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Abstract

An evolution of a group of related biological species can be represented by a phyloge-
netic tree that we call a species tree. It is also possible to represent the evolution of
one particular gene in a given group of species by a so-called gene tree. In this work,
we study the problem of isometric gene tree reconciliation. The goal of this problem
is to map the nodes of the gene tree to nodes or edges of the species tree in order
to obtain a more comprehensive evolutionary history. Based on this history, we can
interpret the events that took place in the evolution of the gene. Previous research has
dealt with the case where the phylogenetic trees had exact edge lengths. For practical
applicability, we extend the existing algorithms by allowing the input trees to have
inexact edge lengths specified by intervals. The main goal of this thesis is to develop
efficient algorithms for solving several variants of this problem.

Keywords: phylogenetic tree, isometric gene tree reconciliation, inexact branch lengths,
parsimony
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Abstrakt

Evolúciu skupiny príbuzných biologických druhov možno reprezentovať fylogenetickým
stromom, ktorý nazveme druhový strom. Rovnako je možné reprezentovať evolúciu jed-
ného konkrétneho génu v danej skupine druhov pomocou takzvaného génového stromu.
V tejto práci sa zaoberáme problémom izometrickej rekonciliácie génového stromu.
Cieľom tohto bioinformatického problému je namapovať vrcholy génového stromu na
druhový strom za účelom získania komplexnejšej evolučnej histórie. Na základe tejto
histórie vieme interpretovať význam jednotlivých udalostí, ktoré sa odohrali v evolúcii
daného génu. Doterajší výskum sa zaoberal prípadom, kde vstupné evolučné stromy
mali presne určené dĺžky hrán. Z dôvodu praktickej uplatniteľnosti rozširujeme existu-
júce algoritmy tak, že dovoľujeme vstupným stromom nepresné dĺžky hrán zadané ako
intervaly. Hlavným cieľom práce je vývoj efektívnych algoritmov pre riešenie viacerých
variantov tohto problému.

Kľúčové slová: fylogenetický strom, izometrická rekonciliácia génového stromu, nepresné
dĺžky hrán, úspornosť
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Introduction

The theory of evolution says that all biological species are related. Present-day species
originate from mutual ancestral populations, but are all different thanks to the changes
that occurred in their genetic information over successive generations.

Evolutionary relationships of biological entities can be shown by a branching dia-
gram called phylogenetic tree. Phylogenetic trees are often represented as trees from
graph theory, and they can be either rooted or unrooted. A species tree is a phylo-
genetic tree that shows the evolutionary relationships of various species. The leaves
of the tree represent present-day species, and internal nodes represent speciations. A
speciation is an evolutionary process by which a new distinct species is created from a
given population. Evolution of a single gene is shown by a phylogenetic tree called a
gene tree. The leaves of the tree represent copies of the gene in present-day species, and
internal nodes represent speciations or duplications. A duplication is an evolutionary
event causing that a gene is copied and placed in some other position in the genetic
information of an organism.

In this work, we study the problem of isometric gene tree reconciliation. Input
for this bioinformatics problem consists of a weighted species tree S, a weighted gene
tree G and a mapping from the leaves of G to leaves of S. Mapping of the leaves
determines the present-day species that contains a given gene copy. The goal of the
reconciliation is to find a mapping from internal nodes of G to nodes or edges of
S, while all ancestor-descendant relationships remain satisfied. From this mapping,
we can determine whether a given internal node of G represents a duplication or a
speciation and find the point in the evolutionary history, when this event took place.
A specific mapping also implies the number of gene losses that had to occur, so that
only the genes specified by G are present in the present-day species. Reconciliation that
minimizes the number of duplications and gene losses is called the most parsimonious
reconciliation [11].

In the first mention of isometric gene tree reconciliation problem [14], authors intro-
duce and apply an algorithm for reconciliation of unrooted G and rooted S. An article
[3] following their research, modifies the algorithm and improves the running time from
O(N2) to O(N logN), where N is the total number of nodes in both input trees. Their
algorithm for a case when both G and S are rooted has a running time O(N logN)

1



Introduction 2

too and the article also studies more variants of the problem. Previous research has
dealt with the case where the input trees have exact branch lengths. However, branch
lengths of reconstructed phylogenetic trees cannot be determined exactly, only with
some error. Current algorithms thus may not always succeed in finding the true rec-
onciliation. In this work, we allow the input trees of the reconciliation to have inexact
branch lengths specified by intervals, and we present algorithms for several variants of
this problem.

In Chapter 1, we explain the necessary concepts from bioinformatics and the nota-
tion that will be used throughout this thesis. In Chapter 2, we introduce a polynomial-
time algorithm based on linear programming. In Chapter 3, we present less general,
but more efficient algorithms for the variant where only gene tree G has inexact branch
lengths, and S is rooted with exact branch lengths. We improve the running time of
the algorithm for the rooted case to O(N), if only partial reconciliation is required.
Lastly, in Chapter 4, we address the problem of counting the number of duplications
and gene losses implied by the isometric reconciliation, and we present an algorithm
for finding the most parsimonious reconciliation for the case when G is unrooted with
inexact branch lengths.



Chapter 1

Overview

In this chapter, we will introduce basic concepts from bioinformatics along with the
notation that will be used in this thesis, and we will briefly describe other related work.

1.1 Basic terms

DNA (Deoxyribonucleic acid) is a molecule carrying the genetic instructions used
in the growth, development, functioning and reproduction of all living organisms and
many viruses. It is composed of two complementary strands that can be represented
as a sequence of single units called nucleotides.

A gene is a subsequence of the DNA strand that encodes the creation of a single
protein or other molecule with a function.

A genome is the entire genetic material of an organism. It consists of all the
DNA present in the organism, and thus contains many genes. For example, the human
genome contains approximately 20.000 genes [8].

A phylogenetic tree is a branching diagram showing evolutionary relationships
of biological entities. It can be represented as a tree from graph theory.

For a tree T , we denote its nodes as V (T ), its edges as E(T ) and its leaves as L(T ).
Trees that have their branch lengths defined are called weighted. For an edge (u, v),
we will denote its branch length as w(u, v). Trees can be either rooted or unrooted
(Fig. 1.1).

A rooted tree is a tree with one designated node called root. For a given rooted
tree T , we denote its root as root(T ). Rooted tree is a directed graph, where all of the
edges are oriented away from the root. If (u, v) ∈ E(T ), u is the parent of v and v

is the child of u. We denote the parent of v as parent(v) and the set of its children
as children(v). All nodes have exactly one parent, except for the root, which doesn’t

3



CHAPTER 1. OVERVIEW 4

have a parent. Leaves don’t have any children and internal nodes can have an arbitrary
number of children.

An ancestor of a node v is an arbitrary node on the path from the root to v,
including v. The nodes with an ancestor a are the descendants of a. For example,
the root is an ancestor of all the nodes of a tree, which are all his descendants. A
subtree rooted at node u consists of u and all its descendants. We will denote the
number of nodes in a subtree rooted at u as Nu.

The height of a rooted tree is the number of nodes on the longest path from the
root to one of the leaves. If a rooted tree T is weighted, by D(u) we will denote the
depth of the node u from T . The depth is computed as the sum of the lengths of all
the edges on the path from root(T ) to u. If u is an ancestor of v, by Du(v) we denote
the depth of v below u, i.e. the sum of the edge lengths on the path from u to v.

The lowest common ancestor of a set of nodes in a rooted tree is the shared
ancestor of all the nodes in the set, located farthest from the root. For a set of nodes
A, we will denote their lowest common ancestor as lca(A).

An unrooted tree does not have a root, which means the parent-child relationship
between adjacent nodes is not clearly established. A subdivision of an edge (u, v) is
a process where a new node r is created on the edge (u, v) and the edge is replaced by
edges (r, u) and (r, v). When subdividing a weighted edge, w(r, u) +w(r, v) = w(u, v).
An unrooted tree can be rooted by choosing one of its edges, adding a new root node
by subdividing the chosen edge and orienting all of the edges away from the new root.

A rooted subtree of an unrooted tree can be acquired by removing an edge e from
the tree, choosing one of the two newly created components and rooting the component
at the respective node incident to e.

Let’s assume we have an unrooted tree T and we know the new root of T is situated
on edge (u, v) ∈ E(T ). A semi-rooted tree of T consists of the root edge (u, v) and
the subtrees rooted at u and v acquired by removing the edge (u, v) from T .

1.2 Phylogenetic trees

A species tree is a phylogenetic tree that shows the evolutionary relationships
among various species. Leaves of the tree represent present-day species and internal
nodes represent speciations. An example of a species tree is shown in Fig. 1.2. We will
denote a species tree as S.

A speciation is an evolutionary process by which populations evolve to become
distinct species. It can occur due to various causes, for example, when the population is
forced to be split between two geographical areas. Populations become distinct species
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Figure 1.1: Difference between a rooted (right) and unrooted tree (left). Rooting the
unrooted tree by the dashed edge will result in the rooted tree on the right, having the
new node x as the root.

when their respective individuals cannot produce fertile offspring. When a speciaton
occurs, all the genes present in the parent species will be also present in both of the
new distinct species.

A duplication is an event causing that a sequence containing a gene is copied and
inserted to some other position in the genome.

A gene loss (deletion) is an event in which a DNA sequence containing a gene is
lost from the genome of an organism.

A gene family is a set of several similar genes in present-day species. A gene
family is formed by duplications, speciations and gene losses that took place in the
phylogeny of a single original gene. Genes from the same gene family generally have
similar functions.

A gene tree is a phylogenetic tree showing the evolution of a single gene. Leaves of
the tree represent genes belonging to a single gene family and internal nodes represent
speciations or duplications. We will denote a gene tree as G. An example of multiple
gene trees is shown in Fig. 1.3.

For a gene tree to be meaningful, the present-day species of origin for all its leaves
(leaf mapping) must be known too. For gene tree G, a paired species tree S contains
the species of origin for every gene in the gene family of G. For the paired S and G,
we will denote the leaf mapping L(G) → L(S) as µ. For species a, we will usually
denote the leaves of G that map to a as a1, a2, .., ak.

By N we will denote the total number of nodes in G and S combined (|V (G)| +
|V (S)|). We will say that the rooted trees are balanced, if their height is in O(logN).
By h we will denote the sum of heights of rooted G and S.
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Figure 1.2: An example of a species tree of several commonly studied, model organisms.
The numbers represent how many millions of years ago the speciations took place.
(Source: [1])

Both gene and species trees can be reconstructed from the DNA sequences of
present-day species by various, usually probabilistic, methods [7]. Although phyloge-
netic trees are naturally represented by rooted trees, many tree reconstruction methods
can only produce unrooted trees. In general, the internal nodes of phylogenetic trees
can have an arbitrary number of neighbors.

1.3 Gene tree reconciliation

An evolutionary history shows an evolution of one or more genes within the
evolution of species. It is a possible scenario of how the gene families in present-
day species actually developed. It shows how many duplications and gene losses have
occurred and when did they happen. An example of multiple gene trees originating
from the same history is shown in Figure 1.3.

We don’t know what does the true history of a given gene family look like, but we
want to find out. A possible history can be acquired from a gene tree and its paired
species tree. However, the pair of trees may correspond to many different histories,
because it is not clear which nodes of the gene tree correspond to speciations in the
species tree.
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x

species tree
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Gyellow Gred Ggreen

a b c a c c1 1 2 a a b1 2 1
a b c1 1 2b2
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Figure 1.3: An example of a history and gene trees. On the left is a history containing
the phylogeny of three genes in a small set of species. Gene losses are shown as a
letter X. A single copy of the yellow and red gene was present in the ancestor of all
three species. When the first speciation occurs, both of the genes are copied to each
of the species. In the right branch of the species tree, we can see that the yellow
gene is duplicated once, red gene is duplicated twice, but one of the red gene copies is
lost. The green gene is a novel gene for the left subtree of the species tree. The gene is
duplicated and after the speciation, one copy of the green gene is lost in each of the two
present-day species. The topologies of the individual gene trees are shown on the right.
Note that gene losses are not present in a gene tree and gene trees themselves also do
not indicate which of their internal nodes are duplications and which are speciations.



CHAPTER 1. OVERVIEW 8

Gene tree reconciliation is a problem where we are given a species tree S, a gene
tree G and a leaf mapping µ:L(G)→ L(S). The goal of the reconciliation is to find a
mapping Φ that maps the internal nodes of G to the nodes or edges from S, and thus
to reconstruct the evolutionary history of the gene family. An example of a gene tree
reconciliation is shown in Figure 1.4.

More formally, reconciliation takes G, S, and µ as an input and returns a triple
(Go, So,Φ) representing the evolutionary history of the gene family. Gene tree Go is
a rooted version of G, so if G is unrooted, Go is obtained by subdividing an edge of
G and rooting the tree in this new node. If G is rooted, Go = G. Species tree So is
a rooted version of S that also contains auxiliary nodes so that mapping Φ is from
V (Go) to nodes (not edges) of So. Whenever some node u of Go needs to be mapped
to an edge of the species tree, we subdivide the edge by a new node Φ(u) ∈ V (So).
Node Φ(u) represents a duplication event and has only one child. Duplications may
also occur before the first speciation (the root) in the species tree. In this case, for a
duplication u ∈ V (G), a new edge (Φ(u), root(S)) has to be added to So. There can be
more duplications like this, so generally So has a path r1, r2, . . . , rk, where r1 = root(So)

and rk = root(S). Mapping Φ:V (Go) → V (So) preserves the ascendant/descendant
relationships; specifically for each edge (u, v) ∈ E(Go), Φ(u) is an ancestor of Φ(v). In
addition, for each leaf u of G, Φ(u) = µ(u).

Mapping Φlca maps each node u ∈ V (G) to node Φlca(u) = lca({µ(v)|v ∈ Lu}),
where Lu is the set of all leaves in the subtree of G rooted at u. Node Φlca(u) represents
the most recent species that could have contained the gene u. For the reconciliation
to be meaningful, an internal node u ∈ V (G) can be mapped only to Φlca(u) or its
ancestors in So. Note that Φlca(u) = µ(u) for u ∈ L(G).

Mapping of an internal node u from G determines whether the node represents a
duplication or a speciation [3]. The mapping also implies the number of gene losses
that had to occur, so that only the genes specified by G are present in the present-day
species. For example, in Figure 1.4 we can see that the mapping Φ determines both
internal nodes x and y as duplications. The mapping of y doesn’t imply any gene
losses and Φ(x) implies two gene losses. Generally, the closer node u from G is mapped
to Φlca(u) (the most recent species for u), the smaller the number of events. We will
describe the duplications and deletions implied by the reconciliation more thoroughly
in Chapter 4.

Since a reconciliation is not unique, the goal of an algorithm may be to find the
most parsimonious reconciliation minimizing the number of duplications and gene
losses.

The problem of gene tree reconciliation, where the trees are unweighted, is being
studied since 1979 [9] and multiple algorithms based on the parsimony principle have
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Figure 1.4: Reconciliation example. On the left we can see a possible reconciliation
result for a simple rooted G and S. Internal node y is mapped to an edge of S and x is
mapped above the root of S. If an internal node from G is mapped to an edge of S, it is
a duplication. On the right is the evolutionary history specified by this reconciliation.
Because x is a duplication, two copies of the gene are present in the ancestor of species
a and b. One of the copies should be present in a and the other in b. That means
both of them have to submit to the speciation r. However, the gene copy which should
end up in b does not belong to a, so a gene loss of this gene copy had to occur during
the evolution of a. The same applies to the gene copies in b. The duplication y does
not produce any gene losses, so according to this reconciliation, there were in total two
duplications and two losses. The most parsimonious reconciliation for this case is when
node x is mapped exactly to r. Node x would be a speciation and no gene losses would
occur.

been created [6, 11, 17, 18]. The most parsimonious reconciliation for rooted unweighted
trees G and S maps each node u of G to node Φlca(u), which is the deepest point in
S where the event corresponding to u could have happened. Mapping Φlca can be
computed in O(N) time for all nodes of G [17].

1.4 Isometric reconciliation

In this section, we will consider that the gene tree G and species tree S are both
weighted. Branch lengths of weighted phylogenetic trees represent an estimate of the
time that has passed between the evolutionary events represented by the nodes. The
time is usually approximated by the number of changes (mutations) between the se-
quences of present-day species.

A reconciliation is called isometric, when both G and S are weighted. Therefore,
the problem takes both topology and branch lengths of the trees into account. For
convenience, we will assume that G and S have all edges strictly positive. In order
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to define the isometric reconciliation more formally, we will define several terms in
accordance with previous work Brejová et al. [3], however, our definition will not be
as detailed.

An isometric mapping from a rooted phylogenetic tree T1 to a rooted phylogenetic
tree T2 is a mapping Φ of nodes of T1 to nodes of T2 such that if node u ∈ V (T1) is the
parent of v, then Φ(u) is an ancestor of Φ(v) and DΦ(u)(Φ(v)) = Du(v). Note that by
induction, DΦ(u)(Φ(v)) = Du(v) for any nodes u and v such that u is an ancestor of v
in G.

An input partial history is a triple (G,S, µ) such that G and S are rooted or
unrooted phylogenetic trees with positive edge weights, µ is a mapping from leaves of
G to leaves of S, and each internal node v in both G and S satisfies the following. If
the tree is rooted, v has at least two children. If the tree is unrooted, v has at least
three neighbors.

The isometric gene tree reconciliation problem takes the input partial history
(G,S, µ), and like the topology-only problem, returns a triple (Go, So,Φ) that represents
the evolutionary history of the gene family in G. The features of the trees Go and So
remain the same as in the topology-only problem. In short, Go and So are rooted
versions of G and S, where So was created by potentially subdividing edges of S and
potentially adding a path leading to root(S) from above. The edge lengths of Go and
So are also strictly positive. Mapping Φ is an isometric mapping from Go to So, such
that Φ(u) = µ(u) for every leaf u of G (L(G) = L(Go)). Note that the properties of
an isometric mapping guarantee that each node is mapped to or above its Φlca. Every
internal node u ∈ V (Go) thus satisfies D(Φ(u)) ≤ D(Φlca(u)). It is possible that the
input has no isometric reconciliation. In that case we reject the input as irreconcilable.

1.4.1 Related work

The isometric gene tree reconciliation problem has been introduced in 2008 [14]. An
O(N2) algorithm is presented for the variant when the gene tree is unrooted, the species
tree is rooted and branch lengths are exact. Authors used this form of reconciliation
as one of the steps in their polynomial-time algorithm to reconstruct a more detailed
evolutionary history of multiple genomes.

The reconciliation algorithm is then modified and improved in an article by Brejová
et al. [3] to O(N logN) running time. An intuitive algorithm for the case when both
G and S are rooted is provided too, with the same running time. The article also
studies and presents algorithms for two extensions of the problem which were not
considered before. Firstly an O(N5 logN) algorithm for the case when G and S are
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both unrooted and secondly an algorithm for the case when both trees are rooted, but
the branch lengths of the gene tree are scaled by some unknown factor which needs
to be discovered by the algorithm. This was the first step towards a more practically
applicable scenario where the branch lengths are not known exactly.

Reconciliation that takes some branch length information into account was also
previously studied in several complex probabilistic models considering branch lengths
in species tree [15, 10, 4] and models allowing horizontal gene transfer [2, 5]. However,
these works ultimately deal with different problems than the one we study here.

1.4.2 Partial reconciliation

As the result of the reconciliation, sometimes we do not necessarily need So with edges
subdivided by duplications. Some of our new algorithms output a partial reconcilia-
tion, which is a function δ:V (Go)→ R such that δ(u) is the mapping depth D(Φ(u))

for each node u of Go. For unrooted trees we will provide partial reconciliation along
with the information about the location of the roots of G and S, so that the topology
of the rooted versions of the input trees is known. We will later show that the partial
reconciliation can be computed more efficiently than the full reconciliation.

If a full reconciliation exists, partial reconciliation δ exists too and is also a useful
step towards finding the full reconciliation. We will also show that we can construct
the full reconciliation from a given mapping δ. This may be useful if we are able to
find the partial reconciliation efficiently, but the full isometric reconciliation is hard to
compute directly.

1.5 Inexact branch lengths

Gene trees, species trees and their edge lengths are in practice estimated from DNA
sequences collected from present-day species [7]. The edge lengths depend on the
mutations that were observed in the input data. Mutations in evolution are mostly
random and the input data are also just some random samples from the studied species.
The inferred phylogenetic trees and their branch lengths are thus always estimated with
some error.

When the trees undergo reconciliation, even small differences between branch lengths
of the trees may prevent the current algorithms from finding the true solution. We build
on the work of Brejová et al. [3], and we address this issue by allowing the input trees
to have inexact branch lengths defined by intervals.

For each edge (u, v) we define an interval w(u, v) = 〈w(u, v)min, w(u, v)max〉 of
possible edge lengths. When reconciling G and S with inexact branch lengths, we need
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to choose a specific length for each edge (u, v) ∈ E(G) ∪ E(S). A combination of
the chosen specific lengths for each edge, such that the isometric reconciliation exists,
is a feasible solution for this problem. However, we will not represent the solution
explicitly as the specific edge lengths, but as specific mapping depths δ(u) for each
node u ∈ V (G) and depths D(a) for each node a ∈ V (S). As a result of a successful
isometric reconciliation of G and S with inexact branch lengths, we can either provide
one possible solution or characterize the set of all feasible solutions. In the rest of
this thesis, we study the problem of reconciling trees with inexact branch lengths and
present algorithms for solving several variants of this problem.



Chapter 2

Linear programming

In this chapter, we will show that the problem of isometric gene tree reconciliation,
where the input trees have inexact branch lengths specified by intervals, can be formu-
lated as a linear program.

Linear programming (LP) is a technique for the optimization of a linear objective
function f , subject to linear equality or inequality constraints for n variables. If all the
constraints of LP are satisfied, the problem formulated by LP has a solution. When
the objective function f is specified, LP finds such values of the variables that f is
maximal or minimal. If the number of constraints is polynomial, LP can be solved in
polynomial time [12].

2.1 Rooted trees

In order to formulate the problem of isometric reconciliation, we have to specify the
variables we want to use. For each node u ∈ V (G), we introduce a variable Xu

representing its mapping depth Xu = δ(u) = D(Φ(u)). For each node a ∈ V (S) we
represent its unknown depth by variable Ya = D(a).

First let’s assume that both G and S are rooted with inexact branch lengths. In
order to find a valid isometric reconciliation, our variables have to satisfy the following
constraints:

Xv −Xu ≤ w(u, v)max ∀(u, v) ∈ E(G) (2.1)

Xv −Xu ≥ w(u, v)min ∀(u, v) ∈ E(G) (2.2)

Yb − Ya ≤ w(a, b)max ∀(a, b) ∈ E(S) (2.3)

Yb − Ya ≥ w(a, b)min ∀(a, b) ∈ E(S) (2.4)

Xu ≤ YΦlca(u) ∀u ∈ V (G) (2.5)

13
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Xu = Yµ(u) ∀u ∈ L(G) (2.6)

Yr = 0 (2.7)

The first two inequalities say that the distance between the mapping depths of two
neighboring nodes u and v from G must be between the minimal and maximal length
of (u, v). Inequalities 2.3-2.4 similarly restrict the depths of neighboring nodes of S by
the edge lengths of S. Inequality 2.5 says that each node from u has to be mapped
to or above Φlca(u). Note that we need to find Φlca before we can solve the linear
program. Equality 2.6 represents the mapping of leaves by µ. Note that if u is a leaf,
Φlca(u) = µ(u). In general, the root of S can be situated in any depth. To unify the
results, we will state that the root of the species tree is always in depth 0 (equality
2.7). The nodes that map above root(S) are thus mapped to negative depths. Note
that the linear program works even when G and S are non-binary trees. Since there is
O(N) nodes and edges in the trees, LP is formulated by O(N) constraints and can be
solved in polynomial time.

Finding a solution
To find an interval X[u] = 〈X[u]min, X[u]max〉 or Y [a] = 〈Y [a]min, Y [a]max〉 of

possible mapping depths for each node u ∈ V (G) and a ∈ V (S), we can solve the
linear program where the variable Xu or Ya (set as objective function) is first minimized
and then maximized. With one variable fixed to any value from its interval, there
has to exist a value of all other variables from their respective intervals, such that
all LP constraints are satisfied. However, mapping some node to its, for example,
maximum possible depth may prevent some other node from being mapped to its
minimum/maximum depth.

Justification
From the formulation of LP, it is clear that every reconciliation has to satisfy those

constraints. Here, we will prove that every solution of LP corresponds to an isometric
reconciliation. To prove this, we will show an algorithm for constructing isometric
reconciliation (G,So,Φ), given a partial reconciliation δ satisfying the aforementioned
LP constraints (δ(u) of node u ∈ V (G) is equal to some Xu that satisfies the constraints
of LP).

Consider node u in G. If δ(u) < 0, node u should map to a newly added node
positioned in distance δ(u) above the original root of S. If δ(u) ≥ 0, we first find
node Φlca(u), and then locate the edge e in S on the path from root(S) to Φlca(u),
which involves depth δ(u). We will subdivide edge e by a new node Φ(u) at depth
δ(u) and map u to this node. If the depth δ(u) is equal to D(a) of node a of So before
subdividing e, u is mapped to node a. This process can be repeated for every node u
of G, creating mapping Φ and tree So with subdivided edges.
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To see that we obtain a valid isometric reconciliation, first consider node u which
is a leaf in G. Since δ(u) = D(µ(u)) and Φlca(u) = µ(u), the above process will map
u correctly to µ(u). Now consider an edge (u, v) of G. Because of condition 2.5, Φ(v)

is an ancestor of Φlca(v). Similarly, Φ(u) is an ancestor of Φlca(u) and thus also an
ancestor of Φlca(v) (Φlca(u) is an ancestor of Φlca(v)). Both Φ(u) and Φ(v) are thus
on the path from Φlca(v) to the root, and as a result, one must be the ancestor of the
other. Thanks to conditions 2.1-2.2, v is in a greater depth, which means that Φ(u)

is the ancestor. These conditions also imply that they are in the correct distance, i.e.,
that DΦ(u)(Φ(v)) ∈ w(u, v).

Solutions decreasing the number of events
The inequalities of our LP formulation may have many solutions and sometimes

we want to choose one particular solution. Mapping nodes of G closer to their Φlca,
i.e. their deepest possible mapping point, decreases the number of losses implied by
Φ. If we maximize objective function

∑
u∈V (G) Xu, nodes from G will be mapped to

their maximum depth. However, this objective function doesn’t involve the depths of
nodes in S which can be thus set far from the resulting Xu. Minimization of the sum
of distances between Φlca(u) and Xu (

∑
u∈G(YΦlca(u) − Xu)) may be a better alterna-

tive. However, a solution where some of these distances are greater, so that other can
be shorter, may imply fewer duplications and losses. Neither of these solutions there-
fore guarantee the most parsimonious reconciliation, but they can provide practical
heuristics.

2.2 Semi-rooted and unrooted trees

If G and S are semi-rooted, most of the previous constraints apply to this case too,
except for the ones concerning the new root and its future adjacent nodes.

Let q be the root of G located at an unknown position on edge (u, v) ∈ E(G). Note
that in the rooted version of G, Φlca(q) = lca({Φlca(u),Φlca(v)}) which can potentially
be the root of S, whose exact location is unknown for semi-rooted S. After subdividing
(u, v), the root q will be adjacent to nodes u and v, which will no longer be adjacent to
each other. We will thus replace constraints (2.1) and (2.2) concerning only the edge
(u, v) by the following conditions:

w(u, v)min ≤ (Xu −Xq) + (Xv −Xq) ≤ w(u, v)max (2.8)

Xu −Xq ≥ 0 (2.9)

Xv −Xq ≥ 0 (2.10)

After replacing the two constraints (2.3) and (2.4) concerning the root edge of S
by analogous conditions too, we get the LP formulation for the semi-rooted G and S.
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Constraints 2.8 say that the sum of edge lengths of (u, q) and (v, q) has to belong to
interval w(u, v). The last two constraints ensure that u and v are mapped deeper than
q. Note that this formulation allows one of the edges (q, u) and (q, v) to be of zero
length.

Now let’s assume that G and S are unrooted. We won’t formulate LP for this
case, but we can execute LP for each combination of semi-rooted G and S. The set of
solutions for unrooted G and S will thus be separated to multiple subsets, depending
on the positions of the roots. Solving LP for all root positions will worsen the time
complexity of LP by the factor N2, therefore it is still polynomial.

In conclusion, we have shown that the problem of isometric reconciliation with
inexact branch lengths can be solved in polynomial time.



Chapter 3

Efficient algorithms

In this chapter, we will present faster algorithms for the case where the species tree is
rooted with exact edge lengths and we will allow the inexact edge lengths specified by
intervals only in the gene tree. We chose this variant because species trees are usually
reconstructed on the basis of multiple estimated gene trees [13] and therefore, their
topologies and edge lengths are better known in contrast to the generally less accurate
gene trees.

3.1 Rooted gene tree

In this section, we will provide an efficient algorithm for the isometric gene tree reconcil-
iation of rooted G with inexact edge lengths. If only partial reconciliation is required,
our algorithm has a better running time than the existing algorithm [3] for the full
reconciliation of rooted trees with exact branch lengths.

Since species tree S is rooted with exact edge lengths, we don’t need to find a
new root for S and we don’t need to find specific depths of nodes of S, because they
are already fixed. However, it is useful to precompute D(a) for each a ∈ V (S) which
can be done in linear time. If G is rooted, the only variable is the mapping depth
δ(u) = D(Φ(u)) for each node u ∈ V (G). Our goal is to find an interval X[u] =

〈X[u]min, X[u]max〉 of possible mapping depths for each u ∈ V (G). These intervals
should have the same properties as the intervals computed by LP in the previous
chapter.

Algorithm description
Our algorithm (Alg. 3.1) uses two sweeps over the rooted gene tree. In the first

(upward) sweep, we create an auxiliary interval x[u] = 〈x[u]min, x[u]max〉 for each node
u ∈ V (G). This interval is the set of all possible values of Xu = D(Φ(u)) over all
reconciliations mapping the subtree of G rooted at u to the species tree S. Each point
in this interval is therefore a part of some solution consistent with all descendants of

17
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Algorithm 3.1: A linear-time algorithm for reconciling rooted G with interval edge
lengths and rooted S with exact edge lengths

1 def r e c o n c i l e (q ∈ V (G)) :
2 upward(q)

3 downward(q)

4

5 def upward(u ∈ V (G)) :
6 for v ∈ children(u) : upward(v)

7 i f u ∈ L(G) :
8 x[u] = [D(µ(u)), D(µ(u))] ;
9 else :

10 x[u]min = maxv∈children(u)(x[v]min − w(u, v)max)

11 x[u]max = min(D(Φlca(u)),minv∈children(u)(x[v]max − w(u, v)min))

12 i f x[u]min > x[u]max : print ‘ ‘ no s o l u t i o n ’ ’ ; f i n i s h
13

14 def downward(u ∈ V (G)) :
15 p = parent(u)

16 i f p i s nu l l : X[u] = x[u] # root
17 else :
18 X[u]min = max(x[u]min, X[p]min + w(p, u)min)

19 X[u]max = min(x[u]max, X[p]max + w(p, u)max)

20 for v ∈ children(u) : downward(v)

u, but not taking into account other parts of G. In the second (downward) sweep, we
will specify the searched interval X[u] for each node u ∈ V (G) by further constraining
x[u].

If node u from G is a leaf, it has to be mapped exactly to node µ(u) of S. Both
the auxiliary interval x[u] and the final interval of mapping depths X[u] for leaf u are
thus always equal to 〈D(µ(u)), D(µ(u))〉.

First, let’s look at the upward sweep of G. For an internal node u, let’s say that
each v ∈ children(u) has its interval x[v] known. The highest point x[u]min where u
can be mapped is obtained from child v by taking the highest point where v might map
(x[v]min) and subtracting the maximal edge length w(u, v)max from it. So that the min-
imal depth x[u]min can be reached by all children, we set it to maxv∈children(u)(x[v]min−
w(u, v)max).

The deepest point x[u]max, where u can be mapped, is obtained similarly. From the
deepest points of children we subtract the minimal edge lengths and take the minimum
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of these depths. We will also take into account that node u can be mapped at least to
or above Φlca(u). Therefore we constrain x[u]max to be at most D(Φlca(u)).

If the interval x[u] is empty (x[u]max < x[u]min), the input trees have no reconcil-
iation because node u cannot be mapped consistently with all its descendants, and
thus we reject the input. Otherwise, we will continue with the sweep. If root q of G
is reached, interval x[q] is also the final interval X[q] because it is consistent with the
mapping intervals of all other nodes of G.

In the downward sweep, we set the mapping interval X[u] of each node u ∈ V (G)

(except for the root) according to the already known interval X[p] of its parent p. If we
intersect x[u] with interval 〈X[p]min +w(p, u)min, X[p]max +w(p, u)max〉, we get interval
X[u] consistent with both the descendants of u and with the parent, thus consistent
with the rest of the tree. Note that this intersection cannot be empty. If we get to
run the downward sweep, interval X[root(G)] is not empty and thus there has to be at
least one solution for the isometric reconciliation.

The algorithm passes through all nodes of G twice, while computing intervals of
mapping depths. As we mentioned in Chapter 1, computation of Φlca(u) is in linear
time. The running time of the algorithm is thus O(N).

The most parsimonious reconciliation
If we set the mapping depth of any node u of G to X[u]max, we can also set the

mapping depth of every child v ∈ children(u) to X[v]max because our algorithm guar-
antees that X[v]max can be reached from X[u]max by w(u, v). Choosing the maximum
depth X[u]max as δ(u) for each node u ∈ V (G) will thus lead to a valid solution. Also,
there isn’t a solution where the mapping depth Xu of an arbitrary node u is deeper
than X[u]max. Therefore, mapping each node u to depth δ(u) = X[u]max is the most
parsimonious among all isometric reconciliations, since all nodes are mapped as close
to their Φlca as they can be.

Exact branch lengths are a special case of interval branch lengths, where
w(u, v)min = w(u, v)max for every edge (u, v). Therefore, our algorithm can be ap-
plied to trees with exact branch lengths too. Finding the full reconciliation for rooted
G and S with exact branch lengths takes O(N logN) time. Our algorithm can be used
to find the partial reconciliation of G and S more efficiently, if the full reconciliation
is not needed.

We are also able to determine the exact branch lengths of G by the partial (in this
case, the most parsimonious) reconciliation δ. Thanks to the property of isometric
mapping, unknown branch length w(u, v) of v ∈ V (G) \ root(G) with parent u can be
determined as δ(v)−δ(u). Determining edge lengths for all edges of G can be therefore
achieved in O(N) time. With branch lengths determined, we can set (G,S, µ) as the
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input for the existing algorithm to find the full reconciliation in O(N logN) time.

3.2 Semi-rooted and unrooted gene tree

In this section, we assume that the input gene tree G is unrooted with inexact branch
lengths. We will present an algorithm that uses semi-rooted versions of G to find all
solutions of the isometric reconciliation.

Algorithm description
Let root q of G be situated at an unknown location at the edge (u, v). Edge (u, v)

joins two subtrees of G rooted at u and v. We can call upward(u) and upward(v) to
determine the possible mapping depth intervals x[u] and x[v] that are consistent with
all mapping depths of descendants of u and v. If one of x[u], x[v] is empty, isometric
reconciliation doesn’t exist.

Our goal is to determine intervals X[u], X[v] and X[q]. With those intervals estab-
lished, we can call downward(u) and downward(v) to determine the possible mapping
depth intervals for each node of G and thus to find a solution of the isometric recon-
ciliation.

To obtainX[u], X[v] andX[q], we formulate a linear program of three variables as in
Chapter 2. We will use the constraint 2.5 for q (u and v are already mapped above their
Φlca thanks to upward) and constraints 2.8-2.10 concerning the semi-rooted case. In
addition, we will add inequalities x[u]min ≤ Xu ≤ x[u]max and x[v]min ≤ Xv ≤ x[v]max.
This LP of constant size represents the formulation of our problem. By maximizing and
minimizing each of the objective function Xu, Xv and Xq, we find the desired intervals
X[u], X[v] and X[q]. If the linear program cannot find a solution, root q cannot be
placed on edge (u, v) and thus the isometric reconciliation doesn’t exist.

In this algorithm, we passed through all nodes of G by upward and downward, and
we solved LP of constant size. Therefore, the running time is O(N). For unrooted G,
we can use this algorithm for every possible edge, where q can be located, with total
O(N2) time.

Finding a solution
When we maximize the objective function Xu, the linear program may minimize

Xv because it will try to map v as close as possible to q, so the remaining length of
edge (u, v) is used for mapping u as deep as possible. Likewise, maximizing Xv may
minimize Xu and therefore, depths X[u]max and X[v]max may not be achievable at the
same time.

In order to find a solution (partial reconciliation) that could intuitively minimize
the number of duplications and losses, we can always set δ(q) to X[q]max, with the
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additional advantage that the edge length of (u, v) available for mapping u and v is
maximal. Then, we can either maximize δ(u), δ(v) or δ(u)+δ(v). If we choose the first,
we set δ(u) to X[u]max and find maximal δ(v) ∈ X[v] such that the distance between
δ(u) and δ(v) (through δ(q)) is maximal, considering the remaining edge length. We
can maximize δ(v) by similar approach. If we want to maximize δ(u) + δ(v), we can
find the values by maximizing objective function Xu +Xv in our LP formulation.

To find δ of all remaining nodes, we will run a downward sweep on the subtrees
rooted at u and v such that each node y ∈ V (G) \ {u, v, q} with parent x will have its
δ(y) set to min(δ(x) + w(x, y)max, X[y]max).

However, none of the aforementioned ways of determining δ(u) and δ(v) guarantee
the minimal number of events. We will present an algorithm for finding the most
parsimonious solution for this variant in the next chapter.



Chapter 4

Parsimony

In this chapter, we firstly describe the problem of counting the duplications and losses
determined by a reconciliation. We will then present an algorithm for finding the
total number of events of an isometric reconciliation and we will provide an algorithm
for counting the minimal number of events for all reconciliations, where G is rooted
with inexact branch lengths. Lastly, we will use these algorithms to find the most
parsimonious reconciliation of unrooted G with inexact branch lengths and rooted S
with exact branch lengths. In this chapter, we will consider only rooted trees that are
binary and unrooted trees, where the internal nodes have exactly three neighbors.

4.1 Preliminaries

In Chapter 1 we mentioned that the reconciliation specifies the number of duplications
and gene losses that had to occur. In this section, we will introduce the problem of
counting these evolutionary events, and we will define terms and notations that will be
used later in this chapter.

If the input trees of a reconciliation are unweighted, the most parsimonious solution
is represented by history (G,S,Φlca). In this history, internal node u is a duplication
only if there exists such v ∈ children(u) that Φlca(u) = Φlca(v). Otherwise u is a
speciation [16]. We will not describe how are the losses calculated in unweighted trees,
as it can be done in multiple ways. An example can be found in article Tabaszewski et
al. [16]. The authors compute the number of duplications and losses, along with some
additional cost functions of a reconciliation of unweighted G and S, in order to reach
their goal.

In our algorithms, we will consider that duplications and losses are the only events
that could have occured in an evolutionary history, except for speciations. However, we
will mention the case where we allow a new gene to be created during the evolutionary
history, i.e. an ancestral gene doesn’t have to be present at the beginning of the history.

22
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We will generally represent the number of duplications and losses as a pair DL =

(dup, loss), where dup and loss are the respective numbers of duplications and losses.
We will define the sum of DL1 and DL2 as DL1 +DL2 = (dup1, loss1)+(dup2, loss2) =

(dup1 + dup2, loss1 + loss2). We say that DL1 is lower than DL2, if dup1 + loss1 <

dup2 + loss2. Thus whenever we compare two DLs, we are comparing the sums of their
respective duplications and losses.

Internal node u of G represents a speciation if and only if it is mapped exactly to
Φlca(u). Otherwise, u is a duplication. We will define a boolean function isDup(u)

that is true if node u represents a duplication (D(Φ(u)) < D(Φlca(u))). If u represents
a speciation or it is a leaf, isDup(u) is false.

Note that in the topology-only problem, each node u of G is mapped to Φlca(u). In
isometric reconciliation, if Φlca(u) equals to Φlca of one of its children (u represents a
duplication in the topology-only problem), u cannot be mapped to Φlca(u). Otherwise,
one of the edges connecting u to its child would have to be of zero length. However,
we require branch lengths to be strictly positive.

Let (Go, So,Φ) be the resulting history of an isometric reconciliation. We will
denote a set of binary nodes of So (nodes that represent speciations) as bin(So). If
node u ∈ V (Go) represents a duplication (isDup(u) = true), and u is mapped to node
a ∈ bin(So), reconciliation implies that a duplication and a speciation event occur at
the same time. However, one of the events has to happen before the other, and thus
we can choose which of the events was the first. To minimize the number of losses, we
will state that the duplication will always happen after the speciation.

To formalize this, by Φ∗ we will denote a mapping from V (Go) to V (S∗o), where the
tree S∗o is created from So by subdividing some of its edges. In particular, duplication
node u such that Φ(u) ∈ bin(So) is mapped to a new node Φ∗(u) that is added to the
path from Φ(u) to Φlca(u) in depth D(Φ(u)) + ε. Tree S∗o has a property that each
node from V (S∗o) \ bin(So) represents a duplication and the other nodes represent only
speciations. Note that if S is rooted, all nodes of bin(So) are from S.

In order to specify the number of gene losses implied by isometric reconciliation,
we will define the following term. Let a be a node from S∗o , bearing node of a is the
closest descendant of a that is from bin(So). We will denote it as B(a). If a ∈ bin(So),
B(a) equals a.

To find a bearing node of Φ∗(u), where u ∈ G, we don’t need to actually know
Φ∗(u). Only Φlca and the partial reconciliation δ are needed. To find the bearing node,
we start at Φlca(u) and continue on the path to root(S), until we reach the first node
b (δ(u) ≤ D(b)) that satisfies the following:

(b = root(S)) ∨ (D(parent(b)) < δ(u)) ∨ (D(parent(b)) = δ(u) ∧ isDup(u))
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Node b is then the bearing node of Φ∗(u). We define the function that returns the
bearing node of Φ∗(u) by δ(u) as BN(δ(u)). If the function passed through all the
nodes from Φlca(u) to root(S), the time complexity would be O(h).

However, Brejová et al. [3] use a data structure called level ancestor that can
find the ancestor of any node a in distance d from a on the path towards the root in
O(logN) time. We will denote the result of level ancestor as anc(a, d). Level ancestor
looks at the point in distance d from a towards the root, and if there is a node at this
point, it returns this node. If there is no node at this point, it returns the furthest
ancestor of a in distance smaller than d. We can find the bearing node of u by finding an
ancestor b = anc(Φlca(u), D(Φlca(u))− δ(u)) in S. The ancestor b is the bearing node,
except for the case when D(b) = δu and isDup(u). This is the case, where duplication
u is mapped exactly to a node with two children and thus B(Φ∗(u)) is the child of b on
the path to Φlca(u). We can find the bearing node as anc(Φlca(u), D(Φlca(u))−δ(u)−ε),
where ε > 0 is a distance smaller than any edge length of S. In conclusion, the function
BN(δ(u)) finds the bearing node of Φ∗(u) in O(logN) time.

Sometimes we will want to count only such nodes of a path in S∗o that are from S.
By pathS(a, b) we denote all nodes of S on the path in S∗o from node a ∈ V (S) to node
b ∈ V (S). We denote the number of nodes in pathS(a, b) as |pathS(a, b)|.

Let a be an arbitrary node of S. By hS(a) we will denote the height of a in S, i.e.
the number of nodes on the longest path from a to a leaf of S (the height of a leaf is 1).
The heights of all nodes in S can be straightforwardly computed in O(N) time. Note
that if a is an ancestor of b in S, |pathS(a, b)| can be computed as hS(a)− hS(b) + 1.

4.2 Counting the events of a reconciliation

Here, we will consider that G and S are trees with exact branch lengths. Our goal is
to find the total DL for a reconciliation (Go, S

∗
o ,Φ

∗). We will denote this number as
DLΦ∗ .

Let u, v and w be nodes from Go, such that v and w are children of u. By DLu we
denote the DL caused by the mapping of u. More precisely, DLu is the total DL of a
subtree of G rooted at u minus the sum of DL counts of the subtrees rooted at v and
w. If u is a leaf, it always maps to a leaf of S and it doesn’t have any children, hence
DLu = (0, 0).

If u is an internal node, DLu can have many losses, but at most one duplica-
tion. Firstly, we will analyze the number of losses for an internal node u, such that
isDup(u) = true. Duplication node u and its children v and w are mapped by Φ∗. We
can divide the problem into two cases. The first case is when Φ∗(v) is an ancestor of
Φ∗(w) or vice versa. In the second case, there doesn’t exist a path from any leaf to
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root(S) that contains both Φ∗(v) and Φ∗(w).
For both of the cases, we need to find bearing nodes Bu = B(Φ∗(u)), Bv = B(Φ∗(v))

and Bw = B(Φ∗(w)) and the node x = lca({Bv, Bw}). In the first case, x is one of
Bv, Bw, depending on which one is the ancestor of the other. In the second case
x = Φlca(u).

When a single gene enters Φ∗(u), the number of lost genes before reaching node x
is the same in both cases. Node u is a duplication, so two gene copies exist on the path
from Φlca(u) to x. These two gene copies have to be lost after each speciation on this
path (except for x), in the branch that doesn’t lead to x. The number of genes lost
before reaching x is then 2(|pathS(Bu, x)| − 1).

In the first case, let’s say Φ∗(v) is an ancestor of Φ∗(w). Node x thus equals Bv.
One of the gene copies reaches Φ∗(v) before or at the same time as it reaches Bv.
The other gene copy continues to be passed on by the speciations leading to Bw, until
it reaches Φ∗(w). Therefore, a single gene copy has to be lost for every speciation
on the path from Bv to Bw except for Bw. The number of these gene losses is thus
|pathS(Bv, Bw)|−1. Note that this number is the same if Φ∗(w) is an ancestor of Φ∗(v).

In the second case, both gene copies are passed on by x. Each copy has to reach its
designated node Φ∗(v) or Φ∗(w). Therefore, one of the gene copies that isn’t needed
anymore, can be lost right after speciation x in both of the new species and the other
preserved copy has to reach its designated node. The preserved copy is then lost
after each speciation in the species that doesn’t lead to the designated node. The
total number of these gene losses is thus (|pathS(x,Bv)| − 1) + (|pathS(x,Bw)| − 1) =

|pathS(Bv, Bw)| − 1.
To sum it up, if the node u is a duplication, we found out that both cases of mapping

its children imply the same number of gene losses, specifically 2(|pathS(Bu, x)| − 1) +

|pathS(Bv, Bw)|−1. To compute this number, we would have to find x = lca({Bv, Bw}),
but finding the lca takes O(h) time.

We can avoid finding the lca due to the fact that |pathS(Bu, x)|+|pathS(x,Bv)|−1 =

|pathS(Bu, Bv)|. Note that for both cases, the following holds: |pathS(Bv, Bw)| =

|pathS(x,Bv)| + |pathS(x,Bw)| − 1. If we apply these equations to the total num-
ber of gene losses, the result is that 2(|pathS(Bu, x)| − 1) + |pathS(Bv, Bw)| − 1 =
|pathS(Bu, Bv)| + |pathS(Bu, Bw)| − 2. We can interpret this number by the follow-
ing consideration. Right after the duplication u occurs, one of the two gene copies
is designated to reach v and the other to reach w. If we look at the gene copy des-
ignated to reach v, it has to be lost in every speciation on the path from Bu to Bv,
except for Bv. The same holds for the other gene copy, therefore, the number of gene
losses implied by the mapping of u is |pathS(Bu, Bv)| + |pathS(Bu, Bw)| − 2. Node
Bu is an ancestor of both Bv and Bw, thus the number of losses can be computed as
(hS(Bu)− hS(Bv) + 1) + (hS(Bu)− hS(Bw) + 1)− 2 = 2hS(Bu)− hS(Bv)− hS(Bw).
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Algorithm 4.1: A function that returns the number of duplications and losses DLu
implied by mapping δ of internal node u and its children.

1 def countDL(u ∈ V (Go), δ: {u} ∪ children(u)→ R) :
2 v, w = children(u)

3 losses = 2hS(BN(δ(u)))− hS(BN(δ(v)))− hS(BN(δ(w)))

4 i f isDup(u) :
5 return (1, losses)

6 else :
7 return (0, losses− 2)

If node u of G is a speciation, it has to be mapped to Φlca(u). Children v and
w have to be mapped under Φlca(u) = Bu = x. Here, only one gene copy is passed
on by x to each child, and this gene copy has to reach Φ∗(v) and Φ∗(w) in their
respective lineages. The total number of losses is |pathS(Bu, Bv)|+ |pathS(Bu, Bw)| −
4 = 2hS(Bu)−hS(Bv)−hS(Bw)−2 which is two less then the number of losses implied
by the duplication, because the two gene losses right after x are not present here.

On the basis of all previous observations, we define function countDL (Alg. 4.1).
For a node u ∈ V (Go) and the partial mapping δ, the function returns DLu. The
function may now seem more generalized then needed, but that’s because we will use
this function in the next section too. Finding the bearing nodes is in O(logN) time.
The lengths of paths pathS(u, v), where u is an ancestor of v, are expressed by hS and
thus can be computed in constant time (with precomputed hS). The time complexity
of countDL is O(logN).

Using countDL, we can now write a recursive function for finding DLΦ∗ (although
only δ is needed) of the rooted gene tree reconciliation with exact branch lengths. When
the algorithm recursively reaches root(Go), we are not necessarily done. If root(Go)

is mapped below root(S), we can potentially add more losses, based on the model of
evolution we choose. If we allow that a new gene can be created (inserted) during the
evolution of species in S, we are done. If we do not allow gene insertions, there has to
be a gene entering Φ∗(root(Go)) and this gene has to go through root(S). This means
there has to be one gene loss for every node in pathS(root(S), B(Φ∗(root(Go)))) except
for B(Φ∗(root(Go))). The final algorithm for this case is shown as pseudocode in Alg.
4.2. The algorithm calls countDL for each node from Go, so its time complexity is
O(N logN).
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Algorithm 4.2: An algorithm for counting the total DLΦ∗ using only the partial rec-
onciliation δ.

1 def totalDL ( ) :
2 return subtreeDL (root(Go)) + (0, hS(root(S))− hS(BN(δ(root(Go)))))

3

4 def subtreeDL(u ∈ V (G)) :
5 i f u ∈ L(G) :
6 return (0, 0)

7 else :
8 v, w = children(u)

9 return countDL (u, δ) + subtreeDL(v) + subtreeDL(w)

4.3 Set of solutions for inexact branch lengths

Here, we will deal with the problem of finding the minimal number of duplications and
losses among all feasible reconciliatons, where G is rooted with interval branch lengths
and S is rooted with exact branch lengths. We need to solve this problem in order
to find the most parsimonious reconciliation for the variant, where G is unrooted with
inexact branch lengths.

Let us assume that the upward and downward algorithms presented in Chapter 3
were run on G. Therefore, each node u from G has its possible mapping depth interval
X[u] = 〈X[u]min, X[u]max〉 defined.

We will generally denote an interval of mapping depths as I, its supremum as
Imax and infimum as Imin. We will consider closed, open and half-open intervals. By
δI = (Imin+Imax)/2, we denote a representative mapping depth (partial reconciliation)
implied by the interval I. The interval doesn’t have to be closed, but the mean of its
endpoints always belongs to I. We denote the minimal number of all duplications and
losses in the subtree rooted at u implied by mapping u to δI as DLI .

Our goal is to count DLI for each subinterval I from
〈X[root(G)]min, X[root(G)]max〉. Every subinterval I from X[u] of an arbitrary
node u ∈ V (G) needs to have the property that minimal DL of the subtree rooted
at u is the same for any value of δ(u) ∈ I. Also, we want all the subintervals of
X[u] to not overlap and the adjacent intervals to have different DLI . Note that the
subinterval with maximal depth has the minimal possible DLI . While rising to lower
depths, DLI of subintervals will increase.

If u ∈ L(G), its mapping depth interval 〈D(µ(u)), D(µ(u))〉 cannot be divided
into subintervals and its DLI is (0, 0). Let u be an internal node of G with a pos-
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sible mapping interval 〈X[u]min, X[u]max〉. If u is mapped to depth X[u]max and
X[u]max = D(Φlca(u)), u is a speciation. When the mapping depth decreases, u be-
comes a duplication. The number of losses changes (increases) only when the mapping
reaches or surpasses a node from S. If u is a duplication, mapping exactly to a node
a ∈ V (S) results in mapping on the branch just underneath a, so the intervals represent-
ing these two mappings can be joined. The mapping depth interval 〈X[u]min, X[u]max〉
can thus be divided to non-overlapping subintervals 〈X[u]min, d1)〈d1, d2)..〈dk, X[u]max〉,
where di are depths of consecutive nodes of pathS(root(S),Φlca(u)) with depth at least
X[u]min and at most X[u]max. Each interval has DLI lower than DLI of the previous
interval. For the splitting of intervals described in this paragraph, we define function
splitInterval(u) that returns an array of the searched subintervals. The algorithm
passes through the nodes of pathS(root(S),Φlca(u)), while creating a new subinterval
for each node with the depth from interval 〈X[u]min, X[u]max〉. Its time complexity is
thus O(h).

The subintervals of u have to be split further, depending on the subintervals of
its children. For each mapping depth of u, we want to find the total minimal DL of
the subtree rooted at u, considering the children’s subintervals and the length of their
parental edges.

Let children v and w have their arrays subIntv and subIntw of non-overlapping
subintervals with minimal DLI already precomputed. If a child is a leaf, it doesn’t
contribute in any way to the subintervals of u, since leaves have only one interval
with DLI equal to (0, 0). If the child is an internal node, it has its own mapping
subintervals with various DLI . Let I be a mapping depth subinterval of child v. By
Ishifted, we will denote a shifted interval, such that Ishiftedmax = Imax − w(u, v)min and
Ishiftedmin = Imin−w(u, v)max, where w(u, v) is the parental edge of v. The shifted interval
represents possible mapping depths for u, considering the child’s mapping subinterval
I.

If we shift non-overlapping subintervals, we get overlapping intervals. We want to
minimize DL for every mapping depth of u, so if subintervals overlap, we prioritize
the deepest of the subintervals with the lowest DL and the other intervals will have
the intersection cut out. We define function shiftIntervals(u, v) that returns an ar-
ray of non-overlapping subintervals of 〈X[u]min, X[u]max〉 by processing the mapping
subintervals of a child of u.

The algorithm starts with the deepest (lowest DLI) subinterval I of child v, shifts
I, and continues as follows. If the entire interval Ishifted is deeper than X[u]max, find
the first higher interval I such that X[u]max ∈ Ishifted and set Ishiftedmax to X[u]max. Add
Ishifted to the resulting array and cut the next higher shifted interval by setting its
maximum to Ishiftedmin . Since all edges are strictly positive, the new maximum of the
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Algorithm 4.3: A pseudocode of function shiftIntervals which returns an array of
subsequent non-overlapping subintervals of possible mapping depths of u, considering
mapping subintervals of node v, where u is a parent of v.

1 def s h i f t I n t e r v a l s (u ∈ V (G), v ∈ children(u)) :
2 shiftedInts = []

3 prevMin = X[u]max

4 for (I ∈ subIntv ) :
5 Ishiftedmin = Imin − w(u, v)max

6 i f X[u]max < Ishiftedmin : continue
7 i f Ishiftedmin < X[u]min : Ishiftedmin = X[u]min

8 Ishifted = [Ishiftedmin , prevMin]

9 DLorig
Ishifted

= DLI

10 δorig
Ishifted

= (Imax + Imin)/2

11 shiftedInts.add(Ishifted)

12 i f Ishiftedmin == X[u]min : break
13 prevMin = Ishiftedmin

14 return shiftedInts

higher shifted interval is always bigger than or equal to its minimum, so no interval
will be cut out completely. This higher shifted interval will now be the next Ishifted

and will be added to the resulting array. This process continues until subinterval I,
such that X[u]min ∈ Ishifted is reached. Set Ishiftedmin to X[u]min, add Ishifted to the
results and return the array. For each shifted interval Ishifted, we keep the original
DLorig

Ishifted
= DLI and δorig

Ishifted
= δI , as it will be needed in the next algorithm. The

pseudocode of shiftIntervals is shown in Alg. 4.3.
Because the shifting and cutting is in constant time, the time complexity of this

algorithm depends only on the number of subintervals of v. If we denote the maximal
number of subintervals as |subIntmax|, this algorithm works in O(|subIntmax|) time.
Since we want the subintervals to have different DLI , we can estimate the number
of subintervals |subIntu| of node u ∈ V (G) by the maximal number of duplications
and deletions implied by a mapping of a subtree of G rooted at u. The number of
duplications is in O(Nu), where Nu is the number of nodes in the subtree rooted at u,
as there is at most one duplication for each node in the subtree. If we look back at the
function countDL, we can see that for each mapping of a node, there are O(h) losses.
Therefore, there are maximally O(Nu + Nuh) = O(Nuh) duplications and losses, and
|subIntmax| = O(Nh).

After calling the functions splitInterval(u), shiftIntervals(u, v) and
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shiftIntervals(u,w), we get three arrays of subintervals, where the maximum
of the deepest subinterval is X[u]max and the minimum of the highest subinterval
is X[u]min. Our goal is to create a function countSubintervalDL() that merges the
three arrays to one array and counts DLI for each of its subinterval.

Let’s name the deepest subintervals of shiftIntervals(u, v), splitInterval(u) and
shiftIntervals(u,w) as I left, Imiddle and Iright, respectively. The maximum of the new
deepest mapping subinterval I of u is naturally X[u]max. The minimum Imin will be set
as the maximum of I leftmin, Imiddlemin and Irightmin . There can be more that one interval from
{I left, Imiddle, Iright} with its infimum equal to Imin. Let’s denote this set of intervals
that were used completely as CI.

As for DLI , we will call our function countDL(u, δ) = DLu, where δ is a specific
mapping depth of u, v and w. In our case, we take δ(u) = δI = (Imax + Imin)/2,
δ(v) = δorig

Ileft
and δ(w) = δorig

Iright
. The sum DLu +DLorig

Ileft
+DLorig

Ileft
is the searched DLI

which is the total minimal number of duplications and losses in a subtree rooted at u,
where u is mapped to a depth from I.

After we compute DLI , we will set each interval from CI to its subsequent, less
deep interval from its respective array, and repeat the process above, until CI con-
tains all three highest subintervals I left, Imiddle and Iright which have their minimum
equal to X[u]min. Note that by induction, each subinterval of subIntu has different
DLI because both shiftIntervals (the subintervals of children are shifted after run-
ning countSubintervalDL on them) and splitInterval produce arrays of intervals with
different DLI .

The function countSubintervalDL() is shown in Alg. 4.4. In the main do −
while cycle, we gradually pass through the subintervals of arrays splitIntervals(u),
shiftIntervals(u, v) and shiftIntervals(u,w) which have their respective sizes in
O(h), O(Nvh) and O(Nwh). For each of these O(h + Nvh + Nwh) = O(Nuh) subin-
tervals, we call the function countDL which works in O(logN) time. The time
complexity without the recursive calls to children (lines 9 − 10 in Alg. 4.4) is thus
O(Nh logN). Calling the function for every node thus results in the running time
O((

∑
u∈V (G) Nu)h logN).

If S is balanced, O(h) = O(logN) and if G is balanced, O(
∑

u∈V (G) Nu) =

O(N logN). The time complexity of countSubintervalDL in the case S and G are
balanced is then O(N log3N). However, G and S don’t have to be balanced and thus,
in the general case, the time complexity is O(N3 logN).
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Algorithm 4.4: An algorithm for finding the array of non-overlapping subintervals of
a node u, such that each subinterval I represents the depths where u can be mapped
with the minimal DLI . Function next(A) returns the next element of array A.

1 def countSubintervalDL(u ∈ V (G)) :
2 i f u ∈ L(G) :
3 I = 〈D(µ(u)), D(µ(u))〉
4 DLI = (0, 0)

5 subintu = [I]

6 return
7

8 v, w = children(u)

9 countSubintervalDL(v)

10 countSubintervalDL(w)

11 splitInts = s p l i t I n t e r v a l s (u)

12 shiftedIntsv = s h i f t I n t e r v a l s (u, v)

13 shiftedIntsw = s h i f t I n t e r v a l s (u,w)

14 I left = shiftedIntsv[0]

15 Imiddle = splitInts[0]

16 Iright = shiftedIntsw[0]

17 Imax = X[u]max

18 do :
19 Imin = max(I leftmin, I

middle
min , Irightmin )

20 DLu = countDL(u, δI , δ
orig
Ileft

, δorig
Iright

)

21 DLI = DLu +DLorig
Ileft

+DLorig
Ileft

22 subintu.add(I)

23 i f I leftmin == Imin : I left = next(shiftedIntsv)

24 i f Imiddlemin == Imin : Imiddle = next(splitInts)

25 i f Irightmin == Imin : Iright = next(shiftedIntsw)

26 Imax = Imin

27 while I leftmin, I
middle
min , Irightmin 6= X[u]min
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4.4 The most parsimonious reconciliation

In this section, we will use the previous knowledge from this chapter to find the most
parsimonious reconciliation for the case whenG is unrooted with inexact branch lengths
and S is rooted with exact branch lengths. In Chapter 3 we have presented an algo-
rithm for finding a possible solution for this variant. However, the algorithm doesn’t
necessarily produce the most parsimonious reconciliation.

Let’s assume that G is semi-rooted at q, with q at an unknown location at the edge
(u, v). This edge separates two trees with roots u and v. As a result of solving the
constant-size LP and the upward and downward algorithms from the previous chapter,
each node u ∈ V (G) has its mapping depth interval X[u] specified.

We can always map the root q to its maximal depth (δ(q) = X[q]max), since it
minimalizesDL and also the remaining length of the root edge remains at its maximum.
When q is mapped to X[q]max, the linear program ensures that the maximal length
of the root edge can reach X[u]max and likewise it can reach X[v]max. However, both
X[u]max andX[v]max are not necessarily reached at the same time. Our goal is to choose
mapping depths of u and v such that the total DLΦ∗ of the reconciliation (Go, S

∗
o ,Φ

∗)

is minimal and to count DLΦ∗ .

After we set the mapping depth of q to X[q]max, it is convenient for us to recalculate
X[u] and X[v] because their minimal values are now not necessarily reachable. For
example, we can solve the same LP again, but instead of three variables we will have
two, because we will set Xq to X[q]max. By minimizing the objective functions Xu and
Xv of this LP, we will compute X[u]min and X[v]min.

Let’s call the function countSubintervalDL on nodes u and v. Their respective
intervals X[u] and X[v] are thus split to subintervals. Each subinterval I represents a
possible mapping depth of the respective node, with a certain distinct minimal number
of duplications and deletionsDLI of the subtree rooted at the node. Mapping the nodes
to depths from the deepest subintervals results in the smallest number of duplications
and losses.

Our algorithm will go through all subintervals of u and find the deepest possible
subinterval of v such that the edge length of (u, v) can reach both u and v. We will
denote the current mapping depths of u and v as δu and δv and set δu to X[u]max.
Let’s start in the deepest subinterval Iu of u. If u is mapped to depth δu = Iumin,
DLI remains the same, and an additional part of the length of (u, v) can be used to
maximize the depth of v. Then we use our LP again, with only one variable, as we can
set Xq to X[q]max and Xu to δu. By maximizing the objective function Xv, we will also
compute our desired δv. To find mapping depth subinterval Iv of v that contains δv,
we can use binary search on the subintervals of v, since they are sorted by depth. The
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number of events DLmin with these particular mapping depths (δ(u) = δu, δ(v) = δv,
δ(q) = X[q]max) can be evaluated as countDL(q, δ) +DLIu +DLIv . We will remember
DLmin, δu and δv, and we will set Iu as the next subinterval above the previous Iu.
This procedure will continue until such Iu is reached that Iumin = X[u]min. Then will
choose the desired mapping depths δu and δv that imply the lowest DLmin.

This algorithm iterates through O(Nh) subintervals of u, for each subinterval
solves LP of constant size, finds the deepest subinterval of v by binary search in
O(log(Nh)) = O(logN) time, and counts the number of duplications and deletions
implied by mapping of q by running countDL. The time complexity of this algorithm
is thus O(Nh logN).

After we have found the best plausible δu = δ(u) and δv = δ(v) from subintervals
Iu and Iv, we can find the partial reconciliation δ with the maximal possible mapping
depths of the nodes in the subtrees rooted at u and v. Each node y ∈ V (G) \ {u, v, q}
with parent x will have its δ(y) set to min(δ(x) + w(x, y)max, X[y]max).

The total DLΦ∗ is the sum of the minimal DLmin we have previously found in our
algorithm and the losses on the path from root(S) to B(Φ∗(q)) (if we do not allow gene
insertions).

The algorithm for choosing the best subintervals has lower time complexity than
countSubintervalDL, so the overall running time of finding the most parsimonious
reconciliation of a semi-rooted tree is O(Nh2 logN) (in the general case O(N3 logN)).
Finding the most parsimonious reconciliation of all semi-rooted trees of an unrooted
G thus has running time O(N4 logN) in the general case.

Implementation
We have implemented the algorithm for the most parsimonious reconciliation of

unrooted gene tree with interval branch lengths, described in this chapter, in program-
ming language Java. Our implementation is not as efficient as described here because
we did not use the level ancestor data structure, therefore it runs in O(N5) time.

The program takes multiple unrooted gene trees as a part of the input (along with
the species tree S) and transforms them to gene tree G with interval branch lengths,
so that our algorithm can be ran. More details can be found in the enclosed source
code.



Conclusion

In this thesis, we have presented polynomial-time algorithms for multiple variants of
the isometric reconciliation problem, where the edge lengths of the input trees are not
known exactly, but are rather given as intervals of possible values. Our algorithms
represent an important step towards the practical applicability of the isometric rec-
onciliation, since the exact edge lengths of reconstructed phylogenetic trees are not
known in practice.

Except for the general algorithm based on linear programming, our algorithms solve
the case where the species tree is rooted with exact edge lengths and the intervals of
edge lengths are considered only in the gene tree. If the gene tree is rooted, our O(N)

algorithm is even more efficient than the existing algorithms for exact edge lengths,
if only partial reconciliation is required. Our algorithms are able to find the most
parsimonious reconciliation among the feasible solutions for both rooted and unrooted
gene trees. If the gene tree is unrooted, we provide an algorithm that finds all feasible
solutions inO(N2) time, but finding the most parsimonious reconciliation has a running
time O(N4 logN) in the worst case.

The natural next step related to our work is to develop efficient algorithms for
isometric reconciliation, where the gene tree has interval edge lengths, and the species
tree is unrooted with exact edge lengths. One option is to go through all semi-rooted
forms of the species tree and make use of the algorithms we have presented in this
thesis. However, there may be a more efficient solution than iterating through all
semi-rooted trees. This also applies to our algorithm for an unrooted gene tree.

Other open problems are more efficient algorithms the case, where the interval
edge lengths are considered in the species tree too. A good way to start might be to
first analyze the case where the gene tree has exact edge lengths. Then by using this
knowledge and the information provided in this thesis, it might be possible to develop
efficient algorithms for the case when both input trees have interval branch lengths.

Brejová et al. [3] have introduced a variant, where all edge lengths are exact, but
are also scaled by some unknown factor β > 0. This approach can be combined with
the interval lengths and the scaling factor β could be incorporated to our algorithms

34
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too.
The inaccuracy of branch lengths does not have to be necessarily represented as

an interval for each edge length. Instead, lengths can be given as a single number w
and allowed to be deviated by a small amount. For example, each edge length would
ultimately be from an interval 〈w(1− ε), w(1 + ε)〉, where ε > 0 is an unknown global
relative error. The goal would be to minimize the value of ε, so that the reconciliation
exists.
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Appendix

The DVD enclosed to this thesis contains the source code of the implementation of our
algorithms.

38


	Introduction
	Overview
	Basic terms
	Phylogenetic trees
	Gene tree reconciliation
	Isometric reconciliation
	Related work
	Partial reconciliation

	Inexact branch lengths

	Linear programming
	Rooted trees
	Semi-rooted and unrooted trees

	Efficient algorithms
	Rooted gene tree
	Semi-rooted and unrooted gene tree

	Parsimony
	Preliminaries
	Counting the events of a reconciliation
	Set of solutions for inexact branch lengths
	The most parsimonious reconciliation

	Conclusion
	Appendix

