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Abstract

Cryptographic hash functions are corner-stones of current cryptography. Recently,

NIST (National Institute for Standards and Technology) has announced a public com-

petition to develop a new hash standard called AHS (Advanced Hash Standard). We

summarize the basic properties that the new cryptographic hash standard should

preserve, give formal definitions of them and work out all of the implications or sep-

arations among these definitions. Some of the implications/separations have been

proven before, others appear to be new. We provide two types of the implication and

separation, conventional and provisional. While the conventional implication (sepa-

ration) carries the usual semantics of the word implication (separation), the strength

of the provisional implication or separation depends on a particular hash function.

We show that a property pseudo-random oracle introduced by Coron, Dodis, Malin-

aud and Puniya is (as expected) the strongest one, since it implies almost all of the

other properties. We also discuss the practical use of the pseudo-random oracle and

multi-property preserving transforms introduced by Bellare and Ristenpart.

Keywords: cryptographic hash function, provable security, hash function properties,

collision resistance, pseudo-random oracle
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Introduction

Cryptographic hash functions are basic primitives, widely used in many applications,

from which more complex cryptosystems are build. In the last few years many popular

hash functions such as MD5 or SHA1 have been broken, also some structural flaws

in popular constructions (e.g. Merkle-Damg̊ard construction) of hash functions have

been found. These findings caused great activity in the cryptographic community,

which in January 2007 escalated into NIST’s (National Institute for Standards and

Technology) announcement of a public competition for a new hash standard, similar

to one when AES was standardized.

By this thesis we try to participate in the development of a new hash standard by

summarizing security properties of cryptographic hash functions. We extend the work

by Rogaway and Shrimpton [13], where they provide definitions of seven security

properties – notions of preimage resistance, second-preimage resistance and collision

resistance, and they also give all the relationships among these definitions. To these

seven security properties we add five more — definitions of unforgeability, two notions

of chosen target forced prefix preimage resistance, pseudo random function and pseudo

random oracle. Between each two of all twelve definitions, we provide implication or

separation with exact proof, except those implications or separations proven in [13].

The Thesis is divided into two parts. In the first part we introduce some basic nota-

tions and definitions, then we give formal definitions of twelve security properties a

cryptographic hash function should preserve. At the end of the first part we discuss

when a hash function is secure in some sense (i.e. when it preserves some property),

and we give formal definitions of implication and separation between the security

properties. In the second part of the Thesis we provide the relationships (implication

or separation) with exact proofs among the definitions from the first part.

Informally speaking, a hash function is a function that maps messages of an arbitrary

length to strings of fixed length. An output of a hash function with some message on its

input is called a hash of the message. One of the many applications of hash functions

are digital signatures. Digital signatures are used as an electronic replacement of

8
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Figure 1: Scheme of digital signature

classical hand-written signatures. Many digital signature schemes have been designed

so far, however all of them share the same basic scheme (see Figure 1). Every digital

signature scheme is based on an asymmetric cipher. Suppose that Alice wants to

send Bob some signed document. To be able to perform the signing process, Alice

must have a private key and share some public key. The private key is used by the

signing algorithm to sign the document and Bob uses Alice’s public key in the verifying

algorithm to verify, whether the document was really signed by Alice. As asymmetric

ciphers are very computationally demanding, instead of signing the whole document,

only hash of the document is signed.

Digital signatures are good example for presenting properties that hash functions

should preserve. One important property is efficiency. Hash function algorithm should

be very fast, as very long documents can be signed. Thus hash functions based on

a computationally hard problem (factorization or discrete logarithm) are out of the

question (even if they provide some provable security), as such hash functions are

slow.

Fundamental property of digital signatures used in practice is that for some digitally

signed document A no one can produce document B that has the same signature as

A. Similar property is that no one can produce two different documents that have

the same signature. Thus a hash function used in a digital signature scheme must

guarantee that for some document A no one can produce another document B that

hashes to the same hash as A (otherwise A and B would have the same signature).

Similarly, it must guarantee that no one can produce two different documents that hash

to the same hash. Thus we have two properties that hash functions should preserve –

the first is called second-preimage resistance and the latter collision resistance. When

we are designing a hash function for digital signatures, we would like to know the
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relationship between these properties. If we knew that collision resistance implies

second-preimage resistance, then instead of proving preservation of each property

separately, we would only need to prove, that our hash function is collision resistant

and therefore it is automatically second-preimage resistant. In this thesis we try to

help designers of hash functions by summarizing all properties a “good” cryptographic

hash function should preserve and by giving relationships among these properties.
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Chapter 1

Definitions

A cryptographic hash function is a function F : M → Y where M is a possibly

infinite nonempty set of strings, Y is a finite nonempty set of strings and |M| > |Y|.

Members of the domain M are called messages, members of the set Y are called

images or hashes. However, not every such function F is a “good” cryptographic

hash function. There are three main properties which a “good” cryptographic hash

function has to preserve.

• preimage resistance – for essentially all hashes y, it is difficult to find message

m which is hashed to y.

• 2nd-preimage resistance – for given message m, it is difficult to find message m′,

which hashes to the same value as the message m, i.e. F (m) = F (m′).

• collision resistance – it is difficult to find two different messages m and m′ such

that F (m) = F (m′).

However, the properties above are written informally, what can lead to a lot of ambigu-

ity. In this chapter we discuss which properties should a cryptographic hash function

preserve and give formal definitions of them.

In [13] Rogaway and Shrimpton provide definitions for various notions of collision

resistance, preimage resistance and second preimage resistance. They also give all

the relationships among the definitions. Bellare and Ristenpart in [2] give another

three properties: pseudo-random function, pseudo-random oracle and MAC. Finally,

Kohno and Kelsey in [8] proposed a new type of attack called “herding attack” and

they introduced new property called chosen target forced prefix preimage resistance,

which if a hash function preserves, then it is resistant to the herding attack.
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Formal definitions of these properties use hash functions in a different setting than

we presented. Hash function has one more input, so called dedicated-key input, which

extends a hash function to a hash function family .

Definition 1 (Hash function family). A hash function family is a function H : K ×

M→ Y, where K = {0, 1}k , Y = {0, 1}y for some integers k, y > 0 and M = {0, 1}∗.

Set K is called key space, number y is called hash length of H.

The reason why we use the hash function family instead of the hash function is its uni-

versality, which leads to easier construction of message authentication codes (MACs),

where some secret key is needed to build MAC (more about message authentication

codes can be seen in Section 1.2.5). Hash function family has some other benefits,

which are discussed in [2], however significant drawback of hash function family is its

loss in efficiency (we need k more bits to process every message block).

Now we introduce some notations used in this thesis. We write M
$
←S for the exper-

iment of choosing random element from the distribution S. If S is a finite set, then

M is chosen uniformly from S. Concatenation of finite strings M1 and M2 we denote

by M1||M2 or simply M1M2. Bitwise complement of string M we write as M . Empty

string is denoted by µ. If i is an integer, then 〈i〉r is r-bit string representation of

i. Let Func(D,R) represent the set of all functions ρ : D → R and let RFD,R be a

function chosen randomly from the set Func(D,R) (i.e. RFD,R
$
←Func(D,R)). We

sometimes write RFd,r when D = {0, 1}d and R = {0, 1}r . By Prefixn(M) we denote

the n-bit prefix of message M , similarly by Suffixn(M) we denote the n-bit suffix of

M .

Definition 2 (Adversary). An adversary is a random access machine (RAM) with

any number of inputs (i.e. it can access ith bit of input j in unit time) that can toss

a coin in unit time (i.e. it can choose a sample from the set {0, 1} in a unit time).

Running time of an adversary A on some input is the average time needed to compute

an output (relative to some fixed RAM model) plus the description size of A (relative

to some fixed coding of RAMs).

It is important to include the description size of an algorithm A into the running time

of an adversary. For example consider, that we are constructing an adversary A which

finds preimages for a hash function F :M→ Y. We hardwire into A an array P of

pairs [M,Y ];Y = F (M) sorted by the second component, such that P includes all

possible images Y = F (M). Therefore the size of the array P is at most |Y| (note

that not all of the messages M ∈M are included in P , but P includes all images that

F outputs). The adversary A takes as an input image Y and searches in P for one

pair (M,Y ). As P is sorted, A can use binary search, which runs in logarithmic time.
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Thus A finds preimages for a set Y with cardinality 2y in time O(y), what is feasible

even for a large y. However, it is practically unfeasible to construct such algorithm

A because of its complexity. Let us assume that output size of F is 128 bits and

maximum message length in P is 256 bits. Therefore 256 · 2128 bits are needed to

store such array P in a memory, what is about 296 terabytes.

Let H : K ×M → Y be a hash function family. We denote by TimeH,n the running

time of an algorithm P (i.e. some random access machine) computing H that has the

best worst case running time over all inputs (K,M);K ∈ K;M ∈ M; |M | = n, that

is, any other algorithm P ′ computing H has the worst case running time over all the

inputs (K,M);K ∈ K;M ∈M; |M | = n greater or equal to P ’s. Informally speaking,

TimeH,n is the time needed to compute HK on any input of length n.

In this work we will often use the term random oracle. It is an abstract function,

which we are unable to construct, however, it is widely used in cryptography, mainly

due to the so called random oracle model, firstly introduced by Bellare and Rogaway

[4], where the security of cryptosystems is proven under the assumption, that any

party has access to a random oracle. Instead of proving that some system is secure

with the particular hash function F (e.g. F being SHA-1), one assumes, that F is an

“ideal” hash function (i.e. random oracle) and proves the security of the system under

this assumption. Such formal proof in the random oracle model indicates, that there

are no structural flaws in the construction of the system, and therefore we can believe,

that no such flaws will appear in the system with a particular well-constructed hash

function F .

Definition 3 (Random oracle). A random oracle is a function f : D → R chosen

uniformly randomly from the set of all functions from D to R (i.e. from the set

Func(D,R)), where R is a finite set.

Thus RFD,R, already defined, is a random oracle. Based on the definition of random

oracle, we can define ideal hash function.

Definition 4 (Ideal hash function). A hash function F : M → Y is an ideal hash

function if every attack against F has the same complexity as against a random oracle

(i.e. any adversary performing the attack against F has the running time greater or

equal to the running time of the adversary performing attack against random oracle).

We will also use the term negligible. A function f : N→ R
+ is negligible, if it descends

faster than any polynomial powered to −1. The formal definition is following.

Definition 5 (Negligible function). A function f : N → R
+ is negligible, if for every

constant c > 0, there exists an integer N0 ∈ N, such that for all integers n > N0 it

13



holds

f(n) <
1

nc
.

We say that a constant c is negligible, when it is affected by some security parameter

k and the function c(k) is negligible. For example consider, that we have a hash

function F , for which any adversary A has the probability of success 1
2k , where k is

some security parameter (e.g. hash length of F ). Thus the probability of A’s success

is negligible and so we say that F is secure against the attack that adversary A is

performing.

1.1 Constructions of hash functions

In this Section we describe the common way of constructing hash functions F :M→ Y

— the iterated construction and its Merkle-Damg̊ard strengthening.

1.1.1 Iterated construction

In order to process messages of an arbitrary length, the iterated hash functions process

messages in blocks of fixed length r. However the length of message does not need

to be divisible by r. Thus some message preprocessing is needed, which pads the

message to multiple of block length and eventually makes some other modifications

(e.g. adds binary interpretation of message length to the end). Then the padded

message is divided into blocks m1,m2, . . . ,mt. The blocks are processed consequently

using the so called “compression” function f : {0, 1}y+r → Y and the ongoing hash Yi

is produced:

Y0 = IV,

Yi = f(mi, Yi−1), i = 1, 2, . . . t,

where IV is some constant initialization vector. The last ongoing hash Yt is also the

output of the iterated hash function F , however sometimes an output transformation

g is applied to Yt.

The iterated construction of hash function is the most common construction of popular

hash functions. Mainly it is due the matter, that when a compression function f

has some “good” properties, we are able to prove these “good” properties for whole

function F , as it is in Merkle-Damg̊ard strengthening of iterated hash function.

14
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Figure 1.1: Iterated construction of hash function.

1.1.2 Merkle-Damg̊ard strengthening

Merkle-Damg̊ard strengthening extends a collision resistant compression function f :

{0, 1}y+r → Y to a collision resistant hash function F : M → Y. A message M of

length l is divided into blocks x1, x2, . . . , xt of length r bits, where the last block is

filled up with zeros if needed. Then an additional block xt+1 is added, which contains

binary interpretation of length l (if l ≥ 2r, then we add more than one block). After

that we iterate over all blocks and the ongoing hash value is produced:

Y0 = 0n,

Yi = f(Yi−1||mi), i = 1, . . . t + 1.

The output of the hash function F is the last ongoing hash Yt+1.

Propositioin 1. Let f : {0, 1}y+r → Y be a collision resistant function. Then func-

tion F :M→ Y described above is collision resistant too.

We do not provide the proof of this proposition, as it is not in our main interest. The

proof is quite straightforward and can be found in [10].

Both iterated construction and Merkle-Damg̊ard strengthened iterated construction

can be used to build also hash function families H : K × M → Y. If the size of

the key space K can be equal to the size of the set Y, we can initialize the iteration

with the key instead of the initialization vector. That is, the message preprocessing

and the whole iteration process are the same as they are in the case of standard hash

functions, except the first step of the iteration, where Y0 is not set to the initialization

vector, but to the key K. We note that in this way we can modify most of the popular

hash functions such as SHA1, MD5 or SHA2 versions to accept dedicated-key input

and therefore to build hash function families.
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If the size of the key set has to be different from the size Y, we can modify compression

function to accept additional (dedicated-key) input f : K×{0, 1}y+r → Y and iterate

over all blocks with such compression function:

Y0,K = IV,

Yi,K = f(K,Yi−1||mi), i = 1, . . . t.

The output of H(K,M) is then equal to Yt,K .

Now we can proceed to the formal definitions of cryptographic hash function security.

1.2 Definitions of hash function security

Here we give the formal definitions of hash function security notions. Notions for

preimage resistance, second-preimage resistance and collision resistance were defined

in [13] by Rogaway and Shrimpton. Bellare and Ristenpart in [2] defined notions

for MAC , pseudo random function and pseudo random oracle. Finally, the chosen

target forced prefix preimage resistance notion (CTFP) was defined in [8] by Kelsey

and Kohno.

1.2.1 Preimage resistance

A hash function is preimage resistant, when it is difficult to find a preimage for a

point in the range of the hash function. There are several ways how to formalize this

intuition in the sense of hash function family.

Definition 6 (Preimage resistance). Let H : K ×M→ Y be a hash function family

and let λ be a number such that {0, 1}λ ⊆ M. Let A be an adversary. Then we

define:

Adv
Pre[λ]
H (A) = Pr

[

K
$
←K; M

$
←{0, 1}λ; Y ← HK(M); M ′ ← A(K, Y ) : HK(M ′) = Y

]

AdvePre
H (A) = max

Y ∈Y

(

Pr
[

K
$
←K; M ← A(K) : HK(M) = Y

])

Adv
aPre[λ]
H (A) = max

K∈K

(

Pr
[

M
$
←{0, 1}λ; Y ← HK(M); M ′ ← A(Y ) : HK(M ′) = Y

])

We say that H is (t, L, ε)-xxx for xxx ∈ {Pre, aPre} if any adversary A running in

time at most t and outputting messages of length less than or equal to L has advantage

Adv
xxx[λ]
H (A) ≤ ε for all λ such that {0, 1}λ ⊆ M. We say that H is (t, L, ε)-ePre

if any adversary A running in time at most t and outputting messages of length less

than or equal to L has advantage Advxxx
H (A) ≤ ε.
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Note that the parameter [λ] is added to the advantage of adversaries to avoid random

selection from the possibly infinite set M and also to bound the length of randomly

selected messages.

The first definition (preimage resistance) is the standard way how to define preimage

resistance for a hash function family. However, a hash function family H, which for

every key K maps the message 0 to the image 0y (i.e. HK(0) = 0y for every key K),

can be preimage resistant (i.e. advantage of any adversary is negligible), even if we

know the preimage for image 0y. This problem solves everywhere preimage resistance,

which captures the intuition, that it is infeasible to find a preimage for every image –

whatever image is selected, it is difficult to find its preimage. Third definition, always

preimage resistance, strengthens the first one in the following way. Consider a hash

function family H, which for the particular key K0 maps every message to the image

0y (i.e. HK0(M) = 0y for every message M ∈ M). The probability of choosing the

key K0 is negligible, therefore the hash function family H can be preimage resistant (if

for every key K 6= K0 it is hard to find preimages). However, H isn’t always preimage

resistant, as trivial adversary, which always returns message 0, would prevail against

H in always preimage attack. Thus always preimage resistance captures the intuition

that it is hard to find preimages for every function HK from a hash function family

H.

Note that we do not bound the running time t of adversaries here. However, in order

to define the security of a hash function family in some sense (Pre, ePre, aPre), such

bounding is necessary. We will discuss this in section 1.3.

1.2.2 Second-preimage resistance

A common way of defining the second-preimage resistance is as follows. We say that

a hash function F is second-preimage resistant if for a message M , it is hard to find a

different message M ′, which hashes to the same image, i.e. F (M) = F (M ′). We call

such messages M and M ′ partners. Again, in the hash function family sense, there

are few possibilities, how to formally define this intuition.

Definition 7 (Second-preimage resistance). Let H : K×M→ Y be a hash function
family and let λ be a number such that {0, 1}λ ⊆ M. Let A be an adversary. Then
we define:

Adv
Sec[λ]
H (A) = Pr

h

K
$
←K; M

$
←{0, 1}λ; M ′ ← A(K, M) : (M 6= M

′) ∧ (HK(M) = HK(M ′))
i

Adv
eSec[λ]
H (A) = max

M∈{0,1}λ

“

Pr
h

K
$
←K; M ′ ← A(K) : (M 6= M

′) ∧ (HK(M) = HK(M ′))
i”

Adv
aSec[λ]
H (A) = max

K∈K

“

Pr
h

M
$
←{0, 1}λ; M ′ ← A(M) : (M 6= M

′) ∧ (HK(M) = HK(M ′))
i”

We say that H is (t, L, ε)-xxx for xxx ∈ {Sec, eSec, aSec} if any adversary A running

17



in time at most t and outputting messages of length less than or equal to L has

advantage Adv
xxx[λ]
H (A) ≤ ε for all λ such that {0, 1}λ ⊆M.

The first definition, second-preimage resistance, is the standard way how to define

second-preimage resistance. However, it is different from the definition of a second-

preimage resistance for a hash function F : M → Y, as the hash function F and

the hash function family H are syntactically different objects. The definition (Sec)

is equivalent to the classical version of second-preimage resistance for a randomly

chosen hash function F from the hash function family H. The second definition,

everywhere second-preimage resistance, captures the intuition, that it is hard to find

a partner for every message M from a domain set M. Everywhere second-preimage

resistance is also known as target collision resistance used in [2], or a universal one-

way hash function family defined in [12]. The third definition, always second-preimage

resistance, is strengthening of the first one in the way, that for an always second-

preimage resistant hash function family H and every key K, it is hard to find partner

M ′ for a randomly chosen message M , such that HK(M) = HK(M ′). A second-

preimage resistant hash function family can have a “weak” key K0, such that it is

possible to find second-preimages for a hash function HK0. On the other hand, for

any always second-preimage resistant hash function family it must be hard to find

second-preimages for all keys from K.

1.2.3 Collision resistance

Very important property of every “good” cryptographic hash function is collision

resistance. A hash function is collision resistant, if it is hard to find two different

messages, that hashes to the same image (i.e. it is hard to find two partners). In the

hash function family sense, a formal definition is following.

Definition 8 (Collision resistance). Let H : K ×M→ Y be a hash function family.

Let A be an adversary. Then we define:

AdvColl
H (A) = Pr

[

K
$
←K; (M,M ′)← A(K) : (M 6= M ′) ∧ (HK(M) = HK(M ′))

]

We say that H is (t, L, ε)-Coll if any adversary A running in time at most t and

outputting messages of length less than or equal to L has advantage AdvColl
H (A) ≤ ε.

Thinking of strengthening this definition by maximizing over all K ∈ K, like it was in

the aPre and aSec definitions, does not make much sense here, because for every fixed

K and |M| > |Y| there exists a trivial adversary that finds two partners (M,M ′).

Such adversary would have hardwired two different messages M and M ′, such that
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for some key K0 are HK0(M) and HK0(M
′) equal. However, it can be difficult to find

such algorithm in practice.

Maximizing over all messages M (i.e. defining everywhere collision resistance) makes

no sense neither, as adversary has no message on input, it has only one input — a

chosen key.

1.2.4 Chosen target forced prefix preimage resistance

In [8] John Kelsey and Tadayoshi Kohno developed a new attack on Merkle-Damg̊ard

hash functions called herding attack . The attack can be described by the following

example. One day in early 2006, the following ad appears in a news:

I, Nostradamus, hereby provide the MD5 hash Y of many important pre-

dictions about the future, including the closing prices of all stocks in the

S&P500 as of the last business day of 2006.

Few weeks after the last business day of 2006, Nostradamus publishes a message

containing in its first block precise closing prices of the S&P500 stocks. The message

then continues with many uncertain predictions which haven’t come true yet.

The question is, whether Nostradamus can do this, even if he didn’t know the predic-

tions before providing the hash Y . As an answer to this question, Kohno and Kelsey

proposed the herding attack, which applies to Merkle-Damg̊ard hash functions and

reduces time complexity needed to compute the suffix (possibly containing some pre-

dictions), which merged with the closing prices of the S&P500 stocks and hashed by

MD5 produces the image Y that Nostradamus provided.

Authors in the paper [8] introduced a new property for the hash functions — Cho-

sen Target Forced Prefix (CTFP) preimage resistance, which directly connects to the

herding attack. When a hash function preserves this property, it is resistant to the

herding attack.

Definition 9 (CTFP preimage resistance). Let H : K ×M→ Y be a hash function
family and let λ be a number such that {0, 1}λ ⊆ M. Let A be an adversary. Then
we define:

Adv
CTFP[λ]
H (A) = Pr

h

K
$
←K; (Y,S)← A(K); P

$
←{0, 1}λ; M ← A(P,S) : HK(P ||M) = Y

i

We say that H is (t, L, ε)-CTFP if any adversary A running in time at most t and

outputting messages of length less than or equal to L has advantage Adv
CTFP[λ]
H (A) ≤

ε for all λ such that {0, 1}λ ⊆M.
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The variable S in the definition is adversary’s state. It is a string of an arbitrary

length, where A can store some information (i.e. it’s state) for the second phase.

For example A can store in S the key K it gets in the first phase, as in the second

phase it has no input with the key. The image Y which A chooses in the first phase

corresponds to chosen target from the name of the security notion (i.e. the hash,

which Nostradamus provides). Similarly, P corresponds to the forced prefix , that is

the precise closing prices of the S&P500 stocks from the example above.

Similarly to the preimage and second preimage resistance, we can define always CTFP

(aCTFP) security notion. It does not make sense to define everywhere CTFP, i.e.

strengthen the definition by maximizing over all prefixes P , as any adversary returning

(HK(P0||M), S) in the first step and M in the second step, where M is an arbitrary

string and P0 is some fixed prefix, has advantage 1, if prefix P0 is chosen. Thus if we

maximize the advantage over all prefixes, it can not be smaller than 1.

Definition 10 (aCTFP preimage resistance). Let H : K×M→ Y be a hash function

family and let λ be a number such that {0, 1}λ ⊆ M. Let A be an adversary. Then

we define:

Adv
aCTFP[λ]
H (A) = max

K∈K

(

Pr
[

(Y, S)← A; P
$
←{0, 1}λ; M ← A(P, S) : HK(P ||M) = Y

])

We say that H is (t, L, ε)-aCTFP if any adversary A running in time at most t and

outputting messages of length less than or equal to L has advantage Adv
aCTFP[λ]
H (A) ≤

ε for all λ such that {0, 1}λ ⊆M.

1.2.5 Message Authentication Code

There are situations, when we need to be sure, that a message we have received was

surely produced by the second party, with which we are communicating, and the

message was not modified during the transmission. To solve this problem, Message

authentication codes were designed. Message authentication code (MAC), roughly

speaking, is a hash function parametrized by some secret key K (i.e. a hash function

family). During the communication, with every message M is also sent its authenti-

cation code HK(M). When a message M with corresponding MAC C are received,

receiver verifies, whether HK(M) = C. If so, the receiver can be sure, that the

message M was produced by someone, who knows the secret key K and it was not

modified during the transmission (see Figure 1.2).

One widely used MAC construction is HMAC [1]. Consider, that we have some hash

function F :M→ Y. Then

HMACK(M) = F (L⊕ opad||F (K ⊕ ipad||M))
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Figure 1.2: Message authentication scheme: Alice and Bob share some secret key K.

Alice sends to Bob with every message also its hash. If the received hash and hash of

the received message are equal, Bob can be sure, that the message was sent by Alice

and it was not modified during the transmission.

where ⊕ means XOR operation and opad and ipad are some constant strings.

When we use a hash function family H : K ×M → Y to build MACs, the following

security notion can be useful. The adversary A from the following definition does

not have access to the key K. It takes function HK : M → Y as a black-box and

can not output message, that was queried. Otherwise it would be easy to find such

adversary for every function family H (it would query some message M and return

pair (M,HK(M))).

Definition 11 (MAC). Let H : K×M→ Y be a hash function family. Let A be an

adversary. Then we define:

AdvMAC
H (A) = Pr

[

K
$
←K; (M,Y )← AHK : HK(M) = Y ∧M not queried

]

We say that H is (t, q, L, ε)-MAC if any adversary A running in time at most t,

outputting or querying messages of length less than or equal to L and making at most

q queries to its oracle has advantage AdvMAC
H (A) ≤ ε.

We note that the security property defined above is also known as unforgeability (see

[11]).

Consider following situation. Alice sent to Bob n messages M1, . . . ,Mn with cor-

responding MACs C1, . . . , Cn. Attacker Denis intercepted this communication and
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wants to send Bob one fake message Mfake. The probability of Denis success is given

by the advantage AdvMAC
H (Denis). However the definition also captures the situ-

ation, when Denis has ability to choose some messages for which he wants to get

corresponding MACs, i.e. he can get MACs not only for the messages he intercepted.

It makes no sense to think about strengthening this definition by maximizing over

all K (i.e. defining always MAC), as for a given function H : K ×M → Y we can

construct an adversary A always returning pair (M,HK0(M)) for some fixed K0. The

advantage of such adversary, if the key K0 is chosen, is 1, thus if we maximize the

advantage over all keys, it can not be smaller than 1.

1.2.6 Pseudo random function and Pseudo random oracle

Hash functions are often used as a basic primitive, from which more complex cryp-

tosystems are build. To prove the security of such cryptosystem C(F ) with hash

function F , one first proves that C(I) is secure with some idealized hash function1

I. Then, one proves the following relation between I and F : For every cryptosystem

C′(·), its security is not affected, when I is replaced by F .

Such relation between I and F (that we can replace I with F without affecting the

security of the system) is called indistinguishability . Two systems I and F are indis-

tinguishable if no (efficient) algorithm D connected to either I or F , is able to decide,

whether it is interacting with I or F . More formally, I and F are indistinguishable,

if for any efficient adversary D (called distinguisher), the advantage
∣

∣

∣
Pr

[

1← D(I)
]

− Pr
[

1← D(F )
]

∣

∣

∣

is negligible. We note that the discussion, about what the efficient adversary means,

is in the Section 1.3. If I and F are indistinguishable, then the following proposition

holds.

Propositioin 2. If and only if I and F are indistinguishable, then, for every cryp-

tosystem C(I), the cryptosystem C(F ) obtained from C(I) by replacing I with F is at

least as secure as C(I).

Here we permit some inconsistency, as we do not formally define what at least as

secure as means. Intuitively, system C(F ) is at least as secure as C(I), when every

successful attack on C(F ) is successful also on C(I).

Thus, the following notion appears as useful for a hash function family. A hash

function family is a pseudo random function, when a randomly chosen hash function

from the family is indistinguishable from the random oracle.

1e.g. random oracle

22



Definition 12 (Pseudo random function). Let H : K ×M → Y be a hash function

family. Let A be an adversary. Then we define:

AdvPrf
H (A) =

∣

∣

∣
Pr

[

K
$
←K; 1← AHK(·)

]

− Pr
[

f
$
←Func(M,Y); 1← Af

]
∣

∣

∣

We say that H is (t, q, L, ε)-Prf if any adversary A running in time at most t and

making at most q queries to its oracle each of length less than or equal to L has

advantage AdvPrf
H (A) ≤ ε.

However, Proposition 2 holds only if each component a cryptosystem is based on be-

longs to one specific party which have exclusive access to it and no one else can directly

access its behavior or obtain information about its randomness. When speaking of

hash functions, it means, that the Proposition 2 holds only if a hash function F , which

is replacing the ideal hash function I in the cryptosystem C(·), is known only by C

and no one else knows the algorithm computing F or can query F (i.e. F is “hidden”

to the other world).

To be more specific, let R be a random oracle and H be a hash function family (which

is known to the other world). Canetti, Goldreich, and Halevi in [6] proved, that there

exists a cryptosystem C(·), where C(R) is secure, but security of C(HK) for some

particular key K (where the key K is public) is lost, even if the hash function family

H is indistinguishable from the random oracle R. This work was extended by J. Black

in [5], where Black presents a block-cipher based hash function F (i.e. a hash function

build from a block-cipher), which is provably secure in the ideal-cipher model, but

trivially insecure when instantiated by any block-cipher.

Thus indistinguishability does not work with cryptosystems, which have some public

components. In order to extend the definition of indistinguishability to capture such

systems with public parameters, Maurer, Renner and Holenstein in [9] proposed new

concept, called indifferentiability . Indifferentiability does the same as indistinguisha-

bility, but it applies to more general settings. More formally, let S1 denote private

components (i.e. known only tho the cryptosystem S) of a system S and let S2 de-

note public (i.e. known to the other world) components of S. Then cryptosystem H

is indifferentiable from I, if for any efficient adversary D (called distinguisher) there

is a simulator S such that
∣

∣

∣
Pr

[

1← D(H1,H2)
]

− Pr
[

1← D(I1,S(I2))
]

∣

∣

∣

is negligible. The simulator S is an algorithm (i.e. a RAM), which simulates the

public component H2 to make distinguishing H1 and H2 from I1 and I2 more difficult.

Note, that indifferentiability is, unlike indistinguishability, asymmetric — we can not

commute H and I, as we could in the case of indistinguishability.
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Figure 1.3: The pseudo-random oracle notion: the adversary A (distinguisher) can

either interact with a hash function family H and its ideal compression function f or

with a random function F and simulator S. The hash function family H has oracle

access to f and the simulator S to F .

If H is indifferentiable from I, then the following proposition holds.

Propositioin 3. If and only if I and H are indifferentiable, then, for every cryp-

tosystem C(I), the cryptosystem C(H) obtained from C(I) by replacing I with H is at

least as secure as C(I).

Based on indifferentiability framework, Coron, Dodis, Malinaud and Puniya defined

in [7] pseudo-random oracle notion. A hash function family Hf with access to an ideal

hash function f : {0, 1}y+d → {0, 1}y (i.e. f is a compression function from which H

is build) is a pseudo-random oracle, if it is indifferentiable from a random oracle.

Definition 13 (Pseudo-random oracle). Let H : K ×M → Y be a hash function

family. Let A be an adversary, f = RFy+d,y for some integer d > 0 and let S be a

simulator. Then we define:

AdvPro
H,f,S(A) =

∣

∣

∣
Pr

[

K
$
←K; 1← AH

f
K

(·),f(·)(K)
]

−

−Pr
[

K
$
←K;F

$
←Func(M,Y); 1← AF(·),SF (K,·)(K)

]∣

∣

∣

We say that H is (tA, tS , q1, q2, L, ε)-Pro if for any adversary A running in time at

most tA and making at most q1 (q2) queries to its first (second) oracle each of length

less than or equal to L, there exists a simulator S running in time tS such that the

advantage AdvPro
H,f,S(A) ≤ ε.

The role of the simulator S in the definition is to simulate the ideal primitive (com-

pression function) f , so that no distinguisher can tell, whether it is interacting with

HK and f or with F and SF . The output of S thus has to be “consistent” with that,
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what can distinguisher obtain from F (see Figure 1.3). The simulator does not see

the queries made by distinguisher to F but it has oracle access to F , thus it can call

it directly, when needed.

Note, that it makes no sense to think about strengthening the definitions of Prf and Pro

by maximizing over all keys K (i.e. defining aPrf and aPro), as trivial adversary, which

has hardwired pair (M,HK0(M)) for some fixed key K0 and an arbitrary message

M , and returns 1, if response of its first oracle to query M is equal to HK0(M),

has significant advantage, when the key K0 is chosen. Therefore when we maximize

advantage over all the keys, it can not be smaller than the one for the key K0.

Finally we note, that an advantage in Prf sense of any adversary A attacking some

hash function family H cannot be equal to 1, as there is always a nonzero probability

(even very little) that a randomly chosen function f from the second component (in

the definition of Prf) is the same as HK for some key K from the first component. It

means that there is always a nonzero probability that A returns the same output when

its oracle is f as when its oracle is HK . Therefore if the first component Pr[K
$
←K; 1←

AHK(·)] is equal to 1, then the second one Pr[f
$
←Func(M,Y); 1 ← Af ] can not be

equal to 0 (as with a nonzero probability is f equal to HK for some key K and AHK

outputs 1), and vice-versa. In fact, if A makes at most q queries M1,M2, . . . ,Mq, then

the probability that it returns the same output when its oracle is a random function f

as when its oracle is HK is at least 1
|Y|q , what is the probability that f maps messages

M1,M2, . . . ,Mq to the same value as HK does. Similar situation is for advantage in

Pro sense.

1.3 Security of a hash function family

In this section, we discuss, what it means, when we say that a hash function family

is xxx secure for xxx ∈ {Pre, aPre, ePre, Sec, aSec, eSec, Coll, CTFP, aCTFP, MAC,

Prf, Pro}. To be more succinct, let Atks temporarily denote the set {Pre, aPre, ePre,

Sec, aSec, eSec, Coll, CTFP, aCTFP, MAC, Prf, Pro}.

Consider the following example. Let H : K ×M → Y be a hash function family.

We can construct an adversary A attacking H in Pre sense. Adversary A(K,Y ) runs

through all of the messages M from the setM and checks, whether HK(M) is equal to

Y . If so, it returns message M as the preimage for Y . Such adversary works against

an arbitrary hash function family, however, its time complexity is O(|M|). When

M = {0, 1}256, i.e. the hash function HK can process only messages of length 256 bits,

the adversary A would need in average 2128 hash operations (i.e. to compute HK(M)

for some key K and message M) to find the preimage. Running such adversary on a
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computer which can handle 1 billion hash operations per second would last 1
109 · 2

128

seconds, what is about 282 days. So it would last unfeasibly long until A finishes its

work.

Such kind of attack exists against all security notions we defined in Section 1.2, we

call them brute force attacks. Brute force attacks can be performed against all hash

function families. However significant disadvantage of such attacks is their infeasible

time complexity.

Thus we can see, that in order to define xxx (xxx ∈ Atks) security for a hash function

family, it is necessary to bound the time complexity of adversaries (as we do not want

to rate all hash function families as insecure in Pre sense). We consider some hash

function family H as xxx secure for xxx ∈ Atks, when every efficient adversary has

negligible advantage against H in xxx sense. In the sequel we will try to give the

formal definition of efficient adversary.

We say that an adversary A attacking a hash function family H : {0, 1}k × {0, 1}∗ →

{0, 1}y runs in a polynomially bounded time, when the running time t of the adversary

is a polynomial of (k + y + l), where l is a length of the adversary’s input, that is,

there exists a polynomial P , that for every k, y, l the running time of the adversary

attacking H is P (k + y + l). We say that an adversary A is polynomially bounded , if

it is running in a polynomially bounded time.

Definition 14. We say that a hash function family H : K×M→ Y is xxx secure for

xxx ∈ Atks if any adversary running in a polynomially bounded time has a negligible

advantage in xxx sense.

We note, that for Prf, Pro and MAC, the polynomially bounded adversary can make

at most polynomial number of queries. Similarly, the polynomially bounded adversary

can produce (or query) messages of at most polynomial length.

Polynomial limitation is the standard way how to define efficiency . However in the

case of hash functions it may deliver some ambiguity. Consider the popular hash

function MD5, which processes messages of length at most 264 bits and produces

images of length 128 bits and consider, that we want to prove, that MD5 is Pre

secure. Here we fall into the problem, what is the polynomial adversary attacking

MD5. Even the brute force attack described above performed on MD5 has constant

time complexity.

On the other hand suppose, that we have a hash function family H : K ×M → Y

and we have proved that H is Pre secure (i.e. any polynomial adversary has negligible

Pre-advantage against H). Then someone finds an adversary against H running in

exponential time (i.e. its running time is exponential function of (k+y+ l)) with time
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complexity 2
y

1024 . Thus, to maintain desired security properties, we will need to use

H with hash length y much greater than 1024 bits, what makes H incompatible with

the practical use (due to great computing and memory requirements).

Thus it seems that defining efficiency for adversaries attacking hash functions and

hash function families does not have simple solution. In the rest of this Thesis we

will understand xxx-security (xxx ∈ Atks) as defined in Definition 14, however some

intuition behind term efficiency will be needed too.

1.3.1 Implication and separation

In the Chapter 2 we discuss relationships among the definitions of security notions.

Among all of the definitions we give implications or separations. Informally, when we

say that xxx implies yyy, it means that if a hash function family H is xxx secure, then

it is also yyy secure. Saying that xxx nonimplies yyy means, that some hash function

family H is xxx secure, but it is not yyy secure.

Let Advxxx
H (R) be the maximal advantage over all adversaries A in xxx sense (xxx

∈ Atks) that uses resources bounded by R. For our consideration it is sufficient to

think only about resource t, the running time of the adversary. Thus Advxxx
H (t) is the

maximal advantage in xxx sense over all adversaries running in time bounded by t.

The formal definition of an implication was proposed in [13] and can be found in the

following Definition 15. We note that by TimeH,n we denote (speaking informally)

the time needed by the fastest algorithm to compute an output of a hash function H

on an input of length n. By Adv
xxx[·]
H (A) we denote the advantage of an adversary A

attacking a hash function family H in xxx sense (xxx ∈ Atks).

We note that in the following definition, and later, [·] is a placeholder which is either

[λ] (for Pre, aPre, Sec, aSec, eSec, CTFP, aCTFP) or empty (for ePre, Coll, Prf, Pro).

Definition 15 (xxx → yyy to ε). Let K = {0, 1}k , M = {0, 1}∗ and Y = {0, 1}y

for some fixed k and y, let {0, 1}λ ⊆ M for some fixed λ and suppose, that xxx,

yyy ∈ Atks. We say that the definition of security notion xxx implies security notion

yyy to ε (shortly xxx → yyy to ε), if for any hash function family H : K ×M → Y

and any adversary A running in time t, outputting messages of length less than or

equal to L and with advantage Adv
yyy[·]
H (A), there exists an adversary A′ such that

A′ runs in time t′ and has advantage c1 Adv
xxx[·]
H (A′) + ε ≥ Adv

yyy[·]
H (A), where

t′ = t + c2 TimeH,L+λ and c1 and c2 are absolute constants (i.e. their values do not

depend on k, y or λ).

The adversary A′ in the definition above can run in the time t′ = t + c2 TimeH,L+λ,
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what means that A′ can perform only constantly more hash operations (and therefore

also simple operations) than A can. The value L + λ in TimeH,L+λ means, that A′

can process messages that A outputs, and eventually can add to them some more

bits, but maximally λ. Informally, the definition above says that xxx implies yyy, if

any adversary A attacking in yyy sense can be converted (without significant loss of

performance) to another adversary A′, which performs an attack in xxx sense and its

advantage is in the worst case only a little bit smaller than the advantage of A in yyy

sense.

The strength of an implication depends on the value of ε, if ε = 0, we speak about

conventional implication and we omit writing “to ε”, if ε > 0 we rather speak about

provisional implication. The provisional implication carries the usual semantics of

the word implication only if ε is negligible with respect to k, y or λ or some other

parameter of a particular hash function family.

If we treat the time t in the definition as polynomial time, then the definition says,

what we intuitively wanted, that xxx implies yyy when for any hash function H holds:

if H is xxx secure, then it is yyy secure too. However, the definition 15 is more general

and applies also to non-polynomial adversaries.

On the other hand, the definition of implication above (introduced by Rogaway and

Shrimpton in [13]) can be too strict in some cases, since the adversary A′ can perform

only constantly more hash operations than A can. For example A′ can not simulate the

adversary A twice. Therefore we introduce the new definition of implication between

two security notions, xxx  yyy, where we try to be more general.

Definition 16 (xxx  yyy). Let K = {0, 1}k ,M = {0, 1}∗ and Y = {0, 1}y for some

fixed k and y, let {0, 1}λ ⊆ M for some fixed λ and suppose, that xxx, yyy ∈ Atks.

We say that the definition of security notion xxx implies security notion yyy (shortly

xxx  yyy), if for any hash function family H : K ×M → Y and any adversary A

running in time t, outputting messages of length less than or equal to L and with non-

negligible advantage (with respect to k, y or λ) in yyy sense, there exists an adversary

A′ such that A′ runs in time t′ and has non-negligible advantage in xxx sense, where

t′ = p(k, y, λ).(t + TimeH,L+λ) and p(k, y, λ) is some polynomial of k, y and λ.

Thus the adversary A′ in the definition above can perform polynomially more oper-

ations than A can. Note that our definition does not have provisional part, i.e. “to

ε” statement, since the only condition on the advantage of adversary A′ in xxx sense

is its non-negligibility. If we consider only polynomial adversaries, the definition 16

captures our intuition of implication — if H is xxx secure, then it is yyy secure too.

We note that most of proofs of implications between security notions in the Chapter
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2 satisfy the conditions of Definition 15, whereas we utilize the Definition 16 only in

one proof. It is clear that if xxx → yyy to ε, where ε is negligible, then also xxx  

yyy.

We can also formally define the separation of two security notions xxx and yyy, how-

ever here we have two different possibilities.

The first definition, conventional separation, informally says, that if H is a hash

function family secure in xxx sense, then we can convert H into another hash function

family H ′, which is also secure in xxx sense, but completely insecure in yyy sense.

Definition 17 (xxx 6→ yyy to ε). Let K = {0, 1}k , M = {0, 1}∗ and Y = {0, 1}y for

some fixed k and y, let {0, 1}λ ⊆ M for some fixed λ and suppose, that xxx, yyy ∈

Atks. We say that the definition of security notion xxx nonimplies security notion

yyy to ε, in the conventional case (shortly xxx 6→ yyy to ε), if for any hash function

family H : K×M→ Y there exists a hash function family H ′ : K×M→ Y, such that

Adv
xxx[·]
H′ (t) ≤ c1 Adv

xxx[·]
H (t′) + ε and Adv

yyy[·]
H′ (t′′) ≥ 1 − ε, where t is an arbitrary

running time, t′ = t + c2 TimeH,L+λ, t′′ = c3 TimeH,λ and c1, c2 and c3 are absolute

constants and L is a maximum message length that an adversary running in the time

t can output.

The time t′′ = c3 TimeH,λ in the definition (c3 is an absolute constant) represents

what we intuitively call “constant” time, i.e. the adversary running in such time is

able to perform only constant number of hash operations on a messages it gets on an

input. Constant c3 does not depend on k, m, y or λ – it is given by the particular

adversary that performs the attack against yyy and has advantage greater or equal to

1−ε. In a proof of some particular separation we do not need to know the exact value

of this constant, its existence will be sufficient (as its value can vary among different

RAM models). Note that the time t′′ also covers the situations where an adversary

does not perform any hash operations, however it returns some output (or operates

on messages) of length that is constant multiple of k, y or λ (as TimeH,λ is a multiple

of k, y and λ).

If xxx nonimplies yyy to 0, we simply write xxx non implies yyy or shortly xxx 6→ yyy

and we call such separation conventional separation. If ε > 0, we call it provisional

separation.

The second definition, unconditional separation, says that, there exists a hash function

family H, which is secure in xxx sense, but it is completely insecure in yyy sense. Thus

the conventional separation needs a xxx secure hash function family H in order to

separate xxx from yyy, while the unconditional separation does not.

Definition 18 (Unconditional separation). Let K = {0, 1}k , M = {0, 1}∗ and Y =
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{0, 1}y for some fixed k and y, let {0, 1}λ ⊆M for some fixed λ and suppose, that xxx,

yyy ∈ Atks. We say that the definition of security notion xxx non implies security

notion yyy to ε, in the unconditional case (shortly xxx 6⇀ yyy to ε), if there exists

a hash function family H : K ×M → Y, such that Adv
xxx[·]
H (t) ≤ ε for all t and

Adv
yyy[·]
H (t′) ≥ 1− ε, where t′ = cTimeH,λ and c is an absolute constant.

An unconditional separation between two notions can be consequence of the matter,

that for some domains M and ranges Y secure hash functions trivially exist, for

example identity function HK(M) = M is trivially collision resistant2, however it is

definitely not preimage resistant.

Note that a separation is not negation of an implication. Both a separation and an im-

plication can exists between two notions xxx and yyy, their relative strength depends

on a provisional part of the implication/separation. Such example of coexistence can

be found in [13], however implication and separation can not coexist with arbitrary

provisional parts. Intuitively, when xxx implies yyy to ε1 and xxx nonimplies yyy

to ε2 and if ε1 is negligible, then ε2 can’t be negligible (otherwise both provisional

implication and separation would be “strong”, what is in contrast with our intuition).

Similarly, when ε2 is negligible then ε1 can not be negligible. In the following lemma

we prove the relationship between ε1 and ε2 and we will see, that our intuition is good.

We note that if xxx implies yyy to ε, then xxx implies yyy to ε + α for any α ≥ 0.

Similar holds for separation.

Lemma 1. Let xxx and yyy be some security notions from the set Atks, H : K×M→

Y be a hash function family and {0, 1}λ ⊆M for some fixed λ. Let t be a “constant”

running time, such that t = aTimeH,λ, where a is an absolute constant. If xxx → yyy

to ε1 and xxx 6→ yyy to ε2, then ε1 ≥ 1− (1 + c)ε2 − cε, where ε = Adv
xxx[·]
H (t).

Proof. From the assumption that xxx → yyy to ε1 we have:

∀H,∀A,∃B : Adv
yyy[·]
H (A) ≤ c1 Adv

xxx[·]
H (B) + ε1 (1.1)

where H represents some hash function family and A and B some adversaries such

that if A runs in time t, then B runs in time t′ = t + c2 TimeH,L+λ, where c1 and

c2 are absolute constants and L is the maximum message length that A can output.

From the assumption that xxx 6→ yyy to ε2 we have:

∀H,∃H ′, ∀A,∃B : Adv
xxx[·]
H′ (A) ≤ c3 Adv

xxx[·]
H (B) + ε2 (1.2)

∧ ∃C : Adv
yyy[·]
H′ (C) ≥ 1− ε2 (1.3)

2 actually such H does not satisfy our definition of hash function family in the Definition 1, but

we find it as a simple example sufficient to explain how unconditional separation works
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where H and H ′ represent some hash function families and A, B and C represent some

adversaries, such that if A runs in time t then B runs in time t′ = t + c4 TimeH,L+λ

and C runs in time c5 TimeH,λ. Now let H be a hash function family, such that any

adversary running in a “constant” time (c5 + c2 + c4)TimeH,λ has advantage at most

ε. From (1.3) we have that for the hash function family H there exists a hash function

family H ′ and an adversary C running in time c5 TimeH,λ such that

Adv
yyy[·]
H′ (C) ≥ 1− ε2.

From (1.1) we have that for H ′ and C there exists an adversary C ′ running in time

c5 TimeH,λ + c2 TimeH,λ such that

Adv
yyy[·]
H′ (C) ≤ c1 Adv

xxx[·]
H′ (C ′) + ε1,

thus

1− ε2 ≤ c1 Adv
xxx[·]
H′ (C ′) + ε1.

However from (1.2) we know that

Adv
xxx[·]
H′ (C ′) ≤ c3 Adv

xxx[·]
H (C ′′) + ε2,

for some adversary C ′′ that runs in time c5 TimeH,λ+c2 TimeH,λ+c4 TimeH,λ, therefore

1− ε2 ≤ c1(c3 Adv
xxx[·]
H (C ′′) + ε2) + ε1.

When we put ε1 on the left side and anything else on the right we get:

ε1 ≥ 1− c1c3 Adv
xxx[·]
H (C ′′)− (c1 + 1)ε2.

We can see that C ′′ runs in a “constant” time (c5 + c2 + c4)TimeH,λ, therefore

Adv
xxx[·]
H (C ′′) ≤ ε. Thus

ε1 ≥ 1− (1 + c)ε2 − cε

for a constant c = max{c1c2, c1}.

Note that in the Lemma above we assume the existence of the hash function family

H, which is secure against any adversary running in the “constant” time (c5 + c2 +

c4)TimeH,λ. We need this assumption, as the conventional separation assumes the

existence of xxx secure hash function family. The similar lemma can be proved for

unconditional separation too, however there we do not need to have such hash function

family H and therefore the relationship between ε1 and ε2 would be ε1 ≥ 1−(1+c)ε2.

When we assume that ε and ε2 are negligible, then from ε1 ≥ 1−(1+c)ε2−cε we have

that ε1 can not be negligible. Similarly when we assume that ε and ε1 are negligible,

then ε2 can not be.

In the following lemma we prove that the implication from the Definition 15 is tran-

sitive in some cases.

31



Lemma 2. Let xxx, yyy and zzz be some security notions from the set Atks. If xxx

→ yyy to ε1 and yyy → zzz to ε2, then xxx → zzz to ε1 + cε2, where c is an absolute

constant.

Proof. Let H : K×M→ Y be an arbitrary hash function family and A be an arbitrary

adversary attacking H in zzz sense, running in time t and outputting messages of

length at most L. Fix some λ such that {0, 1}λ ⊆M. From the assumption, that yyy

→ zzz to ε2 and Definition 15 we have, that there exists an adversary A′, running in

time t′ = t + c2 TimeH,L+λ and with advantage c1 Adv
yyy[·]
H (A′) + ε1 ≥ Adv

zzz[·]
H (A).

Similarly from the assumption that xxx → yyy to ε2 we have, that for the adversary

A′ there exists an adversary A′′ running in time t′′ = t′ + c4 TimeH,L+λ and with

advantage c3 Adv
xxx[·]
H (A′′) + ε2 ≥ Adv

yyy[·]
H (A′). Thus we showed, that for the hash

function family H and the adversary A there exists the adversary A′′ running in time

t′′ = t + (c2 + c4)TimeH,L+λ and with advantage c1c3 Adv
xxx[·]
H (A′′) + c1ε2 + ε1 ≥

Adv
zzz[·]
H (A), what means that xxx → zzz to ε1 + c1ε2.

Finally we note, that two definitions of security notions xxx and yyy are equivalent,

if xxx implies yyy and yyy implies xxx.

1.4 Equivalent definitions with a two stage adversary

In definitions of aPre, ePre, aSec, eSec, aCTFP we maximize over some quantity (over

all keys or messages). However, there exist equivalent definitions to these already

mentioned, where the specific value (key or message) is chosen by an adversary. That

is, in the “first phase” the adversary choses that value, then a random choice is made

by the environment and in the ”second phase” the adversary continues, where it ended,

but with given that randomly chosen value.

Definition 19 (two stage versions of aPre, ePre, aSec, eSec, aCTFP). Let H : K ×

M → Y be a hash function family, and let λ be a number such that {0, 1}λ ⊆ M.
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Let A be an adversary. Then we define:

Adv
aPre[λ]
H (A) = Pr

[

(K, S)← A; M
$
←{0, 1}λ; Y ← HK(M); M ′ ← A(Y, S) :

HK(M ′) = HK(M)
]

AdvePre
H (A) = Pr

[

(Y, S)← A; K
$
←K; M ′ ← A(K, S) : HK(M ′) = Y

]

Adv
aSec[λ]
H (A) = Pr

[

(K, S)← A; M
$
←{0, 1}λ; M ′ ← A(M, S) :

(M 6= M ′) ∧ (HK(M) = HK(M ′))
]

AdveSec
H (A) = Pr

[

(M, S)← A; K
$
←K; M ′ ← A(K, S) :

(M 6= M ′) ∧ (HK(M) = HK(M ′))
]

Adv
aCTFP[λ]
H (A) = Pr

[

(Y, K, S)← A; P
$
←{0, 1}λ; M ← A(P, S) : HK(P ||M) = Y

]

We say that H is (t, L, ε)-xxx for xxx ∈ {aPre,aSec,aCTFP} if any adversary A

running in time at most t and outputting messages of length at most L has advantage

Adv
xxx[λ]
H (A) ≤ ε for all λ such that {0, 1} ⊆ M. We say that H is (t, L, ε)-yyy

for yyy ∈ {ePre,eSec} if any adversary A running in time at most t and outputting

messages of length at most L has advantage Advyyy
H (A) ≤ ε.

We prove the equivalence for aPre and aPre2, where aPre2 temporarily denotes the

two stage version of aPre, in the following lemma. Equivalence of the other definitions

is proven similarly.

Lemma 3. (aPre ↔ aPre2) The definitions of security notions aPre and aPre2 are

equivalent.

Proof. Consider an adversary A attacking H in aPre sense and let K be the key, for

which A has the maximum advantage α (i.e. α = Adv
aPre[λ]
H (A)). We construct an

adversary B, which in the first phase returns pair (K,S), where S = K, and in the

second phase it does the same as A, that is B(Y, S) returns the same value as A(Y ).

Adversary B runs in the time that is only constantly greater than running time of

A, thus if t is a running time of A and L is the maximum message length that A

can output, then B runs in time, which is not greater than t + cTimeH,L+λ for some

absolute constant c. Advantage of B in aPre2 sense is equal to α, what is equal to

Adv
aPre[λ]
H (A), so Adv

aPre2[λ]
H (B) ≥ Adv

aPre[λ]
H (A). Thus aPre2 implies aPre.

Conversely, consider, that the advantage of an adversary B attacking H in aPre2 sense

is α. Consider an adversary A, which simulates B. Suppose that B returns (K,S) in

the first phase, then A(Y ) returns the same as B(Y, S) in the second phase. Advantage

of A in aPre sense is at least α (it can not be smaller than α, as the probability that A

finds preimage when using key K is α). Therefore Adv
aPre[λ]
H (A) ≥ Adv

aPre2[λ]
H (B).
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At last we note, that running time of A is equal to the running time of B, thus aPre

implies aPre2.
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Chapter 2

Relationships among the

definitions

Here we provide relationships among the definitions from the Section 1.2. Relation-

ships between the definitions of preimage resistance, second-preimage resistance and

collision resistance were proven by Rogaway and Shrimpton in [13]. Relationship be-

tween MAC and Prf can be found in [11]. Other relations are work of authors, we are

not aware of any other work, where these relations occur. We give an overview over

all of the relations in the Table 2.1. In Figure 2.1 we provide all constructions used

in the proofs of separations.

In the rest of this Chapter we will assume, that M = {0, 1}∗, K = {0, 1}k and

Y = {0, 1}y for some fixed k and y and also that {0, 1}λ ⊆M for some fixed λ.

Some of the implications and separations are conventional, others are provisional. In

this thesis no unconditional separation is proven, however some unconditional sepa-

rations can be found in [13]. In the Table 2.1 we make no difference between conven-

tional and provisional implications, as all provisional implications/separations have

their provisional part negligible, if hash function families with standard domains and

ranges (i.e. such as K, M and Y defined above) are used.

2.1 Message authentication codes

2.1.1 Coll vs. MAC

In this section we prove the separations between Coll and MAC. The proof of The-

orem 1 (MAC nonimplies Coll) is based on the fact, that an adversary attacking in

MAC sense does not have access to a key K chosen by the environment, thus some
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Pre aPre ePre Sec aSec eSec Coll MAC CTFP aCTFP Prf Pro

Pre x 6→ [13] 6→ [13] 6→ [13] 6→ [13] 6→ [13] 6→ [13] 6→ 5 6→ 7 6→ 16 6→ 21 6→ 26

aPre → [13] x 6→ [13] 6→ [13] 6→ [13] 6→ [13] 6→ [13] 6→ 5 6→ 7 6→ 16 6→ 21 6→ 26

ePre → [13] 6→ [13] x 6→ [13] 6→ [13] 6→ [13] 6→ [13] 6→ 5 6→ 8 6→ 16 6→ 21 6→ 26

Sec → [13] 6→ [13] 6→ [13] x 6→ [13] 6→ [13] 6→ [13] 6→ 3 6→ 7 6→ 16 6→ 22 6→ 27

aSec → [13] → [13] 6→ [13] → [13] x 6→ [13] 6→ [13] 6→ 3 6→ 7 6→ 16 6→ 22 6→ 27

eSec → [13] 6→ [13] 6→ [13] → [13] 6→ [13] x 6→ [13] 6→ 3 6→ 8 6→ 16 6→ 22 6→ 27

Coll → [13] 6→ [13] 6→ [13] → [13] 6→ [13] → [13] x 6→ 2  9 6→ 17 6→ 19 6→ 27

Mac 6→ 6 6→ 6 6→ 6 6→ 4 6→ 4 6→ 4 6→ 1 x 6→ 13 6→ 16 6→ [11] 6→ 30

CTFP 6→ 11 6→ 11 6→ 11 6→ 10 6→ 10 6→ 10 6→ 10 6→ 12 x 6→ 15 6→ 24 6→ 32

aCTFP 6→ 18 6→ 18 6→ 18 6→ 18 6→ 18 6→ 18 6→ 18 6→ 18 → 14 x 6→ 24 6→ 32

Prf 6→ 23 6→ 23 6→ 23 6→ 23 6→ 23 6→ 23 6→ 20 → [11] 6→ 25 6→ 25 x 6→ 34

Pro → 28 6→ 29 → 28 → 28 6→ 29 → 28 → 28 → 31 → 33 6→ 33 → 35 x

Table 2.1: Relationships among the definitions. Numbers in brackets [·] are citations, other numbers are numbers of theorems,

where the proof of the corresponding relation can be found.
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H
(1)
K (M) =

{

HK(M) if M 6= K

HK(0k) if M = K

H
(2)
K (M) =











0y if M = 0

HK(M) if M 6= 0 and HK(M) 6= 0y

HK(0) otherwise

H
(3)
K (M) =

{

Y if Prefix(k+1+y)(M) = K||b||Y for some b ∈ {0, 1}

HK(M) otherwise

H
(4)
K (M) = HK(M [1 . . . |M | − 1]||0)

H
(5)
K (M) =

{

K[1 . . . min{k, y}] if Suffixk(M) = K

HK(M) otherwise

H
(6)
K (M) =

{

M if |M | = y

HK(M) otherwise

H
(7)
K (M) =

{

0y if M = 0

HK(M) otherwise

H
(8)
K (M) =

{

Suffixy(M) if K = K0

HK(M) otherwise

H
(9)
K (M) =

{

HK(M) if K 6= K0

0y if K = K0

Figure 2.1: Constructions of hash function families used in proofs of separations.
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information which helps in finding collisions can be bundled by the key K.

Theorem 1 (MAC 6→ Coll to q/|K|). Let λ be an arbitrary number such that {0, 1}λ ⊆

M. If there exists a hash function family H : K ×M→ Y which is (t, q, L, ε)-MAC,

then there exists a hash function family H ′ : K ×M → Y, which is (t, q, L, ε + q
|K|)-

MAC, but there exists an adversary C attacking H ′ in Coll sense running in time

cTimeH,λ for some absolute constant c and with advantage AdvColl
H′ (C) = 1.

Proof. Suppose, that we have a hash function family H : K × M → Y which is

(t, q, L, ε)-MAC and consider the construction H(1) from the Figure 2.1

H
(1)
K (M) =

{

HK(M) if M 6= K

HK(0k) if M = K

Thus H(1) differs from H only in one point for every key K ∈ K. We show, that H(1)

is (t, q, L, ε + q
|K|)-MAC. Let A be any adversary, which runs in time t, outputs or

queries messages of length at most L and makes q queries to its oracle f . From the

assumption we have, that AdvMAC
H (A) ≤ ε. Now consider AdvMAC

H(1) (A). Adversary

A has no access to the key K, so it can only guess, thus the probability, that the

adversary A with oracle H(1) queries H
(1)
K (K) is q

|K| . This means the probability, that

A with oracle H
(1)
K returns different output than A with oracle HK is at most q

|K| .

Thus

AdvMAC
H(1) (A) ≤ AdvMAC

H (A) +
q

|K|
≤ ε +

q

|K|
.

Therefore H(1) is (t, q, L, ε + q
|K|)-MAC.

Now we show that there exists an adversary C attacking H(1) in Coll sense running

in time cTimeH,λ. For a randomly chosen key K, C(K) returns pair (0k,K). From

the definition of H(1) we can see, that H
(1)
K (0k) = H

(1)
K (K). Thus C attacks H(1) in

Coll sense with advantage 1 and runs in time cTimeH,λ for some absolute constant

c. The constant c is determined by the time needed by the adversary C to return the

pair (0k,K) on a particular RAM model (note that c need not to depend on k, since

TimeH,λ depends on k).

We note, that if we permit only polynomial adversaries, then q
|K| is negligible and the

following statement holds: if H is MAC secure, then so is H(1), but H(1) is completely

not Coll secure.

In the following theorem we use the construction H(2), which was designed in [13],

where can be found also the proof, that if H is Coll secure then also H(2) is. For com-

pleteness we provide this proof, but it is slightly adjusted to be more understandable.
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Theorem 2 (Coll 6→ MAC). Let λ be an arbitrary number such that {0, 1}λ ⊆M. If

there exists a hash function family H : K×M→ Y which is (t, L, ε)-Coll, then there

exists a hash function family H ′ : K×M→ Y, which is (t+ c1 TimeH,L+λ, L, ε)-Coll,

but there exists an adversary C running in time c2 TimeH,λ, making no queries to its

oracle and with advantage AdvMAC
H′ (C) = 1, where c1 and c2 are absolute constants.

Proof. Suppose, that we have a hash function family H : K × M → Y which is

(t, L, ε)-Coll and consider the construction H(2) from the Figure 2.1:

H
(2)
K (M) =











0y if M = 0

HK(M) if M 6= 0 and HK(M) 6= 0y

HK(0) otherwise

We show that if H is (t, L, ε)-Coll, then H(2) is (t + c1 TimeH,L+λ, L, ε). Thus let A

be an adversary running in time t, producing messages of length at most L and with

advantage AdvColl
H(2)(A) = ε. Consider the following adversary B:

Adversary B(K)

1 (M, M ′)← A(K)

2 if M = 0 and HK(M ′) = 0y then return (M, M ′)

3 if M 6= 0 and HK(M) 6= 0y and

M ′ 6= 0 and HK(M ′) = 0y then return (M, 0)

4 if M 6= 0 and HK(M) = 0y and M ′ = 0 then return (M, M ′)

5 if M 6= 0 and HK(M) = 0y and

M ′ 6= 0 and HK(M ′) 6= 0y then return (0, M ′)

6 else return (M, M ′)

The running time of such adversary B is at most t′ = t + c1 TimeH,L+λ for some

absolute constant c1. Now consider messages M and M ′, that adversary A returns in

the first line, are partners for H
(2)
K and consider following situations based on the line

number, where B returns:

[B returns in the 2nd line. ] Then M = 0 and HK(M ′) = 0y, thus H
(2)
K (M ′) =

HK(0). And so 0y = H
(2)
K (0) = H

(2)
K (M ′) = HK(0), thus HK(0) = 0y =

HK(M ′), therefore M and M ′ are partners for HK .

[B returns in the 3rd line. ] Then H
(2)
K (M) = HK(M) and H

(2)
K (M ′) = HK(0).

However we know that H
(2)
K (M) = H

(2)
K (M ′), thus HK(M) = HK(0). And so

M and 0 are partners for HK .

[B returns in the 4th line. ] Then H
(2)
K (M) = HK(0) and H

(2)
K (M ′) = 0y. From

the assumption that H
(2)
K (M) = H

(2)
K (M ′) we have, that HK(0) = 0y. As

HK(M) = 0y and M ′ = 0, we know that M and M ′ are partners for HK.
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[B returns in the 5th line. ] Then H
(2)
K (M) = HK(0) and H

(2)
K (M ′) = HK(M ′).

Thus HK(0) = HK(M ′), as H
(2)
K (M) = H

(2)
K (M ′). Therefore 0 and M ′ are

partners for HK .

[B returns in the 6th line. ] Then we have several possibilities:

- M = 0 and HK(M ′) 6= 0y. Thus H
(2)
K (M) = 0y and H

(2)
K (M ′) = HK(M ′).

However H
(2)
K (M) = H

(2)
K (M ′), thus HK(M ′) = 0y, what is a contradiction.

Therefore this possibility can not occur.

- M 6= 0 and HK(M) = 0y and M ′ 6= 0 and HK(M ′) = 0y. However then

M and M ′ are partners for HK , as HK(M) = HK(M ′) = 0y.

- M 6= 0 and HK(M) 6= 0y and M ′ = 0. Then H
(2)
K (M) = HK(M) and

H
(2)
K (M ′) = 0y, what leads to a contradiction, as M and M ′ are not partners

for H
(2)
K (HK(M) 6= 0y). Therefore this possibility cannot occur.

- M 6= 0 and HK(0) 6= 0y and M ′ 6= 0 and HK(M ′) 6= 0. Then H
(2)
K (M) =

HK(M) and H
(2)
K (M ′) = HK(M ′). Therefore M and M ′ are partners also

for HK .

Thus wherever B(K) returns, it always returns partners for HK , if A returns partners

for H
(2)
K . Therefore H

(2)
K is (t′, L, ε)-Coll.

The adversary C, which returns pair (0, 0y) has advantage AdvMAC
H(2) (C) = 1. We can

see that C makes no queries to its oracle and runs in time c2 TimeH,λ, where c2 is

some absolute constant determined by the time needed to return the pair (0, 0y) on a

particular RAM model.

2.1.2 Sec vs. MAC

In this section, the proofs for separations between Sec and MAC, eSec and MAC

and aSec and MAC can be found. As the proofs for separations Sec nonimplies

MAC, eSec nonimplies MAC and aSec nonimplies MAC are very similar, we prove

these separations in one theorem — Theorem 3. In the proof we will use the same

construction H(2) as in Theorem 2.

Theorem 3 (Sec, eSec, aSec 6→ MAC). Let λ be an arbitrary number such that

{0, 1}λ ⊆M. If there exists a hash function family H : K×M→ Y which is (t, L, ε)-

Sec (eSec, aSec), then there exists a hash function family H ′ : K ×M→ Y, which is

(t + c1 TimeH,L+λ, L, ε)-Sec (eSec, aSec), but there exists an adversary C running in

time c2 TimeH,λ, making no queries to its oracle and with advantage AdvMAC
H′ (C) = 1,

where c1 and c2 are absolute constants.
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Proof. We use the construction H(2) from the Figure 2.1. Assume, that H : K×M→

Y is (t, L, ε)-Sec (eSec, aSec) and consider the following hash function family:

H
(2)
K (M) =











0y if M = 0

HK(M) if M 6= 0 and HK(M) 6= 0y

HK(0) otherwise

We need to show, that if H is (t, L, ε)-xSec, then H(2) is (t + c1 TimeH,L+λ, L, ε)-xSec

(where xSec represents one of the notions Sec, eSec or aSec). Let AxSec be an adversary

attacking H(2), running in time t, outputting messages of length at most L and with

advantage Adv
xSec[λ]

H(2) (AxSec) = ε. We construct an adversary BxSec attacking H as

follows:

Adversary BSec(K, M)

1 (M ′)← ASec(K, M)

2 if M = 0 and HK(M ′) = 0y then return (M ′)

3 if M 6= 0 and HK(M) 6= 0y and M ′ 6= 0 and HK(M ′) = 0y then return (0)

4 if M 6= 0 and HK(M) = 0y and M ′ = 0 then return (M ′)

5 if M 6= 0 and HK(M) = 0y and M ′ 6= 0 and HK(M ′) 6= 0y then return (M ′)

6 else return (M ′)

Adversary BaSec

[1st phase]

(K, S)← AaSec

return (K, S)

[2nd phase]

1 (M ′)← AaSec(M, S)

2 if M = 0 and HK(M ′) = 0y then return (M ′)

3 if M 6= 0 and HK(M) 6= 0y and M ′ 6= 0 and HK(M ′) = 0y then return (0)

4 if M 6= 0 and HK(M) = 0y and M ′ = 0 then return (M ′)

5 if M 6= 0 and HK(M) = 0y and M ′ 6= 0 and HK(M ′) 6= 0y then return (M ′)

6 else return (M ′)

Adversary B0eSec

[1st phase]

(M, S)← AeSec

return (M, S) (*)

[2nd phase]

1 (M ′)← AeSec(K, S)

2 if M = 0 and HK(M ′) = 0y then return (M ′)

3 if M 6= 0 and HK(M) 6= 0y and M ′ 6= 0 and HK(M ′) = 0y then return (0)

4 if M 6= 0 and HK(M) = 0y and M ′ = 0 then return (M ′)

5 if M 6= 0 and HK(M) = 0y and M ′ 6= 0 and HK(M ′) 6= 0y then return (M ′)

6 else return (M ′)
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Let B1eSec be an adversary constructed as B0eSec but the line marked with (*) replaced

by “return (0, S)”. From B0eSec and B1eSec we construct an adversary BeSec, which

simulates both B0eSec and B1eSec and if one of them wins then BeSec returns the same

as the winning adversary (we note that BeSec need to simulate the adversary AeSec

only once). Note that running time of all the adversaries above is t′ = t+c1 TimeH,L+λ

for some absolute constant c1.

Now consider that the messages M and M ′, that are either on input of adversaries

BxSec or returned by adversaries AxSec, are partners for H(2). We analyze situations

based on the line number where adversary BSec (BaSec, B0eSec, B1eSec) returns. Let

B represent one of the adversaries BSec, BaSec, B0eSec, B1eSec.

[B returns in the 2nd line. ] Then M = 0 and HK(M ′) = 0y, thus H
(2)
K (M ′) =

HK(0). And so 0y = H
(2)
K (0) = H

(2)
K (M ′) = HK(0), thus HK(0) = 0y =

HK(M ′), therefore M and M ′ are partners for HK .

[B returns in the 3rd line. ] Then H
(2)
K (M) = HK(M) and H

(2)
K (M ′) = HK(0).

However we know that H
(2)
K (M) = H

(2)
K (M ′), thus HK(M) = HK(0). And so

M and 0 are partners for HK .

[B returns in the 4th line. ] Then H
(2)
K (M) = HK(0) and H

(2)
K (M ′) = 0y. From

the assumption that H
(2)
K (M) = H

(2)
K (M ′) we have, that HK(0) = 0y. As

HK(M) = 0y and M ′ = 0, we know that M and M ′ are partners for HK.

[B returns in the 5th line. ] Then H
(2)
K (M) = HK(0) and H

(2)
K (M ′) = HK(M ′).

Thus HK(0) = HK(M ′), as H
(2)
K (M) = H

(2)
K (M ′). Therefore 0 and M ′ are

partners for HK .

[B returns in the 6th line. ] Then we have several possibilities:

- M = 0 and HK(M ′) 6= 0y. Thus H
(2)
K (M) = 0y and H

(2)
K (M ′) = HK(M ′).

However H
(2)
K (M) = H

(2)
K (M ′), thus HK(M ′) = 0y, what is contradiction.

Therefore this possibility can not occur.

- M 6= 0 and HK(M) = 0y and M ′ 6= 0 and HK(M ′) = 0y. However then

M and M ′ are partners for HK , as HK(M) = HK(M ′) = 0y.

- M 6= 0 and HK(M) 6= 0y and M ′ = 0. Then H
(2)
K (M) = HK(M) and

H
(2)
K (M ′) = 0y, what leads to contradiction, as M and M ′ are not partners

for H
(2)
K (HK(M) 6= 0y). Therefore this possibility cannot occur.

- M 6= 0 and HK(0) 6= 0y and M ′ 6= 0 and HK(M ′) 6= 0. Then H
(2)
K (M) =

HK(M) and H
(2)
K (M ′) = HK(M ′). Therefore M and M ′ are partners also

for HK .
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Thus we showed that wherever adversary BSec(K,M) returns, it returns M ’s partner

for HK , if ASec(K,M) returns M ’s partner for H
(2)
K . Similarly if AaSec(M) returns

M ’s partner for H
(2)
K , then wherever BaSec(M) returns it always returns M ’s partner

for HK , where K is the key BaSec choses in the first phase. For B0eSec and B1eSec the

following holds: if AeSec returns M in the first phase and M ’s partner for H(2) in the

second phase, then one of the adversaries B0eSec and B1eSec returns two messages (one

in the first phase, one in the second phase) that are partners for HK and therefore

BeSec returns partners for HK . Thus we proved that if AxSec wins against H(2), then

BxSec wins against H and therefore H(2) is (t + c1 TimeH,n, L, ε)-Sec (eSec, aSec).

Now we only need to show that H(2) is not MAC secure. However we showed that in

the proof of Theorem 2. The adversary C returning pair (0, 0y) and running in time

c2 TimeH,λ has advantage AdvMAC
H(2) (C) = 1 for some absolute constant c2 determined

by the time needed to return the pair (0, 0y) on a particular RAM model.

In the following theorem we show the separation between MAC and notions of second-

preimage resistance. The proof for the separation is very similar for each notion, so

we give only one proof, in which we try to cover all Sec notions.

One can think that if we prove that MAC 6→ Sec to ε, where ε is negligible, then other

separations (MAC 6→ aSec, eSec) come from the fact that eSec → Sec and aSec →

Sec proven in [13]. However, this is not so easy, as our definitions of implication and

separation are not contrary (see Section 1.3.1). For example consider, that we have

proven MAC 6→ Sec to ε1 (ε1 is negligible). If we assume that MAC → eSec to ε2,

where ε2 is negligible, then from the Lemma 2 we have that MAC → Sec to ε1 + cε2

for some absolute constant c. Since ε1 and ε2 are negligible, also ε1 + cε2 is negligible,

what is a contradiction, as from Lemma 1 we know, that if MAC 6→ Sec to ε1 and

MAC → Sec to ε1 + cε2 then both ε1 and ε1 + cε2 can not be negligible. Thus we

know that implications between MAC and eSec or aSec are not strong, however we

do not know anything about the strength of the separations.

Since adversaries attacking in MAC sense does not have access to a key K, randomly

chosen by the environment, we need to somehow bundle the information needed to

find second preimages with the key K, so that an adversary attacking in MAC sense

can not find that information (because it does not know the key).

Theorem 4 (MAC 6→ Sec, eSec, aSec to q/|K|). Let λ be an arbitrary number such

that {0, 1}λ ⊆ M. If there exists a hash function family H : K ×M → Y, which is

(t, q, L, ε)-MAC, then there exists a hash function family H ′ : K ×M → Y, which is

(t, q, L, ε + q
|K|)-MAC, but there exists an adversary CxSec running in time cTimeH,λ

with advantage Adv
xSec[λ]
H (CxSec) = 1, where c is some absolute constant and xSec
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∈ {Sec, aSec, eSec}.

Proof. We use the construction H(3) from the Figure 2.1. Let H : K ×M→ Y be a

(t, q, L, ε)-MAC hash function family. Then we define H(3) as follows:

H
(3)
K (M) =

{

Y if Prefix(k+1+y)(M) = K||b||Y for some b ∈ {0, 1}

HK(M) otherwise

Let A be an adversary running in time t, outputting or querying messages of length

at most L and making q queries to its oracle. From the assumption we have, that the

advantage AdvMAC
H (A) ≤ ε. Now consider the advantage AdvMAC

H(3) (A). Adversary A

with oracle H
(3)
K can notice some difference, from the case its oracle is HK , only when

it queries some message of length at least (k + 1 + y) and with prefix K. As A has

no access to the key K, it can only guess. Thus the probability that A queries in one

query a message of length at least (k + 1 + y) with prefix K is at most 1
|K| (when A

queries messages only of length at least (k +1+y), then it is equal to 1
|K| , otherwise it

is smaller). As A can make at most q queries, the probability that A queries a message

with prefix K is at most q
|K| . Thus the advantage AdvMAC

H(3) (A) ≤ AdvMAC
H (A) + q

|K| ,

so H(3) is (t, q, L, ε + q
|K|)-MAC.

Now consider the following adversaries:

Adversary CSec(M, K)

if |M | ≥ k + 1 + y and Prefixk(M) = K then

let b := M [k + 1]

return K||b||M [(k + 1) . . . |M |]

else return K||0||HK(M)

Adversary CaSec

[1st phase]

return 1k, 1k

[2nd phase with input (M, S)]

let K := S

if |M | ≥ k + 1 + y and Prefixk(M) = K then

let b := M [k + 1]

return K||b||M [(k + 1) . . . |M |]

else return K||0||HK(M)

Adversary CeSec

[1st phase]

return 1, 1

[2nd phase with input (K, S)]

let M := S

else return K||0||HK(M)
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We can see that there exists an absolute constant c, such that adversaries above run

in time at most cTimeH,λ (since λ is the length of their input). Their advantage is

Adv
xSec[λ]

H(3) (CxSec) = 1, where xSec ∈ {Sec, aSec, eSec}.

2.1.3 Pre vs. MAC

Here we give the separations between notions of preimage resistance and MAC. Sim-

ilarly to the theorems above, we give only one proof for all of the preimage resistance

notions. The construction H(4) used in Theorem 5 to prove the separation Pre (aPre,

ePre) nonimplies MAC was proposed in [13]. The construction H(4) was used in [13]

to prove the relationship between preimage resistance and notions of second-preimage

resistance.

Theorem 5 (Pre, aPre, ePre 6→ MAC). Let λ be an arbitrary number such that

{0, 1}λ ⊆M. If there exists a hash function family H : K×M→ Y which is (t, L, ε)-

Pre (aPre, ePre), then there exists a hash function family H ′ : K×M→ Y, which is

(t + c1 TimeH,L+λ, L, ε)-Pre (aPre, ePre), but there exists an adversary C running in

time c2 TimeH,λ, making one query to its oracle and with advantage AdvMAC
H′ (C) = 1,

where c1 and c2 are absolute constants.

Proof. Let H : K ×M→ Y be a hash function family, which is (t, L, ε)-Pre. We use

the construction H(4) from the Figure 2.1 defined as follows:

H
(4)
K (M) = HK(M [1 . . . |M | − 1]||0)

We show that if H is secure in Pre (aPre, ePre) sense, then so is H(4). Let AxPre be an

adversary attacking H(4) in xPre sense (xPre ∈ {Pre, aPre, ePre}), running in time t,

outputting messages of length at most L and with advantage Adv
xPre[·]

H(4) (AxPre) = ε.

Then consider the following adversaries BxPre:

Adversary BPre(Y, K)

M ← APre(Y, K)

if HK(M) = Y then return M

else let b := M [|M |]; return M [1 . . . |M | − 1]||b

45



Adversary BaPre

[1st phase]

(K, S)← AaPre

return (K, S)

[2nd phase with input (Y, S)]

M ← AaPre(Y, S)

if HK(M) = Y then return M

else let b := M [|M |]; return M [1 . . . |M | − 1]||b

Adversary BePre

[1st phase]

(Y, S)← AePre

return (Y, S)

[2nd phase with input (K, S)]

M ← AePre(K, S)

if HK(M) = Y then return M

else let b := M [|M |]; return M [1 . . . |M | − 1]||b

Note that running time of such adversaries is t′ = t + c1 TimeH,L+λ for some absolute

constant c1. If the adversary APre(K,Y ) returns a message M , such that H
(4)
K (M) =

Y , then either HK(M) = Y or HK(M ′) = Y , where the message M ′ is equal to the

message M with the last bit inverted. A similar statement holds for AaPre and AePre.

Thus if AxPre wins (i.e. it finds preimage) for H(4), then BxPre wins for H. Therefore

Adv
xPre[·]

H(4) (AxPre) ≤ Adv
xPre[·]
H (BxPre).

On the other hand consider an advantage in MAC sense of an adversary C attacking

H(4), which firstly queries message 00, gets output Y and returns the pair (01, Y ). It

is clear, that the advantage of such adversary is AdvMAC
H(4) (C) = 1. Running time of

C is c2 TimeH,λ, where c2 is an absolute constant determined by the time needed to

query the message 00 and to return the pair (01, Y ) on a particular RAM model.

In the following theorem we use the same construction H(3) as in Theorem 4. Thus

the proof of the following theorem is only slightly different from the one of Theorem

4.

Theorem 6 (MAC 6→ Pre, ePre, aPre to q
|K|). Let λ be an arbitrary number such

that {0, 1}λ ⊆ M. If there exists a hash function family H : K ×M → Y which is

(t, q, L, ε)-MAC, then there exists a hash function family H ′ : K ×M → Y, which is

(t, q, L, ε + q
|K|)-MAC, but there exists an adversary CxPre running in time cTimeH,λ

with advantage Adv
xPre[·]
H′ (CxPre) = 1, where c is an absolute constant and xPre ∈

{Pre, aPre, ePre}.

Proof. Assume that we have a hash function family H : K × M → Y which is
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(t, q, L, ε)-MAC. Consider the construction H(3) from the Figure 2.1 defined as follows:

H
(3)
K (M) =

{

Y if Prefix(k+1+y)(M) = K||b||Y for some b ∈ {0, 1}

HK(M) otherwise

In Theorem 4 we proved that H(3) is (t, q, L, ε+ q
|K|)-MAC. Thus we only need to show

that H(3) is not Pre (ePre, aPre) secure.

Consider the following adversaries CxPre attacking H(3) in xPre sense (xPre ∈ {Pre,

aPre, ePre}).

Adversary CPre(Y, K) Adversary CaPre Adversary CePre

return K||0||Y [1st phase] [1st phase]

return 1k, 1k return 1y, 1y

[2nd phase, input (Y, S)] [2nd phase, input (K, S)]

let K := S let Y := S

return K||0||Y return K||0||Y

Running time of such adversaries is cTimeH,λ for some absolute constant c and their

advantage Adv
xPre[·]

H(3) (CxPre) = 1, what completes the proof.

2.2 CTFP preimage resistance

2.2.1 Pre, Sec, Coll vs. CTFP

In this section we analyze relationships between notions of preimage resistance, sec-

ond preimage resistance, collision resistance and chosen target forced prefix preimage

resistance.

Theorem 7 (Pre, aPre, Sec, aSec 6→ CTFP to 1/|K|). Let λ be an arbitrary number

such that {0, 1}λ ⊆M. If there exists a hash function family H : K×M→ Y which is

(t, L, ε)-xxx for xxx ∈ {Pre, aPre, Sec, aSec}, then there exists a hash function family

H ′ : K×M→ Y which is (t, L, ε+1/|K|)-xxx but there exists an adversary C running

in time cTimeH,λ and with advantage Adv
CTFP [λ]
H′ (C) = 1, where c is an absolute

constant.

Proof. Consider the construction H(5) from the Figure 2.1 defined as follows:

H
(5)
K (M) =

{

K[1 . . . min{k, y}] if Suffixk(M) = K

HK(M) otherwise

Let Axxx be an adversary attacking H in xxx sense (xxx ∈ {Pre, aPre, Sec, aSec}),

running in time t, outputting messages of length at most L and with advantage
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Adv
xxx[λ]
H (Axxx) = ε. Consider Axxx’s advantage against H(5) in xxx sense. Let

K be a key chosen randomly by the environment (or chosen by the adversary in the

first phase, for xxx ∈ {aPre, aSec}). If suffix of randomly chosen message M is dif-

ferent from K, then A can win against H(5) with the same probability as against H

(as H
(5)
K (M) = HK(M)). However when randomly chosen message M has suffix K,

then in the worst case, A’s chance to win against H(5) is 1. Thus

Adv
xxx[λ]

H(5) (A) ≤ Adv
xxx[λ]
H (A) + Pr[message M with suffix K is chosen].

If a randomly chosen message has length at least k, then it has suffix K with probabil-

ity 1
|K| . If a randomly chosen message has length smaller that k, then it can not have

suffix K. Thus the probability that randomly chosen message (of arbitrary length) has

suffix K is at most 1
|K| . Therefore if H is (t, L, ε)-xxx, then H(5) is (t, L, ε + 1

|K|)-xxx.

Now we show that H(5) is not CTFP secure. Consider the following adversary:

Adversary C

[1st phase with input K]

return (K[1 . . .min{y, k}], K)

[2nd phase with input (P, S)]

let K := S

return K

Running time of such adversary is cTimeH,λ for some absolute constant c determined

by the time needed to return the pair (K[1 . . . min{y, k}],K) in the first phase and K

in the second phase on a particular RAM model. From the definition of H(5) we can

see, that C’s advantage in CTFP sense is 1, what completes the proof.

For everywhere versions of preimage resistance and second preimage resistance, the

proof above does not work, as the message is not chosen by the environment, but

adversary chooses it in the first phase. However, the separation between everywhere

preimage resistance, everywhere second preimage resistance and chosen target forced

prefix preimage resistance holds. In fact, we can use the same construction H(5).

Theorem 8 (ePre, eSec 6→ CTFP to 1/|K|). Let λ be an arbitrary number such that

{0, 1}λ ⊆M. If there exists a hash function family H : K×M→ Y which is (t, L, ε)-

xxx for xxx ∈ {ePre, eSec}, then there exists a hash function family H ′ : K×M→ Y

which is (t, L, ε+1/|K|)-xxx but there exists an adversary C running in time cTimeH,λ

and with advantage Adv
CTFP [λ]
H′ (C) = 1, where c is an absolute constant.

Proof. Consider the hash function family H(5) from the Figure 2.1.

H
(5)
K (M) =

{

K[1 . . . min{k, y}] if Suffixk(M) = K

HK(M) otherwise
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Let A be a two stage adversary attacking H in ePre (eSec) sense, running in time

t, outputting messages of length at most L and with advantage ε. Consider A’s

advantage against H(5). In the first phase, A has no access to a key K, as the key is

chosen by the environment after the first phase. Let M be a message A chooses in

the first phase, the probability that randomly chosen key K is suffix of M is 1/|K|, if

|M | ≥ k, otherwise it is 0. Therefore we have several possibilities:

[ |M | < k ] — then A wins against H(5) with the same probability as against H.

[ |M | ≥ K and K is suffix of M ] — in the worst case A wins with probability 1.

[ |M | ≥ K and K is not suffix of M ] — then A’s probability of winning against

H(5) is the same as against H.

Thus A has better chance to win against H(5) as against H only when a key K is

chosen, which is suffix of M . As A can not affect the selection of the key, the following

holds:

Adv
xxx[·]

H(5) (A) ≤ Adv
xxx[·]
H (A) +

1

|K|
,

what we wanted to prove, where xxx ∈ {ePre,eSec}.

The proof that H(5) is not CTFP resistant is given in the proof of Theorem 7.

The following proof is the only one, where we utilize our (more general) definition

of implication (the Definition 16) between security notions. From an adversary A

performing attack in CTFP sense we can construct an adversary B performing attack

in Coll sense (both have non-negligible advantage), however B need to simulate A

twice, what the Definition 15 does not allow.

Theorem 9 (Coll  CTFP). Let λ be an arbitrary number such that {0, 1}λ ⊆

M. Let H : K ×M → Y be a hash function family. If there exists an adversary

A running in time t, outputting messages of length at most L and with advantage

Adv
CTFP [λ]
H (A) = ε, then there exists an adversary B attacking H in Coll sense,

running in time 2t + cTimeH,λ and with advantage AdvColl
H (B) ≥ ε2, where c is an

absolute constant.

Proof. Let H : K ×M → Y be a hash function family and let A be an adversary

attacking H in CTFP sense, running in time t, outputting messages of length at

most L and with advantage Adv
CTFP [λ]
H (A) = ε. Consider the following adversary B

attacking H in Coll sense:
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Adversary B(K)

1 (Y, S)← A(K)

2 let P1
$
←{0, 1}λ

3 M1 ← A(P1, S)

4 let P2
$
←({0, 1}λ − {P1})

5 M2 ← A(P2, S)

6 return (M1, M2)

Running time of such adversary is t′ = 2t + cTimeH,L+λ for some absolute constant

c. The advantage of such adversary in Coll sense is given by the probability that

A(P1, S) returns a message M1 that with the prefix P1 hashes to Y and A(P2, S)

returns a message M2 that with the prefix P2 hashes to Y . From the assumption we

know, that both these probabilities are equal to ε. Thus the probability that B(K)

returns partners for HK is ε2, what means that if the advantage of A in CTFP sense is

non-negligible, then so is advantage of B in Coll sense. Therefore Coll  CTFP.

Theorem 10 (CTFP 6→ Sec, eSec, aSec, Coll). Let λ be an arbitrary number such

that {0, 1}λ ⊆ M. If there exists a hash function family H : K ×M → Y which

is (t, L, ε)-CTFP, then there exists a hash function family H ′ : K ×M → Y which

is (t + c1 TimeH,L+λ, L, ε)-CTFP but there exists an adversary Cxxx running in time

c2 TimeH,λ and with advantage Adv
xxx[·]
H′ (Cxxx) = 1, where c is an absolute constant

and xxx ∈ {Sec, eSec, aSec, Coll}.

Proof. Consider the construction H(4) from the Figure 2.1:

H
(4)
K (M) = HK(M [1 . . . |M | − 1]||0)

We prove that if H is secure in CTFP sense, then so is H(4). For that reason consider

an adversary A, which attacks H(4) in CTFP sense, runs in time t, outputs messages

of length at most L and has advantage ε. We construct an adversary B attacking H

as follows:

Adversary B

[1st phase with input K]

Y ← A(K)

return (Y, K)

[2nd phase with input (P, S)]

M ← A(P, S)

let K := S

if HK(P ||M) = Y then return M

else let b := M [|M |]; return M [1 . . . |M | − 1]||b

Running time of adversary B is t+ c1 TimeH,L+λ for some absolute constant c1. From

50



the definition of H(4) we can see, that if A wins against H(4) in CTFP sense, then B

wins in CTFP sense against H. Thus H(4) is (t + c1 TimeH,L+λ, L, ε)-CTFP.

Now we need to prove that H(4) is not xxx resistant for xxx ∈ {Sec, eSec, aSec, Coll}.

Consider the following adversaries:

Adversary CaSec Adversary CeSec

[1st phase] [1st phase]

return 1k, 1k return 11, 11

[2nd phase, input (M, S)] [2nd phase, input (K, S)]

let b = M [|M |] let M := S; b = M [|M |]

return M [1 . . . |M | − 1]||b return M [1 . . . |M | − 1]||b

Adversary CSec(K, M) Adversary CColl(K)

let b := M [|M |] return (11, 10)

return M [1 . . . |M | − 1]||b

Running time of such adversaries is c2 TimeH,λ for some absolute constant c2 and their

advantage is Adv
xxx[·]

H(4) (Cxxx) = 1 for xxx ∈ {Sec, aSec, eSec, Coll}.

The construction H(4) can not be used to prove the separation CTFP nonimplies Pre.

In fact, in Theorem 5 we proved, that H(4) is preimage resistant, if H is preimage

resistant. Thus we need to find another construction — H(6) is suitable.

Theorem 11 (CTFP 6→ Pre, ePre, aPre to (λ+1).2−λ). Let λ be an arbitrary number

such that {0, 1}λ ⊆M. If there exists a hash function family H : K×M→ Y, which

is (t, L, ε)-CTFP, then there exists a hash function family H ′ : K×M→ Y, which is

(t, L, ε+ λ+1
2λ )-CTFP, but there exists an adversary Cxxx running in time cTimeH,λ and

with advantage Adv
xxx[·]
H′ (Cxxx) = 1, where c is an absolute constant and xxx ∈ {Pre,

ePre, aPre}.

Proof. As mentioned before, we use the construction H(6) from the Figure 2.1.

H
(6)
K (M) =

{

M if |M | = y

HK(M) otherwise

We prove, that if H is secure in CTFP sense, then H(6) is too. Let A be an arbitrary

adversary attacking H in CTFP sense, running in time t, outputting messages of

length at most L and with advantage ε. Consider the advantage of A when attacking

H(6). Let Y be an image that A chooses in the first phase. If the prefix P chosen

randomly by the environment is prefix of Y , then A’s advantage can be in the worst

case 1 (A can win by returning the remaining bits of Y , i.e. Y [|P | + 1 . . . |Y |]), since

H
(6)
K (Y ) = Y for all Y ∈ Y. On the other hand, if P is not prefix of Y , then A’s
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advantage against H(6) is the same as against H. Therefore

Adv
CTFP[λ]

H(6) (A) ≤ Adv
CTFP[λ]
H (A) + Pr[forced prefix P is prefix of chosen image Y ]

Thus we only need to count the probability that P is prefix of Y . The forced prefix

P is uniformly selected from the set {0, 1}λ. If λ > y, only y + 1 (including empty

string) members of {0, 1}λ are prefixes of Y , if λ ≤ y then λ + 1 members of {0, 1}λ

are prefixes of y. Therefore

Adv
CTFP[λ]

H(6) (A) ≤ Adv
CTFP[λ]
H (A) +

λ + 1

2λ
,

what we wanted to prove.

The hash function family H(6) is evidently not secure in Pre (ePre, aPre) sense. The

adversary CPre(Y,K) attacking H(6) in Pre sense copies its input Y to output and

wins. Similarly does the adversary CaPre(Y ) in the second phase. The adversary CePre

in the first phase chooses image 1y and in the second phase, it returns the same, that is

1y. The advantage of all these adversaries is Adv
xxx[·]

H(6) (Cxxx) = 1 for xxx ∈ {Pre, ePre,

aPre} and their running time is cTimeH,λ for some absolute constant c determined

by the time needed to copy an input to output (in the case of CPre and CaPre) or to

return 1y (in CePre case) on a particular RAM model.

2.2.2 MAC vs. CTFP

Theorem 12 (CTFP 6→ MAC to 21−λ). Let λ be an arbitrary number such that

{0, 1}λ ⊆ M. If there exists a hash function family H : K × M → Y, which is

(t, L, ε)-CTFP then there exists a hash function family H ′ : K × M → Y, which

is (t, L, ε + 2
2λ )-CTFP, but there exists an adversary C attacking H ′ in MAC sense,

running in time cTimeH,λ and with advantage AdvMAC
H′ (C) = 1, where c is an absolute

constant.

Proof. Let H be a (t, L, ε)-CTFP hash function family. Consider the construction

H(7) from the Figure 2.1.

H
(7)
K (M) =

{

0y if M = 0

HK(M) otherwise

Let A be an arbitrary adversary attacking H in CTFP sense, running in time at most

t, outputting messages of length at most L and with advantage less than or equal to

ε. We need to find A’s advantage against H(7). When A in the first step chooses

image different from 0y, then A’s chance to win against H(7) is the same as against
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H. When A chooses in the first step image 0y, then its chance to win is given by the

probability that environment chooses a prefix P , which is prefix of 0. However only

two strings are prefixes of 0 (empty string and 0), thus the following holds:

Adv
CTFP[λ]

H(7) (A) ≤ Adv
CTFP[λ]
H (A) +

2

2λ

Therefore H(7) is (t, L, ε + 2
2λ )-CTFP.

The adversary C, which makes no queries to its oracle and always returns the pair

(0, 0y) has advantage AdvMAC
H(7) (C) = 1 and its running time is cTimeH,λ for some

absolute constant c determined by the time needed to return the pair (0, 0y) on a

particular RAM model.

Theorem 13 (MAC 6→ CTFP to q/|K|). Let λ be an arbitrary number such that

{0, 1}λ ⊆ M. If there exists a hash function family H : K × M → Y, which is

(t, q, L, ε)-MAC, then there exists a hash function family H ′ : K ×M → Y, which is

(t, q, L, ε + q
|K|)-MAC, but there exists an adversary C attacking H ′ in CTFP sense,

running in time cTimeH,m and with advantage Adv
CTFP[λ]
H′ (C) = 1, where c is an

absolute constant.

Proof. Assume that H is a (t, q, L, ε)-MAC hash function family and consider the hash

function family H(5) from the Figure 2.1.

H
(5)
K (M) =

{

K[1 . . . min{k, y}] if Suffixk(M) = K

HK(M) otherwise

Let A be an adversary performing attack in MAC sense, running in time at most t,

outputting or querying messages of length at most L, making at most q queries to its

oracle and with advantage AdvMAC
H (A) ≤ ε. As the adversary A has no access to a key

K chosen randomly by the environment, A’s advantage against H(5) is AdvMAC
H (A)

plus the probability, that A queries the message with suffix K. The probability that

A queries the message with suffix K is q
|K| (see the proof of Theorem 7). Thus

AdvMAC
H(5) (A) ≤ AdvMAC

H (A) +
q

|K|
.

The proof that there exists an adversary running in time cTimeH,λ and with advantage

against H(5) in CTFP sense equal to 1, for some absolute constant c, is in the proof

of Theorem 7.
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2.2.3 CTFP vs. aCTFP

If a hash function family is secure in aCTFP sense, i.e. whatever key we choose, an

efficient adversary has negligible advantage of success, then it must be secure in CTFP

sense, where we permit insecurity of a hash function family for some small number

of keys. In this Section we give a formal proof of this intuition. We also show, that

opposite implication does not hold.

Theorem 14 (aCTFP → CTFP). Let λ be an arbitrary number such that {0, 1}λ ⊆

M. Let H : K ×M → Y be a hash function family. If there exists an adversary

A running in time t, outputting messages of length at most L and with advantage

Adv
CTFP [λ]
H (A) = ε, then there exists an adversary B attacking H in aCTFP sense,

running in time t + cTimeH,L+λ and with advantage Adv
aCTFP [λ]
H (B) ≥ ε, where c

is an absolute constant.

Proof. Let H : K ×M → Y be a hash function family and let A be an adversary

attacking H in CTFP sense, running in time t, outputting messages of length at most

L and with advantage ε. Thus there must exists a key K0 ∈ K, such that when the

key K0 is chosen by the environment, then A’s chance to win is at least ε, otherwise

A’s advantage would be smaller than ε. Thus we can construct a two-stage version of

adversary B attacking H in aCTFP sense as follows:

Adversary B

[1st phase]

(Y, S)← A(K0)

return (Y, K0, S)

[2nd phase with input (P, S)]

M ← A(P, S)

return M

Note that running time of B is t + cTimeH,L+λ for some absolute constant c. From

the assumption that K0 is the key, where A’s chance to win against H in CTFP sense

is at least ε we have, that B’s chance to win against H in aCTFP sense is at least ε

too.

Theorem 15 (CTFP 6→ aCTFP to 1/|K|). Let λ be an arbitrary number such that

{0, 1}λ ⊆ M. If there exists a hash function family H : K × M → Y, which is

(t, L, ε)-CTFP, then there exists a hash function family H ′ : K ×M → Y, which is

(t, L, ε + 1
|K|)-CTFP, but there exists an adversary C attacking H ′ in aCTFP sense,

running in time cTimeH,λ and with advantage Adv
aCTFP[λ]
H′ (C) = 1, where c is an

absolute constant.
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Proof. Let H : K ×M → Y be a (t, L, ε)-CTFP hash function family and consider

the construction H(8) from the Figure 2.1.

H
(8)
K (M) =

{

Suffixy(M) if K = K0

HK(M) otherwise

Let A be an adversary attacking in CTFP sense, running in time at most t, outputting

messages of length at most L and with advantage against H smaller than or equal

to ε. If a key K 6= K0 is chosen by the environment, then A’s chance to win against

H(8) is the same as against H. On the other hand, if the key K0 is chosen by the

environment, then A’s chance to win against H(8) can be in the worst case 1. Thus

Adv
CTFP [λ]

H(8) (A) ≤ Adv
CTFP [λ]
H (A) +

1

|K|
.

Now we need to show, that H(8) is not secure in aCTFP sense. For that reason

consider the following adversary:

Adversary C

[1st phase]

return (0y, K0, K0)

[2nd phase with input (P, S)]

return 0y

Running time of the adversary C is cTimeH,λ and its advantage against H(8) in

aCTFP sense is 1, where c is an absolute constant determined by the time needed to

return triple (0y,K0,K0) in the first phase and 0y in the second phase on a particular

RAM model.

2.2.4 Pre, Sec, Coll, MAC vs. aCTFP

For briefer presentation let Atks temporarily denote the set {Pre, aPre, ePre, Sec,

aSec, eSec, MAC}. In the Sections 2.2.1 and 2.2.2 we showed relationships between

CTFP and members of set Atks. The same relations holds when CTFP is replaced

by aCTFP and the proofs of these relationships are very similar to ones between

CTFP and Atks. For that reason we provide these relations compacted together in

the following two theorems without full proof, but with references where a similar

proof can be found. Different situation is between Coll and aCTFP, in Theorem 9 we

showed, that Coll implies CTFP. On the other hand, Coll can not imply aCTFP, as

the definition of collision resistance permits insecurity in some small numbers of keys,

what is in contrast with the meaning of “always” notions. The exact proof that Coll

nonimplies aCTFP we provide in Theorem 17.

55



Theorem 16 (Pre, Sec, Coll, MAC 6→ aCTFP).

(1) Pre, aPre, Sec, aSec, Coll 6→ aCTFP to 1
|K|

(2) ePre, eSec 6→ aCTFP to 1
|K|

(3) MAC 6→ aCTFP to q+1
|K|

Proof. We do not provide the exact proof for this theorem, as the proof for (1) is

similar to the one of Theorem 7, the proof for (2) is similar to the proof of Theorem

8 and finally the proof for (3) is similar to the one of Theorem 13. All these proofs

use the same construction H(5) from the Figure 2.1. The proofs for (1), (2), (3) differ

from their CTFP versions in Theorems 7, 8, 13 only in the last part, where we need

to modify the adversary C to perform attack in aCTFP sense as follows:

Adversary C

[1st phase]

return (1y, 1k, 1k)

[2nd phase with input (P, S)]

return 1k

Theorem 17 (Coll 6→ aCTFP to 1/|K|). Let λ be an arbitrary number such that

{0, 1}λ ⊆ M. If there exists a hash function family H : K × M → Y, which is

(t, L, ε)-Coll, then there exists a hash function family H ′ : K ×M → Y, which is

(t, L, ε + 1
|K|)-Coll, but there exists an adversary C attacking H ′ in aCTFP sense,

running in time cTimeH,λ and with advantage Adv
aCTFP[λ]
H′ (C) = 1, where c is an

absolute constant.

Proof. Let H : K ×M → Y be a (t, L, ε)-Coll hash function family and consider the

construction H(8) from the Figure 2.1.

H
(8)
K (M) =

{

Suffixy(M) if K = K0

HK(M) otherwise

Suppose that A is an adversary attacking H in Coll sense, running in time t, outputting

messages of length at most L and with advantage AdvColl
H (A) = ε. Consider A’s

advantage against H(8). If a key K chosen by the environment is different from K0,

then A’s chance to win against H(8) is the same as against H. However, when the key

K0 is chosen by the environment, then in the worst case A can win with probability

1. Thus

AdvColl
H(8)(A) ≤ AdvColl

H (A) +
1

|K|
,
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and therefore H(8) is (t, L, ε + 1
|K|)-Coll. The second part of the proof, that H(8) is

insecure in aCTFP sense can be found in the proof of Theorem 15.

Theorem 18 (aCTFP 6→ Pre, Sec, Coll, MAC).

(1) aCTFP 6→ Pre, aPre, ePre to y
|M|

(2) aCTFP 6→ Sec, aSec, eSec, Coll

(3) aCTFP 6→ MAC to 21−λ

Proof. Similarly to Theorem 16, we do not provide the full proof for this theorem.

The proof for (1) is identical to one of Theorem 11 (we just need to replace CTFP

with aCTFP), similarly the proof for (2) is the same as in Theorem 10 and finally the

proof for (3) is the same as the proof of Theorem 12. The security of constructions

H(6), H(4) and H(7) used in the proofs does not depend on selection of the key, thus

these constructions are also aCTFP secure (if a hash function family H is aCTFP

secure).

2.3 Pseudo-random function

Adversary attacking in Prf sense does not have access to a key K, chosen randomly by

the environment. Thus we have similar situation here, as it was in MAC case (Section

2.1). In fact we use the same constructions as we used in MAC case, however we need

to slightly adopt the proofs as Prf and MAC security notions are different.

In the Section 1.2.6 we showed, that any adversary attacking in Prf sense cannot have

advantage 1, what causes that we have only provisional implications and separations

here.

2.3.1 Coll vs. Prf

Theorem 19 (Coll 6→ Prf to 1/|Y|). Let λ be an arbitrary number such that {0, 1}λ ⊆

M. If there exists a hash function family H : K×M→ Y, which is (t, L, ε)-Coll, then

there exists a hash function family H ′ : K×M→ Y, which is (t+c1 TimeH,L+λ, L, ε)-

Coll, but there exists an adversary C attacking H ′ in Prf sense, running in time

c2 TimeH,λ, making one query to its oracle and with advantage AdvPrf
H′ (A) = 1− 1

|Y| ,

where c1 and c2 are absolute constants.
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Proof. We use the construction H(2) from the Figure 2.1. Let H : K ×M→ Y be a

(t, L, ε)-Coll hash function family, then we define:

H
(2)
K (M) =











0y if M = 0

HK(M) if M 6= 0 and HK(M) 6= 0y

HK(0) otherwise

in Theorem 2 we proved, that if H is secure in Coll sense, then H(2) is too, what

completes the first part of the proof. Thus we only need to prove, that H(2) is not

secure in Prf sense. For that purpose consider the following adversary Cf with oracle

access to some function f .

Adversary Cf

if f(0) = 0y then return 1

otherwise return 0

Running time of the adversary C is cTimeH,λ for some absolute constant c. Let K

be a key chosen randomly by the environment. The probability that C returns 1 if its

oracle is H
(2)
K is 1. The probability that C returns 1 if its oracle is a function chosen

randomly by the environment from the set Func(M,Y) is 1
|Y| , as the number of all

functions mapping fromM to Y is |Y||M| and the number of functions fromM to Y

that maps 0 to 0y is |Y||M|−1. Thus

AdvPrf

H(2)(C) = 1−
|Y||M|−1

|Y||M|
= 1−

1

|Y|
,

what we wanted to prove.

Theorem 20 (Prf 6→ Coll to q/|K|). Let λ be an arbitrary number such that {0, 1}λ ⊆

M. If there exists a hash function family H : K ×M → Y, which is (t, q, L, ε)-Prf,

then there exists a hash function family H ′ : K×M→ Y, which is (t, q, L, ε+ q
|K|)-Prf,

but there exists an adversary C attacking H ′ in Coll sense, running in time cTimeH,λ

and with advantage AdvColl
H′ (C) = 1, where c is an absolute constant.

Proof. Let H : K ×M → Y be a hash function family, which is (t, q, L, ε)-Prf and

consider the construction H(1) from the Figure 2.1 defined as follows:

H
(1)
K (M) =

{

HK(M) if M 6= K

HK(0k) if M = K

Let A be any adversary performing attack in Prf sense, running in time at most t and

making at most q queries of length at most L. From the assumption we have, that

A’s advantage against H is smaller than or equal to ε. When A is attacking H(1), it

can notice some difference (i.e. return different output) from the case when attacking
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H only, when it queries the message M0 equal to the key K chosen randomly by

the environment. However, the adversary A has no access to the key, therefore its

probability of querying the message M0 is q
|K| . Thus

AdvPrf
H(1)(A) ≤ AdvPrf

H (A) +
q

|K|
≤ ε +

q

|K|
,

what we wanted to prove.

The adversary C, which returns pair (0k,K) has advantage AdvColl
H(1)(C) = 1 (as

H(1)(0k) = H(1)(K)) and it runs in time cTimeH,λ for some absolute constant c

determined by the time needed to return (0k,K) on a particular RAM model.

2.3.2 Pre, Sec vs. Prf

Theorem 21 (Pre, aPre, ePre 6→ Prf to 1/|Y|). Let λ be an arbitrary number such that

{0, 1}λ ⊆M. If there exist a hash function family H : K×M→ Y, which is (t, L, ε)-

Pre (aPre, ePre), then there exists a hash function family H ′ : K×M→ Y, which is

(t + c1 TimeH,L+λ, L, ε)-Pre (aPre, ePre), but there exists an adversary C attacking

H ′ in Prf sense, running in time c2 TimeH,λ, making two queries to its oracle and

with advantage AdvPrf
H′ (C) = 1− 1

|Y| , where c1 and c2 are absolute constants.

Proof. Consider the construction H(4) from the Figure 2.1

H
(4)
K (M) = HK(M [1 . . . |M | − 1]||0),

where H : K ×M → Y is a (t, L, ε)-Pre (aPre, ePre) hash function family. In the

proof of Theorem 5 we proved, that H(4) is (t + c1 TimeH,L+λ, L, ε)-Pre (aPre, ePre)

for some absolute constant c1.

Now we construct an adversary C performing attack in Prf sense against H(4).

Adversary Cf

if f(00) = f(01) then return 1

otherwise return 0

Running time of C is c2 TimeH,λ for some absolute constant c2 and it is making 2

queries to its oracle. When C’s oracle is H
(4)
K for some key K, then C returns 1 with

probability 1. Number of all functions mapping from M to Y is |Y||M|, from which

|Y||M|−1 are those, where the messages 00 and 01 map to the same image. Therefore

AdvPrf
H(4)(C) = 1−

1

|Y|
,

what completes the proof.
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Theorem 22 (Sec, aSec, eSec 6→ Prf to 1/|Y|). Let λ be an arbitrary number such

that {0, 1}λ ⊆ M. If there exist a hash function family H : K ×M → Y, which is

(t, L, ε)-Sec (aSec, eSec), then there exists a hash function family H ′ : K ×M → Y,

which is (t + c1 TimeH,L+λ, L, ε)-Sec (aSec, eSec), but there exists an adversary C

attacking H ′ in Prf sense, running in time c2 TimeH,λ, making one query to its oracle

and with advantage AdvPrf
H′ (C) = 1− 1

|Y| , where c1 and c2 are absolute constants.

Proof. We use the construction H(2) from the Figure 2.1. Let H : K × M → Y

be a hash function family, which is (t, L, ε)-Sec (aSec, eSec), then consider the hash

function family

H
(2)
K (M) =











0y if M = 0

HK(M) if M 6= 0 and HK(M) 6= 0y

HK(0) otherwise

The first part of the proof is in the proof of Theorem 3, where we proved, that H(2) is

(t + c1 TimeH,L+λ, L, ε)-Sec (aSec, eSec) for some absolute constant c1. On the other

hand, in Theorem 19 we showed, that there exists an adversary C attacking H(2) in

Prf sense, running in time c2 TimeH,λ for some absolute constant c2, making one query

to its oracle and with advantage AdvPrf
H(2)(C) = 1− 1

|Y| , what is the second part of the

proof. Thus the proof is complete.

Theorem 23 (Prf 6→ Pre, aPre, ePre, Sec, aSec, eSec to q/|K|). Let λ be an arbitrary

number such that {0, 1}λ ⊆M. If there exists a hash function family H : K×M→ Y,

which is (t, q, L, ε)-Prf, then there exists a hash function family H ′ : K ×M → Y,

which is (t, q, L, ε + q
|K|)-Prf, but there exists an adversary Cxxx attacking H ′ in xxx

sense, running in time cTimeH,λ and with advantage Adv
xxx[·]
H′ (Cxxx) = 1, where c is

an absolute constant and xxx ∈ {Pre, aPre, ePre, Sec, aSec, eSec}.

Proof. Suppose, that H : K ×M → Y is a (t, q, L, ε)-Prf hash function family and

consider the following construction H(3) from the Figure 2.1:

H
(3)
K (M) =

{

Y if Prefix(k+1+y)(M) = K||b||Y for some b ∈ {0, 1}

HK(M) otherwise

in Theorems 6 and 4 we proved, that for xxx ∈ {Pre, aPre, ePre, Sec, aSec, eSec}

there exists an adversary Cxxx attacking H(3) in xxx sense, running in time cTimeH,λ

and with advantage Adv
xxx[·]
H′ (Cxxx) = 1. Thus we only need to prove, that H(3) is

(t, L, ε + q
|K|)-Prf. Let A be an adversary performing attack in Prf sense, running

in time at most t, making at most q queries to its oracle each of length at most L.

From the assumption we have, that AdvPrf
H (A) ≤ ε. When A is attacking H(3), it can
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notice a difference only when it queries the message with prefix K, where K is some

key chosen randomly by the environment. However A has no access to the key, thus

it can only guess. in Theorem 6 we had the similar problem and we showed, that

AdvPrf
H(3)(A) ≤ AdvPrf

H (A) +
q

|K|
≤ ε +

q

|K|
.

Thus H(3) is (t, q, L, ε + q
|K|)-Prf, what we wanted to prove.

2.3.3 CTFP, aCTFP vs. Prf

Theorem 24 (CTFP, aCTFP 6→ Prf to 1/|Y|). Let λ be an arbitrary number such

that {0, 1}λ ⊆ M. If there exists a hash function family H : K ×M → Y, which is

(t, L, ε)-CTFP (aCTFP), then there exists a hash function family H ′ : K ×M → Y,

which is (t, L, ε + 2
2λ )-CTFP (aCTFP), but there exists an adversary C attacking H ′

in Prf sense, running in time cTimeH,λ, making one query to its oracle and with

advantage AdvPrf
H′ (C) = 1− 1

|Y| , where c is an absolute constant.

Proof. Suppose, that H : K ×M → Y is (t, L, ε)-CTFP (aCTFP), and consider the

construction H(7) from the Figure 2.1:

H
(7)
K (M) =

{

0y if M = 0

HK(M) otherwise

in Theorem 12 (18) we showed, that H(7) is (t, L, ε + 2
2λ )-CTFP (aCTFP). For the

second part of the proof consider the following adversary performing attack in Prf

sense and with oracle access to some function f :

Adversary Cf

if f(0) = 0y then return 1

otherwise return 0

The running time of the adversary C is cTimeH,λ for some absolute constant c. If C’s

oracle is H
(7)
K for some key K, then C’s chance to win is 1. On the other hand, if C’s

oracle is a function f : M → Y chosen randomly by the environment, its chance to

win is 1
|Y| , as the probability that f(0) = 0y is 1

|Y| . Thus C’s advantage against H(7)

is

AdvPrf
H(7)(C) = 1−

1

|Y|
,

what we wanted to prove.

In the theorem above we assume that 2
2λ ≤

1
|Y| (actually from the page 35 we assume

that M = {0, 1}∗, Y = {0, 1}y , thus there are only 2y possible values of λ so that
2
2λ ≤

1
|Y| , but for infinitely many values of λ holds 2

2λ > 1
|Y|), thus we can write CTFP,
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aCTFP nonimplies Prf to 1/|Y|. Otherwise we would replace 1/|Y| with 21−λ and

write CTFP, aCTFP nonimplies Prf to 21−λ.

Theorem 25 (Prf 6→ CTFP, aCTFP to q/|K|). Let λ be an arbitrary number such

that {0, 1}λ ⊆ M. If there exists a hash function family H : K ×M → Y, which

is (t, q, L, ε)-Prf, then there exists a hash function family H ′ : K ×M → Y, which

is (t, q, L, ε + q
|K|)-Prf, but there exists an adversary Cxxx attacking H ′ in xxx sense,

running in time cTimeH,λ and with advantage Adv
xxx[λ]
H′ (Cxxx) = 1, where c is an

absolute constant and xxx ∈ {CTFP, aCTFP}.

Proof. We use the construction H(5) from the Figure 2.1. Let H : K ×M→ Y be a

(t, q, L, ε)-Prf hash function family and consider the following construction:

H
(5)
K (M) =

{

K[1 . . . min{k, y}] if Suffixk(M) = K

HK(M) otherwise

in Theorems 13 (16) we showed, that H(5) is not CTFP (aCTFP) resistant, as there

exists an adversary CCTFP (CaCTFP) attacking H(5) in CTFP (aCTFP) sense, running

in time cTimeH,λ with advantage 1, where c is an absolute constant. Thus we only

need to show that H(5) is (t, q, L, ε + q
|K|)-Prf. Any adversary A attacking H(5) in

Prf sense can notice some difference only when it queries the message with suffix K.

Thus if the running time of A is at most t and it makes at most q queries of length

at most L, then its advantage against H(5) cannot be greater than the A’s advantage

against H plus q
|K| (we have the same situation as in the proof of Theorem 13). Thus

the following holds:

AdvPrf
H(5)(A) ≤ AdvPrf

H (A) +
q

|K|
≤ ε +

q

|K|
,

what completes the proof.

2.4 Pseudo-random oracle

Pseudo-random oracle seems to be the strongest property. As we will see in this

Section, it implies almost all the other security notions. When a hash function family

is Pro secure, then it is indifferentiable from a random oracle and it is hard (effectively

unfeasible) for non-Pro adversaries (i.e. adversaries attacking in Pre, Sec, Coll,...

sense) to win against a random oracle.

Pseudo-random oracle does not imply “always” versions of preimage resistance and

second preimage resistance, as it permits insecurity in some small number of keys

(what is in contrast to the meaning of “always” notions).
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In the following text we will assume, that a hash function family H : K ×M→ Y is

build from some ideal compression function f : {0, 1}y+d → Y; d > 0 and an algorithm

computing H has oracle access to f . For that reason we need to give the oracle access

to f also to adversaries attacking in non-Pro sense (i.e. in Pre, aPre, ePre, Sec, aSec,

eSec, Coll, CTFP or aCTFP), adversaries attacking in Pro sense already have such

access. For example, the advantage in Pre sense of adversary A would look like follows:

AdvPre
H,f (A) = Pr

[

K
$
←K;M

$
←M;Y ← HK(M);M ′ ← Af (K,Y ) : HK(M ′) = Y

]

Advantages in other senses are modified similarly, except MAC and Prf notions. The

advantages in MAC and PRF senses stay unchanged, as an adversary attacking in

MAC or Prf sense has only oracle access to H. We omit writing Hf even if H has

oracle access to f , as all the hash functions used in this section has oracle access to f

(in other words they are build from the primitive f).

2.4.1 Pre, Sec, Coll vs. Pro

Theorem 26 (Pre, aPre, ePre 6→ Pro to 1
|Y|). Let λ be an arbitrary number such that

{0, 1}λ ⊆ M and let f = RFy+d,y for some d > 0. If there exists a hash function

family H : K ×M → Y, which is (t, L, ε)-Pre (aPre, ePre), then there exists a hash

function family H ′ : K×M→ Y, which is (t + c1 TimeH,L+λ, L, ε)-Pre (aPre, ePre),

but there exists an adversary C attacking H ′ in Pro sense, running in time c2 TimeH,λ,

making two queries to its first oracle and with advantage AdvPro
H′,f,S(C) = 1− 1

|Y| for

any simulator S, where c1 and c2 are absolute constants.

Proof. Let H : K ×M → Y be a hash function family, which is (t, L, ε)-Pre (aPre,

ePre). We construct the hash function family H(4) (from the Figure 2.1) defined as

follows:

H
(4)
K (M) = HK(M [1 . . . |M | − 1]||0)

In the proof of Theorem 5 we proved that H(4) is (t + c1 TimeH,L+λ, L, ε)-Pre (aPre,

ePre). We only need to find an adversary breaking H(4) in Pro sense. For that

reason consider the following adversary C performing attack in Pro sense with oracles

f1 :M→ Y and f2 : {0, 1}y+d → Y for some integer d > 0:

Adversary Cf1,f2

if f1(00) = f1(01) then return 1

otherwise return 0

If the first oracle of the adversary C is HK for some key K, then it returns 1 with

probability 1. If its first oracle is F (a random function), then for any simulator S the

probability that it returns 1 is 1
|Y| (see the proof of Theorem 21). Thus C’s advantage
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against H(4) is AdvPro
H(4),f,S

(C) = 1 − 1
|Y| for any simulator S. The running time of

C is c2 TimeH,λ for some absolute constant c2 and it makes two queries to its first

oracle.

Theorem 27 (Sec, aSec, eSec, Coll 6→ Pro to 1
|Y|). Let λ be an arbitrary number such

that {0, 1}λ ⊆M and let f = RFy+d,y for some d > 0. If there exists a hash function

family H : K×M→ Y, which is (t, L, ε)-xxx (xxx ∈ {Sec, eSec, aSec, Coll}, then there

exists a hash function family H ′ : K×M→ Y, which is (t + c1 TimeH,L+λ, L, ε)-xxx,

but there exists an adversary C attacking H ′ in Pro sense, running in time c2 TimeH,λ,

making one query to its first oracle and with advantage AdvPro
H′,f,S(C) = 1 − 1

|Y| for

any simulator S, where c1 and c2 are absolute constants.

Proof. Let xxx denote a member from the set {Sec, eSec, aSec, Coll}. Assume that

H : K ×M→ Y is (t, L, ε)-xxx and consider construction H(2) from the figure 2.1:

H
(2)
K (M) =











0y if M = 0

HK(M) if M 6= 0 and HK(M) 6= 0y

HK(0) otherwise

in Theorem 2 we proved, that H(2) is (t + c1 TimeH,L+λ, L, ε)-Coll and in Theorem 3

we proved that H(2) is (t + c1 TimeH,L+λ, L, ε)-Sec (aSec, eSec). To prove the second

part of Theorem consider the adversary C performing attack in Pro sense with oracles

f1 and f2, which just verifies whether f1(0) = 0y. If so, it returns 1, otherwise it

returns 0 (the adversary is similar to one in the proof of Theorem 22). Running time

of such adversary is c2 TimeH,λ for some absolute constant c2, it makes one query to

its first oracle and its advantage for any simulator S is 1− 1
|Y| .

Theorem 28 (Pro → Pre, ePre, Sec, eSec, Coll to 1/|Y|). Let λ be an arbitrary

number such that {0, 1}λ ⊆ M, H : K ×M → Y be a hash function family, f =

RFy+d,y for some d > 0 and let xxx ∈ {Pre, ePre, Sec, eSec, Coll}. If there exists

an adversary Axxx running in time t, outputting messages of length at most L and

with advantage in xxx sense Adv
xxx[·]
H,f (Axxx) = ε, then there exists an adversary Bxxx

attacking H in Pro sense, running in time t+cTimeH,L+λ, making at most two queries

to its first oracle and with advantage AdvPro
H,f,S(Bxxx) ≥ ε− 1

|Y| for some simulator S,

where c is an absolute constant.

Proof. Let H be a hash function family and Axxx be an adversary attacking H in xxx

(xxx ∈ {Pre, ePre, Sec, eSec, Coll}) sense, running in time t, outputting messages

of length at most L and with advantage ε. Consider the following adversaries Bxxx

attacking H in Pro sense:

64



Adversary Bf1,f2

Pre (K)

let Y
$
←Y

M ← Af2

Pre(K, Y )

if f1(M) = Y then return 1

otherwise return 0

Adversary Bf1,f2

ePre (K)

(Y, S)← Af2

ePre

M ← Af2

ePre(K, S)

if f1(M) = Y then return 1

otherwise return 0

Adversary Bf1,f2

Sec (K)

let M
$
←{0, 1}λ

M ′ ← Af2

Sec(K, M)

if f1(M) = f1(M
′) then return 1

otherwise return 0

Adversary Bf1,f2

eSec (K)

(M, S)← Af2

eSec

M ′ ← Af2

eSec(K, S)

if f1(M) = f1(M
′) then return 1

otherwise return 0

Adversary Bf1,f2

Coll (K)

(M, M ′)← Af2

Coll(K)

if f1(M) = f1(M
′) then return 1

otherwise return 0

The adversaries above firstly simulate the adversary Axxx attacking in xxx sense, then

they verify, whether Axxx returned correct output. If so, they return 1, otherwise they

return 0. The probability, that they return 1 if their oracles are HK and f for some

key K is ε (what is equal to the advantage of Axxx against H). If their oracles are

a random function F and the simulator SF with oracle F , which always returns 0y

(whatever is its oracle), then they return 1 with the probability 1
|Y| . The adversary

ASF

xxx can not win against F with non-negligible probability, as F is a random oracle

(and any adversary attacking random oracle is doomed to fail) and SF always returns

0y (i.e. SF does not return output that is “consistent” with F). In fact if ASF

Pre(Y )

returns message M , the probability that F(M) = Y (i.e. that ASF

Pre(Y ) wins) is 1
|Y| .

Similar situation is for ASF

ePre, ASF

Sec and ASF

eSec.

Thus the advantage of Bxxx against H is:

AdvPro
H,f,S(Bxxx) = ε−

1

|Y|
,

for the simulator S given above, therefore for the advantage of adversaries Bxxx and

the simulator S the following holds:

AdvPro
H,f,S(Bxxx) +

1

|Y|
≥ Adv

xxx[·]
H (Axxx).

Note that running time of the adversaries Bxxx is t + cTimeH,L+λ for some absolute

constant c. We expect that there exists a sampler from the set {0, 1}λ (Y), which

can sample messages (images) with uniform distribution in time aTimeH,λ for some

absolute constant a ≤ c.

Theorem 29 (Pro 6→ aPre, aSec to 1/|K|). Let λ be an arbitrary number such that

{0, 1}λ ⊆ M and let f = RFy+d,y for some d > 0. If there exists a hash function

65



family H : K ×M → Y, which is (tA, tS , q1, q2, L, ε)-Pro, then there exists a hash

function family H ′ : K ×M → Y, which is (tA, tS , q1, q2, L, ε + 1
|K|)-Pro, but there

exists an adversary Cxxx attacking H ′ in xxx sense, running in time cTimeH,λ and

with advantage Adv
xxx[λ]
H′ (Cxxx) = 1, where c is an absolute constants and xxx ∈ {aPre,

aSec}.

Proof. Let H : K×M→ Y be a (tA, tS , q1, q2, L, ε)-Pro hash function family, we use

the construction H(9) from the Figure 2.1. Let K0 ∈ K be some particular key, then

we define

H
(9)
K (M) =

{

HK(M) if K 6= K0

0y if K = K0

The hash function family H(9) is clearly (tA, tS , q1, q2, L, ε + 1
|K|)-Pro. When a key K

chosen by the environment is different from K0, then chance to win of any adversary

against H(9) is the same as against H. If the key K is equal to K0, then in the worst

case an adversary wins against H(9) with probability 1. The probability that the key

K is equal to K0 is 1
|K| .

On the other hand H(9) is clearly not aPre (aSec) secure. The two stage adversary Cxxx

attacking in xxx sense (xxx ∈ {aPre, aSec}), which in the first phase returns the key

K0 and in the second phase returns the message 0 (or any other message different from

the one chosen by the environment when attacking in aSec sense) has the advantage

1 and runs in time cTimeH,λ for some absolute constant c (determined by the time

needed to return the key K0 and message 0 on a particular RAM model).

2.4.2 MAC vs. Pro

Theorem 30 (MAC 6→ Pro to q/|K| + 1/|Y|). Let λ be an arbitrary number such

that {0, 1}λ ⊆M and let f = RFy+d,y for some d > 0. If there exists a hash function

family H : K ×M → Y, which is (t, q, L, ε)-MAC, then there exists a hash function

family H ′ : K×M→ Y, which is (t, q, L, ε + q
|K|)-MAC, but there exists an adversary

C attacking H ′ in Pro sense, running in time cTimeH,λ, making one query to its first

oracle and with advantage AdvPro
H′,f,S(C) = 1 − 1

|Y|2
for any simulator S, where c is

an absolute constant.

Proof. Consider the construction H(3) from the Figure 2.1:

H
(3)
K (M) =

{

Y if Prefix(k+1+y)(M) = K||b||Y for some b ∈ {0, 1}

HK(M) otherwise

where H : K ×M → Y is a (t, q, L, ε)-MAC hash function family. in Theorem 4, we

66



proved, that H(3) is (t, q, L, ε + q
|K|)-MAC. For the second part of the proof consider

the following adversary C:

Adversary Cf1,f2(K)

if f1(K||0||0
y) = f1(K||1||0

y) = 0y then return 1

otherwise return 0

Running time of C is cTimeH,λ for some absolute constant c and its advantage in Pro

sense against H(3) is

AdvPro
H(3),f

(C) = 1−
1

|Y|2

for any simulator S, where 1
|Y|2

is the probability that a random function F maps

messages K||0||0y and K||1||0y to 0y.

Theorem 31 (Pro → MAC to 1/|Y|). Let λ be an arbitrary number such that

{0, 1}λ ⊆ M, f = RFy+d,y for some d > 0 and H : K ×M → Y be a hash function

family. If there exists an adversary A running in time t, outputting or querying mes-

sages of length at most L, making q queries to its oracle and with advantage in MAC

sense AdvMAC
H (A) = ε, then there exists an adversary B attacking H in Pro sense,

running in time t + cTimeH,L+λ, making at most two queries to its first oracle and

with advantage AdvPro
H,f,S(A) ≥ ε − 1

|Y| for some simulator S, where c is an absolute

constant.

Proof. The proof is very similar to the one of Theorem 28. Let AMAC be an adversary

attacking H in MAC sense, running in time t, outputting or querying messages of

length at most L, making q queries to its oracle and with advantage ε. We just need

to create MAC version of the adversary B from the proof of Theorem 28:

Adversary Bf1,f2

MAC(K)

(M, Y )← AHK

MAC

if f1(M) = Y then return 1

otherwise return 0

Running time of such adversary is t + cTimeH,L+λ and its advantage in Pro sense

against H is ε− 1
|Y| for simulator S that always returns 0y no matter what its oracle

is (see the proof of Theorem 28 for complete explanation).

2.4.3 CTFP vs. Pro

Theorem 32 (CTFP 6→ Pro to 1/|Y|). Let λ be an arbitrary number such that

{0, 1}λ ⊆ M and let f = RFy+d,y for some d > 0. If there exists a hash func-

tion family H : K ×M → Y, which is (t, L, ε)-CTFP (aCTFP), then there exists a

hash function family H ′ : K ×M → Y, which is (t, L, ε + 2
2λ )-CTFP (aCTFP), but

there exists an adversary C attacking H ′ in Pro sense, running in time cTimeH,λ,
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making one query to its first oracle and with advantage AdvPro
H′,f,S(A) = 1 − 1

|Y| for

any simulator S, where c is an absolute constant.

Proof. Consider the construction H(7) from the Figure 2.1. Let H : K ×M → Y be

a (t, L, ε)-CTFP (aCTFP) hash function family, then we define:

H
(7)
K (M) =

{

0y if M = 0

HK(M) otherwise

in Theorem 12 (18) we showed, that H(7) is (t, L, ε + 2
2λ )-CTFP (aCTFP). For the

second part of the proof consider the following adversary C:

Adversary Cf1,f2(K)

if f(0) = 0y then return 1

otherwise return 0

Running time of C is cTimeH,λ for some absolute constant c. The advantage of such

adversary in Pro sense is (see the proof of Theorem 24)

AdvPro
H(7),f,S

(A) = 1−
1

|Y|

for any simulator S, what completes the proof.

Theorem 33.

(1) Pro → CTFP to 1
|Y|

(2) Pro 6→ aCTFP to 1
|K|

Proof. The proof of (1) is very similar to the proof of Theorem 28. We just need to

construct CTFP version of the adversary B from the proof of Theorem 28 performing

attack in Pro sense.

Adversary Bf1,f2

CTFP(K)

(Y, S)← Af2

CTFP(K)

let P
$
←M

M ← Af2

CTFP(P, S)

if f1(P ||M) = Y then return 1

otherwise return 0

The proof of (2) is nearly the same as the proof of Theorem 29. Here we just need

to find an adversary C attacking the hash function family H(9) in aCTFP sense. The

adversary C in the first phase returns triple (0y,K0,K0) and in the second phase it

returns empty string. Advantage of such adversary in aCTFP sense against H(9) is 1

and it runs in time cTimeH,λ for some absolute constant c.
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2.4.4 Prf vs. Pro

Theorem 34 (Prf 6→ Pro to q/|K| + 1/|Y|). Let λ be an arbitrary number such that

{0, 1}λ ⊆ M and let f = RFy+d,y for some d > 0. If there exists a hash function

family H : K ×M → Y, which is (t, q, L, ε)-Prf, then there exists a hash function

family H ′ : K ×M → Y, which is (t, q, L, ε + q
|K|)-Prf, but there exists an adversary

C attacking H ′ in Pro sense, running in time cTimeH,λ, making one query to its first

oracle and with advantage AdvPro
H′,f,S(C) = 1 − 1

|Y|2
for any adversary S, where c is

an absolute constant.

Proof. We use the construction H(3) from the Figure 2.1. Suppose, that H : K×M→

Y is a hash function family, which is (t, q, L, ε)-Prf, then consider a hash function

family defined as follows:

H
(3)
K (M) =

{

Y if Prefix(k+1+y)(M) = K||b||Y for some b ∈ {0, 1}

HK(M) otherwise

in Theorem 23 we showed, that H(3) is (t, q, L, ε + q
|K|)-Prf what completes the first

part of the proof. in Theorem 30 we showed the second part of the proof, that there

exists an adversary C attacking H(3) in Pro sense running in time cTimeH,λ and with

advantage 1− 1
|Y|2

for any simulator S. Thus the proof is complete.

Theorem 35 (Pro → Prf). Let λ be an arbitrary number such that {0, 1}λ ⊆ M,

f = RFy+d,y for some d > 0 and H : K ×M→ Y be a hash function family. If there

exists an adversary A running in time t, making q queries to its oracle of length at most

L and with advantage in Prf sense AdvPrf
H (A) = ε, then there exists an adversary B

attacking H in Pro sense, running in time t + cTimeH,L+λ, making at most q queries

to its first oracle and with advantage AdvPro
H,f,S(A) = ε for any simulator S, where c

is an absolute constant.

Proof. Let H : K ×M → Y be a hash function family and let A be an adversary

running in time t, making q queries to its oracle of length at most L and with advantage

in Prf sense AdvPrf
H (A) = ε. Consider the following adversary B:

Adversary Bf1,f2(K)

b← Af1

return b

The advantage of B in Pro sense is the same as the advantage of A in Prf sense

(as B does not make queries to its second oracle and does not utilize the key). The

adversary B runs in time t+cTimeH,L+λ for some absolute constant c, what completes

the proof.
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2.5 Summary

In this Chapter we proved the relationships among all the security notions from the

Section 1.2. Note that all provisional implications and separations we proved have

their provisional part (i.e. ε value from the part “to ε”) negligible (i.e. ε depends on

λ, k or y and ε(λ), ε(k) or ε(y) descends faster than any polynomial powered to −1),

what is necessary condition for meaningfulness of a particular provisional implication

or separation. However we have not proven that these provisional parts we provided

are the best ones — i.e. the ε value from the statement “to ε” of a provisional

implication/separation is the smallest possible. More precisely suppose that between

xxx and yyy security notions holds provisional implication (separation) xxx → yyy

to ε (xxx 6→ yyy to ε), we say that ε is the smallest possible if for any α < ε the

implication (separation) does not hold. We leave the solution of this problem to our

future work.

The provided relationships summarized in the Table 2.1 indicate the strength of the

pseudo-random oracle security notion (Pro), as Pro implies all the other notions ex-

cept always preimage resistance, always second-preimage resistance and always chosen

target forced prefix preimage resistance. However Pro requires a hash function family

H to be build from some ideal compression function f (i.e. a random oracle) or a

compression function build from an ideal cipher (e.g. by Davies-Meyer construction),

what casts a little shadow over Pro’s practical use with “real” hash function families,

as it is impossible to practically build a random oracle or an ideal cipher. On the

other hand, if we prove that a hash function family H build from an ideal compres-

sion function f (or a compression function based on a ideal cipher) is good Pro, then

the transformation, which transforms the compression function f to the “big” hash

function family H, has no structural flaws and therefore one can believe, that if f is

replaced by some well-constructed compression function f ′, then no such flaws will

appear in the resulting hash function family H ′. Thus we can say, that pseudo random

oracle security notion reduces the building of a “good” hash function family to the

building of a “good” compression function.

Such transformation, which transforms a “small” compression function f : {0, 1}y+d →

Y to some “big” hash function family H : K ×M → Y is called domain extension,

as it extends the domain of the compression function f to the domain of the hash

function family H. A domain extension is called pseudo-random oracle preserving

(shortly Pro-Pr), if it transforms an ideal compression function (or a compression

function based on an ideal cipher) to a hash function family, which is secure in Pro

sense. Similarly we can define a collision resistance preserving domain extension

(shortly Coll-Pr), which transforms a collision resistant compression function to a
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x xx x
Pro-Pr transform

Pro-Pr transform T

I¶

T(I¶)

x
x

all compression functions
collision resistant compression functions
ideal compression functions

x
x

all hash function families
Coll secure hash function families
Pro secure hash function families

Figure 2.2: Pseudo random random oracle preserving domain extension applied on a

non-ideal compression function need not to return Pro secure hash function family.

However when applied on an ideal compression function then resulting hash function

family is Pro secure, and therefore also Coll secure.

collision resistant hash function family. Bellare and Ristenpart in [3] showed, that

Pro-Pr domain extension need not to be Coll-Pr (see Figure 2.2). It means, that

they found a domain extension transform T (·), which is Pro-Pr (i.e. a hash function

family H = T (f) is secure in Pro sense, if f is an ideal compression function), but

for some collision resistant compression function f ′, a hash function family T (f ′)

is not collision resistant. For that reason they proposed a multi-property preserving

domain extension, which preserves both pseudo-random oracle and collision resistance

security notions, and possibly some others. However our results show, that if a hash

function family is secure in Pro sense, then it must be secure in Coll sense, thus a

hash function family H produced by some Pro-Pr domain extension transformation

T (f), where f is an ideal compression function, is Coll secure. Therefore the usage of

multi-property preserving domain extension transformation is not necessary, instead

we can use Pro-Pr domain extension with well chosen compression function.
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Summary

In the first part of this Thesis we introduced basic notations and definitions, then

we defined twelve notions for hash function security. At the end of the first part we

defined the implication and separation between two notions, we also showed some

basic properties of such implication/separation and finally we showed the equivalence

between one-stage and two-stage versions of some security notions.

In the second part of the Thesis we proved all the relationships among the definitions,

except those, which were proven by Rogaway and Shrimpton [13] or by Naor and

Reingold [11]. These relationships are summarized in the Table 2.1. Our results

indicate that pseudo-random oracle security notion (Pro) is (as expected) the strongest

property, as it implies almost all the other security notions (except “always” notions).

However Pro has important disadvantage — it requires a hash function family to

be build from an ideal compression function (or a compression function based on an

ideal cipher). Therefore we rather speak about pseudo-random oracle preserving (Pro-

Pr) domain extension transform, which transforms an ideal compression function to

a pseudo-random oracle secure hash function family. As Bellare and Ristenpart [3]

showed, if a Pro-Pr domain extension transform is applied to a non-ideal compression

function f , it can actually “weaken” the resulting hash function family, that is if f is

a collision-free compression function, then the resulting hash function family need not

to be collision resistant (i.e. Coll secure). Thus we need to choose the compression

function for Pro-Pr transforms very carefully. The question is, whether it is possible

to build such compression function, which extended by a Pro-Pr domain extension

produces Pro secure hash function family. We leave this for our future research.

We note that several Pro-Pr domain extension transforms have been designed already,

for example Bellare and Ristenpart in [2] introduced two of them: Strengthened Chain

Shift and Enveloped Shoup. They also proved that both of these domain extensions

are multi-property preserving (MPP), i.e. besides being Pro-Pr, they are also Coll-

Pr, MAC-Pr, Prf-Pr and eSec-Pr. Thus MPP transform can guarantee additional

security properties (e.g. collision resistance), even if a compression function used with
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a particular MPP transform is not “ideal”. On the other hand, new hash standard

should preserve all mentioned security properties, what can be realized only with a

“good” compression function. Therefore we suggest to focus the future research on

compression functions and if no suitable compression function will be found, we need

to consider the usage of such domain extension transforms.
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Abstrakt

Kryptografické hešovacie funkcie patria medzi základné kamene súčasnej kryp-
tografie. Inštitút NIST (National Institute for Standards and Technology) ne-
dávno vyhlásil verejnú súťaž, ktorej cieľom je vytvorenie nového hešovacieho
štandardu AHS (Advanced Hash Standard). V práci zosumarizujeme základné
vlastnosti, ktoré by mal nový hešovací štandard spĺňať, poskytneme ich formálne
definície a medzi týmito definíciami dokážeme všetky možné implikácie resp.
separácie. Niektoré implikácie/separácie už boli dokázané, niektoré sú nové.
Budeme rozlišovat dva typy implikácií resp. separácií - tradičnú a podmienenú.
Zatiaľ čo tradičná implikácia (separácia) má význam, aký bežne chápeme pod
slovom implikácia (separácia), sila podmienenej implikácie (separácie) závisí na
konkrétnej hešovacej funkcii. Ukážeme, že vlastnosť Pseudo-náhodné orákulum,
ktorú ako prvý definovali Coron, Dodis, Malinaud a Puniya je (ako sme očaká-
vali) najsilnejšou vlastnosťou, kedže implikuje skoro všetky ostatné vlastnosti.
V práci taktiež rozoberáme praktické použitie Pseudo-náhodného orákula a tzv.
MPP (Multi Property Transform) transformácií, ktoré poprvý krát navrhli Bel-
lare a Ristenpart.

Kľúčové slová: kryptografická hešovacia funkcia, dokázateľná bezpečnosť, vla-
stnosti hešovacej funkcie, odolnosť voči kolíziám, pseudo-náhodné orákulum
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