document format, then examine its
usability for code generation.

6.2.1 The XMI Document format

The XML Metadata Interchange (XMI) is an Extensible Markup Language based standard
for exchanging meta-data information. It is an international standard created by OMG, it can
be used to express any meta-data whose meta-model can be expressed in MOF [43]. The
design of XMI follows the vision of OMG, thus data can be separated to abstract models
and concrete models [42]. Theoretically the most common use of this format would serve
as an interchange format for UML models, or in some cases also for diagrams by Diagram
Interchange (DI, XMI[DI]) language. However the current situation is that there are several
incompatibilities between tools supporting XMI, thus implementation of serialization in
these tools rarely follows the standard strictly. The format of the produced document in
most cases it adjusted to tools needs. Additionally the usage of Diagram Interchange is
almost zero. Thus the usage of XMI for exchanging models and/or diagrams between
modeling tools is rarely possible [40].

Another issue with XMI is that there has been several versions created: 1.0, 1.1, 1.2, 2.0,
2.1. Additionally versions 1.* and 2.* are widely different. The most recent version is 2.1.1
released in 2007, for additional information see XMI specification [42].

Although there are lots of problems with usage of XMI in practice, due to the flexibility and
separateness, that is allowed by this format, there is a strong effort for its wider utilization.
As wee will see although in majority of cases it fails as an interchange format between
CASE tools, but it is usable for other purposes, like code generation.

6.2.2 Realization of code generation from XMI

Code generation from XMI is a flexible approach of code generation that uses serialized
UML models. A theoretical or ideal scenario of this approach is that the model is created
with a CASE tool, which is saved to a XMI file, then the source code and other artifacts are
generated from XMI with a code generator that handles it, as depicted on Figure 20.

46

However in practice this scenario cannot be accomplished due to the problems which occur
with the XMI standard. As described above CASE tools has questionable support for XMI
in sense that the serialization not follows precisely the standard. In fact one of the biggest
challenges that needs to be solved in this approach is handling dialects of XMI documents.
In practice there must be a transformation from the XMI created by a CASE tool, to the
XMI format which is supported by code generator. This requirement is mostly fulfilled by
the code generator (see [39], [38]), or can be solved by providing a proper

XSL transformation, but this could mean a lot of work. The scenario according to these
changes is illustrated on Figure 21.

We can now summarize the advantages and disadvantages of this concept.

Advantages:

• Complete independence from CASE tools.

• Code generators have easy to use and general API, in sense that arbitrary target
language can be easily generated.

Disadvantages:

• Some CASE tools don't event support serialization models to XMI.

• Transformation of XMI dialects needs to be solved.

• However there are lots of opensource generators that support this approach, but lots
of them is abandoned project or poorly documented, see section 6.3.

• Within a new version of a CASE tool the format of the produced XMI can be
changed, therefore transformation that solves the dialect problems needs to be
adjusted.

47

Figure 21: XMI code generation

Model CASE tool's
XMI Dialect

Generators
XMI Dialect

Code Generator Code

Figure 20: Ideal scenario of code generation from XMI

CodeCode GeneratorXMIModel

6.3 Code Generation Supporting Tool Overview

There is a huge amount of open source projects that supports code generation from XMI. In
this section we give an overview about the most prominent and promising ones. In addition
we introduce some supplementary solutions that might facilitate the generation process.

6.3.1 Code Generation Frameworks

Hereinafter we describe a few prominent representatives of code generation frameworks.
Code generation portals lists a relatively large set of systems that supports the MDA
paradigm using XMI files. Additional tools can be found for example at [37] or other code
generation portals, however lots of them like - AXgen [36] or Butterfly [35] - are
abandoned projects, or do not fulfill our requirements, namely that a code generator should
enable us to generate code to an arbitrary language (in our case XML and Java), and it
should support XMI conversion from various dialects, too.

• Eclipse Modeling Framework (EMF) [34] – is a very prominent modeling
framework and a code generation facility that uses model specification in XMI
format (to be more precise a format that follows XMI 2.1), and provides its general
purpose object model that serves as a base for a variety of modeling tools. EMF has
its own implementation of MOF [43] that follows the OMG standard architecture,
includes lots of components that provide various modeling services such as
validation framework, model queries, model comparison and transformation.
EMF itself contains more projects that implement code generation like Xpand or
JET.

• Java Emitter Templates (JET) [33] – is a code generator, part of the EMF, more
precisely, part of the Model To Text project [32]. It provides template based code
generation engine. The templates use a JSP like syntax, which provides a generic
approach; it thus can be used to generate code to an arbitrary language. However
JET has a questionable documentation.

• Acceleo [39] – is an easy to use code generation framework based on EMF. It uses
templates and an own template language that allows us to generate code to an
arbitrary target language. Acceleo is well documented, and also solves conversion of
XMI dialects to the requested format. More information about supported CASE
tools can be found in [9]. It provides an own object model for XMI 1.1 and 1.2, as
complement to EMF object model that supports only XMI 2.x like formats.

• AndroMDA [38] – is a code generation framework that adheres to MDA paradigm.
It is based on Netbeans MDR but also supports EMF repository implementation.
Uses Apache Velocity as a template language for code generation, supports XMI
conversion, but lacks good documentation.

We give our reference implementation (section 6.5) using Acceleo, since it is well
documented, supports XMI conversion. It is easy to use, and it is based on EMF, thus after
XMI file transformed to EMF format it becomes compatible with all EMF features. Acceleo
has good integration with Eclipse IDE, provides an intuitive and easy-to-use perspective.
AndroMDA is a good competitor of Acceleo, however it is more robust and as we
mentioned relatively poorly documented, what also affected our decision.

48

6.3.2 Supplementary technologies

In this section we present some technologies related to our approach of code generation:

• XMI2 [31]– is a conversion tool implemented a service. It is designed to solve
interoperability problems between CASE tools caused by XMI dialects, thus
transforms XMI from one CASE tool specific format to an other. The actual
implementation suffers from limitations, it doesn't support complex data types or
UML profiles, also only a small amount of CASE tools is supported.

• MOF Model To Text Transformation Language [30] – is an OMG specification
introduced in 2008, that defines a template based approach or a template language
that translates a model to various text artifacts. This specification tries to avoid the
appearance of new template languages with same purpose, and create a standard for
template based code generator tools. The support of this language was announced
also in Acceleo for the next major release [39].

6.4 Code Generation Using Acceleo

Acceleo [39] is a code generation frameworks that generates code from UML models
serialized to XMI documents. It is designed to support XMI 1.* and 2.* formats, and to
ensure compatibility with main UML modelers, therefore implements conversion of XMI
dialects to appropriate format. Works with any meta-model, implementing MOF and QVT
recommendations as specified by OMG [58]. This allows instant use of the new UML
versions or any other meta-model. Acceleo supports template based code generation, it is
independent from the target technology, thus is able to generate source code to any textual
format, like Java, XML, C or C#. Supports integration with Eclipse IDE, that provides
features that facilitates the development process, like meta-model and script based
completion or real time error detection.

In this section we give an introduction of code generator development process with
Acceleo, thus we examine its components and features that we used in our implementation.

6.4.1 XMI Compatibility

Acceleo is based on Eclipse Modeling Framework, therefore the XMI 2.* formats are
directly supported. However EMF cannot work with XMI 1.* so it provides a bridge to
overcome this problem. Currently the following combination of standards is supported, as
defined in Acceleo User Guide [9].

XMI\UML 1.3 1.4 2.0
1.1 yes yes
1.2 yes yes
2.0 yes

49

However, this table is more like an orientation, since XMI 2.1 is also supported with UML
2.* meta-models, also it depends on the conversion that is made by Acceleo on XMI dialect.
A general rule is that UML 2.* meta-models do not work with XMI 1.* and UML 1.* meta-
models do not work with XMI 2.*.

The list of tools that produce XMI which can be used, thus converted by a bridge, can be
found in Acceleo User Guide.

6.4.2 Templates

Templates are text files that are used to examine the model and to extract required
information from it; they are used to produce result source code. In template we define a
metamodel that specifies the type of the model, we introduce scripts that are applied on an
arbitrary meta-class, on a UML Class, Attribute, Package or even the whole model. Scripts
are responsible for the actual code generation. The last components of template files are
services that are imported to solve complex operations, as described in next section.

A sample template can be seen on Figure 22, when we use the UML 1.4 metamodel, as
defined by metamodel keyword, to generate a simple XML files from Classes. In fact we
generate Jadex like plans as root elements, using the second script. As can be seen on this
example, functions that are used to access model elements, all keywords and functions are
encapsulated within “<%”,“%>” special brackets, other text is emitted to result source code
without any change. Every script has its name, and can be referenced from an other, in our
example the first script with ParameterGen name is used to generate parameterset
elements from Attributes of the class. As defined by type keyword it is applicable only on

50

<%
metamodel http://www.obeo.fr/acceleo/uml14
import myservices.MyServices
%>

<%script type="Attribute" name="ParameterGener"%>
<%if (multiplicity.range.upper != 1){%>

<parameterset name="<%name%>">
<%for (initialValue.body.split(";")){%>

<value><%toString()%></value>
<%}%>
</parameterset>

<%}%>

<%script type="core.Class" name="sample" file="<%name%>.txt"%>
<plan name="<%name%>">

<%for (feature.filter("Attribute")){%>
<%ParameterGener%>
 <%}%>
<trigger>
 <%for (supplierDependency.client[stereotype.name == "belief"]){%>
 <condition>

<%taggedValue[type.name == "constraint"].dataValue%>
</condition>

 <%}%>
</trigger>
</plan>

Figure 22: Sample template file

UML Attributes. We check if the Attributes upper bound don't equals to 1, and if not
assume that initial values of attributes contains more values, composited into one string and
separated by “;” character, therefore we use a service that splits the initial values into parts,
and we generate value elements for each of these parts, using for loop.

The file attribute of the script specifies the name of the result file that is created with the
script. In our case the name of the plan will be equal to the name of the Class, and the result
will be a “txt” file.

Additionally we generate condition triggers from Beliefs (element that has stereotype
“belief”) that are connected with this class using dependency connector, thus our class is the
supplier of the dependency, and the Belief is the client. Belief's constraint is a tagged value
that filtered from other tagged values with expression introduced within “[]” brackets.

This short example gives an introduction to the structure and basic components of the
templates. For more detailed description please refer to the Acceleo User Manual.

6.4.3 Services

Services provide complex operations that would be complicated to realize within a template
file. Services are written in Java programming languages and are implemented as operations
of a Class file, thus we are able to handle complex problems easily. This approach provides
an access to low level EMF classes that represents the model. Services or operations can be
called from template files, the first parameter of the operation is always the current
generation node. Node can be an arbitrary object type including primitive Java types;
EObject - which is an EMF equivalent of java.lang.Object, or ENode which is an
abstract data type defined by Acceleo - , used to encapsulate a value.

We distinguish between two types of services:

• Services that are automatically integrated to template files. A complete description
of these can be found in Acceleo Reference [8].

• Utility services that are integrated to generation modules and are imported by
templates.

An example usage of a string service can be seen on Figure 8, which is applied on initial
values of attributes, that splits the initial string values to parts and returns them as members
of a list that are handled then by a for-cycle.

6.4.4 Execution Chains

An execution chain serves to group several operations on models, it is like a “Makefile” or
“Ant” script for traditional development. An example use case for execution chains is to
define application of more templates for a single model, therefore to it simplifies the process
of code generation execution, or launching bulk operations. The Eclipse integration for
Acceleo provides a GUI that enables an easy-to-use editing and launching of these chains
(see [9]).

51

6.5 Implementation Details

Our implementation consists templates that generates source code from AML using
extensions that are defined in section AML to Jadex Mapping. This is a reference
implementation that also serves as complementary information for mappings.

We provide our templates for UML 1.4 metamodel. Because of conventions of Accele
introduced in section 6.4.1, our implementation is suitable for XMI 1.* files.

As it is described in section 6.5.2, due to the problems with Acceleo bridge that handles
XMI transformations, the realization of generation using UML 2.* metamodel and XMI 2.*
files wouldn't be even possible. However XMI 1.* format is supported by most of the
CASE tools that implement serialization of models to XMI. Therefore from practical
viewpoint this not means strong restriction. On the other hand an implementation for UML
2.* metamodels based on our implementation could be realized easily, possibly by a simple
transcription, since the difference between templates would be only in manner that the
model elements are accessed within a template.

The three templates we provide are:

• Template that generates Agent Description Files, thus both for agents and
capabilities.

• Template that generates skeletons of Java classes implementing Jadex plans.

• Template that generates implementation of a Java classes that represents data
specified by CommunicationMessagePayloads.

In addition we provide implementation of an XSL transformation that solves bug that rises
with the transformation of XMI files when the multiplicity of an attribute is unlimited, see
section 6.5.2.

As supplementary work, we provide implementation of AML profile including our
extension for Sparx Systems Enterprise Architect [29]. We used this CASE tool for creating
our models and testing the templates, since it is well known, widely used tool and has a very
good support for UML profile implementations. It supports serialization of models for both
XMI 1.x and 2.x formats. Enterprise Architect is supported by XMI code generation
frameworks like Acceleo and AndroMDA. Although it is not free, has a relatively low price.
We tested our generator with models exported in version 7.1.

6.5.1 Description of Templates

The two templates that generates Java classes are very simple. These files are generated
from one class following a simple mapping. Templates are applied on UML Classes, and
the target Plan and/or CommunicationMessagePayload is filtered depending on stereotypes,
additionally in case of CommunicationMessagePayloads also filtered depending on its
attributes.

On the other hand the generation of Agent Definition Files, that are the central targets of our
code generation, is more complex. We use same the template for generating the ADF for
both agents and capabilities, since these files has identical structure and identical elements.
Depending on stereotypes (<<agent>> or <<entity role>>) only the name root tag
generation is different. However if the constraints defined in section 4 are followed in the

52

model, the generated code will be a valid ADF.

The detailed description of the template file is out of the scope of this document. We will
describe here our policy how the template file is structured or what guidelines were
followed during its development. Additionally we describe a set of problematic situations
that are not trivial to handle. Since Acceleo templates are easily understandable in most
cases, and are also self explaining, therefore detailed description is not even necessary.

The general structure of ADF is described in section 3 (see Figure 6). Our effort was to
design templates to be easily understandable and readable, however due to the
characteristics of template language in some situations is hard to achieve this goal. We
divide our template to more scripts. Scripts are useful both from point of view of structuring
a template, and they creates a reusable part of a template. Thus a script can be called from
other scripts. In our case complex elements like definitions of goals, plans, message events
are generated using a separate script. Another good example where the re-usability of
scripts can be illustrated are scripts that generates parameter elements, which are
reusable for generation of parameters for goal, message event, or plans. The implementation
of mapping is in most cases straightforward, the only difficulties we experienced were
caused by properties of Acceleo template language.

On Figure 23 is depicted a small fragment of the template that calls the
ExtendedGoalGener script which implements generation of goals from a Class. We
check if the class has dgoal stereotype and whether it is associated with the agent with a
mental association. The script is called with two arguments, which are tagged values of
the association. These values can be then accessed from the script.

This example illustrates a problem that arises with the Acceleo template language when
some complex situations need to be handled or more detailed constraints need to be
checked. The source of the problem is that a for loop, or elements inside of a for loop
have only local scope. Thus no external elements can be accessed inside a loop, just
elements of the list on which the loop is applied. Therefore in our example without passing
parameters to script, or without using a script, the tagged values fromcapability and
capabilitylocalname of the mental associations could not be accessed. The solution
for such situations is to call for loop on association and pass the tagged values as parameters
for the script. However as can be seen, this property makes the language less usable in
complex situations.

As can be seen from this example the properties of the template language implied that a
complex pattern matching is realizable only using services.

53

<goals>
<%for (association[association.stereotype.name=="mental"]){%>

<%inverseAssociationEnd().participant[stereotype.name =="dgoal"].
filter("Class").ExtendedGoalGener(

association.taggedValue[type.name=="fromcapability"].dataValue,
association.taggedValue[type.name=="capabilitylocalname"].dataValue

)%>
<%}%>

</goals>
Figure 23: Call of the script that generates various goal elements

6.5.2 Problems with XMI Transformations

In Acceleo documentation [9] is introduced a list of CASE tools that are supported, or XMI
files produced by these tools can be imported and used for code generation. Although
Enterprise Architect is supported by framework we experienced problems with the
transformations of XMI files.

The biggest restriction that is identified also in Acceleo User Guide is that actually the
framework can handle only Class and Deployment diagrams. Elements from Activity
diagrams cannot be transformed, therefore cannot be used for code generation. For this
reason in profile implementation we define AML Plan as a Class not as an Activity.

During the development and testing we identified that the models serialized to XMI 1.2 are
transformed properly to requested XMI format. The only bug we identified with this
conversion is that the bridge cannot handle unlimited upper multiplicity of Attributes. To
handle this problem we introduced an XSL Transformation that converts the standard
unlimited multiplicity notation “*” to “-1”, what is the corresponding representation in
Acceleo metamodel implementation.

With transformation of XMI 2.1 (only XMI 2.1 is supported) files suffers from following
problems:

• Associations are not transformed, thus during the XMI transformation the
associations are excluded. However a solution of this bug is provided by the
community. (see community pages at [39])

• Dependencies are not transformed properly.

• If there are stereotyped attributes the transformation cannot be accomplished.

These restrictions makes the XMI 2.1 created by Enterprise Architect unusable for us.

54

7 Possible Extensions
In this section we introduce complementary solutions that are close to the subject-matter
introduced in this thesis.

7.1 Reverse Engineering

Reverse engineering can be defined in very general sense; in our context it covers the
process of transforming source code artifacts to a higher level abstraction, to UML models.

Beside to provide code generation, CASE tools are usually designed also to handle reverse
engineering from selected programming languages. The fact that the support of CASE tools
in great majority is constrained for only a number of programming languages, thus no
general reverse engineering mechanism is provided, makes these tool from our aspect less
comfortable. A list or comparison of CASE tools that examines also this functionality is
provided by the community at [28].

It is good to realize that in our case, to accomplish reverse engineering based on the
mappings defined in section 4 in major case the Agent Definition Files – which are XML
documents – needs to be taken into account (The only one exception is when a data class is
generated from CommunicationMessagePayload, the fields of this file are not represented in
ADF).

Some CASE tools like Visual Paradigm for UML [27] provide functionality of reverse
engineering of XML documents, however this functionality is not common for most of
CASE tools, also the class diagram we got after reverse engineering excludes duplicated
elements, for example multiple beliefs. Therefore the proper result for us would be an object
diagram, which could be transformed to a requested AML model by a “model to model”
transformation language like ATL [26].

Another possible approach which is closer to our implementation is to use XMI documents
also for reverse engineering. A possible scenario is depicted on Figure 24, that converts
source code to an XMI document, which is then translated to an another XMI dialect that
can be imported by the target tool. One crucial step that is mandatory in most cases is the
translation of XMI files, what is the same problem we experienced at code generation
(section 6.2) except that code generators doesn't support reverse transformation.

55

Figure 24: Reverse engineering scenario using XMI

Source Code EMF XMI Case Tool
Specific XMI

Model in
CASE Tool

The other crucial step is to get the XMI file from source code. A good candidate that could
solve this problem is the project called MoDisco [25], which is part of EMF, and provides
capability of reverse engineering from XML files, that could be saved after transformations
to XMI files, what is a basic functionality of EMF. However the project has poor
documentation and it is in early development state, some of its components are just in state
of incubation.

At present EMF lacks support for reverse engineering, however it supports a simple but
complete API that can be used for creation and manipulation of EMF models from Java
code. Additionally a DOM parser can be used to transform XML documents to object trees.
Traversing trees representing ADF, a model can be produce using EMF API that could be
also saved to XMI by EMF. However a detailed analyzes and design of such application or
this approach is out of the scope of this thesis.

7.2 Source Code Generation from Standard UML
Models

Source code generation from UML stance for translation of a higher more abstract
representation of a system to a lover level abstraction or language. Jadex uses Agent
Definition Files that provides relatively high level of abstraction of logic of an agent in the
system. The mental package of AML provides language constructs that are able to represent
these files or this description of logic, therefore it is very suitable for generation of these
files, as described in section 4. The other central components of Jadex are plans, which are
implemented in Java language. As described in section 3 plan is an arbitrary Java class that
extends either jadex.runtime.Plan or jadex.runtime.MobilePlan classes. In
this section we present a short introduction to the possibilities and limits of source code
generation from UML diagrams to lover level languages like Java, therefore for plan
implementations.

7.2.1 Class Diagrams

Code generation from UML class diagrams is a common practice. The majority of UML
tools provides this functionality, since the purpose of these diagrams is to describe the
structure of the classes within the system. An introduction how a class diagram is translated
to the target language can be found in [22]. However by using such a translation only the
skeleton of the classes is generated, i.e. class definition, its fields and methods. But not
implementation of methods or behavior of the system.

7.2.2 State Machine Diagrams

The UML state machines package defines [56] a set of concepts that can be used to
modeling a behavior using a finite state transition system. In most cases state machines are
drawn for a single class to show its behavior during its lifetime [12].

A default approach that is followed by the code generators is to represent the state machine
with executable code in the target language, i.e. classes, attributes, operations that
implements its functionality with easily extensible architecture.

56

A realization of this concept is provided in Sparx System's Enterprise Architect [29] that
implements the state machine within one class, it generates enumerations, attributes and
operations, that enables effective execution of state behaviors for simple state machines. It
generates executable code in such a manner, that only operations that represents activities
in states needs to be completed (for details see [3]).

Another, a more complete implementation of this concept is provided in IBM Rational
Rhapsody [24]. Or in addition described by Iftikhar Azim Niaz in his paper [5] and in his
dissertation [4]. These solutions generate executable source code representation of more
complete state machines, including constructs like composite states and fork/join, however
the result code becomes much more complex.

Although it is possible to generate a code that captures the general semantics of state
machines, its usage in practice is questionable. The more precise semantics implied by the
context or by the characteristics of system within it is applied, therefore the required
corresponding implementation could be different.

In association with Jadex plans, from semantic view, state machines could be more suitable
for description of plans, but not for mobile plans, since as specified in [1] mobile plans are
stateless and its behavior is determined by actual parameters, therefore their characteristics
contradicts with fundamental characteristics of state machines.

7.2.3 Activity Diagrams

Activity diagrams are used for description of lover level behaviors, like algorithmic
behavior or control/object flow models. In practice, from the viewpoint of code generation,
activity diagrams have strong limitations. To describe a detailed source code, e.g. a complex
algorithm, Activity diagrams requires as large amount of nodes that simply becomes
unpractical as expressed by Chaves in [19].

Although it is used to generate code fragments or skeleton of an algorithm. A typical
implementation is provided in Enterprise Architect, that generates (possible recursive) if-
then-else statements from decision nodes, or while loops in case of cyclic graphs [3].

Jadex mobile plans as denoted in [1] in most cases typically have if-then-else block
structure, therefore code generation from activity diagram could be more suitable for them.

7.2.4 Evaluation

In previous section we described the diagram types that theoretically may serve as source
for code generation. Activity and State Machine diagrams are behavioral diagrams that
could be used, in theory, to generate corresponding complete implementation. However as
we've seen this goal is not fulfilled, in fact to create these two diagram instances only with
purpose of code generation, could lead to unwanted or unnecessary amount of work.

Other type of diagrams like Sequence diagrams are identified by some software engineers
useless for this purpose [19], although some tools like Enterprise Architect implements code
generation from Sequence diagrams, and there are a few cases when it is applicable and
produces negligible amount of code snippets, see [3].

57

8 Conclusion and Future Work
During the work we fulfilled our objectives to define a mapping between AML and Jadex,
what is the theoretical background for code generation. We also specified an extension to
AML, which allows us to denote more Jadex specific features and model most of the BDI
aspects of Jadex. In addition we created an extension for capturing elements of Jadex,
namely configurations, that is out of the scope of BDI model, but plays an important role in
specification of Agent's mental aspects. The main targets of our discussion were the relation
between Mental package of AML and the Agent Definition File of Jadex. Agent Definition
Files describe the mental aspects of agents following the DBI paradigm. We showed that a
highly detailed ADF file can be generated from models, using Mental package of AML (and
a few more elements from other packages) and some simple extensions. In addition we
defined mapping also on low level artefacts of Jadex, like implementations of plans. Our
intent was not to generate a complete code, or Agent Definition Files, but to allow to
capture the major aspects of the system, that supports a generation of high detailed code.
However, with more additional extensions a complete generation of ADF could be reached,
although a definition of such extensions and their mapping is out of limits of this thesis, but
could be a topic of some possible future work.

In the second part of the thesis we described our practical work, the implementation of code
generation, that generates source code from XMI files. Although this CASE tool
independent approach theoretically has big advantages, but its implementation and the
quality of the tools that support it is currently questionable - both from the viewpoint of
CASE tools and the code generation frameworks. In other words, the biggest insufficiency
of this approach is caused by the fact, that the XMI documents produced by the tools rarely
follow strictly the standard. On the other hand these frameworks, in our case Acceleo,
provide a simple template language. This language allow a high-level access to models, and
generates arbitrary target source code. This makes the implementation phase relatively
simple. This means that implementation of a good defined mapping is relatively
straightforward. A possible future practical work, based on the theoretical part of our work,
would be an implementation of reverse engineering. Thus creation of models from Agent
Definition Files, what we mentioned also in section 7.1.

Generally, the theoretical part we see as the main contribution of this thesis. We provided
theoretical foundations for code generation from AML to Jadex; or in a more abstract view,
how a code generation can be realized from high-level model elements like elements of
AML Mental package.

58

9 Appendix

List of Figures
Figure 1: MDA process..3
Figure 2: Levels of AML Specification (from [16])..7
Figure 3: The structure of mental package...8
Figure 4: Jadex Abstract Architecture (from [1])..13
Figure 5: Goal Life-cycle (from [1])..14
Figure 6: The structure of Agent Definition Files (from [1])..15
Figure 7: Example of a simple Belief..16
Figure 8: Example of a goal definition in ADF...17
Figure 9: Example of a plan definition in ADF...17
Figure 10: Example of a message event definition..18
Figure 11: Example of a configuration in ADF...19
Figure 12: Defining elements of an agent..38
Figure 13: Mental relations..39
Figure 14: The generated Agent Description File..40
Figure 15: Agents default configuration..41
Figure 16: The generated configurations element in ADF ...41
Figure 17: Example of includes from capability..43
Figure 18: The generated agent..43
Figure 19: The generated capability...44
Figure 20: Ideal scenario of code generation from XMI...47
Figure 21: XMI code generation..47
Figure 22: Sample template file...50
Figure 23: Call of the script that generates various goal elements..53
Figure 24: Reverse engineering scenario using XMI...55

Reference List

[1] Alexander Pokahr, Lars Braubach. Jadex User Guide. 2007
http://ignum.dl.sourceforge.net/project/jadex/jadex/0.96/userguide-0.96.pdf

[2] Jadex homepage
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/

[3] Geoffrey Sparks. Enterprise Architect User Guide. 2009
http://www.sparxsystems.com/bin/EAUserGuide.pdf

[4] Iftikhar Azim Niaz. Automatic Code Generation FromUML Class and Statechart
Diagrams. 2005

59

[5] Iftikhar Azim Niaz, Jiro Tanaka. Code Generation From UML Statecharts.

[6] Ján Danč. Formal Specification of AML. 2008

[7] Jiří Bělohlávek, Petr Knoth. Multi-agent programming. 2007
http://www.stud.fit.vutbr.cz/~xknoth00/resources/jadex.pdf

[8] Jonathan Musset, Étienne Juliot, Stéphane Lacrampe. Acceleo Reference. 2008
http://www.acceleo.org/doc/obeo/en/acceleo-2.6-reference.pdf

[9] Jonathan Musset, Étienne Juliot, Stéphane Lacrampe. Acceleo User Guide. 2008
http://www.acceleo.org/doc/obeo/en/acceleo-2.6-user-guide.pdf

[10] Lars BraubachAlexander Pokahr. JadeX Tutorial. 2007
http://ovh.dl.sourceforge.net/project/jadex/jadex/0.96/tutorial-0.96.pdf

[11] Lin Padgham, Michael Winikoff. Prometheus: A Methodology for Developing
Intelligent Agents.
http://www.cs.rmit.edu.au/agents/Papers/aose02.pdf

[12] Martin Fowler, Kendall Scott. UML Distilled Second Edition A Brief Guide to the
Standard ObjectModeling Language. 1999

[13] Michael Bratman. Intention, Plans, and Practical Reason. 1987

[14] Michael Wooldridge, Nicholas R. Jennings, David Kinny. The Gaia Methodology for
Agent-Oriented Analysis and Design. 2000
http://www.csc.liv.ac.uk/~mjw/pubs/jaamas2000b.pdf

[15] Michal Kostic. AML Code Generation. 2006

[16] Radovan Červenka, Ivan Trenčiansky. Agent Modeling Language - Language
Specification. 2004

[17] Radovan Červenka, Ivan Trenčiansky. The Agent Modeling Language. 2007

[18] Radovan Červenka, Ivan Trenčiansky. The Agent Modeling Language - A
Comprehensive Approach to Modeling Multi-Agent Systems. 2007

[19] Full code generation from UML class, state and activity diagrams
http://abstratt.com/blog/2007/06/01/full-code-generation-in-uml-from-the-class-state-
and-activity-diagrams/

[20] Raquel Trillo, Sergio Ilarri and Eduardo Mena. Comparison and Performance
Evaluation of MobileAgent Platforms.
http://sid.cps.unizar.es/PUBLICATIONS/POSTSCRIPTS/ICAS07.pdf

[21] Richard Evans, Paul Kearney, Giovanni Caire. Message: Methodology for
Engineering Systems of Software Agents. 2001.

[22] Robert C. Martin. UML Class Diagrams Part 1 - Class Diagrams. 1997
http://www.objectmentor.com/resources/articles/umlClassDiagrams.pdf

60

[23] Viviane Torres da Silva, Carlos J. P. de Lucena. MAS-ML: a multi-agent system
modeling language. 2003

[24] Rhapsody homepage
http://www-01.ibm.com/software/awdtools/rhapsody/

[25] MoDisco homepage
http://www.eclipse.org/gmt/modisco/

[26] ATLAS Transformation Language at Eclipse.org
http://www.eclipse.org/m2m/atl/

[27] Visual Paradigm for UML homepage
http://www.visual-paradigm.com/product/vpuml/

[28] List of Unified Modeling Tools at Wikipedia.
http://en.wikipedia.org/wiki/List_of_UML_tools

[29] Sparx System - Enterprise Architect homepage
http://www.sparxsystems.com/

[30] MOF Model to Text Transformation Language at OMG
http://www.omg.org/spec/MOFM2T/1.0/

[31] XMI2 Homepage
http://modeling-languages.com/content/xmi2-tool-exchanging-uml-models-among-
case-tools

[32] EMF Model to Text homepage
http://www.eclipse.org/modeling/m2t/

[33] Java Emitter Templates homepage
http://www.eclipse.org/modeling/m2t/?project=jet#jet

[34] Eclipse Modeling Framework
http://www.eclipse.org/modeling/emf/

[35] Butterfly Code Generator homepage
http://butterflycode.sourceforge.net/

[36] AXgen Hompage
http://axgen.sourceforge.net/

[37] Collection of MDA tools at Modelbased.net
http://www.modelbased.net/mda_tools.html

[38] AndroMDA homepage
http://www.andromda.org/

[39] Acceleo homepage
http://www.acceleo.org

[40] XML Metadata Interchange

61

http://en.wikipedia.org/wiki/XML_Metadata_Interchange

[41] Catalog of OMG Modeling and Metadata Specifications
http://www.omg.org/technology/documents/modeling_spec_catalog.htm

[42] MOF 2.0/XMI Mapping, Version 2.1.1. 2007
http://www.omg.org/technology/documents/formal/xmi.htm

[43] MetaObject Facility at OMG
http://www.omg.org/mof/

[44] Model Driven Architectures homepage
http://www.omg.org/mda/

[45] Publicly Available Agent Platform Implementations at FIPA homepage
http://www.fipa.org/resources/livesystems.html

[46] Cougaar homepage
http://www.cougaar.org/

[47] Grasshopper - A Universal Agent Platform Based on OMG MASIF and FIPA
Standards
http://cordis.europa.eu/infowin/acts/analysys/products/thematic/agents/ch4/ch4.htm#5

[48] JADE homepage
http://jade.tilab.com/

[49] Agent Commnunication Language Specification homepage
http://www.fipa.org/repository/aclspecs.html

[50] OMG's Mobile Agent Facility homepage
http://www.omg.org/technology/documents/formal/mobile_agent_facility.htm

[51] OMG MASIF homepage
http://www.omg.org/cgi-bin/doc?orbos/97-10-05

[52] Foundation for Intelligent Physical Agents homepage
http://www.fipa.org/

[53] Agent UML homepage
http://www.auml.org/

[54] Agent-Object-Relationship (AOR) Modeling and Simulation homepage
http://oxygen.informatik.tu-cottbus.de/aor/?q=node/1

[55] Tropos homepage
http://www.troposproject.org/

[56] OMG Unified Modeling Language (OMG UML),Superstructure. 2009
http://www.omg.org/cgi-bin/doc?formal/09-02-02.pdf

[57] Unified Modeling Language at OMG
http://www.uml.org/

62

[58] OMG Homepage
http://www.omg.org/

63

Abstract
Vývoj a údržba komplexného multi-agentového systému je veľmi zložitý problém, a je
výzvou pre softvérové inžinierstvo. Analýza, dizajn, implementácia, testovanie a prevádzka
takýchto systémov môžu byť veľmi ťažko realizovateľné. Agent Modeling Language
(AML) je komplexný agentovo-orientovaný modelovací jazyk, ktorý slúži na zachytenie
rôznych aspektov multi-agentových systémov, a tým uľahčuje ich vývoj. V tejto práci
implementujeme generátor kódu, ktorý produkuje zdrojový kód z modelov AML do
agentového systému Jadex. Definujeme mapovanie z AML do Jadex. Zavedieme
jednoduché rozšírenie pre jazyk AML, ktoré umožňuje generovanie vysoko detailného
zdrojového kódu. Implementujeme generovanie kódu pomocou frameworku Acceleo, ktorý
umožňuje generovanie kódu nezávisle na CASE nástrojov, prístup ktorý na tento účel
používa XMI súborov.

64

	1 Introduction
	1.1 Model Driven Engineering
	1.2 Modeling Multi-Agent Systems
	1.3 Overview of Agent Platforms
	1.4 Model-Driven Code Generation
	1.5 Tasks and Objectives
	1.6 Related Work
	1.7 Structure of the Document

	2 Overview of AML
	2.1 Introduction
	2.2 Language Architecture of AML
	2.3 Elements of AML
	2.3.1 Mental Package
	Belief
	Goal
	DecidableGoal
	UndecidableGoal
	Plan
	Contribution
	MentalAssociation
	MentalConstraintKind

	2.3.2 Architecture Package
	AgentType
	EntityRoleType

	2.3.3 Behaviors Package
	CommunicationMessagePayload

	3 Overview of Jadex
	3.1 The BDI Software Model
	3.2 The Jadex Reasoning Engine
	3.3 The Programming Model
	3.3.1 The Agent Definition File
	Imports
	Capabilities
	Beliefs
	Goals
	Goal deliberation
	Plans
	Events
	Configurations

	3.3.2 Plan Implementation

	4 AML to Jadex Mapping
	4.1 Mental Aspects
	4.1.1 DecidableGoal
	Mapping
	Extensions
	Constraints
	Rationale

	4.1.2 Plan
	Mapping
	Extensions
	Constraints
	Rationale

	4.1.3 Belief
	Mapping
	Constraints
	Rationale

	4.1.4 Mental Association
	Mapping
	Extensions
	Rationale

	4.1.5 Contribution
	Mapping
	Extensions
	Constraints
	Rationale

	4.1.6 MentalConstraintKind
	Mapping
	Rational

	4.2 Architectures
	4.2.1 AgentType
	Mapping
	Rationale

	4.2.2 EntityRoleType
	Mapping
	Constraints
	Rationale

	4.2.3 PlayAssociation
	Mapping
	Constraints
	Rationale

	4.3 Behaviors
	4.3.1 CommunicationMessagePayload
	Mapping
	Extensions
	Constraints
	Rationale

	4.4 Additional Extensions
	4.4.1 Configure
	Semantics
	Mapping
	Constraints
	Rationale

	4.4.2 Configuration
	Semantics
	Mapping
	Extensions
	Constraints
	Rationale

	4.4.3 Initialize
	Semantics
	Mapping
	Extensions
	Constraints
	Rationale

	4.4.4 Belief Base
	Semantics:
	Mapping
	Extension
	Constraints
	Rationale

	4.4.5 Parameter
	Semantics
	Mapping
	Extensions
	Rationale

	4.4.6 Assign
	Semantics
	Mapping
	Constraints
	Rationale

	4.4.7 Use Message
	Semantics
	Mapping
	Extensions
	Constraints
	Rationale

	4.4.8 Triggers
	Semantics
	Mapping
	Rationale

	4.5 Summary

	5 Examples
	5.1 Elements of an Agent and Mental Relations
	5.2 Configurations
	5.3 Include from a Capability

	6 Description of the Implementation
	6.1 Overview of Approaches
	Using CASE Internal Tools
	Add-in Producing Intermediate Language
	Add-in Producing Target Language
	Exported XMI

	6.2 Code Generation From XMI
	6.2.1 The XMI Document format
	6.2.2 Realization of code generation from XMI

	6.3 Code Generation Supporting Tool Overview
	6.3.1 Code Generation Frameworks
	6.3.2 Supplementary technologies

	6.4 Code Generation Using Acceleo
	6.4.1 XMI Compatibility
	6.4.2 Templates
	6.4.3 Services
	6.4.4 Execution Chains

	6.5 Implementation Details
	6.5.1 Description of Templates
	6.5.2 Problems with XMI Transformations

	7 Possible Extensions
	7.1 Reverse Engineering
	7.2 Source Code Generation from Standard UML Models
	7.2.1 Class Diagrams
	7.2.2 State Machine Diagrams
	7.2.3 Activity Diagrams
	7.2.4 Evaluation

	8 Conclusion and Future Work
	9 Appendix
	Abstract

