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Abstract

Cryptographic hash functions are corner-stones of current cryptography. Recently,
NIST (National Institute for Standards and Technology) has announced a public com-
petition to develop a new hash standard called AHS (Advanced Hash Standard). We
summarize the basic properties that the new cryptographic hash standard should
preserve, give formal definitions of them and work out all of the implications or sep-
arations among these definitions. Some of the implications/separations have been
proven before, others appear to be new. We provide two types of the implication and
separation, conventional and provisional. While the conventional implication (sepa-
ration) carries the usual semantics of the word implication (separation), the strength
of the provisional implication or separation depends on a particular hash function.
We show that a property pseudo-random oracle introduced by Coron, Dodis, Malin-
aud and Puniya is (as expected) the strongest one, since it implies almost all of the
other properties. We also discuss the practical use of the pseudo-random oracle and

multi-property preserving transforms introduced by Bellare and Ristenpart.

Keywords: cryptographic hash function, provable security, hash function properties,

collision resistance, pseudo-random oracle
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Introduction

Cryptographic hash functions are basic primitives, widely used in many applications,
from which more complex cryptosystems are build. In the last few years many popular
hash functions such as MD5 or SHA1 have been broken, also some structural flaws
in popular constructions (e.g. Merkle-Damgard construction) of hash functions have
been found. These findings caused great activity in the cryptographic community,
which in January 2007 escalated into NIST’s (National Institute for Standards and
Technology) announcement of a public competition for a new hash standard, similar

to one when AES was standardized.

By this thesis we try to participate in the development of a new hash standard by
summarizing security properties of cryptographic hash functions. We extend the work
by Rogaway and Shrimpton [I3], where they provide definitions of seven security
properties — notions of preimage resistance, second-preimage resistance and collision
resistance, and they also give all the relationships among these definitions. To these
seven security properties we add five more — definitions of unforgeability, two notions
of chosen target forced prefix preimage resistance, pseudo random function and pseudo
random oracle. Between each two of all twelve definitions, we provide implication or

separation with exact proof, except those implications or separations proven in [I3].

The Thesis is divided into two parts. In the first part we introduce some basic nota-
tions and definitions, then we give formal definitions of twelve security properties a
cryptographic hash function should preserve. At the end of the first part we discuss
when a hash function is secure in some sense (i.e. when it preserves some property),
and we give formal definitions of implication and separation between the security
properties. In the second part of the Thesis we provide the relationships (implication

or separation) with exact proofs among the definitions from the first part.

Informally speaking, a hash function is a function that maps messages of an arbitrary
length to strings of fixed length. An output of a hash function with some message on its
input is called a hash of the message. One of the many applications of hash functions

are digital signatures. Digital signatures are used as an electronic replacement of
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Figure 1: Scheme of digital signature

classical hand-written signatures. Many digital signature schemes have been designed
so far, however all of them share the same basic scheme (see Figure [ll). Every digital
signature scheme is based on an asymmetric cipher. Suppose that Alice wants to
send Bob some signed document. To be able to perform the signing process, Alice
must have a private key and share some public key. The private key is used by the
signing algorithm to sign the document and Bob uses Alice’s public key in the verifying
algorithm to verify, whether the document was really signed by Alice. As asymmetric
ciphers are very computationally demanding, instead of signing the whole document,

only hash of the document is signed.

Digital signatures are good example for presenting properties that hash functions
should preserve. One important property is efficiency. Hash function algorithm should
be very fast, as very long documents can be signed. Thus hash functions based on
a computationally hard problem (factorization or discrete logarithm) are out of the
question (even if they provide some provable security), as such hash functions are

slow.

Fundamental property of digital signatures used in practice is that for some digitally
signed document A no one can produce document B that has the same signature as
A. Similar property is that no one can produce two different documents that have
the same signature. Thus a hash function used in a digital signature scheme must
guarantee that for some document A no one can produce another document B that
hashes to the same hash as A (otherwise A and B would have the same signature).
Similarly, it must guarantee that no one can produce two different documents that hash
to the same hash. Thus we have two properties that hash functions should preserve —
the first is called second-preimage resistance and the latter collision resistance. When

we are designing a hash function for digital signatures, we would like to know the



relationship between these properties. If we knew that collision resistance implies
second-preimage resistance, then instead of proving preservation of each property
separately, we would only need to prove, that our hash function is collision resistant
and therefore it is automatically second-preimage resistant. In this thesis we try to
help designers of hash functions by summarizing all properties a “good” cryptographic

hash function should preserve and by giving relationships among these properties.
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Chapter 1

Definitions

A cryptographic hash function is a function F : M — ) where M is a possibly
infinite nonempty set of strings, ) is a finite nonempty set of strings and |[M| > |Y|.
Members of the domain M are called messages, members of the set ) are called
images or hashes. However, not every such function F' is a “good” cryptographic
hash function. There are three main properties which a “good” cryptographic hash

function has to preserve.

e preimage resistance — for essentially all hashes y, it is difficult to find message

m which is hashed to y.

e 2nd-preimage resistance — for given message m, it is difficult to find message m’,

which hashes to the same value as the message m, i.e. F(m) = F(m’).

e collision resistance — it is difficult to find two different messages m and m’ such
that F(m) = F(m/).

However, the properties above are written informally, what can lead to a lot of ambigu-
ity. In this chapter we discuss which properties should a cryptographic hash function

preserve and give formal definitions of them.

In [T3] Rogaway and Shrimpton provide definitions for various notions of collision
resistance, preimage resistance and second preimage resistance. They also give all
the relationships among the definitions. Bellare and Ristenpart in [2] give another
three properties: pseudo-random function, pseudo-random oracle and MAC. Finally,
Kohno and Kelsey in [§] proposed a new type of attack called “herding attack” and
they introduced new property called chosen target forced prefix preimage resistance,

which if a hash function preserves, then it is resistant to the herding attack.
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Formal definitions of these properties use hash functions in a different setting than
we presented. Hash function has one more input, so called dedicated-key input, which

extends a hash function to a hash function family.

Definition 1 (Hash function family). A hash function family is a function H : IC x
M — Y, where K = {0,1}¥, ¥ = {0,1}¥ for some integers k,y > 0 and M = {0,1}*.
Set KC is called key space, number y is called hash length of H.

The reason why we use the hash function family instead of the hash function is its uni-
versality, which leads to easier construction of message authentication codes (MACs),
where some secret key is needed to build MAC (more about message authentication
codes can be seen in Section [CZH]). Hash function family has some other benefits,
which are discussed in [2], however significant drawback of hash function family is its

loss in efficiency (we need k more bits to process every message block).

Now we introduce some notations used in this thesis. We write M<-S for the exper-
iment of choosing random element from the distribution §. If § is a finite set, then
M is chosen uniformly from S§. Concatenation of finite strings M7 and Ms we denote
by Mji|| My or simply M M,. Bitwise complement of string M we write as M. Empty
string is denoted by u. If ¢ is an integer, then (i), is 7-bit string representation of
i. Let Func(D, R) represent the set of all functions p : D — R and let RFp r be a
function chosen randomly from the set Func(D, R) (i.e. RFD,RﬁFunc(D, R)). We
sometimes write RFy, when D = {0,1}¢ and R = {0,1}". By Prefix, (M) we denote
the n-bit prefix of message M, similarly by Suffix, (M) we denote the n-bit suffix of
M.

Definition 2 (Adversary). An adversary is a random access machine (RAM) with
any number of inputs (i.e. it can access ith bit of input j in unit time) that can toss
a coin in unit time (i.e. it can choose a sample from the set {0,1} in a unit time).
Running time of an adversary A on some input is the average time needed to compute
an output (relative to some fixed RAM model) plus the description size of A (relative
to some fixed coding of RAMs).

It is important to include the description size of an algorithm A into the running time
of an adversary. For example consider, that we are constructing an adversary A which
finds preimages for a hash function F' : M — ). We hardwire into A an array P of
pairs [M,Y];Y = F(M) sorted by the second component, such that P includes all
possible images Y = F(M). Therefore the size of the array P is at most |)| (note
that not all of the messages M € M are included in P, but P includes all images that
F outputs). The adversary A takes as an input image Y and searches in P for one

pair (M,Y). As P is sorted, A can use binary search, which runs in logarithmic time.

12



Thus A finds preimages for a set ) with cardinality 2¥ in time O(y), what is feasible
even for a large y. However, it is practically unfeasible to construct such algorithm
A because of its complexity. Let us assume that output size of F' is 128 bits and
maximum message length in P is 256 bits. Therefore 256 - 212% bits are needed to

store such array P in a memory, what is about 2% terabytes.

Let H : K x M — Y be a hash function family. We denote by Timey , the running
time of an algorithm P (i.e. some random access machine) computing H that has the
best worst case running time over all inputs (K, M); K € K; M € M;|M| = n, that
is, any other algorithm P’ computing H has the worst case running time over all the
inputs (K, M); K € K; M € M;|M| = n greater or equal to P’s. Informally speaking,

Timep . is the time needed to compute H on any input of length n.

In this work we will often use the term random oracle. It is an abstract function,
which we are unable to construct, however, it is widely used in cryptography, mainly
due to the so called random oracle model, firstly introduced by Bellare and Rogaway
M), where the security of cryptosystems is proven under the assumption, that any
party has access to a random oracle. Instead of proving that some system is secure
with the particular hash function F' (e.g. F being SHA-1), one assumes, that F is an
“ideal” hash function (i.e. random oracle) and proves the security of the system under
this assumption. Such formal proof in the random oracle model indicates, that there
are no structural flaws in the construction of the system, and therefore we can believe,
that no such flaws will appear in the system with a particular well-constructed hash

function F'.

Definition 3 (Random oracle). A random oracle is a function f : D — R chosen
uniformly randomly from the set of all functions from D to R (i.e. from the set
Func(D, R)), where R is a finite set.

Thus RFp g, already defined, is a random oracle. Based on the definition of random

oracle, we can define ideal hash function.

Definition 4 (Ideal hash function). A hash function F' : M — Y is an ideal hash
function if every attack against F' has the same complexity as against a random oracle
(i.e. any adversary performing the attack against F' has the running time greater or

equal to the running time of the adversary performing attack against random oracle).

We will also use the term negligible. A function f : N — RT is negligible, if it descends

faster than any polynomial powered to —1. The formal definition is following.

Definition 5 (Negligible function). A function f: N — R* is negligible, if for every
constant ¢ > 0, there exists an integer Ny € N, such that for all integers n > Ny it

13



holds 1
f(n) < —

ne’

We say that a constant c is negligible, when it is affected by some security parameter
k and the function c(k) is negligible. For example consider, that we have a hash
function F', for which any adversary A has the probability of success 2%, where k is
some security parameter (e.g. hash length of F'). Thus the probability of A’s success
is negligible and so we say that F' is secure against the attack that adversary A is

performing.

1.1 Constructions of hash functions

In this Section we describe the common way of constructing hash functions ¥ : M — Y

— the iterated construction and its Merkle-Damgard strengthening.

1.1.1 Iterated construction

In order to process messages of an arbitrary length, the iterated hash functions process
messages in blocks of fixed length . However the length of message does not need
to be divisible by r. Thus some message preprocessing is needed, which pads the
message to multiple of block length and eventually makes some other modifications
(e.g. adds binary interpretation of message length to the end). Then the padded
message is divided into blocks my, ms, ..., m;. The blocks are processed consequently
using the so called “compression” function f : {0,1}¥™" — Y and the ongoing hash Y;

is produced:

Yo = IV,
}/;; = f(miai/;—l)a 1= 1727”’t7

where IV is some constant initialization vector. The last ongoing hash Y; is also the
output of the iterated hash function F', however sometimes an output transformation

g is applied to Y;.

The iterated construction of hash function is the most common construction of popular
hash functions. Mainly it is due the matter, that when a compression function f
has some “good” properties, we are able to prove these “good” properties for whole

function F, as it is in Merkle-Damgard strengthening of iterated hash function.

14
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Figure 1.1: Iterated construction of hash function.

1.1.2 Merkle-Damgard strengthening

Merkle-Damgard strengthening extends a collision resistant compression function f :
{0,1}¥"" — Y to a collision resistant hash function F' : M — Y. A message M of
length [ is divided into blocks x1,x9,...,z; of length r bits, where the last block is
filled up with zeros if needed. Then an additional block x;y1 is added, which contains
binary interpretation of length [ (if [ > 2", then we add more than one block). After

that we iterate over all blocks and the ongoing hash value is produced:

Yo = 07,
Y;; = f(YZ_leZ), Zzl,t+1

The output of the hash function F' is the last ongoing hash Y; 1.

Propositioin 1. Let f: {0,1}Y™" — Y be a collision resistant function. Then func-

tion F : M — Y described above is collision resistant too.

We do not provide the proof of this proposition, as it is not in our main interest. The

proof is quite straightforward and can be found in [I0].

Both iterated construction and Merkle-Damgard strengthened iterated construction
can be used to build also hash function families H : K x M — ). If the size of
the key space K can be equal to the size of the set ), we can initialize the iteration
with the key instead of the initialization vector. That is, the message preprocessing
and the whole iteration process are the same as they are in the case of standard hash
functions, except the first step of the iteration, where Yj is not set to the initialization
vector, but to the key K. We note that in this way we can modify most of the popular
hash functions such as SHA1, MD5 or SHA2 versions to accept dedicated-key input

and therefore to build hash function families.
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If the size of the key set has to be different from the size ), we can modify compression
function to accept additional (dedicated-key) input f : K x {0,1}¥*" — ) and iterate

over all blocks with such compression function:

Yok = 1V,
ik = [(K,Yi1]lmi), i=1,...t

The output of H(K, M) is then equal to Y; k.

Now we can proceed to the formal definitions of cryptographic hash function security.

1.2 Definitions of hash function security

Here we give the formal definitions of hash function security notions. Notions for
preimage resistance, second-preimage resistance and collision resistance were defined
in [I3] by Rogaway and Shrimpton. Bellare and Ristenpart in [2] defined notions
for MAC, pseudo random function and pseudo random oracle. Finally, the chosen
target forced prefix preimage resistance notion (CTFP) was defined in [8] by Kelsey
and Kohno.

1.2.1 Preimage resistance

A hash function is preimage resistant, when it is difficult to find a preimage for a
point in the range of the hash function. There are several ways how to formalize this
intuition in the sense of hash function family.

Definition 6 (Preimage resistance). Let H : K x M — Y be a hash function family

and let A be a number such that {0,1}* € M. Let A be an adversary. Then we
define:

AdviN(4) = Pr [Kizc; ME, 1Y — He(M); M — AK,Y) : He(M') = Y}
ePre _ 8 . . _
AdVi{"(4) = max (Pr [K<—IC7 M — A(K) : Hg(M) = YD
Advilpre[k] (4) = max (Pr [Mi{o, DNY — He(M); M« A(Y) : Hg(M') = YD

We say that H is (¢, L,e)-xxx for xxx € {Pre,aPre} if any adversary A running in
time at most ¢ and outputting messages of length less than or equal to L has advantage
Adv}(j,(xm (A) < ¢ for all \ such that {0,1}* € M. We say that H is (t, L,e)-ePre
if any adversary A running in time at most ¢ and outputting messages of length less
than or equal to L has advantage Advy~(A) <e.

16



Note that the parameter [\] is added to the advantage of adversaries to avoid random
selection from the possibly infinite set M and also to bound the length of randomly

selected messages.

The first definition (preimage resistance) is the standard way how to define preimage
resistance for a hash function family. However, a hash function family H, which for
every key K maps the message 0 to the image 0Y (i.e. Hg(0) = 0Y for every key K),
can be preimage resistant (i.e. advantage of any adversary is negligible), even if we
know the preimage for image 0Y. This problem solves everywhere preimage resistance,
which captures the intuition, that it is infeasible to find a preimage for every image —
whatever image is selected, it is difficult to find its preimage. Third definition, always
preimage resistance, strengthens the first one in the following way. Consider a hash
function family H, which for the particular key Ky maps every message to the image
0Y (i.e. Hg, (M) = 0Y for every message M € M). The probability of choosing the
key Ky is negligible, therefore the hash function family H can be preimage resistant (if
for every key K # K it is hard to find preimages). However, H isn’t always preimage
resistant, as trivial adversary, which always returns message 0, would prevail against
H in always preimage attack. Thus always preimage resistance captures the intuition
that it is hard to find preimages for every function Hg from a hash function family
H.

Note that we do not bound the running time ¢ of adversaries here. However, in order
to define the security of a hash function family in some sense (Pre, ePre, aPre), such

bounding is necessary. We will discuss this in section

1.2.2 Second-preimage resistance

A common way of defining the second-preimage resistance is as follows. We say that
a hash function F' is second-preimage resistant if for a message M, it is hard to find a
different message M’, which hashes to the same image, i.e. F(M) = F(M"). We call
such messages M and M’ partners. Again, in the hash function family sense, there
are few possibilities, how to formally define this intuition.

Definition 7 (Second-preimage resistance). Let H : K x M — ) be a hash function

family and let A be a number such that {0,1}* € M. Let A be an adversary. Then
we define:

AdviN(4) = Pr [Ki;c; ME{0, 13 M — A(K, M) : (M # M') A (Hi (M) = HK(M'))}
AdveN () = ma (Pr [Ki/c; M — A(K): (M # M)A (Hg(M) = HK(M/))D
AdviF M) = max (Pr[ME(0,10% M — AM) (M # M) A (Hic (M) = Hie(M'))] )

We say that H is (¢, L, )-xxx for xxx € {Sec, eSec, aSec} if any adversary A running

17



in time at most ¢ and outputting messages of length less than or equal to L has
advantage Advﬁ(x[)‘](A) < ¢ for all A such that {0,1}* C M.

The first definition, second-preimage resistance, is the standard way how to define
second-preimage resistance. However, it is different from the definition of a second-
preimage resistance for a hash function F' : M — ), as the hash function F' and
the hash function family H are syntactically different objects. The definition (Sec)
is equivalent to the classical version of second-preimage resistance for a randomly
chosen hash function F from the hash function family H. The second definition,
everywhere second-preimage resistance, captures the intuition, that it is hard to find
a partner for every message M from a domain set M. Everywhere second-preimage
resistance is also known as target collision resistance used in [2], or a universal one-
way hash function family defined in [T2]. The third definition, always second-preimage
resistance, is strengthening of the first one in the way, that for an always second-
preimage resistant hash function family H and every key K, it is hard to find partner
M’ for a randomly chosen message M, such that Hx(M) = Hi(M’). A second-
preimage resistant hash function family can have a “weak” key Ky, such that it is
possible to find second-preimages for a hash function Hg,. On the other hand, for
any always second-preimage resistant hash function family it must be hard to find

second-preimages for all keys from K.

1.2.3 Collision resistance

Very important property of every “good” cryptographic hash function is collision
resistance. A hash function is collision resistant, if it is hard to find two different
messages, that hashes to the same image (i.e. it is hard to find two partners). In the

hash function family sense, a formal definition is following.

Definition 8 (Collision resistance). Let H : K x M — ) be a hash function family.
Let A be an adversary. Then we define:

AdvEPN(A) = Pr|KEK (M M) — A(K): (M # M) A (Hg(M) = HK(M’))]

We say that H is (¢, L,e)-Coll if any adversary A running in time at most ¢ and
outputting messages of length less than or equal to L has advantage Adv%"ll(A) <e.

Thinking of strengthening this definition by maximizing over all K € I, like it was in
the aPre and aSec definitions, does not make much sense here, because for every fixed
K and | M| > |))| there exists a trivial adversary that finds two partners (M, M’).

Such adversary would have hardwired two different messages M and M’, such that

18



for some key Ky are Hg, (M) and Hg,(M') equal. However, it can be difficult to find

such algorithm in practice.

Maximizing over all messages M (i.e. defining everywhere collision resistance) makes
no sense neither, as adversary has no message on input, it has only one input — a

chosen key.

1.2.4 Chosen target forced prefix preimage resistance

In [§] John Kelsey and Tadayoshi Kohno developed a new attack on Merkle-Damgard
hash functions called herding attack. The attack can be described by the following

example. One day in early 2006, the following ad appears in a news:

I, Nostradamus, hereby provide the MD5 hash Y of many important pre-
dictions about the future, including the closing prices of all stocks in the
S&P500 as of the last business day of 2006.

Few weeks after the last business day of 2006, Nostradamus publishes a message
containing in its first block precise closing prices of the S&P500 stocks. The message

then continues with many uncertain predictions which haven’t come true yet.

The question is, whether Nostradamus can do this, even if he didn’t know the predic-
tions before providing the hash Y. As an answer to this question, Kohno and Kelsey
proposed the herding attack, which applies to Merkle-Damgard hash functions and
reduces time complexity needed to compute the suffix (possibly containing some pre-
dictions), which merged with the closing prices of the S&P500 stocks and hashed by
MD5 produces the image Y that Nostradamus provided.

Authors in the paper [§] introduced a new property for the hash functions — Cho-
sen Target Forced Prefix (CTFP) preimage resistance, which directly connects to the
herding attack. When a hash function preserves this property, it is resistant to the

herding attack.

Definition 9 (CTFP preimage resistance). Let H : £ x M — Y be a hash function
family and let A be a number such that {0,1}* C M. Let A be an adversary. Then
we define:

AdvSTTPN(4) = pr [Kiic; (Y,S) — A(K); PE{0, 1), M — A(P,S) : Hx(P||M) = Y]

We say that H is (¢, L,e)-CTFP if any adversary A running in time at most ¢ and
outputting messages of length less than or equal to L has advantage AdvEITFPP‘] (A) <

¢ for all A such that {0,1}* C M.
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The variable S in the definition is adversary’s state. It is a string of an arbitrary
length, where A can store some information (i.e. it’s state) for the second phase.
For example A can store in S the key K it gets in the first phase, as in the second
phase it has no input with the key. The image Y which A chooses in the first phase
corresponds to chosen target from the name of the security notion (i.e. the hash,
which Nostradamus provides). Similarly, P corresponds to the forced prefiz, that is

the precise closing prices of the S&P500 stocks from the example above.

Similarly to the preimage and second preimage resistance, we can define always CTFP
(aCTFP) security notion. It does not make sense to define everywhere CTFP, i.e.
strengthen the definition by maximizing over all prefixes P, as any adversary returning
(Hig (Po||M), S) in the first step and M in the second step, where M is an arbitrary
string and P, is some fixed prefix, has advantage 1, if prefix Py is chosen. Thus if we

maximize the advantage over all prefixes, it can not be smaller than 1.

Definition 10 (aCTFP preimage resistance). Let H : K x M — Y be a hash function
family and let A be a number such that {0,1}* € M. Let A be an adversary. Then
we define:

Advi ) = max (Pr [(Y, S) — A; PEL0,1} M — A(P,S) : Hi(P||M) = YD

We say that H is (¢, L,e)-aCTFP if any adversary A running in time at most ¢ and
outputting messages of length less than or equal to L has advantage Adv}l{CTFPP‘] (A) <

e for all A such that {0,1}* C M.

1.2.5 Message Authentication Code

There are situations, when we need to be sure, that a message we have received was
surely produced by the second party, with which we are communicating, and the
message was not modified during the transmission. To solve this problem, Message
authentication codes were designed. Message authentication code (MAC), roughly
speaking, is a hash function parametrized by some secret key K (i.e. a hash function
family). During the communication, with every message M is also sent its authenti-
cation code Hg(M). When a message M with corresponding MAC C' are received,
receiver verifies, whether Hx (M) = C. 1If so, the receiver can be sure, that the
message M was produced by someone, who knows the secret key K and it was not

modified during the transmission (see Figure [[Z).

One widely used MAC construction is HMAC [1]. Consider, that we have some hash
function ' : M — ). Then

HMACK (M) = F(L & opad||F (K & ipad||M))

20
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Figure 1.2: Message authentication scheme: Alice and Bob share some secret key K.
Alice sends to Bob with every message also its hash. If the received hash and hash of
the received message are equal, Bob can be sure, that the message was sent by Alice

and it was not modified during the transmission.

where @& means XOR operation and opad and ipad are some constant strings.

When we use a hash function family H : I x M — Y to build MACs, the following
security notion can be useful. The adversary A from the following definition does
not have access to the key K. It takes function Hxg : M — Y as a black-box and
can not output message, that was queried. Otherwise it would be easy to find such

adversary for every function family H (it would query some message M and return
pair (M, Hx(M))).

Definition 11 (MAC). Let H :  x M — )Y be a hash function family. Let A be an
adversary. Then we define:

AdVMAC(A) = pr K&K (M, Y) — AHK . Hig(M) =Y A M not queried]

We say that H is (t,q,L,e)-MAC if any adversary A running in time at most t,
outputting or querying messages of length less than or equal to L and making at most

q queries to its oracle has advantage AdviAC(4) < e.

We note that the security property defined above is also known as unforgeability (see
i),
Consider following situation. Alice sent to Bob n messages My, ..., M, with cor-

responding MACs C1,...,C,. Attacker Denis intercepted this communication and
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wants to send Bob one fake message Myqi.. The probability of Denis success is given

by the advantage Adv%AC

(Denis). However the definition also captures the situ-
ation, when Denis has ability to choose some messages for which he wants to get

corresponding MACs, i.e. he can get MACs not only for the messages he intercepted.

It makes no sense to think about strengthening this definition by maximizing over
all K (i.e. defining always MAC), as for a given function H : K x M — ) we can
construct an adversary A always returning pair (M, Hg,(M)) for some fixed Ky. The
advantage of such adversary, if the key Ky is chosen, is 1, thus if we maximize the

advantage over all keys, it can not be smaller than 1.

1.2.6 Pseudo random function and Pseudo random oracle

Hash functions are often used as a basic primitive, from which more complex cryp-
tosystems are build. To prove the security of such cryptosystem C(F') with hash
function F, one first proves that C(I) is secure with some idealized hash functionEI
I. Then, one proves the following relation between I and F': For every cryptosystem

C'(+), its security is not affected, when I is replaced by F.

Such relation between I and F (that we can replace I with F' without affecting the
security of the system) is called indistinguishability. Two systems I and F are indis-
tinguishable if no (efficient) algorithm D connected to either I or F', is able to decide,
whether it is interacting with I or F'. More formally, I and F' are indistinguishable,

if for any efficient adversary D (called distinguisher), the advantage
|Pr[1— D(D)] = Pr[1 < D(F)]

is negligible. We note that the discussion, about what the efficient adversary means,
is in the Section If I and F are indistinguishable, then the following proposition
holds.

Propositioin 2. If and only if I and F are indistinguishable, then, for every cryp-
tosystem C(I), the cryptosystem C(F') obtained from C(I) by replacing I with F is at

least as secure as C(I).

Here we permit some inconsistency, as we do not formally define what at least as
secure as means. Intuitively, system C(F') is at least as secure as C(I), when every

successful attack on C(F') is successful also on C(I).

Thus, the following notion appears as useful for a hash function family. A hash
function family is a pseudo random function, when a randomly chosen hash function

from the family is indistinguishable from the random oracle.

le.g. random oracle
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Definition 12 (Pseudo random function). Let H : K x M — Y be a hash function
family. Let A be an adversary. Then we define:

AdvE(4) = (Pr [KEK51 e ATKO] —Pr | fE Fune(M, );1 — A7 ‘

We say that H is (t,q, L,e)-Prf if any adversary A running in time at most ¢ and
making at most g queries to its oracle each of length less than or equal to L has
advantage Adviri(A) <e.

However, Proposition Pl holds only if each component a cryptosystem is based on be-
longs to one specific party which have exclusive access to it and no one else can directly
access its behavior or obtain information about its randomness. When speaking of
hash functions, it means, that the Proposition ] holds only if a hash function F', which
is replacing the ideal hash function I in the cryptosystem C(-), is known only by C
and no one else knows the algorithm computing F or can query F' (i.e. F' is “hidden”
to the other world).

To be more specific, let R be a random oracle and H be a hash function family (which
is known to the other world). Canetti, Goldreich, and Halevi in [6] proved, that there
exists a cryptosystem C(-), where C(R) is secure, but security of C(H) for some
particular key K (where the key K is public) is lost, even if the hash function family
H is indistinguishable from the random oracle R. This work was extended by J. Black
in [B], where Black presents a block-cipher based hash function F' (i.e. a hash function
build from a block-cipher), which is provably secure in the ideal-cipher model, but

trivially insecure when instantiated by any block-cipher.

Thus indistinguishability does not work with cryptosystems, which have some public
components. In order to extend the definition of indistinguishability to capture such
systems with public parameters, Maurer, Renner and Holenstein in [9] proposed new
concept, called indifferentiability. Indifferentiability does the same as indistinguisha-
bility, but it applies to more general settings. More formally, let S' denote private
components (i.e. known only tho the cryptosystem S) of a system S and let S? de-
note public (i.e. known to the other world) components of S. Then cryptosystem H
is indifferentiable from I, if for any efficient adversary D (called distinguisher) there

is a simulator S such that
‘ Pr[1 — D(H', H?)] - Pr[1 — D(I', S(1%))] ‘

is negligible. The simulator S is an algorithm (i.e. a RAM), which simulates the
public component H? to make distinguishing H' and H? from I'! and I? more difficult.
Note, that indifferentiability is, unlike indistinguishability, asymmetric — we can not

commute H and I, as we could in the case of indistinguishability.
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Figure 1.3: The pseudo-random oracle notion: the adversary A (distinguisher) can
either interact with a hash function family H and its ideal compression function f or
with a random function F and simulator S. The hash function family H has oracle

access to f and the simulator S to F.

If H is indifferentiable from I, then the following proposition holds.

Propositioin 3. If and only if I and H are indifferentiable, then, for every cryp-
tosystem C(I), the cryptosystem C(H) obtained from C(I) by replacing I with H is at

least as secure as C(I).

Based on indifferentiability framework, Coron, Dodis, Malinaud and Puniya defined
in [7] pseudo-random oracle notion. A hash function family H/ with access to an ideal
hash function f: {0,1}¥*¢ — {0,1}Y (i.e. f is a compression function from which H

is build) is a pseudo-random oracle, if it is indifferentiable from a random oracle.

Definition 13 (Pseudo-random oracle). Let H : K x M — ) be a hash function
family. Let A be an adversary, f = RF, 4, for some integer d > 0 and let S be a
simulator. Then we define:

AdvES 5(4) = ‘Pr [Ki/m — AH};('”(')(K)} -
—Pr {KilC;]—"iFunc(M,y); 1« A}-(')?‘SI(K")(K)} }

We say that H is (ta,ts,q1,q2, L,€)-Pro if for any adversary A running in time at
most t4 and making at most g; (g2) queries to its first (second) oracle each of length
less than or equal to L, there exists a simulator S running in time tg such that the
advantage Adv?‘]’r’s(A) <e.

The role of the simulator S in the definition is to simulate the ideal primitive (com-
pression function) f, so that no distinguisher can tell, whether it is interacting with
Hpy and f or with F and S¥. The output of S thus has to be “consistent” with that,
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what can distinguisher obtain from F (see Figure [[3]). The simulator does not see
the queries made by distinguisher to F but it has oracle access to JF, thus it can call

it directly, when needed.

Note, that it makes no sense to think about strengthening the definitions of Prf and Pro
by maximizing over all keys K (i.e. defining aPrf and aPro), as trivial adversary, which
has hardwired pair (M, Hg,(M)) for some fixed key Ky and an arbitrary message
M, and returns 1, if response of its first oracle to query M is equal to Hg,(M),
has significant advantage, when the key Ky is chosen. Therefore when we maximize

advantage over all the keys, it can not be smaller than the one for the key K.

Finally we note, that an advantage in Prf sense of any adversary A attacking some
hash function family H cannot be equal to 1, as there is always a nonzero probability
(even very little) that a randomly chosen function f from the second component (in
the definition of Prf) is the same as Hg for some key K from the first component. It
means that there is always a nonzero probability that A returns the same output when
its oracle is f as when its oracle is Hx. Therefore if the first component Pr[K ilC; 1«
AHK()] is equal to 1, then the second one Pr[fiFunc(M,y); 1 «— A'] can not be
equal to 0 (as with a nonzero probability is f equal to Hx for some key K and AHx
outputs 1), and vice-versa. In fact, if A makes at most g queries My, Ms, ..., My, then
the probability that it returns the same output when its oracle is a random function f
as when its oracle is H is at least ﬁ, what is the probability that f maps messages
My, M>, ..., M, to the same value as Hy does. Similar situation is for advantage in

Pro sense.

1.3 Security of a hash function family

In this section, we discuss, what it means, when we say that a hash function family
is xxx secure for xxx € {Pre, aPre, ePre, Sec, aSec, eSec, Coll, CTFP, aCTFP, MAC,
Prf, Pro}. To be more succinct, let Atks temporarily denote the set {Pre, aPre, ePre,
Sec, aSec, eSec, Coll, CTFP, aCTFP, MAC, Prf, Pro}.

Consider the following example. Let H : K x M — ) be a hash function family.
We can construct an adversary A attacking H in Pre sense. Adversary A(K,Y) runs
through all of the messages M from the set M and checks, whether Hg (M) is equal to
Y. If so, it returns message M as the preimage for Y. Such adversary works against
an arbitrary hash function family, however, its time complexity is O(|]M]). When
M ={0,1}?6 i.e. the hash function Hy can process only messages of length 256 bits,
the adversary A would need in average 2!%® hash operations (i.e. to compute H (M)

for some key K and message M) to find the preimage. Running such adversary on a
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109 2

seconds, what is about 282 days. So it would last unfeasibly long until A finishes its

computer which can handle 1 billion hash operations per second would last

work.

Such kind of attack exists against all security notions we defined in Section [[Z, we
call them brute force attacks. Brute force attacks can be performed against all hash
function families. However significant disadvantage of such attacks is their infeasible

time complexity.

Thus we can see, that in order to define xxx (xxx € Atks) security for a hash function
family, it is necessary to bound the time complexity of adversaries (as we do not want
to rate all hash function families as insecure in Pre sense). We consider some hash
function family H as xxx secure for xxx € Atks, when every efficient adversary has
negligible advantage against H in xxx sense. In the sequel we will try to give the

formal definition of efficient adversary.

We say that an adversary A attacking a hash function family H : {0,1}* x {0,1}* —
{0,1}¥ runs in a polynomially bounded time, when the running time ¢ of the adversary
is a polynomial of (k + y + 1), where [ is a length of the adversary’s input, that is,
there exists a polynomial P, that for every k,y,[ the running time of the adversary
attacking H is P(k +y + ). We say that an adversary A is polynomially bounded, if

it is running in a polynomially bounded time.

Definition 14. We say that a hash function family H :  x M — } is xxx secure for
xxx € Atks if any adversary running in a polynomially bounded time has a negligible

advantage in xxx sense.

We note, that for Prf, Pro and MAC, the polynomially bounded adversary can make
at most polynomial number of queries. Similarly, the polynomially bounded adversary

can produce (or query) messages of at most polynomial length.

Polynomial limitation is the standard way how to define efficiency. However in the
case of hash functions it may deliver some ambiguity. Consider the popular hash

264 bits and produces

function MDb5, which processes messages of length at most
images of length 128 bits and consider, that we want to prove, that MD5 is Pre
secure. Here we fall into the problem, what is the polynomial adversary attacking
MD5. Even the brute force attack described above performed on MD5 has constant

time complexity.

On the other hand suppose, that we have a hash function family H : K x M — Y
and we have proved that H is Pre secure (i.e. any polynomial adversary has negligible
Pre-advantage against H). Then someone finds an adversary against H running in

exponential time (i.e. its running time is exponential function of (k+y+1)) with time
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complexity 27077 . Thus, to maintain desired security properties, we will need to use
H with hash length y much greater than 1024 bits, what makes H incompatible with

the practical use (due to great computing and memory requirements).

Thus it seems that defining efficiency for adversaries attacking hash functions and
hash function families does not have simple solution. In the rest of this Thesis we
will understand xxx-security (xxx € Atks) as defined in Definition [, however some

intuition behind term efficiency will be needed too.

1.3.1 Implication and separation

In the Chapter Bl we discuss relationships among the definitions of security notions.
Among all of the definitions we give implications or separations. Informally, when we
say that zxz implies yyy, it means that if a hash function family H is xxx secure, then
it is also yyy secure. Saying that zzz nonimplies yyy means, that some hash function

family H is xxx secure, but it is not yyy secure.

Let Advi*(R) be the maximal advantage over all adversaries A in xxx sense (xxx
€ Atks) that uses resources bounded by R. For our consideration it is sufficient to
think only about resource ¢, the running time of the adversary. Thus Adv}™(t) is the

maximal advantage in xxx sense over all adversaries running in time bounded by t.

The formal definition of an implication was proposed in [I3] and can be found in the

following Definition We note that by Timep ,, we denote (speaking informally)

the time needed by the fastest algorithm to compute an output of a hash function H
xxXx|[-]

on an input of length n. By Advy; " (A) we denote the advantage of an adversary A

attacking a hash function family H in xxx sense (xxx € Atks).

We note that in the following definition, and later, [-] is a placeholder which is either
[A] (for Pre, aPre, Sec, aSec, eSec, CTFP, aCTFP) or empty (for ePre, Coll, Prf, Pro).

Definition 15 (xxx — yyy to ). Let K = {0,1}*, M = {0,1}* and Y = {0,1}¥
for some fixed k and y, let {0, 1}>‘ C M for some fixed A\ and suppose, that xxx,
yyy € Atks. We say that the definition of security notion xxx implies security notion
yyy to e (shortly xxx — yyy to €), if for any hash function family H : K x M — Y
and any adversary A running in time ¢, outputting messages of length less than or
equal to L and with advantage Adv}gyH (A), there exists an adversary A’ such that
A" runs in time ¢’ and has advantage c¢; Adv}ﬁxH (A)+e > Adv}gyH (A), where
' =t+co Timep 1 and ¢; and cy are absolute constants (i.e. their values do not

depend on k, y or \).

The adversary A’ in the definition above can run in the time t' =t + ¢ Timeg 1,11,
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what means that A’ can perform only constantly more hash operations (and therefore
also simple operations) than A can. The value L + A in Timep 14y means, that A’
can process messages that A outputs, and eventually can add to them some more
bits, but maximally A. Informally, the definition above says that xxx implies yyy, if
any adversary A attacking in yyy sense can be converted (without significant loss of
performance) to another adversary A’, which performs an attack in xxx sense and its
advantage is in the worst case only a little bit smaller than the advantage of A in yyy

sense.

The strength of an implication depends on the value of ¢, if € = 0, we speak about
conventional implication and we omit writing “to €”, if € > 0 we rather speak about
provisional implication. The provisional implication carries the usual semantics of
the word implication only if ¢ is negligible with respect to k, y or A or some other

parameter of a particular hash function family.

If we treat the time ¢ in the definition as polynomial time, then the definition says,
what we intuitively wanted, that xxx implies yyy when for any hash function H holds:
if H is xxx secure, then it is yyy secure too. However, the definition [[Qis more general

and applies also to non-polynomial adversaries.

On the other hand, the definition of implication above (introduced by Rogaway and
Shrimpton in [I3]) can be too strict in some cases, since the adversary A’ can perform
only constantly more hash operations than A can. For example A’ can not simulate the
adversary A twice. Therefore we introduce the new definition of implication between

two security notions, xxx ~» yyy, where we try to be more general.

Definition 16 (xxx ~ yyy). Let K = {0,1}*, M = {0,1}* and Y = {0, 1}V for some
fixed k and y, let {0,1}* € M for some fixed A and suppose, that xxx, yyy € Atks.
We say that the definition of security notion xxx implies security notion yyy (shortly
xxx ~ yyy), if for any hash function family H :  x M — ) and any adversary A
running in time ¢, outputting messages of length less than or equal to L and with non-
negligible advantage (with respect to k, y or A) in yyy sense, there exists an adversary
A’ such that A’ runs in time ¢’ and has non-negligible advantage in xxx sense, where

t' =p(k,y,\).(t + Timeg 1) and p(k,y, \) is some polynomial of k, y and A.

Thus the adversary A’ in the definition above can perform polynomially more oper-
ations than A can. Note that our definition does not have provisional part, i.e. “to
¢” statement, since the only condition on the advantage of adversary A’ in xxx sense
is its non-negligibility. If we consider only polynomial adversaries, the definition

captures our intuition of implication — if H is xxx secure, then it is yyy secure too.

We note that most of proofs of implications between security notions in the Chapter
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satisfy the conditions of Definition [[H, whereas we utilize the Definition [0 only in

one proof. It is clear that if xxx — yyy to €, where € is negligible, then also xxx ~~
yyy-

We can also formally define the separation of two security notions xxx and yyy, how-

ever here we have two different possibilities.

The first definition, conventional separation, informally says, that if H is a hash
function family secure in xxx sense, then we can convert H into another hash function

family H’, which is also secure in xxx sense, but completely insecure in yyy sense.

Definition 17 (xxx /4 yyy to €). Let K = {0,1}*, M = {0,1}* and Y = {0,1}¥ for
some fixed k and y, let {0,1}* C M for some fixed A and suppose, that xxx, yyy €
Atks. We say that the definition of security notion xxx nonimplies security notion
yyy to g, in the conventional case (shortly zzz /4 yyy to €), if for any hash function
family H : K x M — Y there exists a hash function family H' : I x M — Y, such that
Adv)g,x['] (t) < Adv}‘_}ixH (t') + € and Adv}l;,y,Y['] (t") > 1 — e, where ¢ is an arbitrary
running time, ¢’ =t + ¢ Timey 1,1, t” = c3 Timey \ and c¢1, ¢z and c3 are absolute
constants and L is a maximum message length that an adversary running in the time

t can output.

The time t” = c3 Timey ) in the definition (c3 is an absolute constant) represents
what we intuitively call “constant” time, i.e. the adversary running in such time is
able to perform only constant number of hash operations on a messages it gets on an
input. Constant c3 does not depend on k, m, y or A — it is given by the particular
adversary that performs the attack against yyy and has advantage greater or equal to
1—e. In a proof of some particular separation we do not need to know the exact value
of this constant, its existence will be sufficient (as its value can vary among different
RAM models). Note that the time ¢” also covers the situations where an adversary
does not perform any hash operations, however it returns some output (or operates
on messages) of length that is constant multiple of k, y or A (as Timep  is a multiple
of k, y and \).

If xxx nonimplies yyy to 0, we simply write xxx non implies yyy or shortly xxx /4 yyy
and we call such separation conventional separation. If € > 0, we call it provisional

separation.

The second definition, unconditional separation, says that, there exists a hash function
family H, which is secure in xxx sense, but it is completely insecure in yyy sense. Thus
the conventional separation needs a xxx secure hash function family H in order to

separate xxx from yyy, while the unconditional separation does not.

Definition 18 (Unconditional separation). Let K = {0,1}*, M = {0,1}* and ) =
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{0,1}¥ for some fixed k and y, let {0,1}* C M for some fixed A and suppose, that xxx,
yyy € Atks. We say that the definition of security notion xxx non implies security
notion yyy to €, in the unconditional case (shortly zzz 4 yyy to €), if there exists
a hash function family H : £ x M — ), such that Adv);j,<XH (t) < e for all t and

Adv}g}'['] (t) > 1 —¢, where t’ = cTimep ) and c is an absolute constant.

An unconditional separation between two notions can be consequence of the matter,
that for some domains M and ranges ) secure hash functions trivially exist, for
example identity function Hx (M) = M is trivially collision resistantﬁ, however it is

definitely not preimage resistant.

Note that a separation is not negation of an implication. Both a separation and an im-
plication can exists between two notions xxx and yyy, their relative strength depends
on a provisional part of the implication/separation. Such example of coexistence can
be found in [I3], however implication and separation can not coexist with arbitrary
provisional parts. Intuitively, when xxx implies yyy to €; and xxx nonimplies yyy
to €2 and if e is negligible, then 5 can’t be negligible (otherwise both provisional
implication and separation would be “strong”, what is in contrast with our intuition).
Similarly, when e is negligible then £; can not be negligible. In the following lemma
we prove the relationship between £; and €9 and we will see, that our intuition is good.
We note that if xxx implies yyy to e, then xxx implies yyy to € + « for any a > 0.

Similar holds for separation.

Lemma 1. Let xxxz and yyy be some security notions from the set Atks, H : Kx M —
Y be a hash function family and {0,1}» C M for some fived X. Let t be a “constant”
running time, such that t = a Timeg x, where a is an absolute constant. If zxx — yyy

to g1 and xzx 4 Yyy to €9, then 1 > 1 — (1 + ¢)eg — ce, where € = Advgﬁcch (t).
Proof. From the assumption that xxx — yyy to €1 we have:
VH,VA,3B : Advi?(4) < ¢ AdvU(B) + o (1.1)

where H represents some hash function family and A and B some adversaries such
that if A runs in time ¢, then B runs in time ¢’ = t + ¢ Timepy 4, where ¢; and
co are absolute constants and L is the maximum message length that A can output.

From the assumption that xxx /4 yyy to 9 we have:

VH,3H', YA, 3B: Adviil(4) < e AdviU(B) + ¢, (1.2)
Ao3c: AV C) > 1-g (1.3)

2 actually such H does not satisfy our definition of hash function family in the Definition [ but

we find it as a simple example sufficient to explain how unconditional separation works
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where H and H' represent some hash function families and A, B and C represent some
adversaries, such that if A runs in time ¢ then B runs in time ¢’ = ¢ + ¢4 Timep .4
and C runs in time c5 Timey . Now let H be a hash function family, such that any
adversary running in a “constant” time (cs 4 c2 + ¢4) Timep ) has advantage at most
. From ([LC3]) we have that for the hash function family H there exists a hash function

family H’ and an adversary C running in time c; Timeg » such that
Adv}l}y,Y['](C) >1—es.

From (I we have that for H' and C there exists an adversary C’ running in time
cs Timep \ + c2 Timey ) such that

AdvY(C) < o AV + e,
thus

l—e3< Adv};ﬁx['](C’/) +&1.

However from ([CJ) we know that

Adv}({x,x['](cl) <csg Advﬁ(x['}(cﬁ) + €9,
for some adversary C” that runs in time c5 Timeg yx+cp Timey y+c4 Timep 5, therefore

xxx[+]

1—e9 <ci(es Advy (C") + e2) + 1.

When we put €1 on the left side and anything else on the right we get:
e1>1—rcic3 Adv);{XX['}(C”) — (c1 + 1es.

7

We can see that C” runs in a “constan
AdvH(C") <e. Thus

time (c5 + c2 + c4) Timep y, therefore

e1>1—(14c)eg —ce

for a constant ¢ = max{cjcq,c1}. O

Note that in the Lemma above we assume the existence of the hash function family
H, which is secure against any adversary running in the “constant” time (c5 + ¢ +
c4) Timep ». We need this assumption, as the conventional separation assumes the
existence of xxx secure hash function family. The similar lemma can be proved for
unconditional separation too, however there we do not need to have such hash function

family H and therefore the relationship between €1 and e9 would be e1 > 1— (1+¢)es.

When we assume that € and €5 are negligible, then from ey > 1—(1+c¢)ey —ce we have
that €1 can not be negligible. Similarly when we assume that € and ¢; are negligible,

then 9 can not be.

In the following lemma we prove that the implication from the Definition [[Hl is tran-

sitive in some cases.
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Lemma 2. Let zzz, yyy and zzz be some security notions from the set Atks. If zxz
— yyy to €1 and yyy — zzz to €2, then xxx — zzz to €1 + cea, where ¢ is an absolute

constant.

Proof. Let H : Kx M — )Y be an arbitrary hash function family and A be an arbitrary
adversary attacking H in zzz sense, running in time ¢ and outputting messages of
length at most L. Fix some A such that {0, 1})‘ C M. From the assumption, that yyy
— 777 t0 €9 and Definition [l we have, that there exists an adversary A’, running in
time ¢’ =t + ¢ Timep 1,4+ and with advantage ¢; Adv};{yyH (A +e1 > Advfﬁz,ZH (A).
Similarly from the assumption that xxx — yyy to €2 we have, that for the adversary
A’ there exists an adversary A” running in time t” = ¢ + ¢4 Timeg 1) and with
advantage c3 Adv}({XX['](A”) +e9 > Adv}l}yyH (A’). Thus we showed, that for the hash
function family H and the adversary A there exists the adversary A” running in time
t" =t + (c2 + c4) Timep 45 and with advantage cic3 Adv}f;xH (A") + c1e0 + &1 >
AdV;Z,ZH(A), what means that xxx — zzz to €1 + c1&3. O

Finally we note, that two definitions of security notions xxx and yyy are equivalent,

if xxx implies yyy and yyy implies xxx.

1.4 Equivalent definitions with a two stage adversary

In definitions of aPre, ePre, aSec, eSec, aCTFP we maximize over some quantity (over
all keys or messages). However, there exist equivalent definitions to these already
mentioned, where the specific value (key or message) is chosen by an adversary. That
is, in the “first phase” the adversary choses that value, then a random choice is made
by the environment and in the ”second phase” the adversary continues, where it ended,

but with given that randomly chosen value.

Definition 19 (two stage versions of aPre, ePre, aSec, eSec, aCTFP). Let H : K x
M — Y be a hash function family, and let A be a number such that {0,1}* € M.
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Let A be an adversary. Then we define:

Adviy () = Pr[(K,8) — 4ME{0, 1Y — Hie(M); M/ — A(Y, )
Hyc(M') = Hic(M)]

AdvePreA — PI" Y,S (—A;Ki’C;M/PAK’S :HK M/ :Y
H

AdVZ;{SSC[A] (A) — PI' (K, S) - A,Mi{(), 1})\7M/ «— A(M, S) :

(M # M') A (Hie(M) = Hyc (M"))]

AdvF(4) = Pr|(M,8) — AKSKGM — A(K,S):

(M # M') A (Hi(M) = Hyc(M"))]

AT (4) = Pr[(v K, 8) — A; PE{0,13N M — A(P,S) : Hy(P||M) = Y}

We say that H is (t,L,e)-xxx for xxx € {aPre,aSec,aCTFP} if any adversary A
running in time at most ¢ and outputting messages of length at most L has advantage
Adv}({XXm(A) < ¢ for all A such that {0,1} € M. We say that H is (¢, L,e)-yyy
for yyy € {ePre,eSec} if any adversary A running in time at most ¢t and outputting

messages of length at most L has advantage Adv};¥(A4) <e.

We prove the equivalence for aPre and aPre2, where aPre2 temporarily denotes the
two stage version of aPre, in the following lemma. Equivalence of the other definitions

is proven similarly.

Lemma 3. (aPre < aPre2) The definitions of security notions aPre and aPre2 are

equivalent.

Proof. Consider an adversary A attacking H in aPre sense and let K be the key, for
which A has the maximum advantage o (i.e. a = Adv?{Prem (A)). We construct an
adversary B, which in the first phase returns pair (K, S), where S = K, and in the
second phase it does the same as A, that is B(Y, S) returns the same value as A(Y).
Adversary B runs in the time that is only constantly greater than running time of
A, thus if ¢ is a running time of A and L is the maximum message length that A
can output, then B runs in time, which is not greater than ¢ + ¢ Timep 4 for some
absolute constant c¢. Advantage of B in aPre2 sense is equal to «, what is equal to

Advz}frem(A), S0 Advz}freﬂ)‘} (B) > Advz}frem (A). Thus aPre2 implies aPre.

Conversely, consider, that the advantage of an adversary B attacking H in aPre2 sense
is a. Consider an adversary A, which simulates B. Suppose that B returns (K, S) in
the first phase, then A(Y) returns the same as B(Y,.S) in the second phase. Advantage

of A in aPre sense is at least « (it can not be smaller than «, as the probability that A
finds preimage when using key K is «). Therefore Adv?frew (4) > Adv?fremM(B).
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At last we note, that running time of A is equal to the running time of B, thus aPre

implies aPre2. O
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Chapter 2

Relationships among the

definitions

Here we provide relationships among the definitions from the Section Relation-
ships between the definitions of preimage resistance, second-preimage resistance and
collision resistance were proven by Rogaway and Shrimpton in [I3]. Relationship be-
tween MAC and Prf can be found in [TT]. Other relations are work of authors, we are
not aware of any other work, where these relations occur. We give an overview over
all of the relations in the Table X1l In Figure X1l we provide all constructions used

in the proofs of separations.

In the rest of this Chapter we will assume, that M = {0,1}*, K = {0,1}* and
Y = {0,1}¥ for some fixed k and y and also that {0,1}* C M for some fixed .

Some of the implications and separations are conventional, others are provisional. In
this thesis no unconditional separation is proven, however some unconditional sepa-
rations can be found in [I3]. In the Table BTl we make no difference between conven-
tional and provisional implications, as all provisional implications/separations have
their provisional part negligible, if hash function families with standard domains and

ranges (i.e. such as K, M and ) defined above) are used.

2.1 Message authentication codes

2.1.1 Coll vs. MAC

In this section we prove the separations between Coll and MAC. The proof of The-
orem [l (MAC nonimplies Coll) is based on the fact, that an adversary attacking in

MAC sense does not have access to a key K chosen by the environment, thus some
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9¢

Pre aPre ePre Sec aSec eSec Coll MAC | CTFP | aCTFP Prf Pro

Pre x |4 AM| A0 A0 40| A0 #8 | +0 | A0 | 420 | A0
aPre || x |AM|AM|AME|A0|AM] 468 | 40| A0 | A0 |40
ePre |- | A x |4 |AM| A8 A08] ~8 | ~B | #00 | AB20 | 408
See |- |AM|AM| x |[AM|AM|+ME| 48 | A0 | A0 | AE | A0
aSec | — [I3] | — [13] | 4 [13] | — [13] X A3 A0 48 | A0 | 08 | ~A22 | ABE7
eSec | — 3] | A3 | A 13| — 13 | 4 13 X Am3| 48 | B | A0 | A2 | A~ABE1
Coll |—=[B]| A3 403 | -3 |4 3| — [13] X 42 ~@ | A0 | A0 | A0

Mac v Vad s Vad ' Vad Vad! Vad! Yad!l X A0 | A0 | A [ 45
CTrpP | A0 | A0 | A0 | A0 | A0 )| A0 | A00 | AI2 b'e A0 | A4 | A B2
aCTFP | @ | @ | 2@ | A8 | A0 | A0 | A0 | A0@ | —-0I4 X A B4 | A B2
Prf A28 | ~A23 | 23 | A3 | AR | A | A0 | -] A28 | A3 X 7 B34
Pro -lm| 49| - | R | A8 | -R® | -8 | -B0 | -B3 | AB3 | — B4 X

Table 2.1: Relationships among the definitions. Numbers in brackets [-] are citations, other numbers are numbers of theorems,

where the proof of the corresponding relation can be found.



k(M) if M #K
K(0F) if M=K

0Y itM=0
Hy(M) if M # 0 and Hyg (M) # 0¥
Hg(0)  otherwise

Y if Prefix(414.)(M) = K|[b||Y for some b € {0,1}
Hyi (M) otherwise

HP (M) = Hg(M[1...|M|-1][|0)

g® (M) K[1...min{k,y}| if Suffix;,(M) =K
K Hy (M) otherwise
HOan = | M if [M] =y
r Hy (M) otherwise
K Hyi (M) otherwise
H(8) (M) _ SUfﬁXy(M) if K = KO
K Hg (M) otherwise
H(g)(M) _ Hi(M) if K # Ky
r 0v if K = K,

Figure 2.1: Constructions of hash function families used in proofs of separations.
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information which helps in finding collisions can be bundled by the key K.

Theorem 1 (MAC 4 Coll to q/|K|). Let A be an arbitrary number such that {0,1}* C
M. If there exists a hash function family H : K x M — Y which is (t,q, L,e)-MAC,
then there exists a hash function family H' : K x M — Y, which is (t,q, L, + ‘—,%‘)—
MAC, but there exists an adversary C attacking H' in Coll sense running in time

c Timep \ for some absolute constant c and with advantage Adv&elcy =1.

Proof. Suppose, that we have a hash function family H : K x M — ) which is
(t,q, L,e)-MAC and consider the construction H") from the Figure EZ1]

Hyg(M) if M #K

M a7y —
Hie (M) _{ Hi(0F) if M=K

Thus H® differs from H only in one point for every key K € K. We show, that H®)
is (t,q,L,e + ‘—,‘é‘)—MAC. Let A be any adversary, which runs in time ¢, outputs or
queries messages of length at most L and makes ¢ queries to its oracle f. From the
assumption we have, that Adv¥A¢(A) < e. Now consider Adv%ﬁ)c(/l). Adversary
A has no access to the key K, so it can only guess, thus the probability, that the
adversary A with oracle H M) queries H}?(K ) is %. This means the probability, that

A with oracle Hg) returns different output than A with oracle Hy is at most %.
Thus
AC AC q q
Advic(A) < AdviA©(A) + IS <e+ 5k

Therefore HY is (t,q, L, e + %)—MAC.

Now we show that there exists an adversary C attacking H" in Coll sense running
in time ¢ Timep . For a randomly chosen key K, C(K) returns pair (0%, K). From
the definition of H(!) we can see, that Hg)(Ok) = H}?(K) Thus C attacks H() in
Coll sense with advantage 1 and runs in time ¢ Timep ) for some absolute constant
c. The constant c is determined by the time needed by the adversary C to return the
pair (0%, K) on a particular RAM model (note that ¢ need not to depend on k, since
Timey \ depends on k). O

We note, that if we permit only polynomial adversaries, then % is negligible and the
following statement holds: if H is MAC secure, then so is H @ but HD is completely

not Coll secure.

In the following theorem we use the construction H®, which was designed in 3],
where can be found also the proof, that if H is Coll secure then also H?) is. For com-

pleteness we provide this proof, but it is slightly adjusted to be more understandable.
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Theorem 2 (Coll 4 MAC). Let A be an arbitrary number such that {0,1}* C M. If
there exists a hash function family H : K x M — Y which is (t, L,e)-Coll, then there
exists a hash function family H' : I x M — Y, which is (t+c1 Timep 14+, L, €)-Coll,

but there exists an adversary C running in time cy Timeg x, making no queries to its

oracle and with advantage Adv%ﬁC(C) =1, where c; and co are absolute constants.

Proof. Suppose, that we have a hash function family H : K x M — ) which is
(t, L,e)-Coll and consider the construction H?) from the Figure 2Tt

0¥ itM=0
HO (M) ={ Hg(M) if M #0 and Hx (M) # 0
Hg(0) otherwise

We show that if H is (¢, L,¢)-Coll, then H® is (t + ¢; Timeg 14, L,¢). Thus let A

be an adversary running in time ¢, producing messages of length at most L and with

Coll
H®)

Adversary B(K)
1 (M, M) — A(K)
2 if M =0 and Hg(M') = 0¥ then return (M, M')
3 if M #0 and Hg (M) # 0¥ and
M’ #0 and Hg(M') = 0Y then return (M,0)
4 if M #0 and Hx(M) = 0Y and M’ = 0 then return (M, M’)
5 if M # 0 and Hyx (M) = 0% and
M’ #0 and Hg(M') # 0Y then return (0, M’)
6 else return (M, M')

advantage Adv; (s (A) = e. Consider the following adversary B:

The running time of such adversary B is at most t' = ¢t + ¢; Timep 45 for some
absolute constant ¢;. Now consider messages M and M’, that adversary A returns in

)

the first line, are partners for H}? and consider following situations based on the line

number, where B returns:

[B returns in the 2"¢ line. | Then M = 0 and Hy(M') = 0, thus H}?)(M’) =
Hg(0). And so 0 = HZ(0) = HZ (M) = Hg(0), thus Hy(0) = 0¥ =
Hg (M'), therefore M and M’ are partners for Hy.

[B returns in the 3"¢ line. ] Then Hg)(M) = Hpg (M) and H}?)(M’) = Hg(0).
However we know that H}?)(M) = H}?)(M’), thus Hx(M) = Hgk(0). And so
M and 0 are partners for Hg.

[B returns in the 4% line. | Then H'2 (M) = Hg(0) and H (M') = 0Y. From
the assumption that Hg)(M) = }?)(M’) we have, that Hg(0) = 0Y. As
Hyg (M) =0Y and M’ = 0, we know that M and M’ are partners for Hg.
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[B returns in the 5 line. | Then H\ (M) = H(0) and H (M') = Hy (M),
Thus Hy(0) = Hy (M), as H2 (M) = HZ(M’). Therefore 0 and M’ are
partners for Hg.

[B returns in the 6" line. | Then we have several possibilities:

- M =0and Hg(M') # 0Y. Thus HZ (M) = 0% and H\2 (M) = Hy (M),
However H}?)(M) = H}?) (M), thus Hg (M) = 0¥, what is a contradiction.

Therefore this possibility can not occur.

- M #0and Hx(M) = 0Y and M’ # 0 and Hx(M') = 0Y. However then
M and M’ are partners for Hg, as Hx (M) = Hg(M') = 0v.

- M # 0 and Hg(M) # 0Y and M’ = 0. Then H\ (M) = Hy (M) and
H}?) (M'") = 0¥, what leads to a contradiction, as M and M’ are not partners
for Hg) (Hg (M) # 0Y). Therefore this possibility cannot occur.

- M # 0 and Hg(0) # 0Y and M’ # 0 and Hy(M’) # 0. Then H\2 (M) =
Hy (M) and H}?)(M’) = Hg(M'). Therefore M and M’ are partners also
for Hg.

Thus wherever B(K) returns, it always returns partners for H, if A returns partners
for H}?). Therefore H}?) is (t', L, e)-Coll.

The adversary C, which returns pair (0,0%) has advantage Adv%é)c(C) =1. We can
see that C' makes no queries to its oracle and runs in time cp Timeg ), where ¢ is
some absolute constant determined by the time needed to return the pair (0,0%) on a

particular RAM model. O

2.1.2 Sec vs. MAC

In this section, the proofs for separations between Sec and MAC, eSec and MAC
and aSec and MAC can be found. As the proofs for separations Sec nonimplies
MAC, eSec nonimplies MAC and aSec nonimplies MAC are very similar, we prove
these separations in one theorem — Theorem Bl In the proof we will use the same

construction H?) as in Theorem Bl

Theorem 3 (Sec, eSec, aSec /~ MAC). Let A\ be an arbitrary number such that
{0,1}* € M. If there exists a hash function family H : I x M — Y which is (t, L, €)-
Sec (eSec, aSec), then there exists a hash function family H' : K x M — ), which is
(t + c1 Timep, 1+, L,€)-Sec (eSec, aSec), but there exists an adversary C running in
time co Timeg, x, making no queries to its oracle and with advantage Adv%ﬁC(C) =1,

where c1 and ¢y are absolute constants.
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Proof. We use the construction H® from the Figure EZIl Assume, that H : K x M —
Y is (t,L,e)-Sec (eSec, aSec) and consider the following hash function family:

0¥ iftM=0
HZ (M) ={ Hg(M) if M #0and Hg (M) # 0¥
Hg(0)  otherwise

We need to show, that if H is (¢, L, e)-xSec, then H®) is (t +¢; Timep 14, L, €)-xSec
(where xSec represents one of the notions Sec, eSec or aSec). Let Aygec be an adversary

attacking H®, running in time ¢, outputting messages of length at most L and with
xSec[A]

e (Axsec) = €. We construct an adversary Bygec attacking H as

advantage Adv
follows:
Adversary Bge.(K, M)

1 (M) — Asec(K, M)

2 if M =0 and Hg(M') = 0¥ then return (M)

3 if M #0and Hx (M) # 0Y and M’ # 0 and Hg(M') = 0Y then return (0)
4 if M #0 and Hx(M) = 0Y and M’ = 0 then return (M’)
5 (M)
6

if M #0and Hx(M) =0Y and M’ # 0 and Hg (M’) # 0¢Y then return (M’)

else return (M)

Adversary B;sec
[15" phase]
(K, S) « Aasec
return (K, 5)
[2"¢ phase]
1 (M) — Ausec(M, S)
2 if M =0 and Hg(M') = 0¥ then return (M)
3 if M #0 and Hx (M) # 0Y and M’ # 0 and Hg(M') = 0Y then return (0)
4 if M #0 and Hx(M) = 0Y and M’ = 0 then return (M’)
5 if M #0 and Hx (M) = 0Y and M’ # 0 and Hg (M') # 0Y then return (M)
6

else return (M)

Adversary BO0.gcc
[15" phase]
(M, S) «— Acsec
return (M, S) *)
[27¢ phase]
1 (M) « Aegec(K, S)
2 if M =0 and Hg(M') = 0¥ then return (M)
3 if M #0 and Hx (M) # 0Y and M’ # 0 and Hg(M') = 0Y then return (0)
4 if M #0 and Hx(M) = 0% and M’ = 0 then return (M’)
5 if M #0and Hg(M) =0Y and M’ # 0 and Hg(M') # 0V then return (M’)
6

else return (M)

41



Let Blesee be an adversary constructed as BOegec but the line marked with (*) replaced
by “return (0,5)”. From B0cgec and Blegec we construct an adversary Begec, which
simulates both B0.ge. and Bl.gse. and if one of them wins then Bggec returns the same
as the winning adversary (we note that Begec need to simulate the adversary Aegec
only once). Note that running time of all the adversaries above is t’ = t+c; Timeg 1,4

for some absolute constant c;.

Now consider that the messages M and M’, that are either on input of adversaries
Bysec or returned by adversaries Aygec, are partners for H(2). We analyze situations
based on the line number where adversary Bgec (Basec, BOeSec; Blesec) returns. Let

B represent one of the adversaries Bsec, Basec, B0eSec, BleSec-

[B returns in the 2"¢ line. | Then M = 0 and Hy(M') = 0, thus H}?)(M’) =
Hg(0). And so 0 = HZ(0) = HZ (M) = Hg(0), thus Hy(0) = 0¥ =
Hg (M'), therefore M and M’ are partners for Hy.

[B returns in the 3" line. | Then H'2 (M) = Hy(M) and HZ (M) = Hg(0).
However we know that Hé?)(M) = H}?)(M’), thus Hx(M) = Hgk(0). And so
M and 0 are partners for Hg.

[B returns in the 4" line. | Then H}?)(M) = Hk(0) and Hé()(M’) = 0Y. From
the assumption that H}?)(M) = H}?)(M’) we have, that Hg(0) = 0Y. As
Hg (M) =0Y and M’ = 0, we know that M and M’ are partners for H.

[B returns in the 5 line. | Then H}?)(M) Hg(0) and H(2 (M') = Hg(M').
Thus Hgk(0) = Hg(M'), as H}?)(M) = H2 (M'"). Therefore 0 and M’ are
partners for Hg.

[B returns in the 6" line. | Then we have several possibilities:

- M =0and Hx(M') # 0v. Thus H? (M) = 0¥ and H (M) = Hyc (M").
However H\2 (M) = H\? (M), thus Hi(M') = 0V, what is contradiction.
Therefore this possibility can not occur.

- M #0and Hg(M) = 0Y and M’ # 0 and Hg(M') = 0Y. However then
M and M' are partners for Hy, as Hx (M) = Hg(M') = 0Y.

- M # 0 and Hg(M) # 0¥ and M’ = 0. Then H\2(M) = Hg (M) and
H}?) (M'") = 0¥, what leads to contradiction, as M and M’ are not partners
for H}?) (Hg (M) # 0Y). Therefore this possibility cannot occur.

- M # 0 and Hg(0) # 0% and M’ # 0 and Hy(M') # 0. Then HZ (M) =
Hg (M) and H}?)(M’) = Hi(M'). Therefore M and M’ are partners also
for Hg.

42



Thus we showed that wherever adversary Bge.(K, M) returns, it returns M’s partner
for Hg, if Agec(K, M) returns M’s partner for H}?). Similarly if Aagec(M) returns
M’s partner for H (2), then wherever Bygec(M) returns it always returns M’s partner
for Hg, where K is the key B,sec choses in the first phase. For BOggec and Blegee the
following holds: if Aegec returns M in the first phase and M’s partner for H?) in the
second phase, then one of the adversaries BOegec and Blegec returns two messages (one
in the first phase, one in the second phase) that are partners for Hg and therefore
Besec returns partners for Hy. Thus we proved that if Aygec wins against H (2), then
Bysec wins against H and therefore H® is (t + c1 Timeg p, L, €)-Sec (eSec, aSec).

Now we only need to show that H® is not MAC secure. However we showed that in

the proof of Theorem . The adversary C returning pair (0,0¢) and running in time

MAC
H®2)

by the time needed to return the pair (0,0¥) on a particular RAM model. ]

c2 Timep ) has advantage Adv (C) =1 for some absolute constant co determined

In the following theorem we show the separation between MAC and notions of second-
preimage resistance. The proof for the separation is very similar for each notion, so

we give only one proof, in which we try to cover all Sec notions.

One can think that if we prove that MAC 4 Sec to €, where ¢ is negligible, then other
separations (MAC - aSec, eSec) come from the fact that eSec — Sec and aSec —
Sec proven in [I3]. However, this is not so easy, as our definitions of implication and
separation are not contrary (see Section [[31]). For example consider, that we have
proven MAC 4 Sec to €1 (g1 is negligible). If we assume that MAC — eSec to &g,
where g5 is negligible, then from the Lemma [ we have that MAC — Sec to €1 + ceo
for some absolute constant c. Since €1 and €5 are negligible, also €1 + ce5 is negligible,
what is a contradiction, as from Lemma [l we know, that if MAC -4 Sec to €1 and
MAC — Sec to g1 + ceg then both &1 and €1 + ceo can not be negligible. Thus we
know that implications between MAC and eSec or aSec are not strong, however we

do not know anything about the strength of the separations.

Since adversaries attacking in MAC sense does not have access to a key K, randomly
chosen by the environment, we need to somehow bundle the information needed to
find second preimages with the key K, so that an adversary attacking in MAC sense

can not find that information (because it does not know the key).

Theorem 4 (MAC 4 Sec, eSec, aSec to q/|K|). Let A be an arbitrary number such
that {0,1}* C M. If there exists a hash function family H : K x M — Y, which is
(t,q,L,e)-MAC, then there exists a hash function family H' : K x M — Y, which is
(t,q,L,e + ‘—,‘é‘)-MA C, but there exists an adversary Cysec Tunning in time ¢ Timeg )

zSec

with advantage Advy; P‘](C’xgec) = 1, where ¢ is some absolute constant and zSec
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€ {Sec, aSec, eSec}.

Proof. We use the construction H®) from the Figure 2l Let H : K x M — Y be a
(t,q, L,e)-MAC hash function family. Then we define H®) as follows:

HP (M) =

Y if Prefix(,144)(M) = K||b]|Y" for some b € {0, 1}
Hg (M) otherwise

Let A be an adversary running in time ¢, outputting or querying messages of length
at most L and making g queries to its oracle. From the assumption we have, that the
advantage Adv}AC(A4) < e. Now consider the advantage AdvI\H/Ié)C(A). Adversary A
with oracle Hg’) can notice some difference, from the case its oracle is Hg, only when
it queries some message of length at least (k + 1 4+ y) and with prefix K. As A has
no access to the key K, it can only guess. Thus the probability that A queries in one
query a message of length at least (k + 1 + y) with prefix K is at most ﬁ (when A
queries messages only of length at least (k+ 1+ y), then it is equal to Wl\’ otherwise it
is smaller). As A can make at most ¢ queries, the probability that A queries a message
with prefix K is at most %. Thus the advantage AdvMAC(A) < AdvIAC(A) + %,

H3)
so H®) is (t,q, L, e + ‘—]‘a)-MAC.
Now consider the following adversaries:

Adversary Cgs..(M, K)
if |IM| > k+ 1+ y and Prefixiy (M) = K then
let b:= Mk + 1]
return K||b||M[(k +1)...|M|]
else return K||0||Hg (M)

Adversary C,sec
[15" phase]
return 1%, 1%
[2"¢ phase with input (M, 9)]
let K =S
if |IM| > k+ 14y and Prefix; (M) = K then
let b:= Mk + 1]
return K||b||M[(k +1)...|M|]
else return K||0||Hg (M)

Adversary Cegec

[15¢ phase]
return 1,1

[2"? phase with input (K, S)]
let M :=5
else return K||0||Hg (M)
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We can see that there exists an absolute constant ¢, such that adversaries above run
in time at most ¢ Timep ) (since A is the length of their input). Their advantage is
Adv);fgjp‘](steC) = 1, where xSec € {Sec, aSec, eSec}. O

2.1.3 Pre vs. MAC

Here we give the separations between notions of preimage resistance and MAC. Sim-
ilarly to the theorems above, we give only one proof for all of the preimage resistance
notions. The construction H® used in Theorem B to prove the separation Pre (aPre,
ePre) nonimplies MAC was proposed in [I3]. The construction H*) was used in [I3]
to prove the relationship between preimage resistance and notions of second-preimage

resistance.

Theorem 5 (Pre, aPre, ePre /A MAC). Let A be an arbitrary number such that
{0,1}* € M. If there exists a hash function family H : KK x M — Y which is (t, L, ¢)-
Pre (aPre, ePre), then there exists a hash function family H' : K x M — Y, which is
(t + c1 Timem 14, L,€)-Pre (aPre, ePre), but there exists an adversary C running in
time ca Timeg , making one query to its oracle and with advantage Adv%ﬂC(C) =1,

where ¢1 and ¢y are absolute constants.

Proof. Let H : K x M — Y be a hash function family, which is (¢, L,e)-Pre. We use
the construction H® from the Figure Bl defined as follows:

H (M) = H(M[1.... |M| - 1][|0)

We show that if H is secure in Pre (aPre, ePre) sense, then so is H 4. Let Aypre be an
adversary attacking H* in xPre sense (xPre € {Pre, aPre, ePre}), running in time ¢,
outputting messages of length at most L and with advantage Advzp(fj[']( Axpre) = €.
Then consider the following adversaries B, pre:
Adversary Bp,.(Y, K)

M — Ap(Y, K)

if Hx(M) =Y then return M

else let b := M|[|M]|]; return M[1...|M|—1]|b
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Adversary B,pc
[15¢ phase]
(K,S) « Aapre
return (K, S)
[27¢ phase with input (Y, S)]
M — AaPre(Y7 S)
if Hx(M) =Y then return M
else let b := M|[|M]|]; return M[1...|M|—1]|b

Adversary Bepre
[15" phase]
(Y, 5) < Acpre
return (Y, 95)
[2"? phase with input (K, S)]
M — AePre(K7 S)
if Hx(M) =Y then return M
else let b := M||M]|]; return M[L...|M|—1]||b

Note that running time of such adversaries is t' =t + ¢; Timep 1,45 for some absolute
constant c;. If the adversary Ap,o(K,Y) returns a message M, such that H}?) (M) =
Y, then either Hig (M) =Y or Hx(M') =Y, where the message M’ is equal to the
message M with the last bit inverted. A similar statement holds for A,pye and Aepre.
Thus if Axpre wins (i.e. it finds preimage) for H (4), then Bypre wins for H. Therefore

AdvE M (Apre) < Advy ™V (Bypre).

On the other hand consider an advantage in MAC sense of an adversary C' attacking

H® which firstly queries message 00, gets output Y and returns the pair (01,Y). It

MAC
H®)

C is cp Timeg ), where ¢ is an absolute constant determined by the time needed to

is clear, that the advantage of such adversary is Adv (C) = 1. Running time of

query the message 00 and to return the pair (01,Y) on a particular RAM model. O

In the following theorem we use the same construction H®) as in Theorem Bl Thus
the proof of the following theorem is only slightly different from the one of Theorem
21

Theorem 6 (MAC /4 Pre, ePre, aPre to %) Let X be an arbitrary number such
that {0,1}» C M. If there exists a hash function family H : K x M — Y which is
(t,q,L,e)-MAC, then there exists a hash function family H' : K x M — Y, which is
(t,q,L,e + %)—MAC, but there exists an adversary Cypr running in time c Timer x

zPre

with advantage Advy,
{Pre, aPre, ePre}.

H(C'gcpre) = 1, where ¢ is an absolute constant and zPre €

Proof. Assume that we have a hash function family H : K x M — Y which is
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(t,q, L,e)-MAC. Consider the construction H () from the Figure 2l defined as follows:

Y if Prefix(j414,) (M) = K|[b||Y" for some b € {0,1}

Hie (M) = { Hic (M)

otherwise

In Theorem Hl we proved that H®) is (¢, ¢, L, + |%|)—MAC. Thus we only need to show
that H® is not Pre (ePre, aPre) secure.

Consider the following adversaries Cyp,e attacking H () in xPre sense (xPre € {Pre,

aPre, ePre}).

Adversary Cp,.(Y, K)
return K||0||Y

Adversary C,p, e

[15" phase]
return 1%, 1%

[2"? phase, input (Y,S)]
let K:=8
return K||0||Y

Adversary Cepre

[1' phase]
return 1Y, 1Y

[2"? phase, input (K, S)]
let Y:=5
return K||0||Y

Running time of such adversaries is ¢ Timeg ) for some absolute constant ¢ and their
xPre[]

advantage Adv

(Cxpre) = 1, what completes the proof. O

2.2 CTFP preimage resistance

2.2.1 Pre, Sec, Coll vs. CTFP

In this section we analyze relationships between notions of preimage resistance, sec-
ond preimage resistance, collision resistance and chosen target forced prefix preimage

resistance.

Theorem 7 (Pre, aPre, Sec, aSec A CTFP to 1/|K|). Let \ be an arbitrary number
such that {0,1}* C M. If there exists a hash function family H : ICx M — Y which is
(t, L,e)-xzxz for zax € {Pre, aPre, Sec, aSec}, then there exists a hash function family
H' : KxM — Y which is (t, L,e+1/|K|)-zzz but there exists an adversary C running

CTFP[)

in time ¢ Timey \ and with advantage Adv, (C) = 1, where ¢ is an absolute

constant.

Proof. Consider the construction H®) from the Figure EZIl defined as follows:

K[1...min{k,y}]|
Hg (M)

if Suffix, (M) = K

otherwise

HZ (M) = {

Let Axxx be an adversary attacking H in xxx sense (xxx € {Pre, aPre, Sec, aSec}),

running in time ¢, outputting messages of length at most L and with advantage
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Adv}(j,(xm (Axxx) = e. Consider Ay’s advantage against H (5) in xxx sense. Let
K be a key chosen randomly by the environment (or chosen by the adversary in the
first phase, for xxx € {aPre, aSec}). If suffix of randomly chosen message M is dif-
ferent from K, then A can win against H®) with the same probability as against H
(as HS) (M) = Hg(M)). However when randomly chosen message M has suffix K,

then in the worst case, A’s chance to win against H(® is 1. Thus

Adv)gé[)M(A) < Advﬁ(x[)‘](A) + Pr[message M with suffix K is chosen].

If a randomly chosen message has length at least k, then it has suffix K with probabil-
ity ﬁ If a randomly chosen message has length smaller that k, then it can not have
suffix K. Thus the probability that randomly chosen message (of arbitrary length) has
suffix K is at most ﬁ Therefore if H is (t, L, ¢)-xxx, then H®) is (t, L, e + ﬁ)—xxx.

Now we show that H®) is not CTFP secure. Consider the following adversary:

Adversary C

[15* phase with input K]
return (K[1...min{y, k}], K)

[2"? phase with input (P,S)]
let K =S5
return K

Running time of such adversary is ¢ Timeg ) for some absolute constant ¢ determined
by the time needed to return the pair (K[1...min{y, k}], K) in the first phase and K
in the second phase on a particular RAM model. From the definition of H® we can

see, that C’s advantage in CTFP sense is 1, what completes the proof. O

For everywhere versions of preimage resistance and second preimage resistance, the
proof above does not work, as the message is not chosen by the environment, but
adversary chooses it in the first phase. However, the separation between everywhere
preimage resistance, everywhere second preimage resistance and chosen target forced

prefix preimage resistance holds. In fact, we can use the same construction H (),

Theorem 8 (ePre, eSec A CTFP to 1/|K|). Let A be an arbitrary number such that
{0,1}* C M. If there exists a hash function family H : K x M — Y which is (t, L, €)-
zzx for zxx € {ePre, eSec}, then there exists a hash function family H : K x M — Y
which is (t, L,e+1/|K|)-zxx but there exists an adversary C running in time c Timeg x

and with advantage Advg,TFP[A](C) =1, where c is an absolute constant.

Proof. Consider the hash function family H®) from the Figure X1l

K[1...min{k,y}] if Suffixy(M) =K

HY (M) =
i (M) {HK(M) otherwise
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Let A be a two stage adversary attacking H in ePre (eSec) sense, running in time
t, outputting messages of length at most L and with advantage €. Consider A’s
advantage against H®). In the first phase, A has no access to a key K, as the key is
chosen by the environment after the first phase. Let M be a message A chooses in
the first phase, the probability that randomly chosen key K is suffix of M is 1/|K], if

|M| > k, otherwise it is 0. Therefore we have several possibilities:

[ |M] <k ] — then A wins against H®) with the same probability as against H.
[ |[M| > K and K is suffix of M | — in the worst case A wins with probability 1.

[ IM| > K and K is not suffix of M | — then A’s probability of winning against
H®) is the same as against H.

Thus A has better chance to win against H®) as against H only when a key K is
chosen, which is suffix of M. As A can not affect the selection of the key, the following

holds:
1

AdvEll4) < Advee ) + Tk

V)
what we wanted to prove, where xxx € {ePre,eSec}.

The proof that H®) is not CTFP resistant is given in the proof of Theorem [ O

The following proof is the only one, where we utilize our (more general) definition
of implication (the Definition [[6) between security notions. From an adversary A
performing attack in CTFP sense we can construct an adversary B performing attack
in Coll sense (both have non-negligible advantage), however B need to simulate A
twice, what the Definition [[3] does not allow.

Theorem 9 (Coll ~ CTFP). Let A be an arbitrary number such that {0,1}* C
M. Let H: K x M — Y be a hash function family. If there exists an adversary
A running in time t, outputting messages of length at most L and with advantage
AdngFPW(A) = ¢, then there exists an adversary B attacking H in Coll sense,
running in time 2t + ¢ Timey » and with advantage AdvS(B) > €2, where ¢ is an

absolute constant.

Proof. Let H : K x M — Y be a hash function family and let A be an adversary
attacking H in CTFP sense, running in time ¢, outputting messages of length at
most L and with advantage AdngFPW(A) = e. Consider the following adversary B

attacking H in Coll sense:
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Adversary B(K)

(Y, 5) < A(K)

let P,<{0,1}>

M, — A(Py, S)

let P~ ({0,1}* — {P1})
My — A(P, S)

return (My, M)

S O W N

Running time of such adversary is t' = 2t + ¢ Timep 14 for some absolute constant
c. The advantage of such adversary in Coll sense is given by the probability that
A(Py,S) returns a message M that with the prefix P; hashes to Y and A(P;,S)
returns a message My that with the prefix P> hashes to Y. From the assumption we
know, that both these probabilities are equal to €. Thus the probability that B(K)
returns partners for Hy is €2, what means that if the advantage of A in CTFP sense is

non-negligible, then so is advantage of B in Coll sense. Therefore Coll ~~ CTFP. [

Theorem 10 (CTFP 4 Sec, eSec, aSec, Coll). Let A\ be an arbitrary number such
that {0,1}» C M. If there exists a hash function family H : K x M — Y which
is (t,L,e)-CTFP, then there exists a hash function family H' : KK x M — Y which
is (t + c1 Timep 11, L,€)-CTFP but there exists an adversary Cug, Tunning in time

rTxrx

c2 Timey ) and with advantage Adv,
and zzx € {Sec, eSec, aSec, Coll}.

H(C’Zm) = 1, where ¢ is an absolute constant

Proof. Consider the construction H® from the Figure EZTt

HP (M) = Hy(M[1....|M| - 1]][0)

We prove that if H is secure in CTFP sense, then so is H®. For that reason consider
an adversary A, which attacks H (4) in CTFP sense, runs in time ¢, outputs messages
of length at most L and has advantage €. We construct an adversary B attacking H

as follows:

Adversary B
[15¢ phase with input K]
Y « A(K)
return (Y, K)
[2"? phase with input (P,S)]
M — A(P,S)
let K =S5
if Hx(P||M) =Y then return M
else let b := M[|M]|]; return M[L...|M|—1]||b

Running time of adversary B is t +c; Timep 14 for some absolute constant ¢;. From
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the definition of H® we can see, that if A wins against H® in CTFP sense, then B
wins in CTFP sense against H. Thus H®W is (t + c1 Timey 42, L, €)-CTFP.

Now we need to prove that H® is not xxx resistant for xxx € {Sec, eSec, aSec, Coll}.

Consider the following adversaries:

Adversary C,sec Adversary Cegec

[15¢ phase] [15¢ phase]
return 1%, 1% return 11,11

[27¢ phase, input (M, S)] | [2"¢ phase, input (K, S)]
let b= M[|M|) let M :=5S; b= M|[|M]|

return M[1...|M|—1]|[b | return M[1...|M|—1]||b
Adversary Cs..(K, M) Adversary Coon(K)

let b:= M[|M]|] return (11, 10)

return M[1...|M|—1]|[b

Running time of such adversaries is co Timey ) for some absolute constant cp and their

advantage is Adv);ﬁ[)'](C’XXX) =1 for xxx € {Sec, aSec, eSec, Coll}. O

The construction H® can not be used to prove the separation CTFP nonimplies Pre.
In fact, in Theorem B we proved, that H®) is preimage resistant, if H is preimage

resistant. Thus we need to find another construction — H(©) is suitable.

Theorem 11 (CTFP 4 Pre, ePre, aPre to (A+1).27*). Let \ be an arbitrary number
such that {0,1}* C M. If there exists a hash function family H : KL x M — Y, which
is (t, L,e)-CTFP, then there exists a hash function family H' : K x M — Y, which is
(t, L, E+%)—C’TFP, but there exists an adversary Cyg, Tunning in time ¢ Timeg x and

with advantage Advf;,x['}(cmz) = 1, where ¢ is an absolute constant and zxx € {Pre,
ePre, aPre}.

Proof. As mentioned before, we use the construction H® from the Figure Il

M if | M| =y

H® (M) =
i (M) {HK(M) otherwise

We prove, that if H is secure in CTFP sense, then H®) is too. Let A be an arbitrary
adversary attacking H in CTFP sense, running in time ¢, outputting messages of
length at most L and with advantage . Consider the advantage of A when attacking
H®)_ Let Y be an image that A chooses in the first phase. If the prefix P chosen
randomly by the environment is prefix of Y, then A’s advantage can be in the worst
case 1 (A can win by returning the remaining bits of Y, i.e. Y[|P|+1...|Y]]), since
H}?(Y) =Y for all Y € Y. On the other hand, if P is not prefix of Y, then A’s

51



advantage against H®) is the same as against H. Therefore

Advfﬁgpp‘](/l) < AdngFPP‘] (A) + Prlforced prefix P is prefix of chosen image Y]

Thus we only need to count the probability that P is prefix of Y. The forced prefix
P is uniformly selected from the set {0,1}*. If A > v, only y + 1 (including empty
string) members of {0,1}* are prefixes of Y, if A\ < y then A 4+ 1 members of {0,1}*

are prefixes of y. Therefore

A+1

Ad CTFP[A](A) SAdVgTFP[A}(A)Jr o

VH®©)

what we wanted to prove.

The hash function family H®) is evidently not secure in Pre (ePre, aPre) sense. The
adversary Cpy(Y, K) attacking H 6) in Pre sense copies its input Y to output and
wins. Similarly does the adversary Cypre(Y') in the second phase. The adversary Cepye
in the first phase chooses image 1¥ and in the second phase, it returns the same, that is
(Cxxx) = 1 for xxx € {Pre, ePre,

xxx|[-]

H(6)
aPre} and their running time is ¢ Timey ) for some absolute constant ¢ determined

1¥. The advantage of all these adversaries is Adv

by the time needed to copy an input to output (in the case of Cpy. and Cypre) or to

return 1Y (in Cepye case) on a particular RAM model. O

2.2.2 MAC vs. CTFP

Theorem 12 (CTFP /A MAC to 2'7%). Let A be an arbitrary number such that
{0,1}* € M. If there exists a hash function family H : K x M — Y, which is
(t,L,e)-CTFP then there exists a hash function family H : K x M — Y, which
is (t,L,e + %)-CTFP, but there exists an adversary C attacking H' in MAC sense,
running in time ¢ Timepy x and with advantage Adv%AC(C’) = 1, where c is an absolute

constant.

Proof. Let H be a (t,L,e)-CTFP hash function family. Consider the construction
H from the Figure ZZI1

0¥ iftM=0

HD (M) =
i (M) {HK(M) otherwise

Let A be an arbitrary adversary attacking H in CTFP sense, running in time at most
t, outputting messages of length at most L and with advantage less than or equal to
e. We need to find A’s advantage against H(¥. When A in the first step chooses

image different from 0¥, then A’s chance to win against H(?) is the same as against

52



H. When A chooses in the first step image 0Y, then its chance to win is given by the
probability that environment chooses a prefix P, which is prefix of 0. However only
two strings are prefixes of 0 (empty string and 0), thus the following holds:

CTFP[X CTFP[X 2
Adv T (A) < Advi T (4) + o

Therefore H") is (t, L, e + %)—CTFP.

The adversary C, which makes no queries to its oracle and always returns the pair
(0,0¢) has advantage Adv%é)c(C) = 1 and its running time is c¢Timep ) for some
absolute constant ¢ determined by the time needed to return the pair (0,0Y) on a

particular RAM model. O

Theorem 13 (MAC 4 CTFP to ¢/|K|). Let X\ be an arbitrary number such that
{0,1}* € M. If there exists a hash function family H : KK x M — Y, which is
(t,q,L,e)-MAC, then there exists a hash function family H' : K x M — Y, which is

t,q,L,c + 1&)-MAC, but there exists an adversary C attacking H' in CTFP sense,
K]

running i time c Timey , and with advantage Advfl,TFPm(C) = 1, where ¢ is an

absolute constant.

Proof. Assume that H is a (t,q, L,¢)-MAC hash function family and consider the hash
function family H® from the Figure Bl

K[1...min{k,y}] if Suffixy(M) =K

(5)
H; (M) =
K (M) { Hy (M) otherwise

Let A be an adversary performing attack in MAC sense, running in time at most ¢,
outputting or querying messages of length at most L, making at most ¢ queries to its

oracle and with advantage Adv%AC(A) < ¢e. As the adversary A has no access to a key

K chosen randomly by the environment, A’s advantage against H®) is Adv%AC (A4)
plus the probability, that A queries the message with suffix K. The probability that

A queries the message with suffix K is % (see the proof of Theorem [d). Thus

AdVMAC(4) < AdVIAC(A) + %

The proof that there exists an adversary running in time ¢ Timep \ and with advantage
against H () in CTFP sense equal to 1, for some absolute constant ¢, is in the proof
of Theorem [1 O
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2.2.3 CTFP vs. aCTFP

If a hash function family is secure in aCTFP sense, i.e. whatever key we choose, an
efficient adversary has negligible advantage of success, then it must be secure in CTFP
sense, where we permit insecurity of a hash function family for some small number
of keys. In this Section we give a formal proof of this intuition. We also show, that

opposite implication does not hold.

Theorem 14 (aCTFP — CTFP). Let A be an arbitrary number such that {0,1}» C
M. Let H: K x M — Y be a hash function family. If there exists an adversary
A running in time t, outputting messages of length at most L and with advantage
AdeTFPW(A) = ¢, then there exists an adversary B attacking H in aCTFP sense,
running in time t + ¢ Timey 1+ and with advantage Advl;ICTFPw (B) > &, where ¢

is an absolute constant.

Proof. Let H : K x M — Y be a hash function family and let A be an adversary
attacking H in CTFP sense, running in time ¢, outputting messages of length at most
L and with advantage €. Thus there must exists a key Ky € K, such that when the
key Ky is chosen by the environment, then A’s chance to win is at least e, otherwise
A’s advantage would be smaller than . Thus we can construct a two-stage version of

adversary B attacking H in aCTFP sense as follows:

Adversary B
[15* phase]
(. ) — A(Ko)
return (Y, Ko, 5)
[2"¢ phase with input (P,S)]
M — A(P,S)
return M

Note that running time of B is ¢ + ¢ Timep, ;1 for some absolute constant c¢. From
the assumption that K is the key, where A’s chance to win against H in CTFP sense
is at least € we have, that B’s chance to win against H in aCTFP sense is at least ¢
too. U

Theorem 15 (CTFP /4 aCTFEP to 1/|K|). Let A be an arbitrary number such that
{0,1}* € M. If there exists a hash function family H : K x M — Y, which is
(t,L,e)-CTFP, then there exists a hash function family H' : K x M — Y, which is
(t,L,e + ‘—,%‘)—CTFP, but there exists an adversary C attacking H' in aCTFP sense,
running in time ¢ Timey \ and with advantage Adv}l{gTFP[A](C) = 1, where c is an

absolute constant.
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Proof. Let H : K x M — ) be a (t,L,e)-CTFP hash function family and consider
the construction H® from the Figure Bl

Suffix, (M) if K = K,

(8)
H; (M) =
i (M) { Hyg (M) otherwise

Let A be an adversary attacking in CTFP sense, running in time at most ¢, outputting
messages of length at most L and with advantage against H smaller than or equal
to e. If a key K # Kj is chosen by the environment, then A’s chance to win against
H®) is the same as against H. On the other hand, if the key K{ is chosen by the

environment, then A’s chance to win against H® can be in the worst case 1. Thus

CTFP[X CTFP[X 1
AdvSTI(4) < Adv; H(A)+m.
Now we need to show, that H®) is not secure in aCTFP sense. For that reason

consider the following adversary:

Adversary C
[15" phase]
return (0Y, Ko, Ko)
[2"? phase with input (P,S)]

return 0Y

Running time of the adversary C' is cTimeg ) and its advantage against H ®) in
aCTFP sense is 1, where ¢ is an absolute constant determined by the time needed to
return triple (0¥, Ko, Ky) in the first phase and 0¥ in the second phase on a particular
RAM model. O

2.2.4 Pre, Sec, Coll, MAC vs. aCTFP

For briefer presentation let Atks temporarily denote the set {Pre, aPre, ePre, Sec,
aSec, eSec, MAC}. In the Sections EZZT] and we showed relationships between
CTFP and members of set Atks. The same relations holds when CTFP is replaced
by aCTFP and the proofs of these relationships are very similar to ones between
CTFP and Atks. For that reason we provide these relations compacted together in
the following two theorems without full proof, but with references where a similar
proof can be found. Different situation is between Coll and aCTFP, in Theorem Ml we
showed, that Coll implies CTFP. On the other hand, Coll can not imply aCTFP, as
the definition of collision resistance permits insecurity in some small numbers of keys,
what is in contrast with the meaning of “always” notions. The exact proof that Coll

nonimplies aCTFP we provide in Theorem [l

95



Theorem 16 (Pre, Sec, Coll, MAC /4 aCTFP).

(1) Pre, aPre, Sec, aSec, Coll /» aCTFP to ﬁ

(2) ePre, eSec +~ aCTFP to ﬁ

(8) MAC #» aCTFP to %1

Proof. We do not provide the exact proof for this theorem, as the proof for (1) is
similar to the one of Theorem [0, the proof for (2) is similar to the proof of Theorem
and finally the proof for (3) is similar to the one of Theorem All these proofs
use the same construction H®) from the Figure EZIl The proofs for (1), (2), (3) differ
from their CTFP versions in Theorems [, B only in the last part, where we need

to modify the adversary C' to perform attack in aCTFP sense as follows:

Adversary C

[15" phase]
return (1, 1%, 1%)

[2"¢ phase with input (P,S)]
return 1*

O

Theorem 17 (Coll /A aCTFP to 1/|K|). Let A be an arbitrary number such that
{0,1}* € M. If there exists a hash function family H : KK x M — Y, which is
(t,L,e)-Coll, then there exists a hash function family H : I x M — Y, which is

(t,L,e + ‘—,a)—Coll, but there exists an adversary C attacking H' in aCTFP sense,

running in time ¢ Timey \ and with advantage Adv?{gTFP[A](C) = 1, where c is an

absolute constant.

Proof. Let H : K x M — )Y be a (t,L,e)-Coll hash function family and consider the
construction H® from the Figure Bl

Suffix, (M) if K = K

(8)
H; (M) =
i (M) { Hyg (M) otherwise

Suppose that A is an adversary attacking H in Coll sense, running in time ¢, outputting
messages of length at most L and with advantage Adv$°"(A4) = e. Consider A’s
advantage against H®). If a key K chosen by the environment is different from K,
then A’s chance to win against H® is the same as against H. However, when the key
K is chosen by the environment, then in the worst case A can win with probability
1. Thus

Advi%(A) < Advi(A) + K
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and therefore H®) is (t,L,e + ﬁ)—Coll. The second part of the proof, that H® is

insecure in aCTFP sense can be found in the proof of Theorem O
Theorem 18 (aCTFP 4 Pre, Sec, Coll, MAC).

(1) aCTFP - Pre, aPre, ePre to ﬁ

(2) aCTFP 4 Sec, aSec, eSec, Coll

(3) aCTFP 4 MAC to 2'=*

Proof. Similarly to Theorem [[8, we do not provide the full proof for this theorem.
The proof for (1) is identical to one of Theorem [[1l (we just need to replace CTFP
with aCTFP), similarly the proof for (2) is the same as in Theorem [[[] and finally the
proof for (3) is the same as the proof of Theorem The security of constructions
HO® H® and HT used in the proofs does not depend on selection of the key, thus
these constructions are also aCTFP secure (if a hash function family H is aCTFP

secure). O

2.3 Pseudo-random function

Adversary attacking in Prf sense does not have access to a key K, chosen randomly by
the environment. Thus we have similar situation here, as it was in MAC case (Section
7). In fact we use the same constructions as we used in MAC case, however we need

to slightly adopt the proofs as Prf and MAC security notions are different.

In the Section [CL26l we showed, that any adversary attacking in Prf sense cannot have
advantage 1, what causes that we have only provisional implications and separations

here.

2.3.1 Coll vs. Prf

Theorem 19 (Coll /4 Prfto 1/|Y|). Let A be an arbitrary number such that {0,1}* C
M. If there exists a hash function family H : I x M — Y, which is (t, L,e)-Coll, then
there exists a hash function family H' : kK x M — Y, which is (t+c¢1 Timeg 4+, L, €)-
Coll, but there exists an adversary C attacking H' in Prf sense, running in time
co Timep x, making one query to its oracle and with advantage Adeff(A) =1- ﬁ,

where c1 and ¢y are absolute constants.
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Proof. We use the construction H® from the Figure 2l Let H : K x M — Y be a
(t, L,e)-Coll hash function family, then we define:

0Y itM=0
HO (M) ={ Hg(M) if M #0 and Hg (M) # 0
Hg(0)  otherwise

in Theorem B we proved, that if H is secure in Coll sense, then H® is too, what
completes the first part of the proof. Thus we only need to prove, that H®) is not
secure in Prf sense. For that purpose consider the following adversary C7 with oracle
access to some function f.
Adversary C/
if f(0) = 0Y then return 1

otherwise return 0

Running time of the adversary C is ¢ Timey ) for some absolute constant c. Let K
be a key chosen randomly by the environment. The probability that C returns 1 if its

oracle is H}?)

is 1. The probability that C' returns 1 if its oracle is a function chosen
randomly by the environment from the set Func(M,)) is ‘—)14, as the number of all
functions mapping from M to Y is |V UM‘ and the number of functions from M to Y
that maps 0 to 0¢ is |V|MI=1. Thus

| y|\/\/l\—1 1

Prf _ _

what we wanted to prove. O

Theorem 20 (Prf 4 Coll to q/|K|). Let X be an arbitrary number such that {0,1}* C
M. If there ezists a hash function family H : KK x M — Y, which is (t,q, L,e)-Prf,
then there exists a hash function family H' : Kx M — Y, which is (t,q, L,e+ |%|)—Prf,
but there exists an adversary C' attacking H' in Coll sense, running in time ¢ Timep x
and with advantage Adv $9"(C) = 1, where ¢ is an absolute constant.

Proof. Let H : K x M — Y be a hash function family, which is (¢, ¢, L, e)-Prf and

consider the construction H(®) from the Figure Bl defined as follows:

H}?(M):{ Hg(M) it M #K

Hyg(0F) if M =K

Let A be any adversary performing attack in Prf sense, running in time at most ¢ and
making at most g queries of length at most L. From the assumption we have, that
A’s advantage against H is smaller than or equal to e. When A is attacking H®, it

can notice some difference (i.e. return different output) from the case when attacking

o8



H only, when it queries the message M, equal to the key K chosen randomly by
the environment. However, the adversary A has no access to the key, therefore its

probability of querying the message My is %. Thus

AV (4) < AdVE(4) + e < e+

what we wanted to prove.

The adversary C, which returns pair (0%, K) has advantage Adv{%(C) = 1 (as

H@®)
HM(0F) = HW(K)) and it runs in time cTimeg ) for some absolute constant c
determined by the time needed to return (0%, K) on a particular RAM model. U

2.3.2 Pre, Sec vs. Prf

Theorem 21 (Pre, aPre, ePre /4 Prfto 1/])|). Let A be an arbitrary number such that
{0,1}* € M. If there exist a hash function family H : KK x M — Y, which is (t, L, ¢)-
Pre (aPre, ePre), then there exists a hash function family H' : K x M — Y, which is
(t + c1 Timeg 142, L,e)-Pre (aPre, ePre), but there exists an adversary C attacking
H' in Prf sense, running in time cy Timeg x, making two queries to its oracle and

with advantage Adeff(C’) =1~ ﬁ, where ¢ and cy are absolute constants.

Proof. Consider the construction H® from the Figure B
4
HP (M) = Hi(M[1....|M] - 1][[0),

where H : K x M — Y is a (t,L,¢)-Pre (aPre, ePre) hash function family. In the
proof of Theorem [ we proved, that H® is (t + ¢; Timep 14, L, €)-Pre (aPre, ePre)

for some absolute constant c;.

Now we construct an adversary C performing attack in Prf sense against H%).

Adversary Cf
if f(00) = £(01) then return 1

otherwise return 0

Running time of C is ¢ Timep ) for some absolute constant cp and it is making 2
queries to its oracle. When C’s oracle is H}?) for some key K, then C returns 1 with
probability 1. Number of all functions mapping from M to Y is |Y|M!, from which

|V ||M|_l are those, where the messages 00 and 01 map to the same image. Therefore

1
AdvlT () =1- —,
H(4)( ) |y|

what completes the proof. ]
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Theorem 22 (Sec, aSec, eSec 4~ Prf to 1/|Y|). Let A be an arbitrary number such
that {0,1}* € M. If there exist a hash function family H : K x M — Y, which is
(t,L,e)-Sec (aSec, eSec), then there exists a hash function family H : KK x M — Y,
which is (t + ¢1 Timep 11+, L,€)-Sec (aSec, eSec), but there exists an adversary C
attacking H' in Prf sense, running in time c Timep , making one query to its oracle
and with advantage Advff,f(C) =1~ ‘—)1}', where ¢ and cy are absolute constants.

Proof. We use the construction H® from the Figure Bl Let H : K x M — Y
be a hash function family, which is (¢, L,e)-Sec (aSec, eSec), then consider the hash

function family

0¥ itM=0
HO (M) ={ Hg(M) if M #0 and H (M) # 0
Hg(0)  otherwise

The first part of the proof is in the proof of Theorem B, where we proved, that H® is
(t + c1 Timeg 42, L, €)-Sec (aSec, eSec) for some absolute constant c¢;. On the other
hand, in Theorem [[@ we showed, that there exists an adversary C attacking H® in
Prf sense, running in time ¢ Timeg \ for some absolute constant co, making one query
to its oracle and with advantage Advgré) C)=1- ‘—)1}', what is the second part of the
proof. Thus the proof is complete. O

Theorem 23 (Prf /4 Pre, aPre, ePre, Sec, aSec, eSec to ¢/|K|). Let \ be an arbitrary
number such that {0,1}* C M. If there exists a hash function family H : Kx M — Y,
which is (t,q, L,e)-Prf, then there exists a hash function family H : K x M — ),
which is (t,q,L,e + %)—Prf, but there exists an adversary Cy, attacking H' in zzx
sense, running in time ¢ Timey x and with advantage Adv?f,z H(C’m) =1, where c is

an absolute constant and zxx € {Pre, aPre, ePre, Sec, aSec, eSec}.

Proof. Suppose, that H : K x M — )Y is a (t,q, L,e)-Prf hash function family and

consider the following construction H®) from the Figure BTt

Y if Prefix(,4144)(M) = K||b]|Y for some b € {0, 1}

(3)
H (M) =
i (M) { Hy (M) otherwise

in Theorems [ and Bl we proved, that for xxx € {Pre, aPre, ePre, Sec, aSec, eSec}
there exists an adversary Cyy attacking H ®) in xxx sense, running in time ¢ Timeg \
and with advantage Adv)g,x['](C’XXX) — 1. Thus we only need to prove, that H®) is
(t,L,e + |,%—|)-Prf. Let A be an adversary performing attack in Prf sense, running
in time at most ¢, making at most ¢ queries to its oracle each of length at most L.

From the assumption we have, that Advii(A) < e. When A is attacking H®),| it can
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notice a difference only when it queries the message with prefix K, where K is some
key chosen randomly by the environment. However A has no access to the key, thus

it can only guess. in Theorem [l we had the similar problem and we showed, that

AdvPTE (4) < AdvEr(4) + L <oy L
K| K|
Thus H® is (t,q,L,e + %)—Prf, what we wanted to prove. O

2.3.3 CTFP, aCTFP vs. Prf

Theorem 24 (CTFP, aCTFP 4 Prf to 1/|Y|). Let X be an arbitrary number such
that {0,1}* C M. If there exists a hash function family H : K x M — Y, which is
(t,L,e)-CTFP (aCTFP), then there exists a hash function family H' : K x M — Y,
which is (t,L,e + %)—CTFP (aCTFP), but there exists an adversary C attacking H'
in Prf sense, running in time c Timey , making one query to its oracle and with

advantage AdvET(C) =1 -

ML where ¢ is an absolute constant.

Proof. Suppose, that H : K x M — Y is (t,L,e)-CTFP (aCTFP), and consider the
construction H(” from the Figure 2Tt

0Y it M =0

HD (M) =
i (M) {HK(M) otherwise

in Theorem [ ([8) we showed, that H() is (¢, L,e + %)—CTFP (aCTFP). For the
second part of the proof consider the following adversary performing attack in Prf
sense and with oracle access to some function f:
Adversary C/
if f(0) = 0Y then return 1

otherwise return 0

The running time of the adversary C'is ¢ Time ) for some absolute constant c. If C’s
oracle is Hg) for some key K, then C’s chance to win is 1. On the other hand, if C’s
oracle is a function f : M — ) chosen randomly by the environment, its chance to
win is ﬁ, as the probability that f(0) = 0¥ is ﬁ Thus C’s advantage against H (")

1S
1

m)

what we wanted to prove. ]

In the theorem above we assume that 2% < ﬁ (actually from the page Bl we assume
that M = {0,1}*, ¥ = {0,1}¥, thus there are only 2y possible values of A so that

2% < ‘—)1}', but for infinitely many values of A holds 2% > ﬁ), thus we can write CTFP,
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aCTFP nonimplies Prf to 1/|Y|. Otherwise we would replace 1/|Y| with 2!=* and
write CTFP, aCTFP nonimplies Prf to 217>,

Theorem 25 (Prf /A CTFP, aCTFP to q/|K|). Let A be an arbitrary number such
that {0,1}» C M. If there exists a hash function family H : KK x M — Y, which
is (t,q, L,e)-Prf, then there exists a hash function family H : K x M — ), which
is (t,q,L,e + |%|)—Prf, but there exists an adversary Cyy, attacking H' in zzz sense,
running in time ¢ Timey \ and with advantage Adv?f[A}(szz) = 1, where c is an
absolute constant and zzx € { CTFP, aCTFP}.

Proof. We use the construction H® from the Figure 2l Let H : K x M — Y be a

(t,q, L,e)-Prf hash function family and consider the following construction:

K[1...min{k,y}] if Suffixy(M)=K

HP (M) =
i (M) {HK(M) otherwise

in Theorems [[3 ([6) we showed, that H®) is not CTFP (aCTFP) resistant, as there
exists an adversary Ccrrp (Cacrrp) attacking H ®) in CTFP (aCTFP) sense, running
in time ¢ Timey ) with advantage 1, where c is an absolute constant. Thus we only
need to show that H® is (t,q,L,e + ‘—,‘é‘)—Prf. Any adversary A attacking H® in
Prf sense can notice some difference only when it queries the message with suffix K.
Thus if the running time of A is at most ¢ and it makes at most g queries of length
at most L, then its advantage against H®) cannot be greater than the A’s advantage
against H plus ‘—,‘é‘ (we have the same situation as in the proof of Theorem [3]). Thus
the following holds:
AQVT (4) < Aavl(4) + < e+ o

what completes the proof. ]

2.4 Pseudo-random oracle

Pseudo-random oracle seems to be the strongest property. As we will see in this
Section, it implies almost all the other security notions. When a hash function family
is Pro secure, then it is indifferentiable from a random oracle and it is hard (effectively
unfeasible) for non-Pro adversaries (i.e. adversaries attacking in Pre, Sec, Coll,...

sense) to win against a random oracle.

Pseudo-random oracle does not imply “always” versions of preimage resistance and
second preimage resistance, as it permits insecurity in some small number of keys

(what is in contrast to the meaning of “always” notions).
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In the following text we will assume, that a hash function family H : K x M — Y is
build from some ideal compression function f : {0, 1}y+d — Y:;d > 0 and an algorithm
computing H has oracle access to f. For that reason we need to give the oracle access
to f also to adversaries attacking in non-Pro sense (i.e. in Pre, aPre, ePre, Sec, aSec,
eSec, Coll, CTFP or aCTFP), adversaries attacking in Pro sense already have such

access. For example, the advantage in Pre sense of adversary A would look like follows:
AdviS(A) = Pr [Ki/c; MEMY — He(M); M — AF(K,Y): He(M) =Y

Advantages in other senses are modified similarly, except MAC and Prf notions. The
advantages in MAC and PRF senses stay unchanged, as an adversary attacking in
MAC or Prf sense has only oracle access to H. We omit writing HY even if H has
oracle access to f, as all the hash functions used in this section has oracle access to f

(in other words they are build from the primitive f).

2.4.1 Pre, Sec, Coll vs. Pro

Theorem 26 (Pre, aPre, ePre /4 Pro to ﬁ) Let A be an arbitrary number such that
{0,1}*» C M and let f = RF, 4, for some d > 0. If there exists a hash function
family H : K x M — Y, which is (t, L,e)-Pre (aPre, ePre), then there exists a hash
function family H' : KK x M — Y, which is (t + ¢1 Timep, 14, L,e)-Pre (aPre, ePre),
but there exists an adversary C attacking H' in Pro sense, running in time ca Timep x,
making two queries to its first oracle and with advantage Ade’;‘jﬁ s(C)=1- ﬁ for

any simulator S, where ¢1 and co are absolute constants.

Proof. Let H : K x M — Y be a hash function family, which is (¢, L,e)-Pre (aPre,
ePre). We construct the hash function family H* (from the Figure EZIl) defined as

follows:
HY (M) = Hi(M[1...|M| - 1]|[0)

In the proof of Theorem B we proved that H*) is (t + c1 Timeg 45, L, €)-Pre (aPre,
ePre). We only need to find an adversary breaking H () in Pro sense. For that
reason consider the following adversary C performing attack in Pro sense with oracles
fi:M—Yand fy:{0,1}¥t¢ — Y for some integer d > 0:

Adversary C/f1:f2

if f1(00) = f1(01) then return 1
otherwise return 0

If the first oracle of the adversary C is Hg for some key K, then it returns 1 with
probability 1. If its first oracle is F (a random function), then for any simulator S the

probability that it returns 1 is ﬁ (see the proof of Theorem ZII). Thus C’s advantage
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against H® is Advgr&)’ .S

C is ¢ Timep ) for some absolute constant cp and it makes two queries to its first

Cc)y=1- |71\ for any simulator S. The running time of

oracle. O

Theorem 27 (Sec, aSec, eSec, Coll 4 Pro to ﬁ) Let X be an arbitrary number such
that {0,1}* C M and let f = RF,;q, for some d > 0. If there exists a hash function
family H : Kx M — Y, which is (t, L, e)-xzxz (zxx € {Sec, eSec, aSec, Coll}, then there
ezists a hash function family H' : K x M — Y, which is (t + c1 Timeg 11, L, €)-zzz,
but there exists an adversary C attacking H' in Pro sense, running in time cy Timeg ,
making one query to its first oracle and with advantage Advfﬁ?ﬁS(C) =1- ﬁ for

any simulator S, where ¢1 and cy are absolute constants.

Proof. Let xxx denote a member from the set {Sec, eSec, aSec, Coll}. Assume that
H:KxM—Yis (tL,e)-xxx and consider construction H?) from the figure Tt

0¥ itM=0
HO (M) ={ Hg(M) if M #0 and Hx (M) # 0
Hg(0)  otherwise

in Theorem B we proved, that H®) is (t 4 ¢; Timeg 1,4z, L, €)-Coll and in Theorem
we proved that H® is (t + ¢; Timeg 11, L, €)-Sec (aSec, eSec). To prove the second
part of Theorem consider the adversary C performing attack in Pro sense with oracles
f1 and fo, which just verifies whether fi(0) = 0Y. If so, it returns 1, otherwise it
returns 0 (the adversary is similar to one in the proof of Theorem PZ)). Running time
of such adversary is co Timep ) for some absolute constant cz, it makes one query to

its first oracle and its advantage for any simulator S is 1 — ﬁ ]

Theorem 28 (Pro — Pre, ePre, Sec, eSec, Coll to 1/|Y|). Let X\ be an arbitrary
number such that {0,1}* C M, H : K x M — Y be a hash function family, f =
RFy 4,y for some d > 0 and let xzxz € {Pre, ePre, Sec, eSec, Coll}. If there exists
an adversary Az running in time t, outputting messages of length at most L and
with advantage in zzz sense Advﬁj}H (Ayez) = €, then there exists an adversary By,
attacking H in Pro sense, running in time t+c Timey 4, making at most two queries
to its first oracle and with advantage Ade’:‘J’w(Bmx) >e— ﬁ for some simulator S,

where ¢ is an absolute constant.

Proof. Let H be a hash function family and Ay be an adversary attacking H in xxx
(xxx € {Pre, ePre, Sec, eSec, Coll}) sense, running in time ¢, outputting messages
of length at most L and with advantage . Consider the following adversaries Biyyx

attacking H in Pro sense:
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Adversary B{fr;h (K) Adversary Bgﬁ)’f (K)

let V&Y (Y,8) — A2

M — AL (K.Y) M — AR, (K. 5)

if f1(M) =Y then return 1 if f1(M) =Y then return 1

otherwise return 0 otherwise return 0
Adversary Bgééh (K) Adversary B’{éf (K)

let M<{0,11> (M, S) — A2

M’ — AR (K, M) M’ — AR (K, S)

if f1(M)= fi(M’) then return 1 if f1(M)= f;(M’) then return 1

otherwise return 0 otherwise return 0
Adversary Bélo’l{2 (K)

(M, M) — AL (K)

if f1(M) = f1(M’') then return 1

otherwise return 0

The adversaries above firstly simulate the adversary Ay attacking in xxx sense, then
they verify, whether A,y returned correct output. If so, they return 1, otherwise they
return 0. The probability, that they return 1 if their oracles are Hx and f for some
key K is € (what is equal to the advantage of Ay against H). If their oracles are
a random function F and the simulator S¥ with oracle F, which always returns 0¥
(whatever is its oracle), then they return 1 with the probability ﬁ The adversary
AS]

2~ can not win against F with non-negligible probability, as F is a random oracle

(and any adversary attacking random oracle is doomed to fail) and S7 always returns
0¥ (i.e. S7 does not return output that is “consistent” with F). In fact if Agrfe(Y)
returns message M, the probability that F(M) =Y (i.e. that Agrfe(Y) wins) is

Similar situation is for AeSPre7 A‘gec and AeSSeC’

4
I

Thus the advantage of Byyx against H is:
1
vy

for the simulator S given above, therefore for the advantage of adversaries Byyy and

Adv}'}f} s(Box) =€ —

the simulator S the following holds:

AQVES 5(Boo) + = = Advi (A,

1
;]
Note that running time of the adversaries Byxy is t + c¢Timep 14 for some absolute
constant c. We expect that there exists a sampler from the set {0,1}* (), which
can sample messages (images) with uniform distribution in time a Timep ) for some

absolute constant a < c. O

Theorem 29 (Pro /4 aPre, aSec to 1/|K|). Let A be an arbitrary number such that
{0,1}* C M and let f = RF, 4, for some d > 0. If there exists a hash function
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family H : K x M — Y, which is (ta,ts,q1,q2, L,€)-Pro, then there exists a hash
function family H : KK x M — Y, which is (ta,ts,q1,q2, L, + Wl‘)—Pro, but there
exists an adversary Cig, attacking H' in xzx sense, running in time c¢ Timey ) and

with advantage Adv?f[)‘}(cmz) = 1, where ¢ is an absolute constants and zxx € {aPre,

aSec}.

Proof. Let H: K x M — Y be a (ta,ts,q1,q2, L,&)-Pro hash function family, we use
the construction H®) from the Figure Xl Let Ky € K be some particular key, then

we define
Hi(M) if K # Ky

)y
HK(M)_{O@/ if K = K,

The hash function family H® is clearly (ta,ts,q1,q92, L, + ‘—IIC‘)—Pro. When a key K
chosen by the environment is different from Ky, then chance to win of any adversary
against H®) is the same as against H. If the key K is equal to Ky, then in the worst
case an adversary wins against H(9) with probability 1. The probability that the key
K is equal to Kj is ‘—,%‘

On the other hand H) is clearly not aPre (aSec) secure. The two stage adversary Cyxx
attacking in xxx sense (xxx € {aPre, aSec}), which in the first phase returns the key
K and in the second phase returns the message 0 (or any other message different from
the one chosen by the environment when attacking in aSec sense) has the advantage
1 and runs in time ¢Timep ) for some absolute constant ¢ (determined by the time

needed to return the key K and message 0 on a particular RAM model). ]

2.4.2 MAC vs. Pro

Theorem 30 (MAC 4 Pro to ¢/|K| + 1/|Y|). Let A be an arbitrary number such
that {0,1}* C M and let f = RF, 4y for some d > 0. If there exists a hash function
family H : K x M — Y, which is (t,q,L,c)-MAC, then there exists a hash function
family H : K x M — Y, which is (t,q, L,e + %)—MAC’, but there exists an adversary
C attacking H' in Pro sense, running in time ¢ Timeg x, making one query to its first
oracle and with advantage Advff,?f,s(C) =1- ﬁ for any simulator S, where ¢ is

an absolute constant.

Proof. Consider the construction H® from the Figure BTk

Y if Prefix(,4144)(M) = K||b]|Y for some b € {0, 1}

(3)
H (M) =
i (M) { Hy (M) otherwise

where H : K x M — Y is a (t,q, L,e)-MAC hash function family. in Theorem H, we
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proved, that H®) is (t,q,L,e + %)-MAC. For the second part of the proof consider

the following adversary C'
Adversary C/1:/2(K)
if f1(K||0]|0Y) = f1(K]|1]|0¥) = 0Y then return 1
otherwise return 0

Running time of C'is ¢ Timey ) for some absolute constant ¢ and its advantage in Pro

sense against H®) is

1

P

for any simulator S, where ﬁ is the probability that a random function F maps
messages K|[0]|0Y and K||1]|0Y to 0Y. O

Theorem 31 (Pro — MAC to 1/|Y|). Let A be an arbitrary number such that
{0,1}» C M, f = RF, 4, for somed >0 and H : K x M — Y be a hash function
family. If there exists an adversary A running in time t, outputting or querying mes-
sages of length at most L, making q queries to its oracle and with advantage in MAC
sense Adv%AC(A) = ¢, then there exists an adversary B attacking H in Pro sense,
running in time t + ¢ Timep 14, making at most two queries to its first oracle and
with advantage AdvfIf%S(A) >e— ﬁ for some simulator S, where ¢ is an absolute

constant.

Proof. The proof is very similar to the one of Theorem Let Aypac be an adversary
attacking H in MAC sense, running in time ¢, outputting or querying messages of
length at most L, making ¢ queries to its oracle and with advantage €. We just need
to create MAC version of the adversary B from the proof of Theorem
Adversary B{/}Afé (K)
(M,Y) — Ajfic
if f1(M) =Y then return 1
otherwise return 0

Running time of such adversary is ¢t + cTimepy ;4 and its advantage in Pro sense
1
VI
is (see the proof of Theorem 2§ for complete explanation). O

against H is € — for simulator S that always returns 0Y no matter what its oracle

2.4.3 CTFP vs. Pro

Theorem 32 (CTFP 4 Pro to 1/|Y|). Let A be an arbitrary number such that
{0,1}* € M and let f = RF,q, for some d > 0. If there exists a hash func-
tion family H : kK x M — Y, which is (t,L,e)-CTFP (aCTFP), then there exists a
hash function family H : K x M — Y, which is (t,L,e + %)-CTFP (aCTFP), but

there exists an adversary C attacking H' in Pro sense, running in time c Timey y,
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making one query to its first oracle and with advantage AdVZT/?ﬁS(A) =1- ‘—31,' for

any simulator S, where ¢ is an absolute constant.

Proof. Consider the construction H(™ from the Figure Il Let H : K x M — ) be
a (t,L,e)-CTFP (aCTFP) hash function family, then we define:

0Y it M =0

HD (M) =
i (M) {HK(M) otherwise

in Theorem [ (I8) we showed, that H() is (¢, L,e + %)—CTFP (aCTFP). For the
second part of the proof consider the following adversary C:
Adversary C/:/2(K)

if f(0) = 0¥ then return 1

otherwise return 0

Running time of C is ¢ Timey ) for some absolute constant c¢. The advantage of such

adversary in Pro sense is (see the proof of Theorem )

1
P
for any simulator S, what completes the proof. O

Theorem 33.

(1) Pro — CTFP to ﬁ

(2) Pro + aCTFP to \_’é\

Proof. The proof of (1) is very similar to the proof of Theorem 28 We just need to
construct CTFP version of the adversary B from the proof of Theorem 2§ performing
attack in Pro sense.
Adversary Béﬁf{?}, (K)
(Y, 8) = Aftppp (K)
let P& M
M — AéQTFP(Pv S)
if f1(P||M) =Y then return 1
otherwise return 0

The proof of (2) is nearly the same as the proof of Theorem Here we just need
to find an adversary C' attacking the hash function family H® in aCTFP sense. The
adversary C' in the first phase returns triple (0, Ky, Ky) and in the second phase it
returns empty string. Advantage of such adversary in aCTFP sense against H) is 1

and it runs in time ¢ Timep ) for some absolute constant c. O
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2.4.4 Prf vs. Pro

Theorem 34 (Prf /4 Pro to ¢/|K| 4+ 1/|Y|). Let X be an arbitrary number such that
{0,1}* € M and let f = RF, 4, for some d > 0. If there exists a hash function
family H : K x M — Y, which is (t,q, L,e)-Prf, then there ezists a hash function
family H : K x M — Y, which is (t,q, L, + ‘—,’a)-Prf, but there ewists an adversary
C attacking H' in Pro sense, running in time ¢ Timeg x, making one query to its first
oracle and with advantage Advff,?f,s(C) =1- ﬁ for any adversary S, where c is

an absolute constant.

Proof. We use the construction H 3) from the Figure Il Suppose, that H : Kx M —
Y is a hash function family, which is (¢,q, L, e)-Prf, then consider a hash function

family defined as follows:

Y if Prefix(,144)(M) = K||b]|Y" for some b € {0, 1}
Hy (M) otherwise

in Theorem B3 we showed, that H®) is (t,q,L,e + %)—Prf what completes the first
part of the proof. in Theorem Bl we showed the second part of the proof, that there

exists an adversary C attacking H®) in Pro sense running in time ¢ Time ,x and with

L

ME for any simulator S. Thus the proof is complete. O

advantage 1 —

Theorem 35 (Pro — Prf). Let A be an arbitrary number such that {0,1}* C M,
f=RFy 4y for somed>0 and H: K X M — )Y be a hash function family. If there
exists an adversary A running in time t, making q queries to its oracle of length at most
L and with advantage in Prf sense Advgrf(A) = ¢, then there exists an adversary B
attacking H in Pro sense, running in time t +c Timepy 1+, making at most q queries
to its first oracle and with advantage Ade’:% s(A) = ¢ for any simulator S, where ¢

is an absolute constant.

Proof. Let H : K x M — Y be a hash function family and let A be an adversary
running in time ¢, making ¢ queries to its oracle of length at most L and with advantage

in Prf sense Advifi(A) = e. Consider the following adversary B:

Adversary B/tf2(K)
b AN

return b

The advantage of B in Pro sense is the same as the advantage of A in Prf sense
(as B does not make queries to its second oracle and does not utilize the key). The
adversary B runs in time ¢+c Timep 11 for some absolute constant ¢, what completes
the proof. O
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2.5 Summary

In this Chapter we proved the relationships among all the security notions from the
Section Note that all provisional implications and separations we proved have
their provisional part (i.e. ¢ value from the part “to €”) negligible (i.e. ¢ depends on
A, kor y and £()), e(k) or e(y) descends faster than any polynomial powered to —1),
what is necessary condition for meaningfulness of a particular provisional implication
or separation. However we have not proven that these provisional parts we provided
are the best ones — i.e. the e value from the statement “to £’ of a provisional
implication /separation is the smallest possible. More precisely suppose that between
xxx and yyy security notions holds provisional implication (separation) xxx — yyy
to € (xxx /4 yyy to €), we say that ¢ is the smallest possible if for any a < ¢ the
implication (separation) does not hold. We leave the solution of this problem to our

future work.

The provided relationships summarized in the Table EXTl indicate the strength of the
pseudo-random oracle security notion (Pro), as Pro implies all the other notions ex-
cept always preimage resistance, always second-preimage resistance and always chosen
target forced prefix preimage resistance. However Pro requires a hash function family
H to be build from some ideal compression function f (i.e. a random oracle) or a
compression function build from an ideal cipher (e.g. by Davies-Meyer construction),
what casts a little shadow over Pro’s practical use with “real” hash function families,
as it is impossible to practically build a random oracle or an ideal cipher. On the
other hand, if we prove that a hash function family H build from an ideal compres-
sion function f (or a compression function based on a ideal cipher) is good Pro, then
the transformation, which transforms the compression function f to the “big” hash
function family H, has no structural flaws and therefore one can believe, that if f is
replaced by some well-constructed compression function f’, then no such flaws will
appear in the resulting hash function family H’. Thus we can say, that pseudo random
oracle security notion reduces the building of a “good” hash function family to the

building of a “good” compression function.

Such transformation, which transforms a “small” compression function f : {0, 1}y+d —
Y to some “big” hash function family H : K x M — ) is called domain extension,
as it extends the domain of the compression function f to the domain of the hash
function family H. A domain extension is called pseudo-random oracle preserving
(shortly Pro-Pr), if it transforms an ideal compression function (or a compression
function based on an ideal cipher) to a hash function family, which is secure in Pro
sense. Similarly we can define a collision resistance preserving domain extension

(shortly Coll-Pr), which transforms a collision resistant compression function to a

70



Pro-Pr transform

° \
Pro.p
r l’rans
form
7

e

T(F)
[ ] all compression functions all hash function families [ ]
[] collision resistant compression functions Coll secure hash function families [ ]
[] ideal compression functions Pro secure hash function families [_]

Figure 2.2: Pseudo random random oracle preserving domain extension applied on a
non-ideal compression function need not to return Pro secure hash function family.
However when applied on an ideal compression function then resulting hash function

family is Pro secure, and therefore also Coll secure.

collision resistant hash function family. Bellare and Ristenpart in [3] showed, that
Pro-Pr domain extension need not to be Coll-Pr (see Figure ZZ2). It means, that
they found a domain extension transform 7 (-), which is Pro-Pr (i.e. a hash function
family H = 7 (f) is secure in Pro sense, if f is an ideal compression function), but
for some collision resistant compression function f’, a hash function family 7 (f’)
is not collision resistant. For that reason they proposed a multi-property preserving
domain extension, which preserves both pseudo-random oracle and collision resistance
security notions, and possibly some others. However our results show, that if a hash
function family is secure in Pro sense, then it must be secure in Coll sense, thus a
hash function family H produced by some Pro-Pr domain extension transformation
T(f), where f is an ideal compression function, is Coll secure. Therefore the usage of
multi-property preserving domain extension transformation is not necessary, instead

we can use Pro-Pr domain extension with well chosen compression function.
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Summary

In the first part of this Thesis we introduced basic notations and definitions, then
we defined twelve notions for hash function security. At the end of the first part we
defined the implication and separation between two notions, we also showed some
basic properties of such implication/separation and finally we showed the equivalence

between one-stage and two-stage versions of some security notions.

In the second part of the Thesis we proved all the relationships among the definitions,
except those, which were proven by Rogaway and Shrimpton [I3] or by Naor and
Reingold [I1]. These relationships are summarized in the Table ZIl Our results
indicate that pseudo-random oracle security notion (Pro) is (as expected) the strongest
property, as it implies almost all the other security notions (except “always” notions).
However Pro has important disadvantage — it requires a hash function family to
be build from an ideal compression function (or a compression function based on an
ideal cipher). Therefore we rather speak about pseudo-random oracle preserving (Pro-
Pr) domain extension transform, which transforms an ideal compression function to
a pseudo-random oracle secure hash function family. As Bellare and Ristenpart [3]
showed, if a Pro-Pr domain extension transform is applied to a non-ideal compression
function f, it can actually “weaken” the resulting hash function family, that is if f is
a collision-free compression function, then the resulting hash function family need not
to be collision resistant (i.e. Coll secure). Thus we need to choose the compression
function for Pro-Pr transforms very carefully. The question is, whether it is possible
to build such compression function, which extended by a Pro-Pr domain extension

produces Pro secure hash function family. We leave this for our future research.

We note that several Pro-Pr domain extension transforms have been designed already,
for example Bellare and Ristenpart in [2] introduced two of them: Strengthened Chain
Shift and Enveloped Shoup. They also proved that both of these domain extensions
are multi-property preserving (MPP), i.e. besides being Pro-Pr, they are also Coll-
Pr, MAC-Pr, Prf-Pr and eSec-Pr. Thus MPP transform can guarantee additional

security properties (e.g. collision resistance), even if a compression function used with
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a particular MPP transform is not “ideal”. On the other hand, new hash standard
should preserve all mentioned security properties, what can be realized only with a
“good” compression function. Therefore we suggest to focus the future research on
compression functions and if no suitable compression function will be found, we need

to consider the usage of such domain extension transforms.
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Abstrakt

Kryptografické hesovacie funkcie patria medzi zakladné kamene sucasnej kryp-
tografie. Institat NIST (National Institute for Standards and Technology) ne-
davno vyhlasil verejnt stufaz, ktorej cielom je vytvorenie nového heSovacieho
standardu AHS (Advanced Hash Standard). V préci zosumarizujeme zakladné
vlastnosti, ktoré by mal novy heSovaci standard spliiat, poskytneme ich forméalne
definicie a medzi tymito definiciami dokazeme vSetky mozné implikacie resp.
separacie. Niektoré implikcie/separacie uz boli dokdzané, niektoré st nové.
Budeme rozlisovat dva typy implikacii resp. separacii - tradi¢nt a podmienent.
Zatial ¢o tradi¢nd implikacia (separdcia) ma vyznam, aky bezne chapeme pod
slovom implikdcia (separacia), sila podmienenej implikacie (separacie) zavisi na
konkrétnej hesovacej funkcii. Ukazeme, ze vlastnost Pseudo-nahodné ordkulum,
ktora ako prvy definovali Coron, Dodis, Malinaud a Puniya je (ako sme ocaka-
vali) najsilnejSou vlastnostou, kedze implikuje skoro vSetky ostatné vlastnosti.
V praci taktiez rozoberame praktické pouzitie Pseudo-ndhodného orakula a tzv.
MPP (Multi Property Transform) transformaécii, ktoré poprvy krat navrhli Bel-
lare a Ristenpart.

Kltcéové slova: kryptografickd heSovacia funkcia, dokdzateln4 bezpecnost, vla-
stnosti heSovacej funkcie, odolnost voci kolizidm, pseudo-ndhodné ordkulum
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