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ABSTRAKT

Po porovnańı reálneho osvetlenia s osvetleńım vypoč́ıtaným súčasnými metódami globálnej
iluminácie sa objavuje viacero otázok oȟladom správnosti týchto metód. Pri snahe o op-
timalizáciu za účelom źıskania kraǰśıch obrázkov často obetujeme fyzikálnu a matematickú
správnosť týchto metód.

Správnosť metódy, pri ktorej je nutné nastavovať niekǒlko desiatok parametrov, je diskutabilná.
Hlavne ak je potrebné, aby použ́ıvatěl nastavoval pŕıslušné parametre pre každú scénu zvláš̌t,
kým neźıska dostatoćne reálne výsledky. V dôsledku toho źıskavame viacero verzíı zobrazenia
reality a je tažké rozhodnúť, ktoré je to správne, t.j. najbližšie k realite.

Obrázky, ktoré nie je možné rozoznať od fotografíı nazývame fotorealistické. Kvalita metód
globálnej iluminácie sa posudzuje často práve poďla toho ako vělmi fotorealistické ňou gen-
erované obrázky sú. Rozhoduje o tom človek. Je však vôbec možné porovnávať algoritmy
takouto subjekt́ıvnou metódou?

V tejto diplomovej práci sa pokúsime vyhnúť týmto a aj iným problémom tým, že sme
zvolili fyzikálny pŕıstup k riešeniu globálnej iluminácie. Predstav́ıme matematickú defińıciu
a algoritmické riešenie tohto problému. Zhodnot́ıme súčasné algoritmy na riešenie globálnej
iluminácie. Na záver predstav́ıme návrh, implementáciu a vylepšenia algoritmu, ktorý rieši
problém globálnej iluminácie v zmysle newtonovskej optiky.

ǩlúčové slová: global illumination, monte-carlo methods, rendering



ABSTRACT

Comparison of real lighting with the lighting computed by current global illumination meth-
ods brings up many questions concerning the correctness of these methods. While optimizing
the methods and making the output images look nicer, physical and mathematical plausibility
is often sacrificed.

Correctness of a method which uses several dozens of parameters is disputable, especially
when the user has to set the parameters for every scene until the image looks real to him. As
a result, there are more versions of reality and it is difficult to judge which one is the most
real.

Images which cannot be distinguished from real images (photographs) are called photo-
realistic. Global illumination methods are often compared by the quality of the output
images and how much photo-realistic they are. The judge is a human operator. But can we
really compare algorithms by such a subjective measure?

In this thesis we try to avoid these and other problems by taking a physically-based approach
to global illumination. We give a mathematical definition and propose algorithmic solutions
to the problem. Then we discuss the state-of-the art global illumination algorithms. Finally,
we present design, implementation and improvements of an algorithm which solves the global
illumination problem in newtonian sense.

keywords: global illumination, monte-carlo methods, rendering
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1. GLOBAL ILLUMINATION

Computer graphics allows us to display various data with accuracy never known before.
It has become very affordable to visualize and model almost anything—the complexity of
the models is limited only by the capability of computers. One of the central tasks which
computer graphics has addressed from its very beginning was simulation of the real world.
The simulations range from the microscopic world of atoms in chemistry and particle physics
to models of buildings for architects and visual effects for the movie industry. The goal is
to create realistic images, so real that they would not be distinguishable from the reality by
the human eye. Two approaches have been taken to solve this task. The first one can be
seen mainly in modern computer games. The techniques used there have usually nothing in
common with the reality. They focus on the final picture: how fast it can be created and if
it looks good enough. In this thesis, we will focus on the second approach which attempts to
create images that are based on the physical reality of the scenes we want to visualize. We
will discuss the actual goals of this approach, methods, algorithms and how the state-of-art
solutions solve this task. Finally we will propose our own algorithm.

1.1 Definition of the Global Illumination Problem

An informal definition of the task is simple. We have a three-dimensional scene consisting of
objects and light sources. Usually light sources are also objects that have the ability to emit
light. Each object has its set of features such as material and geometrical shape. When light
arrives at the object its trajectory, intensity, color and other properties change. The task at
hand is to calculate what an observer positioned somewhere in the scene sees.

Computer graphics began with simple models, where from the algorithmic point of view every
object was considered a light source. These models only allowed for computation of direct
illumination. In other words, they only decided whether there is no obstacle along the path
from point of emission toward the sensor (Figure 1.1).

As the hardware evolved, simple interactions between a light source, an object and a sensor
could be calculated. This approach is called Local Illumination as it only deals with local
changes of light at an object and does not take into account reflection and refraction of light
by objects in the scene (Figure 1.2).

An approach that takes into account all possible light-object interactions is called Global
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Fig. 1.2: Local Illumination
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Illumination (Figure 1.3).

sensor

scene

light source (point-like)

... and other interactions ...

Fig. 1.3: Global Illumination

Extensive work has been done to solve Global Illumination. As a result large number of algo-
rithms was created. Among the most significant we can name the algorithms of Ray Tracing
[Gla89], Radiosity [GCT86], Path Tracing [Kaj86], Bi-Directional Path Tracing [LW93] and
Photon Mapping [Jen01]. Each of them takes a slightly different approach toward solving
the Global Illumination problem. Currently the most successful algorithm in terms of cal-
culating nice images, able to visualize a large variety of phenomena light-object interaction
in a reasonable time, is considered to be the Photon Mapping algorithm. In the last years a
lot of effort has been put in improvement of this algorithm. The improvements were in areas
such as output image quality: [SSK], [KW00], computing speed: [GT05], [Chr99], [GWS04]
and others. We will discuss the details of the most important solutions in a special chapter
later.

1.2 Solving the Global Illumination Problem

An algorithm solving the Global Illumination Problem must provide an output generated
by considering all possible interactions of the light and the scene according to the laws of
physics. Unfortunately, due to the complexity and continuity of the real world this is not yet
possible in reasonable time. Therefore simplifications are necessary. The only assumption we
make is the assumption of newtonian optics. Newtonian optics is described by a Fredholm
integral equation of the second kind. We solve this equation directly and obtain its exact
solutions in the limit. Many rendering algorithms make additional simplifications, while
unjustly claiming to give solution to the Global Illumination Problem.

A common criterion is needed to assess the success of these algorithms. Therefore a very
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convenient test from the field of photorealism was adopted. The successful algorithm must
generate an output that is indistinguishable from a photograph. This is decided by a human
operator. We can see that this criterion is hardly measurable and is very subjective. We can
argue about the choice of this representative arbiter and his ability to assess for example an
artificial scene of an alien planet of which no other photograph exists. The problem with a
human arbiter is the fact that people do not judge the quality on the basis of what reality
is but what they believe reality is. In our opinion a subjective judgment is unsuitable for
judging the quality of algorithms solving the Global Illumination problem unless the task of
Global Illumination is to generate pieces of art. Generally art is not he only application of
computer graphics.

In this thesis we deal with the construction of a Global Illumination algorithm that does not
need an arbiter. An algorithm that solves the Global Illumination either solves or does not
solve the underlying physical model. The visual quality is then based on this model; the
choice of the physical model determines which phenomena we can describe and which we
can visualize. Our ambition is to propose a stochastic but unbiased algorithm that is 100%
correct in terms of implementing the theory it is based upon and is able to provide (even if
only mathematically) the complete solution of the Global Illumination Problem.

As we have shown in the definition of the Global Illumination Problem, the problem itself
consists of several parts that can be addressed more or less independently. The parts we will
address are

1. Light Transport Model

2. Material and Geometry Model

3. Sensory Model

We will begin with the choice of the Light Transport Model.



2. THE LIGHT TRANSPORT MODEL

To measure the quality of any algorithmic solution to the Global Illumination Problem we
want to evaluate if the algorithm is a mathematical solution to a clearly defined task. Thus
we need a mathematical description of the problem.

2.1 Physics of Light

In order to mathematically describe a natural phenomena such as light we need to understand
its physical nature. The nature of light has been studied for centuries and there is probably
still a lot to learn and to prove. We will present three most widely accepted theories of light.

2.1.1 Classical Optics

The theory of Classical Optics is based on the works of Sir Isaac Newton. He was one of the
first who took a scientific approach to study nature of light. His theory is based on simple
experiments and observations of the light phenomena.

By the Rays of Light I understand its least Parts and those as well Successive in
the same lines and Contemporary in several lines. [New21]

Newton thought of the light as a flow of tiny particles—rays, traveling in straight lines at
infinite speed. The light can be either compound—composed of particles of different colors
or homogeneous—composed of particles of the same color. When hitting an object the rays
either refract or reflect according to the object’s material properties, their color and the
Laws of Reflection and Refraction [Str79]. This simple theory is able to explain most basic
phenomena of light such as reflection and refraction. However, Newton was not able to
describe what exactly happens when light diffracts or interacts with thin transparent bodies.
Therefore a different approach was needed.

2.1.2 Wave Optics

The Wave Theory of light emerged at almost the same time as Classical Optics but did not
become very popular at first. It was studied later mainly by Ch. Huygens, T. Young and
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A.J. Fresnel who have shown its superiority over classical optics.

Fig. 2.1: Electromagnetic Wave

According to the Wave Theory the light propagates in form of electromagnetic waves (Figure
2.1) emitted by atoms at very short intervals. It travels in lines at finite speeds dependent
on the characteristics of the transfer medium. The propagation of light can be described by
J.C. Maxwell’s equations. As for every electromagnetic wave, light experiences the effects of
diffraction and interference under special conditions. Thanks to this theory, the physicists
were finally able to explain phenomena such as rainbow-like colors of oil on water surfaces
(colors of thin transparent bodies) or interference images when light passes through thin
crevices (diffraction).

2.1.3 Quantum Electrodynamics

The QED is considered to be the most complete and accurate theory that explains the
phenomena of light. It was created in 1940s by R. Feynman, J. Swinger and S. Tomonaga.

It is a rather complex theory therefore we will not go into much detail. It provides an answer
to the question how it is possible that light emitted at point A knows how to travel to get
to B over the shortest path possible—a straight line. The theory says that the light actually
takes every possible path at every possible speed in every possible time (light can even travel
back in time in this theory). The observer at B sees the result when all these paths sum
up. By interference the least probable paths cancel each other out and what remains is the
most probable path the light could take—a straight line. This theory states that it cannot
explain what light is but it can explain how it gets somewhere. It has achieved a remarkable
accuracy in its predictions when compared to experimentally measured data. So far it has
been able to explain all known phenomena of light.
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2.2 Newtonian Global Illumination

Having these theories, if we were able to devise an algorithm based on QED we would
get the best results in terms of physical reality and plausibility of the output picture. Our
algorithm would be able to visualize all phenomena of light-object interaction. Unfortunately,
QED-based algorithms would be too complex to provide observable results in reasonable
computational time. The same holds for the Wave Theory. In the case of QED we would
have to compute the probability of the light energy being at any possible time and space of
the scene thus trying to solve an equation roughly similar to

L(x, t) =

∫

Space

∫

T ime

L(x′, t′)dx′dt′

A solution based on the Wave Theory would require us to cope with the phase of light and
the interference of the light waves. A technique would be needed to detect edges and tiny
crevices near the intersection points of light waves and objects and to compute the outcome
of such events.

For these reasons the methods used in Global Illumination are based on the Classical Optics
theory of light—Newtonian Optics. Although it is rather simple, it is able to describe most of
the observable phenomena of light-object interactions. The cases where it fails usually happen
under special conditions. Therefore the level of reality it provides is very close to what really
happens. We have a very good mathematical model that covers this theory and thanks to
its simplicity we are able to solve it. Yet its implementation is not as straightforward as it
might seem.

2.3 The Rendering Equation

Solving the Global Illumination Problem on a computer requires a mathematical model. Such
a model is provided by the rendering equation. The rendering equation is a mathematical
model of light transport based on Photometry. Photometry studies physical properties of
light that measure the quantitative influence of light radiation on the human eye. Photometry
and therefore also the rendering equation does not consider the wave properties of light and
assumes that light consists of rays as defined in Classical Optics. Thus we can consider the
rendering equation to be a mathematical representation of the Classical Optics and when
we want to solve the problem of Newtonian Global Illumination we just need to solve the
rendering equation. For the rest of the paper we will consider monochromatic light. We also
consider only opaque materials. All these simplifications can be removed by simple changes
in the equations and the corresponding algorithms.

We will now deal with the emission of the light energy off a surface. We will need to define
the direction of emission by the spherical coordinates.
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Fig. 2.2: Spherical coordinates

A direction ω is defined by two angles θ, φ. θ is the angle between the direction and the
y-axis and φ is the angle between the projection of the direction into the x, z plane and the
z-axis (Figure 2.2).

x

y

z

ω

A

Fig. 2.3: Solid angle

A set of directions can be defined by a solid angle. A solid angle is defined by a cone or a
pyramid with its size related to the intersection of the respective cone/pyramid and a unit
sphere centered at the apex of the solid angle (Figure 2.3).

A differential solid angle can be defined as dω where ω is the direction of the differential set.
Therefore we can express the differential solid angle using the θ and φ spherical coordinates
(Figure 2.4). Let us describe the directions of the differential set as dθ and dφ. The differential
rectangle then has dθ vertical and sin θ · dφ horizontal sizes and so the size of the solid angle
is

dω = sin θ · dφdθ (2.1)
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Fig. 2.4: Differential solid angle

Finally, the solid angle that corresponds to the differential surface dA as seen from point p is

dω =
dA · cos θ

r2
(2.2)

where θ is the angle between the normal vector of dA and the directional vector from dA to
p and r is the distance between dA and p. Basically, it is the size of the differential rectangle,
that we obtain by projecting the infinitesimal area dA along the directional vector from dA
to p onto the unit sphere centered in p.

The light power (or flux) Φ is the energy radiated through a boundary. This definition is
not very useful as we need to know the boundary. But if we assume that the boundary is
infinitesimally small we can take into account only one surface point and one direction. The
measure we get this way is called radiance (or intensity).

The radiance L(x, ω) is the differential light flux Φ(~x, dA, ω, dω) that leaves a differential area
dA around x in a differential solid angle dω around ω per the projected area dA and the size
of dω. If the angle between the surface normal of dA and the direction of interest is θ, then
the projected area is dA · cos θ and therefore the radiance is

L(x, ω) =
dΦ(x, dA, ω, dω)

dA · dω · cos θ
(2.3)

Now we are able to describe the light energy being emitted and being absorbed by surfaces.
We are ready to define the rendering equation. We begin with a simple case of two differential
small surfaces in 3D. Surface dA emits light energy and the surface dA′ absorbs it (Figure
2.5). By the definition of radiance (2.3), if dA′ is visible from dA in solid angle dω and the
radiance of dA is L in this direction the flux emitted by dA and absorbed by dA′ is

dΦ = L · dA · dω · cos θ (2.4)
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dA

dω

dA’r θ’

θ

Fig. 2.5: Energy exchanged between two infinitesimal surfaces

By (2.2), we can express the solid angle from the projected area of dA′ and we get

dΦ = L ·
dA · cos θ · dA′ · cos θ′

r2
(2.5)

We can use the equation (2.2) again now for the emitting surface

dΦ = L ·
dA · cos θ · dA′ · cos θ′

r2
= L · dA′ · dω′ · cos θ′ (2.6)

So as we can see the same equation holds for the surface that emits the energy as for the
surface that receives it.

Upon hitting the surface the light will interact with it. The light can be reflected, refracted or
absorbed (refraction can be regarded as a special case of reflection). It can also be reflected
not according directly to the law of perfect specular reflection, which holds for mirror-like
surfaces, as the area dA around x may contain infinitesimal irregularities (we will discuss
this in more detail later). So when the light comes from a direction ω′ to a point x, the
probability it is reflected from the point x into a solid angle dω around direction ω can be
expressed as a probability density function PR · dω. So the reflection for light energy of
power Φin(x, dA, ω′, dω′) (that means coming to an area around point x from solid angle dω′

around direction ω′) is

(PR · dω) · Φin(x, dA, ω, dω′) (2.7)

For the total reflected energy all incoming directions ω′ must be taken into account therefore
we integrate the energy contributions over the hemisphere

∫

Ω

Φin(x, dA, ω′, dω′) · PR · dω (2.8)

Sometimes the surface itself emits energy (when it is a light source)
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Φe(x, ω) = Le(x, ω) · dA · cos θ · dω (2.9)

which must be added to the total outgoing energy

Φout(x, ω) = Φe(x, ω) +

∫

Ω

(PR · dω) · Φin(x, dA, ω′, dω′) (2.10)

We can express both fluxes by radiance using the equations (2.4) and (2.6)

Φin(x, ω′, dω′) = Lin(x, ω′) · dA · cos θ′ · dω′

Φout(x, ω, dω) = L(x, ω) · dA · cos θ · dω (2.11)

Removing the term dA · dω · cos θ and substituting in equation (2.10) we obtain

L(x, ω) = Le(x, ω) +

∫

Ω

Lin(x, ω′) · cos θ′ ·
PR

cos θ
dω′ (2.12)

The term PR
cos θ

is known as Bi-Directional Distribution Function and defines the optical prop-
erties of the material. We can also rewrite the term Lin(x, ω′) to L(y, ω′) where y is a point
seen from x along direction −ω′. It is often expressed as a result of a visibility function
y = h(x,−ω′) which returns the closest surface point from x in the direction −ω′.

The rendering equation is the equation

L(x, ω) = Le(x, ω) +

∫

Ω

L(y, ω′) · fr(ω
′, x, ω) · cos θ′dω′ (2.13)

2.4 Solving the Rendering Equation

We now have the mathematical basis for our algorithm. What remains is to find a way to
solve the rendering equation.

2.4.1 Louville-Neumann Series

The rendering equation belongs to a family of equations known as Fredholm equations of the
2nd kind. These equations have a common form
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f(t) = φ(t) − λ

b
∫

a

K(t, s)φ(s)ds (2.14)

which can be rewritten to

φ(t) = f(t) + λ

b
∫

a

K(t, s)φ(s)ds (2.15)

Solution to this kind of equations is a Louville-Neumann series

φ(x) =
∞

∑

n=0

λnφn(x) (2.16)

The nth kernel is defined as

Kn(x, z) =

∫ ∫ ∫

· · ·

∫

K(x, y1)K(y1, y2) · · ·K(yn, z)dxdy1 · · · dyn (2.17)

For φn holds

φn(x) =

∫

Kn(x, z)f(z)dz (2.18)

Now we define the resolvent K

K(x, z, λ) =
∞

∑

n=0

λnKn+1(x, z) (2.19)

And finally the solution in form of Louville-Neumann series

φ(x) =

∫

K(x, z, λ)f(z)dz (2.20)

For the rendering equation (2.13), the solution is
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L (x, ω) = Le(x, ω) +

+

∫

Le(y, ω′)f(ω′, x, ω) cos θ′dω′ +

+

∫ ∫

Le(y′, ω′′)f(ω′, x, ω)f(ω′′, y, ω′) cos θ′ cos θ′′dω′ω′′ +

+

∫ ∫ ∫

Le(y′′, ω′′′)f(ω′, x, ω)f(ω′′, y, ω′)f(ω′′′, y′, ω′′) cos θ′ cos θ′′ cos θ′′′dω′dω′′dω′′′ +

+ · · · (2.21)

which is an infinite series of integrals. Individual terms correspond to light paths starting at
a light source, traveling to x and leaving the object in direction ω. The first term represents
the direct illumination—light travels straight to x. The second term describes the paths
arriving at x after one reflection, the third term represents two reflections and so on, ending
with light paths arriving at x after an infinite number of reflections. To find a solution to
each of these integrals we will apply the method of Monte-Carlo Integration. But before we
can do this, we first need some basic theory from the field of probability.

2.4.2 Monte-Carlo Integration

A random experiment is a procedure that depends on a random event. The result of a random
experiment is a set of elements of an event space Ω. The event space contains elementary
events from which all random events can be composed.

An event algebra (A, Ω) consists of an event space and an σ-Algebra A over Ω and contains
all possible results of a random experiment. For any σ-Algebra holds

1. Ω ∈ A

2. ∀B ∈ A : B̄ ∈ A

3. Bi ∈ A, i ∈ N ⇒
∞
⋃

i=1

Bi ∈ A

A function P : A → R that assigns each event A ∈ A a probability P (A) is a probability
mass function if

1. ∀B ∈ A : P (B) ≥ 0

2. P (Ω) = 1

3. A1 · · ·An, P (Ai ∩ Aj) = 0,∀i, j ∈ N ⇒ P (
∞
⋃

i=1

Ai) =
∞
∑

i=1

P (Ai)
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holds for P . The triple (A, Ω, P ) is a probability space. Events (Ai)i=1···n are independent if

P (
n
⋃

i=1

Ai) =
n
∑

i=1

P (Ai). A random variable is a mapping

X : (A1, Ω1, P1) → (A2, Ω2)

from a probability space (A1, Ω1, P1) into an event algebra (A2, Ω2) where

∀A ∈ A2 ∃X−1(A) ∈ A1

That means that A1 contains the counter image of A in the mapping X. Therefore PX :
A2 → R defined as

PX(B) = P1(X
−1(B)), B ∈ A2 (2.22)

is a probability mass function on (A2, Ω).

Two random variables X,Y are called independent if ∀A,B ∈ A2, X−1(A) and Y −1(B) are
in (A1, Ω1, P1) independent. A distribution function FX : Ω → R of a random variable is a
function

FX(x) = P (X ≤ x)

Some obvious properties of a distribution function:

1. ∀x ∈ R : F (x) ∈ 〈0, 1〉

2. Distribution functions are strictly increasing

3. limx→∞ F (x) = 1

4. limx→−∞ F (x) = 0

For valid random variables the distribution function FX : R → R is defined as

FX(x) =

x
∫

−∞

fX(x)dx (2.23)

A random variable X is valid if there exists a function fX : R → R for which holds

P (a ≤ X ≤ b) =

b
∫

a

fX(t)dt (2.24)
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fX is called a probability density function. The (Figure 2.6) gives an example of a typical fX

and the respective FX .

f(x)

1

x

F(x)

1

x

Fig. 2.6: Probability density function and the respective distribution function

If X is a valid random variable with probability density function f for which
∞
∫

−∞

|x|f(x)dx

converges. Then

E(X) =

∞
∫

−∞

xf(x)dx

is called the expected value of random variable X. For E(X) holds

1. E(x − E(x)) = 0

2. E(g ◦ X) =
∞
∫

−∞

g(x)f(x)dx, if
∞
∫

−∞

|g(x)|f(x)dx converges

3. E(aX + b) = aE(X) + b

4. E(X + Y ) = E(X) + E(Y )

5. E(XY ) = E(X)E(Y ), if X,Y are independent random variables

Now we have everything that is necessary to solve an integral equation using stochastic
methods. The main idea behind solving the integrals is the Law of Large Numbers. For a
random variable X holds

P

[

E(x) = lim
n→∞

1

n

n
∑

i=1

xi

]

= 1
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where (xi)i=1···n being a series of random numbers with the same probability density function
as X. The Law of Large Numbers states that the expected value of a random variable X
can be approximated arithmetically by using a series of random numbers generated with the
same probability density as the random variable X

E(X) ≈
1

n

n
∑

i=1

xi (2.25)

We will also utilize the fact that when we use a function on a random variable the result is
also a random variable. If X has a probability distribution function f , for the expected value
of g(x) holds

E(g(X)) =

∫

y∈Ω

g(y)f(y)dy

Using (2.25)

E(g(X)) ≈
1

n

n
∑

i=1

g(xi) (2.26)

If we want to determine the value of the integral of function h over Ω ∈ R we can imagine
that we can write h as a product of some functions f and g

h(x) = g(x)f(x) (2.27)

where f is a probability density function of a random variable X : Λ → Ω. According to
(2.23)

∫

y∈Ω

f(y)dy = 1

Then by (2.26) and (2.27)

∫

y∈Ω

h(y)dy =

∫

y∈Ω

g(y)f(y)dy = E(g(x)) ≈
1

n

n
∑

i=1

g(xi) =
1

n

n
∑

i=1

h(xi)

f(xi)

Thus for our integral the approximation will be



2. The Light Transport Model 26

∫

y∈Ω

h(y)dy ≈
1

n

n
∑

i=1

h(xi)

f(xi)
(2.28)

Please notice the interesting fact that it is not necessary for h to actually be a product of g
and f . For the validity of our approximation it is only important that the series (xi)i=1···n of
random numbers has the same probability density as the random variable X.

Now we have a mathematical model to describe the light transport in the scene. This model
does not state what happens with the light and its properties when it hits an object—it only
deals with changes in its directional vector. Neither it tells us how we obtain this intersection
point. This will be covered in the following section.



3. THE MATERIAL AND GEOMETRY MODEL

Having defined the light transport we now need to describe the material and geometrical
properties of the scene somehow. Just like in the case of light transport we will take a look
at how it is done by the nature.

The choice of Classical Optics as the theory behind our light transport model has already
set the boundaries for the physical behavior of the material and geometry. For Classical
Optics the light-object interactions are in fact just intersections of lines and planes. Given
any surface we can imagine it as a terrain composed of flat areas. For materials such as
mirror, the surface is almost completely flat, with few irregularities, but a surface of a piece
of paper is very irregular. When a newtonian ray of light hits an object, at the highest level
of details it interacts with a tiny plane and is reflected according to the Law of Reflection.
The energy, color and other properties of the ray are changed—according to the properties
of the material.

If we try to represent this model using computers we encounter several difficulties. All
arise from the fact that natural objects are very complex. A data structure required to
contain an object’s geometry of infinitesimal flat areas would be cumbersome to use and
extremely memory consuming. Therefore in computer graphics we tend to use a probabilistic
approximation of the material and geometry.

When we observe a bundle of rays interacting an opaque material, we notice that the energy
of the bundle is distributed in a hemisphere positioned over the point of interaction. If
we measured this energy distribution, stored it in form of a continuous function and used
it in our algorithms we would get a very good approximation of the material’s behavior.
Taking a single ray instead of a bundle, this function becomes a probability density function
fr : Ω×S×Ω → R telling us the probability that an incoming ray from a direction ω hitting
the surface dA at x will be reflected along ω′. This has already been discussed in Chapter 3
where the rendering equation has been presented.

By (2.13)

dLout(x, ω)

dω′
= fr(ω

′, x, ω)Lin(y, ω′) cos θ′ (3.1)

and therefore for fr
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fr(ω
′, x, ω) =

dLout(x, ω)

Lin(y, ω′) cos θ′dω′
(3.2)

The function fr is called Bi-Directional Reflection Distribution Function and defines partially
both geometrical and material properties of the object. Geometrical because it is an approx-
imation of the infinitesimal features of the geometry of the object and material because it
also covers the absorption of light energy that interacts with the object.

The problem that remains is how to find such a function for a certain material. This task
is nontrivial and so far no fully satisfactory technique has been found for creation of such
functions. We can at least restrict the set of all possible functions and consider only those
that are physically plausible. A physically plausible BRDF does not violate the following
conditions.

1. Reciprocity

As the reflection of light is reciprocal, we can exchange the incoming and outgoing
directions and the BRDF should yield the same value for both cases

fr(θi, x, θo) = fr(θo, x, θi)

2. Conservation of energy

The fraction of energy that that arrives from direction ω′ being reflected in the whole
hemisphere over ~x must be smaller than 1

ρ(x, θi) =

∫

Ω

fr(θi, x, θo) cos θodωo ≤ 1,∀x, θi

In other words, the total reflected outgoing energy must be less or equal to the incoming
energy being reflected.

To model the macro-geometry of the scene several techniques exist. The objects can be
represented by mathematical functions using approaches as spline surfaces, bezier surfaces
or coons patches. Another approach is based on primitives that can be easily described
mathematically (cube, sphere, torus, etc.) and logical operations (union, subtraction, etc.)
on these primitives. Finally there is the triangle mesh representation where every object is
modeled using triangles. It is clear that not every geometry can be modeled using a finite
set of arbitrarily chosen shapes, but we do not address this problem in this thesis.



4. THE SENSORY MODEL

The final step of every visualization process is the seeing. To see is to display an image of
the scene by stimulating a sensory model (usually a grid of sensors) using the information
provided by a Global Illumination Algorithm. Seeing is not directly related to the Global
Illumination Problem because the illumination does not depend on whether it is seen or
not. We believe that the process of visualization should be completely independent from any
human factors—we cannot expect to have the luxury of a human operator every time we do
a visualization and analyze it. There are several limitations each sensor model has to deal
with.

The sensor grid is relatively small compared to the observed reality and the finite number of
the sensors in the grid causes a loss of information. Provided that several samples describing
a small detail of an object’s surface arrive at a sensor. Because they are too close to each
other, the sensor can record their energy but any information about the details of the emitting
area is lost—as the sensor assumes they are incoming from a single point. Another problem
is the number of samples of the lighting information. While the nature works with ≈ 1040

samples, we only have ≈ 108 samples.

By attempting to cope with these problems, the sensor models must keep in mind that the
only information available is the flux that falls onto the grid of sensors. Otherwise it can
happen that a wrong sensor model compromises the solution of the rendering equation itself.
We call this The Photographer’s Approach as just like photographer, we do not have any
information on how and why an object emits a certain value and type of energy. Now we
would like to show how nature enables us to see and how our sensory system works.

Our sensory system consists of two parts, an optical sensitive device—the eye and a processing
device—the brain. The eye is quite simple and does not differ too much from the systems
used in digital cameras. It contains a lens and a sensor grid called retina, composed of
photosensitive cells of two types —rods and cones. Rod cells are highly sensitive to the
light intensity which allows them to produce very sharp images, but they cannot detect
color. These cells enable us to see when there is not enough light available. Cone cells are
responsible for color sensing. These cells require more light samples (photons) than rod cells
to function correctly. Therefore at low lighting the images we see appear to have less color.
The sensing resolution of the eye can be considered high-end by todays standards. It can
generate images of about 20000 × 10000 pixels but the quality is not balanced. The highest
concentration of cells is in the middle of retina and the amount of the type of cells per area
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lens
retina

Fig. 4.1: The Eye

is also not balanced. The highest concentration of cone cells in the middle of the retina and
decreases toward the edges. Therefore the highest quality of the perception with the most
vivid colors is in a circular area in the middle of the output image. The sensitive area also
contains a part where no perception is possible—where the optic nerve connects to the eye.
The brain must somehow compensate for this optical imbalance and errors. One peculiar
feature of the brain is quite interesting—it never provides an empty perception, it instead
always tries to complete the image. First it composes the information coming from both our
eyes. Then the perception is compared with what we have experienced in the past, what we
believe is real and what is important to us. What we see (more precisely what we perceive)
is the result of this post processing.



5. EXISTING SOLUTIONS

Existing solution approaches can be divided into two types—based on two representations
of the rendering equation. The luminance equation representation (Figure 5.1) describes the
energy transfer from the point of view of en emitter.

L(x, ω) = Le(x, ω) +

∫

Ω

fr(ω
′, x, ω) · L(y, ω′) · cos θ′dω′ (5.1)

sensor

lights

∫

∫

∫

∫

∫

∫

Fig. 5.1: Energy transfer according to the luminance equation

It says that the energy emitted in a certain direction is composed of the energy emitted by
the object plus the energy reflected along the outgoing direction. In contrary the potential
equation representation (Figure 5.2) deal with the energy transfer from the point of view of
the receiver.

W (y, ω) = W e(y, ω) +

∫

Ω

fr(ω
′, x, ω) · W (x, ω′) · cos θdω (5.2)
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sensor

lights

∫

∫

∫

∫

∫

∫

Fig. 5.2: Energy transfer according to the potential equation

In other words the amount of energy received is equal to the amount of direct contributions
plus the contributions by reflection toward the receiver.

As we have already mentioned, several approaches and respective algorithms exist that claim
to give a solution or a partial solution to the Newtonian Global Illumination problem de-
scribed by the rendering equation. They operate at the basis of various simplifications and
approximations of the original problem. But as we will show in some cases they modify the
problem itself and therefore the solution they provide is not a solution to the rendering equa-
tion any longer. As for the judgment of the algorithms we will not look at the visual quality
of the output of these algorithms, but only at the mathematical validity of the solutions they
provide.

5.1 Ray Tracing

Ray Tracing was the first algorithm trying to solve the global illumination problem that
actually made some physical sense. It was first published by A. Appel, R.A. Goldstein and
R. Nagel at the end of 1960s, but the techniques used in Ray Tracing have already been
known for several hundred years. The algorithm claims to solve the luminance equation and
can be mathematically described as
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Lo(x, Θo) = Le(x, Θo) +

+
∑

L

∫

allxi∈L

v(x, xl)fr,d(x)Le(xl, Θ
′

o) cos Θldωl +

+

∫

Θs∈Ωs

fr,s(x, Θs, Θo)L(xs, Θs) cos Θsdωs + ρdLa(x) (5.3)

The first term on the right side is the emitted light, the second term refers to the direct
contribution of the light sources and the third term is the contribution of the reflected light,
evaluated recursively but only for reflections occurring according to the law of reflection
(as if every material were an ideal mirror—so called specular reflection). And finally the
fourth term is an estimate for the contribution of light reflected throughout the scene by
non-specular reflections (ambient light).

Now we will evaluate how this algorithm solves the rendering equation. The light transport
model corresponds to the rendering equation, but the problem is the material and geometry
model. The ambient light (second and higher-order reflections) is approximated by an em-
pirical constant. This approximation causes a systematic error in the computed solution and
is hardly a sufficient substitute for all the complex interactions of light-objects in the scene.
The specular component by itself should be actually enough to solve the rendering equation
provided a special kind of material model were used. According to the classical optics the
material of an object can be described by infinitesimal small flat areas and all interactions
are perfect mirror-like reflections. Therefore we would need a model that can represent the
object composed of these infinitesimal areas. Unfortunately no such model exists that would
allow us to model not only the overall shape but also the material of the object on such a
small scale. This problem is normally solved by using special functions as described in Chap-
ter 3, but in the case of Ray Tracing we have no such option. The Ray Tracing algorithm
only solves the rendering equation for scenes composed of objects with a perfect mirror-like
material and therefore does not provide a solution to the Newtonian Global Illumination
Problem.

5.2 Radiosity

The algorithm of Radiosity is based on a theory that has been used to solve problems in
radiative heat transfer since 1950s. It was first published in 1984 by C. Goral, K. E. Torrance,
D. P. Greenberg and B. Battaile.

This method makes an assumption that all surfaces in the scene are ideal (Lambertian)
diffusers. Energy hitting such a material is scattered evenly in the hemisphere over the point
of interest. The equation describing Radiosity is given as



5. Existing Solutions 34

Bi = Ei + Ri

∫

j

Bj · Fij (5.4)

where Ei is the energy emitted by the patch, Ri describes its reflectivity and Fij defines the
geometrical relations between two patches. It says that the energy radiated by a patch is
the sum of the energy emitted plus the reflection of energy incoming from other patches.
The algorithm starts with some patches being emitters and the rest having no energy. In
a number of iteration steps it tries to distribute the energy over the scene, until the δ of
energy difference between two iteration becomes smaller than a predefined certain value.
The radiosity methods make two assumptions which convert the rendering equation into a
linear equation system:

1. all reflections are perfectly diffuse (lambertian);

2. the geometry is composed of a finite number of flat areas (patches).

Of course, not every object can be generally represented by perfectly diffuse patches. Ma-
terials such as mirror of of generally any material that does not reflect the incoming energy
evenly into all directions cannot by visualized using Radiosity. Another problem is the fact
that the material model is fully integrated into the algorithm. Without this principle, the
algorithm would not work. The Radiosity provides a solution only to a simplification of the
Global Illumination Problem. Radiosity can be combined with the Ray Tracing algorithm
that is able to visualize specular materials. The results are visually satisfactory, yet still not
correct.

5.3 Path Tracing

This algorithm was presented by J. T. Kajiya in [Kaj86] as a solution to the rendering
equation. It provides a solution to the Global Illumination Problem when run with infinite
resources for an infinite time. Similar to the Ray Tracing algorithm it generates light paths
starting at the sensor and interacting with the scene. The rays reflect according to probability
distribution functions that define the material properties. Using the Monte-Carlo method of
solving the rendering equation this algorithm estimates the light energy transfer in the scene.
The more paths are generated the closer this estimate comes to the actual light transfer.
Note that path tracing starts with the camera, i.e. it does not separate solving the rendering
equation from the visualization phase.

This algorithm is able to display any phenomena that can be described by the Classical
Optics.
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5.4 Photon Mapping

Photon mapping is a two-pass algorithm presented by H. W. Jensen in [Jen96] and [Jen01].

The first pass is based on a concept similar to Path Tracing. But instead of gathering the
energy along the paths, it starts at the lights and tries to distribute the energy in the scene
by shooting samples named photons. These are stored in a photon map. Like in path tracing
large numbers of photons are required to generate a good result. Actually these photons could
be visualized directly, but the output does not look nice enough—as there are not enough
samples. There is therefore a second pass by a Monte-Carlo Ray Tracing algorithm. Using
this algorithm we obtain a number of samples for each pixel, that estimate the radiance. To
obtain a sample a ray is traced from the eye through the pixel into the scene. At the point
of intersection the photon map is queried for photons lying near the point of intersection.
Using various methods the nearby photons are used to calculate the radiance at the point of
intersection. This process is described in more detail in [Jen01]. What is important is the
fact that even the authors confess this process does not always give correct results. Methods
exist which compensate for these errors but often they add even more approximations. Each
methods brings along a set of parameters which can be set do minimize different types of
errors. The result is that when visualizing a scene we have to set a lot of parameters so that
the output looks correct, but for another scene the same parameters can generate a wrong
output. Another problem is the fact that it is hard to calculate how these methods affect
the distribution of energy in the scene and so it is unclear if the algorithm (after the second
pass) still is a solution to the rendering equation.



6. OUR SOLUTION

It this section, we will present our solution to the Newtonian Global Illumination Problem.
Our algorithm is intentionally kept simple. Its task is not to generate nice pictures, but
to prove that our approach to solve the Newtonian Global Illumination is valid. Possible
improvements of the speed of the output image generation and its quality will be discussed
later, though they are not very important as they do not affect the correctness of our solution.
The algorithm will be described in the same manner we used to describe the Newtonian Global
Illumination Problem.

6.1 The Algorithm

6.1.1 The General Idea

The basis of the algorithm is similar to the first pass of the Photon Mapping algorithm
[Jen01]. It solves the potential equation (5.2) by generating a large number of samples that
originate at the light sources. The potential equation as a form of the rendering equation
can be rewritten in form of a Louville-Neumann Series

W (y, ω′) = W e(y, ω′) +

+

∫

W e(x, ω)f(ω′, y, ω) cos θdω +

+

∫ ∫

W e(x′, ω′′)f(ω′, y, ω)f(ω′′, x, ω) cos θ cos θ′′dωdω′′ +

+

∫ ∫ ∫

W e(x′′, ω′′′)f(ω′, y, ω)f(ω′′, x, ω)f(ω′′′, x′, ω′′) cos θ cos θ′′ cos θ′′′dωdω′′dω′′′ +

+ · · · (6.1)

Using the method of Monte-Carlo integration we approximate each of these integrals. The
approximation for the first integral in series, according to (2.28) by sampling a direction α1

on a hemisphere over x is

W e(x, α1)f(ω′, y, α1) cos θ

f1α1

(6.2)
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where α1 is a random value corresponding to the probability distribution f1. We can estimate
the second and third integral in the same manner

W e(x′, α2)f(ω′, y, α1)f(α2, x, α1) cos θ cos θ′′

f2(α1, α2)
(6.3)

W e(x′′, α3)f(ω′, y, α1)f(α2, x, α1)f(α3, x
′, α2) cos θ cos θ′′ cos θ′′′

f3(α1, α2, α3)
(6.4)

and also for the n-th integral

W e(x′′, αn)f(ω′, y, α1)f(α2, x, α1) · · · f(αn, x
′, αn−1) cos θ cos θ′′ · · · cos θn

f3(α1, α2, · · · , αn)
(6.5)

Together these estimates describe a path starting at a light source and traveling through the
scene, interacting with it in n reflections. This path is a very rough estimate for the potential
equation. Of course an output image generated from an approximation of the scene by a
single path cannot be satisfactory. Therefore a large number of such paths is needed. In case
of infinitely many paths we obtain the solution to the potential equation (and thus to the
rendering equation). Based on this theory, we will now propose an algorithm which directly
solves the potential equation (Algorithm 1).

6.1.2 Light Sampling

We will refer to Algorithm 1 as light sampling. Before we describe the process itself we will
need some basic definitions.

A scene consists of objects and light sources. Each object is defined by its geometry and a
bi-directional reflectance distribution function that describes the material properties. A light
source is described by its power and an emission function fe. A sample Pi is a result of an
intersection of a ray of light and an object. A sample contains the following information:

1. intersection point x

2. incoming vector ω

3. normal vector N

4. original light source Li

5. material properties of the intersected object fr

6. energy modifier w
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Algorithm 1 Light Sampling

{declaration}
elem {variable representing a light source or a sample}
dataset {a data structure containing calculated samples - paths}
{generating light paths}
Empty(dataset)
while not break do

elem ⇐ SelectRandomElement(dataset)
if TypeOf(elem) = ”light” then

ray ⇐ RayFromLightSrc(elem)
end if

if TypeOf(elem) 6= ”light” then

ray ⇐ RayFromSample(elem)
end if

intersection ⇐ FindIntersection(ray, scene)
if (intersection) then

sample ⇐ GetSampleData(intersection, scene, elem)
Add(dataset, sample)

end if

end while

{energy distribution}
for all elem in dataset do

if TypeOf(elem) 6= ”light” then

nweight[GetLight(elem)] = nweight[GetLight(elem)] + elem.weight
end if

end for

for all elem in dataset do

if TypeOf(elem) 6= ”light” then

elem.energy = Power(GetLight(elem)) ∗ elem.weight / nweight[GetLight(elem)]
end if

end for

{visualization}
for all sensor in sensorgrid do

for all elem in dataset do

if TypeOf(elem) 6= ”light” then

if CanSee(sensor, elem) then

sensor.energy = sensor.energy + GetEnergyContrib(sensor, elem)
end if

end if

end for

end for
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A dataset is a storage structure for samples.

The algorithm begins with an empty dataset. A random choice is made whether we generate
a new sample from a light source or from the already calculated samples in the dataset. As
the dataset is empty we choose a light source. According to the emission function a random
direction ω′ is determined and a ray is generated—starting at the light and oriented toward
the sampled direction. If an intersection of the ray with the scene exists, the intersection
point x′ and the normal vector N ′ at the point of intersection are calculated. Now we have
the necessary information to define a sample (Figure 6.1). As this sample originates directly
from a light source L′

i, its energy modifier w′ is set to 1. The sample P ′

i is then stored in the
dataset.

ω’

N’

fr

L ’i

P ’i
x’,w’

Fig. 6.1: Generating a new sample from a light source

ω’

N’

f ’r

x’,w’

ω

x,w

Pi

P ’i

fr

Fig. 6.2: Generating a new sample from another sample

In the next step, we have a dataset containing several samples. We make a random choice
whether we generate a sample from a light source or from a previously calculated sample in
the dataset. Let us assume we chose the dataset. We select a sample Pi from the dataset. We
choose a random direction ω′ on a hemisphere over the point of intersection x of the current
sample Pi. Again a ray defined by the intersection point x and the direction ω′ is traced
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through the scene. Just as in the case of a light-source-generated sample we calculate all
necessary data for a new sample P ′

i . The only difference is the energy modifier. By selecting
a sample from a dataset we actually decided to extend a path. Therefore our new sample
P ′

i receives a fraction of the energy of the sample Pi. The energy modifier w′ is determined
using the material properties fr stored with the sample Pi, the incoming vector ω and the
vector ω′ (Figure 6.2)

w′ = w · fr(ω
′, x, ω) · g(x, x′) (6.6)

The energy modifier describes the fraction of energy coming from ω to x that is being reflected
along ω′ toward x′. The function g describes geometrical relations between infinitesimal
surfaces of x and x′.

Li

Pi

Pn

P1

w =11

w =w fr( ,x , ’) g( ,x )i i-1 i-1 i-1 i-1ּ ω ω ּ xi-1 i

a light path

sensor

Fig. 6.3: Energy transport along a light path

Each sample can be regarded as the final segment of a single path (Figure 6.3). The energy
modifier of the sample defines the amount of energy transported along this path. This
process should continue infinitely—creating an infinite number of samples, thus generating all
possible paths needed to solve the potential equation. Of course this cannot be accomplished
in reality. Therefore the process is stopped at some point, usually by user interaction or
when the resources are depleted.

6.1.3 Scene Definition

As we have already mentioned the scene consists of light sources and objects. The light
sources can be of two types—point-like light sources defined by a single point x which emit
light in a sphere around the point x and planar light sources defined by an area S and normal



6. Our Solution 41

N that emit light from each point of the surface of S in any direction on a hemisphere over
the point of emission oriented according to N . The light source does not have to emit light
uniformly in all directions. This fact is represented by a emission function fe which is a
probability distribution function similar to bi-directional reflectance distribution functions
for materials.

The objects are represented as triangle meshes. This representation allows for fast computing
of ray-object interaction [MT97] and is easy to implement. The material properties and
micro-geometry is described by the Modified Phong bi-directional reflectance distribution
function [LW94]. This material model is proved to be physically plausible and it allows for
easy implementation of the importance sampling method.

All these data are stored in VRML.

6.1.4 Visualization

Having calculated the data of the energy transfer in the scene, we need to distribute the
energy emitted by the light sources. We will consider the emission of light for a infinitesimal
unit of time. During this time only a certain amount of energy can be emitted by the light
sources

E =
∑

Lights

Lk (6.7)

where E(Lk) is the power of the light source Lk.

The energy modifier of a sample represents the fraction of a unit amount of energy that
is transported along the path with the sample as its final segment. To find the energy
distribution we divide the energy according to the energy modifiers. It is also important that
we divide the energy of a single light source only among those samples which paths originate
at the given light source. Therefore, for the energy of a sample E(Pi) holds

Wk =
∑

Samples

wi

E(Pi) =
E(Lk)

Wk

· wi (6.8)

where Lk is the original light source of the sample, Wk is the sum of the weights of the samples
for Lk and wi is the modifier that determines the fraction of the energy for the sample Pi.

Now for the final visualization we must extend each path one more time to get the energy
directly to the sensors. The visualization model consists of two parallel grids (Figure 6.4).
First one is covered by sensors—each represented by one pixel. The other grid consists of
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small squares. Each square corresponds to a certain sensor (pixel) on the sensor-grid. Now
the algorithm evaluates for each sensor, square and every sample in database whether the
sample is seen from the sensor, while limited by the solid angle defined by the sensor and the
square.

scene

Fig. 6.4: The Sensor Model

For every sensor Si, the energy contribution of each seen sample is

Rj =
∑

Si;Pj∈solidangle(Si,SQi)

f(ω, x, ω′)

E(Si, Pj) = E(Pj) · g(Si, Pj) ·
f(ω, x, ω′)

Rj

(6.9)

It is the fraction of energy transported to x along ω being reflected to Si along ω′. Then for
the total magnitude of the stimulus of the sensor Si holds

E(Si) =
∑

Samples

E(Si, Pj) (6.10)

These values E(Si) are regarded as weights when applied on a pixel map to obtain the final
image.
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6.1.5 Summary

Due to the infinitesimal nature of the problem, we will never be able to provide an exact
solution to the Global Illumination Problem. Our algorithm solves the problem stochastically.
It does not attempt to output nice images, it just simulates the classical (newtonian) optics
and gives a guarantee that its solution converges to the exact solution.

We will now compare our solution to the Path Tracing algorithm presented by Kajiya in
[Kaj86]. While the Path Tracing algorithm is a solution to the luminance equation, our
algorithm solves the potential equation form of the rendering equation. As we have already
shown, both equations provide the same results, but lead to different approaches in appli-
cation of the Monte-Carlo method. Our algorithm varies from Path Tracing in following
properties:

1. To solve the potential equation our algorithm creates samples beginning at the light
sources instead of starting at the sensor.

2. Every path is stored in a persistent data structure. A single path is represented by
a sample carrying the information about the fraction of energy transported along the
path.

3. The energy of the light sources is distributed among among the path based on the
fraction of energy they transport.

These properties lead to following differences between the algorithms.

Due to the fact that the paths start at light sources, the energy distribution process is
independent from the visualization. Therefore the same calculated data can be used to
render images with any position of the sensor in the scene. The visualization process is a
simple extension of the paths so that the energy reaches the sensor—it is possible to use
various types of sensors representing various optical measuring devices.

We can use the methods of importance sampling more efficiently, because we can easily chose
those paths that carry more energy. In Path Tracing we could only guess whether the path
will be of any significance for the generation of the final image.

Because the energy distribution data is persistent, it can be refined when more computational
resources are available or a better image output is required.

Instead of calculating the actual energy distribution we calculate how the energy is dis-
tributed. This fact allows us to change certain parts of the input without having to recom-
pute the illumination from the beginning. For example, changing intensity of a light source
or adding a new light source can be done on-the-fly. Moreover, in our method the computed
illumination is explicitly stored and is independent on the camera. This makes our method
very suitable for walkthrough animations in which camera is moving.
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The algorithm is energy conserving as only the energy emitted by the lights is distributed
among the samples.

The algorithm still requires large numbers of samples to produce satisfactory results. Due to
the fact that we start at light sources and do not consider the position of the sensor, we also
generate samples (paths) that do not contribute much or at all to the final image.

Overall, our approach is superior in many aspects to the original Path Tracing algorithm.

6.2 Improvements

Our algorithm calculates the illumination according to the Classical Optics—and this defines
the set of phenomena which appear in computed images. We will now discuss efficiency of the
algorithm. It has to run for an infinite time to provide the complete solution. In reality, this
is not feasible and we need the algorithm to display the calculated data after some reasonable
computational time. We naturally expect these data to have certain level of visual quality.

There are several techniques which help to speed up the convergence of the algorithm. Among
these techniques we will discuss importance sampling, russian roulette, priority sample selec-
tion and parallelization.

6.2.1 Russian Roulette

With a limited amount of time and resources we cannot calculate all needed data. It is
therefore desirable to remove data that are not significant and do not contribute too much to
the final image. Still this must be done in such a way, that the correctness of the algorithm
is not compromised—every possible sample (light path) must be generated with non-zero
probability.

The basis of russian roulette is a function r : S → R, r(Pi) = p, p ∈ (0, 1). The number p is
the probability that the sample contributes to the final image. As p is always greater than
0 the condition of being able to calculate every possible path in infinite time is not violated.
The function r represents a set of various criteria. These criteria can vary from algorithm to
algorithm based on what makes a sample important.

In our algorithm we have chosen the energy of the sample wi as such a criterion. When
selected randomly from the dataset, the sample is evaluated whether the algorithm continues
and extends the path or the path is ended and the sample discarded from the dataset. In
this way the dataset statistically contains only paths which transport the most energy. This
technique can also be applied when the memory resources are exhausted. We can refine the
result by removing unimportant samples and so freeing resources for calculation of samples
with higher energy.
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6.2.2 Importance Sampling

Generally, most materials do not reflect light energy evenly in the hemisphere over the point
of intersection. When we sample the BRDF that represents the material uniformly, we
generate samples also in directions that are not very important from the point of view of the
energy transfer. A similar situation can be observed regarding the scene. Clearly there are
directions on the hemisphere where no intersection with an object of the scene occurs. We
thus spend time and resources on calculating samples that do not contribute much to the
final image. Although these samples are necessary for the correctness of the final image, it
is reasonable to generate more samples in directions of higher importance.

This can be achieved by sampling the BRDF with a non-uniform probability distribution
function f , that comes as close as possible to the sampled BRDF and/or takes into account
the position of other object in the scene (Figure 6.5). This technique is called importance
sampling.

A
B

C

A B

C

f

Fig. 6.5: Importance Sampling

We have implemented the Modified Phong BRDF with the respective importance sam-
pling—as described in [LW94].
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6.2.3 Priority Sample Selection

To accelerate the convergence of the output image we need to focus on calculating paths that
carry the largest amounts of energy. One way to achieve this is a selection of the samples for
path extension according to a non-uniform probability distribution function.

Imagine we have two samples i, k with energy modifiers wi and wk. Ideally we want that
sample i is selected fracwiwk more often than sample k. By simple analogy on natural
numbers and using numerical methods, we can create a probability distribution function f
that describes the probability of such selection. We order the samples in a queue with high
energy modifiers samples at the beginning—this can be achieved easily by keeping the dataset
orderer with every insertion of a sample. To search, add and remove samples effectively, we
recommend using a search tree defined on top of this queue. When we want to select a
sample, we determine its position using the function f .

In this way, we will select samples with higher energy more often, which statistically generate
high-energy descendants. This increases the number of paths transporting larger amounts of
energy.

6.2.4 Parallelization

The methods presented earlier allow us to use the computing resources more efficiently by
generating those samples among the first which have the greatest contribution to the visual
aspects of the scene. Still they do not address the basic problem of generating large amounts
of samples in reasonable time. By using parallelization we can utilize the computing power
of several computers working on a single task.

Compared to a sequential algorithm, its parallel counterpart running on n processors should
in ideal case achieve a speedup of T = TS

n
. But due to the need of the individual processes to

communicate this is usually less than the ideal value [CDR02]. The level of speedup depends
on several factors, such as the individual nature of the problem, how effectively it can be
divided in separate subtasks and how much the individual processes to have communicate
do solve the task.

Algorithms such as ours are very suitable for parallelization. As we have already mentioned
we need to generate large numbers of samples. According to (6.1) the individual samples
(light paths) are independent from each other. Therefore a trivial parallelization technique
can be easily applied and the achieved speedup comes close to the ideal values:

The master process distributes the scene data among the worker processes. Each worker runs
the same light sampling algorithm to generate a dataset containing the calculated samples
(paths). On demand the master send a termination signal to the processes. The workers
finish the calculation and send their local dataset to the master. Master merges the data and
visualizes it.
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The same optimization techniques can be used in the processes as in the sequential algo-
rithm—russian roulette, importance sampling and the priority sample selection. To compare
the parallel implementation to its sequential counterpart, it is possible to run a similar al-
gorithm sequentially. A single process calculates a number of independent datasets, thus
simulating the calculation by several worker processes (Figure 6.6).

worker

master

worker worker

master

worker

worker

worker

master

master

Fig. 6.6: Comparison of the data-flow in a parallel implementation and its sequential simulation by

a single process

6.3 Implementation

The algorithm was implemented on the x86 architecture. However, it can be compiled to run
on any system that has an ANSI C++ compliant compiler. The source code can be easily
modified to comply with the ANSI C standard. We used the Eclipse environment with CDT
plug-in.

Effort has been made to keep the number of parameters as low as possible. In fact these
are not needed for a correct approach as there should be nothing to set except the scene
definition. The necessary parameters are:

1. a scene with geometry and material definitions (using a modified VRML file)

2. light source definition (in the same VRML file)

3. number of samples to be generated

4. position of the observer

To speed up the convergence and thus improve the image quality we have utilized the tech-
niques of importance sampling and russian roulette.



7. CONCLUSIONS

We have shown that is is possible to define the Global Illumination Problem according to
a physical theory, to describe it mathematically and find its algorithmic solution. By im-
plementing this solution we have proved that it is possible to use this approach for image
generation with satisfactory results. Instead of comparing output images of different solution
to decide on the correctness of the output we can say that our algorithm provides a correct
solution without even running it. The visual quality depends only on the computational time
and available resources and not on features that the algorithm does or does not implement.
In spite of of its similarity, our concept is superior to e.g. photon mapping [Jen01]. That is
because we carefully avoid unnecessary approximation methods that sacrifice mathematical
correctness of the solution for image quality. As a result our algorithm can be applied to any
scene without special tuning of any parameters. We can expect it to generate images repre-
sent the exact behavior of light according to the classical optics theory (and thus according
to the rendering equation).

We know that our approach is in principle not new—the theory behind it has already existed
for a long time. Nevertheless, we are aware of only a few implementations which strive to
simulate the newtonian optics correctly [LW93], [VG97].

We now provide several images (Figure 7.1, Figure 7.2, Figure 7.3) generated by an imple-
mentation of the algorithm. They were calculated using 4000000 samples, each image took
20 minutes to compute. The noise can be reduced by choosing a different sensor model and
by using post processing techniques.
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Fig. 7.1: A scene with 3000 triangles
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Fig. 7.2: A scene with caustics
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Fig. 7.3: A scene with caustics - different position of light source
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