
Department of Informatics Faculty of

Mathematics, Physics and Informatics

Comenius University, Bratislava

Optimization of the Native XML Database
Deployed at the blog.matfyz.sk Portal

(Master thesis)

Bc. Eva Lichnerová

Thesis advisor: RNDr. Martin Homola, PhD. Bratislava, 2012

Optimization of the Native XML Database Deployed at
the blog.matfyz.sk Portal

Master thesis

Bc. Eva Lichnerová

COMENIUS UNIVERSITY, BRATISLAVA, SLOVAKIA

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

DEPARTMENT OF INFORMATICS

2508 Informatics

Thesis advisor: RNDr. Martin Homola, PhD.

BRATISLAVA 2012

52533686

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Eva Lichnerová
Study programme: Computer Science (Conversion Programme) (Single degree

study, master II. deg., full time form)
Field of Study: 9.2.1. Computer Science, Informatics
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Optimization of the Native XML Database Deployed at the blog.matfyz.sk
Portal

Aim: To analyze the current installation of the Sedna native XML DBMS used by the
blog.matfyz.sk portal and to propose and implement performance fixes with the
aim to reduce crashes and to boost the query response time.

Literature: Kohutovic, A. (2008). blog.matfyz.sk community portal. Master’s thesis,
Comenius University, Faculty of Mathematics Physics and Informatics,
Bratislava, Slovakia.

Rejda. M. (2010) Modular redesign of the blog.matfyz.sk portal. Master’s
thesis, Comenius University, Faculty of Mathematics Physics and Informatics,
Bratislava, Slovakia.

Sedna Documentation: http://modis.ispras.ru/sedna/documentation.html

Annotation: The current database system used at the blog.matfyz.sk portal suffers from
occasional crashes and slow response times at heavy loads. This is due to
the DBMS was deployed by other students whose major tasks was different.
The student's job is threefold: 1) To optimize the current installation and
configuration of the system. 2) To analyze and optimize the queries executed
from the portal code 3) If this does not help - to analyze the code of the Sedna
DBMS and seek for sub-optimal passages, especially aiming features such as
indexing, caching, etc. to propose the solution and try to fix it.

As the last resort, student may choose to replace the DBMS by some other that
satisfies the needs of the portal.

Sedna, a state-of-the art native XML DBMS is developed by the MODIS group
at the Russian Academy of Sciences. It is an open source product. The student is
expected to communicate with the Sedna development team, especially working
towards the goal no. 3. The collaboration was established in the past.

Supervisor: RNDr. Martin Homola, PhD.
Department: FMFI.KI - Department of Computer Science

52533686

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Assigned: 17.10.2010

Approved: 03.05.2012 prof. RNDr. Branislav Rovan, PhD.
Guarantor of Study Programme

Student Supervisor

52533686

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Eva Lichnerová
Študijný program: informatika (konverzný program) (Jednoodborové štúdium,

magisterský II. st., denná forma)
Študijný odbor: 9.2.1. informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Optimalizácia natívnej XML databázy využívanej na portáli blog.matfyz.sk

Cieľ: Analyzovať súčasnú inštaláciu natívnej XML databázy Sedny používanej na
portáli blog.matfyz.sk a navrhnúť a implementovať výkonnostné úpravy s
cieľom redukovať výpadky a zrýchliť čas vykonávania príkazov.

Literatúra: Kohutovic, A. (2008). blog.matfyz.sk community portal. Master’s thesis,
Comenius University, Faculty of Mathematics Physics and Informatics,
Bratislava, Slovakia.

Rejda. M. (2010) Modular redesign of the blog.matfyz.sk portal. Master’s
thesis, Comenius University, Faculty of Mathematics Physics and Informatics,
Bratislava, Slovakia.

Sedna Documentation: http://modis.ispras.ru/sedna/documentation.html

Anotácia: Súčasný databázový systém používaný na portáli blog.matfyz.sk trpí občasnými
výpadkami a dlhými časmi vykonávania príkazov pri veľkej záťaži. Príčinou
je, že databázový systém bol nasadzovaný inými študentmi, ktorých hlavná
úloha bola odlišná od optimalizácie. Práca študenta je rozdelená na tri časti:
1) Optimalizovať súčasnú inštaláciu a konfiguráciu systému. 2) Analyzovať
a optimalizovať príkazy vykonávané z kódu portálu. 3) Ak toto nepomôže -
analyzovať kód Sedny a vyhľadať menej optimálne časti, konkrétne sa zamerať
na prvky ako indexovanie, cachovanie, atď., navrhnúť riešenie a pokúsiť sa o
opravu.

Poslednou možnosťou je, že študent si vyberie iný databázový systém, ktorý
viac vyhovuje požiadavkám portálu a povôdný systém ním nahradí.

Sedna, jedna z najnovších natívnych XML databáz, je vyvíjaná skupinou
MODIS pôsobiacou v Ruskej akadémii vied. Je to open source produkt. Od
študenta sa očakáva komunikácia s vývojovým tímom Sedny, špeciálne pri
plnení cieľa č.3. Spolupráca bola nadviazaná už v minulosti.

Vedúci: RNDr. Martin Homola, PhD.
Katedra: FMFI.KI - Katedra informatiky

52533686

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

Dátum zadania: 17.10.2010

Dátum schválenia: 03.05.2012 prof. RNDr. Branislav Rovan, PhD.
garant študijného programu

študent vedúci práce

xi

I would like to thank my supervisor Martin Homola for his ex-

cellent guidance, support and advices. The next thanks goes

to my ex-colleague Martin Rejda, who introduced me into

the secrets of XML databases, and Ivan Shcheklein from the

Institute for System Programming of the Russian Academy

of Sciences, a member of the Sedna development team, who

answered patiently all of my questions. The special thanks

goes to my family for their big support, not only during writ-

ing this thesis, but throughout my whole study. Thank you

very much.

xii

Abstrakt

XML formát je v dnešnej dobe vel’mi využ́ıvaný, čo vedie aj k narastajúcemu

použ́ıvaniu XML databáz. Ked’že tieto databázy sú ešte relat́ıvne novým

pŕırastkom v skupine databázových systémov, sú stále intenźıvne vyv́ıjané a

zdokonal’ované. XML databáza nasadená na portáli blog.matfyz.sk nebola

nikdy optimalizovaná s úmyslom dosiahnut’ jej najlepš́ı výkon. To malo za

následok časté výpadky databázy a vel’mi časté boli aj pŕıkazy, ktorých vykoná-

vanie trvalo neprimerane dlho. Ciel’om tejto práce bolo optimalizovat’ XML

databázu nasadenú na našom portáli. V práci sme predstavili pozadie XML

databáz a detailne sme ich poṕısali. Ďaľsou čast’ou práce bolo analyzovat’ exis-

tujúce optimalizácie systému a navrhnút’ nové optimalizačné techniky, ktoré

by mohli byt’ použité počas vykonávania merania. Vytvorili sme dva typy

merańı, ktoré merali, ako sa podarilo zrýchlit’ čas vykonávania samostatného

pŕıkazu a celej akcie (napr. nač́ıtanie domovskej stránky portálu) pomocou

navrhnutých optimalizačných techńık. Výsledky merańı ukázali, že tieto opti-

malizačné techniky výrazne zvýšili výkon našej XML databázy.

Kl’́učové slová: XML, Nat́ıvna XML databáza, Optimalizácia

xiii

xiv

Abstract

The XML format is widely used nowadays what leads to incremental usage of

XML databases too. Since they are relatively new in the database management

systems group, they are still intensively developed and improved. The XML

database deployed at the blog.matfyz.sk portal was never optimized to gain its

maximal performance. This led to database crashes and long execution time

of statements. The main goal of this work was to optimize the XML database

deployed at our portal. In this work we introduced the background of the XML

databases and described them in detail. Next part of the work was to analyse

the existing database optimization and to propose optimization techniques,

which could be used during the benchmarking. We created two benchmarks,

which measured the improvement of the statement and action (e.g., homepage

loading) execution time using proposed optimization techniques. The bench-

mark results showed that these optimization techniques boosted the database

performance significantly.

Keywords: XML, Native XML database, Optimization

xv

xvi

Preface

This work was created with purpose to propose the best optimization solu-

tion for the XML databse deployed at the blog.matfyz.sk portal. Since the

portal was developed by many students, who had their assignments different

from the database optimization, this led to state, where the database was

crashing and statements were very time consuming. This created the need

to optimize current database installation properly. This work describes, which

techniques should be used for optimization and how these techniques improved

our database performance. This work is intended for everyone, who is inter-

ested in XML, XML databases or database optimization.

xvii

xviii

Contents

Introduction 1

1 XML 3

1.1 Background . 3

1.2 XML data structure . 4

1.2.1 Structural components 5

1.2.2 Content type categories 10

1.3 XML document type declaration 10

1.3.1 Element type declaration 12

1.3.2 Attribute-list declaration 12

1.4 XML querying and transformation 12

1.4.1 DOM . 13

1.4.2 XPath . 13

1.4.3 XSLT . 14

1.4.4 XQuery . 16

1.4.5 XQuery Update facility 19

2 XML databases 21

2.1 Background . 21

2.2 Native XML database . 23

2.2.1 Storage architecture . 23

2.2.2 Main features . 24

xix

xx CONTENTS

3 Sedna 29

3.1 Architecture . 29

3.2 Storage system . 31

3.2.1 Data organization . 31

3.2.2 Memory management . 32

3.2.3 Index management . 34

3.3 Update language . 35

3.4 Transactions . 37

3.4.1 Multiversioning . 37

3.4.2 Locking . 38

3.4.3 Read-only transactions 38

3.4.4 Recovery . 38

4 Optimization 39

4.1 Why the database needs an optimization 39

4.2 Hardware and software analysis 40

4.2.1 Server analysis . 40

4.2.2 Sedna analysis . 40

4.2.3 Our database structure 42

4.3 Existing optimization . 44

4.4 How to optimize . 44

4.4.1 Sedna settings . 44

4.4.2 PHP API function options 45

4.4.3 Statements optimization 46

4.5 Optimization results measurement 47

5 Benchmarks 49

5.1 Existing XML benchmarks . 49

5.2 Choosing an appropriate benchmark 51

CONTENTS xxi

6 Statement analysis 53

6.1 Gathering the data . 53

6.2 The data analysis . 54

6.2.1 Overall analysis . 54

6.2.2 Different statements usage 56

6.2.3 Predicates usage . 58

7 Portal benchmarks 63

7.1 Our benchmark design overview 63

7.2 Simple benchmark . 64

7.2.1 Specification . 64

7.2.2 The results . 68

7.3 Complex benchmark . 71

7.3.1 Specification . 71

7.3.2 The results . 77

Conclusion 83

A Simple benchmark 91

A.1 Operation sets . 91

A.1.1 Original statements set 91

A.1.2 Optimized statements set 96

A.1.3 Index statements set . 99

A.1.4 Index II statements set 103

A.2 Partial results . 104

B CD content 107

xxii CONTENTS

Introduction

Background

Blogs are social phenomenon today. Everybody interested in the internet

knows what a word “blogger” means. Our blog.matfyz.sk portal was created

in 2008 as a project with two purposes. The first purpose was to develop a

portal where technologies as XML databases, XSLT, ranking algorithms could

be researched in the real world. The second purpose was to develop a portal

where students, teachers and their friends could meet and discuss not only

about the school.

Nowadays the portal is used in a learning process also – there is a bunch

of courses, which use the portal for assigning homeworks, midterms, exams

and for student evaluation. The portal is developed mainly by the students

who have their bachelor and master thesis associated with the portal. This

development is still in progress and new feautures are planned to deploy – a

sentiment analysis of posts and comments, real-time xml editor, etc.

Motivation

Since the portal was developed by many students, whose primar goal was

different from database statements and settings optimization, there where sig-

nificant performance problems with the XML database deployed at the portal.

Long execution times of statements and crashes of the database led to necessity

to optimize the database statements and settings and try to gain the maximal

performance from the database.

1

2 CONTENTS

Problem

We needed to analyse the database settings, their usage, what was done

for the database optimization in the past and how we could optimize the

database statements and settings. The next step was to choose an appropriate

tool for the optimization results measurement. There exists benchmarks for

XML databases, but as it showed, these were not appropriate for our purpose,

so we decided to create our own benchmark tests for the optimization results

measurement.

Contribution

The main contribution of this work is that we boosted the database perfor-

mance significantly comparing to original database performance. We achieved

that each basic action executed on the portal (e.g., homepage loading, an in-

sertion of the post or a comment) was boosted considerably. This database

performance optimization caused that currently the users’ experience of the

portal is incomparably more positive than before the optimization – the portal

pages are loaded smoothly and fast, there are no database crashes and users

do not have a problem with the portal usability.

Chapter 1

XML

1.1 Background

Extensible Markup Language (XML) is well-known in a lot of areas nowa-

days. This language was created in 1996 and was derived (as Hyper-Text

Markup Language - HTML) from Standard Generalized Markup Language

(SGML), which was designed for structuring large documents. The XML main

design goals were: it had to be straightforwardly usable over the internet, sup-

port wide variety of applications, it had to be human-legible and reasonably

clear, formal and concise and easy to create [W3C08]. XML was designed to

carry data, not to display them and thanks to this attribute it is a perfect

language for storing data as well.

The term markup refers to anything in a document that is not intended

to be a part of a printed output [SKS01]. So a markup language is a for-

mal description of what a markup is, what in document is content and what

that markup means in a context. Markup languages evolved from specifying

instructions how to print content to specifying the function of that content

and this is their main contribution. A tag defined by tagname enclosed in

angle-brackets <,> is the markup form. Tags are commonly used in pairs as a

start-tag and end-tag – <tag> </tag>. The first delimits the beginning and

the second delimits the end of content, to which this tag refers. There is a

short example in Example 1.1.

3

4 CHAPTER 1. XML

Example 1.1 Tag usage

<name>Eva Lichnerova</name>

Tags in XML are not prescribed as they are in HTML – in XML we can

create any tags we want and need. This feature makes XML very powerful

tool for a data representation and their exchange. Other advantages of this

language are:

• XML is self-descriptive – we do not need anything else to understand the

meaning of the text.

• We can add our own tags to existing document and our recipient will still

be capable of reading the whole document. This means that documents

can evolve without invalidating existing applications, which depend on

them.

Currently, the XML format is widely accepted and there are many tools,

which can read and process any XML document, what makes XML the most

widely-used format of its kind.

1.2 XML data structure

Definition 1.2.1 ([W3C08]) Markup takes the form of start-tags, end-tags,

empty-element tags, entity references, character references, comments, CDATA

section delimiters, document type declarations, processing instructions, XML

declarations, text declarations, and any white space that is at the top level of

the document entity (that is, outside the document element and not inside any

other markup).

Each XML document has its physical and logical structure. The physical

structure is created by units called entities. Entities have content and are

identified by entity names. The document logically consists of declarations,

elements, comments, character references and processing instructions, all of

which are indicated in the document by explicit markup [W3C08]. In the

following section we describe some of the structural components in detail.

1.2. XML DATA STRUCTURE 5

1.2.1 Structural components

Elements

Definition 1.2.2 ([W3C08]) Each XML document contains one or more el-

ements, the boundaries of which are either delimited by start-tags and end-tags,

or, for empty elements, by an empty-element tag. Each element has a type,

identified by name, sometimes called its “generic identifier” (GI), and may

have a set of attribute specifications.

Example 1.2 Short example of an XML document
<?xml version="1.0"?>

<blog>

<title>My new blog</title>

<post status="published" ID="p81">

<title>Blogging</title>

<content>Test content</content>

<comments/>

</post>

</blog>

The majority of an XML document is created by elements. Each XML

document has one top-level element, called the root or document element, which

is not a part of any other element. As Definition 1.2.2 says, an element is

defined by a start-tag and end-tag, with its content between these tags (see

Listing 1.1). If an element is empty (it has no content), we can mark it as

<tag/>, what is a shorthand for <tag></tag>. An element name is case-

sensitive and must begin with a letter or an underscore (). Content of an

element is created by its children. These children can be in form of other

elements, comments, CDATA sections or characters and are ordered. Each

element may be annotated with attributes also, but unlike children, they are

unordered. Example 1.2 contains a short XML document with mentioned

characteristics.

6 CHAPTER 1. XML

Attributes

Attributes are used to annotate elements – they provide extra informa-

tion about them. Attributes are placed inside of a start-tag and appear as

name=value pairs separated by equal sign, see Example 1.2. An attribute

value is textual and may be enclosed by single or double quotes. The number

of attributes in one element is not restricted, but attributes must have different

names.

Namespace declarations

Example 1.3 XML document using namespaces
<?xml version="1.0"?>

<blog xmlns:portal="http://blog.matfyz.sk/portal/"

xmlns="http://blog.matfyz.sk/example/">

<title>My new blog</title>

<portal:post status="published" portal:ID="p81">

<portal:title>Blogging</portal:title>

<portal:content>Test content</portal:content>

<comments/>

</portal:post>

</blog>

A single XML document may contain elements and attributes (referred

as markup vocabulary) that are defined for and used by, e.g., multiple soft-

ware modules. Such documents, containing multiple markup vocabularies, may

cause recognition and collision problems. Software modules need to be able to

recognize the elements and attributes which they are designed to process, even

if the collision occurs when markup intended for some other software package

uses the same element name or attribute name. These considerations require

that document constructs should have names constructed uniquely between

different markup vocabularies. This goal is achieved by XML Namespaces,

which assign extended names to elements and attributes [W3C09].

Each namespace has a name – a uniform resource identifier (URI), which

serves as a unique string. The namespace name and the name of an elemen-

t/attribute create globally unique name called qualified name. Namespace

1.2. XML DATA STRUCTURE 7

declarations appear in this form – xmlns:prefix="URI" (single quotes may

be used too) [W3C09] – and are placed in an element start-tags. Namespace

declaration map name of a namespace to another (usually shorter) string,

namespace prefix. An element can contain any number of declarations of this

type (called nondefault), but they must have different prefixes. Default names-

pace declarations appear as xmlns="URI" – without prefix defined. An element

cannot contain more than one default namespace declaration.

A scope of the namespace declaration is an element, in which the decla-

ration is placed, and all its children. Certain namespace prefix can be used

only in its declaration scope elements/attributes, otherwise an error is raised.

Extended element/attribute name syntax is prefix:name. The namespace of

unprefixed element/attribute names is the namespace specified by the in-scope

default namespace declaration, if any. If there is no in-scope default names-

pace declaration, such elements/attributes are called unqualified [SG01]. An

illustration of the XML document using namespaces is in Example 1.3.

Comments

Comments are used to provide additional information to humans about

XML document content. They may appear anywhere in the document, but

outside other markup. A comment is bounded by these character sequences

<!-- --> with comment content placed between them. For compatibility rea-

sons the comment content must not contain double-hyphen (--) [W3C08].

Comment usage is in Example 1.4.

Processing instructions

Processing instructions are used to provide additional information to appli-

cations, which process the XML document. Instructions may contain informa-

tion, e.g., how to display content or how to process the document. The syntax

of processing instruction takes the form <?target data?>, where target is

the name of a processing instruction and data are information for this instruc-

tion. Processing instructions can appear as children of elements or as top-level

constructs before the document element.

8 CHAPTER 1. XML

Example 1.4 XML document using comments, CDATA section, XML decla-
ration, entity references
<?xml version="1.0" encoding="UTF-8"?>

<blog>

<!-- Title of the blog -->

<title>My new blog</title>

<post status="published" ID="p81">

<title>Blogging & chatting</title>

<content>

<![CDATA[Test content & some other stuff.]]>

</content>

<comments/>

</post>

</blog>

CDATA sections

Definition 1.2.3 ([W3C08]) CDATA sections may occur anywhere charac-

ter data may occur; they are used to escape blocks of text containing characters

which would otherwise be recognized as markup. CDATA sections begin with

the string “ <![CDATA[” and end with the string “]]> ”.

CDATA sections can appear inside element content and allow usage of such

characters as <,> or & (see Example 1.4), which would be otherwise processed

as markup characters. The only markup recognized by an XML processor is

a character sequence, which ends a CDATA section –]]>. CDATA sections

cannot be nested [SG01].

XML declaration

Definition 1.2.4 ([W3C08]) XML documents should begin with an XML

declaration which specifies the version of XML being used.

As Definition 1.2.4 says, an XML declaration does not have to be used in

the XML document. If it is presented, it has to be the first construct in the

document. The XML declaration begins with the character sequence <?xml

and ends with ?> (see Example 1.4). Although its syntax is the same as the

1.2. XML DATA STRUCTURE 9

syntax of processing instructions, the XML declaration is not considered as

a processing instruction. Declaration content consists of three attributes –

version, encoding and standalone. Only version attribute is mandatory,

others are optional. Attribute order has to be retained in this form [SG01].

Entity references

Certain characters may cause problems, if they are used in content of the

element or as attribute values. Such character is, e.g., less-than <, which

represents the beginning of the start-tag or end-tag. If we want to write such

character, we have to use an alternative way to represent it. Entities are used

to represent these special characters in content. Since their syntax has a form

&entity name;, their names must be unique [W3C08]. For less-than character

there is an entity <, for ampersand & (see Example 1.4).

Character references are special case of entity references. They are used

for inserting an arbitrary character into the document. The syntax form is

the same as entity reference form, but entity name is replaced by decimal or

hexadecimal reference of the character in Unicode.

Well-formed XML document

A textual object is a well-formed XML document, if it satisfies these con-

ditions [SG01]:

• all constructs must be syntactically correct

• there must be exactly one top-level element

• each start-tag must have its end-tag

• all tags must be nested properly

Valid XML document

Definition 1.2.5 ([W3C08]) An XML document is valid if it has an asso-

ciated document type declaration and if the document complies with the con-

straints expressed in it.

What is the document type declaration and how the constraints look like

we explain in detail in the next section.

10 CHAPTER 1. XML

1.2.2 Content type categories

XML documents can be divided into two categories based upon their con-

tent [Bou05]:

Document-centric Document-centric documents are usually documents

that are designed for human consumption. Examples

are books, emails, advertisements, etc. They com-

monly have an irregular structure, larger grained data

and lots of mixed content. The order, in which ele-

ments occur, is almost always significant.

Data-centric Data-centric documents are primarily designed for a

computer program, which processes the information,

responds to it, stores data items in a database, and so

on. They have a regular structure, fine-grained data

and they do not contain any mixed content usually.

Examples of data-centric document are flight sched-

ules or sales orders.

1.3 XML document type declaration

One of the main features of XML is, we can define our own tagnames and

easily create an arbitrary XML document. But applications, which work with

XML documents, need to know, how the processed XML documents should

look like, so they can determine a correct or incorrect XML document. There

have to be some constraints, which define used tags, their sequence or nesting.

Definition 1.3.1 ([W3C08]) The XML document type declaration contains

or points to markup declarations that provide a grammar for a class of docu-

ments. This grammar is known as a document type definition, or DTD. The

document type declaration can point to an external subset (a special kind of

external entity) containing markup declarations, or can contain the markup

declarations directly in an internal subset, or can do both. The DTD for a

document consists of both subsets taken together.

1.3. XML DOCUMENT TYPE DECLARATION 11

Definition 1.3.2 ([W3C08]) A markup declaration is an element type dec-

laration, an attribute-list declaration, an entity declaration, or a notation dec-

laration.

The XML document type declaration is an optional part of the XML docu-

ment. If it is present, it must appear before the first element in the document

[W3C08]. The document type declaration identifies the top-level element of

the document and may contain additional declarations. The additional decla-

rations may come from an external DTD, called the external DTD subset, or

be included directly in the document, the internal DTD subset, or both (see

Example 1.5).

In next sections we briefly describe first two markup declarations mentioned

in Definition 1.3.2.

Example 1.5 The document type declaration usage in the XML document
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE blog SYSTEM "blog.dtd"[

<!ELEMENT blog (title, post*)>

<!ELEMENT post (title, content, comments)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT content ANY>

<!ELEMENT comments (comment*)>

<!ATTLIST post

ID ID #REQUIRED

status CDATA #IMPLIED>

]>

<blog>

<title>My new blog</title>

<post status="published" ID="p81">

<title>Blogging</title>

<content>Post content.</content>

<comments/>

</post>

</blog>

12 CHAPTER 1. XML

1.3.1 Element type declaration

Defines an element of the specified name with the specified content model.

The content model specifies what children can be used as element content, their

order and number of occurrences. The content model can contain keywords

ANY (any child is allowed), EMPTY (no children are allowed) or a child group

definition enclosed in brackets (#PCDATA indicates that only text is allowed).

See detailed Example 1.5.

1.3.2 Attribute-list declaration

Defines a set of attributes, which is allowed in some element. Each attribute

has a name, type and default declaration (see Example 1.5). We distinguish

these types of attributes – CDATA (character data), ID (a unique name), IDREF

(a reference to an ID), IDREFS (a list of IDREF values), ENTITY (unparsed en-

tity name), ENTITIES (a list of ENTITY values), NMTOKEN (a valid XML name),

NMTOKENS (a list of NMTOKEN values). A default declaration can be specified

as a simple string value, #REQUIRED (an attribute value must be always speci-

fied), #IMPLIED (an attribute is optional) or #FIXED "value" (an attribute is

optional, but if it is present, it must have defined value).

1.4 XML querying and transformation

Tools, which provide an effective management of XML data, are becoming

increasingly important nowadays because of a huge amount of applications

using an XML format for storing and exchange data. These tools, created

for an XML querying and transformation, are essential, when we talk about

extracting information from an XML document and converting data between

different XML representations.

Several languages provide different degree of querying and transformation

capabilities of an XML document: DOM, XPath, XSLT, XQuery and XQuery

Update facility. All these languages use a tree model of XML data during

processing. Each XML document is logically modelled as a tree – it has nodes

1.4. XML QUERYING AND TRANSFORMATION 13

and every node corresponds to an element or an attribute (see Section 1.2)

in that XML. Nodes can have children nodes and every node except a root

node (represents a root element) has a parent node. This structure creates a

hierarchy, in which every node has a specific position, so we can distinguish a

parent, a child, an ancestor, a descendant or a sibling node.

In next sections we describe each of these languages in more detail.

1.4.1 DOM

The Document Object Model is a platform- and language-neutral interface

that allow programs and scripts to dynamically access and update the content,

structure and style of XML documents [W3C05]. The XML DOM views an

XML document as a tree structure and defines a standard way for accessing

and manipulating XML documents. All elements can be accessed through the

DOM tree. Their content (text and attributes) can be modified or deleted, and

new elements can be created. The elements, their text, and their attributes

are all known as nodes.

1.4.2 XPath

The XML Path Language is designed to allow a selection of a specific part

or parts of the XML document for next processing. The basic building block

of XPath is the expression, which is a string of Unicode characters. XPath

defines a tree model of the XML document against which all expressions are

evaluated - the XPath data model. There are seven kinds of nodes in the data

model: document, element, attribute, text, namespace, processing instruction,

and comment [W3C10d].

Most of XPath expressions are used for identifying the set of nodes within

the trees. This type of expressions is called a path expression (see Simple path

expression in Example 1.6). It looks like a file system path, except it navigates

through the XPath tree model. A path expression consists of series of one or

more steps, separated by / or //, and optionally beginning with / or //. A

step generates a sequence of items and then filters the sequence by zero or

more predicates (predicates are expressions enclosed in square brackets). The

14 CHAPTER 1. XML

value of the step consists of those items that satisfy the predicates, working

from left to right. A step may be either a node test or a primary expression.

A node test returns a sequence of nodes that satisfies a specified node name or

kind (element, attribute, etc.) condition. Primary expression is , e.g., a literal,

a variable reference, a parenthesized expression, a function call or a context

item expression [W3C10b]. See Example 1.6 for more details.

Other XPath expressions are sequence expressions, arithmetic expressions,

comparison expressions, logical expressions, for expressions, conditional ex-

pressions and quantified expressions. Each of them is described in detail in

[W3C10b].

Function and operation library for XPath is specified in a separate doc-

ument [W3C10e] and is supported also by XQuery 1.0 and XSLT 2.0. This

library is very complex. It contains, e.g., these numeric, string, boolean, date

and time, node or sequence functions:

• numeric: abs(), floor(), round()

• string: compare(), concat(), contains()

• boolean: true(), false(), not()

• date and time: hours-from-duration(), minutes-from-dateTime(), seconds-

from-time()

• node: name(), number(), root()

• sequence: empty(), count(), id()

1.4.3 XSLT

The XML Stylesheet Language Transformations is a declarative program-

ming language, written in XML, for converting XML documents to other text

formats [W3C07]. These output formats are usually HTML or XML, but in

principle, XSLT can convert XML to any text format. Converting XML to

XML is useful mainly in those situations, when we need XML to conform to

declaration different from original. Since version 2.0, the input format do not

have to be only XML, but also other input formats can be used, e.g., CSV.

XSLT uses XPath for a selection of XML parts and works with the same

1.4. XML QUERYING AND TRANSFORMATION 15

Example 1.6 XPath – path expressions
Queried XML document:

<?xml version="1.0"?>

<blog>

<title>My new blog</title>

<post accessCount="123" ID="p81">

<title>Blogging</title>

<content>Test content</content>

<comments/>

</post>

<post accessCount="234" ID="p94">

<title>W3C Standards</title>

<content>Content</content>

<comments/>

</post>

</blog>

Simple path expression: Result:

/blog/post/title <title>Blogging</title>

<title>W3C Standards</title>

Path expression with //: Result:

/blog//title <title>My new blog</title>

<title>Blogging</title>

<title>W3C Standards</title>

Path expression with predicate: Result:

/blog/post[@ID="p81"]/content <content>Test content</content>

Path expression with filter: Result:

/blog/post/fn:id("p94")/title <title>W3C Standards</title>

tree model as XPath does. The transformation logic of XSLT can be sepa-

rate into reusable templates, which can be called like functions in procedural

programming languages. These templates are associated with patterns, which

match the nodes in the input tree (see Example 1.7). When the processor

16 CHAPTER 1. XML

starts the transformation, it firstly looks for the template matching the root

node. Inside a template we can specify, which nodes we want to be processed

next. After identifying a template for the specified node processor executes

it. This terminates when processor reaches a template without other explicitly

called templates. As a result we get a document composited from parts created

by templates.

XSLT defines built-in templates, which can be overridden by user. For

the root node and element nodes the built-in template calls apply-templates

(see next paragraph) to continue processing all child nodes. For attribute and

text nodes, the built-in template outputs the node value only. For other node

types, nothing is done.

There is plenty of XSLT elements described in [W3C07]. There are struc-

tural elements, flow-control elements or, e.g., conditional elements. Here we

introduce some of them briefly:

• transform – top-most element in XSLT document

• template – defines a new template rule with the specified pattern

• param – declares a parameter

• variable – defines a variable

• apply-templates – processes each node in the identified node set

• call-template – invokes a template by name

• for-each – iterates through the identified node set

• sort – sorts the current node list

• choose – selects one template among a number of possible alternatives

• if – tests a condition

• copy-of – copies the specified object

• value-of – generates a text node from an expression

1.4.4 XQuery

The XML Query language can be simply described by one sentence: it is to

XML what Structured Query Language (SQL) is to database tables. Its main

purpose is querying XML data. XQuery is an extension of XPath – it uses the

same expression syntax and tree model [W3C10c].

1.4. XML QUERYING AND TRANSFORMATION 17

Example 1.7 XSLT – transformation of XML from Example 1.6

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="2.0">

<xsl:template match="/blog">

<publishedPosts>

<xsl:apply-templates select="post">

<xsl:sort select="title" />

</xsl:apply-templates>

</publishedPosts>

</xsl:template>

<xsl:template match="post" >

<post>

<heading><xsl:value-of select="title" /></heading>

<xsl:if test="@accessCount > 200">

<views><xsl:value-of select="@accessCount" /></views>

</xsl:if>

</post>

</xsl:template>

<xsl:template match="." />

</xsl:stylesheet>

Result:

<publishedPosts>

<post>

<heading>Blogging</heading>

</post>

<post>

<heading>W3C Standards</heading>

<views>234</views>

</post>

</publishedPosts>

Queries in XQuery are very similar to queries in SQL – they are organized

into FLWOR (pronounced “flower”) expressions comprising these five clauses:

for, let, where, order by, return (see Example 1.8). FLWORs, unlike

path expressions, allow to manipulate, transform and sort results.

for This clause creates an iteration through the post nodes in Exam-

18 CHAPTER 1. XML

Example 1.8 Simple FLWOR expression
<posts>

{for $post in /blog/post

let $views := data($post/@accessCount)

where $views > 200

order by $post/title

return <views>{$views}</views>}

</posts>

ple 1.8. The rest of the FLWOR expression is evaluated once for

each of the posts. Each time a variable named $views is bound

to a different atomic value of accessCount attribute. Dollar

signs are used to indicate variable names in XQuery.

let The let clause is used to set the value of a variable. In Example

1.8 the let clause assigns an atomic value of accessCount at-

tribute to a variable called $views. The $views variable is then

referenced later in the FLWOR, in the return clause. The let

clause serves as a programmatic convenience that avoids repeat-

ing the same expression multiple times. Using some implemen-

tations, it can also improve performance, because the expression

is evaluated only once instead of each time it is needed [Wal07].

where This clause filters the nodes on a boolean expression. In Exam-

ple 1.8 it selects only those post elements, which accessCount

attribute value is higher than 200. This has the same effect as a

predicate [@accessCount>200] in a path expression.

order by This clause sorts the results by post title. Sorting is an additional

functionality to path expressions.

return This clause indicates return of the results. In Example 1.8 it

returns XML snippet with post views. The curly braces around,

e.g., the $views variable signify that it is an expression that is

to be evaluated.

1.4. XML QUERYING AND TRANSFORMATION 19

A path expressions in FLWOR may return a sequence of nodes, where some

of them are repeated. In that case we can use a distinct-values function to

get only unique nodes, not duplicates. Aggregate functions as sum, count,

min, max, avg, which are well-known from SQL, are provided by XQuery

too. What is not provided in the current version of XQuery 1.0, is a group by

clause. It is planned in a next version 3.0 [W3C11a] (renamed from XQuery

1.1 to align with the family of “3.0” specifications). Until that time, aggregate

queries must be written using nested FLWOR expressions.

Joins in XQuery are specified similarly to joins in SQL. See Example 1.9.

There is an XML document containing users and teached courses. Below it

there is a FLWOR expression, where we select users, who teach the course

Modern Approaches. Since an ID attribute value from an user element is

present also in a role element as an uid attribute value, it is used to join

these two sources together through a predicate [@ID=$role/@uid].

XQuery supports a lot of built-in functions, which origin is in XPath. For

example there are functions for string conversions, a date and time comparison,

a node manipulation, a sequence manipulation, boolean values and many more.

It supports also user-defined functions, which is very useful for long queries

called more times.

1.4.5 XQuery Update facility

XQuery language can query an input document, but it does not have a

specific expressions for inserting, updating or deleting XML data in a database.

This gap is filled by XQuery Update facility, which is an extension of XQuery.

This language provides facilities to perform the following operations [W3C11b]:

• insertion of a node

• deletion of a node

• modification of a node by changing some of its properties while preserving

its node identity

• creation of a modified copy of a node with a new node identity

20 CHAPTER 1. XML

Example 1.9 FLWOR expression using join
Queried XML document:

<?xml version="1.0"?>

<school>

<courses>

<course name="Modern Approaches">

<role uid="u33">course-teacher</role>

<role uid="u34">course-teacher</role>

</course>

</courses>

<users>

<user ID="u33">

<nick>nick76</nick>

<realName>Nicky Nick</realName>

<lastName>Nick</lastName>

</user>

<user ID="u34">

<nick>sue34</nick>

<realName>Suzie Sue</realName>

<lastName>Sue</lastName>

</user>

</users>

</school>

FLWOR expression:

<teachers course="Modern Approaches">

{for $role in

/school/courses/course[@name = "Modern Approaches"]/role

let $user := /school/users/user[@ID=$role/@uid]

order by $user/lastName

return

<teacher>

<name>{data($user/realName)}</name>

<nick>{data($user/nick)}</nick>

</teacher>}

</teachers>

Chapter 2

XML databases

2.1 Background

In these days people use an XML format for exchange data more and more.

The basic examples are web services Simple Object Access Protocol (SOAP)

and Representational State Transfer (REST), which are widely used for com-

munication and exchange data between various applications and systems over

the Internet, where is no other way how to simply send and receive the data

in a universal readable format.

Current applications usually use relational database systems, which require

transforming of XML data to an appropriate format before storing them to

the database. This step can be easily omitted if the application uses an XML

database. This is also the main advantage of XML databases. Nowadays,

when information systems are huge and work with different platforms and

structures, it is important to communicate in a universal language, which

every application understands and is able to handle it. XML databases help

applications to remove the need of additional data transformation and save

some XML processing time this way.

XML databases work with both document-centric and data-centric docu-

ments (mentioned in Section 1.2.2). Characterizing documents, that will be

stored in a database, is crucial for correct choice of XML database type, which

21

22 CHAPTER 2. XML DATABASES

will be used in an application. The XML:DB initiative has defined two differ-

ent types of XML databases: Native XML database (NXD) and XML Enabled

database (XEDB).

Definition 2.1.1 ([Ini03]) Native XML Database

1. Defines a (logical) model for an XML document – as opposed to the

data in that document – and stores and retrieves documents according to

that model. At a minimum, the model must include elements, attributes,

PCDATA, and document order. Examples of such models are the XPath

data model, the XML Infoset, and the models implied by the DOM and

the events in SAX 1.0.

2. Has an XML document as its fundamental unit of (logical) storage, just

as a relational database has a row in a table as its fundamental unit of

(logical) storage.

3. Is not required to have any particular underlying physical storage model.

For example, it can be built on a relational, hierarchical, or object-oriented

database, or use a proprietary storage format such as indexed, compressed

files.

Definition 2.1.2 ([Ini03]) XML Enabled Database is a database that has an

added XML mapping layer provided either by the database vendor or a third

party. This mapping layer manages the storage and retrieval of XML data.

Data that is mapped into the database is mapped into application specific for-

mats and the original XML meta-data and structure may be lost. Data retrieved

as XML is NOT guaranteed to have originated in XML form. Data manipula-

tion may occur via either XML specific technologies (i.e., XPath, XSLT, DOM

or SAX) or other database technologies(i.e. SQL). The fundamental unit of

storage in an XEDB is implementation dependent.

The fundamental unit of storage in an XML database is equivalent to a

row in a relational database. We can retrieve smaller units of data from the

database (i.e., document fragments or individual structural components as

elements, attributes, etc.) similarly to a relational database, where we can

retrieve single columns from a row.

2.2. NATIVE XML DATABASE 23

The main difference between NXD and XEDB is that XEDB does not store

data in XML format. It uses only XML mapping layer, with which we can

communicate with XEDB like with NXD. Under this mapping layer is other

structure (relational, object-oriented, etc.), which stores the data, so there is

always a need to convert data from XML format to appropriate underlying

structure format. This conversion can cause a loss of some information from

the original XML document (i.e., comments, processing instructions), so it is

important to decide correctly, whether this is acceptable for an application

using the XML database or not.

Known NXDs are Sedna [fSPR], eXist [Mei00], BaseX [Tea05], eXtraWay

[Inf]. Between XEDBs are such databases as eXtremeDB [McO], PostgreSQL

[Gro], Orient ODBMS [Tec].

During the blog.matfyz.sk portal development my colleagues decided to

deploy native XML database named Sedna [fSPR] on the portal. The main

reason was to research a new technology in the real world and reveal the pros

and cons of such technology compared with a relational database. In next

sections we discuss NXD in more detail and introduce Sedna NXD.

2.2 Native XML database

2.2.1 Storage architecture

The architectures of NXDs fall into two broad categories: text-based and

model-based [Bou05].

Text-based NXD

Text-based NXDs store XML as text. It can be for example a file in a file

system, a BLOB (Binary Large OBject – a collection of binary data stored as

a single entity in a DBMS) in a relational database or a text format. Crucial

components of text-based NXDs are indices. An XML document can be easily

traversed thanks to them. Such databases, when retrieving whole documents

or document fragments, perform a single index lookup, position the disk head

24 CHAPTER 2. XML DATABASES

once, and, assuming that the necessary fragment is stored in contiguous bytes

on the disk, retrieve the entire document or fragment in a single read [Bou05].

Reassembling document from pieces requires more index lookups and disk

reads. An example of a text-based database is eXtraWay XML [Inf], which

stores XML document as a file in a filesystem.

Model-based NXD

This type of databases creates an internal model of an XML document and

stores it. There are different ways of storing the model. One way is to use a

relational or object-oriented database, other databases use proprietary storage

formats optimized for their chosen data model. Model-based NXDs built on

other databases have performance of retrieving documents similar to those

databases because they rely on these systems during this process. Performance

of model-based database depends on output format – text-based databases

are faster at returning documents as text, whereas model-based databases

are faster at returning documents as DOM trees, assuming their model maps

easily to DOM. An example of model-based database is Sedna [fSPR], BaseX

[Tea05], eXist [Mei00] (all use proprietary storage model), Ozone [Ozo] (uses

object-oriented storage model).

2.2.2 Main features

In this section we describe important features of native XML databases.

Document collections

Document collections in NXDs have the same meaning as tables in rela-

tional databases. Collections are used to store XML documents with a similar

structure. We can create, e.g., a users collection, where each user has its own

document with personal info and published posts and execute statements over

the whole collection at once.

2.2. NATIVE XML DATABASE 25

Query and update languages

Every database needs to support a language, that allows to query and

update data in the database. We introduced such languages in Section 1.4.

For a long time there was not a universal update language recommended by

the W3C organization. Developers working on their XML databases had to

try to create and implement their own solutions of an update language, so

nowadays there is a lot of variations of it. The W3C Recommendation of an

update extension to XQuery named XQuery Update Facility 1.0 (see section

1.4.5) was released in March 2011. It is known, that some NXDs already

support this language (i.e. BaseX [Tea05], eXist [Mei00]). The final decision

about which database to use is on a user. The user has to consider his/her

needs about statements (queries/updates) executed over the XML documents

and how a supported languages satisfy them.

Indices

It is important to note that NXDs support a creation of indices to boost

statement execution time. Their implementation vary with different databases

and depends on a storage implementation. We distinguish two types of indices

[Bou05]:

value index This type of index references all text nodes and attribute

values of a document. It is used to boost an execution time

of content-based statements. A classical example for an ap-

plication of a value index is a path expression with equality

predicate.

full-text index This index type indexes tokenized text nodes. It increase

a performance of statements, which search certain words in

text nodes.

Transactions, concurrency and locking

Every correctly designed NXD supports transactions, locking and rollbacks,

but the locking level may vary. There are two basic types of the locking level in

26 CHAPTER 2. XML DATABASES

NXDs – document-level locking and node-level locking. Document-level locking,

as its name tells, causes locking of the whole document during the update

execution. This can lead to low multi-user concurrency, since everytime, when

two users want to update the same document, one transaction has to wait

for the end of another. If update statements create significant part of the

database load, it is more appropriate to choose a database, which uses node-

level locking. This locks only updated node, not a whole document, so other

user, who wants to update different part of the document, do not have to wait.

Application programming interfaces (APIs)

Many NXDs offer their own API in a programming language such as

C/C++, Java, PHP, etc. API provides an interface for connection to the

database, executing queries, updates, results retrieval and other tasks. Results

are usually returned in a form of an XML string or a DOM tree. Although

NXDs have their own APIs, two vendor-neutral APIs exist – XML:DB API

from XML:DB.org [Ini03] (uses XPath as a query language) and XQuery API

for Java (XQJ) [Cor09], which uses XQuery as its query language.

Round-tripping

Another important feature of NXD is a round-tripping. In this case it

means that data retrieved from a database are in exactly the same form than

original data inserted to the database. This feature is crucial for document-

centric data mainly, since all structural components like comments, whites-

paces or processing instructions form a significant part of an XML document.

With XEDB, these information would be lost because of mapping XML format

to underlying structure. In general, model-based NXDs support round-tripping

of XML documents at the level of their document model. Text-based NXDs

round-trip XML documents exactly. It depends on an application, which type

of NXD suits it better.

Normalization

It is a basis of the relational theory. The main goal of normalization is

to prevent an unnecessary redundancy in a database. Saving disk space is

2.2. NATIVE XML DATABASE 27

then its additional asset. Normalizing data in NXD is largely the same as

normalizing them in a relational database – the database design cannot contain

any repeated data. It is appropriate to note, that this is not usually an issue

for document-centric documents, where is a very small amount of common

data.

Referential integrity

Referential integrity is closely related to normalization and signifies validity

of pointers to related data. It is very important for maintaining a consistent

state of a database. In the relational theory it means checking, whether a

primary key tuple referenced by a foreign key really exists. In NXD it means

checking, whether pointers used in XML documents refer to valid documents

or their fragments. There are several forms of pointers in XML. DTD uses

ID and IDREF attributes, as was mentioned in Section 1.3. Another way how

to implement pointers in XML is XML Linking Language (XLink) [W3C10a],

which creates and describes links between resources.

Scalability

NXDs use indices to make data retrieval effective like, e.g., relational

databases do. Locating documents or their fragments then depends on index,

not document, size. NXDs are therefore comparable to relational databases

in data retrieval using the same indexing technology and we could say they

scale as well as other types of databases. Actually, that does not have to be

a true assertion always. Since NXDs are a relatively new type of a databases

compared with, e.g., relational databases, the development of implementation

techniques is still in extensive progress. Therefore scalability can be signifi-

cantly influenced by a selected NXD implementation. Other way, how to boost

scalability, is correct usage of indices. Creation and using of indices has to be

in balance with database load to reach a stable database performance. If the

database is overindexed and considerably updated at the same time, statement

execution time speeds up rapidly, since index tree reconstruction is needed af-

ter each update. The statement optimization is other appropriate step closer

to balanced database performance.

28 CHAPTER 2. XML DATABASES

Chapter 3

Sedna

Native XML database Sedna was created in 2005 by the Institute for Sys-

tem Programming (ISP) of the Russian Academy of Sciences [fSPR94] as a

full-featured database system for storing large amounts of XML data. They

implemented it from scratch to benefit from maximum freedom in developing

proper desing principles for managing XML data. The main contribution of

this system is a novel memory management technique and a schema-based

clustering storage strategy efficient for both XML querying and updating.

3.1 Architecture

Sedna is implemented as a full-featured database system – it supports all

traditional database services such as query and update facilities, external mem-

ory management, concurrency control, query optimization, etc. The decision

to create the database from scratch was made because the ISP did not want

to compromise because of any other existing database system. It took more

effort, but they were able to design the system to their liking. Sedna uses

XQuery and its data model (see Section 1.4) as a query language. For up-

dating, ISP group implemented its own language extending XQuery named

XUpdate (see Section 3.3). The main reason for XUpdate implementation

was that in a database creation time there was no update language for XML

data recommended by the W3C organization.

29

30 CHAPTER 3. SEDNA

Figure 3.1: Sedna architecture [TSK+10]

The Sedna architecture (depicted on Figure 3.1) consists of these main com-

ponents: governor, connection, transaction and database manager [TSK+10].

The governor is a control center of the whole system. It manages all databases

and transactions running in the system. All other components are registered

in it all their running cycle.

The governor creates an instance of the connection component for each

Sedna client. The connection component encapsulates the client session. For

each time, when the client initiates a transaction, the connection component

creates an instance of the transaction component. This component encapsu-

lates other three components involved in query execution: parser, optimizer

and executor. The parser translates a query into its logical representation (a

tree of operations), the optimizer then produces the optimized query execution

plan from it, what is a tree of low-level operations over physical data structures.

This execution plan is then interpreted by the executor.

3.2. STORAGE SYSTEM 31

On the physical level, each database is encapsulated by an instance of the

database manager, which consists of the buffer manager that is responsible

for the interaction between disk and main memory, the transaction manager

that provides concurrency control facilities and the index manager, which is

responsible for managing of indices [TSK+10].

3.2 Storage system

3.2.1 Data organization

Data organization was designed to provide an efficient execution of both

queries and updates. These two main design strategies were used: direct point-

ers and descriptive schema-driven storage strategy.

Direct pointers

They are used to represent XML node relationships such as parent, child

and sibling ones. Unlike relational-based approaches that require performing

joins for traversing an XML document, traversing in Sedna is performed by

simply following a direct pointer [TSK+10].

Descriptive schema-driven storage strategy

This is a novel storage strategy created by Sedna developers. It consists

of clustering nodes of an XML document according to their positions in the

descriptive schema of the document [TSK+10]. Descriptive schema is generated

from data dynamically (and maintained incrementally) and creates a precise

structure summary for data. It is in contrast to prescriptive schema (i.e.,

DTD), which is known in advance. Since descriptive schema is updated after

changes in XML documents, it is more accurate than prescriptive one and it is

possible to apply it to any XML document – even the one without prescriptive

schema.

Descriptive schema serves as an entry point to the structural part of the

XML document. Namely, every schema node has a pointer to data blocks that

32 CHAPTER 3. SEDNA

store XML nodes corresponding to the given schema node. As XQuery queries

and XML update statements access nodes in an XML document with XPath

expressions, the descriptive schema plays a role of a naturally built index for

evaluating XPath expressions [TSK+10]. Example of a descriptive schema is

in Figure 3.2. Decriptive schema is presented as a tree of schema nodes, with

each node labeled with an XML node kind (i.e., element, attribute, etc.).

This node has a pointer to bidirectional list of data blocks storing XML nodes

corresponding to this schema node. The structural part of a node reflects

its relationship to other nodes (i.e. parent, children, sibling nodes) and is

presented in the form of node descriptor. Each node descriptor is supplied

with a node handle, that uniquely identifies the XML node in the database,

provides quick access to it and stays immutable during the whole lifetime of

the XML node.

3.2.2 Memory management

To benefit from usage of query execution logic to control the page replace-

ment procedure (swapping) when forcing pages to disk, they decided to imple-

ment their own memory management mechanism that supports 64-bit address

space and manages page replacement – Sedna Address Space (SAS) [TSK+10].

The key idea of memory management in Sedna is integrating persistence with

virtual memory system. For achieving this integration, they divided database

address space (DAS) into layers of equal size that fits virtual address space

of a process (PVAS). A layer consists of pages; pages store XML data and

also have equal sizes for uniform handling by the buffer manager. The 64-bit

address of an object in DAS consists of the layer number (the first 32 bits)

and the address within the layer (the remaining 32 bits). An address within

the layer is mapped to the address in PVAS on the equality basis: the address

of an object in the PVAS is the address of the object within the layer. The

address range of PVAS is in turn mapped onto main memory by the Sedna

buffer manager. Such address mapping allows dereferencing the pointer more

effectively, as it eliminates pointer swizzling overhead. The main advantages

of SAS used in Sedna are as follows [TSK+10]:

3.2. STORAGE SYSTEM 33

Example 3.1 A sample XML document
<library>

<book>

<title>Foundations of Databases</title>

<author>Abiteboul</author>

</book>

<book>

<title>An Introduction to Database Systems</title>

<author>Date</author>

<issue>

<publisher>Addison-Wesley</publisher>

<year>2004</year>

</issue>

</book>

...

<paper>

<title>A Relational Model for Large Shared Data Banks</title>

<author>Codd</author>

</paper>

</library>

Figure 3.2: An internal representation of a sample XML document used in
Example 3.1 in Sedna

34 CHAPTER 3. SEDNA

• There is virtually no restriction on the database size, since it provides a

64-bit virtual address space, that can be emulated on a standard 32-bit

architecture.

• Overhead for dereferencing a database pointer is comparable to the one

for conventional pointers, since a database layer is mapped to PVAS

addresses on equality basis.

• Costly pointer swizzling is avoided by using the same pointer represen-

tation in main and secondary memory.

3.2.3 Index management

Indices in Sedna are implemented as B+ trees, which are used often in

relational databases also. In contrast to relational databases, the query ex-

ecutor in the current Sedna version [fSPR] does not use indices automatically.

To enforce the executor to employ indices, specified functions have to be used

[fSPR11b].

Example 3.2 Value index usage in Sedna
Statement to create an index:

CREATE INDEX "postID"

ON /blog/post BY @ID

AS xs:string

Statement to use an index:

index-scan("postID","p81","EQ")/content

Currently, Sedna supports two types of indices: value indices and full-text

indices (see Section 2.2.2). In next paragraph we describe usage of value indices

in detail. For detailed information about full-text index usage see [fSPR11b].

Value indices

In Example 3.2 we see, how the value index is used in Sedna. Firstly, it

has to be created. The creation statement consists of these parts:

3.3. UPDATE LANGUAGE 35

• index name (in our case postID)

• a path expression that identifies the nodes of a document or a collection

that are going to be indexed (in our case /blog/post)

• a path expression that specifies the relative path to the nodes whose

string-values are used as keys to identify the nodes returned by the first

path expression (in our case @ID)

• an atomic type of a node used as a key (in our case xs:string)

Secondly, an index has to be explicitly used in a query or update statement.

An index usage statement contains:

• a name of the index that we want to scan (in our case postID)

• a search value of the key of used index (in our case p81)

• a mode – it can be “EQ” (equal), “LT”(less than), “GT” (greater than),

“GE” (greater or equal), “LE” (less or equal) (in our case EQ)

• nodes, which we want to retrieve (in our case content)

3.3 Update language

As we said earlier, Sedna team created their own update language named

XUpdate. In this section we describe it in detail.

XUpdate extends XQuery language and is based on the XQuery update

proposal by Patrick Lehti [Leh01] with the number of improvements. XUp-

date provides these update statements: INSERT, DELETE, DELETE UNDEEP,

REPLACE and RENAME. The syntax and semantics of these statements are de-

scribed in the following paragraphs (see Example 3.3 for the statement usage).

Insert statement

The INSERT statement inserts result of the given expression at the position

identified by the into clause. In Example 3.3 the INSERT statement inserts

the element comment to comments element.

36 CHAPTER 3. SEDNA

Example 3.3 Usage pf update statements in Sedna
Insert statement:

UPDATE insert <comment>First comment</comment>

into /blog/post[@ID="p81"]/comments

Delete statement:

UPDATE delete /blog/post[@ID="p33"]

Delete_undeep statement:

UPDATE delete_undeep /blog/post//comment[@ID="p50"]

Replace statement:

UPDATE replace $content in /blog/post[@ID="p81"]/content

with <content>{data($content)} - content updated</content>

Rename statement:

UPDATE rename /blog/post/title on heading

Delete statement

The DELETE statement removes persistent nodes from the database. It

contains a subexpression, that returns the nodes to be deleted. In Example

3.3 this statement deletes a post element with certain ID attribute.

Delete undeep statement

The DELETE UNDEEP statement removes nodes identified by an expression,

but in contrast to the DELETE statement, it leaves the descendants of the nodes

in the database. In Example 3.3 it deletes undeep a comment element with

certain ID attribute and assigns all its descendants to a parent of the deleted

node.

Replace statement

The REPLACE statement is used to replace nodes in an XML document. In

Example 3.3 it iterates over all the nodes returned by the /blog/post[@ID="p81"]/content

expression, binding the variable $content to each node. For each binding the

3.4. TRANSACTIONS 37

result of the <content>data($content) - content updated</content> ex-

pression is evaluated.

Rename statement

The RENAME statement is used to change the qualified name of an element

or attribute. In Example 3.3 it renames a title element to a heading element.

3.4 Transactions

A transaction can contain several statements, but by default it contains

only one statement (in Sedna it is called an autocommit mode). It provides

ACID (Atomicity, Consistency, Isolation, Durability) support during the trans-

action execution. In this section Sedna transaction issues are discussed briefly.

3.4.1 Multiversioning

This widely used technique for concurrency control management is also

used in Sedna. The main principle of multiversioning in general is that each

write operation on a data item x causes a generation of a new copy (version)

of x. A database manager keeps this list of versions. The main contribution of

this approach is that a scheduler does not have to reject transactions, which

want to read already overwritten data. It just gives them slightly obsolete

version of data. This results into less rejected operations and boosts the per-

formance of the database. To control used storage space, old versions must

be periodically purged and this action has to be synchronized with respect to

active transactions, which use old versions of data [BHG87].

Sedna uses Dynamic finite versioning (DFV) [lWYsC93]. It uses snapshot-

based scheme with data elements being pages. Snapshot is a set of versions

(one version per page) that is transaction-consistent. Old versions are purged

when they are not needed anymore, i.e., when they do not belong to any of

the snapshots. Versioning mechanism is encapsulated in the storage manager

[TSK+10].

38 CHAPTER 3. SEDNA

3.4.2 Locking

Sedna uses the classical strict two-phase locking approach (S2PL) [BHG87]

to support the isolation property of transactions. This approach allows mul-

tiple users access data without paying attention to concurrency mechanism

details. Currently in Sedna, locking granularity is a whole XML document.

In many cases, locking the whole XML document is excessive and leads to

a decrease in concurrency [TSK+10]. This is the main reason, why Sedna

developers work on a finer-granularity locking scheme.

3.4.3 Read-only transactions

Multiversioning allows using read-only transactions (also called queries).

These transactions cannot contain update statements, but they can be exe-

cuted much faster due to multiversioning. Each query reads one of the snap-

shots, so it obtains a consistent, but possibly a slightly obsolete state of the

database [TSK+10].

In Sedna, read-only transactions are not used implicitly. During each client

session there has to be an explicit function call, which turns on this read-only

mode. After that, each statement of running transaction of that session is

considered as a read-only statement.

3.4.4 Recovery

Durability property of transactions is guaranteed by logging and recovery

mechanisms. All the main operations (insert node, create index, etc.) are

logged. Additionally, a checkpoint may be created at some moment during

execution to fixate transaction-consistent state of a database. This is called a

persistent snapshot. If a database is crashed at some moment in time, recovery

process is initiated to restore all transactions that had been committed by the

moment of the crash.

Chapter 4

Optimization

First sections in this chapter talk about the Sedna optimization: why we need

it, what are the hardware and software resources used on a web server, what

Sedna settings are used. Next sections describe what has been done for the

database optimization already and what we can do as a next step to boost

statement execution time and to prevent database crashes. In the final section

we discuss what can be used for a measurement of optimization results.

4.1 Why the database needs an optimization

In previous years students who worked on the development of the portal,

had thesis assignments different from the database optimization. Everybody

who managed the database or wrote the database statements, worked as the

best as he knew, but nobody had the primary goal to take care of the opti-

mization of the statements or the database settings. Bunch of students rotated

over years during development this portal and the result was the requests on

the database took too much time, we counted it in seconds. The database had

been crashing from time to time also, especially during the end of the semester,

when a lot of students needed to submit their course projects at once. This

had been leading to a report creation and sending it to Sedna developers for

research. In most cases they found out the problem, fixed it and released a

new Sedna version. But constant iteration of these situations led to decision

39

40 CHAPTER 4. OPTIMIZATION

to optimize our own Sedna instance and database statements too.

4.2 Hardware and software analysis

4.2.1 Server analysis

The web server, on which the portal is deployed, has a CPU with a model

name AMD Athlon(tm) 64 X2 Dual Core Processor 3800+. It has two cores,

each of them has a 2000 MHz clockrate and uses a 512KB L2-cache. An

operation system on the server is GNU/Linux with Linux kernel version 2.6.34-

hardened-r6. The RAM has a capacity of 2 GB and there are two harddisks,

each has a capacity of 320 GB.

4.2.2 Sedna analysis

Settings analysis

Sedna version currently deployed at the portal is 3.5.161 for x64 platform.

This is the newest version at this time [fSPR]. PHP API used with Sedna

database has a version 2.3 and it is the newest version also.

Sedna has these main components (as described earlier in Chapter 3) –

the governor, the database manager and the connection component. These

components are implemented as a set of operation system processes and there

are various options, which can be set at a process running. This is a complete

list of Sedna processes in an alphabetical order and a brief description what

they do:

• se cdb - create a database

• se ddb - delete a database

• se exp - provide functionality of importing/exporting data

• se gov - start governor

• se hb - make a hot backup of a database

• se rc - get the information about which components are run

• se sm - run a database

4.2. HARDWARE AND SOFTWARE ANALYSIS 41

• se smsd - stop a database

• se stop - stop governor

• se term - interactive terminal to Sedna

• se trn - session process

Every process except se trn can be run from a command line with some

options. For se gov and se cdb processes these options can be stored in an

XML configuration file, so they do not have to be typed with every process

running. Sedna Administration Guide [fSPR11a] describes, which options can

be set with which process in detail and also says, what are the default values

of these options.

PHP API analysis

PHP API is the Sedna Database driver implemented as an extension mod-

ule for PHP. This driver offers a number of functions which are used for com-

municating with the database. Between the standard functions (connect to

the database, close connection, execute statement, ...) [fSPR10] there is also

one function sedna tweak opt, which can specify session options.

Here is a list of the sedna tweak opt function options and their description

[fSPR10]:

• SE OPTID HOST - name of the host connected to

• SE OPTID DATABASE - name of the database connected to

• SE OPTID USER - user name

• SE OPTID PASSWORD - password

• SE OPTID DIRECTORY - what directory is searched for XML files, when

executing LOADs

• SE OPTID AUTOCOMMIT - whether autocommit mode is enabled - default

value is true

• SE OPTID READONLY - whether readonly mode is enabled - default value

is false

• SE OPTID QUERY TIMEOUT - query execution timeout in seconds - default

value is 0 (means infinity)

42 CHAPTER 4. OPTIMIZATION

• SE OPTID MAX RESULT SIZE - limit on the query result size - default value

is 0 (means infinity)

• SE OPTID LOGLESS - whether logless mode is enabled - default value is

false

In Section 4.4.2 we describe, which options are interesting to us and why.

Since students, who worked on the development of this portal, had work

assignments different from the database optimization, nobody has ever changed

the default option values of the processes or PHP API functions mentioned

above.

4.2.3 Our database structure

Our database structure displayed on Figure 4.1 was designed by one of my

colleagues Anton Kohutovic, who created blog.matfyz.sk portal from scratch

in 2008 [Koh08]. An XML document conformed to this data model is created

for each registered user and all registered users are collected in a one collection

called weblog. A root element of this XML document is user, all other elements

are its descendants. User’s information stored in the XML is divided into three

main parts. User’s login information is stored in an element account, user’s

personal data are stored in an element info and all blog data, such as posts

and comments are stored in an element blog. A depth of the XML tree of

some user is not fixed, as the element commentmay contain arbitrary number of

other comment elements. Currently, the maximal tree depth is 52. Each user,

post and comment has a unique attribute ID. User’s ID attribute has a form

of ’u’+NUMBER, post and comment ID attribute has a form of ’p’+NUMBER.

When a data model for a relational database is created, it is common to

design, which items will be indexed. A designer assumes, these items will be

frequently used to filter out data. In case of our data model, indices were not

designed, so not implemented in the first phase of the portal development.

As we will see later, this was a disadvantage of the database structure, which

showed as statements with long execution time.

4.2. HARDWARE AND SOFTWARE ANALYSIS 43

Figure 4.1: Data model scheme [Koh08]

44 CHAPTER 4. OPTIMIZATION

4.3 Existing optimization

As we wrote in Section 4.1, the optimization of the database has never

been the main goal of the students working on the portal. When problems

with Sedna started, one student, Martin Rejda, who worked on modular re-

design of the portal as his master thesis in 2010 [Rej10], tried to find out,

what could be a cause of these problems. After his analysis of Sedna be-

haviour he discovered the problem was I/O wait, as Sedna uses a temporary

file database name.setmp for storing intermediate results retrieved during the

statement execution. His solution was to store this file on a ramdisk. This

change caused almost zero seek time as Sedna wrote its intermediate results di-

rectly to RAM, not to harddisk. But this adjustment did not solve all problems

with Sedna totally and there was still a space for optimization [Rej10].

In Section 4.2.3 we talked about indices and their usage in our database

structure. No indices were designed and implemented in the first phase of

the portal development, but in 2011 two indices were added – postID and

tags because of rank manager. It is used for an effective administration and

indexing of tags used in blog posts [Ďu11]. As we made an analysis of these

indices usage, we discovered tags index was not used at all in the database

statements and postID index was used only in rank manager statements, so

there was no performance improvement caused by the implementation of these

indices in the rest of the portal.

4.4 How to optimize

4.4.1 Sedna settings

In this section we explain, which processes and their options could be at-

tractive to us considering the optimization goal.

Since the optimization of the database requires starting from the base, first

process, we are interested in, is se gov (starts the governor). It has six options

[fSPR11a], from which two we try to adjust during the optimization:

4.4. HOW TO OPTIMIZE 45

el-level level

It specifies the event log severity level. Value range is from 0 to 4 (4

means “Log everything”, 0 means “Logging is off”). Default value

is 3 (log all errors/warnings and all system messages - statements,

resources statistics, ...). An optimization proposal is to set value to

2 (log all errors/warnings), since it decreases the amount of written

information to harddisk.

alive-timeout timeout

It is a session keep-alive timeout. It specifies number of seconds to

wait for the next request from some client on the same connection.

Default value is infinite timeout. An optimization proposal is to set

value to 1-3 seconds. Useless connections are then closed and reused

for other clients. This option would be useless, if Sedna supported

connection pooling. Then the infinity value would be desired.

Second process important to us is se cdb (creates a database). This process

has eleven options [fSPR11a], one of them we try to adjust:

bufs-num N

This option sets the number of buffers, with which the database man-

ager can work in main memory. Default value is 1600 (64KB per

buffer). An optimization proposal is to increase this value to 8000

buffers (500 MB), considering the RAM capacity in Section 4.2.2,

since it enlarges the amount of database data located in main mem-

ory, which are then accessible quicker.

These optimization proposals (except alive-timeout, which will be used

only on the live version of the portal, not during testing, since it would distort

the optimization results) are used during the testing of Sedna performance and

in the next chapters the results are presented.

4.4.2 PHP API function options

In Section 4.2.2 we described all the sedna tweak opt function options.

This function adjusts client session options and since these options tweak the

database performance, we consider them to be important.

46 CHAPTER 4. OPTIMIZATION

Two of these function options we use also during the optimization, since

they can affect the statement execution time in a significant manner.

SE OPTID AUTOCOMMIT

This option is useful for merging more statements into one transac-

tion, since by default every statement is executed in a single transac-

tion. This option showed to be crucial for getting and setting the max-

imum ID of the elements user, post, comment (see Section 7.2.2).

SE OPTID READONLY

This option guarantees that each statement, which is read-only (does

not update any data), is able to read the data immediately, although

maybe slightly obsolete and does not have to wait for a lock release

(see Section 3.4.3). This option can be used every time, when a

select statement is executed.

4.4.3 Statements optimization

This section talks about general tips for an XQuery statement performance

boost [Wal07], which should be used during the statement optimization.

Avoidance of reevaluating the same or similar expressions

In a single statement, using a let clause for evaluating an expression and

then binding its value to a variable, which will be referenced more times, is

more effective than evaluating the expression itself many times. If there is

a possiblity that some expression will be executed more than once, the let

clause should be used instead. See Example 4.1.

Avoidance of unnecessary sorting

When creating a FLWOR expression, it is pertinent to know, if we are con-

cerned about an ordering of the expression result or not. This decision can

considerably boost the statement performance. See Example 4.1 (an ineffi-

ciency resides in sorting the two path expression, which are then re-sort in

document order again because of union). Even if we want the result to be

4.5. OPTIMIZATION RESULTS MEASUREMENT 47

sorted, there are some steps during evaluating that still can be declared as

unordered to save some time. For detailed informations see [Wal07].

Avoidance of expensive path expressions

Path expressions, which use descendant-or-self axis (abbreviated //),

can be very time consuming, because every descendant node has to be checked

during the evaluation. If we know the whole path to the last descendant, is

much more efficient to write it straight away than use descendant-or-self

axis.

Usage of predicates instead of where clause

As written in the title, when using a FLWOR expression, is more effective

to write the where clause as a predicate in the path expression. This filters

out the elements before they are selected and evaluated in the next step of the

FLWOR expression.

Usage of indices

Indices are very useful, if they are set appropriately considering the database

structure and the database statement types. What does appropriately mean

in this context – it is very important to analyse, which elements and attributes

are used in the path expression predicates and analyse the statement types.

After that we can decide what indices to set. There is a thin line between a

well-optimized database using indices and overindexed database. If there is a

lot of update statements on the database, indices can have the opposite effect

on execution time as we assumed, since index tree needs to be updated too

often.

4.5 Optimization results measurement

When optimizing the database, it is important to have a tool to measure

a difference between its non-optimized and optimized version. Such a tool is

called a benchmark.

48 CHAPTER 4. OPTIMIZATION

Example 4.1 Usage of statement optimization techniques
Avoidance of reevaluating the same or similar expressions:

Less efficient query:

for $post in /blog/post

where data($post/@accessCount) > 200

order by $post/title

return <views>{data($post/@accessCount)}</views>

More efficient query:

for $post in /blog/post

let $views := data($post/@accessCount)

where $views > 200

order by $post/title

return <views>{$views}</views>

Avoidance of unnecessary sorting:

Less efficient query:

let $blog := /blog

return $blog//title | $blog//heading

More efficient query:

unordered{

let $blog := /blog

return $blog//(title|heading)

}

Definition 4.5.1 Benchmark is a program that is specially designed to provide

performance measurements for a particular operating system or application.

We use an XML database benchmark to measure, how the optimization

boosts the database performance. The next chapter discusses existing XML

database benchmarks and their characteristics – how they work, what they

measure – and how these can be used for our purpose.

Chapter 5

Benchmarks

Definition 5.0.2 ([BMY09]) An XML benchmark is a specification of a set

of meaningful and relevant tasks, intended to assess the functionality and/or

performance of an XML processing tool or system. The benchmark must specify

the following:

1. a deterministic workload, consisting of a set of XML documents and/or

a procedure for obtaining these and a set of operations to be performed

2. detailed rules for executing the workload and making the measurements

3. the metrics used to report the results of the benchmark

4. standard ways of interpreting the results

5.1 Existing XML benchmarks

There are two main types of XML benchmarks. The first is an application-

level benchmark and the second is a micro benchmark [Mly08]. The difference

between them is that the former was created to compare different applications

among each other, whereas the latter was created to study a given aspect of

XML processing tool (e.g., performance, resource consumption, etc.).

In Table 5.1 we introduce six well-known benchmarks and describe their

characteristics [Mly08][ABNE10][NKS07][RPJ+06].

49

50 CHAPTER 5. BENCHMARKS

MBench XBench XMach-1 XMark TPoX
Type of
benchmark

Micro Application-
level

Application-
level

Application-
level

Application-
level

Source Synthetic Synthetic Synthetic Synthetic Synthetic
Number of
users

single single single/multi single single/multi

Number of
docs

1 Mixed 104 to 107 1 3.6 ∗ 106 to
3.6 ∗ 1011

Select
statements

25 20 8 20 7

Update
statements

5 0 3 0 10

Metrics response
time

response
time

throughput response
time

throughput,
resp. time

Table 5.1: Comparison of different benchmarks

MBench

This benchmark is a micro benchmark and uses single-document database

scenario. The data used in the database are code-generated, but a user can

set the size and the depth of the document. Contrary to other benchmarks

in this comparison, this benchmark uses update statements also - inserting a

node, deleting a set of nodes and bulk-loading of a new XML document.

XBench

This application-level benchmark also uses code-generated data. The database

document can be selected from these four types: DC/SD, DC/MD, TC/SD,

TC/MD, where DC is a data-centric, TC is a text-centric, SD is a single docu-

ment and MD is a multiple document case. The size of the document can vary

from small (10 MB), normal (100 MB), large (1 GB) to huge (10 GB).

XMach-1

Another application-level benchmark is XMach-1. This benchmark uses

a web-based application scenario, so it is a first benchmark from this list,

which can simulate multiple users. The number of the database documents

vary from 104 to 107 with document size ranging between 2 KB to 100 KB.

The maximum depth of an XML tree is restricted to 6. Since generated doc-

5.2. CHOOSING AN APPROPRIATE BENCHMARK 51

uments are very small, this benchmark is inappropriate for evaluating large

scale implementations.

XMark

This application-level benchmark uses a single, code-generated document

also, but contrary to other such benchmarks, with this benchmark user can

set the document size with scaling factor. Although the document depth is

fixed to 12, there are still more possibilities for document generation than in

other benchmarks. The main drawback of this benchmark is its fixed depth

and even distribution of elements at each level.

TPoX

Another application-level benchmark, which targets multi-user environ-

ments, uses code-generated data too. But in comparison to other benchmarks,

the range of the document amount used in the database is the biggest - from

3.6 ∗ 106 to 3.6 ∗ 1011. The document size varies from 3 KB to 20 KB. The

tree depth and breadth is controlled by a template, which generates the data.

This benchmark is the only one from this list, where the number of the update

statements exceeds the number of the select statements.

5.2 Choosing an appropriate benchmark

In the previous section we mentioned known benchmarks and described

their characteristics. In this section we discuss what benchmark features we

required to measure optimization results and what benchmark, if any, was the

most appropriate for our purpose.

From the base point of view, we needed to know, which type of benchmark

we should use for a measurement of the optimization. It is clear that we

needed a micro benchmark, since we studied only Sedna performance, not

different applications among each other. As we can see in the table 5.1, there

is only one such benchmark - MBench.

As we mentioned earlier (Table 5.1), every benchmark from our list uses

52 CHAPTER 5. BENCHMARKS

code generator for creating the database content. It means that there is no pos-

sibility to use own data as a database content. In our case, this feature was the

most important for us, since we studied, how the database with original data

reacted, when we changed the system settings or optimized the statements.

From this point of view, no listed benchmark was pertinent for us.

The second very important feature for us was a usage of update statements

in a benchmark. Since one of the essential actions on our portal is publishing

posts and comments, we wanted to be capable of measuring the optimization

results of update statements too. Other reason, why it was important for us,

was that average execution time of update statements on the portal was very

high before optimization and we needed to test the optimization contribution

using a benchmark. In the list there are three benchmarks, which fulfilled this

request. The TPoX benchmark emphasizes the update statements the most.

Another crucial benchmark feature for us was a multi-user testing. Since

we had an enormous problem with the database each time, when a lot of

users had practicals or submitted their projects, we needed to test, how the

optimization impacted on this problem, by multi-user testing. There are only

two benchmarks with this property - XMach-1 and TPoX.

We defined above, what benchmark features were significant for us and why.

The next step was to choose the right benchmark. But here we encountered

the problem, since there was no such an existing benchmark that satisfied all

our requirements. The resolution was to create our own micro benchmark,

which covered all mentioned features.

Chapter 6

Statement analysis

Since we did not have any statistics about which portal statements are executed

the most or last the most time, we made a statement analysis. This chapter

presents, how we gathered and analysed the data, and the analysis results.

6.1 Gathering the data

At the beginning, the most important information for us was, what state-

ments are executed on the portal and how long they last. To find it out, we

decided to store these five statement attributes after the statement execution

– a complete statement text, its execution time in milliseconds, an execution

endtime, a statement type (select, update, insert, delete) and a file-

name and a line, from where the statement execution was called. As a storage

we used MySQL database, not our XML database. The main reason was, since

we had problems with the XML database, we did not want to load it more

than it was and cause another problems.

This statement logging was turned on twice and lasted one workweek each

time. Since the portal is used mainly for the study purpose, the user activity

is the highest during the semester and culminates at the end of the semester,

since there are course deadlines for project submissions. This fact led us to

decision to log an activity during the semester and at the end of the semester

to see the difference between executed statement preferences.

53

54 CHAPTER 6. STATEMENT ANALYSIS

During the semester At the end of the semester
Number of executed statements 514 322 1 878 849
Average statement execution time in
ms

118.45 76.02

Average modification statement exe-
cution time in ms

348.47 637.77

Average select statement execution
time in ms

108.69 65.96

Table 6.1: Overall statistics

6.2 The data analysis

6.2.1 Overall analysis

After the data collection was finished, we started to analyse different as-

pects of the gathered data. Every aspect was examined particularly in during-

semester statements and end-semester statements and the results were com-

pared together. Overall statistics are in Table 6.1.

The first examined aspect was a number of executed statements of certain

type. The results are shown on Figure 6.1a. As we assumed in the beginning,

there was a significant difference between the load during and at the end of the

semester. Modification statements (update, insert, delete) were executed

about 55% more at the end of the semester than during the semester. When we

compared select statements, an increase was even larger – more than 370%.

A modification and a select statement ratio was 1:24 during the semester

and 1:49 at the end of the semester. From these results we see clearly that the

XML database was loaded mainly by reading the data, not by modificating

them. Considering these results during the optimization, we decided to accept

a little average execution time increase of modification statements caused by a

rebuilting of an index tree, if a particular index boosted an average execution

time of select statements significantly.

6.2. THE DATA ANALYSIS 55

(a) Number of executed statements of certain type

(b) Average statements execution time

Figure 6.1: Analysis of statement characteristics

56 CHAPTER 6. STATEMENT ANALYSIS

The second examined aspect was an average execution time of a certain

statement type. The results are displayed on Figure 6.1b. We see that an av-

erage execution time of modification statements was much more higher than an

average execution time of select statements. Concrete numbers say that the

average execution time of modification statements in total was 348.47 millisec-

onds during the semester and 637.77 milliseconds at the end of the semester

(see Table 6.1). Alarming was that in both logged periods an average execu-

tion time of every modification statement type was more than 300 milliseconds

and an average execution time of every select statement type was more than

60 milliseconds, what was unacceptable for us.

6.2.2 Different statements usage

The next step was to survey, how many different statements were executed

during both logged periods and how long they were executed. By different

statements we mean statements, which calling location (a filename and a line)

is different. The same statements are those, which were called from the same

location. The analysis results of both logged periods are on Figure 6.2. Two

subfigures depict top 15 the most executed statements with their average ex-

ecution time during and at the end of the semester (these statements do not

have to be the same, they can differ). As we see, the most executed state-

ments had long average execution time also. There was only one modification

statement on these figures – on Figure 6.2a. Another observation (see number

of select statements on Figure 6.1a) revealed that these top 15 statements

created more than 95% of the overall database load during the semester and

96% at the end of the semester. This means that the database performance

should be boosted significantly by only optimizing these 30 statements (15 for

both logged periods).

6.2. THE DATA ANALYSIS 57

(a) Top 15 the most executed statements during the semester

(b) Top 15 the most executed statements at the end of the semester

Figure 6.2: Top 15 the most executed statements statistics

58 CHAPTER 6. STATEMENT ANALYSIS

6.2.3 Predicates usage

When we knew the base statistical data (what statements were executed,

how much, how long), we started to examine, which predicates were used the

most in the statements and how long these statements were executed. This

information was very important for us, since it helped us to choose the right

elements and attributes from our XML structure as indices. On Figure 6.3b

and 6.4b are displayed our results from the during-semester period and the end-

semester period. These results contain all predicates used in the statements

and say how much they were executed. We extracted these data from logged

statement texts by matching a predicate pattern with a statement text.

From mentioned results we could already say, which elements and attributes

are suitable candidates as indices, depending on their execution number. The

index set would contain the elements and attributes of which predicates had

execution number greater than 1 000 during the semester and greater than 100

000 at the end of the semester:

1. user[@ID] (post[../../@ID] is the same predicate)

2. user[info/nick]

3. post[@ID]

4. post[@status]

5. post[@lang]

6. user[@ref]

7. course[@year]

8. post[ranks/reputationScore]

9. post[@accessCount]

10. post[@private]

But there were cases, when some predicates were used only together with

another ones, so we made also an analysis, which combinations were used the

most. The results are depicted on Table 6.2.

As can be seen, there were certain predicates, which were used only in a

combination with other predicates, e.g., post[@status], post[@lang], course[@year]

6.2. THE DATA ANALYSIS 59

or post[@private]. Based on these analysis results, we decided to remove

those attributes from the index set and adjust it to this form:

1. user[@ID]

2. user[info/nick]

3. post[@ID]

4. user[@ref]

5. post[ranks/reputationScore]

6. post[@accessCount]

This index set is used during the statement optimization described in the

next chapter.

60 CHAPTER 6. STATEMENT ANALYSIS

(a) Table depicted number of statement executions with certain predicate used

(b) Number of statement executions with certain predicate

Figure 6.3: Statistics retrieved during the semester

6.2. THE DATA ANALYSIS 61

(a) Table depicted number of statement executions with certain predicate used

(b) Number of statement executions with certain predicate

Figure 6.4: Statistics retrieved at the end of the semester

62 CHAPTER 6. STATEMENT ANALYSIS

(a) Number of statement execution with certain predicate combination during the semester

(b) Number of statement execution with certain predicate combination at the end of the
semester

Table 6.2: Number of statement execution with certain predicate combination

Chapter 7

Portal benchmarks

In this chapter we describe in detail our benchmarks used for a measurement of

the optimization results and the optimization results themselves. We used two

different benchmarks, since we measured an optimization effect of the state-

ment optimization firstly and then we measured the statement optimization

effect altogether with the system and session options optimization effect by

multi-user testing.

7.1 Our benchmark design overview

The most important part of our benchmark was a workload. We needed to

examine different optimization techniques on our portal data, so our workload

consisted of the real portal data binding to a specific date. Another impor-

tant part of our benchmark was a set of statements to be performed. At the

beginning we did not know, which statements to use, since we did not have

any statistics, which statements are the most executed or last the most time.

So we made a statement analysis during and at the end of the semester in the

first place (see Chapter 6). Those statements, which were the most executed

or lasted the most time, were used in the set of statements for benchmarks.

We created two different benchmarks. Each of them used the statement

response time as a metric. First was Simple benchmark, whose purpose was to

measure a statement and index usage optimization effect. The best optimized

63

64 CHAPTER 7. PORTAL BENCHMARKS

statement versions were then used in our Complex benchmark. Its purpose

was to measure, how the overall optimization (statements, system and session

settings) boosted the response time of complete actions executed on the portal,

e.g., homepage loading, user homepage loading, etc. We simulated multi-user

environment – the certain amount of users was run in parallel and each user

executed the specific set of actions. Then we compared the action response

time before and after the optimization.

Both benchmark constructions and the optimization results are described

in detail in next sections.

7.2 Simple benchmark

Simple benchmark was designed to measure, how the statement optimiza-

tion boosts the average statement execution time. The first step was to run

the original statements in an iteration and measure their average execution

time. The second step was to run the optimized versions of these statements

in an iteration, measure their average execution time and compare the results.

7.2.1 Specification

Here we specify a Simple benchmark design according to Definition 5.0.2.

Deterministic workload

The benchmark workload consists of the real portal data binding to a spe-

cific date. More precisely, the workload is comprised from the database backup

binded to a specific date. There are 1077 XML documents, their average size

is 12.91 KB. The database size in total is 14.58 MB and a maximal depth

of an XML tree is 52. The database already contains two indices – postID

and tags, as mentioned in Section 4.3. During the benchmarking, this set of

indices changes, since we add there indices, which were proposed in Section

6.2.3.

7.2. SIMPLE BENCHMARK 65

Set name Statements in to-
tal

Select state-
ments

Modification
statements

Original statements set 27 22 5
Optimized statements set 12 11 1
Index Statements set 24 19 5
IndexII Statements set 4 2 2

Table 7.1: Operation sets – characteristics

Set of operations

Operations, which are used in the benchmark, are statements selected from

the statement analysis results according to their number of executions and their

average execution time. To the benchmark statement set we picked those state-

ments from the during-semester period, of which execution number exceeded

500 or those, of which an average execution time exceeded 100 ms and their

execution number was greater than 10. From the end-semester period we chose

the statements with execution number exceeding 1000 or those, of which an

average execution time exceeded 100 ms and their number of executions broke

1000 times limit. During the benchmarking, we worked with four statements

set (see Table 7.1).

The first set consists of every statement which satisfied conditions men-

tioned above. It has 27 statements, 22 of which are select statements and 5

of which are modification statements. We named this set Original statements

set, since it contains statements in their original version used on the portal. A

full version of Original statements set is in appendix in Listing A.1.1.

The second set contains optimized versions of those statements from Orig-

inal statements set, which were able to be optimized according to the tips

discussed in Section 4.4.3, except indices usage. There are 12 statements in

total, of which 1 is a modification statement, others are select statements.

This set we named Optimized statements set and its full version is in appendix

in Listing A.1.2.

The third set consists of index optimized versions of such statements, which

were able to be optimized by indices usage. We picked statement candidates

either from Original statements set or, if we have already had their optimized

66 CHAPTER 7. PORTAL BENCHMARKS

version, from Optimized statements set. This statements set named Index

Statements set contains 24 statements, 5 of them are modification statements,

the rest are select statements. A full set version is in appendix in Listing

A.1.3. Index set used for the optimization of these statements includes these

6 elements/attributes (as proposed in Section 6.2.3):

• user[@ID]

• user[info/nick]

• post[@ID]

• user[@ref]

• post[ranks/reputationScore]

• post[@accessCount]

The fourth set consists of index optimized versions of such statements,

which were able to be optimized by indices usage again, but the index set

is different from the previous one. Candidates for index optimized version

were picked either from Original statements set or, if we have already had

their optimized version, from Optimized statements set. After creating the

optimized versions of statements, we excluded those statements, which have

already been in Index Statements set. Created set named Index II Statements

set has 4 statements, half of them are modification statements. A full version

is in appendix in Listing A.1.4. The set of indices used here includes these 5

elements/attributes:

• user[@ID]

• user[info/nick]

• post[@ID]

• post[ranks/reputationScore]

• post[@status]

The reason why we used two different index sets was, we wanted to com-

pare, which index set boosted the database performance more. First index set

followed from the statement analysis results in Section 6.2.3. In the second set,

we removed the user[@ref] index, since it was used only in one statement

in Index Statements set and replaced the post[@accessCount] index with

7.2. SIMPLE BENCHMARK 67

post[@status] index. The reason for replacement was that the former index

was used (apart form other statements) in two statements, which retrieve and

update accessCount attribute of post elements. This activity is executed

each time, when a blog post is displayed to user. Since the accessCount index

has to be rebuilt after each accessCount attribute update, we replaced this

index with post[@status] index. This index was chosen, because the pred-

icate post[@status] (similarly to post[@accessCount]) occured often in a

combination with others (as mentioned in Section 6.2.3).

The statements included in the sets mentioned above contains keywords in

their text, specifically in predicates and in attribute values. These keywords

are:

• ###USER ID###

• ###USER NICK###

• ###POST ID###

• ###COMMENT ID###

• ###MAX ID###

These keywords serve as a hint, where to insert parameter values. This strategy

helps us to guarantee, that there are different statemets executed during the

benchmarking.

Rules for executing the workload

Here we specify, how the benchmark is used and how we make the mea-

surements.

When running the benchmark, two options have to be set. The first is,

which statements set is going to be used and the second is the number of itera-

tions of a statement execution. Then the benchmark starts to iterate through

the selected statements set. It picks one statement during each iteration and

iterates its execution defined number of times. Before each statement exe-

cution, the keywords in the statement text are replaced by values from the

XML file, where 50 portal users are listed with their ID, NICK, POST ID and

COMMENT ID. The values are chosen according to an iteration number of the

68 CHAPTER 7. PORTAL BENCHMARKS

statement execution. The keyword ###MAX ID### is replaced with an up-to-

date maximum ID.

After the statement execution the benchmark saves a statement execution

time in milliseconds, add this value to a total execution time and counts a

minimal and a maximal execution time. After the end of the iteration of the

statement execution, the benchmark computes an average execution time of

this statement and a standard deviation. All these results are then written to

a file.

Metrics

The only one metric used in Simple benchmark is an average statement

execution time measured in milliseconds.

How to interpret the results

Since the benchmark metric is an average statement execution time, the

interpretation of the results is based on a comparison the average execution

time of the original statement version with the average execution time of its

optimized versions. We want to achieve the best average statement execution

time during the optimization, so that statement version, which has the best

average execution time, is declared the best statement version.

7.2.2 The results

As we wrote in the benchmark specification, there were four different state-

ments sets, which could be used during the benchmarking. We used these four

sets with the iteration number set to 500. Each statement was then executed

500 times. The results of Simple benchmark are presented on Figure 7.1. All

partial results are in appendix (see Figures A.1 and A.2).

As we see on Figure 7.1, for every original statement version except one (no.

15) we created at least one optimized version, which had the average execution

time better than the original version. The statement no. 15 was a special case,

since there were no optimization possibilities according to general optimization

tips mentioned in Section 4.4.3. Changes we did, did not cause a statement

7.2. SIMPLE BENCHMARK 69

performance improvement. The average execution time of the statement no.

22 was improved from 6 032.53 ms to 4 415.89 ms. This execution time was

still too high, but when we examined this statement in detail, we found out,

this statement could be replaced by the statement no. 26. This replacement

caused improvement from 6 032.53ms to 2.14ms. The long average execution

time of the statement no. 23 was caused by a usage of descendant-or-self

axis (abbreviated //). We were not able to get rid of it in the optimized version

of this statement, since the comment element has no depth restriction for its

subtree, but index usage boosted the statement performance enormously.

The statement no. 27 had the longest average execution time at all. This

statement was used for finding the maximal ID attribute value used in post or

comment elements, since we needed it during inserting the new post/comment

element to the database. In relational databases, this functionality is provided

by an auto-increment field – this allows a unique number to be generated when

a new record is inserted into a table. In Sedna database, this functionality is

not supported, so during the portal development, this had to be implemented

by our colleagues. Created statement was searching the whole collection of

users – every post or comment element in the blog element for finding the

maximal used ID. Since its average execution time was so high, this caused

also problems with uniqueness of a post/comment ID attribute. Sometimes

happened there were 5 posts/comments with the same ID. Our solution was

to change the way for getting a maximal used ID completely. We created an

XML file, where the maximal values of user and post/comment ID attributes

are stored. Now the operation of getting the maximal ID consists of two

statements given into one transaction (first statement selects the maximal ID,

second writes its new value to the database). This guarantees ID uniqueness

in the whole database.

With this benchmark we examined also, which index set was more ap-

propriate for our optimization purpose. The benchmark results showed, the

second index set used in Index II Statements set was more appropriate for the

optimization goal.

70 CHAPTER 7. PORTAL BENCHMARKS

(a) Table depicted an average execution time of statements used in Simple Benchmark

(b) Comparison of average execution times of all statements used in Simple benchmark

Figure 7.1: Simple benchmark results

7.3. COMPLEX BENCHMARK 71

7.3 Complex benchmark

Complex benchmark was designed to measure how the complete optimiza-

tion (statement optimization, session and settings optimization) boosted the

average execution time of whole actions executed on the portal, e.g., homepage

loading, user’s blog loading, post page loading, etc. It simulated multi-user

environment – the certain amount of logged/not logged in users was run in

parallel and each user executed the specific set of actions. Then we compared

the action execution time before and after the complete optimization.

7.3.1 Specification

This section contains a Complex benchmark specification based on Defini-

tion 5.0.2.

Deterministic workload

There are two versions of the workload used in this benchmark. The first

workload consists of the real portal data binding to a specific date. It is

the database backup with the same characteristics as the workload of Simple

benchmark (see Section 7.2.1). The second workload is the first workload with

updated index set. It is that index set, which showed to be the best solution for

the statement optimization in the Simple benchmark results (Section 7.2.2).

The first workload is used with original statements, the second is used with

optimized statements.

Set of operations

This benchmark contains two sets of operations. Each set consists of groups

of statements, which represent basic actions executed on the portal. By the

action we mean, .e.g., post page loading, homepage loading or post insertion.

Both sets contain the same actions. Actions in the first set, named Original

actions set, are created by original statements only (most of them were used in

Simple benchmark operation sets too – Section 7.2.1). A full version of this set

can be found on an enclosed CD. Actions in the second set, named Optimized

72 CHAPTER 7. PORTAL BENCHMARKS

actions set, are created by the optimized versions of the statements used in

Original actions set. Optimized statement versions are selected according to

Simple benchmark results (Section 7.2.2). A full version of this set can be found

on an enclosed CD. As mentioned in Section 7.2.1, statements can contain

keywords, which are used for detecting a place, where to insert a parameter

value. This is a complete list of keywords used in these statements and their

description:

• ###USER NICK### – nick of a user, whose blog is viewed by other user

• ###USER ID### – ID of the user with USER NICK

• ###USER POST ID### – post ID belonging to the user with USER ID

• ###USER POST COMMENT ID### – comment ID belonging to a post with

USER POST ID

• ###LOGGED USER ID### – ID of a logged in user

• ###LOGGED USER NICK### – nick of the user with LOGGED USER ID

• ###LOGGED USER POST ID### – post ID belonging to the user with LOGGED USER POST ID

Below is a complete list of actions used in the benchmark with their char-

acteristics.

1. Homepage

This action represents portal homepage loading.

2. Homepage with tag

This action represents loading of the homepage with a specified tag. Tag

is a keyword, with which the user can describe the content of his/her

post. Homepage with a specified tag contains only those posts, which

have this tag assigned to their content.

3. User’s blog

This action represents loading of the certain user’s blog.

4. User’s blog with tag

Similarly to homepage with tag, this action represents loading of the

user’s blog with a specified tag. It contains only those user’s posts,

which have this tag assigned to their content.

5. Post detail page

This action represents loading of the page with a concrete post.

7.3. COMPLEX BENCHMARK 73

6. Insert comment page

This action represents loading of the page, where the user can insert a

comment to a specified post or comment.

7. Insert comment to post – execution

This action represents an insertion of a comment to a specified post.

8. Insert comment to comment – execution

This action represents an insertion of a comment to another comment in

a specified post.

9. User’s posts page

This action represents loading of the page, where user can manage his/her

posts.

10. Insert post page

This action represents loading of the page, where user can insert a post

into his/her blog.

11. Insert post – execution

This action represents an insertion of a post into user’s blog.

12. Update post page

This action represents loading of the page, where user can update a

certain post in his/her blog.

13. Update post – execution

This action represents updating a certain post in user’s blog.

When the benchmark executes the certain action, it executes a respective

group of statements in that order, in which they are executed on the portal

during the real user’s request. Statement characteristics of actions are in Ta-

ble 7.2. As we see, some of the actions are read-only (they contain select

statements solely), others modify the database in some way. If a table cell

contains also a number in brackets, this number is valid for the action located

in Optimized actions set. Otherwise, actions of both sets share the same fea-

ture. The benchmark can simulate users, which are logged or not logged in. In

case, users are logged in, each action in both sets contains 4 additional select

statements, which retrieve personal data of logged in user. These statements

are executed firstly before other action statements.

74 CHAPTER 7. PORTAL BENCHMARKS

Action name Statements in to-
tal

Select state-
ments

Modification
statements

Homepage 4 4 0
Homepage with tag 4 4 0
User’s blog 6 6 0
User’s blog with tag 6 6 0
Post detail page 8 7 1
Insert comment page 3 3 0
Insert comment to post –
execution

10 (11) 8 2 (3)

Insert comment to com-
ment – execution

10 (11) 8 2 (3)

User’s posts page 2 2 0
Insert post page 1 1 0
Insert post – execution 4 (5) 3 1 (2)
Update post page 2 2 0
Update post – execution 3 2 1

Table 7.2: Characteristics of action statements. This table contains the infor-
mation about which statement types are used in actions.

Rules for executing the workload

In this section we specify, how the benchmark is used and how we make

the measurements.

When running the benchmark, four options can be set – USERS NUM, LOGGED,

INS RATIO and OPT. The first option defines how many users are going to be

simulated. The second option defines, if these users are logged or not logged

in. The third option specifies the ratio of users, who insert a post/comment,

to users, who do not insert anything. These three options are required. The

fourth option is not required and if it is set, Optimized actions set is used

during the benchmarking. Otherwise Original actions set is used.

When the benchmark starts, it runs defined number of users parallelly.

Each user is simulated by a PHP script, which executes above mentioned ac-

tions. In the beginning, values, which replace the keywords used in statements,

are selected. The set of possible values is stored in two XML files. The first

file contains values replacing first four keywords from the keyword list. These

values specify a user, who’s blog is viewed by other user. In the file, there are

7.3. COMPLEX BENCHMARK 75

User type Permitted actions
Read-only, not logged in 1,2,3,4,5
Insert, not logged in 1,2,3,4,5,6,7,8
Read-only, logged in 1,2,3,4,5
Insert, logged in all

Table 7.3: Types of users simulated in the benchmark and their permitted
actions

50 users. The second file contains values replacing last three keywords from

the keyword list. These values specify a user, who is logged in at the portal. In

the file, there are all portal registered users – 1075. Which values are selected

depends on a user’s serial number and a total number of simulated users. This

values selection guarantees that a user with a specific serial number executes

the same versions of statements during each benchmark running. This helps

us to compare the optimization contribution better.

When values replacing the keywords are selected, actions start to execute.

Execution of an action means, that statements with replaced keywords are

executed in the defined order. After execution of all statements belonging to

a certain action, their execution times are count together and this number

creates an execution time of the whole action. The order of executed actions

is fixed for all users, but which actions are executed, depends on a type of the

user, who is simulated. Table 7.3 shows the permitted actions for specific user

types. The user, who is not logged in, cannot execute the last five actions from

the action list, because he/she does not have a blog. The logged in user may

execute each of the mentioned actions. The user marked as a read-only cannot

insert a post/comment, otherwise he/she can insert a post/comment (post

only, if the user is logged in). To simulate the user’s behaviour the greatest

extent possible, we add a pause between executed actions, which lasts from

5 to 9 seconds (precise number is computed from user’s serial number). This

can simulate the situation, when the user views some page and does not click

on other link immediately, but waits and reads information displayed on the

page.

To simulate the different contribution of each optimization type (statement

76 CHAPTER 7. PORTAL BENCHMARKS

Option setting no. USERS NUM LOGGED INS RATIO
1. 20 0 1:5
2. 20 1 1:5
3. 40 0 1:10
4. 40 1 1:10

Table 7.4: Different option settings used during the benchmarking

optimization, session and settings optimization), we run this benchmark five

times with different optimization techniques used and compared the results.

Below is the list of run benchmarks with their characteristics.

1. Original statements benchmark

This benchmark uses Original actions set and all original Sedna settings.

2. Original statements + settings benchmark

This benchmark uses Original actions set, but additionally to 1. bench-

mark, it uses optimized Sedna system settings (as proposed in Section

4.4.1).

3. Original statements + read-only mode benchmark

This benchmark uses Original actions set, but additionally to 1. bench-

mark, it uses read-only mode with select statements (as proposed in

Section 4.4.2).

4. Optimized statements benchmark

Contrary to 1. benchmark, this benchmark uses Optimized actions set

and all original Sedna settings.

5. Optimized statements + settings + read-only mode benchmark

This benchmark uses Optimized actions set, optimized Sedna system

settings and read-only mode with select statements – all optimization

techniques together.

Each of this benchmarks was run with four different settings of the benchmark

options (see Table 7.4) and each such benchmark was iterated five times for

more precise computation of an average execution time of actions. In total,

we run 100 benchmarks.

7.3. COMPLEX BENCHMARK 77

Metrics

The only one metric used in Complex benchmark is an average action

execution time measured in seconds.

How to interpret the results

Since the benchmark metric is an average action execution time, the inter-

pretation of the results is based on a comparison the average execution time of

actions executed in benchmarks using different optimization techniques. Those

optimization techniques, which boosted the average action execution time the

most, are marked as the best optimization solution.

7.3.2 The results

As we said earlier, we run five benchmarks with different optimization

techniques used. Each of these benchmarks was executed with different option

settings (see Table 7.4). The benchmark results are on Figures 7.2, 7.3, 7.4

and 7.5. Each of these figures shows, how long the listed actions were executed

(measured in seconds) during the benchmarking with different option settings

and with different optimization techniques used. We can easily see on these

figures, what the average execution time of actions with original statements

was (1. benchmark), how the individual optimization techniques affected the

average action execution time (benchmarks 2. – 4.) and what impact on the

action execution time all these optimization techniques had together. Actions

and benchmarks in the figures are numbered according to their lists mentioned

in Section 7.3.1.

As we see on the figures, actions executed during Original statements

benchmark (no. 1) did not have the worst average execution time always.

There were cases, when some actions had their worst average execution time

generated by Original statements + settings benchmark (2. benchmark), i.e.,

actions no. 7., 8., 10., 12., 13. on Figure 7.3. In our opinion, this was caused

by increased page swapping. The optimization of the Sedna system settings

resided, i.a., in increase of the number of buffers used by the Sedna database

manager in main memory from 1600 (100 MB) to 8000 (500 MB) (as said in

78 CHAPTER 7. PORTAL BENCHMARKS

Figure 7.2: Complex benchmark results. Benchmark run with 20 not logged
in users, every fifth user inserted a comment to a post/comment.

Figure 7.3: Complex benchmark results. Benchmark run with 20 logged in
users, every fifth user inserted a comment or a post.

7.3. COMPLEX BENCHMARK 79

Figure 7.4: Complex benchmark results. Benchmark run with 40 not logged
in users, every tenth user inserted a comment to a post/comment.

Figure 7.5: Complex benchmark results. Benchmark run with 40 logged in
users, every tenth user inserted a comment or a post.

80 CHAPTER 7. PORTAL BENCHMARKS

Section 4.4.1). This reduced the amount of main memory, which could be used

by other Sedna processes (i.e., session processes) and increased page swapping.

This caused an increase of an average execution time of actions compared to

an average execution time of actions generated by Original statements bench-

mark.

Other case, where the worst average action execution time was generated

by other than Original statements benchmark, was Original statements + read-

only mode benchmark (3. benchmark) during the simulation of 40 users. Ex-

amples are actions no. 1., 7., 8. on Figure 7.4, which had their worst times

generated by this benchmark. As we see, during the simulation of 20 users,

the optimization technique of this benchmark (read-only mode) showed as a

good solution for the database performance boost. But during the simulation

of 40 users, the positive effect of this optimization technique turned into draw-

back in actions, which statements modified XML documents (no. 7., 8.) or

passed through the whole users’ collection more times (like the action no. 1

simulating the homepage loading).

Optimized statements benchmark (4. benchmark), unlike previous men-

tioned benchmarks, generated better average action execution time than Orig-

inal statements benchmark each time except one case (action no. 10 on Figure

7.5, where 40 logged in users were simulated). So this optimization technique

showed as the best individual optimization technique used during the bench-

marking.

Last benchmark, which results we want to describe, is Optimized state-

ments + settings + read-only mode benchmark (5. benchmark). This bench-

mark used all optimization techniques together. The result was that in major-

ity of cases it generated better average action execution time than 4. bench-

mark, as we assumed. But in cases, where benchmarks no. 2. or 3. generated

worse average execution time of actions than 1. benchmark, this influenced the

results of this benchmark and the average execution time of certain actions was

longer than in 4. benchmark. Nevertheless, the overall positive contribution

of all optimization techniques used in 5. benchmark was a lot greater than

positive contribution of individual optimization techniques, since our portal is

loaded mainly by the select statements, as we declared in Section 6.2.1.

7.3. COMPLEX BENCHMARK 81

Optimization techniques used together in 5. benchmark boosted the per-

formance of every listed action significantly. The biggest success for us is the

performance boost of the homepage loading and insertion of the comment/-

post, since these actions were weak points of our portal. The homepage average

execution time boosted more than 95% in total in all four benchmark option

settings. Insertion of the comment/post boosted more than 90% in first two

benchmark option settings and more than 40% in last two benchmark option

settings.

82 CHAPTER 7. PORTAL BENCHMARKS

Conclusion

Our work can be divided into three main parts. In the first part we intro-

duced the basic building blocks of our topic – XML format, XML databases

and Sedna database management system deployed at the portal. The second

part contained the analysis of the existing optimization of the database, op-

timization proposals and description of existing benchmarks. The third part

described the analysis of database statements, the desing of our benchmarks

and their results.

During the introduction of the basic building blocks, we described in detail,

how the XML format looks like. We described its structural components and

languages, which are used for its transformation and querying. The second

chapter presented XML databases and their main features. We explained,

for what they can be used for and why they should be used. We introduced

the basic segmentation of XML databases and described in detail native XML

databases, on which our thesis is based on. The third chapter was dedicated to

Sedna, the XML database deployed at the blog.matfyz.sk portal. We described

their architecture, storage system, update language and basic features of the

transactions used in this system.

The main function of the second part of our work was to introduce our

optimization proposals and make the analysis of existing benchmarks. Firstly,

we analysed the hardware and software used on our server. Then we evaluated

existing database optimization and proposed optimization techniques, which

could be used during the database optimization. Next, the existing bench-

marks were described. After their description, we proposed to create our own

benchmarks, since no one from mentioned benchmarks satisfied our conditions.

83

84 CHAPTER 7. PORTAL BENCHMARKS

Third part consisted of the database statement analysis and portal bench-

marks design with presentation of their results. The statement analysis was

made, because we did not have information about which statements are used

on the portal and how long they last. After this analysis we knew, that the

database was loaded mainly by reading the data, not by their modification.

We also knew precisely, what statements caused the biggest problem during

their execution. Based on this analysis we proposed the appropriate index set,

which was then used during the benchmarking.

We created two benchmarks. The first benchmark measured, how the state-

ments optimization proposed in the second part of work boosted their original

average execution time. The results showed great performance improvement.

The second benchmark used these optimized statements during benchmarking

the next aspect of the database – how the performance of the whole actions

executed on the portal was improved by optimization techniques proposed in

the second part of the work. This benchmark used multi-user environment

– it simulated multiple users in parallel. We showed that our proposed op-

timization techniques boosted the performance of all actions executed on the

portal significantly. For example, the average execution time of the homepage

loading action boosted more than 95%. The actions representing an insertion

of the post or the comment, which were among the actions with the longest

average execution time, boosted more than 40% and in some case more than

90%.

Bibliography

[ABNE10] Mohammed Al-Badawi, Siobhán North, and Barry Eaglestone.

The 3D XML Benchmark. In WEBIST ’09: 6th International

Conference on Web Information Systems and Technologies, April

2010.

[AMM05] Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels.

MemBeR: A Micro-benchmark Repository for XQuery. In

Stéphane Bressan, Stefano Ceri, Ela Hunt, Zachary G. Ives, Zohra

Bellahsene, Michael Rys, and Rainer Unland, editors, XSym, vol-

ume 3671 of Lecture Notes in Computer Science, pages 144–161.

Springer, 2005.

[BHG87] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman.

Concurrency control and recovery in database systems. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1987.

[BMY09] Denilson Barbosa, Ioana Manolescu, and Jeffrey Xu Yu. XML

Benchmarks. In Encyclopedia of Database Systems, pages 3576–

3579. Springer US, 2009.

[Bou05] Ronald Bourret. XML and Databases, September 2005. Web ar-

ticle http://www.rpbourret.com/xml/XMLAndDatabases.htm.

[BR02] Timo Böhme and Erhard Rahm. Multi-user Evaluation of XML

Data Management Systems with XMach-1. In In Proceedings of

the VLDB 2002 Workshop EEXTT and CAiSE 2002 Workshop

DTWeb on Efficiency and Effectiveness of XML Tools and Tech-

85

86 BIBLIOGRAPHY

niques and Data Integration over the Web-Revised Papers, pages

167–174. Springer-Verlag, 2002.

[Cor09] Oracle Corporation. XQuery API for Java, 2009. http://jcp.

org/en/jsr/detail?id=225.

[fSPR] Institute for System Programming RAS. Sedna XML Database

Download Page. http://www.sedna.org/download.html.

[fSPR94] Institute for System Programming RAS. About isp ras, January

1994. http://www.ispras.ru/en/index.php.

[fSPR10] Institute for System Programming RAS. PHP API for Sedna XML

database, September 2010. http://www.sedna.org/download.

html.

[fSPR11a] Institute for System Programming RAS. Sedna Administra-

tion Guide, October 2011. http://www.sedna.org/adminguide/

AdminGuide.html.

[fSPR11b] Institute for System Programming RAS. Sedna Program-

mer’s Guide, October 2011. http://www.sedna.org/progguide/

ProgGuide.html.

[Gro] PostgreSQL Global Development Group. PostgreSQL. http://

www.postgresql.org/docs/8.2/static/datatype-xml.html.

[Inf] 3D Informatica. ExtraWay XML Engine. Native XML database

http://www.3di.it/en/products/tecnologia/extraway.

[Ini03] The XML:DB Initiative. XML databases, 2003. http://

xmldb-org.sourceforge.net/.

[Koh08] Anton Kohutovič. blog.matfyz.sk community blog portal. Master

thesis, Comenius university, 2008.

[Leh01] Patrick Lehti. Design and Implementation of a Data Manipulation

Processor for an XML Query Language. Master thesis, Technische

Universität Darmstadt, 2001.

BIBLIOGRAPHY 87

[lWYsC93] Kun lung Wu, Philip S. Yu, and Ming syan Chen. Dynamic finite

versioning: An effective versioning approach to concurrent trans-

action and query processing. In In Proceedings of the Ninth Inter-

national Conference on Data Engineering, pages 577–586, 1993.

[McO] McObject. eXtremeDB – real-time embedded database. http:

//www.mcobject.com/extremedbfamily.shtml.

[Mei00] Wolfgang Meier. eXist-db Open Source Native XML Database,

2000. Native XML database http://exist-db.org/.

[Mly08] Irena Mlynkova. XML Benchmarking. In Proceedings of the IADIS

Multi Conference on Computer Science and Information Systems -

subconference Informatics 2008, MCCSIS ’08, pages 59–66. IADIS,

July 2008.

[NKS07] Matthias Nicola, Irina Kogan, and Berni Schiefer. An XML Trans-

action Processing Benchmark. In Proceedings of the 2007 ACM

SIGMOD international conference on Management of data, SIG-

MOD ’07, pages 937–948, New York, NY, USA, 2007. ACM.

[Ozo] Ozone. Ozone - Java OODBMS. Native XML database http:

//sourceforge.net/projects/ozone/.

[Rej10] Martin Rejda. Modular Redesign of the blog.matfyz.sk Portal.

Master thesis, Comenius university, 2010.

[RPJ+06] Kanda Runapongsa, Jignesh M. Patel, H. V. Jagadish, Yun Chen,

and Shurug Al-Khalifa. The Michigan benchmark: towards XML

query performance diagnostics. Inf. Syst., 31(2):73–97, April 2006.

[SG01] Aaron Skonnard and Martin Gudgin. Essential Xml Quick Ref-

erence: A Programmer’s Reference to XML, XPath, XSLT, XML

Schema, SOAP, and More. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1st edition, 2001.

[SKS01] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan.

Database Systems Concepts. McGraw-Hill Higher Education, 4th

edition, 2001.

88 BIBLIOGRAPHY

[Tea05] BaseX Team. BaseX. The XML Database., 2005. Native XML

database http://basex.org/.

[Tec] Orient Technologies. Orient ODBMS. http://www.

orientechnologies.com/cms/?Solutions:Orient_ODBMS.

[TSK+10] Ilya Taranov, Ivan Shcheklein, Alexander Kalinin, Leonid No-

vak, Sergei Kuznetsov, Roman Pastukhov, Alexander Boldakov,

Denis Turdakov, Konstantin Antipin, Andrey Fomichev, Peter

Pleshachkov, Pavel Velikhov, Nikolai Zavaritski, Maxim Grinev,

Maria Grineva, and Dmitry Lizorkin. Sedna: native XML database

management system (internals overview). In Proceedings of the

2010 international conference on Management of data, SIGMOD

’10, pages 1037–1046, New York, NY, USA, 2010. ACM.

[Ďu11] Juraj Ďud’ák. Tagging System for the blog.matfyz.sk Portal. Mas-

ter thesis, Comenius university, 2011.

[W3C05] W3C. Document Object Model (DOM), January 2005. http:

//www.w3.org/DOM/.

[W3C07] W3C. XSL Transformations (XSLT) Version 2.0, January

2007. W3C Recommendation http://www.w3.org/TR/2007/

REC-xslt20-20070123/.

[W3C08] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition),

November 2008. W3C Recommendation http://www.w3.org/TR/

2008/REC-xml-20081126/.

[W3C09] W3C. Namespaces in XML 1.0 (Third Edition), December

2009. W3C Recommendation http://www.w3.org/TR/2009/

REC-xml-names-20091208/.

[W3C10a] W3C. XML Linking Language (XLink) Version 1.1, May

2010. W3C Recommendation http://www.w3.org/TR/2010/

REC-xlink11-20100506/.

BIBLIOGRAPHY 89

[W3C10b] W3C. XML Path Language (XPath) 2.0 (Second Edition), Decem-

ber 2010. W3C Recommendation http://www.w3.org/TR/2010/

REC-xpath20-20101214/.

[W3C10c] W3C. XQuery 1.0: An XML Query Language (Second Edition),

December 2010. W3C Recommendation http://www.w3.org/TR/

2010/REC-xquery-20101214/.

[W3C10d] W3C. XQuery 1.0 and XPath 2.0 Data Model (XDM) (Second

Edition), December 2010. W3C Recommendation http://www.

w3.org/TR/2010/REC-xpath-datamodel-20101214/.

[W3C10e] W3C. XQuery 1.0 and XPath 2.0 Functions and Operators (Second

Edition), December 2010. W3C Recommendation http://www.

w3.org/TR/2010/REC-xpath-functions-20101214/.

[W3C11a] W3C. XQuery 3.0: An XML Query Language, June

2011. W3C Working Draft http://www.w3.org/TR/2011/

WD-xquery-30-20110614/.

[W3C11b] W3C. XQuery Update Facility 1.0, March 2011.

W3C Recommendation http://www.w3.org/TR/2011/

REC-xquery-update-10-20110317/.

[Wal07] Walmsley, Priscilla. XQuery. O’Reilly Media, Inc., 2007.

[YOK04] Benjamin Bin Yao, M. Tamer Özsu, and Nitin Khandelwal.

XBench Benchmark and Performance Testing of XML DBMSs.

In Proceedings of the 20th International Conference on Data En-

gineering, ICDE ’04, pages 621–632, Washington, DC, USA, 2004.

IEEE Computer Society.

90 BIBLIOGRAPHY

Appendix A

Simple benchmark

A.1 Operation sets

A.1.1 Original statements set

1 . statement (Get user ’ s ID) :

c o l l e c t i o n (” weblog ”) / user [i n f o / n ick=”###USER NICK###”]/@ID/normal ize−space ()

−−−
2 . statement (Get 20 user ’ s pos t s with c e r t a i n tag ordered by timestamp) :

d e c l a r e opt ion se : output ” indent=no ” ;

l e t $ a l l := c o l l e c t i o n (” weblog ”) / user / blog / post [@status=”publ i shed ”] [

conta in s (” sk ” ,@lang)] [@ID= (” p16085 ” ,” p16090 ” ,” p16095 ” ,” p16116 ” ,” p13362

” ,” p15957 ” ,” p15967 ” ,” p15991 ” ,” p16054 ” ,” p16057 ”)] [. . / . . / @ID=”###USER ID

###”],

$ l i s t := subsequence (

f o r $ i in $ a l l

order by (xs : i n t e g e r ($ i / date /@timestamp))

descending re turn $i ,

1 ,20) ,

$ l a s t := count ($ a l l) ,

$post s :=

(f o r $cur rent in $ l i s t

l e t $user := $current / ance s to r : : use r

re turn

<post>{$current /@∗}
<user>{$user /@ID}{ $user /@type}
{ $user / i n f o / nick }
{ $user / i n f o /realName}
</user>

{ $current /∗}
</post>)

91

92 APPENDIX A. SIMPLE BENCHMARK

r e turn <module name=”A r t i c l e s”><newPosts l a s t=”{ $ l a s t }” end=”20” s t a r t=”1”>{
$post s}</newPosts></module>

−−−
3 . statement (Get user ’ s b log t i t l e) :

data (c o l l e c t i o n (” weblog ”) / user [@ID=”###USER ID###”]/blog / t i t l e)

−−−
4 . statement (Get user ’ s i n f o) :

c o l l e c t i o n (” weblog ”) / user [@ID=”###USER ID###”]/ i n f o

−−−
5 . statement (Get blog customizat ion) :

l e t $bg := c o l l e c t i o n (” weblog ”) / user [@ID=”###USER ID###”]/blog /background ,

$ co l o r := c o l l e c t i o n (” weblog ”) / user [@ID=”###USER ID###”]/blog / colorscheme

return

<customizat ions>

<blogBackground>{$bg}</blogBackground>

<colorScheme>{$co l o r}</colorScheme>

</customizat ions>

−−−
6 . statement (Get the newest comment from user ’ s pos t s) :

l e t $ a l l := c o l l e c t i o n (” weblog ”) / user / blog / post [@status=”publ i shed ”] [

conta in s (” sk ” ,@lang)] [@ID= (” p16085 ” ,” p16090 ” ,” p16095 ” ,” p16116 ” ,” p13362

” ,” p15957 ” ,” p15967 ” ,” p15991 ” ,” p16054 ” ,” p16057 ”)] [. . / . . / @ID=”###USER ID

###”]//comment ,

$ l a s t := subsequence (

f o r $ i in $ a l l

order by (xs : i n t e g e r ($ i / date /@timestamp))

ascending re turn $i ,

count ($ a l l) , 1)

re turn

<post>{$ l a s t / ance s to r : : post /@∗}
{ $ l a s t / ance s to r : : post / t i t l e }
{ $ l a s t / ance s to r : : post / s u b t i t l e }
{ $ l a s t }

</post>

−−−
7 . statement (Get c e r t a i n post ’ s t i t l e t ex t) :

f o r $post in c o l l e c t i o n (” weblog ”) / user / blog / post [@ID=”###POST ID###”] re turn

$post / t i t l e / t ext ()

−−−
8 . statement (Get post ’ s user ’ s n ick) :

f o r $post in c o l l e c t i o n (” weblog ”) / user / blog / post [@ID=”###POST ID###”] re turn

$post / . . / . . / i n f o / n ick / text ()

−−−
9 . statement (Get user ’ s type) :

data (c o l l e c t i o n (” weblog ”) / user [@ID=”###USER ID###”]/@type)

−−−
10 . statement (Get a l l user ’ s pos t s except one) :

f o r $ i in c o l l e c t i o n (” weblog ”) / user / blog / post [@status=”publ i shed ”] [. . / . . / @ID

=”###USER ID###”][@ID!=”###POST ID###”]

order by (xs : i n t e g e r ($ i / date /@timestamp))

descending

A.1. OPERATION SETS 93

re turn

<post>

{ $ i /@status}
{ $ i /@private }
{ $ i /@ID}
{ $ i / t i t l e }
{ $ i / date }

</post>

−−−
11 . statement (Get post accessCount) :

data (c o l l e c t i o n (” weblog ”) / user [@ID=”###USER ID###”]/blog / post [@ID=”###

POST ID###”]/@accessCount)

−−−
12 . statement (Update accessCount in c e r t a i n post) :

update r ep l a c e $ i in c o l l e c t i o n (” weblog ”) / user [@ID=”###USER ID###”]/blog /

post [@ID=”###POST ID###”]/@accessCount with a t t r i b u t e accessCount {1033}
−−−
13 . statement (Get user type in course) :

data (c o l l e c t i o n (” course ”) / cour s e s / course [@year=”2011/2012”]/ u s e r s / user [@ref

=”###USER NICK###”]/@type)

−−−
14 . statement (Get a l l user ’ s pos t s) :

d e c l a r e opt ion se : output ” indent=no ” ;

l e t $ i n f o := c o l l e c t i o n (” weblog ”) / user [@ID=”###USER ID###”]/ i n f o

l e t $ a l l := c o l l e c t i o n (” weblog ”) / user / blog / post [. . / . . / @ID=”###USER ID

###”],

$ l i s t := subsequence (f o r $ i in $ a l l r e turn $i , 1 , count ($ a l l)) ,

$user := (

<i n fo>

{ $ i n f o / nick }
{ $ i n f o /realName}

</in fo>) ,

$post s := (f o r $cur rent in $ l i s t

r e turn

<post>

{ $current /@∗}
{ $current /∗}

</post>

)

r e turn

<user>

{ $user }
<blog>

{ $ i n f o / . . / blog / t i t l e }
{ $post s }

</blog>

</user>

−−−
15 . statement (Get u s e r s with at l e a s t one s lovak post) :

f o r $ i in c o l l e c t i o n (” weblog ”) / user

l e t $lastName := i f ($ i / i n f o / lastName !=””) then lower−case (t r a n s l a t e ($ i /

94 APPENDIX A. SIMPLE BENCHMARK

i n f o / lastName/ text () , ” a e i o u y c d l l n o r s t z a e i o u y c d l l n o r s t z ” , ”

a e i o u y c d l l n o r s t z a e i o u y c d l l n o r s t z ”))

e l s e $ i / i n f o / nick / text () ,

$realName:= i f ($ i / i n f o /realName !=””) then $ i / i n f o /realName/ text () e l s e $ i /

i n f o / nick / text ()

where count ($ i / blog / post [conta in s (” sk ” ,@lang)])>0

order by $lastName ascending

re turn

<user>

{ $ i / i n f o / nick }
{ $ i / i n f o / ranks }
{ $ i / i n f o / emai l }
<realName>{$realName}</realName>

<lastName>{$lastName}</lastName>

</user>

−−−
16 . statement (Get 10 best ranked publ i shed s lovak pos t s) :

subsequence (

(f o r $ i in c o l l e c t i o n (” weblog ”) / user / blog / post [@status=”publ i shed ”] [

conta in s (” sk ” ,@lang)] [ranks / reputat ionScore >5]

l e t $user := $ i / ance s to r : : use r

order by (

i f ($ i / ranks) then xs : double ($ i / ranks / r eputa t i onScore)

e l s e xs : double (0 . 0)

)

descending

re turn

<post>{$ i /@∗}
<user>{$user /@ID}{ $user /@type} { $user / i n f o / nick } { $user / i n f o /realName}
</user>

{ $ i / t i t l e }
{ $ i / s u b t i t l e }
{ $ i / ranks }
</post>)

, 1 , 10)

−−−
17 . statement (Get 10 most read publ i shed s lovak pos t s with a c c e s s h igher than

50) :

subsequence (

(f o r $ i in c o l l e c t i o n (” weblog ”) / user / blog / post [@status=”publ i shed ”] [

conta in s (” sk ” ,@lang)] [@accessCount>50]

l e t $user := $ i / ance s to r : : use r

order by xs : i n t e g e r ($ i /@accessCount) descending

re turn

<post>{$ i /@ID}{ $ i /@lang}{ $ i /@accessCount}
<user>{$user /@ID}{ $user /@type} { $user / i n f o / nick } { $user / i n f o /realName}
</user>

{ $ i / t i t l e }
{ $ i / s u b t i t l e }
</post>)

, 1 , 10)

A.1. OPERATION SETS 95

−−−
18 . statement (Create upload form f o r user) :

l e t $user := c o l l e c t i o n (” weblog ”) / user [@ID=”###USER ID###”]

re turn

<uploadForm> { $user / blog /@css}
<userID></userID>

{ $user / i n f o /∗}
{ $user / blog / t i t l e }
<u s e rF i l e s s i z e =”16.04 kB”>< f i l e s i z e =”10.96 kB”>avatar . jpg</ f i l e >< f i l e

s i z e =”1.57 kB”>blog . xs l</ f i l e >< f i l e s i z e =”3.52 kB”>header . jpg</ f i l e ></

u s e rF i l e s>

</uploadForm>

−−−
19 . statement (Get post votes count) :

c o l l e c t i o n (” weblog ”) / user [@ID=###USER ID###]/blog / post [@ID=”###POST ID###”]/

votes /@count

−−−
20 . statement (I n s e r t votes tag to post) :

update i n s e r t <votes count=’1’></votes> i n t o c o l l e c t i o n (’ weblog ’) / user [@ID

=###USER ID###]/blog / post [@ID=’###POST ID###’]

−−−
21 . statement (Get password text) :

c o l l e c t i o n (” weblog ”) / user [i n f o / n ick=”###USER NICK###”]/account /password/ text

()

−−−
22 . statement (Check i f comment with c e r t a i n ID e x i s t s) :

f o r $ i in c o l l e c t i o n (” weblog ”) / user / blog / post //comment [@ID=”###COMMENT ID

###”] re turn 1

−−−
23 . statement (I n s e r t comment to comment) :

update i n s e r t

<comment lang=”en” r e f=”p991” ID=”###MAX ID###” type=”xhtml”>< t i t l e >indeed</

t i t l e ><content><p> . . . you are r ight , I should have</p></content><date

timestamp=”1319478009”>2011−10−24T19:40:09</ date><author userID=”u968”><

nick>mirax33</nick><realName>Miros lav Pot</realName></author></comment>

i n t o c o l l e c t i o n (” weblog ”) / user / blog / post //comment [@ID=”###COMMENT ID###”]

−−−
24 . statement (I n s e r t post to blog) :

d e c l a r e opt ion se : output ’ indent=no ’ ; update i n s e r t

<post lang=”en” type=”xhtml” s t a tu s=”publ i shed ” p r i va t e=”no” accessCount

=”0” ID=”###MAX ID###”>

<t i t l e >Hel lo world !</ t i t l e >

<s u b t i t l e />

<content>

<p> Then the day . . . (a l l content a v a i l a b l e on enc lo s ed CD) . . . </p>

</content>

<tags>

<tag>story</tag>

</tags>

<date timestamp=”1319436071”>2011−10−24T08:01:11</ date><top i c s></top i c s><

comments></comments></post>

96 APPENDIX A. SIMPLE BENCHMARK

i n t o c o l l e c t i o n (’ weblog ’) / user [@ID=”###USER ID###”]/blog

−−−
25 . statement (Update post) :

d e c l a r e opt ion se : output ” indent=no ” ; update r ep l a c e $ i in c o l l e c t i o n (”

weblog ”) / user [@ID=”###USER ID###”]/blog / post [@ID=”###POST ID###”] with

<post lang=”en” type=”xhtml” s t a tu s=”publ i shed ” accessCount=”1” p r i va t e=”no”

ID=”###POST ID###” submitted=”yes”>

<t i t l e >2nd chapter – ; S t e a l i n g doesn ’ t pay o f f .</ t i t l e >

<s u b t i t l e />

<content>

<p> Then the day . . . (a l l content a v a i l a b l e on enc lo s ed CD) . . . </p>

</content>

<tags>

<tag>story</tag>

</tags>

<date timestamp=”1319436071”>2011−10−24T08:01:11</ date>

<t op i c s/>

<comments/>

<lastUpdate timestamp=”1319437105”>2011−10−24T08:18:25</ lastUpdate></post>

−−−
26 . statement (Check i f post with c e r t a i n ID e x i s t s) :

f o r $ i in c o l l e c t i o n (” weblog ”) / user / blog / post [@ID=”###POST ID###”] re turn 1

−−−
27 . statement (Get max used ID) :

max(c o l l e c t i o n (’ weblog ’) / user / blog //∗ [name ()=’post ’ or name ()=’comment ’] /

number (subst r ing−a f t e r (@ID, ’ p ’)))

A.1.2 Optimized statements set

2 . statement (Get 20 user ’ s pos t s ordered by timestamp) :

d e c l a r e opt ion se : output ” indent=no ” ;

l e t $ a l l := c o l l e c t i o n (” weblog ”) / user [@ID=”###USER ID###”]/blog / post [@status

=”publ i shed ”] [conta in s (” sk ” ,@lang)] [@ID= (” p16085 ” ,” p16090 ” ,” p16095 ” ,”

p16116 ” ,” p13362 ” ,” p15957 ” ,” p15967 ” ,” p15991 ” ,” p16054 ” ,” p16057 ”)] ,

$ l i s t := subsequence (f o r $ i in $ a l l

order by (xs : i n t e g e r ($ i / date /@timestamp)) descending

re turn $i ,

1 ,20) ,

$ l a s t := count ($ a l l) ,

$post s :=

(f o r $current in $ l i s t

l e t $user := $current / ance s to r : : use r

re turn

<post>{$current /@∗}
<user>{$user /@ID}{ $user /@type}
{ $user / i n f o / nick }
{ $user / i n f o /realName}
</user>

{ $current /∗}
</post>

A.1. OPERATION SETS 97

)

re turn <module name=”A r t i c l e s”><newPosts l a s t=”{ $ l a s t }” end=”20” s t a r t=”1”>{
$post s}</newPosts></module>

−−−
5 . statement (Get blog customizat ion) :

l e t $userBlog := c o l l e c t i o n (” weblog ”) / user [@ID=”###USER ID###”]/blog

re turn <customizat ions> <blogBackground>{$userBlog /background}</

blogBackground> <colorScheme>{$userBlog / colorscheme}</colorScheme> </

customizat ions>

−−−
6 . statement (Get the newest comment from user ’ s pos t s) :

l e t $ a l l := c o l l e c t i o n (” weblog ”) / user [@ID=”###USER ID###”]/blog / post [@status

=”publ i shed ”] [conta in s (” sk ” ,@lang)] [@ID= (” p16085 ” ,” p16090 ” ,” p16095 ” ,”

p16116 ” ,” p13362 ” ,” p15957 ” ,” p15967 ” ,” p15991 ” ,” p16054 ” ,” p16057 ”)] // comment

,

$ l a s t := subsequence (

f o r $ i in $ a l l

order by (xs : i n t e g e r ($ i / date /@timestamp)) ascending

re turn $i , count ($ a l l) , 1)

re turn

<post>{$ l a s t / ance s to r : : post /@∗}
{ $ l a s t / ance s to r : : post / t i t l e }
{ $ l a s t / ance s to r : : post / s u b t i t l e }
{ $ l a s t }

</post>

−−−
7 . statement (Get c e r t a i n post ’ s t i t l e t ex t) :

c o l l e c t i o n (” weblog ”) / user / blog / post [@ID=”###POST ID###”]/ t i t l e / t ext ()

−−−
8 . statement (Get post ’ s user ’ s n ick) :

c o l l e c t i o n (” weblog ”) / user / blog / post [@ID=”###POST ID###”]/. ./. ./ i n f o / n ick /

text ()

−−−
10 . statement (Get a l l user ’ s pos t s except one) :

f o r $ i in c o l l e c t i o n (” weblog ”) / user [@ID=”###USER ID###”]/blog / post [@status=”

publ i shed ”] [@ID!=”###POST ID###”]

order by (xs : i n t e g e r ($ i / date /@timestamp)) descending

re turn

<post>

{ $ i /@status }
{ $ i /@private }
{ $ i /@ID}
{ $ i / t i t l e }
{ $ i / date }

</post>

−−−
14 . statement (Get a l l user ’ s pos t s) :

d e c l a r e opt ion se : output ” indent=no ” ;

l e t $ a l l := c o l l e c t i o n (” weblog ”) / user [@ID=”###USER ID###”]/blog /post ,

$user := (

<i n fo>

98 APPENDIX A. SIMPLE BENCHMARK

{ $ a l l / . . / . . / i n f o / n ick }
{ $ a l l / . . / . . / i n f o /realName}

</in fo>) ,

$post s := (f o r $cur rent in $ a l l

r e turn

<post>

{ $current /@∗}
{ $current /∗}

</post>

)

r e turn

<user>

{ $user }
<blog>

{ $ a l l / . . / t i t l e }
{ $post s }

</blog>

</user>

−−−
15 . statement (Get u s e r s with at l e a s t one s lovak post) :

f o r $ i in c o l l e c t i o n (” weblog ”) / user [count (blog / post [conta in s (” sk ” ,@lang)])

>0]

l e t $lastName := i f ($ i / i n f o / lastName !=””) then lower−case (t r a n s l a t e ($ i / i n f o /

lastName/ text () ,” a e i o u y c d l l n o r s t z a e i o u y c d l l n o r s t z ” ,”

a e i o u y c d l l n o r s t z a e i o u y c d l l n o r s t z ”))

e l s e $ i / i n f o / nick / text () ,

$realName:= i f ($ i / i n f o /realName !=””) then $ i / i n f o /realName/ text () e l s e $ i /

i n f o / nick / text ()

order by $lastName ascending

re turn

<user>

{ $ i / i n f o / nick }
{ $ i / i n f o / ranks }
{ $ i / i n f o / emai l }
<realName>{$realName}</realName>

<lastName>{$lastName}</lastName>

</user>

−−−
22 . statement (Check i f comment with c e r t a i n ID e x i s t s) :

i f (c o l l e c t i o n (” weblog ”) / user / blog / post //comment [@ID=”###COMMENT ID###”])

then 1 e l s e 0

−−−
26 . statement (Check i f post with c e r t a i n ID e x i s t s) :

i f (c o l l e c t i o n (” weblog ”) / user / blog / post [@ID=”###POST ID###”]) then 1 e l s e 0

−−−
27 . statement (Get max used ID) :

data (c o l l e c t i o n (”maximumId”) /maximumId/postComment)

−−−
28 . statement (Get max used ID) :

update r ep l a c e $ i in c o l l e c t i o n (”maximumId”) /maximumId/postComment with <

postComment>###MAX ID###</postComment>

A.1. OPERATION SETS 99

A.1.3 Index statements set

1 . statement (Get user ’ s ID) :

index−scan (” userNick”,”###USER NICK###”,”EQ”) /@ID/normal ize−space ()

−−−
2 . statement (Get 20 user ’ s pos t s ordered by timestamp) :

d e c l a r e opt ion se : output ” indent=no ” ;

l e t $ a l l := index−scan (” userID”,”###USER ID###”,”EQ”) / blog / post [@status=”

publ i shed ”] [conta in s (” sk ” ,@lang)] [@ID= (” p16085 ” ,” p16090 ” ,” p16095 ” ,”

p16116 ” ,” p13362 ” ,” p15957 ” ,” p15967 ” ,” p15991 ” ,” p16054 ” ,” p16057 ”)] ,

$ l i s t := subsequence (f o r $ i in $ a l l

order by (xs : i n t e g e r ($ i / date /@timestamp)) descending

re turn $i ,

1 ,20) ,

$ l a s t := count ($ a l l) ,

$post s :=

(f o r $cur rent in $ l i s t

l e t $user := $current / ance s to r : : use r

re turn

<post>{$current /@∗}
<user>{$user /@ID}{ $user /@type}
{ $user / i n f o / nick }
{ $user / i n f o /realName}
</user>

{ $current /∗}
</post>

)

re turn <module name=”A r t i c l e s”><newPosts l a s t=”{ $ l a s t }” end=”20” s t a r t=”1”>{
$post s}</newPosts></module>

−−−
3 . statement (Get user ’ s b log t i t l e) :

data (index−scan (” userID”,”###USER ID###”,”EQ”) / blog / t i t l e)

−−−
4 . statement (Get user ’ s i n f o) :

index−scan (” userID”,”###USER ID###”,”EQ”) / i n f o

−−−
5 . statement (Get blog customizat ion) :

l e t $userBlog := index−scan (” userID”,”###USER ID###”,”EQ”) / blog

re turn <customizat ions> <blogBackground>{$userBlog /background}</

blogBackground> <colorScheme>{$userBlog / colorscheme}</colorScheme> </

customizat ions>

−−−
6 . statement (Get the newest comment from user ’ s pos t s) :

l e t $ a l l := index−scan (” userID”,”###USER ID###”,”EQ”) / blog / post [@status=”

publ i shed ”] [conta in s (” sk ” ,@lang)] [@ID= (” p16085 ” ,” p16090 ” ,” p16095 ” ,”

p16116 ” ,” p13362 ” ,” p15957 ” ,” p15967 ” ,” p15991 ” ,” p16054 ” ,” p16057 ”)] // comment

,

$ l a s t := subsequence (

f o r $ i in $ a l l

order by (xs : i n t e g e r ($ i / date /@timestamp)) ascending

re turn $i , count ($ a l l) , 1)

100 APPENDIX A. SIMPLE BENCHMARK

r e turn

<post>{$ l a s t / ance s to r : : post /@∗}
{ $ l a s t / ance s to r : : post / t i t l e }
{ $ l a s t / ance s to r : : post / s u b t i t l e }
{ $ l a s t }

</post>

−−−
7 . statement (Get c e r t a i n post ’ s t i t l e t ex t) :

index−scan (” postID”,”###POST ID###”,”EQ”) / t i t l e / t ext ()

−−−
8 . statement (Get post ’ s user ’ s n ick) :

index−scan (” postID”,”###POST ID###”,”EQ”) / . . / . . / i n f o / n ick / text ()

−−−
9 . statement (Get user ’ s type) :

data (index−scan (” userID”,”###USER ID###”,”EQ”) /@type)

−−−
10 . statement (Get a l l user ’ s pos t s except one) :

f o r $ i in index−scan (” userID”,”###USER ID###”,”EQ”) / blog / post [@status=”

publ i shed ”] [@ID!=”###POST ID###”]

order by (

xs : i n t e g e r ($ i / date /@timestamp)

)

descending

re turn

<post>

{ $ i /@status }
{ $ i /@private }
{ $ i /@ID}
{ $ i / t i t l e }
{ $ i / date }

</post>

−−−
11 . statement (Get post accessCount) :

data (index−scan (” postID”,”###POST ID###”,”EQ”) /@accessCount)

−−−
12 . statement (Update accessCount in c e r t a i n post) :

update r ep l a c e $ i in index−scan (” postID”,”###POST ID###”,”EQ”) /@accessCount

with a t t r i b u t e accessCount {1033}
−−−
13 . statement (Get user type in course) :

data (index−scan (” courseUserRef”,”###USER NICK###”,”EQ”) [. . / . . / @year

=”2011/2012”]/@type)

−−−
14 . statement (Get a l l user ’ s pos t s) :

d e c l a r e opt ion se : output ” indent=no ” ;

l e t $ a l l := index−scan (” userID”,”###USER ID###”,”EQ”) / blog /post ,

$user := (

<i n fo>

{ $ a l l / . . / . . / i n f o / n ick }
{ $ a l l / . . / . . / i n f o /realName}

</in fo>) ,

A.1. OPERATION SETS 101

$post s := (f o r $current in $ a l l

r e turn

<post>

{ $current /@∗}
{ $current /∗}

</post>

)

re turn

<user>

{ $user }
<blog>

{ $ a l l / . . / t i t l e }
{ $post s }

</blog>

</user>

−−−
16 . statement (Get 10 best ranked publ i shed s lovak pos t s) :

subsequence (

(f o r $ i in index−scan (” postReputat ion ” ,”5” ,”GT”) [@status=”publ i shed ”] [

conta in s (” sk ” ,@lang)]

l e t $user := $ i / ance s to r : : use r

order by (

i f ($ i / ranks) then xs : double ($ i / ranks / r eputa t i onScore)

e l s e xs : double (0 . 0)

)

descending

re turn

<post>{$ i /@∗}
<user>{$user /@ID}{ $user /@type} { $user / i n f o / n ick } { $user / i n f o /realName}
</user>

{ $ i / t i t l e }
{ $ i / s u b t i t l e }
{ $ i / ranks }
</post>)

, 1 , 10)

−−−
17 . statement (Get 10 most read publ i shed s lovak pos t s with ac c e s s h igher than

50) :

subsequence (

(f o r $ i in index−scan (” postAccessCount ” ,”50” ,”GT”) [@status=”publ i shed ”] [

conta in s (” sk ” ,@lang)]

l e t $user := $ i / ance s to r : : use r

order by xs : i n t e g e r ($ i /@accessCount) descending

return

<post>{$ i /@ID}{ $ i /@lang}{ $ i /@accessCount}
<user>{$user /@ID}{ $user /@type} { $user / i n f o / n ick } { $user / i n f o /realName}
</user>

{ $ i / t i t l e }
{ $ i / s u b t i t l e }
</post>)

, 1 , 10)

102 APPENDIX A. SIMPLE BENCHMARK

−−−
18 . statement (Create upload form f o r user) :

l e t $user := index−scan (” userID”,”###USER ID###”,”EQ”)

re turn

<uploadForm> { $user / blog /@css}
<userID></userID>

{ $user / i n f o /∗}
{ $user / blog / t i t l e }
<u s e rF i l e s s i z e =”16.04 kB”>< f i l e s i z e =”10.96 kB”>avatar . jpg</ f i l e >< f i l e

s i z e =”1.57 kB”>blog . xs l</ f i l e >< f i l e s i z e =”3.52 kB”>header . jpg</ f i l e ></

u s e rF i l e s>

</uploadForm>

−−−
19 . statement (Get post votes count) :

index−scan (” postID”,”###POST ID###”,”EQ”) / votes /@count

−−−
20 . statement (I n s e r t votes tag to post) :

update i n s e r t <votes count=’1’></votes> i n t o index−scan (” userID”,”###USER ID

###”,”EQ”) / blog / post [@ID=’###POST ID###’])

−−−
21 . statement (Get password text) :

index−scan (” userNick”,”###USER NICK###”,”EQ”) / account /password/ text ()

−−−
23 . statement (I n s e r t comment to comment) :

update i n s e r t

<comment lang=”en” r e f=”p991” ID=”###MAX ID###” type=”xhtml”>< t i t l e >indeed</

t i t l e ><content><p> . . . you are r ight , I should have</p></content><date

timestamp=”1319478009”>2011−10−24T19:40:09</ date><author userID=”u968”><

nick>mirax33</nick><realName>Miros lav Pot</realName></author></comment>

i n t o index−scan (” postID”,”###POST ID###”,”EQ”) //comment [@ID=”###COMMENT ID

###”

−−−
24 . statement (I n s e r t post to blog) :

d e c l a r e opt ion se : output ’ indent=no ’ ; update i n s e r t

<post lang=”en” type=”xhtml” s t a tu s=”publ i shed ” p r i va t e=”no” accessCount=”0”

ID=”###MAX ID###”>

<t i t l e >Hel lo world !</ t i t l e >

<s u b t i t l e />

<content>

<p> Then the day o f . . . (a l l content a v a i l a b l e on enc lo s ed CD) . . . </p>

</content>

<tags>

<tag>story</tag>

</tags>

<date timestamp=”1319436071”>2011−10−24T08:01:11</ date><top i c s></top i c s><

comments></comments></post>

i n t o index−scan (” userID”,”###USER ID###”,”EQ”) / blog

−−−
25 . statement (Update post) :

d e c l a r e opt ion se : output ” indent=no ” ; update r ep l a c e $ i in index−scan (”

postID”,”###POST ID###”,”EQ”) with

A.1. OPERATION SETS 103

<post lang=”en” type=”xhtml” s t a tu s=”publ i shed ” accessCount=”1” p r i va t e=”no”

ID=”###POST ID###” submitted=”yes”>

<t i t l e >2nd chapter – ; S t e a l i n g doesn ’ t pay o f f .</ t i t l e >

<s u b t i t l e />

<content>

<p> Then the day o f . . . (a l l content a v a i l a b l e on enc lo s ed CD) . . . </p>

</content>

<tags>

<tag>story</tag>

</tags>

<date timestamp=”1319436071”>2011−10−24T08:01:11</ date>

<t op i c s/>

<comments/>

<lastUpdate timestamp=”1319437105”>2011−10−24T08:18:25</ lastUpdate></post>

−−−
26 . statement (Check i f post with c e r t a i n ID e x i s t s) :

i f (index−scan (” postID”,”###POST ID###”,”EQ”)) then 1 e l s e 0

A.1.4 Index II statements set

12 . statement (Update accessCount in c e r t a i n post) :

update r ep l a c e $ i in index−scan (” postID”,”###POST ID###”,”EQ”) /@accessCount

with a t t r i b u t e accessCount {1033}
−−−
17 . statement (Get 10 most read publ i shed s lovak pos t s with ac c e s s h igher than

50) :

subsequence (

(f o r $ i in index−scan (” postStatus ” ,” publ i shed ” ,”EQ”) [conta in s (” sk ” ,@lang)

] [@accessCount>50]

l e t $user := $ i / ance s to r : : use r

order by xs : i n t e g e r ($ i /@accessCount) descending

re turn

<post>{$ i /@ID}{ $ i /@lang}{ $ i /@accessCount}
<user>{$user /@ID}{ $user /@type} { $user / i n f o / n ick } { $user / i n f o /realName}
</user>

{ $ i / t i t l e }
{ $ i / s u b t i t l e }
</post>)

, 1 , 10)

−−−
24 . statement (I n s e r t post to blog) :

d e c l a r e opt ion se : output ’ indent=no ’ ; update i n s e r t

<post lang=”en” type=”xhtml” s t a tu s=”publ i shed ” p r i va t e=”no” accessCount=”0”

ID=”###MAX ID###”>

<t i t l e >Hel lo world !</ t i t l e >

<s u b t i t l e />

<content>

<p> Then the day o f . . . (a l l content a v a i l a b l e on enc lo s ed CD) . . . </p>

</content>

<tags>

104 APPENDIX A. SIMPLE BENCHMARK

<tag>story</tag>

</tags>

<date timestamp=”1319436071”>2011−10−24T08:01:11</ date><top i c s></top i c s><

comments></comments></post>

i n t o index−scan (” userID”,”###USER ID###”,”EQ”) / blog

−−−
25 . statement (Update post) :

d e c l a r e opt ion se : output ” indent=no ” ; update r ep l a c e $ i in index−scan (”

postID”,”###POST ID###”,”EQ”) with

<post lang=”en” type=”xhtml” s t a tu s=”publ i shed ” accessCount=”1” p r i va t e=”no”

ID=”###POST ID###” submitted=”yes”>

<t i t l e >2nd chapter – ; S t e a l i n g doesn ’ t pay o f f .</ t i t l e >

<s u b t i t l e />

<content>

<p> Then the day o f . . . (a l l content a v a i l a b l e on enc lo s ed CD) . . . </p>

</content>

<tags>

<tag>story</tag>

</tags>

<date timestamp=”1319436071”>2011−10−24T08:01:11</ date>

<t op i c s/>

<comments/>

<lastUpdate timestamp=”1319437105”>2011−10−24T08:18:25</ lastUpdate></post>

A.2 Partial results

A.2. PARTIAL RESULTS 105

(a) Original statements set

(b) Index II statements set

Figure A.1: Partial results of Simple benchmark (time in ms)

106 APPENDIX A. SIMPLE BENCHMARK

(a) Optimized statements set

(b) Index statements set

Figure A.2: Partial results of Simple benchmark (time in ms)

Appendix B

CD content

This appendix contains the list of files located on the enclosed CD and their

brief description:

1. BenchmarkSimple.php – contains the code of Simple benchmark

2. BenchmarkComplex.php – contains the code of Complex benchmark

3. WithoutIndex.xml – contains Original statements set used in Simple

benchmark

4. WithoutIndexOptimize.xml – contains Optimized statements set used in

Simple benchmark

5. WithoutIndex.xml – contains Index statements set used in Simple bench-

mark

6. WithoutIndex.xml – contains IndexII statements set used in Simple bench-

mark

7. actions.php – contains Original actions set used in Complex benchmark

8. actionsOptimized.php – contains Optimized actions set used in Complex

benchmark

107

