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Bratislava, 2014

Bc. Martin Šrámek
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Ringing a phone without answering the call can be viewed as a side communication channel in the cell

phone network. We defined a theoretical model describing this channel and proposed several protocols that

take advantage of it to transmit arbitrary data. We estimated the capacity of the channel and showed that

our protocols reach near-optimal efficiency. As a proof of concept, we also created an Android application

that uses ringing to send text messages.
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Prezváňanie telefónu bez prijatia hovoru sa dá považovať za vedľajší komu-

nikačný kanál v telefónnej sieti. Vytvorili sme teoretický model popisujúci tento

kanál a navrhli sme niekoľko protokolov, ktoré ním umožňujú prenášať ľubovoľné

dáta. Odhadli sme kapacitu tohto kanálu a ukázali sme, že naše protokoly
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Introduction

Mobile phone usage has been spreading rapidly during the last two decades. Communication proto-

cols are being replaced by new ones, bringing ever more services for the end user. While the primary

purpose of a telephone is, as the name suggests, audio (voice) transfer, mobile telephones now have long

been able to send text messages. Modern mobile telephones, so called smarthpones, are full-fledged com-

puters, which, thanks to the internet access, now allow basically any kind of data transfer one may think of.

There is, however, an information channel that has always been in use with telephones, yet it is ob-

scure and unexplored. It is hidden in the process that telephones use to notify the callee of an incoming

call - ringing. This was apparently never intended for information transfer, but it can be used for such a

purpose. The simplest example of this may be ringing someone to notify them of one’s arrival. Another

one could be sending a bit of information by a scheme such as ”one ring means yes, two rings means no”.

However, as we will see, there are more complicated ways to utilize this channel, which result in informa-

tion being sent more effectively. The primary task of this thesis is to explore just about how effectively

can this be done. We will do so by proposing various protocols that can be used to convey information

and measure their bitrate. We will then try to estimate the maximum bitrate that the channel allows to

see how effective our protocols are.

Regarding the OSI model of network architecture, the protocols we discuss will be at the application

layer (i.e. we will only be interested in using ringing as a black box, and not in the workings of underlying

protocols such as GSM). We will analyze the proposed protocols in a rather abstract way, using variables

to represent the costs of operations. We will then use empirical data to understand how the protocols

really fare in practice. While we are unable to do a large scale experiment that would bring exact data

for a statistically significant number of different devices and networks worldwide, we at least aim to esti-

mate the order of magnitude and approximate intervals of values which the considered variables may take.

To put the results from the analyses to use, we will implement our protocols in the form of a smart-

phone text messenger application. This should be a simple application allowing the user to first choose

a protocol, then type in the called number, then the text to be sent and ultimately commence the trans-

mission. As the smartphone has no way of knowing that the incoming call is not a regular call, the

callee will have to have the application already running at that time. However, note that this is not a

problem, because the caller may inform the callee of the incoming transmission by ringing them manually
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(non-programmaticaly) first, an agreed amount of time in advance. As a platform for the application,

we chose the open source operating system Android. We are going to use the Java programming language.

Our motivation for this work is to investigate a communication channel that has not yet been studied.

One may argue that this channel is unimportant, as the standard communication channels provided by

mobile phones - calling, text messaging and nowadays even mobile internet access - offer a considerably

higher throughput. However, we find theoretical interest in the idea that even such a nonstandard channel,

basically existing by accident, may be taken advantage of in a much more sophisticated way than the two

examples mentioned earlier. And it may be exactly this nonstandardness and obscurity that offers a use

case for such a channel - for example, one may avoid eavesdroppers by not only enciphering the message,

but more importantly by hiding the fact that the communication ever took place. If a phone line is being

monitored and calls recorded, then never picking up a ringing phone might not trigger the recording itself.

Apart from this, there is a much more apparent usage for the ringing information channel - an eco-

nomically motivated one. That is, mobile network operators usually charge the phone user only if the call

is actually picked up, not solely for ringing. One may then use their mobile phone to send short messages

free of charge. In this thesis, we will try to show that this can be done at a non-negligible bitrate, although

it will probably still take a lot more time than a standard, nonfree service provided by the operator. By

also implementing a messaging application, we make it possible to test this idea in practice.

Finally, we believe that the network operators themselves may find interest in the topic researched

in this thesis. It illustrates how well exploitable an accidentaly created channel in the mobile network

mechanism can be. While it is improbable that these exploits would persuade common phone users to turn

from fast (high bandwidth) but paid-for phone services in favour of a free but considerably less capacious

ringing communication, it is useful to know that the mobile phone network is susceptible to such exploits.
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CHAPTER 1. THE MODEL

Chapter 1

The model

Before we can devise any protocols, we must first formalize our notion of a cell phone and its capabil-

ities. Keeping in mind our intent to apply our findings by implementing a communication application for

the Android system, we will limit ourselves to the possibilities of Android API.

The communication is done between two participants - the sender and the receiver. We will disregard

the possibility of the communication being interrupted by unrelated calls from other cell phone network

users. The sender is sending information to the receiver. We will focus on evaluating the achieved bitrate,

computed as

r =
n

tn

where n is the number of bits sent and tn is the time spent doing so. Note that while t is obviously a

function of n, it is not necessarily a linear function - in other words, the time to send one bit may vary.

It is therefore more useful to define bitrate as

lim
n→∞

n

tn

which may be understood as the time spent per bit if we are sending an unlimited amount of data.

In our computations, we will always consider this to be the case and therefore we will never include any

explicit termination in our protocols - after the communication started, it will continue indefinitely. As

bitrate will be typically less than 1s in our case, it will often be more comfortable to speak about the bit

transmission time, computed as

1

r
= lim
n→∞

tn
n

Although we have now dealt with the problem of varying time per bit, there is still some ambiguity

left in our definition of bitrate. Time needed to send a bit may vary according to the bit’s value - in

some protocols, sending 1 may take longer than sending a 0, or vice versa. This makes it impossible to

determine the time needed to send a certain message while only knowing its length, but not contents.
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1.1. PARAMETERS CHAPTER 1. THE MODEL

Therefore, in our analyses, we will usually measure the average bitrate, i.e the expected time needed to

send a bit. For this, we will assume that each message (a sequence of 1s and 0s) is equally likely. This

could be equivalently formulated as that every bit is a random variable from Bernoulli’s distribution with

probability p = 0.5. This is a reasonable assumption, because even if this is not true about our actual

distribution of messages, it can be achieved by compression. Prior to transmitting the data, we may apply

any good compression algorithm on the message. The probability distribution of compressed messages

tends to be approximately uniform. We may therefore assume that our application will always compress

the messages and that this is done in a higher layer of the OSI model, so we will never have to deal with

it explicitly. Of course, achieving uniform distribution aside, this is useful in its own sake, as shrinking

the transferred data simply makes communication more effective.

In practice, the participants would need to include some kind of a preamble to every communication

to denote that this is a ringing communication and not a regular phone call, to select a protocol and

its parameters etc. Furthermore, some protocols may start with silence (i.e. waiting a certain time

until the first ring) - in this case, the preamble would be necessary to even inform the receiver that the

communication has already started. While such a preamble would be useful in real world applications,

we will not include it in our theoretical bitrate computations. The reasons are as follows.

• It is implementation-dependent. For example, if it carries the information about protocol selection,

its size depends on the number of protocols available.

• As stated above, we will focus on analysis for limn→∞. Since the time tpreamble required by the

preamble would be constant (independent of n), its contribution would become negligible anyway.

rpreamble = lim
n→∞

n

t+ tpreamble
= lim
n→∞

1
t+O(1)
n

=

=
1

limn→∞
t+O(1)
n

=
1

limn→∞
t
n + limn→∞

O(1)
n

=

1

limn→∞
t
n + 0

=
1

limn→∞
t
n

= lim
n→∞

n

t
= r

1.1 Parameters

If we are to calculate the bitrate, we need to know how much time do some elementary operations (e.g.

dialing time) take. However, such values will inevitably vary for different cell phone devices, their cellular

network connections, and even between individual calls. These variables will constitute the parameters of

our model.

We will usually express the quantitative properties of studied protocols in terms of these variables.

However, to put things into perspective, we also measured their values for a number of calls using a par-

ticular pair of mobile phones we had at our disposal. The phones were in proximity of each other and were

4



1.1. PARAMETERS CHAPTER 1. THE MODEL

dmin 5s
davg 6.5s
dmax 8s
∆d 3s

Figure 1.1: Distribution of the 50 measured values of the parameter d.

using different mobile phone operators. Although these sample measurements done in a very particular

configuration are in no way representative of all the possible values the parameters can attain, we find

them valuable to at least hint us on those values’ magnitudes. We will also use our measurements to

compare the protocols’ performance in our two devices’ case. This will therefore make us able to say that

”In our case (for our values of parameters) protocol A achieves better bitrate than protocol B”, though

one must keep in mind that the results can be different for different values of parameters.

• d - the length of time since the sender starts dialing until the receiver’s phone starts ringing. Our

measurements of this random variable are shown in Figure 1.1. We will denote the exclusive lower

and upper bound of this range dmin and dmax. This means that d ∈ (dmin, dmax). The mean of d

will be denoted davg. We will also use the notation ∆d = dmax − dmin.

• h - the amount of time since the caller hangs up until the receiver’s phone stops ringing. The

measurements can be seen in Figure 1.2. Similarly as in the case of d, we will consider h to be

limited to the range bounded by exclusive bounds hmin and hmax, i.e. h ∈ (hmin, hmax). The mean

is denoted as havg and the variable’s range size as ∆h = hmax − hmin.

• l - the maximum ringing time. This is a constant that can be set on the receiver’s phone, typically

as a multiple of 5 seconds. It is usually set defaultly to 30s or 60s. In order to achieve better results,

we will assume the latter of these possibilities, i.e. that l = 60s. Of course, if the receiver’s phone

allows setting an ever higher value of l, it is useful to do so.

• g - the ”granularity of time”. Our protocols will require measuring time between events, but nat-
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1.2. STATES, ACTIONS AND EVENTS CHAPTER 1. THE MODEL

hmin 2.3s
havg 3s
hmax 3.7s
∆h 1.4s

Figure 1.2: Distribution of the 50 measured values of the parameter h.

urally, this cannot be done with infinite precision. We will have to choose a discrete time unit g

for the measurements that is large enough so that we can be sure that whenever the sender and

receiver measure the time between certain events, rounded to a multiple of g, they arrive at the same

number. And naturally, we want g to be as short as possible, as more precise time measurements

will lead to more effective protocols.

There is clearly a non-negligible technical lower bound for g, stemming from hardware and software

limitations (e.g. the application cannot measure smaller time intervals than how often it is sched-

uled). However, there can also be a semantic lower bound - the nature of events between which the

time is measured may put more constraints on g. Therefore, the semantics of this parameter can

only be understood in the context of a certain protocol.

We will always assume that both participants are aware of the paramaters’ values. If they are not,

they can find them in cooperation using the methods described in Chapter 4 - Calibration.

1.2 States, actions and events

Sender and receiver can both be in two possible states.

6



1.2. STATES, ACTIONS AND EVENTS CHAPTER 1. THE MODEL

• Sender

– Offhook

– Idle

• Receiver

– Ringing

– Idle1.

The Idle and Ringing states are self-explanatory. By saying that the sender’s phone is offhook, we

mean that it is either currently dialing the receiver or the connection has already been established and

the receiver’s phone is ringing. Note that we cannot distinguish which of these two situations are we in

- when the sender dials, they will not know when the receiver’s phone starts ringing. In our model, it

means that the sender will not know what value did the random variable d take.

Note that while it is technically possible for the sender to discover approximately when the receiver’s

phone starts ringing (as one can hear ringing in the sender’s earpiece as well), no such information is

provided by the Android API[pho14]. Since one of our goals is to implement an Android application, we

have to disregard this as a possibility. Similarly, we cannot know the actual value of h either, and in this

case it is not just a problem of API but rather a property of the underlying telephony protocol.

Sender and receiver will participate in the protocols by taking actions and listening to events as follows.

• Sender

– Start dialing the receiver. This forces the state transition from Idle to Offhook. After d time,

this will cause the incoming call event for the receiver.

– Hang up. This forces the state transition from Offhook to Idle. After h time, this will cause

the hangup event for the receiver.

• Receiver

– Handle the event of an incoming call, i.e. when the phone starts ringing. This event indicates

the state transition from Idle to Ringing.

– Handle the event of a hangup. This event indicates the state transition from Ringing to Idle.

As we can see, the rules are very simple. The sender has two possible actions to switch between the

two states. The receiver observes the sender’s actions as events (with some delay, d or h).

We can also add one more action-event pair to give the receiver the ability to hang up as well.

• Receiver can hang up an incoming call. This forces the state transition from Ringing to Idle. After

h time, this will cause the hangup event for sender.

1We will often call this state ”silence” as well. This is sometimes better as the term ”Idle” suggests that no activity is in

progress, while in fact the non-ringing state may have its own meaning.
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1.2. STATES, ACTIONS AND EVENTS CHAPTER 1. THE MODEL

• Sender can handle a hangup event. This indicates the state transition from Offhook to Idle.

An important restriction in our model is that the sender is not allowed to dial during hanging up.

If sender wants to hang up the call and re-dial the receiver, they must wait until they are sure that

the hangup signal has already reached the receiver. Not complying with this restriction means that the

hangup and dial signals would travel the cellular network together. The desired outcome in this case is

that the hangup signal reaches the receiver first and is followed by the dialing signal. While this could

happen, it could also happen that the two signals are processed together or in a reverse order in one of

the nodes of the network, resulting in the cancellation of the dialing. We therefore consider this to be an

undefined behavior and that is the reason we forbid it in our model. Symetrically, neither is it allowed to

hang up while dialing. Once the phone is offhook, the sender can only hang up if they are sure that the

receiver’s phone is already ringing. Otherwise, the order in which the signals are processed in the network

is again undefined. In practical terms, this means that the sender must guarantee that at least dmax time

has passed since the dialing started when they hang up, and similarly that at least hmax time has elapsed

since hanging up whenever they start dialing.

It is allowed for both participants to hang up at the same time. We get two hangup signals travelling

through the network concurrently, but that does not lead to an undefined behavior, as these signals have

the same intent.

8



CHAPTER 2. PROTOCOLS

Chapter 2

Protocols

We are going to suggest several communication protocols.

• One-or-Two

• Ringing Length

• Ring-or-Silence

• Alternating Ringing

2.1 One-or-two protocol

The One-or-two protocol is a very simple protocol that will serve as our proof of concept, i.e. it will

be our demonstration of feasibility of ringing as a data transfer method. Its main advantages are easy

implementation and the fact that it does not rely on timing as heavily as other protocols do.

In this protocol, we will send 0 by ringing once and 1 by ringing twice. If we send more than one bit,

we must specify a timeout to be used after each 0, so two consecutive 0s are not mistaken as 1. Let us

denote this timeout t. The algorithm of both participants in pseudocode would then be as follows.

Sender Receiver

input b // bit 0 or 1 wait until first ringing

ring wait t

if b = 1 if another ringing event occured during the wait

then ring then output 1

else wait t else output 0

In other words, the transfer of each bit starts by the sender ringing at least once. If the sender wishes

to send 1, they have to ring again in quick succession. If they wish to send 0, they must wait for the

timeout t. From the receiver’s point of view, every transfer starts by ringing once. If another ring comes

9



2.1. ONE-OR-TWO PROTOCOL CHAPTER 2. PROTOCOLS

soon enough (sooner than the timeout t elapses), 1 was transferred. Otherwise, 0 was transferred.

In this pseudocode, by the ring command we understand that the sender dials the receiver and waits

until the receiver’s phone starts ringing. The call is then hung up. However, there are two ways to do this.

• The receiver may hang up immediately when their phone starts ringing.

• The sender may hang up when they are sure the receiver’s phone is already ringing, i.e. after dmax

time has passed.

It turns out that this is not just an implementation detail - in fact, it influences the protocol signifi-

cantly. We are now going to explore the consequences of both ways of hanging up.

2.1.1 Receiver hangup method

In this method, it is the receiver who hangs up the phone as soon as it starts ringing. Whether

the sender wants to transmit 0 or 1, they must always ring at least once. The time it takes for the

sender to dial the receiver is a realization of the random variable d and we will denote it as d1. Thus,

after d1 time has passed, the receiver’s phone starts ringing and the receiver immediately hangs up. We

will denote the time it takes for the signal to reach back to the sender as h1. Now there are two possibilities.

If the sender wants to send 1, they only needed to ring again. Thus, the process is repeated, where

the dialing takes d2 time and the hangup takes h2 time. Obviously,

E[d1] = E[d2] = E[d] = davg

E[h1] = E[h2] = E[h] = havg

and therefore the average time required to send the 1 bit is

2(davg + havg)

If, on the other hand, the sender wants to send 0, they have to wait a certain amount of time. How

much time is required? When the receiver hangs up the first call, they know that it can take at most

hmax time for the hangup signal to reach sender, and then it may take at most dmax time for the sender

to call back again. Therefore, it is sufficient for the receiver to wait for

t = dmax + hmax

Thus, the sender knows that they must wait at least this long before ringing again to send the next

bit. However, we must realize that the receiver starts waiting as soon as they hang up. When the sender

is informed of the first hangup, at least hmin time has already passed, because it takes for the hangup

10



2.1. ONE-OR-TWO PROTOCOL CHAPTER 2. PROTOCOLS

Figure 2.1: Sending 1 using the Receiver hangup method of the One-or-Two protocol.

signal at least this much to reach the sender. The sender therefore knows that at least hmin of the timeout

has already passed, so they only have to wait for

t′ = dmax + hmax − hmin = dmax + ∆h

After waiting this much time, the sender can be sure that the receiver has understood that a 0 bit was

sent. The sender may now start transferring another bit. However, there is still place for improvement.

If the sender starts dialing the receiver to send the next bit after the timeout has passed, it will take at

least dmin time for the receiver’s phone to start ringing. Thus, there is an unnecessary dmin-long time

gap when both participants are already certain that the timeout has passed and the next bit is now to

be transferred, but the receiver cannot receive a call from the sender yet. This is ineffective and can be

easily improved by making the sender dial dmin time before the timeout elapses, so that the receiver’s

phone may start ringing as soon as possible after the timeout.

t′′ = dmax − dmin + hmax − hmin = ∆d+ ∆h

It follows that transferring a 0 bit takes d1 + h1 time for the first ring and then the timeout from

sender’s point of view which is t′ = dmax + hmax − hmin. Note that the timeout from receiver’s point

of view may be disregarded, as it never elapses later than from the sender’s perspective. This is because

timeout from the sender’s perspective is essentialy an upper estimate of the receiver’s timeout. It follows

that the average 0 bit transferring time is

davg + havg + t′ = davg + havg + dmax + ∆h

However, as the sender already starts dialing to send the next bit during the timeout, they spare dmin

of what would be the dialing time d1 for the next bit. The processes of sending these two bits overlap.

We can therefore say that the actual cost of sending a 0 bit is the previous value minus dmin, i.e.

davg + havg + t′′ = davg + havg + ∆d+ ∆h

11



2.1. ONE-OR-TWO PROTOCOL CHAPTER 2. PROTOCOLS

Figure 2.2: Sending 0 using the Receiver hangup method of the One-or-Two protocol. The figure also
shows the early dialing for the next bit.

Of course, there is the special case if the considered 0 bit is the last one in the message. In this case, as

there is no following bit to be transferred, we do not actually save the dmin time. In our model of random

messages, the probability of the last bit being 0 is 1
2 , and so we should add 1

2 · dmin to the overall time of

sending a message. However, as was explained before, we consider the message to consist of n bits where

n → ∞. Thus this one-time addition would be amortized between the n bits and contribute nothing for

n→∞.

Now that we know the time required to send a 1 and a 0 bit, the average time needed to send a bit

can be calculated as

1

2
· 2(davg + havg) +

1

2
· (davg + havg + ∆d+ ∆h) =

=
3

2
· (davg + havg) +

1

2
· (∆d+ ∆h)

If we substitute values for the variables in this expression, we arrive at the average bit transfer time

of 16.45s, or equivalently a bitrate of r ≈ 0.06079b/s.

2.1.2 Sender hangup method

Just as in the previous method, the bit transfer starts by having the sender dial the receiver. Since

the sender does not know precisely how long will it take until the receiver’s phone ring, they must dial

for dmax time to be sure. After dmax time, it is guaranteed that the receiver’s phone rings (either it has

just started or it may have been so for as much as dmax − dmin time). Thus, the sender may now hang

up, what will take havg time on average.

12
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Figure 2.3: Sending 1 using the Sender hangup method of the One-or-Two protocol.

Let us again consider sending a 0 and a 1 bit separately.

If the sender is to send a 1 bit, they must ring again. Therefore, after hanging up, the sender must

wait hmax time to be sure that the hangup signal has reached the receiver and then dial again. The sender

must again wait dmax time to be sure that the receiver’s phone is ringing and then they can hang up for

the second time. There were two ringings, both taking

dmax + hmax

time, making up the total cost

2dmax + 2hmax

If the bit being sent is 0, we will witness a similar situation as in the Receiver hangup method, but

now with roles reversed. The receiver will have to estimate the timeout from the sender’s perspective

now. From the point where the sender hangs up, it would take at most hmax + dmax time to wait for the

hangup signal and then ring again to reach receiver again to send 1. Therefore, the timeout is set to

t = dmax + hmax

When the receiver learns that sender has hung up, they will know that at least hmin time has passed

while the signal got to them. The receiver therefore has to wait for

t′ = dmax + hmax − hmin = dmax + ∆h

After t′ time elapses, the receiver knows that a 0 bit was sent and that the next bit is now to be

transferred. How does the sender know when to start with the next transfer? From the moment when

they hung up, it may have taken as much as hmax time for the signal to reach the receiver, and then the

receiver waits for t′ time. The sender therefore cannot be certain that the receiver’s timeout has elapsed

13



2.1. ONE-OR-TWO PROTOCOL CHAPTER 2. PROTOCOLS

until

t′′ = hmax + t′ = dmax + hmax + ∆h

time has passed since they hung up. After t′′ time, both sender and receiver are certain that the other

party knows that a 0 bit has been transferred. The sender may start ringing again to send the next bit.

At this point, we may reuse the optimization from the previous method - the sender may actually start

dialing dmin time before the timeout elapses, i.e. after

t′′′ = t′′ − dmin = hmax + ∆d+ ∆h

By similar argumentation as in the previous method, it is evident that the timeout t′′ measured by

the sender elapses later than t′ measured by the receiver. The total time needed to send the 0 bit is

dmax + t′′ = 2dmax + 2hmax − hmin

As the sender starts dialing before the timeout elapsed, they spare dmin from the dialing time for the

first ringing of the next bit. Therefore, we get the actual average cost of sending a 0 bit as

dmax + t′′′ = dmax + hmax + ∆d+ ∆h

As was already argumented before, the idea of subtracting dmin cost is invalid if we are considering

the last bit, as there is no further dialing from which this time should be spared. In this case, we would

have to add a term of dmin back to the sum. However, we again do not have to, as this constant term

can be amortized among n bits for n→∞.

We can now express the average time required to send a bit as the average of the respective times for

1 and 0 bits.

1

2
· (2dmax + 2hmax) +

1

2
· (dmax + hmax + ∆d+ ∆h) =

= 2dmax + 2hmax −
1

2
(dmin + hmin)

After substituting values for variables, we get that in our case the average time per bit is 19.75s. This

yields a bitrate of r ≈ 0.0506b/s.

2.1.3 Comparison

Upon observing the bitrates of the two methods closer, we can say that in the former method the

average time required to send a bit

3

2
· (davg + havg) +

1

2
· (∆d+ ∆h)

depends linearly on

14
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Figure 2.4: Sending 0 using the Sender hangup method of the One-or-Two protocol. The figure also shows
the early dialing for the next bit.

• The average time of one ringing (dialing + hanging up).

• The size of intervals spanned by values of the variables d and h.

while in the latter one

2dmax + 2hmax −
1

2
(dmin + hmin)

it depends linearly on

• The maximum time of one ringing (dialing + hanging up).

• The minimum time of one ringing (dialing + hanging up).

In our case, the first method turned out to be more efficient. Let us find the general condition when

this holds.

3

2
· (davg + havg) +

1

2
· (∆d+ ∆h) < 2dmax + 2hmax −

1

2
· (dmin + hmin)

3

2
· (davg + havg) +

1

2
· (dmax + hmax) < 2dmax + 2hmax

3

2
· (davg + havg) <

3

2
dmax +

3

2
hmax

davg + havg < dmax + hmax

By definition, davg ≤ dmax and havg ≤ hmax. Thus, the Receiver hangup method is always more

efficient except in the special case where d and h would have no variance, so

15
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dmin = davg = dmax ∧ hmin = havg = hmax

davg + havg = dmax + hmax

and then two methods would be equally efficient.

Note also that in this comparison we used the h parameter in both methods, but it has two different

meanings. In one case, it is the time it takes for the hangup signal to reach from the sender to the receiver,

while in the the other case the signal travels in the opposite way. It is not guaranteed that h, as a random

variable, will have the same distribution in both cases. If it does not, this comparison is meaningless. It

is, however, not an unreasonable assumption. In both cases, we expect h to be small, considerably smaller

than d and if the distributions differ only slightly, this difference will not have a significant effect on our

comparison.

2.2 Ringing Length protocol

Observing the previous protocol closely, one can see an obvious source of inefficiency. We dial once

or twice for each bit, what takes a long time, as the d parameter takes quite large values. Naturally, the

improvement that comes to mind is to send mutliple bits per one dialing instead. This is the idea of the

Ringing Length protocol. While in the One-or-Two protocol we always hang up as soon as possible, in

this protocol we will let the receiver’s phone ring and several bits will be encoded to the ringing time length.

2.2.1 Description

A sequence of bits sent per one dialing will be called a block. We will denote the block size as b.

The values of the b bits will be interpreted as a single number x ∈
{

0, . . . , 2b − 1
}

. This number will be

caled the value of a block and encoded by ringing for the time x · g. We remind the reader that g is the

”granularity of time” parameter, the smallest reasonably distinguishable time interval. As we remarked

before, its semantics will be dependent on the protocol. It is the case in this protocol as well. While there

is a technical lower bound on g - the actual time measurement precision of the phones, this protocol also

puts a semantic lower bound on it.

The protocol will proceed as follows. The sender will dial the receiver for dmax time, so they can be

sure that the receiver’s phone will ring. Then, to send a number x ∈
{

0, . . . , 2b − 1
}

, the sender will wait

for x · g. The sender will then hang up.

The sender will always allow dmax time for dialing and hmax time for hanging up. Since in our model

all 2b configurations of the b bits are equally likely, the average ringing time length can be computed as
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1

2b

b∑
i=0

i · g =
g

2b
· (2b)(2b − 1)

2
=
g(2b − 1)

2

Thus, the average time required to send a block is

dmax + hmax +
g(2b − 1)

2
(2.1)

and since one block contains b bits, the average time needed to send one bit is

dmax + hmax
b

+
g(2b − 1)

2b

Observe that this computation was made from the sender’s point of view. The sender assumes the

worstcase dialing time dmax, then rings for x ·g, and only then hangs up, what will add at least hmin more

ringing time from the receiver’s perspective. However, dialing may have taken less time and hanging up

may have taken more time. If they did, the receiver will perceive the ringing to be somewhat longer. In

general, if the sender intends to transmit the value x, ringing will take

• at least x ·g+hmin time. This is achieved if dialing takes the longest possible time dmax and hanging

up takes the shortest possible time hmin.

• at most x ·g+∆d+hmax time. This is achieved if dialing takes the shortest possible time dmin (thus

adding the difference ∆d to the beginning) and if hanging up takes the long possible time hmax.

Thus, the time that the receiver measures may vary on the interval

(x · g + hmin, x · g + ∆d+ hmax)

Let us call the case when dialing takes the maximum possible time dmax and hanging up takes the

minimum possible time hmin the base case. Therefore, x · g + hmin is the base case ringing time for the

receiver. Note that since we defined the ranges of d and h as open intervals, the ringing can in fact never

take exactly this time, but can take ε longer for any ε > 0. The cases when ringing takes longer or hangup

takes shorter than in base case will be considered a tolerated error. Such an error may be of size up to

0 < error < |(x · g + hmin, x · g + ∆d+ hmax)| = ∆d+ ∆h (2.2)

Note that the error is always positive, because we chose the base case (error = 0) as the case with

the shortest possible ringing time. The bounds we defined on error are exclusive, i.e. its range is an open

interval, because the range of possible ringing times is also an open interval.

In order to correctly decode x, the receiver must be able to recognize and correct the error. The error

prolongs the ringing and we must make sure that it will not be prolonged so much as to be considered

x + 1. In other words, transmission time of x even with the maximum possible error must be less than

transmission time x + 1 with any error. Since the error is non-negative, we can simplify this statement
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Figure 2.5: Ringing Length protocol - sending block with value x.

and say that the transmission time of x with the maximum possible error is less than transmission time

of x+ 1 without an error.

x · g + ∆d+ hmax ≤ (x+ 1) · g + hmin

g ≥ ∆d+ ∆h

Note that we could use ≤ instead of <, because the error’s range is an open interval. And since we

want g to be as small as possible, we set

g = ∆d+ ∆h

Therefore in our case we get the value g = 4.4s, which is surely enough to not hit the technical limi-

tations of time measurement precision.

The ringing time (denoted tring) can be decoded into block value x as

x =

⌊
tring − hmin

g

⌋
(2.3)

and by translating x to its binary notation, we get the bits that were sent.

What remains is to find the optimal block size b. The idea of this protocol is that it’s more effective to

send several bits at once, so it could seem that we want to maximize b. However, we must also notice that

increasing b by one means that the range of the encoded number x doubles. It follows that the average

ringing time also approximately doubles, and so it grows exponentially with b. Therefore, b cannot be

too large either. It seems that there is an optimal value of b that yields the minimum possible average

transfer time per bit, while both increasing or decreasing b will lead to ever worse results. This means

that the average transfer time per bit, as a function of b (denoted t(b))

t(b) =
dmax + hmax

b
+
g(2b − 1)

2b
, b > 0 (2.4)
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Figure 2.6: Transmission time as a function of the block size.

is a convex function with a single local and global minimum, which is the optimal value of b. Plotting

a graph of this function (for our values of parameters) suggests that this is indeed true - see Figure 2.6.

To prove this, let us take the derivative of this function

t′(b) =
(dmax + hmax)′b− (dmax + hmax)b′

b2
+

(g(2b − 1))′(2b)− g(2b − 1)(2b)′

4b2
=

= −dmax + hmax
b2

+
g(2b ln 2)(2b)− 2g(2b − 1)

4b2
=

=
−4dmax − 4hmax + 2g(ln 2)b2b − 2g2b + 2g

4b2
=

=
−2dmax − 2hmax + g2b((ln 2)b− 1) + g

2b2

To find the local extreme (denoted bopt), we put

t′(bopt) = 0

−2dmax − 2hmax + g2bopt((ln 2)bopt − 1) + g

2b2opt
= 0

−2dmax − 2hmax + g2bopt((ln 2)bopt − 1) + g = 0

g2bopt((ln 2)bopt − 1) = 2dmax + 2hmax − g
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g2bopt((ln 2)bopt − 1) =
2dmax + 2hmax − g

g

e(ln 2)bopt((ln 2)bopt − 1) =
2dmax + 2hmax − g

g

e(ln 2bopt−1)bopt((ln 2)bopt − 1) =
2dmax + 2hmax − g

eg

ln 2bopt − 1 = W

(
2dmax + 2hmax − g

eg

)

bopt =
W
(

2dmax+2hmax−g
eg

)
+ 1

ln 2

Where W is the Lambert function defined as the inverse of f(x) = xex[CGH+96], where we sub-

stited x = (ln2)bopt − 1. To prove that this point is indeed a local minimum, we have to also show that

t′′(bopt) > 0. We will, however, omit this part as it is tedious and mechanical.

We now know how to find the block size bopt such that t(bopt) is minimal. However, this number

is likely non-integer. Since t is bitonic, we know that the minimum integer value is one of its integer

neighbours

bint = arg min
b
{t(b) | b ∈ {bboptc , dbopte}}

But this is still not the solution. Larger blocks imply longer ringing times, which is limited by the

parameter l. So far, we have focused on the average ringing time in our computations, now we must

ensure that even the longest ringing time, transferring the block 1 . . . 1 (value 2b− 1) will fit into the time

window defined by the parameter l. We must also allow for possible prolongation of ∆d if the dialing

takes the shortest possible time. Finally, to keep things consistent, we do not want the receiver to hang up

on their own. The reason is that (for some values of parameters) l time could elapse just after the sender

has sent the hangup signal but before hmin time passed. The receiver would then hang up on their own

too soon (less than hmin after sender decided to hang up) and thus seemingly break the assumption that

h ∈ (hmin, hmax). Thus, we should also allocate extra time for the hangup signal to reach from sender to

the receiver.

(2b − 1)g + ∆d+ hmax ≤ l

b ≤ log2

(
l −∆d− hmax

g
+ 1

)
= bmax (2.5)

Consider that the optimal value bint does not satisfy this condition, i.e. bint > bmax. It follows that as

t(b) is decreasing on the interval (0, bopt), it must also be decreasing on the (0, bbmaxc], which is its subin-

terval. This means that the optimal value of b in this case is the largest integer in this interval, i.e. bbmaxc.

To summarize all these rules, we can formulate the algorithm used by the participants to find the

optimal feasible value of b (denoted bres) that takes into account both bopt and bmax. When speaking
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about the transmission speed of this protocol, we will always assume that we are using the optimal block

size: b = bres.

1. Calculate bopt =
W( 2dmax+2hmax−g

eg )+1

ln 2

2. Calculate bmax = log2

(
l−dmax+dmin−hmax

g + 1
)

3. If bboptc ≤ bmax, return bres = bbmaxc

4. Otherwise return bres = arg min
b
{t(b) | b ∈ {bboptc , dbopte}}

For our values of parameters, we get bopt ≈ 2.525 and bmax ≈ 3.713. We should therefore compare the

block sizes 2 and 3. We get t(2) = 9.15 and t(3) = 9.03, so we should use the block size b = bres = 3.

2.2.2 Speedup: Granularity versus error-correction tradeoff

We have established the lower bound for g to be

g ≥ ∆d+ ∆h

and since we want to minimize g, we set it to exactly match this bound. Now the question is if there

is anything to gain by lowering g below this bound. Remember that this protocol requires g to be at least

this large in order to assure a correct interpretation of ringing length despite the fluctuations of d and h.

Therefore, lowering g must necessarily introduce transmission errors. On the other hand, low value of g

makes the communication faster, so we may use the saved time to correct these errors.

Consider using a reduced granularity g′ = g
3 . Originally, the intervals of possible ringing times for

individual values of x were disjunct. Now they overlap, as their spacing is only g′ while their sizes are

still g = 3g′. Receiver used the formula (2.3)

x =

⌊
tring − hmin

g

⌋
to determine the sent value. However, this time using the formula

x =

⌊
tring − hmin

g′

⌋
=

⌊
3
tring − hmin

g

⌋
(2.6)

we cannot distinguish between

• Sending x with an error [2g′, 3g′)

• Sending x+ 1 with an error [g′, 2g′]

• Sending x+ 2 with an error (0, g′]
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because

[x+ 2g′, xg′ + 3g′] = [(x+ 1)g′ + g′, (x+ 1)g′ + 2g′] = [(x+ 2)g′, (x+ 2)g′ + g′]

and thus this formula will map them to the same value (specifically x + 2). From the receiver’s

perspective, if the formula (2.6) returns a value x, what could have happened is

• x was sent and the error was (0, g′)

• x− 1 was sent and the error was [g′, 2g′)

• x− 2 was sent and the error was [2g′, 3g′)

Note that the ringing time xg′+ 2g′ could either mean value x with error 2g′ or value x+ 1 with error

g′. However, as our formula uses the floor function, it is always interpreted as the former. We will later

see that this does not matter. Even if it did, we can always argue that d, h are expected to be continuous

random variables and so the probability of error being exactly this (or any other) one particular value is

zero anyway, so the ambiguous case never actually occurs.

We can say that for each block, receiver will read the value of x with error 0, −1 or −2 (of course,

except the cases where x = 2 or x = 1, where only one or two of these cases are possible, respectively).

Gray code

Let us change the protocol description slightly so that whenever sender wants to send the value x,

they ring not for xg′ time, but for xg′ + g′ = (x + 1)g′, as if they wanted to send x + 1. The possible

errors in receiver’s interpretation also shift by one, so if x is received, it could mean that

• x+ 1 was sent and the error was (0, g′)

• x was sent and the error was [g′, 2g′)

• x− 1 was sent and the error was [2g′, 3g′)

The receiver thus interprets the value of each block with a possible ±1 error (with exception of x = 0,

where −1 error cannot occur and x = 2b − 1, where +1 cannot occur). It turns out that this property is

very useful if we encode the b bits by Gray code[Gra53] (a.k.a. reflected binary code) instead of näıvely

interpreting the bits as a binary number.

Gray code Gb is a permutation of b-bit sequences. In our case, if we want to transmit a b-bit word w, we

will first translate it to Gb(w) and interpret the resulting b-bit sequence as the number x ∈
{

0, . . . , 2b − 1
}

which becomes the block value. The receiver will then invert the process by rewriting x back to binary

and applying G−1
b .

This enables us to use an important feature of Gray code - codes for consecutive numbers only dif-

fer in one bit. This means that the ±1 possible error in ringing length transforms into one flipped bit
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difference between G(x) and G(x±+1). This allows us to identify and correct these transmission errors

using standard error-correcting codes. In this case, error in one bit can be repaired by Hamming’s (7, 4)

code[MVM09]. Hamming’s code assumes there is at most one flipped bit in every chunk of 7 bits. We can

guarantee that there is at most one flipped bit in one block. Thus, we must use block size b = 7.

The average time needed to send one bit can now be expressed by taking the original formula (2.4)

and substituting b = 7 in the numerator, but b = 4 in the denominator (as we have to send 7 bits, but

only 4 bits of the message are actually transmitted, the remaining 3 serve for the error correction). We

also substitute g
3 for g. Finally, we must take into account that every ringing now takes g′ = g

3 longer,

due to the ±1 shift. We obtain

dmax + hmax
4

+
g

3
· 27 + 1

2 · 4
which, for our values of parameters, will yield ∼ 26.575, almost tripling the original time. In our case,

the exponential growth of ringing time with the block size has far surpassed the advantage of smaller

g. It seems, however, that for different configuration of parameters, if bopt was higher, there could be

an improvement. For example, let us consider that we were lucky so the block size b = 7 suggested by

Hamming code was already optimal in the näıve version of the algorithm. Let us see if this Gray code

modification is then faster. Intuitively, this should hold, since we transmit at triple the speed, but send

only 7
4 -times more bits (which only means sending 7

4 more blocks, not 7
4 -times larger blocks; thus the time

increases linearly, not exponentially).

dmax + hmax
4

+
g

3
· 27 + 1

2 · 4
<
dmax + hmax

7
+ g · 27 − 1

2 · 7

7dmax + 7hmax + 903
6 g

28
<

4dmax + 4hmax + 254g

28

dmax + hmax <
69

2
g

dmax + hmax <
69

2
∆d+

69

2
∆h

Thus, the only situation when Gray code improvement would fare worse than the näıve approach is if

the maxima of d and h were disproportionately larger than their ranges, e.g. if dialing and ringing times

took reliably constant time instead of being random variables.

We may extend the principal idea of this section by using g′ = g
5 and subsequently use an error-

correcting code that corrects 2 bits, or in general g′ = g
2k+1 with k faulty bits. However, such error-

correcting codes necessitate large block sizes, and thus will apparently be very inefficient for our practice

where bopt = 3.
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x→ y shift
y = x y = x + 1 y = x + 2

x′ considered
x′ = y x x+ 1 x+ 2

x′ = y − 1 x− 1 x x+ 1
x′ = y − 2 x− 2 x− 1 x

Table 2.1: Values of x′ considered by the receiver.

Modulo method

Not having success with standard error-correcting codes working with the bit representation of the

message, let us devise an error-correcting method working directly with the ringing times.

We will return to the idea of lowering g to g′ = g
3 without the +1 shift. Recall that in this setting, if

the sender sends a value x, the receiver may interpret it as x, x + 1 or x + 2. Let us denote this inter-

preted value y. The receiver wants to guess the original value of x, we will denote this guess by x′. Now

the receiver knows that the value y was shifted and so it may hold that either x′ = y, x′ = y−1 or x′ = y−2.

The sender does not know which of the three shifts happened to x (i.e. the value of y) and thus does

not know which three values are considered as x′. Therefore, from the sender’s point of view, there are

five total values that could be potentially considered. This is illustrated in Figure 2.1.

The sender must therefore find a way to inform the receiver which one of the five values of x′ possibly

considered by the receiver is the true x. Although not knowing which three of them will be actually

considered, the sender knows that the five values are {x− 2, x− 1, x, x+ 1, x+ 2}. The obvious way to

pinpoint x is to send the value x mod 3, since x itself is the only number in the set with this property.

Furthermore, this information is as small as possible - the receiver always has to choose between three

options and x mod 3 ∈ {0, 1, 2} is an information of size log2 3.

The protocol will proceed as follows. The message will be first sent using g′ = g
3 . Then, an error-

correcting message will be sent, containing x mod 3 for every block value x of the original message. This

will be sent using the original value of g, so as not to introduce any more errors.

The first problem we have solve is how does the receiver know which blocks carry the message and

which ones carry the error-correcting information. There are two possible approaches. In the following

text, let the block size of the regular blocks be denoted as b′ and that of the error-correcting blocks as b.

This distinction is important, because different values of g′ and g may result in different optimal block

sizes.

• The offline approach. Wait until all blocks are transmitted. Let us denote their number k. We need

to compute the number of error correcting blocks e - then we will know that the message is contained

in the first k − e blocks and the error-correcting data in the last e ones, making us able to decode
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the message. The e error-correcting blocks contain eb bits total. As the correction information for

each block of the message takes log2 3 bits, there are a total eb
log2 3 of them. However, this must

correspond to the number of regular blocks. We get that

k − e =
eb

log2 3

k = e

(
1 +

b

log2 3

)
e =

k

1 + b
log2 3

Note, however, that this is always an approximation. The number of error-correcting bits we need

to send is (k − e) log2 3, which is an irrational number. The error-correcting blocks can contain eb

bits, which is an integer. The last block must therefore always contain some padding, unused bits

in the end. Thus, there may be up to b less error-correcting bits than it seems, and therefore up to
b

log2 3 less blocks. The easiest way to help the receiver identify the correct number of blocks k− e is

to also send the number

(k − e) mod
⌈

b

log2 3

⌉
.

This number takes up log2

⌈
b

log2 3

⌉
bits, which is a fixed value known by both participants, so the

receiver will always know at how many last blocks they have to look to extract it. The reader may

wonder whether it would not be easier to simply encode the message length n at the beginning of

the transmission. The problem is that this would take O(log2 n) more bits, while our approach only

adds O(1) bits. But both values are o(n) and so they contribute to the transmission time negligibly

if n→∞.

• The online approach. As the name suggests, this approach suggests not to wait until the end of

the message, but rather process it gradually. This is practical if the message is very long or even

infinite. We will have to partition the message into meta-blocks, sequences of k blocks and their

corresponding error-correcting blocks. Thus, after every k regular blocks we will send k modulo

numbers. This way, every meta-block is essentially a separate message that can be decoded on its

own, making it possible to output the data transmitted so far after every kb′ bits. The sender and

receiver will agree on the number k in advance. The question is, how to determine a good value of k?

The k regular blocks will require k modulo numbers, which will take up k log2 3 bits. For any k,

the number k log2 3 is irrational and thus the last error-correcting block will always be partially

empty. In order not to waste the space (and transmission time with it), we want to pick k such

that the last block is as full as possible. The simplest way to achieve this is to approximate the

irrational value of log2 3 by a slightly larger rational number a ∈ Q. Let us pick a to be the rational
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number obtained by evaluating log2 3 to p decimal digits, increased by 10−p, so that it will hold

that a > log2 3. Clearly a− log2 3 < 10−p. Since a only has p decimal digits, it follows that 10pa is

integer, what makes k = 10p a feasible choice. As a slightly overestimates log2 3, there are in fact

log2 3− a unused bits in the last block(s) for every error-correcting number, which means the total

number of unused bits is

k(log2 3− a) = 10p(log2 3− a) < 10p(10−p) = 1

The extra cost of this bit is amortized among the kb′ bits in the meta-block. This means that we

can reduce the extra time caused by the irationality of log2 3 to arbitrarily small value by choosing a

precise enough approximation a and a corresponding meta-block size k. Therefore, we can consider

this extra time to be negligible.

In both approaches, we have solved the problem of the last error-correcting block not being filled to

full extent. We can therefore consider the time needed to send an error-correcting bit (as a function of

the block size b, denoted tg(b)) to be precisely 1
b of the time needed to send the whole error-correcting

block. Thus, we can reuse the formula (2.4)

tg(b) =
dmax + hmax

b
+
g(2b − 1)

2b
(2.7)

And similarly, we obtain the time needed to send a plain bit (without error correction) by simply

substituting g′ = g
3 for g and b′ for b into formula (2.4). We will denote this tg′(b

′).

tg′(b
′) =

dmax + hmax
b′

+
g′(2b

′ − 1)

2b′
=
dmax + hmax

b′
+
g′(2b

′ − 1)

6b′
(2.8)

We send log2 3 error-correcting bits per every b′-bit block of the message. Therefore, the total time

required per bit using the modulo method is derived from formulae (2.7) and (2.8) as

tg′(b
′) +

log2 3

b′
tg(b) =

dmax + hmax
b′

+
g′(2b

′ − 1)

6b′
+

log2 3

b′
dmax + hmax

b
+
g(2b − 1)

2b
(2.9)

We explained the concept of this section using g′ = g
3 , continuing from the previous section about

Gray code. However, it is apparent that the concept may be generalized to work with g′ = g
k for any k.

We will then have y − x ∈ {0, . . . , k − 1} and send log2 k bits per block to determine the value x mod k.

We then obtain the per bit transmission time by substituting k for relevant occurences of the constant 3

into formula (2.9)

tg′(b
′) + (log2 k)tg(b) =

=
dmax + hmax

b′
+
g′(2b

′ − 1)

2kb′
+

log2 k

b′
dmax + hmax

b
+
g(2b − 1)

2b

We have already shown how to choose the optimal block size b corresponding to a given g. Now, we

have to choose the optimal block size b′ so that the total transmission time is minimal. This can be once

again done by finding the root of the derivative of transmission time as a function of b′.
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Figure 2.7: The functions tg′(b
′) and tg′(b

′) + (log2 k)tg(b) for our values of parameters and k = 3. The
integer minimum of the first is 3, while for the latter it is 4.

∂

∂b′

(
tg′(b

′) +
log2 k

b′
tg(b)

)
= 0

Note that since b′ appears in the second term as well, this is not the same as simply choosing the

optimal block size b′ corresponding to the reduced granularity g′.

arg min
b′

{tg′(b′)} 6= arg min
b′

{tg′(b′) + (log2 k)tg(b)}

This is illustrated in Figure 2.7. We will not provide the exact calculation of b′, as it is lengthy and

purely mechanical.

Results

Let us experiment with different values of k and illustrate the effect on the transmission time for our

values of parameters. The results are shown in Table 2.2. For every value of k, we show

• b′ - the optimal block size corresponding to g′ = g
k .

• Bit transmission time for a plain message bit tg′(b
′)

• Total bit transmission time for a plain bit and 1
b′ -th of an error-correcting bit tg′(b

′) + log2 k
b′ tg(b).

To compare the data in Figure 2.2 with the original, not sped-up version of the protocol, remember

that the optimal block size corresponding to g = 4.4s is b = 3 and t(3) = 9.03.
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Transmission time per bit
k b′res Plain Total
1 3 9.033 9.033
2 4 7.050 9.308
3 4 5.675 9.254
4 5 5.750 9.363
5 5 5.068 9.263
6 5 4.613 9.283
7 5 4.289 9.361
8 6 4.838 9.354
9 6 4.517 9.289

10 6 4.260 9.261

Table 2.2: Bit transmission time achieved by the Modulo method for k ∈ {1, . . . , 10}.

We may observe that for increasing k, the tranmsission time also increases. When we reach a value of k

high enough so that b′int grows, the transmission time drops, then increases again while b′int is fixed. How-

ever, we must conclude that neither choice of k has improved the transmission time under 9.03. Although

the table only shows this for k ≤ 10, the reader may convince themselves that there is no improvement

even for larger values of k.

The usefulness of the Modulo method is best visible if bopt > bmax. In the original version of the

protocol, this would mean having to settle for a non-optimal block size, otherwise the ringing could, in

the worst case, take longer than l. Using the modulo method, we try different values of k and reduce g to

g′ = g
k . Decreasing the value of g′ increases the corresponding optimal block size b′opt. For some values of

k, it may hold that b′opt ≤ b′max, i.e. the optimal block size does not lead to exceeding the ringing length

limit l. Or, it may at least hold that b′max is closer to b′opt than bmax was to bopt. Being able to use a

block size that is closer to the optimum then provides a huge speedup that dwarfs the extra time required

by sending the error-correcting bits.

Let us illustrate this idea on an example. Consider that the receiver has a low ringing time limit

l = 19s1. The maximum ringing time for block size b = 3 is 37.5s and for b = 2 it is 19.9s, both exceeding

l. We must therefore use b = 1, which leads to the transfer time t(1) = 13.9s. Let us now look at the

values of k ∈ {21, . . . , 30}, listed in Figure 2.3.

For every value in this range, it holds that bb′maxc ≤ b′int and therefore b′res = bb′maxc. For k ∈
{22, . . . , 27} we managed to achieve the desired effect - the transmission time is lower than t(1) = 13.9s.

1Mobile phones typically only allow setting the limit in 5s steps, but this is not important for our computations. If we
wish to be pedantic, we may use l = 20s and pretend that d, h parameters are 20

19
larger instead.
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Transmission time per bit
k b′int bb′maxc b′res Plain Total

21 7 5 5 3.572 15.200
22 7 6 6 3.486 13.331
23 8 6 6 4.511 13.434
24 8 6 6 4.384 13.534
25 8 6 6 4.268 13.632
26 8 6 6 4.160 13.728
27 8 6 6 4.060 13.821
28 8 6 6 3.967 13.912
29 8 6 6 3.881 14.001
30 8 6 6 3.800 14.088

Table 2.3: Transmission time achieved by the Modulo method for k ∈ {21, . . . , 30} for l = 19s.

2.3 Ring-or-Silence protocol

The Ring-or-Silence protocol follows the way how digital data are usually sent through wires. Signal

means 1 and no signal means 0. In our case, ringing means that a 1 bit is being transffered and silence

means that a 0 bit is.

2.3.1 Description

The receiver will regularly check if the phone is ringing or idle. To be more precise, the receiver will

handle its incoming call and hangup events and set a flag, then check this flag in regular time intervals,

called frames. As expected, we will use g to denote the size of a frame. The receiver will then output 1 if

the flag is set during the check at the end of the frame and 0 otherwise.

To makes things simpler at first, let us begin with the assumption that the sender and receiver have

synchronized clocks. This means that the sender knows precisely at what moments the receiver is going to

chceck the state. Furthermore, we will assume that the moment when the transmission starts is implicit

and known. This is important because when the transmission begins by sending 0, there is no explicit event

for the receiver to know. In practice, this beginning time may be mutually agreed between the partici-

pants by other means of communication. Another possibility is to start the communication by a preamble.

Sending two consecutive 1 bits means to keep ringing between frames, just as sending two 0 means to

keep idling. However, sending a 1 after 0 means that the sender has to dial. Similarly, sending a 0 after 1

means they have to hang up. In both cases, the state must be changed inside a time window of g, since

that is how often the receiver checks it. We will therefore require that

g ≥ dmax ∧ g ≥ hmax
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and since it typically holds that dmax > hmax
2, we may simply put

g = dmax

Thus, the bit transmission time seems to be dmax. We will soon see that this is only approximately

so. Still, notice that so far in every protocol it was the dmax parameter that had the greatest influence

on the protocol’s effectivity.

We must now deal with the inherent asymmetry of our model. While the phone can be in the idle

state indefinitely, it can only ring for the time l. In our case, this limits the number of 1s (denoted c) that

can be sent consecutively to

c = 1 +

⌊
l −∆d

g

⌋
= 1 +

⌊
l −∆d

dmax

⌋
(2.10)

To send the first 1 bit of a long sequence, the sender will start dialing immediately in the beginning

of a frame. The length of the frame is g = dmax and since dialing may only take dmin, the receiver’s

phone may have already been ringing for dmax − dmin when the receiver checks the state and outputs

the first 1. The ringing will then continue for at least l + dmax − dmin (possibly more, if dialing took

more time, but we cannot know that, so we cannot reckon with it). During this time, receiver will find

the state to be ringing at the end of every frame and then the sender will have to hang up. Hence we

arrived to the formula (2.10). Note that although the receiver can hang up themself after the time limit

has elapsed, the sender should always do so as this would otherwise introduce a meaningless special case.

The sender should always hang up after c consecutive 1 bits were sent, despite the fact that the receiver

would hang up soon or even may already have hung up and the signal just did not reach the sender yet. If

we just waited for the receiver to hang up automatically after the time limit l elapses, we could sometimes

accidentally send more 1 bits. This could happen if the dialing took more than the minimum dmin time.

Suppose it took full dmax time. In this case, we would have as much as⌊
l

g

⌋
receiver state checks resulting in 1 bit being output. Thus, if⌊

l

g

⌋
>

⌊
l −∆d

g

⌋
l mod g < ∆d

we would accidentally send at least one more 1 bit because the receiver failed to hang up in time. Of

course, this could sometimes be taken advantage of to send a longer sequence of 1s, but cannot be relied

upon, as the dialing time is nondeterministic and more importantly unknown to the sender.

It is not difficult to cope with this limitation. We know that after c consecutive 1 bits, the call must

2This is warranted by our measurements as well as by understanding that dialing is a more complicated process.
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be hung up and thus a 0 bit will follow. Therefore, the receiver will understand every 0 coming after c 1s

as an involuntary 0 bit only transmitted because of the ringing time limit. Of course, the sender might

have actually wanted to transmit a 0, but the receiver cannot distinguish that. The sender must realize

this and always include the extra 0 after c consecutive 1s, even if they hung up with the intention to send

a 0 and not only because of the time limit. This slightly impacts the bitrate of our protocol, as in our

random model we expect that a sequence of at least c consecutive 1 bits will occur every so often, forcing

us to transmit the extra bit. Let us compute precisely how often does this happen.

We will start by computing the expected number of consecutive sequences of 1s of a certain length.

Let us denote this length i. The random variable counting the number of sequences of length i will then

be denoted ti and so the value we look for is E[t]. In order to avoid duplicate counting, we will only

consider sequences that are exactly of length i. For example, the bit string 0111010 contains one sequence

of length 1 and one sequence of length 3. It also contains two overlapping sequences of length 2, but we

will not count those, as they are both part of the sequence of length 3. Sequences of length i can be

divided into three categories.

• The sequence starts right in the beginning of the message. This means that the first i + 1 bits of

the message are 11, . . . , 110, i.e. i 1s followed by a 0. Since every bit can be equally probably a 1 or

0, the probability of this happenning is 2−(i+1). It follows that the expected number of consecutive

sequences of 1s in the first i+ 1 bits of the message, satisfying the conditions

– length i

– starting at the beginning of the message

is also 2−(i+1).

• A symmetrical situation at the end of the message. Thus, the expected number of consecutive

sequences of 1s in the last i+ 1 bits of the message (that are also of length i and end at the last bit)

is 2−(i+1).

• For sequences that neither start at the first bit nor end at the last one, we must reckon with sentinel

0s on both sides. Therefore, we will count the number of sequences 011 . . . 110 containing i 1s. If

the length of message is n, there are n− i− 1 positions where such a sequence of length i+ 2 might

be. Of course, this only holds if n ≤ i + 2, but remember that we always assume n → ∞. Now in

each of these ”slots” of i+ 2 bits, the probability of it containing the sequence 011 . . . 110 is 2−(i+2).

Therefore, in each of these slots the expected number of sequences 01 . . . 10 is also 2−(i+2).

These are all the positions where a consecutive sequence of 1s of the length i may be. As each of

those positions overlap a few others, the probability of the sequence appearing in one position is not

independent of the probability that it appears in others. However, we may take advantage of the linearity

of mean value. Thus, the expected number of the sequences of 1s of the length i is
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E[ti] = 2 · 2−(i+1) + (n− i− 1) · 2−(i+2) =
2

2i+1
+
n− i+ 1

2i+2
=
n+ 3− i

2i+2

Every sequence of length at least c and at most 2c − 1 causes us to transmit an extra bit, thus on

average we get
∑∞
i=cE[ti] extra bits. Sequences of lengths 2c . . . 3c − 1 cause us to transmit two extra

bits, one after the first c consecutive 1s, another after the next c. In general, we transmit k extra bits if

the sequence is of length kc . . . (k+ 1)c−1. This can be reformulated as follows. Every sequence of length

at least c adds an extra bit,
∑∞
i=cE[ti] in total. Every sequence of length at least 2c adds one more extra

bit, so we have to add
∑∞
i=2cE[ti]. Then sequences of length at least 3c add yet one more etc. It follows

that the final number of extra bits generated is

∞∑
k=1

∞∑
i=kc

n+ 3− i
2i+2

Let us compute the outer sum first.

∞∑
i=kc

n+ 3− i
2i+2

=

∞∑
i=0

n+ 3− (i+ kc)

2i+kc+2
=

1

2kc+2

∞∑
i=0

n+ 3− (i+ kc)

2i
=

=
1

2kc+2

( ∞∑
i=0

n+ 3− kc
2i

−
∞∑
i=0

i

2i

)
=

1

2kc+2
(2(n+ 3− kc)− 2) =

=
2n+ 4− 2kc

2kc+2
=
n+ 2− kc

2kc+1

Now for the inner sum, we get

∞∑
k=1

n+ 2− kc
2kc+1

=

∞∑
k=0

n+ 2− (k + 1)c

2(k+1)c+1
=

∞∑
k=0

n+ 2− kc− c
2kc+c+1

=

=
1

2c+1

∞∑
k=0

n+ 2− kc− c
2kc

=
1

2c+1

( ∞∑
k=0

n+ 2− c
(2c)k

−
∞∑
k=0

kc

(2c)k

)
=

=
1

2c+1

(
(n+ 2− c)2c

2c − 1
− c2c

(2c − 1)2

)
=

(n+ 2− c)(2c − 1)− c
2(2c − 1)2

This is the contribution of the extra bits over n bits of the message. It follows that the contribution

per one bit is

lim
n→∞

(n+ 2− c)(2c − 1)− c
2(2c − 1)2n

= lim
n→∞

n(2c − 1)

2(2c − 1)2n
=

1

2(2c − 1)

With the parameter values we measured, we get c = 8. Thus we get an average of 1
510 extra bits per

a bit of message, which is negligible. The total bit transmission time can be expressed as

g

(
1 +

1

2(2c − 1)

)
= dmax

(
1 +

1

2(2c − 1)

)
≈ g = dmax

For our values of parameters, this is approximately 8.016s, which yields a bitrate of approximately
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0.125b/s.

2.3.2 Speedup by lowering granularity

In the following text and computations, for the sake of simplicity, we will usually not take the negli-

gible contribution of consecutive sequences of 1s into account. One may also notice that by reducing the

granularity g, the number c increases, which makes the contribution to the transmission time even more

negligible.

We will demonstrate the idea of lowering the value of g using the particular parameter values from

our measurements. Let us halve the value of g, thus getting g = 1
2dmax = 4s. It then holds that

(dmin, dmax) = (5s, 8s) ⊆ (4s, 8s) = (g, 2g)

and also

(hmin, hmax) = (2.3s, 3.7s) ⊆ (0s, 4s) = (0, g)

which means that hanging up can still be done in one frame, while dialing always takes exactly two

frames. Let us see how this change in dialing affects transmission. We dial when the message contains

the subsequence 01. If g = dmax, after transmitting 0 there is enough time to dial and send 1. However,

with g = 1
2dmax, the receiver will never see ringing after g time, but only after 2g time. Thus the receiver

will read 001 instead of 01.

This is not a problem. Whenever the sender sees 01 in the message, they can deliberately insert

one more frame between 0 and 1 to allow for longer dialing time. The receiver is then sure to never

encounter less than two 0s before each 1 and can always interpret 001 as 01. The message is then

correctly transmitted. This forces us to send an extra 0 bit for every occurence of 01 in the message.

The probability of each bit being 0 is 1
2 and the probability of it being followed by a 1 is again 1

2 . To be

more precise, there is a small probability that the considered bit is the last one of the message, thus it is

not followed by anything, meaning the probability of being followed by 1 is slightly less than 1
2 . But for

message length n→∞ the probability of a bit being last is → 0. In total, we get that 1
4 of bits generate

this extra 0 bit. The size of message has grown to

n′ = n+
1

4
n =

5

4
n

but since g = 1
2 , the total transmission time is

n′g =
5

4
n · 1

2
dmax =

5

8
ndmax

so the message is transmitted 37.5% faster than original (disregarding the negligible contribution of

extra bits from consecutive sequences of 1s). In our case, this means sending a bit every 5s.
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This idea can be generalized. Apparently nothing can be gained by g > dmax; in fact, the l limit

prevents us from having g too large. However, it seems reasonable to take g → 0 in order to minimize the

time of one frame. However, we will require that g is not too small either, but that it holds

∆d,∆h ≤ g

i.e. the whole ranges of d and h fit into one frame. This means that even if dialing or ringing take

several frames, we will always know exactly in which one will the event happen. The number of frames

required to dial, denoted fd, and the number of frames required to hang up, denoted fh, can evidently be

computed as

fd =

⌈
dmax
g

⌉

fh =

⌈
hmax
g

⌉
Note that it must not necessarily hold that

(dmin, dmax) ∈ ((fd − 1)g, fdg)

(hmin, hmax) ∈ ((fh − 1)g, fhg)

By definition of fd and fh, dmax and hmax must always fit into the fd-th and fh-th frame, respectively,

but their minimum counterparts might not. For example, for our values of parameters and g = 3s, ringing

takes three frames. If the ringing time is minimal (d = dmin), the receiver’s phone will start ringing in the

second frame already. This can be alleviated if the sender starts dialing one second into the first frame,

not right in its beginning. As 1s + dmin = 6s and 1s + dmax = 9s, the ringing now always fits into the

third frame. In general, we usually have to start dialing with a certain delay ε. The delay might be

ε = (fd − 1)g − dmin

so that dmin fits right into the beginning of the fd-th frame, or

ε = fdg − dmax

so that dmax fits right into its end, or anything in between. Our lower bound on g implies that in

either option the phone is guaranteed to happen in the fd-th frame.

(ε+ dmin, ε+ dmax) ∈ ((fd − 1)g + fdg)

An analogous idea is applicable for h.

We can now revisit the problematic part of this speedup. When transmitting 01, dialing now takes fd
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intervals instead of 1, thus fd−1 extra 0s are ”accidentally” transmitted as well. We end up transmitting

0 . . . 01 with fd 0s. For hanging up, we instead of transmitting 10 we always transmit 1 . . . 10, consisting

of fh bits of 1 followed by 0. This knowledge can be used by the receiver to decode the message properly

by ignoring the correct number of 0s or 1s in every 0→ 1 or 1→ 0 transition.

We have established that for each 0 followed by 1, we have to add fd − 1 extra bits. As discussed

before, this happens for 1
4 of bits in the message. Similarly, in 1

4 of cases we have 1 followed by 0. In

this case, fh − 1 extra bits are added. It follows that the total time necessary to transmit n bits (again

disregarding the extra bits from consecutive sequences of 1s) is

n

(
g +

1

4
(fd − 1)g +

1

4
(fh − 1)g

)
=
ng

4
(2 + fd + fh)

The transmission time per bit is then obtained by dividing by n, i.e.

g

4
(2 + fd + fh) =

g

4

(
2 +

⌊
dmax
g

⌋
+

⌊
hmax
g

⌋)
Let us explore how much improvement could be done if it was possible to decrease g → 0. In reality,

this can only happen if d and h have no variance, i.e. they are non-random, otherwise their ranges will

not fit into arbitrarily small intervals. And of course, for small g we would also hit the technical limitation

of measuring time with high precision. Taking g → 0, we get

lim
g→0

g

4

(
2 +

⌊
dmax
g

⌋
+

⌊
hmax
g

⌋)
= lim
g→0

g

4

(⌊
dmax
g

⌋
+

⌊
hmax
g

⌋)
=

lim
g→0

g

4

(
dmax
g

+
hmax
g

)
=

1

4
(dmax + hmax)

Compared with the original transmission time dmax, the speedup we achieved is

1
4 (dmax + hmax)

dmax
=

1

4

(
1 +

hmax
dmax

)
so depending on the ratio between hmax and dmax, the transmission time could be lowered as much

as to 1
2 or even 1

4 of the original speed.

Unable to actually use g → 0, we want to use the value of g that yields minimum transmission time.

We may observe that the transmission time increases linearly with g in every interval whose endpoints

share the same values of the ceiling functions appearing in fd and fh. However, increasing g beyond a

value of which either dmax or hmax is a multiple, the respective ceiling function decreases by one. This

means that using the minimum possible value of g

g = max {∆d,∆h}

is not necessarily optimal. Instead, we must search through the relevant points
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Figure 2.8: Transmission time as a function of g for our values of parameters.

{
dmax
k

,
hmax
k

∣∣∣∣∣ k − 1 ∈ N

}
∩ [max {∆d,∆h} , g]

to find the minimum. In Figure 2.8, we can see the graph of transmission time on g for our values of

parameters. In Figure 2.9, we can observe that the optimal value of g is not the minimal feasible one, 3s,

but in fact 4s. This is actually the value we used in the beginning of this section, where we achieved the

transmission speed 5s.

2.3.3 Synchronization

So far, our formulation of the protocol assumed that the participants have their clocks synchronized,

so that every frame elapses at the same time from the perspective of them both. However, this assump-

tion is not always reasonable. First of all, the communication may take place between two participants

that have never met and never had the chance to synchronize their clocks in advance. Even if they both

use some kind of external synchronization, we usually require high precision (the parameters d, h and g

are all in order of seconds; even as small missynchronization as one tenth of a second would make trouble).

We will therefore explore possible extensions to this protocol which make it less dependent on clock

synchronization - presumably with loss of bitrate. This is also interesting for the purpose of comparing

the protocols. The Ring-or-Silence protocol turned out to be much faster than the previous two protocols,

but those two did not require any synchronization whatsoever. Thus, removing this requirement from

this protocol as well will allow us to make a fairer comparison.
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Figure 2.9: Transmission time as a function of g for our values of parameters. Detail of the feasible
interval.

Our target is to align the frames of sender and receiver as precisely as possible. The simplest way to

do this is to utilize their knowledge of parameters’ values. The sender may commence the transmission

with a preamble3 which conists of one extra ringing. The sender dials at the time ts0, the beginning of

their first frame. The receiver’s phone starts ringing at tr0 ∈ {ts0 + dmin, t
s
0 + dmax}. The receiver will then

mark tr0− dmin as the start of their frame. This means that the misalignment between the corresponding

endpoints of receiver’s and sender’s frames is tr0 − ts0 ≤ ∆d. In other words, when the frame elapses from

the sender’s viewpoint, the sender knows that on the receiver’s side this happens sometime between now

and ∆d time later. The sender does not know when in this time window is the receiver going to check

their phone state, so the sender must assure that the state is kept constant throughout it. For example,

when the sender is sending 1, the sender must make sure the receiver’s phone is already ringing at the

beginning of this window and keep it ringing until the end. Between these time windows, we must allow

dmax time to change states to change states, just like in the original version of this protocol. This increases

our requirements for the frame length to

g = dmax + ∆d = 2dmax − dmin

However, we still want the receiver’s frame to end between ts0 + dmax and ts0 + dmax + ∆d and since

we just prolonged g by ∆d, we must shift the beginning of the receiver’s frame ∆d back. The beginning

is now between ts0 −∆d and ts0.

We aligned the participants’ timing using a single dialing. The uncertainty of dialing time is what

3As usual, the extra time contribution may be ignored, as it is amortized for message length n → ∞.
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determined the misalignment error size. Apparently, the same could be done with hangup, whereas the

error will be equal to the range of h. The sender rings, then hangs up at what they will consider to be

the time ts0. When the hangup signal reaches the receiver at time tr0, they will mark tr0 − hmin as the

beginning of their frame. Similarly as in the previous case, we will require a time window of hmax− hmin
to check the state. This leads us to the frame length

g = dmax + ∆h

With our values of parameters, this results in g = 9.4s, which also means per-bit transmission speed

of 9.4s for this protocol. Note that we normally assume that dmax > hmax, but that doesn’t necessarily

mean that dmax−dmin > hmax−hmin. In our case, it was indeed the h parameter that had smaller range

and thus was more effective to use in synchronization. But in general, either of the two may be the better

one. For further reference, let us denote the size of this time window w.

w = min {∆d,∆h}

g = dmax + w

Note that we can understand this version of the protocol as follows. In the original (synchronized)

version with synchronized clocks, the sender always had a time interval of length dmax to change the state

if needed and they have to make sure that at the end of every such interval, the receiver’s phone is in the

required state. It is very similar in this version of the protocol as well. The sender again has dmax time

to change the state, only now there is not a single moment, but a whole time window of length w where

the receiver’s phone must be kept in the required state. The receiver checks the state regularly (in period

of g) and although the actual check only takes a single moment, neither sender nor receiver knows where

exactly in that time window this moment is.

Let us now examine how can we reuse the idea of speedup by lowering the granularity. In the syn-

chronized version, we required that the entire ranges of d and h still fit into a single frame. The same is

true now as well, but they always have to fit into the transmitting part of the frame, as the state must

never change in the checking part. Therefore, the minimum frame length is now increased by w

g ≥ max {∆d,∆h}+ w

The fact that no events may occur in the checking window of a frame now must be taken into account

in the computation of fd and fh. Ringing can occur no later than fdg − w and similarly, hangup can

occur no later that fhg − w. It follows that

fd = ddmax + wge

fh = dhmax + wge
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Figure 2.10: Transmission time as a function of g for our values of parameters in the unsynchronized case.
The green line is the minimal feasible value boundary 4.4s.

The transmission time can now be rewritten as

g

4
(2 + fd + fh) =

g

4
(2 + fd + fh) =

g

4

(
2 +

⌊
dmax + w

g

⌋
+

⌊
hmax + w

g

⌋)
The optimum value of g can be again found by trying the points in which the ceiling functions contained

in fd, fh change value. For our values of parameters, the checking window size is w = ∆h = 1.4s, which

means that we require g ≥ 3s+ 1.4s = 4.4s. In Figure 2.10, we can see that the optimal value is g = 5.1s.

From that, we obtain fd = 2, fh = 1 and finally the transmission time 6.375s.

Although the lack of synchronization has increased the transmission time, we still achieved a better

result than in the previous two protocols.

2.4 Alternating Ringing protocol

The last protocol we are going to explore is the Alternating Ringing protocol, which could be re-

garded as a generalization of the Ringing Length protocol. There, we had to dial and hang up once

per each block and we have seen that especially dialing is an expensive operation. We can share every

dialing and hangup between two blocks if we encode blocks not only into ringing, but also into the silence

between two ringings. We can alternate between ringing blocks and silent blocks, hence the protocol name.
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2.4.1 Description

The participants need to compute the optimal block sizes br, bs for ringing and silent blocks, respec-

tively. The protocol thus proceeds as follows. The sender splits the message into alternating blocks of

br and bs bits. The sender will then commence the transmission by dialing the receiver and waiting for

dmax time to make sure the receiver’s phone is already ringing. The sender will then keep ringing for

x · gr time, where x ∈
{

0, . . . , 2br − 1
}

is the value of the first block. The sender will then hang up. After

hmax time, the sender knows that the receiver’s phone is now idle. The sender will now wait for x · gs
(x ∈

{
0, . . . , 2bs − 1

}
) time to transmit bs bits of value x from the second block. The process then repeats

for every other chunk of br + bs bits.

Note that it is practical to add a rule that the transmission always ends with a ringing block, i.e. an

odd number of blocks is always sent. In case that this does not hold, padding can be added to the end of

the message so that it would. The reason is that if a silent block was the last one in the message, it would

not be possible to determine what was its length, unless we want to finish the transmission by dialing.

We used gr, gs to denote the granularities in ringing and silent blocks. The way in which the ringing

blocks are sent is exactly the same as in the Ringing Length protocol. From there, we know that that

granularity has to take into account the variance of d and h parameters.

gr = ∆d+ ∆h

This result came from the observation of possible errors in the ringing length. It is not difficult to

see that we deal with the same problem in the case of silent blocks, just in the opposite order. In our

description of the Ringing Length protocol, we designated the base case hangup time to be h = hmin and

if h > hmin, it meant the ringing was longer and there was an error. Now, we have to look at the silent

block which follows this hangup. If hmin is the base state, then h > hmin will lead to a shorter silence

time. Similarly in the case of dialing, d = dmax was the base state and d < dmax meant that the ringing

took longer time. For the silent block that comes before the ringing, d < dmax means that the receiver’s

phone starts ringing sooner, shortening the silence time.

To summarize, dialing may be up to ∆d time shorter than expected, prolonging the ringing, but

shortening the silence. Hanging up may take up to ∆h time more, prolonging the ringing, but shortening

the silence. When sending a block with value x, let us denote errorr the difference between the actual

ringing time and ringing time in the base case. Let us use errors to denote the same for a silent block.

Evidently, it holds that

0 ≤ errorr < ∆d+ ∆h = gr

for the ringing error, what we have alredy established for the Ringing Length protocol (inequality (2.2)).

Symmetrically, it holds that

0 ≤ −errors < ∆d+ ∆h = gs
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Figure 2.11: The Alternating Ringing protocol - sending a ringing block with value x1 and a silent block
with value x2.

for the silence error. As ringing and silent blocks have the same maximum absolute size of error, they

should also use the same granularity. Therefore, from now on we will write g instead of gb and gs.

gr = gs = g

Note that the error is always negative in the case of silent blocks. Let us see that there is always room

for this negative error. When sending the number x, the silence length perceived by the receiver in the

base case is

dmax + ∆h+ xg

This is because in the base case dialing takes full dmax time and hanging up takes only hmin time,

while the sender waits for hmax. It follows that.

dmax + ∆h+ xg ≥ dmax + ∆h > ∆d+ ∆h ≥ |errors|

for any x, which means that it is indeed always possible to encounter this error. The shortest possible

ringing time is then the above expression reduced by the maximum error with the minimum value of

x = 0.

dmax + ∆h− g = dmax + ∆h− (∆d+ ∆h) = dmin

Indeed, this is reached when hanging up takes full hmax and thus does not contribute to the silence

time, while dialing takes the minimum possible time dmin.

Decoding

In the Ringing Length protocol (and in the ringing blocks in this protocol) the minimum possible

ringing time was hmin. This was reflected in the decoding formula (2.3), where it had to be subtracted
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from the total ringing time.

x =

⌊
tring − hmin

g

⌋
As dmin is the minimum possible silence time in silent blocks, we may see that a similar formula will

hold for decoding the silent blocks, only containing dmin instead of hmin. Indeed, as we want to map

(dmin + xg, dmax + ∆h+ xg) = (dmin + xg, dmin + (x+ 1)g)→ x

it is evident that the formula for x is

x =

⌈
tsilence − dmin

g

⌉
where tsilence is the length of the silence measured by the receiver.

Transmission time

The communication in this protocol consists of a repeating pattern of dialing, ringing, hanging up and

silence, which serves to send a pair of ringing and silent blocks. The exception is the final block, which

we required to be a ringing one. However, this one-time contribution need not to be taken into account,

as the time spent on this block is amortized to zero for message length n→∞.

This pattern of sending a pair of a ringing and silent block takes

dmax + hmax +
g(2br − 1)

2
+
g(2bs − 1)

2

The first two terms account for the dialing and hanging up, the last two stand for the average time

spent on respective blocks (for derivation thereof, see the formula (2.1) Ringing Length protocol). The

transmission time per one bit as a function t of two block sizes br, bs can then be expressed by averaging

the above formula for br + bs bits

t(br, bs) =
dmax + hmax

br + bs
+ g

2br + 2bs − 2

2(br + bs)
(2.11)

To find the optimal block size, we must find the pair of arguments br, bs that yields the minimum

possible value of t. We must also satisfy the condition on the maximum ringing length which states that

br has an upper bound, denoted bmax

br ≤ log2

(
l − dmax + dmin − hmax

g
+ 1

)
= bmax (2.12)

The derivation of this constraint is again seen in the Ringing Length protocol as inequality (2.5). Note

that there is no pair constraint for bs, as there is no limit to the maximum length of silence. This is an

important advantage of the Alternating Ringing protocol over the Ringing Length one - if the optimal
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Figure 2.12: Transmission time per bit as a function of two block sizes is a convex function with a single
local and global minimum.

block size is bigger than the l limit permits, we can still use it in half of the blocks (the silent ones).

It can be shown that t limited on br, bs > 0 is a convex function with a single stationary point, which

is its local and global minimum (see Figure 2.12). If it satisfies the condition on l, it constitutes our

solution. We can find this point by setting the partial derivatives of t to zero.

∂

∂br
t(br, bs) = 0

∂

∂bs
t(br, bs) = 0

dmax + hmax + g
2 (2br ((br + bs) ln 2− 1) + 2bs − 2)

−(br + bs)2
= 0

dmax + hmax + g
2 (2bs((bs + br) ln 2− 1) + 2br − 2)

−(br + bs)2
= 0

dmax + hmax +
g

2
(2br ((br + bs) ln 2− 1) + 2bs − 2) = 0

dmax + hmax +
g

2
(2bs((bs + br) ln 2− 1) + 2br − 2) = 0

Without having to solve these equations, we can see that one is produced from the other by cyclic

permutation of the variables br and bs. It must therefore hold for the minimum that br = bs. We now

know that it is optimal to use the same block size for ringing and silent blocks (unless the l limit prevents
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this). We will denote this block size b and can now rewrite t as a function of one variable, denoted t1(b)

t1(b) = t(b, b) =
dmax + hmax

b+ b
+ g

2b + 2b − 2

2(b+ b)
=
dmax + hmax + g(2b − 1)

2b

This simplifies our task of finding the stationary point, as instead of two partial derivatives we now

only have to find the derivative of a single variable function. Let the sought minimum point of t be

denoted [bopt, bopt], then the minimum of t1 is bopt.

t′1(bopt) = 0

−
dmax + hmax + g(2bopt(1− bopt ln 2)− 1)

4b2opt
= 0

dmax + hmax + g(2bopt(1− bopt ln 2)− 1) = 0

g(2bopt(1− bopt ln 2)− 1) = −(dmax + hmax)

2bopt(1− bopt ln 2) = −dmax + hmax − g
g

ebopt ln 2(bopt ln 2− 1) =
dmax + hmax − g

g

ebopt ln 2−1(bopt ln 2− 1) =
dmax + hmax − g

eg

bopt ln 2− 1 = W

(
dmax + hmax − g

eg

)

bopt =
W
(
dmax+hmax−g

eg

)
+ 1

ln 2

As bopt may be non-integer, the actual solution, denoted [bintr , bints ], may be found as one of the four

neighbouring integer points

[bintr , bints ] = arg max
br,bs

{
t(br, bs) | br, bs ∈ {bboptc , dbopte}

}
Any farther integer points will yield a higher value due to t being convex. Furthermore, the symmetrical

nature of t implies that

t (bboptc , dbopte) = t (dbopte , bboptc)

so in fact we only have three points to choose from. Out of the two points in the above equation,

the former one is preferred. This is because of the constraint we have on br. If br = dbopte satisfies the

constraint, then br = bboptc also does, but not necessarily the other way around.

If the solution [bintr , bints ] does not satisfy the constraint on br, i.e. bintr > bmax, we have to find a solution

which does. This means finding the minimum of t(br, bs) in the half-space determined by br ≤ bmax. From
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the assumption that bmax < bintr , it follows that bmax < dbopte and so any integer smaller than bmax is

also smaller than bopt. From this and from the convexity of t, it follows that for fixed bs and decreasing br

the value of t(br, bs) increases. This compels us to set br to the highest integer value smaller than bmax,

which is bbmaxc.

bintr = bbmaxc

We now have the solution for br. By fixing this value in t, we get a function of one variable. The

solution for bs then can be found by again setting its derivative to zero.

∂

∂bs
t(bintr , bs) = 0

dmax + hmax + g
2 (2bs((bs + bintr ) ln 2− 1) + 2b

int
r − 2)

−(bintr + bs)2
= 0

dmax + hmax +
g

2

(
2bs((bs + bintr ) ln 2− 1) + 2b

int
r − 2

)
= 0

g

2
2bs((bs + bintr ) ln 2− 1) = −

(
dmax + hmax +

g

2
(2b

int
r − 2)

)
2bs((bs + bintr ) ln 2− 1) = −

(
2

g
(dmax + hmax) + (2b

int
r − 2)

)

2bs+bint
r ((bs + bintr ) ln 2− 1) = −2b

int
r

(
2

g
(dmax + hmax) + (2b

int
r − 2)

)

e(bs+bint
r ) ln 2((bs + bintr ) ln 2− 1) = −2b

int
r

(
2

g
(dmax + hmax) + (2b

int
r − 2)

)

e(bs+bint
r ) ln 2−1((bs + bintr ) ln 2− 1) = −1

e
2b

int
r

(
2

g
(dmax + hmax) + (2b

int
r − 2)

)

(bs + bintr ) ln 2− 1 = W

(
−1

e
2b

int
r

(
2

g
(dmax + hmax) + (2b

int
r − 2)

))

bs =
W
(
− 1
e2b

int
r

(
2
g (dmax + hmax) + (2b

int
r − 2)

))
+ 1

ln 2
− bintr

Let us now calculate the optimal block sizes for our values of parameters. We get bopt ≈ 2.0291.

Checking neighbouring integer points, we obtain t(2, 2) = 6.225, t(2, 3) = 6.74 and t(3, 3) = 7.083. It is

therefore optimal to choose br = bs = 2. As we get bmax ≈ 3.713, this solution satisfies the constraint on

l and is therefore feasible. The bit transmission time of this protocol is therefore 6.225s, what equals a

bitrate of ∼ 0.161b/s.

2.4.2 Speedup

As it was shown to not be very useful, we will not return to the Gray code method (subsection 2.2.2)

of speedup from the Ringing Length protocol. The Modulo method (subsection 2.2.2), on the other hand,

can be reapplied here. To reiterate, the Modulo method works by
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• Sending the message fast with a lowered granularity g
k .

• As the value x of every block can now be misinterpredted by up to ±(k − 1), sending the value

x mod k to correct the result.

If the time saved by lowering granularity is greater than that spent sending the correction, we obtain

a speedup.

Non-integer block sizes

As we will only use the Modulo method of speedup and not the Gray code one, it is no longer necessary

(or useful) to regard a block as a sequence of bits, but rather as a single value. Normally, we would limit

the block value (divided by g) to the range

{
0, . . . , 2b − 1

}
for some number b, which we call block size. However, we may equally well use the range

{0, . . . , r − 1}

for an arbitrary r ∈ N, thus sending log2 r bits. We will call the number r block range. We will use

the notation rr, rs for the block ranges of ringing and silent blocks, respectively. The transmission time

per bit is then rewritten by substituting br = log2 rr and bs = log2 rs into t(br, bs)

t(br, bs) =
dmar + hmar
br + bs

+ g
2br + 2bs − 2

2(br + bs)

t(log2 rr, log2 rs) =
dmar + hmar

log2 rr + log2 rs
+ g

rr + rs − 2

2(log2 rr + log2 rs)

t(log2 rr, log2 rs) =
dmar + hmar

log2 rrrs
+ g

rr + rs − 2

2 log2 rrrs)

and the upper bound on rr (see again inequality (2.5)) changes to

rr ≤
l − dmax + dmin − hmax

g
+ 1 = rmax

We can now get closer to the minimum of t(br, bs) than it was possible before. Instead of requiring

br, bs to be integer, we now only need them to be a binary logarithm of some integer, what is a strictly

weaker condition. For our values of parameters, we have already computed that bopt ≈ 2.0291. Before, this

would limit to use a block size of 2 or 3. Now, we can compute ropt = 2bopt ≈ 4.082 and use a block range

of 4 or 5, i.e a block size of log2 4 = 2 or log2 5. We get t(2, 2) = 6.225, t(2, log2 5) = t(log2 5, 2) ≈ 6.2703

and t(log2 5, log2 5) ≈ 6.3094. The minimum transmission time is achieved for br = bs = 2, so in this case

the integer block sizes were coincidentally already optimal.
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For simplicity, let us now use assume that rint < rmax, so we can use a common block range for both

types of blocks, r = rintr = rints . The only thing that remains to discuss is how to encode and decode the

data. If a block carries log2 r bits, to send an n-bit message we require
⌈

n
log2 r

⌉
= dn logr 2e blocks. The

total number of configurations of values of these blocks is

rdn logr 2e ≥ rn logr 2 = 2n

Thus, by numbering these configurations in any order (e.g. lexicographical), we can transmit any n-bit

message by interpreting it as a number from {0, . . . , 2n − 1} and sending blocks with the corresponding

configuration number. Similarly, the receiver decodes the transmission by computing the configuration

number and outputting its n-bit binary notation.

The problem with this näıve approach is that we require the whole message to be transmitted before

it can be decoded. Instead, we would like the receiver to be able to decode and output the message

gradually, few bits after every block arrives. To achieve this, we can use Arithmetic coding[WNC87] (or

rather a special case thereof, as we do not have to deal with varying probabilities of characters). The

message always consists of an integer number of bits n. We will interpret the message as the binary

notation of a fraction part of a certain number v ∈ [0, 1), i.e.

v =

n∑
i=1

bi2
−i

where bi is the i− th bit of the message (counting from one). As each block represents one value from

{0, . . . , r − 1}, we may consider them to be r-ary digits. We want to express v in r-ary system. Although

v has a finite binary notation, this may not be true for its r-ary notation. However, this is not a problem.

Representations of all the possible n-bit messages are multiples of 2−n. Each r-ary digit basically narrows

down the interval of possible values of v to one r-th, so using m digits we can pinpoint v to an interval of

size r−m. Since we want to only match one of the multiples of 2−n, the one that represents our message,

we require that

r−m ≤ 2−n

−m ≤ logr 2−n

m ≥ n logr 2

which means that n logr 2 blocks are sufficient to encode n bits of message. Since by definition every

block carries log2 r bits, n logr 2 blocks carry n logr 2 log2 r = n bits, so this number of blocks is also the

minimum necessary. This means that Arithmetic coding is lossless and thus optimal in our case. There

is no disadvantage compared to the näıve approach. More importantly, it has the desired property of

gradual decoding. Whenever we narrow v down to an interval where all the possible solutions share first

few bits, we can already output those bits.
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Correlations between consecutive blocks

In the Ringing Length protocol, the Modulo method using g′ = g
k requires us to send log2 k error-

correcting bits for every block, as we always require a number x mod k ∈ {0, . . . , k − 1}. The situation

is different in the Alternating Ringing protocol. As every two consecutive blocks share either dialing or

hangup, the errors that may appear in them are not independent. This is because each dialing or hangup

contributes the same amount to the errors of the two respective blocks that it is a part of. This means

that we will only need to send log2 k error correction bits for every other block; for the ones inbetween

we will need less information to compute the error. In our case, it means that we will send full error

correction information for the ringing blocks, and only additional information for the silent blocks.

Suppose that ∆d ≥ ∆h. Note that if this is not the case, the whole following process may be done the

same way with the roles of h and d reversed. Let us use the granularity g′ = g
k , thus causing up to ±(k−1)

error in every block. We will explore the errors that could occur in a sequence of three consecutive blocks,

starting with a ringing one. Let d1, h1, d2, h2 denote the dialing and hangup times of the first and the

second ringing blocks, respectively. Naturally, h1 and d2 are also the hangup and dialing times of the

silent block between them.

Consider that we received log2 k error-correcting bits for each of the ringing blocks, making us able to

decode their values - denoted x1 and x2, respectively. Let y1, y2 denote the numbers formerly interpeted

by the receiver to be the values of the blocks (using formula (2.6) from section 2.2.2) before considering

the error correction information. The errors of the blocks e1, e2 can be expressed as

e1 ∈ [s1g
′, (s1 + 1)g′]

e2 ∈ [s2g
′, (s2 + 1)g′]

Where s1 = y1−x1, s2 = y2−x2 denote the difference between receiver’s perception of the block value

and its real value. By definition, these errors are distances from the base state, where dialing takes dmax

and hangup takes dmin. Thus,

e1 = (dmax − d1) + (h1 − hmin)

e2 = (dmax − d2) + (h2 − hmin)

Since the receiver knows x1, x2, y1, y2, they can compute e1, e2. With the help of above equations, this

allows them to gain some information about d1, d2, h1, h2. First, let us look at the information that h1

could give us. Consider that the error discovered by the receiver when comparing y1 and x1 was

s1 =

⌊
∆h

g′

⌋

e1 ∈
[⌊

∆h

g′

⌋
g′,

(⌊
∆h

g′

⌋
+ 1

)
g′
]
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Let us inspect the possible values of h1. It could hold that

h1 = hmin

d1 = dmax − g′s1

We can check that this is a correct assignment, i.e. that the error is in the correct range and that d1

has a valid value

e1 = (dmax − (dmax − g′s1) + (hmin − hmin) = g′s1 ∈ [s1g
′, (s1 + 1)g′]

d1 = dmax − g′s1 = dmax − g′
⌊

∆h

g′

⌋
≥ dmax −∆h ≥ dmax −∆d ≥ dmin

Where the latter stems from our assumption that ∆d ≥ ∆h. Similarly, the values of h1 and d1 could

be such that

h1 = hmax

d1 = dmax

Indeed, we can check that in this case

e1 = (dmax − dmax) + (hmax − hmin) = hmax − hmin = ∆h = g′
∆h

g′
=

= g′
(⌊

∆h

g′

⌋
+

{
∆h

g′

})
= g′

(
s1 +

{
∆h

g′

})
∈ [s1g

′, (s1 + 1)g′]

We have found two different situations, one with h1 = hmin and the other with h2 = hmax, and both

of them yield error that leads to shift in value interpretation by s1. If we take any linear combination of

these situations, i.e.

h1 = αhmin + (1− α)hmax

d1 = α(dmax − g′s1) + (1− α)dmax

for α ∈ [0, 1], the resulting error will also be a linear combination of their respective errors

e1 = αg′s1 + (1− α)∆h

and any such error must also fall in the interval [s1g
′, (s1 + 1)g′], because its components did. We

discovered that for a particular value of s1, any value of h1 is feasible. That means that some values of

s1 give us no knowledge about h1. Since the sender cannot predict s1, they must reckon that it may be

unfavorable. Thus, they must reckon that h1 can have any value. Note that if this was not the case,

having some knowledge about h1 would also give us some knowledge about the length of the silent block,

possibly allowing us to spare some error correction bits. Unfortunately, it turns out that h1 did not help
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Figure 2.13: The diagram shows the value interpreted by the receiver (y1 = x1 + s1) as a function of d1

and h1 for k = 8. There is always at least one value of s1 (blue strip) that gives us no information on h2.

us in this regard. See Figure 2.13 for a diagram of the above computation.

We will soon see that the situation is different with s2. Consider any value of s2. We are going to look

at the possible values that d2 might have. We know that error e2 is bounded by

e2 ∈ [s2g
′, (s2 + 1)g′]

s2g
′ ≤ e2 ≤ (s2 + 1)g′

s2g
′ ≤ (dmax − d2) + (h2 − hmin) ≤ (s2 + 1)g′

If we express d2 and use the the trivial bounds hmin ≤ h2 ≤ hmax, we obtain

d2 ≤ dmax − s2g
′ + h2 − hmin ≤ dmax − s2g

′ + hmax − hmin = dmax − s2g
′ + ∆h

d2 ≥ dmax − (s2 + 1)g′ + h2 − hmin ≥ d2 ≥ dmax − (s2 + 1)g′ + hmin − hmin = dmax − (s2 + 1)g′

Thus, d2 can only take values from the interval

[dmax − (s2 + 1)g′, dmax − s2g
′ + ∆h] ∩ [dmin, dmax]

whose size is

min {(dmax − s2g
′ + ∆h)− (dmax − (s2 + 1)g′), dmax − dmin} = min {g′ + ∆h,∆d}

Recall our assumption that ∆d ≥ ∆h. Now if ∆d = ∆h, then

min {g′ + ∆h,∆d} = ∆d

We get that d2 takes values from an interval of size ∆d, which must be the interval (dmin, dmax),

so we have no actual knowledge about d2. However, if ∆d > ∆h, then for sufficiently large k (namely
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k > g
∆d−∆h ) we get that

g′ + ∆h =
g

k
+ ∆h <

g
g

∆d−∆h

+ ∆h = (∆d−∆h) + ∆h = ∆d

and so

min(g′ + ∆h,∆d) = g′ + ∆h < ∆d

which means that we pinpointed the value of d2 to an interval smaller than ∆d. This knowledge will

also locate the error of the silent block into a smaller interval, thus sparing us some error correction bits.

Let xs denote the intended value of the silent block, ys the value interpreted by the receiver, ss = ys−xs
the shift between those two values and es the error of this block. We assume that the receiver has already

received full error correcting information for the two ringing blocks and thus knows the values x1, s1, x2, s2

and thus has been able to pinpoint d2 to an interval of size g′ + ∆h by the above described process. We

are now going to demonstrate that the receiver does not necessarily need log2 k error correction bits for

the silent block. We must start from the assumption that we have not yet received any error-correcting

information and compute the minimum amount that we require. This also means that we do not yet know

the values xs and ss.

Let us estimate the error of the silent block. Using the constraints we have on h1, d2

h1 ≤ hmax

d2 ≥ dmax − (s2 + 1)g′

we obtain the upper estimate

es = (dmax − d2) + (h1 − hmin) ≤ (dmax − (dmax − (s2 + 1)g′)) + (hmax − hmin) = (s2 + 1)g′ + ∆h

Similarly, using the opposite constraints

h1 ≥ hmin

d2 ≤ dmax − s2g
′ + ∆h

we obtain the lower estimate

es = (dmax − d2) + (h1 − hmin) ≥ (dmax − (dmax − s2g
′ + ∆h)) + (hmin − hmin) = s2g

′ −∆h

which means that we have pinpointed e1 to the interval
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Figure 2.14: The diagram shows the value interpreted by the receiver (ys = xs + ss) as a function of d2

and h1 for k = 8. For every value of s2 (blue strip), there is a limited range for d2 (red bar), and only
some of the values of ss intersect it (orange strips).

[s2g
′ −∆h, (s2 + 1)g′ + ∆h]

of size

((s2 + 1)g′ + ∆h)− (s2g
′ −∆h) = g′ + 2∆h

Let us see if we can deduce something about ss from this fact. Since es is at least s2g
′−∆h, then the

corresponding value of ss would be

ss ≥
⌈
s2g
′ −∆h

g′

⌉
= s2 −

⌈
∆h

g′

⌉
On the other hand, as es ≤ (s2 + 1)g′ + ∆h, then

ss ≤
⌈

(s2 + 1)g′ + ∆h

g′

⌉
= s2 + 1 +

⌈
∆h

g′

⌉
which means that

ss ∈
{
s2 −

⌈
∆h

g′

⌉
, . . . , s2 + 1 +

⌈
∆h

g′

⌉}
∩ {0, . . . , k − 1}

as is shown in Figure 2.14. This means that there are at most

s2 + 1 +

⌈
∆h

g′

⌉
−
(
s2 −

⌈
∆h

g′

⌉)
= 1 + 2

⌈
∆h

g′

⌉
(2.13)

possible values of ss if we already know s2. Let us denote this number a.

a =

∣∣∣∣∣
{
s2 −

⌈
∆h

g′

⌉
, . . . , s2 + 1 +

⌈
∆h

g′

⌉} ∣∣∣∣∣ = 1 + 2

⌈
∆h

g′

⌉
Thus, the sender only needs to send the receiver log2 a error-correcting bits instead of log2 k, which is
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Figure 2.15: Comparison of a and k for our values of parameters.

more efficient if a < k. Let us see when this holds. By removing the ceiling function from a, we get its

approximation a∗ which is exact whenever the ceiling argument is integer.

a ≈ a∗ = 1 + 2
∆h

g′

a ≈ a∗1 + 2
k∆h

∆d+ ∆h

∂

∂k
a∗ = 2

∆h

∆d+ ∆h

∂

∂k
a∗ ≤ 2

∆h

2∆h

∂

∂k
a∗ ≤ 1

which means that a, as a function of k, increases at most as fast as k. Evidently, if ∆d > ∆h we get

a strong inequality, so a increases slower. It follows that there is a value k0 such that for any k > k0 we

have a < k. As can be seen in Figure 2.15, for our values of parameters, a = k holds if k = 3, 5, 7 and

a < k holds for k = 6 ∨ k ≥ 8.

The question that stands is how exactly does the sender encode the error-correcting information into

log2 a bits. We will show that xs mod a ∈ {0, . . . , a− 1} suffices. The receiver knows the values of

x2, y2, ys and is supposed to determine xs.

xs = ys + ss
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xs = ys + s2 + z, z ∈
{
−
⌈

∆h

g′

⌉
, . . . , 1 +

⌈
∆h

g′

⌉}

xs = ys + (y2 − q2) + z, z ∈
{
−
⌈

∆h

g′

⌉
, . . . , 1 +

⌈
∆h

g′

⌉}
All variables on the right hand side are known, except for z. There is an interval of a consecutive

candidate values for z, out of which each has a different value mod a, thus exactly one of them will result

in xs mod a having the correct value.

Results

Finally, let us apply the Modulo speedup method with non-integer block sizes and error-correction bit

correlations together. Let us use granularity g′ = g
k and corresponding block ranges x′r, x

′
s (for ringing

and silent blocks, respectively) to send the bits of the message. The required time (denoted tg′), expressed

in terms of block ranges, is then obtained by substituting into formula (2.11)

tg′(log2 x
′
r, log2 x

′
s) =

dmax + hmax
log2 x

′
r + log2 x

′
s

+
g

k

x′r + x′s − 2

2(log2 x
′
r + log2 x

′
s)

To send the error-correcting bits, we will use the original granularity g (to emphasize this, we will

write tg instead of just t) and block ranges xr, xs.

tg(log2 xr, log2 xs) =
dmax + hmax

log2 xr + log2 xs
+ g

xr + xs − 2

2(log2 xr + log2 xs)

We have established in inequality (2.13) that while we need log2 k error-correction bits for the ringing

blocks, for the silent ones we only need
log2

(
1 + 2

⌈
∆h

g′

⌉)
∆d ≥ ∆h

log2

(
1 + 2

⌈
∆d

g′

⌉)
∆d < ∆h

For simplicity, we will always use the first option, as this is the case for our values of parameters.

Equations for the other option can be obtained analogously. These error-correcting bits are sent for every

pair of ringing and silent blocks, i.e. for every log2 x
′
r+log2 x

′
s bits. We get that the total bit transmission

time (plain bit plus corresponding error correction) is

tg′(log2 x
′
r, log2 x

′
s) +

log2 k + log2

(
1 + 2

⌈
∆h

g′

⌉)
log2 x

′
r + log2 x

′
s

tg(log2 xr, log2 xs)

For any selected k (g′) the optimal block ranges x′r, x
′
s can be found by setting the derivative of the

above function to zero. As x′r and x′s can be cyclically permutated in the formula, the minimum must

be of the form [x′opt, x
′
opt]. It is therefore advisable to rewrite the transmission time as a function of a

single variable x′ which constitutes the block range of both types of blocks. After finding the minimum

[x′opt, x
′
opt], we only have to try four nearby integer solutions by replacing x′opt to

⌊
x′opt

⌋
and

⌈
x′opt

⌉
. Us-
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Transmission time per bit
k x′r x′s Plain Total Total w/o correlations
1 6 6 6.518 8.427 6.518
2 9 9 4.622 7.160 6.585
3 13 13 3.959 6.625 6.625
4 18 18 3.645 6.871 6.631
5 22 22 3.384 6.625 6.625
6 25 25 3.155 6.444 6.620
7 30 30 3.050 6.611 6.611
8 34 34 2.934 6.487 6.604
9 38 38 2.838 6.383 6.598

10 43 43 2.781 6.505 6.592

Table 2.4: Transmission time achieved by the Modulo method for k ∈ {1, . . . , 10}, with and without the
use of error-correction bits.

ing small granularity (large k) typically leads to plain bit transmission times small enough to avoid the

ringing limit l. If we are unlucky, however, this process does not work. We would then have to find x′r

compliant with l first, by partial derivation, then with fixed x′r we would derive x′s. We will not state this

process formally, as the steps are similar to those taken in the analysis of Ringing Length protocol and

the non-sped-up version of this protocol. The computation is technical and the results themselves are too

complex. In the following, we will find the optimal values of x′s and x′r for our parameters experimentally.

We will now explore the bit transmission time for speedup with k ∈ {1, . . . , 10}. To compare the results,

remember that the transmission time we achieved for the non-sped-up version was t(2, 2) = 6.225s. For

every value of k, the table in Figure 2.4 will show the optimal values of x′r and x′s and

• Transmission time of a plain bit tg′(log2 x
′
r, log2 x

′
s)

• Total transmission time tg′(log2 x
′
r, log2 x

′
s) +

log2 k+1+2
⌈

∆h
g′

⌉
x′r+x′s

tg(log2 xr, log2 xs)

• Total transmission time if we did not use the error-correction bit correlations tg′(log2 x
′
r, log2 x

′
s) +

2 log2 k
x′r+x′s

tg(log2 xr, log2 xs)

We can see in the results that 1 + 2
⌈

∆h
g′

⌉
≥ log2 k for some of the first values, but for large enough

k it becomes advantageous (this was illustrated in 2.15). However, similarly as in the Ringing Length

protocol, we did not observe speedup for our values of parameters. Just as in the case of Ringing Length

protocol, we have to conclude that the speedup would be better observable if the l limit did not allow us

to choose optimal block ranges xr, xs, as the most important consequence of using lower granularity is

being able to use larger block sizes under a fixed value of l.
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Chapter 3

Channel capacity

In this chapter, we are going to find an upper bound for the bitrate, or equivalently the lower bound for

the transmission time. Obviously, the amount of information that can be transferred between the sender

and receiver is related to the number of different sequences of events that the receiver can distinguish and

the sender can induce. Let us first compute the latter, the number of possible sequences of dialing and

hanging up from the sender’s perspective.

Suppose that time is discrete, divided into intervals of size g and that the participants’ clocks are

synchronized. We will express the number of possible sequences from the sender’s viewpoint in terms of

two recurrences, S(n) and T (n) for n > 0. Let S(n) be the number of sequences that can occur in n

intervals if we start dialing in the (beginning of the) first interval. Similarly, let T (n) be the number of

sequences that can occur in n intervals if we hang up in the beginning of the first one. We get

S(n) =

min
{⌊

dmin+l−hmax
g

⌋
,n−1

}∑
i=d dmax

g e
T (n− i)

because ringing may take as much as dmax time, covering
⌈
dmax

g

⌉
intervals, so we may hangup no

sooner than in the
(⌈

dmax

g

⌉
+ 1
)

-th. The ringing may only take dmin, in which case the ringing limit

elapses as soon as in dmin + l time. As the sender is supposed to induce the events that the receiver

perceives, we do not want the receiver to hang up on their own (as it would be unclear whether that

happens sooner or later than when the sender’s hangup signal arrives). We therefore allow hmax extra

time for the sender’s hangup signal to reach the receiver. We also assume that the sender always has to

hang up, at latest in the last interval, as the communication cannot end with ringing. Hence the upper

bound of the sum. For any feasible choice of i, the number of intervals for which the sender is offhook, we

can hang in the i-th interval, which brings us to the situation described by the other recurrence T , with

i less intervals at our disposal.
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T (n) = 1 +

n−1∑
i=dhmax

g e
S(n− i)

In case of T , we do not have to worry about the l limit. The only condition is that we do not dial

again sooner than hmax time elapses (the computation of S ends where sender hangs up; therefore, we

must always allow this much time for the hangup signal). Furthermore, we always add +1 for the special

case that we decide to not actually dial again and remain idle. Note that we do not need initial conditions

for these reccurences. For small values of n, the sum in the reccurent formula for S(n) is empty, so the

result is 0. This is correct, as these cases represent situations with too few intervals so there is not enough

time to dial, and thus there are no valid sequences for S. Similarly, we do not need an initial condition

for T , as for small n the empty sum evaluates to zero, leading to S(n) = 1 which is correct, as there is

exactly one valid sequence - the one where no event occurs.

Since the sender may ring for the first time at any point or none at all, the total number of sequences

the sender can produce is (denoted R(n))

R(n) = 1 +

n∑
i=1

S(i)

It follows that the number of bits transmittable by the sender in n intervals is log2R(n). If we use

g = dmax, then the receiver always experiences the matching event in the same interval - i.e., if the sender

starts dialing, the receiver’s phone will start ringing within the same interval and if the sender hangs up,

the receiver’s phone will also stop ringing in the same interval. This means that every sequence of events

produced by the sender is exactly mirrored on the receiver’s side. The receiver can distinguish exactly

what sequence the sender produced, and thus they also receive the same number of log2R(n) bits.

Let us simplify the recurrences. First, let us define T (n) for n ≤ 0 as T (n) = 0. This can be done by

rewriting it as

T (n) = [n > 0] +

n−1∑
i=dhmax

g e
S(n− i)

Note that S(n) = 0 for n ≤ 0 already holds with our current definition, as the sum is then empty.

Now we may notice that the expression min{. . . , n − 1} in the definition of S(n) is only a sentinel that

prevents using T (n) with non-positive arguments. Since we have already defined those to be zero, we can

remove this sentinel.

S(n) =

⌊
dmin+l−hmax

g

⌋∑
i=d dmax

g e
T (n− i)

To simplify further computations, let us define the abbreviations
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a =

⌈
dmax
g

⌉

b =

⌊
dmin + l − hmax

g

⌋

c =

⌈
hmax
g

⌉
z = b− a+ 1

Let us now substitute the definition of T (n) into S(n)

S(n) =

b∑
i=a

T (n− i) =

b∑
i=a

[n− i > 0] +

n−i−1∑
j=c

S(n− i− j)

 =

= min {b− a+ 1, n− a}+

b∑
i=a

n−i−1∑
j=c

S(n− i− j) = min {z, n− a}+

n−a∑
i=n−b

n−i−1∑
j=c

S(i− j) =

= min {z, n− a}+

n−a∑
i=n−b

i−c∑
j=1−n

S(j) = min {z, n− a}+

n−a∑
i=n−b

i−c∑
j=1

S(j)

Before we try to evaluate S(n), we must realize that it is based on the parameter g. Naturally, the

lower g we pick, the more precisely we are able to measure time and so we are able to distinguish more

sequences per a fixed time unit. As we want to measure the maximum bitrate of the channel, independent

on the participants’ of g, we must use as low value of g as is possible. It seems that the correct choice

is g → 0, but there are two limitations to this. First, the impossibility of infinite precision of time

measurement means that there is a technical limit of g. The second problem arises from the variability

of d and h. If g is lower than ∆d or ∆h, it is unpredictable how many intervals will a particular dialing

or hangup span. Thus, we lose the bijection between sequences of events perceived by sender and those

perceived by receiver. For example, let us consider g = 1
2∆d. When the sender starts dialing, they cannot

know when exactly does the receiver’s phone start ringing - it could be one of two possible intervals,

depending on whether the actual realization of d is above or below dmin + 1
2∆d. The same ambiguity is

seen by the receiver - if a phone starts ringing in this interval, there are two possible intervals in which

the sender could have started dialing. Therefore, with low values of g we are transferring data faster, but

having sent an n-bit message, less than n bits of entropy are actually received on the other side due to the

uncertainty. For the message to be decoded, extra error-correcting bits will have to be sent. We therefore

expect the transmission time to grow again. However, we will not go on to examine and prove this, as the

computations for low g are rather complicated. The reader will pardon the simplification made if we just

use the lowest feasible value of g that does not induce uncertainty, g = max {∆d, δh} = 3s and proclaim

this choice of g to be optimal. We obtain

a = 3 b = 20 c = 2 z = 18
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Figure 3.1: The values of S(n) for our values of parameters and g = 3.

S(n) = min {18, n− 3}+

n−3∑
i=n−20

i−2∑
j=1

S(j)

In Figure 3.1 we can see S(n) plotted in logarithmic scale as almost a straight line, which suggests

that S(n) grows exponentially. We will try to find an upper bound in the form S(n) ≤ cαn for some

c > 0, α > 1. We want the bound to be as tight as possible, which means that we have to minimize c and

α. The condition trivially holds for S(0) with any c, α. Now suppose that it holds for all i < n, we get

S(n) ≤ 18 +

n−3∑
i=n−20

i−2∑
j=1

cαj = 18 +

n−3∑
i=n−20

i−2∑
j=1

c
αi−1 − 1

α− 1
=

= 18 + c
αn−3−1
α−1 − αn−21−1

α−1 − 18

α− 1
= 18 + c

αn−3 − αn−21

(α− 1)2
− c 18

α− 1

To prove that S(n) ≤ cαn, we have to show that

18 + c
αn−3 − αn−21

(α− 1)2
− c 18

α− 1
≤ cαn

18

αn
+ c

α−3 − α−21

(α− 1)2
− c 18

α−n(α− 1)
≤ c

18

αn

(
1− c

α− 1

)
+ c

α−3 − α−21

(α− 1)2
≤ c

Let us add a constraint that c ≥ α− 1 (we are trying to minimize c, so this condition may lead us to

loose, but still valid upper bound on S(n)). Now, if the above inequality is to hold for any value of n,
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zero is a tight upper estimate for the first term. We obtain

c
α−3 − α−21

(α− 1)2
≤ c

c

(
α−3 − α−21

(α− 1)2
− 1

)
≤ 0

α−3 − α−21

(α− 1)2
− 1 ≤ 0

Using numerical methods to solve this inequality, we obtain that α ≈ 1.5289. We still do not know

the value of c and we will soon see that we do not even need it. With our upper estimate of S(n), we can

easily find the upper estimate on R(n).

R(n) =

n∑
i=1

S(n) =

n∑
i=1

cαn = c
αn+1 − 1

α− 1

And thus the upper estimate of the number of bits transmittable over n intervals is

log2R(n) ≤ log2c
αn+1 − 1

α− 1
= log2

c

α− 1
+ log2(αn+1 − 1) ≤

≤ log2

c

α− 1
+ log2(αn+1) = log2

c

α− 1
+ (n+ 1) log2 α

It follows that the upper estimate of the number of bits transmittable in a single interval is

lim
n→∞

log2
c

α−1 + (n+ 1) log2 α

n
= log2 α ≈ 0.6125

We computed the values of log2R(n)
n for n ∈ {0 . . . 100}. In Figure 3.2, we can see that our upper

estimate α is quite precise. Finally, the lower estimate for the bit transmission time can be computed as

g

log 2α
=

3s

0.6125
≈ 4.8980s

We achieved bit transmission time of ∼ 5s in the Ring-or-Silence protocol, which means that this

protocol uses the capacity of the channel in an almost optimal way. It is peculiar that we achieved this

result using g = 4s, not g = 3s.

Note that we computed the bound in this chapter for the synchronized case. We can achieve the same

result without having the participants’ clocks synchronized, though not deterministically - only with high

probability. However, this will require us to first introduce calibration methods, what is done in the next

chapter.
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Figure 3.2: The values of log2 R(n)
n for our values of parameters and g = 3, n ∈ {1 . . . 100}.
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Chapter 4

Parameter calibration

While devising the protocols, we have always assumed that both the sender and receiver already know

and have agreed upon the parameter values. We suggested that even if they have never communicated

before, they may exchange this information in some kind of preamble before transmitting the message

itself. However, as the parameter values vary from case to case, there must also exist a way to find them.

In this chapter, we propose methods for parameter calibration. The participants may include a cal-

ibration phase in the beginning of each communication or omit it if they are confident that the things

that influenced them (e.g. cell phone devices, network carrier, distance) have not changed significantly.

The calibration phase can take a considerable amount of time and in practice, it may even top the actual

transmission time for short messages. However, it is still only a finite process, so its amortized time cost

for message length n→∞ is zero.

We will sometimes need both participants to transmit data to each other. This is in contrast with the

overall idea in our model that one of the participants only sends data and the other only receives them.

We will still retain the names sender and receiver, where by sender we mean the participant that wants

to send a message and initiated the calibration. We may therefore say that ”receiver sends data to the

sender”, which means that the participant designated as receiver behaves as a sender in context of that

one particular data transmission.

Before we start the callibration process, we need to have some prior upper estimation of the parameters.

We will assume that

hmax, h
′
max, dmax, d

′
max < e

where e is some implicit (i.e. hardcoded in the application) value and d′, h′ represent the d, h param-

eters in the opposite direction (when the roles are reversed and the receiver is calling the sender).
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Calibrating l

The calibration phase starts by agreeing on the value of l. This value is set in the receiver’s mobile

phone. The receiver should set l to the maximum possible value allowed by their device. Then, they must

inform the sender of their choice. As the parameter l is typically settable as a multiple of 5s, it suffices

to inform the sender of a single natural number l
5s . This value can be sent using the Calibration data

transfer protocol.

Calibration data transfer protocol (CDTP)

The Calibration data transfer protocol (CDTP) is a protocol used by the participants during the

calibration phase, when no other protocols are utilizable due to the lack of knowledge of parameter

values. CDTP is a special case of the One-or-Two protocol with parameter values

dmax = e dmin = 0

hmax = e hmin = 0

We overestimated dmax and hmax by setting them to e, which by our assumption is guaranteedly

larger than both of them. Similarly, we underestimated dmin and hmin by setting them to 0, which is

guaranteedly less than both them, as dialing and hanging up must take at least some time. Note well that

all our protocols still work if we overestimate the ranges d and h and slightly underestimate l. However, we

know no lower estimate of l other than l = 0s, and that would render all protocols except the One-or-Two

protocol inoperable. This is precisely why it is the One-or-Two protocol that was chosen as the basis of

CDTP.

Calibration of d and h

The participants will dial and hang up multiple times to measure the values of d and h. First, they

must agree on a number of measurements they will make. This number may be either implicit or agreed

via the CDTP. Let us denote this number k. The sender will dial the receiver. As soon as the reciever’s

phone starts ringing, the receiver hangs up. When the hangup signal reaches the receiver, the sender will

dial again. The whole process is repeated k times. Let us use the notation si for the timestamp when the

sender starts dialing and/or receives the hangup signal for the i-th time and ri for the timestamp when

the receiver’s phone starts ringing for the i-th time1. The timestamps si are measured by the sender’s

clock and ri by the receiver’s one, so it does not necessarily hold that si < ri < si+1 for any i ∈ {1 . . . k}.
The receiver uses CDTP to send all the values ri to the sender.

If the participants’ clocks are synchronized, the variables ri−si and si+1−ri are obviously realizations

of d and h′. If they are not synchronized, let δ represent the difference between sender’s and receiver’s

clocks (i.e. the receiver’s clock is δ too early). Clearly, ri − si and si+1 − ri are then instead realizations

of random variables d− δ and h′+ δ, respectively. We will use the minimum and maximum measurements

1This means that there are k + 1 measurements of si, while only k of ri.
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of ri − si to establish the lower and upper bounds of d− δ, i.e. dmin − δ and dmax − δ (and analogously

for h′). When we find the value of δ, this will allow use to derive dmin and dmax. However, since we

defined dmin and dmax as non-inclusive bounds (i.e. d ∈ (dmin, dmax)), there is zero probability of a

random sample having such value. Even if we did not, there is no guarantee that our k measurements

of d − δ will also contain the actual extreme values dmin − δ and dmax − δ. Therefore, we must expect

that min{ri − si} > dmin − δ and max{ri − si} < dmax − δ. In other words, our maximum is probably

underestimated and the minimum overestimated. A solution to this is to add two more ri, si pairs,

one of which will create new maximum and the other to create a new minimum. They will serve as

sentinels to stretch our range of values of d − δ and possibly include values from (dmin − δ,min{ri, si}
and (max{ri, si}, dmax − δ) that we did not have the luck to draw during our random sampling of d− δ.
These sentinels may be established by a simple guess - e.g. to stretch the interval to double its size, we

will add new measurements ri, si for i = k + 1, k + 2 such that

rk+1 − sk + 1 =
3

2
max{ri, si | i ≤ k} −

1

2
min{ri, si | i ≤ k}

rk+2 − sk + 2 =
3

2
min{ri, si | i ≤ k} −

1

2
max{ri, si | i ≤ k}

If we have some a priori knowledge about the distribution of d, we can do better. For example,

suppose that we know that d is uniform on interval (dmin, dmax), then d − δ must also be uniform on

(dmin − δ, dmax − δ). Now if we did k measurements, there is > 50% probability that our measurements

did not span the entire interval, but only an inner part of it - say x%, while (100 − x
2 )% is left on both

sides, i.e.

(dmin − δ, dmin − δ + (100− x

2
)%∆d) ∪ (dmax − δ − (100− x

2
)%∆d, dmax − δ)

from where we sampled no value. A fitting value of x for this statement can be computed as

(x%)k > 50%

(x%) >
k

√
1

2

So to reiterate, there is a > 50% (rather high) probability that all measurements of d were from the

inner k

√
1
2 part of the interval (dmin, dmax). To cope with this, perhaps we should choose the (k + 1)-st

and (k + 2)-nd measurement so that the maximum and minimum are moved by (100 − x
2 )% outwards.

A similar reasoning can be done for other distributions of d and the whole process should be repeated

analogously for h as well. Of course, other threshold probability than 50% can be chosen for safer results.

Let us now use the measurements to determine the ranges of d and h. To do this, we must find the

value of δ. In general, the sender’s and receiver’s clocks may not be synchronized and the value δ may

be unknown. Notice that even if the receiver attempted to inform the sender of their current time via

CDTP, the sender would still not know how long did it take for this message to travel to them. The sender

cannot estimate this with higher precision than is allowed by ∆d,∆d′,∆h,∆h′ - the inherent imprecision
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brought by dialing and ringing as the basic blocks of any communication. As a side note, even if we leave

our model and look into actual Android applications, the possibilities are not great. We could make the

participants synchronize over the internet, but no third-party application can obtain permission to set

the system time (unless the phone is rooted)[spe14]. Furthermore, the users themselves cannot set time

manually with precision higher than minutes, which is unacceptably coarse-grained for our purposes. It

is therefore left to sender to guess the value of δ. Let us use the notation dmax and dmin to represent the

upper and lower estimates of δ. In the synchronized case, we simply have δmin = δmax = 0; we will later

show how to obtain these estimates in the general case.

We can now estimate the parameters d and h′ as follows:

dmax = max{ri − si + δ} = max{ri − si}+ δmax

dmin = min{ri − si + δ} = min{ri − si}+ δmin

h′max = max{si+1 − ri − δ} = max{si+1 − ri} − δmin

d′min = min{si+1 − ri − δ} = min{si+1 − ri} − δmax

Although it may not always hold that ri ∈ [si, si+1] if the clocks are too off, objectively the receiver’s

measurement of ri took place between the sender’s measurements of si and si+1, so it must hold that

ri + δ ∈ [si, si+1] for any i. It follows that

∀i : si ≤ ri + δ ≤ si+1

∀i : si − ri ≤ δ ≤ si+1 − ri

max{si − ri} ≤ δ ≤ min{si+1 − ri}

δmin = max{si − ri} ∧ δmax = min{si+1 − ri}

δmin = −min{ri − si} ∧ δmax = min{si+1 − ri} (4.1)

We narrowed δ down into an interval described by the minima of our realizations of random variables

d− δ and h′ + δ. We can substitute the obtained values of δmin and δmax into the above formulae for d

and h′. We receive valid estimates of d and h′, although if the interval [δmin, δmax] is too large, they are

still very coarse.

If we assume that the network communication is symmetric so that dialing and hangup takes rougly

the same time in both directions, we can get a better estimate of δ. That is, with high probability we

can find δ with high precision. If we make a large amount of measurements of ri, si, by the Law of large

numbers[Ré68]

1

n

k∑
i=1

(ri − si)→ E[d− δ] = davg − δ (4.2)
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Now let us reverse the roles and make the receiver call the sender and make similar measurements.

Since the sender’s clock is δ later than the receiver’s one, these measurements will be realizations of the

random variable d′avg + δ. The participants can then use CDTP to exchange these values and compute

their difference

(d′avg + δ)− (davg − δ) = (d′avg − davg) + 2δ (4.3)

By our assumption of symmetricity, it follows that davg ≈ d′avg and the value we obtained is actually

an approximation of 2δ. Dividing it by 2, we obtain δ. An analogous process can be done with h and h′.

This means that we actually only need one of the parameters to be symmetric.

Note that equation (4.2) can be also used in the opposite way. We can use our estimates of δ (equa-

tions (4.1)) to approximate davg (and by taking si+1− ri measurements instead, havg). If the assumption

about symmetricity holds, we can replace subtraction by addition in equation (4.3) to obtain

(d′avg + δ) + (davg − δ) = d′avg + davg

and consequently get an approximate value of davg by dividing by two.

It seems that we cannot do better than this. We first used the knowledge that d, h′ must have non-

negative duration to find coarse estimates. Then, we used the assumption of symmetricity to compare the

communication times in opposite direction. However, without assumptions like this, there is no clue that

would lead to one value of δ over another. For the participants, the situation with parameters d, h, d′, h′, δ

is indistinguishable from any situation d− ξ, h+ ξ, d′ + ξ, h′ − ξ, δ + ξ for ξ ∈ R.

Relation to synchronization

We ended the previous chapter on Channel capacity with a remark that our calibration methods can

be used for synchronization. To synchronize clocks of the participants means the same as to find the

value δ. However, in the context of the previous chapter we assumed that the participants already know

the values of parameters. This is the crucial difference - we were unsuccessful in finding a good estimate

of δ in the calibration phase, because we had no knowledge of d, h, d′, h′. If the participants have this

knowledge, it is an easy task.

All that is necessary is to subtract formula (4.2) from davg, which we assume to already know, to

obtain the value of δ. In fact, we only obtain a high-probability high-precision approximation thereof,

since the value in formula (4.2) is computed through the Law of large numbers. But this is not a problem,

because the only protocol that strictly required synchronization, the Ring-or-Silence protocol, can take

advantage of any approximation. If we know δ with a possible deviation ε, then the checking time window

caused by the clock misalignment (described in subsection 2.3.3) only needs to be of size ε. By increasing
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the number of measurements we get ever better approximations, i.e. ε → 0, so the time window can

become arbitrarily small and we can get arbitrarily close to the synchronized-case bitrate of the protocol.
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Chapter 5

Implementation

In this chapter, we are going to present our implementation of the described protocols. We created a

mobile application for the Android operating system, which can be downloaded from

https://sourceforge.net/projects/ringingmessenger/

The application is licensed under the Simplified BSD License and its source code is freely available at the

same site. The target system version is Android 2.1 (API level 7) and higher.

We implemented the protocols in the following manner.

• One-or-Two protocol with the Receiver Hangup method.

• Ringing Length protocol without speedup. The block size is computed automatically and the mes-

sage is padded with 0 bits to its nearest multiple.

• Ring-or-Silence protocol is implemented without speedup. The communication always starts with

one ringing for synchronization. Either the dialing or the hangup part of the ringing is used to

synchronize, depending on which of ∆d and ∆h is smaller.

• Alternating Ringing protocol without speedup. The block size is computed automatically and the

message is padded with 0 bits to its nearest multiple. An extra block of 0 bits is added if the message

does not end with a ringing block.

As an input method, we allow three encodings.

• Plain bits. The message is typed as a sequence of 0 and 1 characters.

• Alphanumeric encoding. We developed this encoding to provide alphabet and numbers in as

few bits as is necessary (which is 6 bits, since there are 26 letters and 10 numerals, 25 < 36 ≤ 26)
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Figure 5.1: The Calling tab.

Figure 5.2: The Settings and Callibration tabs.

to avoid the necessity of using traditional 8 bits per character. We used the remaining space given

by 6 bits for lowercase letters (resulting in total 62 characters) and the last two characters were

used for space (” ”) and for period (”.”) to enable basic interpunction. The exact mapping may

be arbitrary, but a reasonable choice is that the 6-bit value of 0 should represent the space. This

is because the Ring-or-Silence protocol has no explicit end, which means that after the sender has

finished transmitting, the receiver will keep interpreting the silence as 0 bits. It is therefore practical

to make the application output whitespace instead of any particular visible character.

• UTF-8.

The interface is divided into three tabs:

• Calling. The user can switch between the sending and receiving mode. In the former, the user can
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Figure 5.3: The UML class diagram of our application.

type a message and send it. In the latter, the application awaits any incoming communication.

• Settings. The user can choose between five protocols - the four listed above and the ”Debug

protocol” which outputs time measurements of dialing and hangup events for both participants.

• Calibration. This tab allows the user to set the values of dmin, dmax, hmin, hmax and l. An

automated calibration is not provided in the current version of the application.

The UML class diagram of the application can be seen in Figure 5.3. A brief description of the classes

follows.
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• CallControler Listens to the telephony events and calls back Sender or Receiver, depending on

which one is active.

• Coder An abstract class, descendants of which are classes for the encoding methods. Used by the

Sender and Receiver classes to encode input and decode received transmission.

• CoderSelector A helper class for selecting Coder and keeping the selection.

• Dialogs Encapsulates info and modal error dialogs displayed by the application.

• Handlers Provides event handlers as a connection between the user interface and program logic.

• Main The main class which provides the entry point to the program. Initializes the UI classes

Handlers and TabNavigator.

• Parametrization Stores the parameter values specified by the user and provides them to Protocol.

• Protocol An abstract class, descendants of which are classes representing the protocols. The de-

scendants define the callback function for telephony events caught by CallControler, to which it is

connected by Sender or Receiver. The class itself encapsulates the dialing and hangup functionality.

• ProtocolSelector A helper class for selecting Protocol and keeping the selection.

• Main The main class which provides the entry point to the program. Initializes the UI classes

Handlers and TabNavigator.

• Receiver Activated if the user selects the receiving mode. Listens to incoming transmissions, uses

Protocol to interpret them as bits, Coder to decode those bits into the message, which it outputs.

• Sender Used if the user selects the sending mode. Uses Coder to encode the message and Protocol

to send it.

• TabNavigator Provides the tab navigation functionality.

• Throbber Encapsulates the throbber that appears while sending is in progress.
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Conclusion

We presented several protocols for transferring data through ringing a cellphone.

1. The One-or-Two protocol is slow, but very easy to implement. Its advantage over the faster protocols

is that it does not depend on precise timing and that it does not require the knowledge of ringing

time limit, what made it very useful for the calibration phase.

2. The Ringing Length protocol makes better use of long dialing times, which makes it significantly

faster than One-or-Two. It served primarily as a template for the more advanced Alternating

Ringing protocol, which is based upon it. Unlike its faster cousin, Ringing Length protocol does not

require continual measurement of time, as the timing is only ever computed from the beginning of

the block and thus can be reset between them. This property would make this protocol desirable if

we only had unreliable clock at our disposal.

3. The Ring-or-Silence protocol is even faster than its predecessors, but requires participants to have

precisely synchronized clocks.

4. The Alternating Ringing protocol is an improvement of the Ringing Length protocol.

For our measured values of parameters, We achieved the following bit transmission times.

One-or-Two 16.45s

Ringing length 9.03s

Ring-or-Silence (with synchronization) ∼ 5s

Ring-or-Silence (without synchronization) ∼ 6.375s

Alternating Ringing 6.225s

Relying on the assumption that the participants’ clocks are synchronized, the Ring-or-Silence protocol

achieves the best bit transmission time with ∼ 5s. In the unsynchronized case, Ring-or-Silence becomes

less efficient and is outperformed by the fastest Alternating Ringing protocol with 6.225s.

We estimated the maximum possible bit transmission time in the ringing communication channel to

be ∼ 4.898s. The Ring-or-Silence protocol almost achieves this value, which means that our goal to design

efficient protocols was a success.
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To provide a proof of concept and show that our protocols are viable in practice, we implemented

them in an Android text messenger application. This application has been already tested multiple times

and thus successfully demonstrated that short text messages can indeed be transferred by ringing between

real cellphones. The application is released as open source to be used or built upon by everyone.

There are other opportunities for the usage of cellphones’ side channels that were not explored in

this thesis, as they are beyond our simple sender-receiver model. One that comes into mind would be

using two senders (or two-SIM-card phones) to encode extra information by switching between the caller’s

two telephone numbers. Another would be to take advantage of the ”missed call” messages sent to the

participants automatically by operator if the line was busy. More advanced protocols may be designed

with multiple participants in mind. This creates room for future improvement of our work.
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