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Abstrakt

Existuje mnoho deskripčných logík líšiacich sa expresivitou, pričom všetky z nich sú
fragmentami prvorádovej predikátovej logiky. Preto v nich nie je možné priamočiaro
modelovať domény, ktorých štruktúra prirodzene obsahuje vyššie rády. Štandardným
deskripčným logikám tiež chýbajú prostriedky, ktoré by umožnili modelovanie s nie-
ktorými jazykovými operátormi, napríklad s operátorom inštanciácie, nad rámec ich
bežného použitia.

V tejto práci navrhujeme štyri deskripčné logiky vyšších rádov s metamodelovacími
prvkami, ktoré dovoľujú voľne modelovať s inštanciáciou a čiastočne tiež so subsump-
ciou. Navyše ukážeme, že naše logiky majú aj iné vlastnosti vhodné pre metamode-
lovanie. Dokážeme rozhodnuteľnosť našich logík redukciou na štandardné deskripčné
logiky. Ďalej porovnávame naše logiky s už existujúcimi logikami vyšších rádov.

Keďže redukcia, ktorú používame, je polynomiálna, s našimi logikami môžu pracovať
algoritmy určené pre štandardné deskripčné logiky, pričom zložitosť bude rovnaká ako
pre štandardné logiky. Naša redukcia navyše dokazuje, že expresívna sila potrebná na
istý typ modelovania s vyššími rádmi je prítomná už aj v štandardných deskripčných
logikách.

Kľúčové slová: deskripčné logiky, logika vyšších rádov, teória typov, metamodelo-
vanie
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Abstract

While there exist many description logics (DLs) with various expressivity, all of them
are fragments of first-order logic. Thus, some domains with inherent higher-order
structure cannot be straightforwardly modelled even in the most expressive standard
DLs. Such standard DLs also lack the features that would allow to freely model with
some of the language operators, e.g., the instantiation operator.

In this thesis, we propose four higher-order description logics with metamodelling
features allowing to freely model with instantiation and partially also with subsump-
tion. In addition, we show that our higher-order DLs have also other properties desir-
able for metamodelling. We prove their decidability by means of reduction to standard
DLs. Further, we compare our higher-order DLs with other existing higher-order DLs.

Since the reduction is polynomial, our higher-order DLs can be decided by algo-
rithms for standard DLs with the same complexity. Moreover, the reduction shows
that the expressive power needed to model with higher orders to some extent is al-
ready present in the standard description logics.

Keywords: description logics, higher-order logic, theory of types, metamodelling
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Introduction

Description logics are (usually) decidable fragments of first-order logic. They are used
for knowledge representation, namely for modelling ontologies, i.e., systems of concepts
and relationships in domains. Besides, they constitute a formal basis of Semantic Web
language OWL. Various description logics have been built over time from the less
expressive description logics, as EL and ALC, up to SROIQ, a very expressive yet
decidable standard description logic.

While many domains can be modelled with description logics, there are certain
situations when the expressivity of standard description logics is not sufficient. One
of these situations is modelling domains in which higher orders arise naturally. Con-
sider the biological taxonomy, where individual animals are classified into various taxa
(e.g., Melman is an instance of the species Giraffa camelopardalis), while the taxa
themselves are classified into ranks (e.g., Giraffa camelopardalis is an instance of the
rank species). Since description logics are fragments of the first-order logic, they can-
not fully capture the relationships between higher-order concepts. For example, in
standard description logics concepts cannot be instances of other concepts and thus
Giraffa camelopardalis cannot be an instance of species.

Although some works already tackled this problem (Pan et al., 2005; Motik, 2007;
Cuenca Grau et al., 2008; Glimm et al., 2010; De Giacomo et al., 2011; Homola et al.,
2014; Motz et al., 2015), none of them had all the properties and features we consider
desirable for metamodelling. Some approaches lacked unlimited higher orders, allowing
only second-order concepts and most approaches lacked the possibility to model freely
with selected language operators, such as instantiation or subsumption. While some
approaches allowed only strictly typed concepts (i.e., concepts separated into layers),
some approaches did not even allow typing of selected concepts. Hence, we decided to
extend SROIQ with expressive higher-order and metamodelling features fulfilling our
requirements for a higher-order description logic, while retaining decidability.

Our contribution consists of four higher-order extensions of description logics with
different properties. All of them feature unlimited higher orders, optional typing of
concepts and the possibility to freely model with the instantiation relationship. They

1
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also have several properties desirable for metamodelling (see Chapter 5). Three of our
extensions also feature different ways of modelling with the subsumption relationship.
Further, all of these extensions are polynomially reducible to the description logic they
extend (under some technical assumptions), which allows to decide them with the same
computational complexity as the underlying description logic.

Parts of this work were already published in the following papers:

• Petra Kubincová, Ján Kľuka, and Martin Homola (2015). Towards Expressive
Metamodelling with Instantiation. Presented at the 28th International Workshop
on Description Logics in Athens, Greece.

• Petra Kubincová, Ján Kľuka, and Martin Homola (2016). Expressive Descrip-
tion Logic with Instantiation Metamodelling. Accepted for a presentation at the
15th International Conference on Principles of Knowledge Representation and
Reasoning in Cape Town, South Africa. To appear in proceedings published by
AAAI Press.

This thesis starts with introduction of the description logics area describing SROIQ
and three other description logics (Chapter 1). Then we specify the domain featuring
higher-orders which motivated our work (Chapter 2) and we explore selected related
work (Chapter 3). Finally, we introduce and study our higher-order description logics
extensions (Chapter 4). Last but not least, in Chapter 5 we discuss the properties of
our contribution and compare it to the related work from Chapter 3. We conclude the
thesis with a summary and an outline of future work.

2



Chapter 1

Introduction to Description Logics

Description logics (DLs) are a family of logics used primarily in knowledge representa-
tion, e.g., to build ontologies. Ontology is a formal conceptualization (description) of
some domain. An example of a domain, which we use further in this chapter, is a zoo
with animals (e.g., giraffe Melman) and their caretakers (e.g., human John). In the
ontology, we can classify individuals (e.g., Melman is a herbivore), model relationships
between individuals (e.g., John feeds Melman) and even some relationships between
classes of individuals (e.g., all girrafes are herbivores). As we will see later, DLs are
capable of expressing also much more complicated assertions.

DLs can be seen as fragments of the first-order (predicate) logic (FOL). As opposed
to FOL, logical inference in DLs is often decidable, and such logics are themselves called
decidable. DLs differ in expressivity and, consequently, in complexity of decidability.

In this chapter we introduce the basis of our work, the DL SROIQ, and DLs
SHOIQ, SHIQ and ALCHOIQ. All these logics are results of an effort to create
expressive yet decidable DL. SROIQ is the most expressive one – SHOIQ, SHIQ
and ALCHOIQ were created before SROIQ and thus are less expressive and can be
viewed as fragments of SROIQ.

1.1 SROIQ

The description logic SROIQ (Horrocks et al., 2006) is considered a generally accepted
standard for a very expressive DL. It is used as a basis for Web ontology language 2
(OWL 2, Cuenca Grau et al. (2008)).

In this section we introduce the syntax and semantics of SROIQ, we show some
examples of use and we discuss its decidability.

3



CHAPTER 1. INTRODUCTION TO DESCRIPTION LOGICS

1.1.1 Syntax

We start with defining the SROIQ vocabulary.

Definition 1.1 (SROIQ vocabulary). A SROIQ vocabulary is a triple of mutually
disjoint countable sets of names (NI, NC, NR) – the set of individual names NI, the set
of concept names NC and the set of role names NR – where universal role U ∈ NR.

All standard description logics (i.e., well-known fragments of SROIQ) have very
similar definitions of the vocabulary (most of the fragments do not require U ∈ NR).

Individual names represent particular objects, concept names represent classes of
individuals and roles represent relationships between pairs of individuals. (Individual
names correspond to FOL constants, concept names to FOL unary predicates and role
names to FOL binary predicates.)

Let us introduce a vocabulary for an example modelling classification and a rela-
tionships of zoo animals and their caretakers mentioned in the introduction to this
chapter. Our example involves individuals melman (a giraffe), john (a human), and
zooNewYork (a zoo). Individuals can be classified in concepts Giraffa camelopardalis
(the only extant giraffe species), Giraffa (the genus classifying giraffes), Homo sapiens
(the only extant human species), Zoo (classifying zoos) and Herbivore (classifying her-
bivores). Relationships will be modelled by roles livesIn, livedIn and feeds. For example,
melman is an animal of species Giraffa camelopardalis whose relationship to zooNewYork
can be represented by role livesIn. The convention is to start the names of concepts
with a capital letter while the names of individuals and roles are lower camel case.

NI = {melman, john, zooNewYork}
NC = {Giraffa camelopardalis,Giraffa,Homo sapiens,Zoo,Herbivore}

NR = {livesIn, livedIn, feeds}
(1.1)

Next, we define SROIQ roles and role chains, i.e., complex role expressions, which
can then be used to build some assertions or more complex descriptions of classes.

Definition 1.2 (SROIQ roles and role chains). For each R ∈ NR, both R and R−

(inverse of R) are SROIQ roles. We will denote the set of all roles with respect to
some NR by R.

For R1, . . . , Rn ∈ R, R1 · · ·Rn is a role chain.

The inverse of a role is intended to denote a role where the order of connected
individuals is reversed, just like the inverse of a binary relation. E.g., livesIn connects
individual melman with individual zooNewYork, while livesIn− connects zooNewYork
with melman. Role chains “join” more roles into one. E.g., if a zookeeper called john
feeds melman, then feeds · livesIn connects john with zooNewYork.

4



CHAPTER 1. INTRODUCTION TO DESCRIPTION LOGICS

With roles we can already model a simple ontology. This is done by describing the
domain with axioms – formal sentences consisting of elements of the SROIQ language.

Definition 1.3 (SROIQ axioms I.). Let w be a role chain and R,P (inverse) roles.
Then w v R is a role inclusion axiom (RIA) and Ref(R), Irr(R), Sym(R), Tra(R),
Dis(R,P ) are role assertions. A finite set of RIAs is called a role hierarchy.

Now we can state some basic facts using roles from the example vocabulary (1.1).
E.g., Irr(livesIn) expresses that the relationship of living somewhere is irreflexive and
livesIn v livedIn states that if someone lives somewhere, they also lived there. Generally,
all RIAs w v R express that if two individuals are connected through the role chain w,
they are connected through the role R, i.e., R is a composition of the roles w. Similarly
to the symmetry, Ref(R) states reflexivity, Sym(R) symmetry, Tra(R) transitivity and
Dis(R,P ) role disjointness.

RIAs are perhaps the most expressive element of SROIQ. Through the RIAs, roles
can depend on each other. These dependencies are closely related with decidability. It
is thus important to define what “good” dependencies look like.

Definition 1.4 (RIA and role hierarchy regularity). A strict partial order on roles ≺
is called regular when S ≺ R iff S− ≺ R.

Let ≺ be a regular order on roles. A RIA w v R for a role chain w and a role
R is ≺-regular iff: w = RR or w = R− or w = S1 · · ·Sn or w = R · S1 · · ·Sn or
w = S1 · · ·Sn ·R, with Si ≺ R for all 1 ≤ i ≤ n.

A role hierarchy is regular if there exists a regular order ≺ on roles such that each
RIA of the hierarchy is ≺-regular.

Similarly to roles, also concepts in SROIQ can be more complex than a concept
name. Complex concepts are inductively build from concept names using various con-
structors.

Definition 1.5 (SROIQ concepts). An expression C is a SROIQ concept if it is
of one of the following forms: A ∈ NC, ¬D1 (complement), D1 u D2 (intersection),
D1 t D2 (union), ∀R.D1 (universal restriction), ∃R.D1 (existential restriction), {a}
(nominal), >nR.D1 (at-least/qualified number restriction), 6nR.D1 (at-most/qualified
number restriction) and ∃R.Self (self restriction), where a ∈ NI, n ∈ N, D1, D2 are
concepts and R is a role.

Concepts belonging to NC are called atomic concepts, non-atomic concepts are called
complex.

We will denote the set of all concepts with respect to some NC by C.

5



CHAPTER 1. INTRODUCTION TO DESCRIPTION LOGICS

For example, on the intuitive level, the complex concept ¬Giraffa clasiffies every in-
dividual that is not a giraffe. The universal restriction ∀livedIn.Zoo classifies every indi-
vidual that lived only in a zoo, while the existential restriction ∃livedIn.Zoo classifies ev-
ery individual that lived in at least one zoo. The intersection Giraffau∃livedIn.Zoo clas-
sifies giraffes which lived in at least one zoo. Similarly, the union Giraffat∃livedIn.Zoo
classifies all giraffes and all other individuals that lived in at least one zoo. The nom-
inal {melman} represents a concept classifying exactly one individual: melman. The
qualified restriction >n livedIn.Zoo (6n livedIn.Zoo) classifies every individual that lived
in at least n (at most n) zoos. The self restriction ∃feeds.Self classifies every individual
that feeds itself (e.g., not nestlings, which are fed by their parents).

In some cases it is useful to have a concept classifying everything and a concept clas-
sifying nothing. For these cases, we introduce symbols > (classifying every individual)
and ⊥ (classifying nothing) as shorthands for A t ¬A and A u ¬A, for some A ∈ NC,
respectively. Now we can model, e.g., the concept of inhabited places ∃livesIn−.>.

Definition 1.6 (SROIQ axioms II.). Let a, b ∈ NI, C,D ∈ C and R ∈ R. Then
C v D is a general concept inclusion (GCI) and a : C, a, b : R, a, b : ¬R, a = b, a 6= b

are individual assertions.

Now we can state more facts about our ontology: e.g., melman 6= john (melman is not
john), Giraffa camelopardalis v Giraffe (individuals of species Giraffa camelopardalis be-
long to genus Giraffa), Homo sapiens v ¬Giraffa (humans are not giraffes),
melman : Giraffa camelopardalis (melman is a giraffe) and melman, zooNewYork : livesIn
(melman lives in zooNewYork).

C ≡ D is widely used as an abbreviation for two axioms C v D and D v C.
Generally, C v D (where v is called subsumption, C v D is read as “D subsumes C”)
expresses that D is a more general concept than C. Individual assertions a : C state
that individual a belongs to concept C, a, b : R (a, b : ¬R) states that individuals a, b
are (not) connected by role R and a = b (a 6= b) states that individuals a, b are (not)
equal.

With SROIQ axioms (counterparts of FOL formulae) defined, we can define the
DL counterpart of FOL theory: knowledge base.

Definition 1.7 (SROIQ knowledge base). SROIQ knowledge base (KB) has three
parts: ABox, TBox and RBox.

ABox is a finite set of individual assertions.
TBox is a finite set of GCIs.
RBox is a union of a finite set of role assertions with a role hierarchy. RBox is

regular if its role hierarchy is regular.
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ABox is usually denoted by A, TBox by T , RBox by R, and knowledge base by K.
An example of a knowledge base K = (A, T ,R) using the example vocabulary (1.1)

containing some of the already mentioned axioms follows.

A = {melman : Giraffa camelopardalis,
zooNewYork : Zoo,
melman, zooNewYork : livesIn,
john,melman : feeds}

T = {Giraffa camelopardalis v Giraffa,
Giraffa v Herbivore,
Herbivore u Zoo v ⊥,
∃livesIn.Zoo v ∀feeds−.Homo sapiens}

R = {livesIn v livedIn}

(1.2)

The example ABox states that melman is a giraffe, zooNewYork is a zoo, melman lives in
zooNewYork and john feeds melman. The TBox expresses that every member of species
Giraffa camelopardalis is also a member of genus Giraffa, that giraffes are herbivores,
herbivores and zoos are disjoint and that everything that lives in some zoo is fed only
by humans. The RBox states that to have lived somewhere is more general than to
live somewhere.

This example is by no means exhaustive – there could be many more axioms added
to complete the picture, e.g., john : Homo sapiens or Giraffa u Homo sapiens v ⊥.

1.1.2 Semantics

SROIQ semantics is first-order. Individuals are interpreted as elements of the domain
set, concepts as subsets of the domain set and roles as relations on the domain set.

Definition 1.8 (SROIQ interpretation). An interpretation of a SROIQ KB is a
pair I = (∆I , ·I) where ∆I 6= ∅ is called domain and ·I is an interpretation function
satisfying the following conditions:

1. ∀a ∈ NI : aI ∈ ∆I

2. ∀A ∈ NC : AI ⊆ ∆I

3. ∀R ∈ NR : RI ⊆ ∆I ×∆I

The interpretation function is inductively extended to C, R and role chains according
to Table 1.1 (for a ∈ NI, n ∈ N, C,D ∈ C, R0 ∈ NR, R ∈ R and a role chain
R1 · · ·Rn).

7
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Table 1.1: Syntax and Semantics of SROIQ Expressions
Syntax (x) Semantics (xI)
R0 RI0

R− { (y, x) | (x, y) ∈ RI }
U ∆I ×∆I

R1 · · ·Rn RI1 ◦ · · · ◦RIn
A AI

¬C ∆I \ CI

C uD CI ∩DI

C tD CI ∪DI

∀R.C {x | ∀y.(x, y) ∈ RI ⇒ y ∈ CI }
∃R.C {x | ∃y.(x, y) ∈ RI ∧ y ∈ CI }
{a} { aI }
>nR.C {x | #{ y | (x, y) ∈ RI ∧ y ∈ CI } ≥ n }
6nR.C {x | #{ y | (x, y) ∈ RI ∧ y ∈ CI } ≤ n }
∃R.Self {x | (x, x) ∈ RI }

For an example, let I = (∆I , ·I) be defined as in the following example.

∆I = {m, z}
melmanI = johnI = m

zooNewYorkI = z

Giraffa camelopardalisI = GiraffaI = Homo sapiensI = HerbivoreI = {m}
ZooI = {z}

livesInI = livedInI = {(m, z)}
feedsI = {(m,m)}

(1.3)

Then I = (∆I , ·I) is an interpretation of the example knowledge base (1.2). Note
that while I is an interpretation of this KB, it is not the intuitive interpretation one
instantly thinks of when looking at the KB, since it interprets melman and john as the
same element of the domain set.

Note that the above definition makes some of the constructors redundant. E.g.,
the semantics of C tD is the same as the semantics of ¬(¬C u ¬D). In the following
we will sometimes omit constructors which meaning can be expressed by other con-
structors: union (t), universal restriction (∀R.C, as its meaning can be expressed as
¬∃R.¬C) and at-most qualified restriction (6nR.C, as its meaning can be expressed as
¬>(n+ 1)R.C).

Now we can define satisfiability of axioms – i.e., the conditions under which the
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Table 1.2: Syntax and Semantics of SROIQ Axioms
Axiom ϕ Semantic constraint
C v D CE ⊆ DI

a : C aI ∈ CI

a, b : R (aI , bI) ∈ RI

a, b : ¬R (aI , bI) 6∈ RI

a = b aI = bI

a 6= b aI 6= bI

w v R wI ⊆ RI

Ref(R) ∀x ∈ ∆I .(x, x) ∈ RI

Irr(R) ∀x ∈ ∆I .(x, x) 6∈ RI

Sym(R) ∀x, y.(x, y) ∈ RI ⇒ (y, x) ∈ RI

Tra(R) ∀x, y, z.(x, y) ∈ RI ∧ (y, z) ∈ RI ⇒ (x, z) ∈ RI

Dis(R,P ) RI ∩ P I = ∅

axioms hold.

Definition 1.9 (SROIQ satisfiability). An axiom ϕ is satisfied by a SROIQ inter-
pretation I (I |= ϕ) if I satisfies the respective semantic constraint from Table 1.2
(for a, b ∈ NI, n ∈ N, C,D ∈ C, R,P ∈ R and a role chain w).

A SROIQ interpretation I is a model of K (I |= K) if I satisfies every axiom
ϕ ∈ K.

A concept C is satisfiable in K if there exists a model I of K such that CI 6= ∅.
An axiom ϕ is entailed by K (K |= ϕ) if I |= ϕ holds for each I such that I |= K.

For example, ∃livesIn.Zoo v ∀feeds−.Homo sapiens is satisfied by the example in-
terpretation (1.3), because (∃livesIn.Zoo)I = {m}, (∀feeds−.Homo sapiens)I = {m}
and {m} ⊆ {m}. Likewise, every axiom from the example KB K (1.2) is satisfied
by the example interpretation I (1.3). Thus, I from (1.3) is a model of the KB K
from (1.2): I |= K (though it certainly is not the intended, intuitive model). Although
the intepretation I (1.3) is a model of KB K (1.2), it does not, of course, satisfy
all axioms in its vocabulary (1.1), e.g., john : ¬Herbivore, because it is not true that
johnI = m ∈ ∆I \HerbivoreI = ∆I \{m} = {z}, or GiraffauHomo sapiens v ⊥, because
it is not true that GiraffaI ∩ Homo sapiensI = {m} ∩ {m} ⊆ ∅ = ⊥I .

Note again that the above definition makes some axioms redundant. For example,
the condition under which Tra(R) holds is the same as for R ·R v R. In the following
we will sometimes omit axiom forms which meaning can be expressed by other axiom
forms: Tra(R), Ref(R) (as its meaning can be expressed as > v ∃R.Self), Irr(R)

9
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(expressible by > v ¬∃R.Self), Sym(R) (expressible by R− v R), a = b (expressible
by {a} ≡ {b}) and a 6= b (expressible by {a} u {b} v ⊥).

To find out whether some axiom is entailed by a knowledge base is usually not as
simple as checking whether it is satisfied by some interpretation. E.g., is
john : Homo sapiens entailed by the example knowledge base (1.2)? Let’s see what must
hold for an interpretation satisfying the knowledge base: Let j = johnI , m = melmanI

and z = zooNewYorkI . Because of the axiom john,melman : feeds, surely (j,m) ∈ feedsI .
Moreover, since melman, zooNewYork : livesIn and zooNewYork : Zoo, it is true that
m ∈ (∃livesIn.Zoo)I . From the axiom ∃livesIn.Zoo v ∀feeds−.Homo sapiens follows that
m ∈ (∀feeds−.Homo sapiens)I , meaning that ∀x.(x,m) ∈ feedsI ⇒ x ∈ Homo sapiensI .
Thus, j ∈ Homo sapiensI – the axiom john : Homo sapiens is entailed by the example
knowledge base. Problems like this one, i.e., deciding the entailment, are a type of
decision problems studied in the description logics area.

1.1.3 Decision Problems and Complexity

For description logics, there are several decision problems which are considered to be
standard. First, we define three standard decision problems for DLs and then we show
how some of them can be reduced to other ones. Note that these problems are the
same for all description logics, but the reductions are not necessarily possible in DLs
other than SROIQ.

Definition 1.10 (Decision problems for DLs). For knowledge base K, C ∈ C and an
axiom ϕ, basic decision problems are defined as follows:

Knowledge base satisfiability ( consistency) – K is satisfiable ( consistent) if it has
a model.

Concept satisfiability – C is satisfiable with respect to K if there exists a model I
of K such that CI 6= ∅.

Axiom entailment – K entails ϕ (K |= ϕ) if each model of K is also a model of ϕ.

In the description logics area, “DL L is decidable with complexity f(n)” is often
used instead of “axiom entailement in DL L is decidable with complexity f(n)”.

For example, example knowledge base K (1.2) is satisfiable, because it has a model –
the example interpretation (1.3). (To model the target domain correctly, KB has to be
consistent.) Concept> is always satisfiable and concept⊥ is always unsatisfiable. Since
the purpose of concepts is to classify domain objects, a unsatisfiable concept usually
indicates an error. Knowledge base containing axioms melman : Giraffa camelopardalis
and Giraffa camelopardalis v Giraffa entails melman : Giraffa.

10
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In SROIQ, both axiom entailment and concept satisfiability are reducible to
knowledge base satisfiblity, and vice versa.

The idea of the reduction for axiom entailment is that for each axiom ϕ there exists
its “negation”, neg(ϕ) – a set of axioms (possibly containing only one axiom) such that
ϕ is satisfied iff neg(ϕ) is not satisfied. (The definition of neg(ϕ) for each ϕ can be
found in the work Foundations of Description Logics by Rudolph (2011, p. 51).) Then,
ϕ is entailed by K iff each model of K is also a model of ϕ iff there is not a model
of K satisfying neg(ϕ) iff K ∪ neg(ϕ) is not satisfiable. Thus, K |= ϕ iff K ∪ neg(ϕ)
is not satisfiable. For the converse reduction, K is satisfiable iff K does not entail a
unsatisfiable axiom, e.g., > v ⊥.

For concept satisfiability, the construction is even simpler. C is satisfiable w.r.t.
K iff there exists a model I of K s.t. CI 6= ∅ iff K ∪ {a : C} is satisfiable for a new
individual name a. For the converse reduction, K is satisfiable iff a new concept name
C is satisfiable w.r.t. K.

Since there are reductions from axiom entailment to KB satisfiability and from
KB satisfiability to concept satisfiability, axiom entailment can be reduced to concept
satisfiability and vice versa.

Now we miss only one notion important for decidability: simple roles. In a nutshell,
using non-simple roles in some constructions leads to undecidability (Horrocks et al.,
1999).

Definition 1.11 (Simple roles). Simple role is a role which satisfies at least one of the
following conditions:

(a) role name which does not occur on a right-hand side of any RIA, or

(b) R− where R is a simple role, or

(c) role name occuring on a right-hand side of RIA if every such RIA has only one
simple role on its left-hand side.

All other roles are non-simple.

For description logic deciding, sound and complete tableau algorithms are usually
used. It is out of the scope of this thesis to describe the tableau algorithm for SROIQ,
but a curious reader can find the details in work The even more irresistible SROIQ
by Horrocks et al. (2006).

The following conditions form a sufficient condition for SROIQ decidability: only
simple roles may appear in qualified number restrictions, self-restriction, role disjoint-
ness axioms and axioms in form a, b : ¬R; RBox is regular; universal role does not
appear in any RIA nor in any role assertion.
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Theorem 1. If the above mentioned conditions hold, SROIQ is decidable (Horrocks
et al., 2006) and N2ExpTime-complete (Kazakov, 2008).

1.2 SHOIQ DL

SHOIQ is a fragment of SROIQ, which does not feature the universal role U; role
disjointness, reflexivity nor irreflexivity assertions; individual assertions of the form
a, b : ¬R; complex role inclusion axioms with two or more different roles on the left-
hand side; self-restrictions.

Note that SHOIQ features only those role assertions, which can be expressed via
non-complex RIAs with one role on the left-hand side: Sym(R) holds iff R− v R holds
and Tra(R) holds iff R ·R v R holds.

Assuming unary coding of numbers in the input SHOIQ is NExpTime-complete,
without the assumption it is NExpTime-hard (Tobies, 2001).

1.3 ALCHOIQ DL

ALCHOIQ is a fragment of SHOIQ, which does not feature role transitivity assertion
nor RIAs in form R · R v R. (It features only RIAs with one role on the left-hand
side).

We already know that assuming unary coding of numbers, SHOIQ is NExpTime-
complete. Additionaly, ALCOIQ (a fragment of ALCHOIQ) is also NExpTime-
complete (Tobies, 2000). Since ALCHOIQ is more expressive than ALCOIQ but less
than SHOIQ, assuming unary coding of numbers, ALCHOIQ is also NExpTime-
complete.

1.4 SHIQ DL

SHIQ is a fragment of SHOIQ, which does not feature nominals, i.e., concept ex-
pressions in form {a}. SHIQ is ExpTime-complete (Tobies, 2001).
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Chapter 2

Desiderata for Higher-Order
Description Logics

In this chapter we discuss the motivation behind our work and the desired properties
of higher-order extensions of DLs. As the example domain on which we illustrate our
ideas we chose domain similar to the one in the first chapter: the biological taxonomy.

Sections of this chapter deal with different aspects ofmetamodelling, namely domain
metamodelling and full metamodelling of selected features of language (De Giacomo
et al., 2011). Domain metamodelling allows to use concepts and roles as instances, thus
enabling their classification and restriction just as if they were individuals. In contrast,
full metamodelling allows to model with language operators, such as the subsumption
relationship.

First, we describe what are higher orders and when they can be handy. Then, we
explain the motivation behind full metamodelling of selected language operators and
show some examples of its use. We conclude this chapter with a brief summary of
modelling features which we find desirable.

2.1 Higher-Order Concepts and Roles

The biological taxonomy classifies individual organisms into various species, genera,
classes, etc. An example taxonomy (skipping some of the taxonomical ranks) is showed
in Figure 2.1: individuals melman and zarafa belong to the species Giraffa camelopardalis
(giraffe). Individuals yogi and humphrey belong to the species Ursus arctos (brown
bear). Further, Giraffa camelopardalis and Ursus arctos are species of class Mammalia
(mammals), while Aptenodytes forsteri (emperor penguin) is a species of class Aves
(birds). Both classes Mammalia and Aves are a part of kingdom Animalia (animals).

The dashed arrow represents the relationship of being an instance – instantiation,
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Figure 2.1: Example Taxonomy

and the solid arrow with white head represents the relationship of being a subclass
(subconcept) – subsumption. E.g., melman is an instance of Giraffa camelopardalis,
which is a subclass of Mammalia. Note that the instantiation arrow connects only
individuals with concepts, while the subsumption arrow connects only concepts with
concepts. This allows the taxonomy to be easily modelled in one of the standard
description logics:

melman : Giraffa camelopardalis
zarafa : Giraffa camelopardalis

yogi : Ursus arctos
humphrey : Ursus arctos

Giraffa camelopardalis t Ursus arctos v Mammalia
Aptenodytes forsteri v Aves
Mammalia t Aves v Animalia

(2.1)

However, Figure 2.1 contains some information not captured by the DL formaliza-
tion (2.1): the information that every concept directly above individuals is a species,
every concept directly above species is a class and that the concept on the top of the
figure is a kingdom. The problem is that the relationship between the concepts and
their respective ranks is instantiation – e.g., Giraffa camelopardalis is an instance of
Species, just as melman is an instance of Giraffa camelopardalis. Yet, this kind of in-
stantiation is not allowed in standard DLs, because in standard DLs only individuals
can act as instances. Figure 2.2 explicitly shows the instantiation relationship between
different species, classes, kingdoms and the concepts Species, Class and Kingdom.

If we expressed the additional information from Figure 2.2 in a DL-like syntax, it
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Figure 2.2: Example Taxonomy with Explicit Instantiation

would look as follows:

Giraffa camelopardalis : Species
Ursus arctos : Species

Aptenodytes forsteri : Species
Mammalia : Class

Aves : Class
Animalia : Kingdom

(2.2)

Moreover, we can go even further when we realise that all species, classes, kingdoms
(and other taxa) are instances of the concept Taxon and that Species, Class, Kingdom
(and other taxonomical ranks) are instances of the concept Rank:

Species t Class t Kingdom v Taxon
Species : Rank
Class : Rank

Kingdom : Rank

(2.3)

In this ontology, Species, Class, Kingdom, Taxon and Rank are higher-order con-
cepts – they classify concepts, not individuals. Note that while Species or Class classify
first-order concepts, Rank classifies concepts which classify first-order concepts. Con-
sequently, just as Giraffa camelopardalis and other species are first-order concepts, we
will call Species and other ranks second-order concepts and Rank a third-order concept
(see Figure 2.3).

We can continue with describing a higher-order role, i.e., a role which can inter-
connect instances with different orders (including individuals, which can be viewed as
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Figure 2.3: Concepts of Different Orders

zeroth-order objects). A good example is the role definedBy which relates taxa and
ranks (first- and second-order concepts) with people (individuals) who defined them:

∃definedBy.> v Taxon t Rank
> v ∀definedBy.Person

Mammalia, vonLinné : definedBy
(2.4)

Moreover, higher-order concepts could classify not only concepts and individuals,
but also roles, thus enabling us to systematically classify roles into a hierarchy, e.g., to
classify different kinds of animal behaviour:

migratesTo : Behaviour
imitates : LearningBehaviour

LearningBehaviour v Behaviour .
(2.5)

2.2 Instantiation and Subsumption Metamodelling

Having concepts, such as species, classified in higher-order concepts, such as Species, we
might want to characterize individuals of all species with some feature, or, vice versa,
to assert properties of species based on features of their individuals. A statement of
the former kind is “individuals of all species are organisms”. An example of the latter
kind of statements is “a living organism’s species is not extinct”. These statements
traverse the orders, i.e., classify or restrict concepts based on properties of instances of
their instances and vice versa.

Since the orders are connected through the instantiation relationship, an intuitive
way of traversing the orders would be to have a role which connects instances with
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concepts which classify them (corresponding to the dashed arrow). With this role,
which we will name instanceOf, we could express axioms about concepts of different
orders, just like the ones from the previous paragraph (2.6), (2.7). Moreover, instanceOf
allows us to traverse orders in both directions in one complex concept, e.g., a concept
classifying all individuals of the same species as yogi, without having to know what
yogi’s species is (2.8).

∃instanceOf.Species v Organism (2.6)

Species u ∃instanceOf−.Alive v ¬Extinct (2.7)

∃instanceOf.(Species u ∃instanceOf−.{yogi}) (2.8)

After modelling with the instantiation relationship a natural next step is subsump-
tion. Similarly to the instantiation, we will model it by a role with name subClassOf
(corresponding to the solid arrow with white head). Such a role has analogous usage
to the role instanceOf, but instead of traversing the orders of the ontology, it makes
obtaining the sub- or superconcepts possible. An example of use is the axiom

Species v ∃subClassOf.Kingdom, (2.9)

expressing that each species is a subclass of some kingdom.
Note that modelling with instanceOf and subClassOf is a part of the full metamod-

elling mentioned in the introduction to this chapter – it allows us to model with the
relationships of instantiation and subsumption, expressed also by the language opera-
tors : and v, just as with any other role. While the relationships expressed by axioms
featuring instanceOf and subClassOf could be expressed also without metamodelling, it
would be necessary to explicitly state some facts that are implicit in the axioms with
instanceOf and subClassOf.

Instead of axiom (2.6) we could use axioms Aptenodytes forsteri v Organism,
Giraffa camelopardalis v Organism and Ursus arctos v Organism, which would be suffi-
cient in the current state of our ontology, but in case we later added another species
(e.g., Bufo bufo, the common toad), we would also have to add another axiom
(Bufo bufo v Organism). Axiom (2.7) cannot be expressed straightforwardly with-
out the role instanceOf and without knowing which species have at least one living
specimen, although there certainly are some elaborate ways to do it (see Section 4.3).
Similarly to the first axiom, instead of axiom (2.8) we could just use the concept corre-
sponding to yogi’s species, which in this case is Ursus arctos – which is, clearly, possible
only when we know what yogi’s species is. Finally, instead of axiom (2.9) we would
have to classify each species as a subconcept of some kingdom, which is, in our case,
already done by axioms (2.1). However, in general we have the same problem as with
axiom (2.6) – for each new species we would have to add a new axiom.
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2.3 Summary of Metamodelling Features

In the previous sections of this chapter we have introduced and motivated two kinds
of metamodelling, which we find beneficial. The first one is domain metamodelling
achieved through higher-order concepts and roles. The second one is full metamodelling
of the instantiation and subsumption relationship. (Exploring metamodelling of other
language operators is out of scope of this thesis, however interesting it might be.)

Since these metamodelling features are not naturally present in the standard de-
scription logics, in the rest of this thesis we focus on their analysis. In the following
chapter, we introduce selected works on higher-order description logics, and in Chap-
ter 4 we present our approach to this interesting problem.
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Chapter 3

Related Work

In this chapter we introduce several works related to the topic of higher-order descrip-
tion logics. All of them (except OWL) explore the possibilities of domain metamod-
elling – i.e., modelling with concepts and roles as if they were individuals. First, in
Section 3.1 we describe a higher-order logic HiLog, originally motivated by higher-order
logic programming, both used as basis for semantics of several higher-order descrip-
tion logics. Then, in Section 3.2 we introduce OWL, a family of modelling languages
partially based on description logics. Finally, in Sections 3.3 to 3.9 we describe several
higher-order description logics with various metamodelling capabilities.

In our work presented in the next chapter we reuse selected ideas fromOmeta (Glimm
et al., 2010) and T H(SROIQ) (Homola et al., 2014). A comparison of related work
with our approach, including a discussion on selected properties, follows in Chapter 5.

3.1 HiLog

HiLog is a logic introduced by Chen et al. (1993). The motivation behind it was
to support higher-order and meta-level programming constructions with higher-order
syntax in logic programming, while keeping the semantics first-order. This results in
sound and complete inference based on resolution. Additionally, HiLog is reducible in
the first-order predicate logic.

3.1.1 Syntax

In contrast with the first-order logic, HiLog syntax uses in addition to auxiliary sym-
bols, logical connectives and quantifiers only one set S of parameter symbols. Any
parameter symbol can be used as either constant, function, or predicate. Moreover, in
HiLog there is no such thing as arity – any symbol can be used instead of t in the term
t(t1, . . . , tn) for arbitrary n ≥ 1. Terms are defined similarly to FOL terms. However,
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an atomic formula (atom) is any term. Complex formulas are build from the atoms
using the usual logical connectives (¬, ∧, ∨, ∀ and ∃).

3.1.2 Semantics

A semantic structure for HiLog is a tuple consisting of:

• a set of intensions U ,

• a set Utrue ⊆ U specifying which u ∈ U are intensions of true propositions,

• a function I assigning each parameter symbol s ∈ S an intension I(s) ∈ U ,

• a function F assigning each intension u ∈ U its extensions: a function from
Uk → U for each k ≥ 1.

Each symbol s ∈ S is associated with one element of U , which act as s’s representative.
This element of U determines its truth value (corresponding to the interpretation of
s as a predicate symbol in FOL) as well as its interpretation when used as a function
symbol with an arbitrary arity. The arguments t1, . . . , tn of a function interpreting s
used as a n-ary funcition symbol are evaluated as their intensions: I(t1), . . . , I(tn).

Figure 3.1: HiLog Syntax and Semantics

Hence, the interpretation is two-step (see Figure 3.1): first, each syntactic element
is assigned its intension. Then, each intension is assigned its extension or truth value.
Thus, while the syntax is higher-order, the semantics is first-order. In the following,
HiLog-based semantics will refer to such a two-step semantics.

3.2 OWL and OWL 2

OWL (Hayes et al., 2004) and OWL 2 (W3C OWL Working Group, 2012) are knowl-
edge representation languages. OWL is a family of three languages which vary in
expressivity: OWL Lite is the least expressive one, OWL DL is more expressive, but
still decidable and OWL Full is the most expressive, but undecidable (Motik, 2007).
While OWL Lite and OWL DL are first-order, OWL Full allows full metamodelling of
all its constructors, which is the source of its undecidability. Both OWL Lite and OWL
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DL are based on description logics – SHIF (a fragment of SHIQ) and SHOIN (a
fragment of SHOIQ), respectively. OWL 2 is more expressive than OWL DL, yet still
decidable. It is based on SROIQ.

In the OWL area, “class” is often used instead of “concept” and “property” is of-
ten used instead of “role”. Due to its practical nature and roots in older knowledge
representation languages, there are several syntaxes for OWL. For the sake of intelligi-
bility, we will use the syntax of the respective underlying DL when describing a work
extending OWL.

3.3 OWL FA

OWL FA is an extension of OWL DL proposed by Pan et al. (2005). Syntactically as
well as semantically, higher-order classes and properties are divided in multiple strata.
Class (property) of the ith stratum can classify (interconnect) only elements from the
(i − 1)th stratum. Classes (properties) belonging to the first stratum can classify
(interconnect) only individuals.

Semantics of OWL FA is higher-order. The domain is a disjoint union of domains
for individual strata, where the domain for (i+1)th stratum ∆Ii+1 consists of the power
set of the domain for the ith stratum 2∆I

i and the power set of the cartesian square
of the domain for the ith stratum 2∆I

i ×∆
I
i . Classes of ith stratum are interpreted as

subsets of the domain for ith stratum, and properties of the ith stratum as relations
on the domain for ith stratum. Pan et al. (2005) proved that the problem of OWL FA
knowledge base satisfiability is reducible in a finite number of steps to the problem of
OWL DL knowledge base satisfiability.

OWL FA supports domain metamodelling as described in Section 2.1, but it does
not support full metamodelling of any language operator.

3.4 Motik’s π-Semantics and ν-Semantics

Motik (2007) not only proved OWL Full undecidable, but also proposed two different
semantics under which are both ALCHOIQ and SHOIQ extended with syntactic
metamodelling features decidable (however, SHOIQ only under technical assumption
that each two role names are distinct). Syntax used in Motik’s work differs from the
standard syntax of ALCHOIQ and SHOIQ by using only one set of names instead
of separating them in the set of individual names, concept names and role names. This
way can any name act as an individual, concept and role.
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3.4.1 π-Semantics

Under π-semantics (also called contextual) every symbol is assigned not only an in-
tension but also two extensions – concept and role extension. The extensions do not
depend on the intension, so it is possible for two objects with the same intension to
have different extensions. (Note that this might often be an undesired characteristic.
For an example see Section 5.1.)

Since the semantics is only seemingly higher-order, it can be decided using known
algoritms for ALCHOIQ and SHOIQ. Thus, knowledge base satisfiability of both
ALCHOIQ and SHOIQ under π-semantics is decidable in NExpTime.

Motik’s π-semantics supports domain metamodelling only to a small extent and it
does not support full metamodelling at all.

3.4.2 ν-Semantics

ν-semantics is HiLog-based – every name (but not complex concepts or roles) is as-
signed an intension and every intension is assigned both concept extension and role
extension. This leads to intensional regularity: if the intensions of two symbols are
equal, so are their extensions.

Motik showed that satisfiability of a ALCHOIQ knowledge base under ν-semantics
can be exponentially reduced to knowledge base satisfiability under π-semantics, re-
sulting in NExpTime algorithm. In case of a SHOIQ knowledge base, intensional
regularity makes the situation more complicated. To make the problem of knowledge
base satisfiability under the ν-semantics decidable even if it contains transitivity state-
ments (recall that the difference between ALCHOIQ and SHOIQ is that the latter
allows transitivity assertions), the knowledge base must employ the unique role as-
sumption (URA), i.e., it must contain an unequality axiom for each two names used
as roles. With URA, deciding knowledge base satisfiability under the ν-semantics can
be polynomially reduced to the satisfiability of ALCHOIQ knowledge base under the
ν-semantics.

Motik’s ν-semantics supports domain metamodelling via higher orders, but it does
not support full metamodelling of any language operator.

3.5 Punning in OWL 2

Punning is an OWL 2 feature introduced by Cuenca Grau et al. (2008). It allows
to use any name as individual, class and property at the same time. The semantics
corresponds to the π-semantics (Motik, 2007), making the interpretations of the name

22



CHAPTER 3. RELATED WORK

Table 3.1: Axiomatization of the Second Order (Glimm et al., 2010)
Inst ≡ ¬Class
oA : Class for each A ∈ NC

a : Inst for each a ∈ NI

∃R.> v Inst for each R ∈ NR

> v ∀R.Inst for each R ∈ NR

∃type.> v Inst
> v ∀type.Class
∃subClassOf.> v Class
> v ∀subClassOf.Class
A ≡ ∃type.{oA} for each A ∈ NC

Class u ∀type−.∃type.{oA} ≡ Class u ∃subClassOf.{oA} for each A ∈ NC

in different contexts independent (hence the name “punning”) and thus making OWL 2
with punning decidable in the same time as OWL 2. Further, it means that punning’s
support of domain metamodelling is limited and it does not support full metamodelling
at all.

3.6 Ontology-Inherent Metamodelling: Ometa

Glimm et al. (2010) proposed an encoding scheme enabling second-order metamodelling
in OWL 2. It allows a first-order ontology O to be extended to second-order ontology
Ometa by means of encoding it into first-order vocabulary and axioms with first-order
syntax and semantics. The basic vocabulary N = (NI, NC, NR) of O is extended by new
individual names oA for each A ∈ NC (which act as representatives for A), new class
names Inst (classifying individuals from NI) and Class (classifying the new individuals)
and new roles type, subClassOf and RInst. Axiomatization of Ometa can be found in
Table 3.1. Additionally, all axioms from O are modified to ensure that the domain of
O and class constructions are contained in Inst.

If we want to assert that a first-order class A belongs to a second-order class C, we
use axiom oA : C. Similarly, if we want to describe a nominal classifying A, we use {oA}.
All roles from NR are first-order, interconnecting only original individuals (axioms in
form oA, oB : R are not allowed). Role type is axiomatized to connect each a with each
oC such that aI ∈ CI . Similarly, role subClassOf is axiomatized to connect each oA
with each oB such that AI ⊆ BI . Role RInst is introduced for technical purposes.

Since Ometa is encoded in the first-order ontology, it can be decided by known
algorithms for OWL 2, with SROIQ time complexity N2ExpTime. The authors
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proved some key properties of their approach, but they did not provide its full semantic
characterization.
Ometa partially allows domain metamodelling (there are only two orders) and also

allows full metamodelling of instantiation and subsumption.

3.7 Hi(SHIQ)

De Giacomo et al. (2011) presented the syntax and semantics of extension applicable
to any DL L allowing higher-order modeling, called Hi(L). The proposed syntax is
higher-order (and similar to the syntax proposed by Motik since it only contains one
set of names), however, semantics is HiLog-based, assigning each symbol its intension
(called domain object) and assigning each intension its extensions – for both roles and
concepts, including complex concepts. This is done by interpreting language operators
as functions on intensions.

Hi(L) is further examined for L = SHIQ. The authors propose a translation Π
from Hi(SHIQ) to the first-order SHIQ such that Hi(SHIQ) knowledge base K is
satisfiable iff SHIQ knowledge base Π(K) is satisfiable. Using this translation is the
satisfiability of Hi(SHIQ) knowledge base ExpTime-complete.

Hi(SHIQ) supports domain metamodelling via higher orders, but it does not sup-
port full metamodelling of any language operator.

3.8 T H(SROIQ)

T H(SROIQ) is a metamodelling approach proposed by Homola et al. (2014). Syn-
tactically, T H(SROIQ) is a typed higher-order extension of SROIQ. The typing is
similar to the OWL FA stratification: each symbol has some type assigned. In case of
concepts it is a number t > 0, for roles it is a pair of numbers t, u > 0 (because roles
connect two objects) and all individuals have type 0.

The vocabulary of T H(SROIQ) consists of disjoint sets of concept names and
role names. The set of concept (role) names is itself decomposed into disjoint sets of
concept (role) names N t

C (N tu
R ) of type t, where t > 0 (tu, where t, u > 0). The set of

individual names NI is also denoted N0
C .

Individual assertions of concept membership in T H(SROIQ) can only express that
a element of type t− 1 is a member of a concept of type t. Similarly, assertion of role
membership can only express that elements of type t−1 and u−1 are related by a role
of type tu. GCIs (RIAs and role disjointness assertions) can state only relationships
between concepts (roles) of the same type t > 0 (or tu for t, u > 0). Role reflexivity
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assertion can be applied only to roles with type tt for t > 0.
The semantics of T H(SROIQ) is HiLog-based, assigning a typed concept intension

to each concept or individual name and a typed role intension to each role name. For
intensions with type t > 0 or tu such that t, u > 0 is also defined their extension – a
set of intensions of type t − 1 for intensions of type t and a relation on intensions of
type (t− 1)(u− 1) for intensions of type tu. Note that the semantics of T H(SROIQ)
is intensionally regular.

However, despite the fact that T H(SROIQ) is based on SROIQ, T H(SROIQ)
is not more expressive than Motik’s extension of SHOIQ nor Hi(SHIQ), because in
T H(SROIQ) concepts cannot classify instances of different types. E.g., it would not
be possible to use one role definedBy to interconnect both pairs (Mammalia, von Linné)
and (Class, de Tournefort), because Mammalia is a first-order concept, while Class is a
second-order concept.

Homola et al. (2014) proved that the problem of satisfiability of a T H(SROIQ)
knowledge base is polynomially reducible to the problem of SROIQ knowledge base
satisfiability. Thus, concept satisfiability and subsumption in T H(SROIQ) are de-
cidable in N2ExpTime.
T H(SROIQ) supports domain metamodelling via higher orders, but it does not

support full metamodelling of any language operator.

3.9 SHIQM

SHIQM is a metamodelling extension of SHIQ proposed by Motz et al. (2015).
It extends the standard SHIQ knowledge base with a new part – MBox containing
metamodelling axioms in form a =m A where a is an individual and A is an atomic
concept. The metamodelling axioms have meaning similar to the axiom A ≡ ∃type.oA
in Ometa: by asserting a =m A, we state that a is a representative of A.

The semantics is higher-order – the domain is a subset of Sn for some n, where S0 is
a set of atomic objects, and Si+1 = Si ] 2Si for each i ≥ 0. Thus, the domain contains
basic objects, sets of basic objects, sets of sets of basic objects etc. These elements of
the domain are not separated in any way – any of them can serve as the interpretation
of an individual or a concept. In fact, axiom a =m A requires that aI = AI . Thus, if
the representatives of two concepts are equal, also the concepts’ extensions have to be
equal (SHIQM has the property of intensional regularity), and vice versa (SHIQM
has also the property of extensionality).

Motz et al. (2015) proved the decidability of SHIQM by extending the tableau al-
gorithm for SHIQ, but they did not mention the time complexity. However, ALCQM
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(a fragment of SHIQM) is believed to be ExpTime-complete (Motz et al., 2014), just
as ALCQ (afragment of SHIQ), its underlying description logic.
SHIQM supports domain metamodelling via higher orders, but it does not support

full metamodelling of any language operator.
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Chapter 4

Higher-Order DLs HIR(L) and
HIRS∗(L)

In this chapter we describe our approach to higher-order description logics support-
ing domain metamodelling, full metamodelling of instantiation, and partially also full
metamodelling of subsumption. Our approach is influenced mainly by Homola et al.
(2014) and Glimm et al. (2010).

Given a description logic L, we introduce four higher-order extensions for it: logic
HIR(L) (pronounced as “higher”) and logics HIRSNN(L), HIRSNA(L) and
HIRSSN(L), together dubbed HIRS∗(L) (pronounced as “highers”), which further
extend HIR(L). They all feature:

1. higher-order concepts called meta-concepts and higher-order roles called meta-
roles. Both can have not only individuals, but also concepts (designated by the
letter H) and roles (designated by the letter R) as instances,

2. role instanceOf which metamodels the relationship between instances and the
concepts which classify them (designated by the letter I).

Additionaly, logics HIRS∗(L) feature:

3. role subClassOf which metamodels the relationship between two concept where
the second subsumes the first one (designated by the letter S). Different variants
of HIRS∗(L) offer different properties of the subClassOf role.

Higher-order concepts and roles are enabled by relaxing the syntactic constraints
on instances: HIR(L) and HIRS∗(L) allow to use any name as an instance in both
nominals and in the left-hand side of individual assertions. Roles instanceOf and
subClassOf are a fixed part of a HIR(L) or HIRS∗(L) vocabulary. We formally
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introduce HIR(L) syntax in Section 4.1, and HIRS∗(L) syntax in subsections of
Section 4.4 (each HIRS∗(L) logic has its own subsection).
HIR(L) and HIRS∗(L) employ HiLog-based semantics (see Subsection 3.1.2).

Names are first assigned domain objects (intensions), which act as representatives of
the corresponding names. Then, concept and role intensions are assigned extensions:
sets of intensions for concepts, or sets of pairs of intensions for roles. More about
HIR(L) and HIRS∗(L) semantics can be found in Section 4.2 and subsections of
Section 4.4.

In Section 4.3, we show the decidability of HIR(L). Proofs of decidability for
HIRS∗(L) logics can be found in the respective subsections of Section 4.4.

In HIR(L) and HIRS∗(L), concepts can classify and roles can interconnect a
mix of different entities, e.g., a concept can classify individuals, concepts and roles.
This property is called promiscuity. Conversely, if desired, concepts and roles can be
axiomatized such that they classify and interconnect only some types of entities, e.g.,
a role can be axiomatized to interconnect only individuals with concepts classifying
individuals. We show the axiomatization in Section 4.5.

In the course of the chapter, we show how HIR(L) and HIRS∗(L) fulfill the
requirements from Chapter 2. Further, a discussion on properties of HIR(L) and
HIRS∗(L) as well as comparison with other logics allowing domain or full metamod-
elling can be found in the following chapter.

4.1 Syntax of HIR(L)

HIR(L) syntax is built on the syntax of the description logic L. On top of all standard
features of L it allows concepts and roles in places where only individuals could be in
the standard description logics. Also, HIR(L) vocabulary contains the role instanceOf.

The following definition introduces the syntax of HIR(SROIQ). For any frag-
ment L of the logic SROIQ, the syntax of HIR(L) is the corresponding fragment of
HIR(SROIQ).

Definition 4.1 (HIR(SROIQ) syntax). Let N = NI]NC]NR be a description logic
vocabulary such that instanceOf ∈ NR. HIR(SROIQ) role expressions are inductively
defined as the smallest set containing the expressions listed in Table 4.1 (upper part),
where R0 ∈ NR \ {instanceOf,U}, R is an atomic or inverse role, S and Q are role
expressions.

An expression is a HIR(SROIQ) concept if it is of one of the forms listed in
Table 4.1 (middle part), where A ∈ NC, B ∈ N , C and D are concpets, and R is an
atomic or inverse role.
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Table 4.1: Syntax and Semantics of HIR(SROIQ) Expressions and Axioms
Syntax (x) HIR(SROIQ) extension (xE)
R0 RIE0

R− { (y, x) | (x, y) ∈ RE }
U ∆I ×∆I

R1 · · ·Rn RE1 ◦ · · · ◦REn
instanceOf { (x, y) | x ∈ ∆I ∧ y ∈ ∆IC ∧ x ∈ yE }
A AIE

¬C ∆I \ CE

C uD CE ∩DE

{B} {BI}
∃R.C {x | ∃y.(x, y) ∈ RE ∧ y ∈ CE }
>nR.C {x | #{ y | (x, y) ∈ RE ∧ y ∈ CE } ≥ n }
∃R.Self {x | (x, x) ∈ RE }

Axiom ϕ Semantic constraint
C v D CE ⊆ DE

B : C BI ∈ CE

B1, B2 : R (BI1 , BI2 ) ∈ RE

B1, B2 : ¬R (BI1 , BI2 ) 6∈ RE

w v R wE ⊆ RE

Dis(R,P ) RE ∩ P E = ∅

A HIR(SROIQ) knowledge base K is a finite set of axioms of the forms listed
in Table 4.1 (bottom part), where B,B1, B2 ∈ N , C and D are concepts, R and P are
atomic or inverse roles, and w is a role chain.

HIR(SROIQ) easily formalizes the taxonomic example from Chapter 2. Concept
names can be used as instances in individual assertions, and thus taxa can be classified
to meta-concepts of ranks (Species, Genus, Class, . . . ) (4.1) and ranks to the meta-meta-
concept Rank (4.2). Meta-concepts are freely usable in GCIs just as concepts (4.3).

Giraffa camelopardalis : Species
Giraffa : Genus

Mammalia : Class
(4.1)

Species : Rank
Genus : Rank
Class : Rank

(4.2)
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Species t Genus t Class t · · · v Taxon
Species u Genus v ⊥

(4.3)

Meta-roles, such as definedBy already mentioned in Chapter 2 allow to associate
not only individuals with individuals, but also concepts with individuals, e.g., a taxon
or rank with a person (4.4), and also with other concepts, e.g., one species with its
evolutionary successor species (4.5). We can then express complex meta-concepts such
as LinneanSpecies (4.6).

∃definedBy.> v Taxon t Rank
> v ∀definedBy.Person

Mammalia, vonLinné : definedBy
(4.4)

∃successorOf.> v Species
> v ∀successorOf.Species

(4.5)

LinneanSpecies ≡ Species u ∃definedBy.{vonLinné} (4.6)

Since HIR(SROIQ) allows roles as instances, we can also easily classify different
types of animal behaviour:

migratesTo : Behaviour
imitates : LearningBehaviour

LearningBehaviour v Behaviour
(4.7)

First-order modelling still works as in SROIQ: Individual organisms are classified
to taxa and particular species are subsumed by their respective genera (4.8). Roles
record that a specimen (a studied example individual of a species) was describedBy a
person, and is locatedIn a museum (4.9).

zarafa : Giraffa camelopardalis
Giraffa camelopardalis v Giraffa

(4.8)

Specimen v Organism
∃describedBy.> t ∃locatedIn.> v Specimen
> v ∀describedBy.Person u ∀locatedIn.Museum

(4.9)

4.2 Semantics of HIR(L)

HIR(L) semantics is HiLog-based: Each name denotes a domain element (an inten-
sion) via the intension function ·I . The intensions for individuals, concepts, and roles
are disjoint. Using the extension function ·E , concept intensions are assigned concept
extensions (sets of intensions) and role intensions are assigned role extensions (rela-
tions on intensions). When a name is treated as a concept instance or a role actor, the
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semantics of a name is its intension. When treated as a concept or a role, the extension
of the name’s intension is considered.

The instanceOf role has fixed semantics: it connects every instance intension with
the intension of each concept to whose extension it belongs.

Definition 4.2 (HIR(SROIQ) semantics). An HIR(L) interpretation of a DL vo-
cabulary N with instanceOf ∈ NR is a triple I = (∆I , ·I , ·E) such that:

1. ∆I = ∆II ]∆IC ]∆IR where ∆II , ∆IC, ∆IR are pairwise disjoint,

2. aI ∈ ∆II for each a ∈ NI, AI ∈ ∆IC for each A ∈ NC, RI ∈ ∆IR for each R ∈ NR,

3. RI 6= SI whenever R, S ∈ NR and R 6= S (unique role assumption),

4. cE ⊆ ∆I for each c ∈ ∆IC, rE ⊆ ∆I ×∆I for each r ∈ ∆IR.

Extensions of role expressions RE and of concepts CE are inductively defined according
to Table 4.1.

The above definition introduces the semantics ofHIR(SROIQ). For any fragment
L of the logic SROIQ, the extensions of HIR(L) role expressions and concepts are
inductively defined according to the corresponding fragment of Table 4.1.

Note that without the unique role assumption (URA, 3.) it is easy to cause two
role names have the same intension (e.g., by an axiom {S} ≡ {T}), and thus also the
same extension. That, as Motik (2007) has shown, leads to undecidability in logics
admitting transitive roles and cardinality restrictions. The undecidability follows from
the possibility of having two roles, S and T with the same intension (e.g., entailed
by {S} ≡ {T}), where T is transitive (e.g., entailed by Tra(T )). Syntactically, S is
considered simple, (the equality of S’s and T ’s intension can be entailed in a non-trivial
way), and thus there is no syntactic problem with using it in a number restriction,
even if it actually is transitive. This, as showed by Horrocks et al. (1999), leads to
undecidability. (There is no similar problem requiring unique concept assumption,
because we can assert the equality of two concept extensions directly in SROIQ:
C ≡ D.)

Satisfiability, model and entailment in HIR(L) are defined in the usual way.

Definition 4.3 (HIR(L) satisfiability). An axiom ϕ is satisfied by a HIR(L) inter-
pretation I (I |= ϕ) if I satisfies the respective semantic constraint from the lower
part of Table 4.1.

A HIR(L) interpretation I is a model of K (I |= K) if I satisfies every axiom
ϕ ∈ K.
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A concept C is satisfiable in K if there exists a model I of K such that CI 6= ∅.
An axiom ϕ is entailed by K (K |= ϕ) if I |= ϕ holds for each I such that I |= K.

The semantics of instanceOf should now be apparent. It allows to traverse meta-
layers in modelling, just as we described in Chapter 2: Restrictions on instanceOf can
select instances of concepts satisfying various meta-criteria, e.g., specimens of Linnean
species described by someone else than von Linné (4.10). Conversely, restrictions on
instanceOf− select concepts whose instances satisfy complex criteria, e.g., species with
specimens located in the British Museum (4.11). We can thus express that every
instance of any taxon is an organism (4.12), i.e., that all taxa are effectively subconcepts
of Organism. Assuming that every taxon is an instance of some rank and all ranks are
instances of Rank, an equivalent statement is possible via the meta-meta-level (4.13).
Applying a number restriction on instanceOf, we can also express mutual disjointness
of Species by asserting that each Organism is classified as at most one species (4.14).

Specimenu∃instanceOf.(Species u ∃definedBy.{vonLinné})
u∃describedBy.¬{vonLinné}

(4.10)

Species u ∃instanceOf−.(Specimen u ∃locatedIn.{britishMusem}) (4.11)

∃instanceOf.Taxon v Organism (4.12)

∃instanceOf.∃instanceOf.Rank v Organism (4.13)

Organism v 61 instanceOf.Species (4.14)

Note that while Motik (2007) has suggested using SWRL rules (Horrocks and Patel-
Schneider, 2004) to express axioms such as (4.13), in Section 4.3 we show that SROIQ
is sufficiently expressive.

Liberal treatment of the instanceOf role allows creating its subroles, e.g., hasType
assigning a prototypical specimen to each species (4.15), and using them in number re-
strictions, e.g., to assert that each species has exactly one holotype (the “most notable”
specimen, usually used when the species was formaly described) and it is located in
a major museum (4.16). While we could have created the meta-role hasType anyway,
without using instanceOf we could not easily assure that it connects each species with
one of its instances.

hasType v instanceOf−

∃hasType.> v Species
> v ∀hasType.Specimen

(4.15)

Species v 61hasType.Holotype
u=1hasType.(Holotype u ∃locatedIn.MajorMusem)

(4.16)
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4.3 First-Order Reduction and Decidability

Now, we show how HIR(L) for some description logics L can be reduced to the first-
order L (or, in some cases, LO). We start with showing how HIR(SROIQ) can be
reduced to SROIQ. The reduction, fully defined below, is based on ideas by Glimm
et al. (2010). A rough idea of how this reduction works can be found in the following
lines.

For each concept A, a new individual name iA is introduced to represent A’s inten-
sion. Similarly, for each role R, a new “representative” individual name iR is introduced.
These new names representing concepts and roles are axiomatized to be instances of
new concepts >C and >R of concept and role intensions. The relationship between
the extension A and the intension iA is expressed through the instanceOf role in the
InstSync axioms. In the reduced knowledge base, instanceOf is an ordinary, axioma-
tized role. Since HIR(L) interpretations satisfy the unique role assumption (URA,
Definition 4.2(3)), role intensions do not influence their extensions. Hence, there is no
need for axiomatization of roles similar to the one in InstSync.

Definition 4.4 (First-Order Reduction for HIR(SROIQ)). A DL vocabulary N with
instanceOf ∈ NR is reduced into a DL vocabulary N1 := (N1

C, N
1
R, N

1
I ) where:

• N1
C = NC ] {>C,>R},

• N1
R = NR,

• N1
I = NI ] { iA | A ∈ NC } ] { iR | R ∈ NR }

for new names >C, >R, iA and iR for all A ∈ NC, R ∈ NR.
A given HIR(SROIQ) KB K in N is reduced into a SROIQ KB K1 := Int(K)∪

InstSync(N) ∪ Typing(N) ∪ URA(N) in N1 where:

• Int(K) is obtained from K by replacing each occurence of A ∈ NC and R ∈ NR in
a nominal or in the left-hand side of a concept or (negative) role assertion by iA
and iR, respectively.

• InstSync(N) consists of axioms A ≡ ∃instanceOf.{iA} for all A ∈ NC.

• Typing(N) consists of the following axioms for all a ∈ NI, A ∈ NC, and R ∈ NR:

> v ∀instanceOf.>C (4.17)

>R u >C v ⊥ (4.18)

a : ¬>C u ¬>R

iR : >R

iA : >C

(4.19)
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• URA(N) consists of axioms {iR} u {iS} v ⊥ for all pairs of distinct role names
R, S ∈ NR.

The following theorem asserts that K1 is just as strong as K. In the proof, from a
model I of K we construct a model J of K1. Then, we show J |= Int(ϕ) iff I |= ϕ.
Thus, since I |= K and K1 |= Int(ϕ), also J |= K1 and hence J |= Int(ϕ). Finally,
since J |= Int(ϕ), also I |= ϕ. The other way around is analogous.

Theorem 2. For any HIR(SROIQ) KB K and any axiom ϕ in a common vocabu-
lary N , we have K |= ϕ iff K1 |= Int(ϕ).

Proof. (⇐): Assume K1 |= Int(ϕ) and take any model I of K. Let J := (∆J , ·J ) be
a first-order interpretation of N1 where:

∆J := ∆I aJ := aI

>JC := ∆IC >JR := ∆IR

iJA := AI iJR := RI

AJ := AIE RJ := RIE

instanceOfJ :=
⋃

y∈∆I
C

yE × {y}

for each a ∈ NI, A ∈ NC, and R ∈ NR \ {instanceOf}.
The interpretation J is easily shown to satisfy InstSync(K):

AJ = AIE = {x | ∃y.x ∈ yE ∧ AI = y }

= {x | ∃y.(x, y) ∈ instanceOfJ ∧ iJA = y }

= {x | ∃y.(x, y) ∈ instanceOfJ ∧ y ∈ {iJA} }

= (∃instanceOf.{iA})J .

It also satisfies Typing(N): The extension of instanceOf is as a relation in which the
second element always belongs to ∆IC = >JC . The disjointness of the extensions of >C

and >R(4.18) follows from the definition of >JC , >JR and from the disjointness of ∆II ,
∆IC and ∆IR (4.2(1)). The classification of each a ∈ NI as well as iA for each A ∈ NC

and iR for each R ∈ NR (4.19) follows from the definition of >JC , >JR , from (4.2(1)),
and from (4.2(2)).

URA(N) follows from 4.2(3).
By structural induction we can prove RE = RJ for all role expressions R. Specifi-
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cally for instanceOf:

instanceOfE = { (x, y) | x ∈ ∆I ∧ y ∈ ∆IC ∧ x ∈ yE }

= { (x, y) | y ∈ ∆IC ∧ x ∈ yE }

=
⋃

y∈∆I
C

yE × {y}

= instanceOfJ .

By straightforward structral induction, we can also prove CE = Int(C)J for all
HIR(SROIQ)-style concepts C. Since nominals containing a role or a concept name
are the only case of concept transformed by Int, let’s see how it works for them:

{A}E = {AI} = {iJA} = {iA}J = Int({A})J

{R}E = {RI} = {iJR} = {iR}J = Int({R})J .

This directly implies that I |= ϕ iff J |= Int(ϕ) in case ϕ is a GCI, RIA or reflexivity
or role disjointness assertion. For the remaining cases (concept, role and negative role
assertion; X, Y ∈ NC ]NR):

• I |= X : C iff XI ∈ CE iff iJX ∈ Int(C)J iff J |= Int(X) : Int(C);

• I |= X, Y : R iff (XI , Y I) ∈ RE iff (iJX , iJY ) ∈ Int(R)J iff
J |= Int(X), Int(Y ) : Int(R);

• I |= X, Y : ¬R iff (XI , Y I) 6∈ RE iff (iJX , iJY ) 6∈ Int(R)J iff
J |= Int(X), Int(Y ) : ¬Int(R) iff J |= Int(X), Int(Y ) : Int(¬R).

From K1 |= Int(ϕ) and I |= K now follows J |= K1, hence J |= Int(ϕ), and finally
I |= ϕ.

(⇒): Assume K |= ϕ, and take any J |= K1. Let I := (∆I , ·I , ·E) be an
HIR(SROIQ) interpretation of N where for all a ∈ NI, A ∈ NC, c ∈ ∆IC, and
R ∈ NR \ {instanceOf}:

∆IC := >JC ∆IR := {iJR | R ∈ NR}

∆II := >J \ (∆IC ]∆IR) aI := aJ

AI := iJA RI := iJR
cE := {x | (x, c) ∈ instanceOfJ } RIE := RJ .

Note that thanks to the definition of ∆IR by defining RIE for each R ∈ NR, we define
rE for each r ∈ ∆IR.
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The requirements for an interpretation 4.2(1) and 4.2(4) follow from the definition
of I and Typing(N) (4.18). The requirement 4.2(2) follows from Typing(N) (4.19) and
the definitions of ∆IC, ∆IR, and ∆II . The requirement 4.2(3) follows from URA(N).

By structural induction, we can prove SE = SJ for all HIR(SROIQ)-style role
expressions S. Let us show it specifically for instanceOf. First, observe that since J
satisfies Typing(N), { y | ∃x.(x, y) ∈ instanceOfJ } ⊆ >JC . Now, for instanceOf:

instanceOfE = { (x, y) | x ∈ ∆I ∧ y ∈ ∆IC ∧ x ∈ yE }

= { (x, y) | x ∈ yE } ∩∆I ×∆IC
= instanceOfJ ∩ >J ×>JC
= instanceOfJ .

Since J satisfies InstSync, AJ = {x | (x, iA) ∈ instanceOfJ } = iEA = AIE .
Analogously to the proof of (⇐) we can show (by structural induction) also that
Int(D)J = DE for all HIR(SROIQ)-style concepts D.

This implies that I |= ϕ iff J |= Int(ϕ) in case ϕ is a GCI, RIA or reflexivity or
role disjointness assertion. For the remaining cases, the equivalence can be proved just
as in the (⇐) part of the proof. From K |= ϕ and J |= K1 now follows I |= K, hence
I |= ϕ, and finally J |= Int(ϕ).

Observe that the size of K1 (string-length-wise) is at most quadratic in the size
of K (assuming N consists exactly of all symbols occurring in K). If K satisfies, for
all roles including instanceOf, the SROIQ restrictions as mentioned at the end of
Subsection 1.1.3, so does K1. With simple roles defined as for SROIQ, we can now
state the following corollary claiming that HIR(SROIQ) has the same complexity as
first-order SROIQ.

Corollary 1. Let a HIR(SROIQ) KB K be such that only simple roles occur in
cardinality restrictions. Concept satisfiability and entailment in a HIR(SROIQ) KB
are then decidable in N2ExpTime.

From Definition 4.4 it follows that in general, HIR(L) reduces to LO if the DL L
admits GCIs, existential restriction, and complement. The decidability and complexity
of standard reasoning tasks for HIR(L) are then the same as for LO.

4.4 Subsumption Metamodelling
with HIRS∗(L) Logics

As already mentioned in Chapter 2, a natural next step after metamodelling instanti-
ation is to seek to obtain a similar role subClassOf reflecting subsumption. Such a role
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has more possible uses. The one we consider the most useful allows to select subcon-
cepts of a given concept satisfying various criteria, e.g., to express that all species of
genus Giraffa except Giraffa camelopardalis are extinct:

Species u ∃subClassOf.{Giraffa} u ¬{Giraffa camelopardalis} v Extinct . (4.20)

More generally, the subClassOf role can express subsumption relationships among
instances of two meta-concepts. For instance, in the biological taxonomy, species are
grouped into higher-ranked taxa. While some ranks are only used in some branches
of biology, certain ranks are generally anticipated as required, and each species should
have a supertaxon of those ranks (4.21). We might even wish to express that these
relationships are functional by axioms such as (4.22) (similar to the example use (2.9)
from Chapter 2).

Species v ∃subClassOf.Genus
Genus v ∃subClassOf.Family
Family v ∃subClassOf.Order

Order v ∃subClassOf.Kingdom

(4.21)

Species v 61subClassOf.Genus (4.22)

Since subClassOf is expected to be transitive, the meta subsumptions (4.21) should
imply that each Species is a subclass of some Order (4.23) even though we may not
know the precise Genus and Family lying in-between. Moreover, instantiation is ex-
pected to propagate upward the subsumption chain. If zarafa is an instance of Giraffa
camelopardalis, which is a Species (4.24), we expect that axioms (4.21) imply that it is
also an instance of some Kingdom (4.25).

Species v ∃subClassOf.Order (4.23)

zarafa : Giraffa camelopardalis
Giraffa camelopardalis : Species

(4.24)

zarafa : ∃instanceOf.Kingdom (4.25)

The zoological taxonomy (consisting of descendant taxa of the Animalia kingdom)
has two more ranks of taxa above Order: Class and Phylum. We can assert their
existence in the hierarchy by somewhat more complex axioms:

Order u ∃subClassOf.{Animalia} v ∃subClassOf.Class
Class u ∃subClassOf.{Animalia} v ∃subClassOf.Phylum

Phylum v ∃subClassOf.Kingdom .
(4.26)
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In the above axioms as well as in (4.20), concepts are selected on the basis of being
subsumed by a concept (Animalia and Giraffa, respectively). This brings forward the
question of semantics of the subClassOf role. Since this is a meta-level role between
two intensions, its semantics need not be strictly based on their extensions.

There is little doubt that the necessary condition of subsumption,

∀c∀d[subClassOf(c, d)⇒ ∀x(instanceOf(x, c)⇒ instanceOf(x, d))] , (4.27)

should hold, i.e., the meta-level assertion of subClassOf between two concepts implies
the respective subset relationship of their extensions.

The sufficient condition of subsumption converse to (4.27),

∀c∀d[∀x(instanceOf(x, c)⇒ instanceOf(x, d))⇒ subClassOf(c, d)] , (4.28)

is more controversial from the philosophical point of view (Guizzardi, 2005). De-
scription logics strongly support the nominalist approach to philosophical ontology.
Nominalism understands universals (i.e., entities which can have instances) as predi-
cates that can be stated over particulars (i.e., individual entities which cannot have
instances). The ontological subtype relation thus coincides with the set-theoretical sub-
set relation on extensions of types. In order to support this approach, the subClassOf
role should also satisfy (4.28). An illustration of the consequences of this property is
that if every instance of any species is an organism, ∃instanceOf.Species v Organism,
then an intuitive consequence is entailed – each species is a subconcept of the concept
Organism: Species v ∃subClassOf.{Organism}.

Set-theoretical subsumption, however, has also counterintuitive consequences, such
as empty types (e.g., Unicorn) being subtypes of all types. Guizzardi (2005) thus argues
for determining whether one ontological type is a subtype of another by comparing their
intended meaning, which is based on common properties of their respective instances
in possible worlds. Guizzardi’s notion of intended meaning is similar to the definition
of intension by Carnap (1947): an intension denotes the “property” or “character” of
a name. Conversely, an extension denotes the “class” corresponding to the name. (See
also Section 5.2.) From this perspective, the subtype relationship should be based on
intensions, which stay the same in any state of the world, and not extensions, which
can vary in different states of the world.

It is out of the scope of this thesis to discuss whether such a notion of subtype can be
expressed in a description logic. Nevertheless, we should be aware that a metamodel of
subsumption satisfying the sufficient condition (4.28) produces consequences undesir-
able in some applications. We will therefore investigate also weaker, non-set-theoretical
metamodels, satisfying only reflexivity, transitivity, and the necessary condition (4.27).

38



CHAPTER 4. HIGHER-ORDER DLS HIR(L) AND HIRS∗(L)

Such metamodels can be extended in the future with more sophisticated notions of sub-
types based on the structure of intensions, which is opaque in our current semantics.

In the following subsections we discuss three options for metamodelling the sub-
sumption relation, for which we are able to obtain decidability via reduction as in the
case of HIR(L). As we already mentioned in the introduction to this chapter, together
we denote them HIRS∗(L). They all use the same syntax:

Definition 4.5 (HIRS∗(SROIQ) Syntax). An HIRS∗(SROIQ) vocabulary is a
DL vocabulary N = NC ]NR ]NI such that {instanceOf, subClassOf} ∈ NR.
HIRS∗(SROIQ) role expressions, concepts, axioms, and knowledge base in N

are defined identically to their respective HIR(SROIQ) counterparts.

First two logics HIRSNN(L) and HIRSNA(L) are based on the non-set-theoretical
notion, while the last, HIRSSN(L) on the set-theoretical notion of subsumption. As
already mentioned in the introduction to this chapter, together we denote these logics
as HIRS∗(L). We define each of these logics as an extension of HIR(SROIQ),
although they can be easily modified to extend HIR(L).

4.4.1 Non-Set-Theoretical Subsumption for Named Concepts

Let us first introduce the extension HIRSNN(SROIQ) of HIR(SROIQ) with non-
set-theoretical metamodel of subsumption whose properties are guaranteed only on
named concepts. (Hence the name HIRSNN(L), where the first N stands for “non-set-
theoretical” and the second N for “named concepts”.) While rather weak compared to
the other options, this approach has the advantage that the use of the roles instanceOf
and subClassOf in modelling is not restricted more than in SROIQ.

Definition 4.6 (HIRSNN(SROIQ) Semantics). An HIRSNN(SROIQ) interpre-
tation of an HIRS(SROIQ) vocabulary N is a HIR(SROIQ) interpretation I =
(∆I , ·I , ·E) where additionally subClassOfIE ⊆ ∆IC×∆IC, and for all c, d ∈ ∆IC, A ∈ NC:

1. (AI , AI) ∈ subClassOfIE ,

2. if (c, d), (d,AI) ∈ subClassOfIE , then (c, AI) ∈ subClassOfIE ,

3. if (c, AI) ∈ subClassOfIE , then cE ⊆ AIE .

The extension of HIRSNN(SROIQ) interpretation to HIRS(SROIQ) role ex-
pressions and concepts, satisfaction of axioms, model, satisfiability, etc. are defined
analogously to HIR(SROIQ).
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The following proposition shows that the description logicHIRSNN(SROIQ) (i.e.,
the HIRS(SROIQ) syntax under the HIRSNN(SROIQ) semantics) supports non-
set-theoretic semantics of subClassOf on named (i.e., atomic) concepts. Definition 4.6 is
slightly more general for the sake of a simple and efficient reduction, which we provide
below.

Proposition 1. Let I be a HIRSNN(SROIQ) interpretation of a vocabulary N .
Then the extension subClassOfIE is a reflexive and transitive relation on the set NIC of
intensions of all atomic concepts, and for all A, B ∈ NC, if (AI , BI) ∈ subClassOfIE ,
then AIE ⊆ BIE .

Proof. The reflexivity of subClassOfIE is obvious from 4.6(1). The transitivity fol-
lows from 4.6(2) and the fact that NIC ⊆ ∆IC. Similarly, the last part (if (AI , BI) ∈
subClassOfIE , then AIE ⊆ BIE) follows from 4.6(3) and NIC ⊆ ∆IC.

As mentioned above, the use of both instanceOf and subClassOf in
HIRSNN(SROIQ) KBs is not restricted more than in SROIQ. They can be used
in number restrictions to model, e.g., disjointness of concepts (4.14) or functional sub-
sumption relationships among selected concepts (4.22), provided they remain simple in
the respective KB. Or, they can be used in RIAs as any other role and possibly become
non-simple.

The subClassOf role in HIRSNN(SROIQ) does not, of course, satisfy the suffi-
cient condition for subsumption (4.28) for named or unnamed concepts. It also does
not metamodel subsumption of unnamed concepts properly. For them, subClassOf does
not satisfy transitivity (axioms (4.21) do not entail (4.23)), nor the necessary condi-
tion (4.27) ((4.21) together with (4.24) do not entail (4.25)). However, the metamodel
has information on unnamed subconcepts of named superconcepts and propagates in-
stances of unnamed subconcepts to their named superconcepts. Thus, if we add to the
hierarchy (4.21) the claim that every Kingdom is subsumed by the concept Organism:

Kingdom v ∃subClassOf.{Organism} , (4.29)

axioms (4.24) now entail zarafa : Organism, but still not (4.25).
HIRSNN(SROIQ) can be reduced to SROIQ by extending the HIR(SROIQ)

reduction with an axiomatization of the subClassOf role. The size of this axiomatization
is linear in the number of atomic concepts in the vocabulary.

Definition 4.7 (HIRSNN(SROIQ) First-Order Reduction). Let K be a
HIRSNN(SROIQ) KB in a vocabulary N = NC]NR ]NI. The HIRSNN(SROIQ)
first-order reduction of K is the SROIQ KB K1NN := K1 ∪ SubclassSync(K), where

40



CHAPTER 4. HIGHER-ORDER DLS HIR(L) AND HIRS∗(L)

the KB K1 in the vocabulary N1 is the HIR(SROIQ) first-order reduction of K
(cf. Def. 4.4), and SubclassSync(K) consists of the following axioms for every A ∈ NC:

∃subClassOf.> v >C

> v ∀subClassOf.>C
(4.30)

iA, iA : subClassOf (4.31)

∃subClassOf.∃subClassOf.{iA} v ∃subClassOf.{iA} (4.32)

∃instanceOf.∃subClassOf.{iA} v A. (4.33)

The following theorem asserts that K1NN is just as strong as K.

Theorem 3. For any HIRSNN(SROIQ) KB K and any axiom ϕ in a common
vocabulary N , we have K |= ϕ iff K1NN |= Int(ϕ).

Proof. (⇐): Assume K1NN |= Int(ϕ) and take any model I of K. Let J := (∆J , ·J ) be
a first-order interpretation of N1 defined exactly as in the (⇐) direction of the proof
of Theorem 2. From the proof of Thm. 2 follows that J satisfies Int(K), InstSync(K)
and Typing(K).

Let us show that J satisfies also SubclassSync(K). Clearly, axioms (4.30) are
satisfied due to the definition of >JC and the fact that subClassOfJ = subClassOfIE ⊆
∆IC×∆IC. Axioms (4.31) are satisfied due to Def. 4.6(1). As for axioms (4.32), for any
given A ∈ NC we have:

(∃subClassOf.∃subClassOf.{iA})J

= { c | ∃d(d ∈ >JC ∧ (c, d) ∈ subClassOfJ ∧ (d, iJA ) ∈ subClassOfJ ) }

= { c | ∃d(d ∈ ∆IC ∧ (c, d) ∈ subClassOfIE ∧ (d,AI) ∈ subClassOfIE) }
(∗)
⊆ { c | (c, AI) ∈ subClassOfIE }

= { c | (c, iJA ) ∈ subClassOfJ }

= (∃subClassOf.{iA})J ,

where the inclusion (∗) holds by Def. 4.6(2).
As for axioms (4.33), for any given A ∈ NC, we have

(∃instanceOf.∃subClassOf.{iA})J

= { b | ∃c(c ∈ >JC ∧ (b, c) ∈ instanceOfJ ∧ (c, iJA ) ∈ subClassOfJ ) }

= { b | ∃c(c ∈ ∆IC ∧ (b, c) ∈ instanceOfIE ∧ (c, AI) ∈ subClassOfIE) }
(∗)= { b | ∃c(c ∈ ∆IC ∧ (b, c) ∈ instanceOfIE ∧ c ⊆ AI) }

⊆ { b | (b, AI) ∈ instanceOfIE }

= { b | b ∈ AIE } = A,
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where the inclusion (∗) holds by Def. 4.6(3). The rest of the proof for this direction is
analogous to the (⇐) direction of the proof of Thm. 2.

(⇒): Assume K |= ϕ, and take any J |= K1NN. Let I := (∆I , ·I , ·E) be an
HIR(SROIQ) interpretation of N defined exactly as in the (⇒) direction of the proof
of Thm. 2. We know from the proof of Thm. 2 that RE = RJ for all role expressions R,
including instanceOf and subClassOf. We will show that I is also a HIRSNN(SROIQ)
interpretation by verifying conditions from Def. 4.6.

The first condition holds due to the definition of AI and (4.31). As for the second
condition, take any A ∈ NC, c, d ∈ ∆IC, and assume (c, d), (d,AI) ∈ subClassOfIE .
Then also (c, d), (d, iJA ) ∈ subClassOfJ by the definition of AI and the fact that
subClassOfIE = subClassOfJ , hence (c, iJA ) ∈ subClassOfJ by axiom (4.32). Therefore
(c, AI) ∈ subClassOfIE by the definition of AI again.

Similarly for the third condition: take any A ∈ NC, c ∈ ∆IC, and assume (c, AI) ∈
subClassOfIE . Then also (c, iJA ) ∈ subClassOfJ by definition of AI and the fact that
RIE = RJ for all R ∈ NR. We will show that if x ∈ cE , then x ∈ AIE . Since x ∈ cE ,
also (x, c) ∈ instanceOfIE by the definition of cE and thus (x, c) ∈ instanceOfJ . Further,
from (4.33) and (x, c) ∈ instanceOfJ with (c, iJA ) ∈ subClassOfJ we get x ∈ AJ . Finally,
from AJ = AIE (proved in the (⇒) direction of the proof of Thm. 2) follows x ∈ AIE .

The rest of the proof is analogous to the (⇒) direction of the proof of the Thm. 2.

Note that we could replace Def. 4.6(1) and (4.31) with (c, c) ∈ subClassOfIE and
>C v ∃subClassOf.Self, respectively. However, to ensure that HIRSNN(SROIQ) KB
is decidable, subClassOf would have to be a simple role.

4.4.2 Non-Set-Theoretical Subsumption for All Concepts

The second semantics of subClassOf that we present is a non-set-theoretical one whose
properties are the same for named and unnamed concepts. However, for the sake of
decidability, instanceOf and subClassOf are considered non-simple. The logic is called
HIRSNA(L) (N for “non-set-theoretical” and A for “all concepts”).

Definition 4.8 (HIRSNA(SROIQ) Semantics). An HIRSNA(SROIQ) interpre-
tation of a HIRS(SROIQ) vocabulary N is a HIR(SROIQ) interpretation I =
(∆I , ·I , ·E) where additionally

1. subClassOfIE is a transitive relation on ∆IC, and

2. for all c, d ∈ ∆IC: if (c, d) ∈ subClassOfIE , then cE ⊆ dE .
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The extension of HIRSNA(SROIQ) interpretation to HIRS(SROIQ) role expres-
sions and concepts, satisfaction of axioms, model, satisfiability, etc. are defined analo-
gously to HIR(SROIQ).

Under this semantics the meta model of subsumption satisfies the necessary condi-
tion (4.27). Transitivity is also satisfied, and so (4.21) (axioms making each species a
subclass of some genus, each genus a subclass of some family, each family a subclass of
some order and each order a subclass of some kingdom) entails (4.23) (axiom asserting
that each species is a subclass of some order). Further, (4.21) together with (4.24)
(axioms classifying zarafa as an individual of species Giraffa camelopardalis and Giraffa
camelopardalis as a Species) entail (4.25) (zarafa is an instance of some kingdom). The
sufficient condition for subsumption (4.28) is not enforced.
HIRSNA(SROIQ) KBs can be reduced to first-order SROIQ KBs as follows:

Definition 4.9 (HIRSNA(SROIQ) First-Order Reduction). Let K be a
HIRSNA(SROIQ) KB in a vocabulary N = NC]NR ]NI. The HIRSNA(SROIQ)
first-order reduction K1NA of K is the SROIQ KB K1NA := K1 ∪ SubclassSync(K),
where the SROIQ KB K1 in the vocabulary N1 is the first-order reduction of K as
defined in Def. 4.4, and SubclassSync(K) consists of the following axioms:

∃subClassOf.> v >C

> v ∀subClassOf.>C
(4.34)

subClassOf · subClassOf v subClassOf (4.35)

instanceOf · subClassOf v instanceOf . (4.36)

Theorem 4. For any HIRSNA(SROIQ) KB K and any axiom ϕ in a common
vocabulary N , we have K |= ϕ iff K1NA |= Int(ϕ).

If K statisfies the SROIQ requirements for decidability with instanceOf and sub-
ClassOf considered non-simple and the regular order of roles such that subClassOf ≺
instanceOf, then concept satisfiability and entailment in K are decidable.

Proof. (⇐): Assume K1NA |= Int(ϕ) and take any model I of K. Let J := (∆J , ·J ) be
a first-order interpretation of N1 defined exactly as in the (⇐) direction of the proof
of Theorem 2. From the proof of Thm. 2 follows that J satisfies Int(K), InstSync(K)
and Typing(K).

Let us show that J satisfies also SubclassSync(K). Clearly, axioms (4.34) are
satisfied due to the definition of >JC and the fact that subClassOf is a relation on
∆IC. Axiom (4.35) is satisfied due to the transitivity of subClassOfJ following from
Definition 4.8(1). As for the last axiom, (4.36), take any a ∈ ∆I , b, c ∈ >JC . Let
(a, b) ∈ instanceOfJ and (b, c) ∈ subClassOfJ . From RJ = RIE for each R ∈ NR
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(proved in the (⇐) direction of the proof of Thm. 2) we get (a, b) ∈ instanceOfIE

and (b, c) ∈ subClassOfIE . Then a ∈ bE (from the definition of instanceOfIE) and
bE ⊆ cE (from 4.8(2)). Thus a ∈ cE , and from the definition of instanceOfIE also
(a, c) ∈ instanceOfIE . Finally, (a, c) ∈ instanceOfJ .

The rest of the proof for this direction is analogous to the (⇐) direction of the
proof of Thm. 2.

(⇒): Assume K |= ϕ, and take any J |= K1NA. Let I := (∆I , ·I , ·E) be an
HIR(SROIQ) interpretation of N defined exactly as in the (⇒) direction of the
proof of Thm. 2. We will show that I is also a HIRSNA(SROIQ) interpretation by
verifying conditions from Def. 4.8.

The first condition (4.8(1)) holds due to the axioms (4.34), (4.35) and the definition
of ∆IC. As for the second condition (4.8(2)), take any c, d ∈ ∆IC and assume (c, d) ∈
subClassOfIE . Then also (c, d) ∈ subClassOfJ since RIE = RJ for each R ∈ NR (proved
in the (⇒) direction of the proof of Thm. 2). We will show that if x ∈ cE , then
x ∈ dE . Since x ∈ cE , also (x, c) ∈ instanceOfIE by the definition of cE and thus (x, c) ∈
instanceOfJ . Further, from (4.36) and (x, c) ∈ instanceOfJ with (c, d) ∈ subClassOfJ

we get (x, d) ∈ instanceOfJ . Finally, (x, d) ∈ instanceOfIE and from the definition of dE

thus also x ∈ dE . The rest of the proof is analogous to the (⇒) direction of the proof
of the Thm. 2.

Unlike in the cases of HIR(SROIQ) and HIRSNN(SROIQ), the decidability of
HIRSNA(SROIQ) requires posing additional constraints on its expressivity. Since
SROIQ does not admit Self restriction on non-simple roles, reflexivity of subClassOf
cannot be axiomatized. This has no effect on propagation of instances from sub- to
superconcepts, and can be compensated for in descriptions by replacing ∃subClassOf.C
with C t ∃subClassOf.C, and ∀subClassOf.C with C u ∀subClassOf.C. The lack of
reflexivity is thus rather negligible, directly affecting only RIAs.

A more inconvenient limitation is the prohibition of number restrictions on both
instanceOf and subClassOf, which prevents, e.g., the useful axiomatizations of meta con-
cepts of disjoint concepts (4.14), as well as assertions of functionality of subClassOf (4.22).

In addition, note that the reduced knowledge baseK1NA for anyHIRSNA(L) knowl-
edge base K contains a transitivity assertion and a complex role inclusion axiom. Thus,
for HIRSNA(L) to be reduced to LO, L has to admit not only GCIs, existential re-
striction and complement, as in case of HIR(L) and HIRSNN(L), but also complex
RIAs.
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4.4.3 Set-Theoretical Subsumption for Named Concepts

We conclude our exploration of subsumption metamodelling options with the logic
HIRSSN(SROIQ) featuring set-theoretical metamodel of subsumption on named con-
cepts. Similarly to HIRSNN(SROIQ), the restriction of the subsumption metamodel
to named concepts allows more liberal use of instanceOf and subClassOf in KBs.

Definition 4.10 (HIRSSN(SROIQ) Semantics). An HIRSSN(SROIQ) interpre-
tation of a HIRS(SROIQ) vocabulary N is a HIR(SROIQ) interpretation I =
(∆I , ·I , ·E) where additionally

1. subClassOfIE ⊆ ∆IC ×∆IC, and

2. (c, AI) ∈ subClassOfIE iff cE ⊆ AIE for all A ∈ NC and c ∈ ∆IC.

The extension of HIRSSN(SROIQ) interpretation to HIRS(SROIQ) role ex-
pressions and concepts, satisfaction of axioms, model, satisfiability, etc. are defined
analogously to HIR(SROIQ).

The following proposition states that HIRSSN(SROIQ) indeed fully metamodels
set-theoretical subsumption on named concepts.

Proposition 2. Let I be a HIRSSN(SROIQ) interpretation of a vocabulary N . Then
for all A, B ∈ NC, we have (AI , BI) ∈ subClassOfIE iff AIE ⊆ BIE .

Proof. The proposition directly follows from 4.10(2) and the fact that NIC ⊆ ∆IC.

TheHIRSSN(SROIQ) semantics essentially extends theHIRSNN(SROIQ) with
the sufficient condition (4.28) of subsumption, and shares the other features of
HIRSNN(SROIQ): instanceOf and subClassOf can be simple roles, subsumption be-
tween named concepts is metamodelled fully, the metamodel also keeps track of un-
named subconcepts of named concepts and satisfies both (4.27) and (4.28) accordingly
(thus making (4.29) equivalent to ∃instanceOf.Kingdom v Organism).

Also similarly to HIRSNN(SROIQ), the subClassOf role in HIRSSN(SROIQ)
does not properly metamodel subsumption of unnamed concepts. For them, neither
transitivity, the necessary condition (4.27), nor the sufficient condition (4.28) are sat-
isfied in general. Thus again, (4.21) 6|= (4.23), and (4.21, 4.24) 6|= (4.25).

The HIRSSN(SROIQ) semantics of subClassOf can be achieved by a reduction to
SROIQ based on one devised by Glimm et al. (2010) in a less general context.

Definition 4.11 (HIRSSN(SROIQ) First-Order Reduction). Let K be a
HIRSSN(SROIQ) KB in a vocabulary N = NC ] NR ] NI. The SROIQ reduc-
tion K1SN of K is the SROIQ KB K1SN := K1∪SubclassSync(K), where the SROIQ
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KB K1 in the vocabulary N1 is the first-order reduction of K as defined in Def. 4.4,
and SubclassSync(K) consists of the following axioms for every A ∈ NC:

∃subClassOf.> v >C

> v ∀subClassOf.>C
(4.37)

∃subClassOf.{iA} ≡ ∀instanceOf−.A. (4.38)

Theorem 5. For any HIRSSN(SROIQ) KB K and any axiom ϕ in a common vo-
cabulary N , we have K |= ϕ iff K1SN |= Int(ϕ).

Proof. (⇐): Assume K1SN |= Int(ϕ) and take any model I of K. Let J := (∆J , ·J ) be
a first-order interpretation of N1 defined exactly as in the (⇐) direction of the proof
of Theorem 2. From the proof of Thm. 2 follows that J satisfies Int(K), InstSync(K)
and Typing(K). Moreover, from the proof of Thm. 2 also follows that RJ = RIE for
all R ∈ NR.

Let us show that J satisfies also SubclassSync(K). Clearly, axioms (4.37) are
satisfied due to the definition of >JC and the fact that subClassOfJ = subClassOfIE ⊆
∆IC ×∆IC. As for axioms (4.38), for any given A ∈ NC, we have

(∃subClassOf.{iA})J = { c | (c, iJA ) ∈ subClassOfJ }

= { c | (c, AI) ∈ subClassOfIE }
(∗)= { c | c ∈ ∆IC ∧ cE ⊆ AIE }

= { c | c ∈ ∆IC ∧ ∀x(x ∈ cE ⇒ x ∈ AIE) }

= { c | ∀x((x, c) ∈ instanceOf⇒ x ∈ AIE) }

= { c | ∀x((x, c) ∈ instanceOf⇒ x ∈ AJ ) }

= (∀instanceOf−.A)J ,

where (∗) holds by Def. 4.10(2). The rest of the proof for this direction is analogous
to the (⇐) direction of the proof of Thm. 2.

(⇒): Assume K |= ϕ, and take any J |= K1SN. Let I := (∆I , ·I , ·E) be an
HIR(SROIQ) interpretation of N defined exactly as in the (⇒) direction of the
proof of Thm. 2. From the proof of Thm. 2 follows that RIE = RJ for all R ∈ NR. We
will show that I is also a HIRSSN(SROIQ) interpretation by verifying conditions
from Def. 4.10.

The first condition (4.10(1)) holds due to the definition of ∆IC and (4.37). As for
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the second condition (4.10(2)), take any A ∈ NC and c ∈ ∆IC. Then:

c ∈ ∆IC ∧ (c, AI) ∈ subClassOfIE

iff (from the definition of ∆IC) c ∈ >JC ∧ (c, iJA ) ∈ subClassOfJ

iff c ∈ >JC ∩ (∃subClassOf.{iA})J

iff (from (4.38)) c ∈ >JC ∩ (∀instanceOf−.A)J

iff c ∈ >JC ∧ ∀x((x, c) ∈ instanceOfJ ⇒ x ∈ AJ )

iff (from the definition of ∆IC and cE) c ∈ ∆IC ∧ ∀x(x ∈ cE ⇒ x ∈ AIE)

iff c ∈ ∆IC ∧ cE ⊆ AIE .

The rest of the proof is analogous to the (⇒) direction of the proof of the Thm. 2.

Interestingly, combining HIRSSN(SROIQ) with HIRSNA(SROIQ) yields a DL
where subClassOf is transitive on all concepts and reflexive on named concepts, at
the expense of instanceOf and subClassOf becoming non-simple. This fixes the non-
entailments discussed above: (4.21) |= (4.23), and (4.21, 4.24) |= (4.25).

But the sufficient condition of subsumption (4.28) still does not hold for unnamed
superconcepts. Take an example:

> v =1U.S
C v ∃instanceOf.S

(4.39)

in which S is made a singleton concept by the first axiom, and C is made the subclass
of the only unnamed instance of S at the extensional level. The problem is that (4.39)
does not entail C : ∃subClassOf.S. That is, the subclass-of relation is not entailed
at the meta level. Semantically, this can be fixed in the analogously defined logic
HIRSSA(SROIQ) in which subClassOf has the full set-theoretical semantics also for
unnamed concepts, though we do not currently know whether such logic is decidable.

4.5 Type Hierarchy

In HIR(L) and HIRS∗(L), concepts are fully promiscuous, possibly having individ-
uals, roles, and concepts as instances, though about each instance we are able to say if
it is an individual, concept, or role. There are certain concepts such as Deprecated for
which the promiscuity makes sense. Concepts, roles, and even individuals may become
deprecated if they are replaced by new names or more refined versions. In the tax-
onomy domain, taxa, ranks, and even specimens may become deprecated (e.g., when
they are invalidated by further studies). For example, the following axiom states that
Cervus camelopardalis (an old binomial name for the species Giraffa camelopardalis) and
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Nixus (an old name for the rank Order) are deprecated. Note that Cervus camelopardalis
has only individuals as instances, while Nixus has only concepts as instances.

Cervus camelopardalis : Deprecated
Nixus : Deprecated

(4.40)

An example of a role with a truly promiscuous domain is definedBy (4.4), as it is
applicable to both taxa and ranks.

In some cases, promiscuity of all concepts is not desired – e.g., we would like to
ensure that concepts Person and Museum classify only individuals, and Species classifies
only concepts with individual instances. For cases like this one, we introduce a typing
framework axiomatization:

Definition 4.12 (Typing framework). Given n ∈ N, a HIR(L) (HIRS∗(L)) KB with
n types adds new concept names >X(i) for each i, 0 < i ≤ n, and each X ∈ {I,R, IR},
and contains the following axioms for all X, Y ∈ {I,R, IR} and Z ∈ {I,R} such that
X 6= Z:

1. >X(t) v ∀instanceOf−.>X(t−1) for each t such that 0 < t ≤ n,

2. a : >I(1), R : >R(1) for each a ∈ NI, R ∈ NR,

3. >X(t) v ¬>Y (u) for each t 6= u such that 0 < t, u ≤ n,

4. >X(t) v ¬>Z(t) for each t such that 0 < t ≤ n,

5. >IR(1) ≡ >I(1) t >R(1).

Axioms 4.12(1) ensure that concepts on level t classify only members of level t− 1,
axioms 4.12(2) assert that all named individuals and roles belong to the lowest level,
axioms 4.12(3) and 4.12(4) ensure that different types are disjoint and axiom 4.12(5)
establishes the relationship between individual, role and mixed type.

More specifically, the >I(1) concept classifies precisely all individuals (similarly,
>R(1) classifies precisely all roles and >IR(1) classifies precisely all individuals and roles),
>I(2) classifies precisely all concepts with only individual instances (analogously, >R(2)

classifies all concepts of roles, and >IR(2) classifies all first-order concepts), etc. We can
thus assert some typing in our example:

Organism t Person tMuseum v >I(1)

Taxon v >I(2)

Rank v >I(3) .

Typing is propagated to subconcepts and instances: Giraffa camelopardalis v >I(1)

and Species v >I(2) is now entailed, and so for other taxa and ranks. Domains
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and ranges of roles may be typed similarly, e.g., ∃successorOf.> v >I(2) and > v
∀successorOf.>I(2). This, though, is also already entailed, since Species was already
asserted as the domain and range (4.5) of the role successorOf, and it is already typed.
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Chapter 5

Discussion

In this chapter, we discuss the properties of HIR(L) and HIRS∗(L) (Sections 5.1
and 5.2), their relationship with set theory and the logic L (Sections 5.3 and 5.4) and
we compare our contribution to other higher-order description logics (Section 5.5).

5.1 Intensional Regularity

In Chapter 3 we already informally introduced the notion of intensional regularity.
Now we define it formally.

Definition 5.1 (Intensional regularity). A higher-order description logic L has the
property of intensional regularity if the following implication holds for each knowledge
base K and concepts X, Y in logic L:

K |= X = Y =⇒ K |= X ≡ Y .

Intensional regularity is a basic property of HiLog-based logics, and since the se-
mantics of HIR(L) and HIRS∗(L) is based on HiLog, both are intensionally regular.

Theorem 6. HIR(L) and the HIRS∗(L) variants are intensionally regular.

Proof. Let K |= A = B for two concept names A and B, then in every model I we
have AI = BI . Hence also AIE = BIE and K |= A ≡ B.

Intensional regularity for concepts is a quite natural requirement for metamodelling
(see also Motik (2007)). For example, if we assert that an international and a Slovak
name denote the same species (Giraffa camelopardalis = Žirafa štíhla), we also expect
their extensions to be equal.
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5.2 The Lack of Extensionality

The property of extensionality was also already informally introduced in Chapter 3.

Definition 5.2 (Extensionality). A higher-order description logic L has the property
of extensionality if the following implication holds for each knowledge base K and
concepts X, Y in logic L:

K |= X ≡ Y =⇒ K |= X = Y .

Another basic property of HiLog-based logics is the lack of extensionality, i.e.,
K |= X ≡ Y 6=⇒ K |= X = Y .

Theorem 7. HIR(L) and the HIRS∗(L) variants lack extensionality.

Proof. Since the extension function is not injectve, a model of a KB such that K |= A ≡
B can assign A and B distinct intensions AI = a 6= b = BI with the same extension,
e.g., aE = bE = {x}.

The lack of extensionality enables, e.g., deprecating an old binomial name of a
species without deprecating its newer name, although they classify the same organisms:

Cervus camelopardalis : Deprecated
Giraffa camelopardalis ≡ Cervus camelopardalis
6=⇒ Giraffa camelopardalis : Deprecated ,

(5.1)

or modelling of single-species genera such as Sommeromys ≡ Sommeromys macrorhinos,
where Sommeromys macrorhinos : Species and Sommeromys : Genus without contradict-
ing the disjointness of ranks Species u Genus v ⊥.

Note that extensionality and intensional regularity combined mean that concept
and role names are unambiguously represented by their extensions. The two proper-
ties together erase the distinction between intensions and extensions – concept/role
intensions a and b are equal if and only if their extensions aE and bE are equal.

We consider the lack of extensionality desirable in metamodelling and we argue for
the idea of intensions and extensions as defined by Carnap (1947), already mentioned
in Section 4.4: An intension is what a name means (the “property” or “character” of a
name) and extension is what a name denotes (the “class” corresponding to the name).
When the state of the world changes, the intension of a name remains the same, but
the extension of a name can change. A notorious example are the names Human and
Featherless Biped – even though in the current state of world their extensions are the
same, their “characters” differ and it is easy to imagine a world where their extensions
are different. (And it does not even have to involve Diogenes’s plucked chicken (Laërtius
and Hicks, 1925).)
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5.3 Relationship with Set Theory

Unlike HIR(L) and HIRS∗(L), axiomatic set theories (e.g., ZFC (Shoenfield, 1977)
and NBG (Mendelson, 1997)) have both the property of intensional regularity and
the property of extensionality. Moreover, HIR(SROIQ)’s (HIRS∗(SROIQ)’s)
expressivity makes it vulnerable to Russel’s paradox of naïve set theory, which is
avoided by axiomatic set theories. A concept of such concepts which are not instances
of themselves is defined as Barber ≡ ¬∃instanceOf.Self. Take any HIR(SROIQ)
(HIRS∗(SROIQ)) model I of K, and let

b := BarberI ∈ ∆IC
B := bE

S := ∃instanceOf.Self = {x | (x, x) ∈ instanceOfE } = {x | x ∈ ∆IC ∧ x ∈ xE } .

We have B = ∆I \S = ∆II ]∆IR] (∆IC \S) = ∆II ]∆IR]{x | x ∈ ∆IC∧x /∈ xE }. Hence
the contradiction: b ∈ bE iff b /∈ bE . However, this example is actually not specific to
HIR(SROIQ) or HIRS∗(SROIQ) logics, as it reduces to a contradictory SROIQ
knowledge bases. The reduced knowledge base obtained from HIR(SROIQ) contains
the following axioms:

Barber ≡ ¬∃instanceOf.Self (5.2)

Barber ≡ ∃instanceOf.{iBarber} , (5.3)

which suffice to create the contradiction in the reduced knowledge base:

(iIBarber, iIBarber) ∈ instanceOfI

iff (from (5.3)) iIBarber ∈ BarberI

iff (from (5.2)) iIBarber 6∈ (∃instanceOf.Self)I

iff (iIBarber, iIBarber) 6∈ instanceOfI .

In HIR(L) (HIRS∗(L)) (where L admits GCIs, existential and universal restric-
tion, qualified number restriction, role inverses and simple RIAs), it is also possible
to construct infinite descending chains of instantation. Such chains are in axiomatic
set theories avoided by the axiom of foundation (Barwise and Moss, 1996). They can
be constructed in our logics by creating a chain with a new simple role S, concept X
and individual z by the usual axioms X v ∃S.X, X v 61S−.X, z : X u ∀S−.⊥, and
then asserting S− v instanceOf (see Figure 5.1). While some approaches to metamod-
elling (Pan et al., 2005; Motz et al., 2015) avoid or explicitly prohibit such chains, the
reducibility of HIR(L) and HIRS∗(L) to L (or LO) means that they do not cause
any harm regarding decidability. Moreover, both the construction of infinite descend-
ing instantiation chains and of Russel’s paradox can be prevented by using the typing
framework from Section 4.5.
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Figure 5.1: Infinite Instantiation Chain

5.4 Relationship with the Logic L

Since both HIR(L) and HIRS∗(L) are reducible to the logic L (or LO in case that
L does not feature nominals), the expressivity of HIR(L) and HIRS∗(L) is actually
the same as the expressivity of L (LO). At first, this might seem a bit counterintu-
itive, however, the reductions prove that our extensions of L are only syntactic sugar
allowing the user to easily model with higher orders and even with the relationships of
instantiation and subsumption. Yet, we consider our results important, because they
show how expressive L (or, in the case we explored the most, SROIQ) actually is.

5.5 Comparison with Other Higher-Order DLs

While in some other higher-order DLs (e.g., Motik (2007) and De Giacomo et al. (2011)
mentioned in the previous chapter) any name simultaneously denotes an individual, a
concept, and a role, HIR(L) and HIRS∗(L) keep the basic distinction among these
three types of entities. Individuals have no extensions, concepts only have concept
extensions (a set of entities they classify), and roles only have role extensions (a set
of pairs of entities they interconnect). This threefold distinction is fundamental from
the ontological standpoint (see, e.g., Grossmann (1983, Pt. II), Guizzardi (2005, Ch. 4,
6, 7), Svátek et al. (2013)) and dates back to Aristotle (Aristotle, 1962, 2a11,6a37). It
also saves users accustomed to first-order DLs from surprises, and provides basic sanity
checks.

Intensional regularity and the lack of extensionality in HIR(L) and HIRS∗(L) are
both inherited from HiLog (Chen et al., 1993), and thus shared by its other descendants
(ν-semantics (Motik, 2007), Hi(SHIQ) (De Giacomo et al., 2011) and T H(SROIQ)
(Homola et al., 2014)).

There are use cases where extensionality is needed, as demonstrated by Motz et al.
(2015). Such cases can be covered by one of the logics with truly higher-order semantics,
which domains contain not only basic objects, but also sets of basic object, sets of sets
of basic objects, etc. (OWL FA (Pan et al., 2005), SHIQM (Motz et al., 2015)),
though none features metamodelling of instantiation or subsumption. Since punning in
OWL 2 (Cuenca Grau et al., 2008) is semantically equivalent to Motik’s π-semantics,
it is neither intensionally regular nor extensional (Motik, 2007). E.g., a knowledge
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Table 5.1: Comparison of Properties of Higher-Order Description Logics
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Hi(SHIQ) Y N Y Y N N N SHIQ
Ometa N Y N Y N Y Y* SROIQ
SHIQM Y Y* Y Y Y N N SHIQ
T H(SROIQ) Y Y N Y N N N SROIQ
HIR(SROIQ) Y Y Y Y N Y N SROIQ
HIRS∗(SROIQ) Y Y Y Y N Y Y* SROIQ

base K = {x : A,A = B,A u B v ⊥} entails that names A and B represent the same
individual, but distinct classes. However, K is consistent, because the interpretations
of A and B are determined by their contexts (whether the name denotes an individual
or a class) and these interpretations are independent. Punning thus provides only very
basic support for metamodelling via, essentially, overloading of names. It can, however,
still be useful in some applications (Noy, 2005).

In Table 5.1, we compare key properties of our logics HIR(SROIQ) and
HIRS∗(SROIQ) with other higher-order description logics. The table does not con-
tain information about complexity of different logics on purpose – their complexities
are the same as the complexities of the underlying description logics, with the exception
of OWL FA and SHIQM, which complexities are not known.

Note the asterisks by some of the yes/no answers: The encoding scheme Ometa

(Glimm et al., 2010) featured role subClassOf which was axiomatized similarly as sub-
ClassOf in ourHIRSSN(SROIQ) (since Glimm et al. (2010) used first-order semantics,
they did not encounter any limitations on the subsumption of unnamed concepts).

In case of SHIQM (Motz et al., 2015) and typing, the logic’s semantics incorpo-
rates well-founded sets and thus it does not allow an instanceOf-cycle or an infinite
descending chain. However, the type hierarchy is “automatic” and cannot be explic-
itly enforced on a concept or a role by the user. Thus, it cannot be used to organize
concepts and roles into layers, like our typing framework from Section 4.5.

Finally, HIRS∗(SROIQ) features different axiomatizations of subClassOf with
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different properties and limitations. We have argued in Section 4.4 that they are all
useful and sufficient for most of the metamodelling use cases, but none of them has
set-theoretic semantic on all (named and unnamed) concepts.
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Conclusions

In this thesis, we have introduced and studied extensions of description logic (dubbed
HIR(L) and HIRS∗(L) for DL L admitting GCIs, existential restriction and comple-
ment, and in case ofHIRSNA(L) also complex RIAs). They feature domain metamod-
elling in the form of unlimited higher orders and full metamodelling of instantiation
and partially also subsumption.

We proved decidability of our extensions by means of reduction to the logic L
(or, in some cases, LO). This reduction shows that the expressive power needed to
model with higher orders and metamodel instantiation and partially also subsumption
relationship was already present in the logic L (LO). Since HIR(L) and HIRS∗(L)
can be reduced to the base logic L (or LO), it is possible to decide them using off-the-
shelf reasoners. Moreover, since the reduction is polynomial, deciding HIR(L) and
HIRS∗(L) can be done with the same computational complexity as deciding the base
logic L (or LO).

Further, we showed that our approach has properties (intensional regularity and the
lack of extensionality) and features (instantiation and subsumption metamodelling,
unlimited higher orders, type hierarchy, concept and role promiscuity) desirable for
metamodelling and that such combination of attributes is not present in any previous
work on metamodelling. HIR(L) and HIRS∗(L) thus allow the user to easily and
correctly model domains with inherent higher-order structure, such as the biological
taxonomy. Moreover, they also allow the user to freely metamodel with instantiation
and partially also with subsumption.

While we showed three possible axiomatizations of subsumption, the problem of
deciding set-theoretic subsumption metamodelling also for unnamed concepts remains
unsolved and might be an interesting direction for future work. Another possible
question for future research is if such domain and full metamodelling features could be
added to lesser expressive description logics.
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