
Department of Informatics
Faculty of Mathematics, Physics and Informatics

Comenius University, Bratislava

Author:
Anton Kohutovič

blog.matfyz.sk
community blog portal

Master thesis
Thesis advisor: RNDr. Martin Homola

Bratislava 2008

By this I declare that I wrote this diploma thesis by myself, only with the
help of the referenced literature, under the careful supervision of my thesis
advisor.

Bratislava, April 2008 Anton Kohutovič

iv

Contents

Abstract 1

1 Introduction 3
1.1 Background . 3
1.2 Motivation . 3
1.3 Related works . 4
1.4 Results . 4
1.5 Thesis outline . 4

2 XML databases 5
2.1 Brief introduction to XML . 5

2.1.1 Usage of the XML . 7
2.2 Definition of XML databases 7

2.2.1 Tables versus collections 7
2.2.2 Querying . 8

2.3 Implementations . 10
2.3.1 Oracle Berkeley DB XML 11
2.3.2 eXist . 11
2.3.3 Sedna . 14
2.3.4 Benchmark tests . 16

3 Blogosphere 19
3.1 Global social phenomenon . 19

3.1.1 Blogs & business . 21
3.1.2 Blogging in numbers . 22

3.2 History . 23
3.3 Anatomy of blogs . 24

4 Ranking algorithms 27
4.1 blog.sme.sk karma . 28
4.2 Eigenvector based algorithms 29

4.2.1 PageRank . 29
4.2.2 Hyperlink Induced Topic Search (HITS) 31

vi CONTENTS

4.2.3 EigenRumor Algorithm 32
4.2.4 EigenRumor adjustments 35
4.2.5 Personalisation . 37
4.2.6 BlogRank . 38
4.2.7 B2Rank . 39

5 Implementation 43
5.1 Data model . 44
5.2 Main application . 46

6 Conclusion 51
6.1 Future work . 52

A Related graphs 53

Bibliography 57

Abstrakt 65

Abstract

Weblog became a phenomenon with high socio-economic impact on the society.
The number of blogs doubles every six months. Most of algorithms dedicated to
ranking web documents are not ideal also for ranking blogs. Therefore, several
blog specific algorithms were designed. Some of them use similar ideas such
as the best known PageRank and other try to consider behavioural features of
users.

XML is a language suitable for exchanging and storing data. It is a simple,
easy to parse and also human readable plain text format. Data stored in XML
are well structured, self-descriptive and unbound to any platform. The concept
of usage of XML as a storage is not new, but applicable only with small portions
of records. There is a lack of physical pointer which facilitates data querying.
XML databases try to tackle this problem and they provide full featured storage
engine where XML data can be queried and updated with help of effective
indices.

This work tries to combine both researches, XML databases and ranking
algorithms, into one project – a community blog portal blog.matfyz.sk. The
idea in the background was to develop a communication environment where
people around Faculty of Mathematics, Physics and Informatics can present
their works, opinions and suggestions.

Keywords: weblogs, blogosphere, XML, XML native databases, ranking
algorithms

2 CONTENTS

Chapter 1

Introduction

1.1 Background

Social media has become a modern and popular way of communication and
collaboration inside communities. People interact each other by words, pictures,
videos and audio recordings. Internet provides a broad spectrum of virtual
communication platforms. Forums, message boards, weblogs, wikis, podcasts,
voice over IP, virtual worlds (Second life) and social networks (MySpace,
Twitter) and other services which enable creation of communities.

1.2 Motivation

Weblogs belong to the earliest social media and they are still very popular
and their influence is permanently growing. We set up a goal to develop a
blog portal for the community of the Faculty of Mathematics, Physics and
Informatics (FMFI). There are many implemented open-source blogging tools
and therefore implementing a blog itself is not a challenge. The real challenge
is to build up an experimental blog portal, where many interesting approaches
can be examined and proved. Social networks propose a great amount of
research problems: searching and indexing objects, classification of objects,
evaluation and ranking of objects, tracking threads, collaborative filtering and
spam identifying etc. We focused on the evaluation and the object ranking
algorithms, but our portal can be also used for further research topics.

Another challenge was to construct our application on a non-relational
storage engine and to examine what possibilities and drawbacks it gives. A
concept of usage XML for data storing is several years old, but there is still a
lack of real application using XML databases.

4 CHAPTER 1. INTRODUCTION

1.3 Related works
The first important study about weblogs ranking was performed by Adar et
al. [AZAL04]. They suggested a nontraditional ranking system iRank based
on the implicit links structure of weblogs. iRank assigns high rating to the
sites that contain original information in contrast to PageRank [PBMW98]
and HITS [Kle99] which better evaluate popular pages. The main idea of
the PageRank algorithm is used in two approaches: BlogRank and B2Rank.
BlogRank was designed in 2006 by Kritikopoulos et al. [KSV06] at University
of Economics and Business in Athens. Implicit links, based on similarity of
topics, are also taken into account by construction of entries graph and this
is the main difference to PageRank. Graph of entries enhanced by implicit
links is used also for computation of the latest ranking algorithm we have
studied – B2Rank from year 2007 [THM07]. This algorithm tried to include
users’ behavioural features in the computation and the authors tried it quite
successfully on the Persian blogosphere. Also, Fujimura et al. propose a new
algorithm called EigenRumor based on eigenvector calculations [FIS05].

1.4 Results
We employed native XML databases in order to build up a blog portal. Our
work contribute to detect important errors and drawbacks of selected projects.
We also designed and implemented adjustments of the interesting algorithm
EigenRumor. These changes improve results of the algorithm in such commu-
nity, where additional information (votes, comments) can be acquired.

1.5 Thesis outline
Our work is structured into 6 chapters. We summarised knowledge about

XML databases in the Chapter 2. At first, we made a brief introduction to this
concept (section 2.2) and then we presented our experiences and conclusions
about selected projects (section 2.3). Chapter 3 offers an overview to weblogs
and their impact to the society.

We collected and studied almost a complete set of nontrivial ranking
algorithms designed for blogs, which were presented at various conferences
about blogging and Web. Many of them have the same principles as Impact
factor, the measure of the citations to science and social science journals. We
selected and studied more rigorously one of these ranking algorithms. In the
section 4.2.4, we proposed our adjustments and suggestions to that algorithm.
Our implementation is described in more details in the Chapter 5 and the
following Chapter 6 consist of our results and conclusions that we have done
in our work.

Chapter 2

XML databases

2.1 Brief introduction to XML
The Extensible Markup Language (XML) is a language derived from a

simplified subset of SGML and primary designed for sharing and exchanging
data across different information systems. The main features of the XML are
the simplicity, and the flexibility. The XML is a type of a meta language
easily extensible for domain specific languages. The XML do not have any
predefined tags as HTML and also its syntax is stricter. It is focused on the
data description, not as HTML on data presentation. The XML was designed
to be an open format unbounded to any platform. It is ideal for storing semi-
structured data, and because most information have some non-linear structure,
it is suitable for many modern applications.

A XML element consists of a logical and a physical structure. The physical
structure is built up from units – entities. An entity may refer to other entities
to cause their inclusion in the document. Each XML document has only one
“root” element, which is the parent of all other elements. The logical structure
is built up from declarations, elements, comments, character references and
processing instructions, which are indicated in the document by explicit markup.
[W3C06]

A XML element starts with the starting tag and is enclosed by the ending
tag. Each element can have some attributes, which express element’s properties.

There are two requirements on XML documents. They must be well-formed
and valid.

1. Well-formed documents must satisfy all XML’s syntax rules. Each
element must have an opening and a closing tag. Elements cannot
overlap.

2. A valid document must include DTD or XML schema definitions. All
tags must be defined.

6 CHAPTER 2. XML DATABASES

Listing 2.1 Example of a XML document
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rootElement SYSTEM "example.dtd">
<rootElement>

<!-- This is a comment-->
<nestedElement>

sample of PCDATA string with & entity
</nestedElement>
<nestedEmptyElement />
<!--

abbreviation for:
<nestedEmptyElement></nestedEmptyElement>

-->
<elementWithAttributes value="10"

status="published" />
</rootElement>

The XML became a recommended standard by W3C in 1997. Members of
this organisation are also important companies in IT business (Oracle, IBM,
Sun and Microsoft), therefore the XML reflects requirements of real business.

Advantages of XML

• The XML is simple language. It is well legible for humans and machines.

• It supports Unicode.

• The hierarchical structure of XML documents can fit for many types of
documents

• Hence of the strict syntax, it is very simple to parse XML documents. It
is a context-free language.

• It is easily extensible through namespaces.

• Standardised

Drawbacks of XML

• The requirement of start and end tags for delimiting data gives a large
volume overhead.

• The XML processing is slow due to the verbosity and the lack of physical
pointers. [Bou05]

2.2. DEFINITION OF XML DATABASES 7

2.1.1 Usage of the XML

The XML simplifies data sharing and interchanging in the world where each
database uses its own format, incompatible to each other. Because of plain text
format of XML, every application can process it. Almost all languages used in
service orientated architectures are derived from the XML. It is the alphabet
for all web languages e.g. XHTML the version of HTML, WSDL for describing
available web services, WAP and WML as markup languages for handheld
devices, RSS languages for news feeds, RDF and OWL for describing resources
and ontology, SMIL for describing multimedia for the web. The future of the
Web will be strongly bounded with the XML. The service orientated paradigm
slightly fulfils holes upraised by increasing requirements on development speed
and flexibility.

2.2 Definition of XML databases
One of reasons for using XML databases is increasing common use of XML

for data transport. Data are often extracted from databases and transformed
into XML documents and vice versa. Probably, XML database can eliminate
the cost of transformation. XML database is a quite new concept on field
where relational databases safely dominate. But we think, that it is worth to
look at them closer, and to try which properties of XML database are ready
for real projects.
In formal definition by XML:DB consortium states that a XML database:

• Defines a (logical) model for an XML document - as opposed to the data
in that document - and stores and retrieves documents according to that
model. At a minimum, the model must include elements, attributes,
PCDATA, and document order. Examples of such models include the
XPath data model, the XML Infoset, and the models implied by the
DOM and the events in SAX 1.0.

• Has an XML document as its fundamental unit of (logical) storage, just
as a relational database has a row in a table as its fundamental unit of
(logical) storage.

• Need not to have any particular underlying physical storage model. For
example, Native XML database (NXD) can use relational, hierarchical,
or object-oriented database structures, or a proprietary storage format
(such as indexed, compressed files).

2.2.1 Tables versus collections

“When your only tool is a hammer, everything looks like a nail.
When your only tool is a relation database, everything looks like a

8 CHAPTER 2. XML DATABASES

table.” [Har05]

The world around us is not simple. We can try to describe reality with
tabular data, but why should we always use tabular data, if we have a more
sophisticated tool to do it. A tree structure can fit closer to reality than n-ary
relations and the XML has all features to success in this domain. Many people
believe that it will dominate the Web in the future.

Storing XML documents in ordinary files may be used only for small
amount of data. Processing a large set of XML documents in files is very
time consuming operation. Better solution is to store XML in a database
which provides smart and fast indexes and supports general querying languages.
There are two types of XML databases. XML-enabled database (XEDB) are
built on top of relational databases and XML data is mapped to a relational
database but native XML databases (NXDs) are intend especially to store
XML document in their native structure.

A main unit of a relational concept is a table, where records are stored
in rows. An equivalent for rows in NXDs are documents. Documents are
organised in collections; equivalent of tables. Collections are usually associated
with some schema, which defines the data model for collections. In this case,
all documents must satisfy one common schema. There are also NXDs, that
allows collections without any specific schema – schema-independent NXDs.
Documents in a collection can vary in their structure, but it is still possible to
construct queries across all documents in the collection.

Schema-independent collections give to a database a lot of flexibility. It
is easy to change a structure of documents later during the development or
even after the deployment. Applications built upon such collections can be
developed faster, but this approach bring risk of low data integrity [Sta01]. The
application, we have implemented, uses these schema-independent collections.
It was important to have our project as flexible as possible.

In generally, NXDs do not have any common storage structure. They can
use relational, hierarchical, or object-oriented database structures and also a
storage in a file system. Many implementations uses own proprietary format.

2.2.2 Querying

Databases are places dedicated to storing and effective retrieving information.
Our world is dependent on databases much more than we admit. The most
common way for querying a database is SQL language. The database will
interpreter the SQL query, evaluate all expressions and select requested data
in tabular structure. Native language for querying on NXDs is XPath. XPath
is a language developed for addressing portions of a XML document, though
it is also ideal for queries. The XPath is language only for data reading, so

2.2. DEFINITION OF XML DATABASES 9

a database only with XPath would be read-only and semi-functional storage.
There are another languages built for purpose of updating: XQuery, XQL,
XUpdate.

XPath and the XQuery are based on path expressions to navigate through
the XML hierarchical structure, which is modelled as an ordered tree. For
example a query /user//post/title will select all title nodes with parent
node post and with ancestor node user. The single slash express parent-child
relationship and double slash ancestor-descendant relationship. XPath defines
additional relationships by axis specifier. Preceding-sibling and following-
sibling relations also belong to supported axis. XPath can reduce a result set
of nodes by using predicates. Predicate expressions are enclosed by square
brackets. E.g.: /user[@ID="1"]//post/title[contains(.,"blog")] will
select all titles which contains word "blog" and they are descendants of user
node with attribute ID equal to 1.

XQuery is a powerful convenient language designed for processing XML
data. It implements XPath as language for addressing but it have some
similarities to SQL. Each XQuery program is an expression which is evaluated
to a value. "1+1*5" is the valid XQuery program with a return value 6. There
are five basic keywords used in XQuery, commonly abbreviated as FLOWR.

FOR variable in expression – make a loop over elements of a sequence. This
sequence can be defined by range (e.g "1 to 10") or by XPath expression.

LET – define local variables.

WHERE expression – filter result set according to an express.

ORDER BY expression – sort result set of node by XPath expression.

RETURN – return data.

There is also one conditional expressions IF. It must have both, then and else
clauses, defined. IF (10 < 1) then "true" else "false"

Example We will show an example how to select all users, which have an
attribute type set to student. We will count their posts and select only those
with more than 5 posts. We will sort then these users by their registration
date (element since). And finally, we will return result in format we need.

FOR $user in /user[@type=’student’]
LET $postCount:= count($user//post)
WHERE $count>5
ORDER BY $user/info/since

RETURN <student postCount="{$count}">$user/*</student>

10 CHAPTER 2. XML DATABASES

XQuery has own update extension, used for data manipulation. Kimbro
Staken in [Sta01] marked update as most weakness point of NXDs. Situation
has slightly changed since 2001. Many products offers good implementation
of a XUpdate 1 and it is not necessary now to get whole document, make
transformation and put it back. The XQuery update, and the XUpdate works
now fine in some implementations and there are ready for using. Although we
have experienced troubles with updates especially with project eXist.

indexes

Another interesting topics for each database are indexes and performance.
Early NXDs did not support indexes so the performance results was very poor.
Again, situation has changed and we claim that, our application based on
NXD reaches satisfactory response times. Current XML databases support
structural, fulltext, range indexes2. It is enough to do a fast and usable
application. Although, we have made certain of that it is not always simple, or
flawless. More technical information about implementations of indexes can be
found in [Mei02] and [FGK06].

2.3 Implementations

There are many implementations at this time, but only a few of them are still
in development and fresh. The following XML databases are known to provide
an implementation of the XML:DB API defined by the XML:DB Initiative:
eXist, Apache XIndice, Sedna, OZONE, DOMSafeXML. We tried eXist, Sedna
and one else, Berkeley DB XML.

Native XML database was a good choice for our project. It is a relatively
new technology worth for experiments. We wanted to examine how mature
this technology is and if it is suitable for using in complex applications, such
as our blog portal. We selected most active projects of the year 2006 and then
we reduced the selection to three most perspective. The first attempt we made
with Berkeley DB XML. When we decided to try a native XML database for
our project, we had to find some appropriate implementation, which would
satisfy our requirements.

1XUpdate is a simple XML update language. You can use it to modify XML content by
simply declaring what changes should be made in an XML syntax.

2Structural indexes contain information on location of element and attributes. Range or
value indexes store information of elements and attributes values.

2.3. IMPLEMENTATIONS 11

2.3.1 Oracle Berkeley DB XML

The Berkeley DB XML was the first of databases which we wanted to try.
This project had a long life and it was bought by Oracle, what promised good
results. It is now developed as an open-source project, but it was not so in that
time, what was a first disadvantage of this embeddable XML database with
XQuery-based access to documents stored in containers and indexed based on
their content. Current XQTS3 score is 99.5%. The database is built on top
of Oracle Berkeley DB and inherits its rich features and attributes. There is
no need to do human administration, all is left to applications. All features
of Oracle Berkeley DB such as transactions (ACID transactions/recovery)
and replication are inherited. Both types of collections – schema-less and
schema-constrained are supported.

We made some test to benchmark its performance, but we founded it not
satisfactory as we had with other two solutions. We redone a benchmark
test in January 2008, and performance significantly improved. Unfortunately,
Berkeley DB XML does not support any update language as XUpdate, or
XQuery update. Modifications can be executed only by changing a content
of a node. There is no tool to do more complicated updates. So we would
have to write our own interface for update purposes and then our application
would not use any standardised approach for manipulation with the XML and
that’s why it would be impossible to replace Berkeley DB XML with another
NXD. We would recommend this embeddable database to applications mostly
with read only requirements. It can be successfully used with small resource
overhead because it is file based and do not follow client/server architecture.

2.3.2 eXist

The next native database we tried was eXist developed by team leaded
by Wolfgang Meier. It is an open source project with active development
and it is distributed under GNU LGPL license. There is necessary a Java
virtual machine to run this application and hence this fact, eXist is a platform
independent database. It is not a problem to deploy it on Linux/Unix, Windows,
Mac OS or any other operating system where the JVM runs.

The first advantage of this application is a very simple and user friendly
administration interface. There is a quite useful GUI which can be used to all
administration and maintenance tasks. Of course, there is also a command-line
interface and it is possible to do with it the most of tasks, which can be done
with GUI, but not all of them. We think, that CLI should be a more complex
tool than a GUI, it is more useful for applications developers to execute any

3“The XML Query Test Suite (XQTS) provides a set of metrics for determining whether
the W3C XML Query Language can be implemented interoperably as published. XQTS
will help implementers identify possible problems both with the Specification and with their
software.” [W3C07]

12 CHAPTER 2. XML DATABASES

operation on a database with a shell script rather than do it by clicking in
GUI. We hope it will be improved in next versions.

eXist supports many web technology standards and languages for XML
manipulation:

• XQuery 1.0 / XPath 2.0

• XSLT 1.0 (using Apache Xalan) or XSLT 2.0 (optional using Saxon)

• HTTP interfaces: REST, WebDAV, SOAP, XMLRPC, Atom Publishing
Protocol

• XML database specific: XMLDB, XQJ/JSR-225 (under development),
XUpdate, XQuery update extensions (to be aligned with the new XQuery
Update Facility 1.0

eXist is now highly compliant with the XQuery standard. Current XQTS
score is 99.4%. The query engine is highly extensible and features a large
collection of XQuery Function Modules.

Another interesting feature is a support for the XInclude. The XInclude is
a mechanism which allows to insert a XML chunk into any XML node without
need of data replication. There is used XPointer as system for addressing XML
chunks of included data. XInclude can help to avoid using of redundant data
which makes updates more diffcult. It also changes tree structure of the XML
to an undirected graph. Other databases we have examined do not implement
this feature.

eXist can be integrated with a lot of types of applications; it can run as a
stand-alone server, as a servlet or it can be embedded directly in an application.
XML documents are stored in schema-less hierarchical collections. Query
engine of this database implements efficient index-based query processing.

Developers of eXist have implemented an auto-index feature, what is a thing
that makes queries faster without laborious manual creation of all appropriate
indexes (but manual indexes are still necessary and should be used) but on
the other hand the current implementation of auto-index mechanism is quite
buggy. We had to deal with this uncomfortable property many times and we
were forced to solve it with not only trivial and easy methods. We observered
that most of problems occurred when a lot of update queries were executed in a
short time. Mainly by high server load, for example by computation of ranking
algorithm we have implemented (We will describe its details in Chapter 4).
Large updates caused inconsistency of indexes and the result was, that a lot of
other queries were incorrectly evaluated. E.g. when we requested all available
posts with //post, we got not only post nodes in the result but some comment
nodes, which logically should not be there.

Another symptom of corrupted indexes was that sometimes some nodes
seemed to be invisible for queries although they were physically in the database

2.3. IMPLEMENTATIONS 13

storage. Update queries, which used incorrect select queries, inserted or
modified nodes which were marked by wrong index. This problem often
violated smooth run of our blog portal and it needed manual interventions from
us. In most cases, it was enough to execute a manual re-index of all indexes
in our collections, what did not take a lot of time because of small size of the
database. We also programmed a shell script timed by cron deamon, which
every hour did the manual re-index as prevention. Unfortunately, there was ca.
two times a much more damaged database. Not only indexes but also a file
where names of all elements were kept. In these cases, the database seemed to
be empty for each external or internal query. We contacted developers of eXist,
and they suggested only one solution: to delete all data physically from storage
and then to restore them back. This drastic solution was not so painful as it
sounds only because we could export all data from databases in this condition.

We reported all problems we experienced to eXist team, but they were
not able to help us, even after longer negotiations, where we offered them all
access permissions, logs and data. They could not predict what causes prob-
lems without exact sequence of instructions, which deterministically damage
databases. It is almost impossible to find out such sequence. We can log all
update requests, but we cannot identify a point in the time, when something
has started go wrong. We recommend them seriously to focus on this problem,
because this problem is critical even with not huge portions of XML data. We
can handle it only thanks to fact, out portal is an experimental project, but it
seemed that eXist has more bugs than is acceptable in a business applications.
It is very hopeful project and if developers fix all these critical errors it will be
one of most interesting XML native databases on the market. . eXist gave us
the best performance result at the end of 2006, despite it is implemented in
java, which is not the most suitable programming language to write very fast
applications with effective memory management. At the beginning of 2008,
eXist had worst average performance results. Sedna and also Berkeley DB
XML defeated eXist in most queries. But eXist had a domination in a one type
of queries. All queries with ancestor-descendant relationship (e.g.: //post)
had the same duration as queries where complete path of nodes were specified
(e.g.: /user/blog/post).

We tried two HTTP interfaces, SOAP and REST4. REST interface was
faster than SOAP for queries with a small result and slower for large set. It
is because SOAP has an overhead in communication such as complete SOAP
envelop, where REST uses only the simple GET HTTP method.

There are four files with indexes: words.dbx, dom.dbx, elements.dbx and
collections.dbx. All indexes are organised in B+-trees. The indexes are created

4REST (Representational State Transfer) is a software architecture designed for distributed
hypermedia systems such as the World Wide Web. It was introduced in 2000 in the dissertation
of Roy Fielding. REST is based on HTTP and uses it’s methods GET, PUT, POST, DELETE
to access and manipulate data.

14 CHAPTER 2. XML DATABASES

for a whole collection, not for documents separately. This helps to keep inner
B+-trees pages quite small and it improves performance of queries to entire
collections. More information about implementation details is published in
[Mei02].

2.3.3 Sedna

The third project, we tried, was Sedna. This XML database system is being
developed by the MODIS team at the Institute of System Programming of
the Russian Academy of Sciences. It is written in Scheme and C++. Static
query analysis and optimisation is in Scheme and other parts as parser, query
executor, memory and transactions management in C++. As a basis for
Sedna’s data model was taken XQuery 1.0 language specified in [BCFF03]. In
order to support updates they used the XQuery update extension, similar to
eXist but closer to a syntax described in [Leh01].

Figure 2.1: Sedna architecture according to [FGK06]

Main component of Sedna is governor ; a control centre of the system.
Governor knows the running databases and transactions. All databases runs
separately and crash of a database would not affect other databases if the
governor is running. The parser transforms a query to it’s logical representation.
This representation is used by optimiser. Optimiser creates an optimised
execution plan which is a tree of low-level operations over physical data
structures [FGK06]. Then, the execution plan is interpreted by query executor.

The eXist has good support for full-text search, unfortunatelly, sedna not.
DtSearch, external commercial fulltext engine can be integrated with Sedna

2.3. IMPLEMENTATIONS 15

but native support is still missing.
We tested Sedna 1.x and later also Sedna 2.x. Performance results with

version 1.x was worse than contemporary eXist’s results and therefore we
decided to develop our blog portal with eXist. In January 2008, after mentioned
problems with indexes consistency in eXist, we began test on Sedna 2.2. We
have quickly rewritten all read-only queries, now compliant with Sedna. Update
queries in Sedna and eXist have slightly different syntax, but they are also
easy convertible. The performance results (see 2.3.4) of Sedna 2.2 was also
interesting, so we did complete migration from eXist to Sedna in March 2008.
Unfortunately, there were an issues that we had to solve. Some of our update
queries caused always crash of the database and also database governor. Of
course, we reported this to MODIS team. Their answer was incredibly fast,
and a new built of Sedna where this bug was fixed, was released the next day.

We have deployed Sedna on out production server in March 2008 with high
expectations of improvements in the performance and mainly in the stability.
We have found out that Sedna crashes from time to time. Average 2 times in
week. We identified this as a bug with insertion of strings in database. MODIS
team considered this to be a serious problem and they immediately started to
work on this issue after our detailed report.

In the April 2008, Sedna 3 was released which should repair mentioned
stability issue. We have not observered more problems for now although Sedna
is not well prepared for 64 bit architectures.

Sedna team have implemented a great feature SQL Connection, not commonly
present in NXDs. SQL Connection allows access to relational databases in
XQuery queries using SQL. Results of SQL queries are relations represented
on-the-fly as sequences of XML elements representing rows. These elements
have sub-elements corresponding with the columns returned by the SQL query
and thus can be easy processed in XQuery. Connection is established via
ODBC drivers. Supported are direct queries and updates on a databases, such
as prepared statements and transactions. [MT07]

Following example demonstrates the use of SQL connection in XQuery:

declare namespace sql="http://modis.ispras.ru/Sedna/SQL";
let $connection :=

sql:connect("odbc:MySQL ODBC 3.51 Driver://localhost/weblog",
"userName", "password")

return
sql:execute($connection, "SELECT * FROM provisioningMatrix

WHERE postID = ’p56’");

We will get a set o tuples as the result:
<tuple postId="p56" userID="u13"/>

16 CHAPTER 2. XML DATABASES

This SQL connection is a helpful tool for developers. The relational and
XML databases can be integrated in one application at database tier without
application level modifications. Some data is better to store in relational
databases and some in XML database. Both database concepts have own
advantages and a compound application can profits from benefits of both and
avoid handicaps of each concept.

2.3.4 Benchmark tests

We made a program for a comparison of a performance of the databases. It
measures an evaluation time for each query and each database. This program
sends queries in short random intervals and computes average time of selected
query. The tests were done at the same machine in the same time and with
the same data to ensure identical conditions. We selected different types of
queries, evaluation of each is based on a different principle.

Tested queries

1. subsequence(
(let $list :=

(
for $current in collection("weblog")/user/blog/post

[@status="published"]
[@accessCount>50]
[contains("sk",@lang)]
order by

xs:integer($current/@accessCount) descending
return $current

)
for $current in $list

let $user := $current/ancestor::user
return

<post>
{$current/@*}
<user>

{$user/@ID}{$user/@type}
{$user/info/*}

</user>
{$current/title}
{$current/subtitle}

</post>
),1,10)

2. /user/blog/post[@ID="p71"]

2.3. IMPLEMENTATIONS 17

3. //post[@ID="p71"]

4. For eXist:
let $ac:=/user/blog/post[@ID="p71"]/@accessCount
return update replace $ac with $ac+1

Equivalent for Sedna:

update replace $i in /user/blog/post[@ID="p71"]/@accessCount
with attribute accessCount {$i+1}

Because of lack of any complex update language in Berkeley DB XML,
we did not test it for performance of modifications.

5. update insert
<comment>

<title>test</title>
<content>Testing content</content>

</comment>
into /user/blog/post[@ID="p71"]/comments

As we can see in the table 2.1, Sedna has the best results for the most
complicated query, but results for query with double slash are not so impressive,
almost unusable. The second value in the Sedna’s column is query time after
addition of an suitable index. In the current version of Sedna, query executor
does not use indexes automatically so we must to construct queries, which do
not conforms XQuery specification. We decided to use indexes in Sedna only
for testing, because we want to have our application ready for use with eXist as
well as Sedna or any other native XML database with correct XQuery support.
But Sedna’s results with indexes look very promising, we hope that indexes
will be used by the query executor soon and without necessary modifications
of queries.

The results in the test query #5 strongly depends on the results from query
#2. Updates are so fast as ordinary reading query, only no data is transmissed.

We have got a more worth results from logs we have collected in the produc-
tion conditions with real users and real requests. We used only eXist and Sedna
so we know only their values. The average page generation time with eXist
database was 1.33 second. It so high because of long responses when almost a
whole heap was used and until garbage collector was cleaning it. Median of
these times was notable smaller. Only ca. 0.37 second. Sedna achieved better
average result, but it has slightly worse median. Average page generation time:
0.78 second. Median: 0.41 second.

18 CHAPTER 2. XML DATABASES

Query eXist SOAP eXist REST Sedna Berkeley DB XML
#1 92.6 102.7 25.9 44.6
#2 8.2 3.5 6.7/3.9 19.8
#2 – more data 41.5 30.7 7.5/4 17.7
#3 7 3.6 292.3/4 108.5
#3 – more data 42.5 34.8 415/4.1 101.6
#4 6.7 4.6 15 -
#5 7.2 5.2 14.5 -

Table 2.1: Average times for queries 1-5 in milliseconds.

Chapter 3

Blogosphere

“A blog (a portmanteau of web log) is a website where entries are
commonly displayed in reverse chronological order. "Blog" can also
be used as a verb, meaning to maintain or add content to a blog.

Many blogs provide commentary or news on a particular subject;
others function as more personal on-line diaries. A typical blog
combines text, images, and links to other blogs, web pages, and
other media related to its topic. The ability for readers to leave
comments in an interactive format is an important part of many
blogs.” Definition from Wikipedia, March 2008

“Blog is short for weblog. A weblog is a journal that is frequently up-
dated and intended for general public consumption. Blogs generally
represent the personality of the author or the Web site. Blogs have
common elements: updated frequently (usually daily); informal;
grouped by date with links to archives of older posts; informative
and/or inspiring (the good ones); frequently linked to other sites
that inspired the blog; and addictive for those who blog.” Definition
from BloggerForum.com

3.1 Global social phenomenon

Everybody can now express its own opinions, feelings or describe his experi-
ences through his personal weblog. The concept of a diary is old and many
people used to write it. Probably for transformations of moods and thoughts
to the written form or only for recording things that everyday life brings. Blogs
extend the possibilities of diaries now. It is still very personal and in some
cases almost intimate but the audience and the way of publishing has changed.
It is not necessary now to write a book or to find a publisher of news to acquire
readers. There cannot be more simple way how to share with the ideas with

20 CHAPTER 3. BLOGOSPHERE

people than to write a blog. It is cheaper than non-electronically publishing
and it also offers more possibilities. Although blogs have primary textual
form, there are several derivations: photoblogs, vlogs (video blogs), music blog
(MP3), audio (podcasting). Blogs have usually a space for readers’ reactions
and comments. It makes blogs a two-way communication medium. Convec-
tional journalistic forms as an article in newspapers, a radio and television
transmission are only one-way message. [Tor05]

The blogging became a world spread social phenomenon which impacts
public opinion, politics, business and other aspects of public and private
life, even the way how people communicate with their families and friends.
Blogosphere is one of the most expanding parts of the Web. A weblog tracking
and searching portal Technorati collected till March 2008 about 112.8 million
links to weblogs. Some of medial analyst consider blogs to be “Next internet
boom” and they predict a huge investment into this small publishing space
with high potential. Blogs have several features which give them important
advantages.

Firstly, people like to read such texts where they feel a personal attitude of
an author. They want this personal contact because the most of email in work
are too formal. It is easier to read an opinion if we can imagine somebody who
writes it and we know his face from photograph aside the article. We know his
opinions because we have read his recent postings and we know, he will publish
new texts in the near future and we know what we can expect. Bloggers also
have own favourite blogs and bloggers and they will certainly link them. And
so, a community is set up.

Another advantage is a great position of blogs in search engines. There
are several factors which influence ranks in engines such as Google. One of
them is up-to-date content. Blogs are regularly and often updated pages. If
a blogger wants to attract new readers and retain the old ones, he has to
permanently update his page. Reader can also change content. In the most
of blogs, reader can react to articles and they are allowed to add comment
and opinions. Bloggers usually create many links to other interesting blog, or
other places worth to visit. They can also react to foreign article with their
own article. It is possible to find the whole topic related threads with many
posts replying to each other. These threads are often well interlinked. The
count of inlinks is a fundamental measure for quality evaluation (See Chapter
4). This fact strongly improves results in search engines and good optimisation
for search engines (SEO) is almost the most important step to success on the
Web.

Blogs have a clear architecture focused on the content with well organised

3.1. GLOBAL SOCIAL PHENOMENON 21

links. Every blog is managed by the user1 and therefore the content is full
of relevant keywords. It is proven also in our experiences. We wrote a short,
almost contentless post about possibility of including a video from YouTube
for our users. Keyword “youtube” is lucrative and therefore we were surprised
that our post was in top 10 results in Slovak language for some time. It has
about 25,000 visits but there are almost no links to it.

The creation and using of a blog is simple. Everybody can publish and
manage his own personal blog without any specific technological know-how.
There are many open-source solutions for blogging which can be deployed on
the most of free web hosting. All solutions provide user-friendly interface for
writing a new article, managing photo and video galleries. There are also many
companies providing blogging services with their software. (e.g. blogger.com,
blog.sme.sk). Most of them are free, but there are several paid services
providing a special functionality.

3.1.1 Blogs & business

Most of blogging people do it as a hobby, or as a way how to share thoughts
and viewpoints with friends or wider group on whatever topic. Blogs are also
used as photo galleries from holidays or journeys with some commentaries. It
is better to inform friends about past experiences in a one post with photos
rather than to send them emails with attached images.

There are some bloggers who wants to turn their blogs into a successful
business. Some blogs have already succeeded. The Coudal (http://www.
coudal.com) and SimpleBits (http://simplebits.com) are good examples of
blogs that initially focused on content, but now, they sell advertisement space
and products. As blogging matures, there are more and more people who are
quitting their jobs and starting to blog full-time [BB06]. According to an older
work [Tor05], in a 12 month period, 45% of blogs do not generate any revenue.
About 40% earn under $5,000 and about 4% generate revenue over $100,000.

Many companies and business organisations have recently discovered that
blogging can help them to reach their internal and external communication
goals. Business blogs differ mainly in their purpose and the auditorium. We
recognise 3 main categories of business blogs [BB06].

Company blog presents a company and its business in general. It works like
a propagation brochure with newest announcements. A company blog
can replace a typical home page of a company.

1Of course, one user can have more blogs, or a group of users can write their blog so-called
“Collaborative blog”

22 CHAPTER 3. BLOGOSPHERE

Product blog propagates certain products or services and it is built for
promotion of sales.

Brand blog is used to communicate marketing messages. It helps to extent
company into new markets. Boeing, Microsoft and Sun keep their own
brand blogs. Some brand blog can be sponsored by a company but
written by person outside the company.

3.1.2 Blogging in numbers

The Blogosphere is an enormously growing part of Web. According to
Technorati statistic [Sif08] from report in April 2007, there are about 120,000
new blog every day, 1.5 million posts per day. Bloggers blog mainly in Japanese
(37%). The second language is English (33%), then Chinese (8%), Italian (3%)
and Spanish (3%).

Figure 3.1: Growth of blogs’ count in the Blogosphere from March 2003 to
March 2007

From an older study [Rai05] made by Pew Internet & American Life Project,
there are 7% of adults in United States which have created a blog and 27% of
them reads blogs regularly. The interactive feature of many blogs is reflected
by 12% of internet users who have posted comments or other material on blogs.

3.2. HISTORY 23

3.2 History

Short summary of important events in the evolution of the blogs collected
from various sources:

1990 – The beginnings of weblogs can be traced to this time Usenet and in it’s
Moderated Newsgroups. Most of them were only moderated discussion
forums but there was a one exception. mod.ber was created and managed
by only one person, Brian E. Redman. He stared to write there summaries
of interesting postings and threads on the net.

1992 – A site built by Tim Berners-Lee2 at CERN. He points to new interesting
sites which came on-line.

1993, June – NCSA starts to publish their “What’s new” site, immediately
followed by Netscape and their “What’s new”. These sites were lists of
new sites which became on-line. Netscape archives are still available at
http://wp.netscape.com/home/whatsnew/.

1997, September – Slashdot launches their “News for nerds”.

1997, December – Jorn Barger coins the term web log.

1998, November – Cameron Barret published the first list of blog sites on
Camworld.

1999, The beginning – Peter Merholz coins the term blog after announcing
he was going to pronounce web blogs as “wee-blog”. This was then
shorten to blog. Brigitte Eaton starts the first portal devoted to blogs
wit about 50 listings.

1999, March – Brad Fitzpatrick, a well known blogger started LiveJournal.

1999, July – Pitas launches the first free tool dedicated to building own blogs
also for user without technical know-how.

1999, August – Pyra releases Blogger which becomes the most popular web
based blogging tool to date, and popularises blogging with mainstream
internet users. Pyra was purchased by Google in February 2003 and
blogger.com is now world best know blogging service.

2001 – Blogs becomes to be a phenomenon. Established schools of journalism
begins researching blogging. Blogging is very close discipline to journalism.
Blogs are penetrating to politics and many companies communicate with
employees and customer through the blogs.

2Sir Tim Berners-Lee, father of the World Wide Web, director of W3C.

24 CHAPTER 3. BLOGOSPHERE

2003 – The beginning of the Iraq invasion provides a significant catalyst for
blogging.

2004 – The word “blog” became the world of the year at Merriam-Webster
Dictionary. (http://www.merriam-webster.com)

3.3 Anatomy of blogs
All blogs have very similar structure cognisable at first sight. Blogs are

typically laid out in reverse chronological order. The most recent entry is listed
first. The main textual entries on a page are called posts. The post has a fairly
consistent format composed of a headline, a link to the main source or web
page under discussion, a description of the material, commentaries, image or
photo, permalink, or quotations from the original source. All these elements
can be used in various combinations.

The permalinks (shorten permanent link) are unchanging links to the specific
posts as it is located in the larger database that powers the organisation of
blogs. If somebody wants to inform about certain post he will send a permalink
to this post. Permalinks make it easier to share links because otherwise a
general URL for a blog will bring up the entire blog rather than a specific
entry, and the reader must go through all the blog posts to find the desired
information.

Traceback, another common element on posts, is an area that allows the
blogger and his visitors to see what type of impact his post has had in the
larger blogging community via a program that tracks who links to which blog
post on the own blog.

Blog rolls is a list of links to other blogs that the blogger likes or recommend
to read. Typically situated in a Sidebar – additional column on the side of the
blog’s main page. Side also includes About; brief information about blogger,
his interests and whatever the author wants.

When a post is pushed down and off a blog’s main page, it is usually
available through Archives. Most of blogs display links to older posts on a
monthly basis in the sidebar.

The most comfortable way how to track changes of favourite blog is RSS
syndication. RSS enables to get news from blogs without opening whole sites.
If some post seems to be interesting from description in RSS feeder, it is simple
accessible via attached permalink.

3.3. ANATOMY OF BLOGS 25

Figure 3.2: The Anatomy of a common blog

26 CHAPTER 3. BLOGOSPHERE

Chapter 4

Ranking algorithms

At the beginnings of Internet, many people thought, that it will be possible
to effectively index and search all documents. Today, we know that it is almost
impossible. Current Web consists of “tons” of documents and their amount
increases faster than we can process and catalogue them. Therefore there is
a need of classifying documents by a “quality”, where the the “quality” can
stands for various measures based on various approaches. But the goal is the
same; to provide interesting, helpful content for user in specific topic he is
searching for. In the blogosphere it’s quite similar even more useful and with
special additional requirements. Readers often want from blog portal a offer of
article which are fresh, interesting and present similar opinions. For all that it
upraise a space for personalised ranking algorithms. There is still a large space
for adjusting following algorithms towards the personalisation. Now, we will
discuss about general ranking strategies.

We will classify the blog ranking algorithms into several groups (for more
complex classification see [FIS05]):

1. Subject of ranking

(a) Blog entries
(b) Bloggers
(c) Articles referred to by blogs
(d) Goods or services referred to by blogs

2. Semantics of ranking

(a) Support of community
(b) Trustworthiness
(c) Freshness
(d) Specific attributes e.g. funnines or usefulness

28 CHAPTER 4. RANKING ALGORITHMS

3. Types of evaluation used for ranking

(a) Hyperlinks – trackback

(b) Access count

(c) Explicit votes

(d) Comments

(e) RSS subscritions

(f) Natural language analysis (comments)

4.1 blog.sme.sk karma

A blog portal blog.sme.sk maintained by newspaper SME is the most suc-
cessful blog portal in the Slovak Republic. Author of this portal implemented
own ranking algorithm. They named it karma according to score introduced
at a well known website Slashdot, but only names are similarm the systems of
ranking are completely different.

Developers of blog.sme.sk used two charactertics for the ranking. Count of
votes for a post and count of views of apost. The first implementation of their
ranking algorithm was simple combination of mentioned values.

karma =
(
views

400

)
+
(

votes

100views

)
We consider this solutions not to be optimal, because posts with few views
achieve much higher karma than others. It is well shown at figure 4.1. And
another problem is that karma is not limited and it can grows to very high
values almost lineary. Fortunately, they have repaired this ranking equation.
The new karma computation removes these flaws.

karma = 5
(

views

300 + views

)
+ 45

(
votes

300 + votes

)
This new formula is based on the fraction x

1+x . Values for this fraction rise
from 0 to 1 for x > 0. A graph of this functions have hyperbola shape and so
its growth is damped for large values of x. If we replace number 1 with another
constant C we will set for which x will this functions will have value 0.5. It
is because if x is equal to the constant C, then C

C+C = 0.5. In our case C is
equal to 300. The range from 0 to 1 is too small, so we multiply this fraction
by 45 in the case of the fraction with count of vote. In the case with the count
of view, we use multiplication by 5.

4.2. EIGENVECTOR BASED ALGORITHMS 29

A rank evaluated the user quality is also called karma, and it is computed as
average from karmas of his last ranked posts not older than 70 days (only with
karma > 0). The karma is assigned to post only if its count of views go over
number 100. We consider this innovated karma formula much more better,
but there is a space for improvements towards personalisation and community.

4.2 Eigenvector based algorithms

There are several ranking algorithms developed to evaluate a quality of Web
pages. Effectiveness of most successful solutions as PageRank and HITS was
proved in academic and also in industry sphere. This approach would be also
useful in the blogosphere, but we are going to describe more suitable ways, how
to rank blogs. We will summarise approaches to blog ranking. This topic is a
subjects of a research in several teams and the more detailed results over the
extent of our work can be found in [THM07], [KSV06], [FIS05] and [AZAL04].

We will focus now on ranking algorithms which use citations as a measure
of quality and which are based on a computation of an eigenvector for some
particular matrix, mostly for an adjacency matrix. We will use an orientated
graph of nodes, where we will construct an edge from node A to node B, if A
cites (refers or evaluate) to B.

In algorithm, we have implemented, we do not use count of hyperlinks to
a page for expression opinions of people, because we have small dataset in
our portal. It is also proved that the graph of weblog entries is not very well
connected [KSV06]. The links are sparse and the use of algorithm such as
PageRank would not be the best solution. Another good reason is, that we
have implemented our portal ourself and we can access information (e.g. voting,
putting comments) which are usually unavailable for blog tracking or searching
engines. Therefore, we used explicit evaluations in our implementation of
EigenRumor algorithm described closer in the section 4.2.4.

4.2.1 PageRank

The PageRank is most known query-independent link citation measure. It
was developed by Page and Brin [PBMW98] with goal to improve goal the
quality of web search engines and it is used by a Google search engine as a
primary link recommendation scheme. The The PageRank assumes random
surfer who starts browsing the web at any random page. He clicks to a randomly
chosen link on the page and then he continues to another page. There is a
non-zero probability of a jump to a random bookmark (some link independent
from the current page) for each page, it is called damping factor d

30 CHAPTER 4. RANKING ALGORITHMS

0
1000

0

0
2000

100

200

200

x

300

3000
400

y

400

600
4000

800
1000

5000

Figure 4.1: Graph of the old karma. x = views and y = votes

1000
800

600

y

400
200

0
500040003000

x

200010000

-20

-10

0

10

20

30

40

Figure 4.2: The distribution of the actual karma. x = views and y = votes

4.2. EIGENVECTOR BASED ALGORITHMS 31

Let page A have pages T1, . . . , Tn, that refers to A and parameter d ∈ [0, 1])
(damping factor usually d = 0.85). We define C(A) as number of outgoing
links from page A. Then PageRank PR for page A is defined:

PR(A) = (1− d) + d

(PR(T1)
C(T1)

+ . . .+ PR(Tn)
C(Tn)

)
(4.1)

The main idea of PageRank is that a page A, which has many links from other
pages, has the high PageRank value the more that pages have higher PageRank.
(See figure A.4) Values of PageRank are the values of the principal eigenvector
~R of the normalised adjacency matrix. [BP98]

~R =

 P1
...
Pn


We define adjacency function l(pi, pj). If there is a no link from pi to pj , then
l(pi, pj) = 0. l(pi, pj) = 1 if there is a one or several links from pi to pj Where
~R is computed by

~R =


(1−n)
d...

(1−n)
d

+ d

 l(p1, p1) . . . l(p1, pn)
...

l(pn, p1) . . . l(pn, pn)


We can compute ~R with iterative algorithm, it converge really fast. A few

iterations must be done and it also gives good result in practise. The PageRank
for 322 million link database converge in ca. 54 iterations, what is acceptable
few and it seems that this algorithm scales very well also for extremely large
collection. Deeper sight into mathemtical background of the PageRank are
rigorously described in [LM04].

4.2.2 Hyperlink Induced Topic Search (HITS)

This algorithm was described by Jon Kleinberg in article [Kle99]. Main idea
consists of partition a set of pages into two important sets. The hub pages and
authority pages. Good hub page has to cite good authority pages, and good
authority page has to be referred by good hub pages. It is mutually recursion
definition, because it is needed to use second definition in order to express
first. We define two scores for each examined page p. First A(p) determines
authority of page p. The second one H(p) is the hub score, i.e. how is this page
p a good hub for set of pages. The computation of the hub and the authority
score is done as follows:

1. let V be the set of nodes in the graph of neighbourhood and

32 CHAPTER 4. RANKING ALGORITHMS

E is a set of all edges in the graph.
2. initialise H(i) and A(i) to 1 for all i in V.
3. while the vectors ~H an ~A have not converged do:
4. For all i ∈ V,A(i) =

∑
(i,j)∈E

H(j)

5. For all i ∈ V,H(i) =
∑

(i,j)∈E
A(j)

Convergence of the H and A vectors was proved by Kleinberg in. In practise,
this vectors converge in about 10 iterations [BH98].

4.2.3 EigenRumor Algorithm

We are now going to introduce a generic algorithm suitable for ranking
objects in the blogosphere but also applicable to any other web community.
This algorithm was presented at workshop on the Weblogging Ecosystem and
it was designed by Mr. Fujimura and Mr. Inoue from NTT Cyber Solutions
Laboratories. We have implemented and adjusted their algorithm to use in
our conditions and we are going to share our conclusion about it in following
chapters.

Basic difference between EigenRumor and PageRank 4.2.1 or HITS 4.2.2 is
in subjects of examination. The EigenRumor defines two entities: agent and
object. Agent is represented by human being – blogger. Objects are used to
represent any blog entity such as blog post. Algorithms 4.2.1 and 4.2.2 consider
only objects, but these solutions can not be used in ranking of blogs with best
results, because each blog post have its author, who has probably already post
other objects influencing his popularity. Therefore, some new post of a popular
author should have higher rank, however there are no links to it yet. We will
use similar concept as in 4.2.2 but both score will be assigned to agents, not to
objects. Objects have assigned Reputation score.

Community model

We assume a community ofm agents and n objects. Each object is associated
to an agent who published it. When agent i provide object j, we will make a
provisioning link between i and j. Also each agent i can evaluate object j and
so make evaluation link from i to j. Evaluation can be done in different ways.
We can consider binary evaluation, if agent i cites or comment object m. Or
agent i can assign an explicit score from some range. Now, we can construct
provisioning matrix P , where P = [pij] for i = 1 . . . n, j = 1 . . .m and pij = 1 if
there is provisioning link between i and j. Construction of matrix E is similar
to construction of matrix P , but we can set value of eij to any real number
from range [0,1] according to system of evaluation.

4.2. EIGENVECTOR BASED ALGORITHMS 33

Figure 4.3: How agents provision (solid line) and evaluate (dashed line) objects.
All score are computed: authority a, hub h and reputation r. Constant α set
to 0.5.

The EigenRumor algorithms uses two vectors known from the HITS 4.2.2,
but we need an another one to better description agent-to-object associations.
[FIS05]

Authority score - agent property The authority score indicates to what
level agent i provided objects in the past that followed the community
directions. It is considered that the higher the score, the better the
ability of the agent to provide objects to the community. We define the
authority vector ~a as a vector containing all authority score ai for agent
i, i = 1, . . . ,m.

Hub score - agent property The hub score indicates to what level agent i
submitted evaluations that followed the community directions on other
past object. It is considered that the higher the score, the better the
ability of the agent to contribute evaluations to the community. We
define the hub vector ~h as a vector that contains the hub score hi for
agent i, i = 1, . . . ,m.

Reputation score - object property Thereputation score indicates the level
of support from agents that follow community directions. It is considered
that the higher the score means that the object better conforms to the
community direction. We define the reputation vector ~r as a vector that
contains the reputation score rj for object j, j = 1, . . . , n.

34 CHAPTER 4. RANKING ALGORITHMS

All these vector influence each other. We have four natural assumption about
it.

Assumption 1: The objects that are provided by a good authority will
follow the direction of the community.

Assumption 2: The objects that are supported by a good hub will follow
the direction of the community.

Assumption 3: The agents that provide object that follow the community
direction are good authorities of the community.

Assumption 4: The agents that evaluate object that follow the community
direction are good hubs of the community.

These assumptions are similar to common assumptions in our life. If someone
likes his favourite author, and he considers his books interesting, there is a high
probability, that he will buy a new book from this author. And even without
any reference to it’s quality. That man naturally assumes that each new book
written by his favourite author will be also worth to be read. And therefore, we
think that it is suitable to use the analogy in ranking algorithm for blogs. The
new article written by a good author will get the higher reputation rank than
a new posting from lower ranked author. We can transfor above assumptions
to corresponding equations.

~r = P T~a (4.2)

~r = ET~h (4.3)

~a = P~r (4.4)

~h = E~r (4.5)

We have two equations 4.2 and 4.3 which have ~r on the left side. We can
merge them by using a convex combination with a constat α ∈ [0, 1]:

~r = αP T~a+ (1− α)ET~h (4.6)

With the constat α we can adjust the weight of authority and hub score. We
have now three equations, (4.4), (4.5) and (4.6) that recursively define three
score vectors. We will expand ~a and ~b in (4.6) with appropriate right sides
from equations (4.4) and (4.5).

4.2. EIGENVECTOR BASED ALGORITHMS 35

~r = αP TP~r + (1− α)ETE~r = (αP TP + (1− α)ETE)~r (4.7)

Let S = (αP T.P +(1−α)ETE). Then S is a stochastic square matrix, because
sum of all elements in every column is 1, and therefore when we will apply
iteration by (4.7), ~r will converge to the principal eigenvector of S. We will
simultaneously compute all others score vectors.

Listing 4.1 EigenRumor algorithm scheme
~a0 ← (1, . . . , 1)
~h0 ← (1, . . . , 1)
while ‖~ri − ~ri−1‖2 < ε for some small ε do
~ri ← αP TaT

i + (1− α)EThT
i

~ri+1 = ~ri
‖~ri‖2

~ai+1 = (P~ri+1)T

~hi+1 = (E~ri+1)T

end while

4.2.4 EigenRumor adjustments

We are convinced, that readers’ interests are better reflected in their votes
and comments than in links they are creating. People do not link every page
or article they like. Most usuall expression of people’s favour to a post is their
positive vote. Leaving a comment is also useful indication of some kind of
interest. So, we replace standard method of evaluation in EigenRumor from
linking to voting. We also include comments as a part of the evaluation.

We define the evaluation matrix as a sum of two matrices: a vote matrix V
and a comment matrix C.

E = βV + (1− β)C (4.8)

The constant β again determines the balance between votes and comments. If
β = 0 only votes are taken into account and vice versa. Values of matrices V
and C are defined similarly as matrix E. If a blogger i gave a positive vote for
a post j then Vij = 1 . Value Cij is expressed more complicated. We require
Cij ∈ 〈0, 1〉 and we need to include there all comments by the blogger i. We
also want to consider time factor in the comment evaluation to prioritise posts
with vigorous discussions.

We resolve the second condition with formula (4.9) where Comm(i, j) is
a set of all comments posted by the agent i in the object j. ∆T (l) in the
exponent means time difference between current time and time of comment
creation in days. We need a constant γ which determines the speed of falling

36 CHAPTER 4. RANKING ALGORITHMS

of C, γ = 10 seemed to be satisfactory value.

C ′ij =
∑

l∈Comm(i,j)
e
−∆T (l)

γ (4.9)

Now, we need to fulfil the first condition. Cij has to be in 〈0, 1〉, because
we want to preserve the properties of the generic EigenRumor and members
of the evaluation matrix E should be in range from 0 to 1. For this purpose
we used a function f(x) = 1− 1

x+1 . This function converge to 1 in the infinity.
The final formula for Cij is:

y

1

0,8

0,6

0,4

0,2

x

0
1612840

Figure 4.4: Graph of function f(x) = 1− 1
x+1

Cij = f(C ′ij) = 1− 1∑
l∈Comm(i,j)

e
−∆T (l)

γ + 1
(4.10)

Now the formula (4.6) can be slightly modified into:

~r = αP T~a+ (1− α)(βV + (1− β)C)T~h (4.11)

Another improvement, we have done, is enabled negative evaluations. We
run two instance of the EigenRumor. One computes positive scores and the
another computes negative scores. The final reputation score is difference
between positive and negative scores. The authority score is similar. The hub
score is important only for the computation, so we need not to express it as a
one value.

4.2. EIGENVECTOR BASED ALGORITHMS 37

Another extension that we have implemented is support for votes of anony-
mous users. We creat a one virtual user assigned to all non-logged guests.
This user has no authority score but he has non-zero hub score which is not
computed by EigenRumor but it is manually set to a constant value or to a
half of median of all hub scores.

4.2.5 Personalisation

There are some people with closer opinions in every community. They
consider interesting and useful other articles or authors than general community
opinion. Traditional ranking algorithms, as we have described, do not offer them
best articles that could be proposed. Therefore, we think that personalised
ranking algorithms will be in future the main stream of ranking algorithms
and so we have designed some improvements towards the personalisation in
our portal.

We used information collected by generic EigenRumor algorithm. Matrices
E and P provide useful data for expression of similarities in opinions in the
community.

Neighbourhood

The first individual relation, we are computing, is neighbourhood of bloggers.
Every blogger (agent) has a set of neighbours (agents) which have similar
opinions expressed by their votes. For this purpose, we used information stored
in evaluation matrix E.

Two agents, agenti and agentj are neighbours if they have similar evaluation
vectors ~ei and ~ej . We will need a neighbourhood function ν for defining
neighbourhood relation N . The agenti and agentj are in neighbourhood
relation N if ν(~ei, ~ej) > k where k is some threshold.

We assume a system with 3 agents and 4 objects. Provisioning matrix is not
important now but evaluation matrix is:

E =

 1 1 0 0
1 1 1 0
−1 −1 0 1


This matrix includes also negative evaluations what is not possible in original
algorithm but we have enabled it in extension described in previous subsection
4.2.4. We see that ~e1 and ~e2 are quite similar but ~e3 is entirely different. We
define function of neighbourhood ν(~ei, ~ej) = ~ei. ~ej

||~ei||.||~ej || . Where numerator is a
scalar multiplication of both evaluation vectors, which computes the number
of equal votes for posts, where the both bloggers voted. The denominator
normalises value of nominator with both lengts of vectors .

38 CHAPTER 4. RANKING ALGORITHMS

It is obvious, that ν is a symmetric function; ν(~ei, ~ej) = ν(~ej , ~ei). In fact, ν
is nothing other than a cosines of angle between ~ei and ~ej . And indeed, cosines
has necessary attributes we need from neighbourhood function. If two vectors
are identical i.e. the angle between them is 0 and cos(0) = 1 and vice versa if
there are entirely different vectors, ~ej = −~ei, so cos(π) = −1.

Matrix N for evaluation matrix E, where Nij = ν(ei, ej):

N =

 1 0.81 −0.81
0.81 1 −0.66
−0.81 −0.66 1


If we have computed a set of neighbours for each user, it would be useful

to propose him the posts, which have votes from his neighbours but he did not
vote for them. If two users have very similar evaluation vectors, it is probable,
they have the same attitude towards a new post.

The similar conception is applicable also for posts neighbourhood. If a reader
has read a post and he liked it, it would be useful to propose him some similar
posts. We consider similar posts, that posts, which have a vote from a very
similar group of users. The nominators in the previous case were members of a
matrix M where M = E.ET. This matrix M is a square matrix with dimension
n× n, where n is the number of bloggers. In the neighbourhood of posts, we
will need a square matrix with dimension m×m, where m is the number of
all posts. A matrix K = ET.E satisfy the requirements. The denominators are
again products of multiplication lengths of selected vectors.

When we have computed sets of post neighbours, we propose to reader the
similar posts, which he has not read.

4.2.6 BlogRank

BlogRank algorithm was introduced by a Greek team in [KSV06]. BlogRank
is a generalised version of PageRank. The output of this algorithm is a ranking
of all weblogs in a dataset. Authors tried to make the graph of blogosphere
more dense. Apart of explicit hyperlinks among nodes, they enhance the
graph with implicit edges based on similarity in topics and contributors or
difference in time of creation. The connected graph of weblogs is expanded
by adding bidirectional edge between each blogs sharing same categories, user
and external resources. Each edge has assigned a weight which was tuned by
experiments.

They did tests of BlogRank on a sample weblog dataset provided by Nielsen
BuzzMetrics, Inc. and they implemented an experimental search engine for the
Greek portion of blogosphere. According to their article, BlogRank had the

4.2. EIGENVECTOR BASED ALGORITHMS 39

best result in Success Index1 presented in [KS03]. PageRank acquired 0.158,
XRank (probably. they tought iRank) 0.353 and BlogRank 0.553.

The BlogRank of a weblog A is given by the following formula:

B(A) = (1− d) + d(FN (U1→A)B(U1) + . . .+ FN (Un→A)B(Un)) (4.12)

An obvious inspiration from equation (4.1) is present here. B(A) is a the
BlogRank of blog A. The constant d is the damping factor, nNormally set to
0.85. FN (Ui→A) expresses a possibility of transition from weblog i to weblog
A, i.e. how i fancies A. For FN (Ui→j) the following equation holds:

t∑
j=1

FN (Ui→j) = 1 (4.13)

where t is number of outgoing links from the node i. If FN (Ui→j) = 1
t , we get

exactly the formula (4.1). In BlogRank, it is given following formula for FN :

FN (Ui→j) = Fi→j∑
k(Fi→k)

(4.14)

and where

Fi→j = Li→j + wTTi→j + wUTi→j + wNNi→j + wDDi→j

and L is the number of links from the blog i to the blog j, T is the number of
common tags or categories and U is the number of users who have written in
the both blogs. Number N is count of common links to external pages and D
equals to 20∗60

δ where δ is average of posting time difference in minutes. Values
wT , wU , wN , wD are weights assigned to corresponding T , U , N , D. Weights
was set up experimentally as:

wT = 1.7
wU = 1.1
wN = 4.8
wD = 0.4

Unfortunately, search engine they have developed was not available at that
time when we was writing this work and we could not test their work more
rigorously.

4.2.7 B2Rank

Another ranking algorithm based on the same principles as PageRank is B2Rank.
This rank was designed and tested at Amirkabir University of Technology in
Tehran [THM07]. Authors take into account that blogs updated more regularly

1A measure of users’ satisfaction with search results

40 CHAPTER 4. RANKING ALGORITHMS

tend to be more popular [CK06] and also an amount of comments is an suitable
indication of the community interest [MG06]. They consider in B2Rank
behavioural features of users such as blog updating rate, comment putting and
different types of citations and their creation times.

B2Rank assigns two scores for each weblog: personality score and operation
score. Scores are divided because of it is considered two types of links: blogrolls
link and citation links. Citation links are object-to-object links and blogrolls
are agent-to-agent links in the terminilogy we were using in section 4.2.3.

There are used two types of graphs for B2Rank computation. Blogroll
graph B consists of nodes representing blogs and edges which correspond to
blogrolls links. Second graph is called entries graph. Nodes in entries graph E
are blog posts and edges are explicit and implicit links. The explicit link is a
citation and the implicit link is created between user who publish a comment
and commented post. Authors do not present in their work which node in
graph E is the source of this link because there are only blog entries in the set
of nodes. The time function T (i, j) expresses the time of link creation for each
edge in the graph.

Blogroll’s link has assigned two weights corresponding to two factors,
called activity and attention. Activity conveys the frequency of blog updating.
Activity score function for blog i is computed as follows:

A(i) = count of all posts in blog i
day since creation of blog i

Blog attention is related with the number of received comments. Blogs with
more comments have a better attention score. Attention score function is
defined with formula:

N(i) = Com(i)
count of all posts in blog i

where Com(i) stand for the count of all comments in the blog i.

The main formula of B2Rank for a blog x is:

B2Rank(x) = PersonalityScore(x).OperationScore(X) (4.15)

PersonalityScore is computed by well known scheme derived from PageRank.

PersonalityScore(x) = d

 ∑
(y,x)∈B

PersonalityScore(y).NB(y, x)

+ (1− d)

(4.16)
Where d is the same damping factor as in (4.2.1), y is a blog which links to x
in its blogroll and NB(y, x) expresses the possibility of transition from y to x.

4.2. EIGENVECTOR BASED ALGORITHMS 41

This possibility is computed by following formula:

NB(y, x) = B(y, x)∑
(y,x)∈B

B(y, x)
(4.17)

B(y, x) is the weight of blogroll link from y to x.

B(y, x) = WaA(x) +WnN(x)

Where Wa and Wb are weights assigned to the activity score and the attention
score respectively.

OperationScore(x) denotes an average quality of blog posts in a certain blog
x. We need to compute post score EB(e) for each post e in the blogosphere.
EB is computed similarly as PersonalityScore.

EB(e) = d

 ∑
(b,e)∈E

EB(b).NE(b, e)

+ (1− d) (4.18)

EB(b) means the post score of the entry b which links to the entry e. NE(b, e)
expresses similarly to NB the possibility of reader’s movement from the entry
b to the e. This possibility is computed by formula

NE(b, e) = E(b, e)∑
(b,e)∈E

E(b, e)

where E(b, e) is computed weight of link between b and e. This weight is
assigned in the following way:

E(b, e) = Wc.Com(e) +Wt.e
−∆T (b,e)

Wc and Wt are weights for Com(e) and ∆T (b, e). ∆T (b, e) is time delay of
citation in post b to post e, compared with other citations to post b. Now we
are able to compute the operation score of blog x.

OperationScore(x) =

∑
∀e∈x

EB(e)∑
∀e∈x

1
(4.19)

Results

Authors implemented this algorithm on data collected by BlogScience Re-
search Group. They performed PageRank and B2Rank algorithms on 22,000

42 CHAPTER 4. RANKING ALGORITHMS

Persian blogs with 378,700 posts and 1,275,561 collected in 15 months. Ac-
cording to reports of a group of users who did independent tests and who did
not know which rank system gave them result, 38% of them did not notice
any significant difference, 51% evaluated B2Rank’s results as better and 11%
worse.

Chapter 5

Implementation

Implementation of the whole project was strongly influenced by technologies
we wanted to try. We had to design a specific data model which would be the
best for the application with data stored in the XML native database. We
started with 3 main decisions; a programming language, a database and a data
processing/presentation method.

Our first decision was to build up our blog portal on eXist (see. 2.3.2). It
was in November 2006, and eXist 1.1 seemed to be the best choice. Then, we
decided to use PHP as a main programming language. The PHP is a powerful
scripting language suitable for fast application development. It is maybe not
the fastest language but flexibility and rapid development were more important
requirements in our experimental project than the performance. However,
eXist has great Java API, we also founded a solution for PHP connection to
the database. We used the SOAP protocol for the communication with the
database.

We also needed a tool for manipulation with XML retrieved from the
database. We consider XSLT to be the optimal solution, because we can
separate the presentation layer easily from the logical layer as in contemporary
programming paradigm MVC. Of course, the XSLT is primary dedicated for
such purpose.

We expected that some complications can arise, especially with so unproved
technology as the NXD. We thought of it and therefore we tried to make
an universal interface (fig. 5.1) for NXDs. We wanted to have a database
independent application also for experiments with various database engines.
As we have described in section 2.3.2, it was far-sighted step.

We wrote a class Exist for work with eXist which implemented NXDapi
interface. It was very simple to write a Sedna class which implements the same
interface in February 2008. And although the update languages in eXist and
Sedna are not completely compatible, the transition from eXist to Sedna was
almost painless.

44 CHAPTER 5. IMPLEMENTATION

«interface»
NXDapi

+ connect(user : string, password : string) : bool
+ execute(query : string)
+ fetchArray(query : string)
+ fetchNode(query : string)
+ getError()
+ getQueryTime() : int

Exist
" errorCode : int
" query : string
" SOAPconnection : SOAP
+ __construct(URI : string)
+ connect(user : string, password : string = "")
+ execute(query : string)
+ fetchArray(query : string)
+ fetchNode(query : string)
+ getError() : string

Sedna
" errorCode : int
" query : string
+ connect(user : string, password : string = "")
+ execute(query : string)
+ fetchArray(query : string)
+ fetchNode(query : string)
+ getError()

Figure 5.1: Interface for XML databases

5.1 Data model

All blogging applications have to store similar data. It is necessary to have
stored info about users, their postings and also comments. Comments are
naturally tree-like structured data and also other data can be inserted into a
tree. We have created a forest of users trees. This forest is a one collection
(see 2.2.1) called “weblog”. We assigned a new XML document for each user.
The user element is a root element of these documents and all data belonging
to user are its descendants.

We have divided user’s data into 3 main elements. All information about
user’s account are joined in element account and its subelements. User’s
private information such as real name, “about” information and also the user’s
ranks are situated in the info element. And the third main group are data
under element blog. There can be found all users posts with comments with
other necessary records. Each posting or commnet has an unique id (identifier)
in the collection. We are able therefore address place where to attach a comment
only with the one identifier. It facilitate a creation of a custom blog by students
of 1-AIN-636 Modern Approaches to Web Design. We implemented a special
interface where they can create own blog only by using XSLT, HTML and CSS.
We provided them only a function for updateting their XML document. Their
blogs with their own design was a part of evaluation in this course. These
students helped us to test our application. They produced a high load on the
server and we were able to identify problematic parts faster.

5.1. DATA MODEL 45

Figure 5.2: Data model scheme

Partially independent part of our portal is a ranking subsystem. It has own
storage engine because of two reasons. First reason is relational character of
stored data. Second reason is that in the time of ranking implementation we
were been using eXist which produced many errors by frequent updates and
voting with computation of ranks makes a lot of requests on the server. We
used a MySQL server for storing data necessary in EigenRumor algorithm.
Provision and evaluation matrices have own simple tables and they can be
easily and quickly queried for a record. MySQL server is faster (approx. from
10 to 100 times) and more reliable for this purpose.

46 CHAPTER 5. IMPLEMENTATION

5.2 Main application

We planned to develop a fully featured community blog portal, that would
provide common blogging tools, comparable with contemporary blog portals.
We wanted to create a custom space where everybody from FMFI (also foreign
users are welcome) can publish news, opinions and suggestions. FMFI does not
have any community platform where students and teachers can communicate
without any restrictions and at the same level. The portal blog.matfyz.sk is
now a perspective project with a growing base of users and there are about
250 unique visitors and 500 pageviews each day.

For a successful implementation we created as UML model which helped
us to divide our work into separate blocks. We attach the simplified use-case
diagram in the appendix, that shows main provided functions. This diagram
does not include a part responsible student1 interface.

We designed two classes for a blog processing. The class BlogReader serves
to reading and selecting data from a certain blog. Second class, BlogWriter,
manipulates with XML in the database and the blog data should be modified
only through this class. Another class User is used for both operations, for
setting and getting attributes of the actor user. PortalReader is class similar
to BlogReader, it serves to retrieving data from the whole portal.

Whole application is managed by Controller, a class which delegates suitable
object to do their tasks. Class Page is responsible for the presentation. It
chooses an appropriate source of the data and requests the XSLT class for
an output XSL template. Descendants of DataSource return the XML data
retrieved from the database. General functions necessary in the whole system
are provided by the class System.

RankManager is a class dedicated for operations that belongs to EigenRumor
algorithm. It does not compute the ranks, because we implemented the core of
the EigenRumor algorithm in C++. We tried to implement it in PHP, but PHP
appeared to be insufficiently slow language for operations on the large matrices.
The C++ accelerated the ranking algorithm about 60 time against PHP. The
computation of ranks are executed every half an hour by a cron daemon. In
the time, when we were using eXist, we could not execute computation too
often because the ranking algorithm regularly corrupted indices.

EigenRumor algorithm can produce as bad results as any trivial algorithm
based on voting. Important part of this algorithm is right choice of the
constants. Constant α (in listing 4.1 is α replaced with k) determines how
much to consider the bloggers’s authority in the finall reputation score for a
post. If α = 0 no authority score is used and reputation score depends only on
votes.

1students of Modern Approaches to Web Design

5.2. MAIN APPLICATION 47

Computed ranks are used for top 10 list and also as search an order
criterium.

For ε = 10−6 in algorithm’s listing 4.1, vector r converges in about 20
iterations. This computation must be redone after each addition of a new
object in the system. We can save some iterations by initialising starting
vectors to values from the last execution of algorithm. Because a small change
in P and E will influence the result very slightly. By this step, we reduced
number of the iterations to 10-30%. In many cases the minimal count of the
iterations is necessary. (2-4 iterations). We have observed that speed of the
convergation on our collected data is connected to choice of α. With higher α
is needed more iterations.

Figure 5.3: Dependency the iterations count on α

We choosed the DokuWiki syntax (http://wiki.splitbrain.org/wiki:
syntax) was for writing posts and comments on our portal. We implemented
our DokuWiki parser (http://stettner.blog.matfyz.sk/p1-syntax-i) with
support of source code highlighting. We also added a support for LATEXoutput,
which might be useful especially for people from FMFI community.

48 CHAPTER 5. IMPLEMENTATION

Listing 5.1 Our implementation of EigenRumor Algorithm in C++

while ((r1_old−r1) . L2norm() >0.000001)
{

r1_old = r1 ;
r1 = p . t ranspose ()∗ k∗a1 . t ranspose ()

+ e1 . t ranspose ()∗(1−k)∗h1 . t ranspose () ;
r1 = r1 ∗(1/ r1 . L2norm ()) ;
a1 = (p∗ r1) . transpose_matrix () ;
h1 = (e1∗ r1) . transpose_matrix () ;
/∗ s e t t i n g the anonymous user hub score ∗/
h1 . va lue (0 , rows−1) = GUEST_HUBSCORE;
r1 = r1 . transpose_matrix () ;

}

�rankManger

System
� db
� dbAdmin
+ __construct()
+ createAccount()
+ deleteUsersAccount()
+ getDB()
+ getDBAdmin()
+ getUserID()
+ getMaxID()
+ getSystemWideTags()

Controler
� system
� page
� blogWriter
� rankManger
+ __construct()
+ serve()

RankManger

+ voteForPost()
+ computeMatices()
+ computeRanks()
+ computeNeigbours()

�systemBlogWriter
� userID
+ __construct()
+ newPost()
+ newComment()
+ editPost()
+ deletePost()
+ setTitle()
+ getUserData()

�blogWriter

Figure 5.4: Class diagram for data manipulation

5.2. MAIN APPLICATION 49

PortalReader

+ __construct()
+ getNewUsers()
+ getTopPosts()
+ getNewPosts()
+ getData()

BlogReader
� userID
� title
+ __construct()
+ getBlog()
+ getPost()
+ getAllComments()
+ getComment()
+ getUserSettings()
+ getData()
+ getUserData()

Session
� user
+ __construct()
+ logout()
+ login()
+ getUser()
+ setUser()
+ isLogged()

User
� ID
� email
� nick
+ __construct()
+ __destruct()
+ getID()
+ getEmail()
+ setEmail()
+ getUserRank()
+ getUserID()
+ getNick()
+ getRealName()
+ setRealName()
+ setPassword()
+ setCSS()
+ setAbout()
+ uploadFile()
+ setUserType()
+ getUserType()

Page
� dataSource
� data
� XSLT
� xsltProc
+ __construct()
� loadDataSource()
� transformDataSource()
+ output()

XSLT
� xsl
+ __construct()
+ getXSL()

DataSource
� data
+ __construct()
+ getData()

�user

�dataSource

�XSLT

�page

�system

System
� db : Exist
� dbAdmin : int
+ __construct()
+ createAccount()
+ deleteUsersAccount()
+ getDB()
+ getDBAdmin()
+ getUserID()
+ getMaxID()
+ getSystemWideTags()

Controler
� system : System
� page : Page
� blogWriter : BlogWriter
� rankManger : RankManger
+ __construct()
+ serve()

Figure 5.5: Class diagram for the presentation layer

50 CHAPTER 5. IMPLEMENTATION

Figure 5.6: blog.matfyz.sk title page

Chapter 6

Conclusion

The product of our work is a fully functional community portal launched
in September 2007. It supports all common blogging features and it has a
potential of being the popular and useful communication platform for students
and teachers from FMFI, but also for general public. There are 250 unique
visitors each day and we now have circa 140 registered users with 600 posts
published.

We described the current status of native XML databases in our work with
three selected products. Two of them were used and tried as a storage system
in our project, a community blog portal blog.matfyz.sk. Before we started
with this work, we were able to induce several hypotheses on avdantages and
disadvantages of NXDs from the literature. Almost all of them came true, even
though it would be better if only advantages were confirmed. The drawbacks
with updating and indexing brought us a lot of additional work we had to deal
with.

We assumed that a tree structured data model reflects the reality more
closer and more naturally than relational model. Data are not decomposed and
they stay together. Therefore, they can be effectively used. These advantages
were proven in our work and we have succeeded to design a simple, easily
readable and self-describing data model. The XML data model stored in a
schema-less collection appeared to be flexible enough. This was confirmed by
additional implementation of special interface for students which were then
able to create their own blog layout with XSLT technology. Thus this work
has also served in the educational process.

Our next assumption was that processing of tree structured data is con-
siderably more effective by usage of XML databases. It is necessary to walk
through records several times (in common case as much as the depth of the
tree is) to retrieve a tree structured data from relational database. In a XML
database one query will be enough. All data for displaying a one blog can be
retrieved by only a one simple query on an XML database. It is true that

52 CHAPTER 6. CONCLUSION

queries on an NXD take more time, but there is a significant saving in the
amount of necessary queries. It has a result that total time for page generation
is very similar to applications powered by RDBMS and the last user probably
will not notice any performance difference.

We are convinced that XML databases are useful tools which can be used
in many application types. But NXDs are still in their beginnings and in some
cases there is still need for intensive development. The Sedna project seemed
to be the best solution for us. The third release of Sedna is quite stable and
moreover our reports have contributed to improvements in this release. We
also tried eXist which has rich features but there are still some problems with
the indexing engine. We appreciate that eXist offers two additional operators
for full-text search (“&=” and “|=”) which we think would be useful to include
in XQuery specification.

The usability of XML databases will certainly improve if any form of update
language become standardised. Untill that moment, every database will use
their own language not necessarily compatible with others.

In the Chapter 4, we elaborated an overview of blog specific ranking al-
gorithms. We studied the EigenRumor algorithm closer and we proposed
adjustments and changes which improved this algorithm’s results in our condi-
tions. Only this algorithm, from the group of examined algorithms, assigns
higher ranks for new posts written by popular blogger which has published
already appreciated posts. Our modified EigenRumor works on much more
denser graph of objects than the original one because we replaced the evaluation
method from linking to voting and we also take into account the amount and
the vigorousness of discussions.

We also suggested a method for proposing interesting articles related to the
article the user is currently reading. We are curious about how the solutions
proposed in this work will perform with further growing users’ base and the
number blog posts in the portal.

6.1 Future work
A blog portal is an excellent place for research projects. We dealt only with
a few aspects which our blog portal had proposed and there are still many
issues which should be solved. Though, we implemented a spam protection
reCAPTCHA but it did not work always reliable. An interesting topic for the
future would be a collaborative filtering algorithm for comments. Another
worthy work is to exploit ontologies and semantics technology in order to
categorisation of posts.

Appendix A

Related graphs

Figure A.1: Queries performance 1 – 3

Figure A.2: Queries performance 4 – 5

54 APPENDIX A. RELATED GRAPHS

Login

Logout

Preview Bloggers

Preview top blogs

Add comment

Add blogpost

Create account

Search in blogs

Read selected blog

Change account settings

Enter main page

Read blogpostEdit blogpost

USER

GUEST

Figure A.3: Simplified use-case diagram for blog.matfyz.sk

Figure A.4: Simple schema of PageRank computation

Glossary

API Application Programming Interface
Blog A weblog (or blog) is a frequently updated web page con-

taining items of information arranged in reverse chronolog-
ical order. A weblog can typically take the form of a diary,
journal, what’s new page, or links to other web sites.

Blogger Person who writes blogs
Blogging Activity of mantainig a blog
Cron Cron is a command scheduler that resides on your server

and executes commands at specified time intervals.
CSS Cascading Style Sheets
DOM The Document Object Model (DOM) is a platform- and

language-neutral interface that will allow programs and
scripts to dynamically access and update the content, struc-
ture and style of documents.

FMFI Faculty of Mathematics, Physics and Informatics
MVC Model-View-Controller
NXD Native XML database
PCDATA PCDATA is a token used in an element declaration to

declare the element as having mixed content (character
data, or character data mixed with other elements)

RDBMS A Relational database management system (RDBMS) is
a database management system (DBMS) that is based on
the relational model as introduced by E. F. Codd. Most
popular commercial and open source databases currently
in use are based on the relational model.

RSS Really Simple Syndication
SAX Simple API for XML.
SEO Search engine optimizing
SOAP SOAP is a protocol for exchanging XML-based messages

over computer networks, normally using HTTP/HTTPS
W3C The World Wide Web Consortium (W3c) is the main

international standards organization for the World Wide
Web

56 APPENDIX A. RELATED GRAPHS

Wiki A wiki is a collection of web pages designed to enable
anyone who accesses it to contribute or modify content,
using a simplified markup language. Wikis are often used
to create collaborative websites and to power community
websites

XML Extensible Markup Language
XSLT Extensible Stylesheet Language Transformations

Bibliography

[ACHM05] Paolo Avesani, Marco Cova, Conor Hayes, and Paolo Massa. Learn-
ing contextualized weblog topics. In Proceedings of the 2nd WWW
workshop on the Weblogging Ecosystem, 2005.

[AZAL04] Eytan Adar, Li Zhang, Lada A Adamic, and Rajan M. Lukose.
Implicit structure and the dynamics of blogspace. Workshop on
the Weblogging Ecosystem, 13th International World Wide Web
Conference, 2004.

[BB06] DL Byron and Steve Broback. Publish and Prosper: Blogging for
Your Business. New Riders, June 2006.

[BCFF03] Scott Boag, Don Chamberlin, Mary F. Fernández, and Daniela
Florescu. Xquery 1.0: An xml query language. Technical report,
W3C, 2003. W3C Working Draft 12 November 2003, available
online, at http://www.w3.org/TR/2003/WD-xquery-20031112/.

[BH98] K. Bharat and M. Henzinger. Improved algorithms for topic
distillation in hyperlinked environments, 1998.

[BN06] Bettiba Berendt and Roberto Navigli. Finding your way through
blogspace: Using semantics for cross-domain blog analysis. In
Proceedings of the AAAI 2006 Symposium on Computational Ap-
proaches to Analysing Weblogs., page 8, 2006.

[Bou05] Ronald Bourret. Xml and databases. Available online, at http:
//www.rpbourret.com/xml/XMLAndDatabases.htm, September
2005.

[BP98] Sergey Brin and Lawrence Page. The anatomy of a large-scale
hypertextual web search engine. In WWW7: Proceedings of the
seventh international conference on World Wide Web 7, pages
107–117, Amsterdam, The Netherlands, The Netherlands, 1998.
Elsevier Science Publishers B. V.

58 BIBLIOGRAPHY

[CDG07] Carlos Castillo, Debora Donato, and Aristides Gionis. Estimating
number of citations using author reputation. In Nivio Ziviani and
Ricardo A. Baeza-Yates, editors, SPIRE, volume 4726 of Lecture
Notes in Computer Science, pages 107–117. Springer, 2007.

[Cha02] Nicholas Chase. XML Primer Plus. Sams, December 2002.

[CK06] Edith Cohen and Balachander Krishnamurthy. A short walk in
the blogistan. Computer Networks, 50(5):615–630, 2006.

[CR07] Henning Christianses and Maria Rekouts. Integrity checking and
maintenance with active rules in xml databases. 24th British
National Conference on Databases : proceedings, pages 59–67,
2007.

[Cuo06] Nguyen Viet Cuong. Xml native database systems review of sedna,
ozone, neocorexms. Master’s thesis, Czech Technical University in
Prague, Faculty of Electrical Engineering, 2006.

[FGK06] Andrey Fomichev, Maxim Grinev, and Sergei D. Kuznetsov. Sedna:
A native xml dbms. In Jirí Wiedermann, Gerard Tel, Jaroslav
Pokorný, Mária Bieliková, and Julius Stuller, editors, SOFSEM,
volume 3831 of Lecture Notes in Computer Science, pages 272–
281. Springer, 2006. Available online, at http://www.ispras.ru/
~grinev/mypapers/sedna.pdf.

[FIS05] Ko Fujimura, Takafumi Inoue, and Masayuki Sugisaki. The eigen-
rumor algorithm for ranking blogs. In Procs. of 2nd Annual
Workshop on the Weblogging Ecosystem: Aggregation, Analysis
and Dynamics, page 6, 2005.

[Hal05] David Hall. An xml-based database of molecular pathways. Mas-
ter’s thesis, Linköpings universitet, Department of Computer and
Information Science, 2005.

[Har05] E. R. Harold. Managing xml data: Native xml databases. Avail-
able online, at: http://www-128.ibm.com/developerworks/
xml/library/x-mxd4.html?ca=dnt-623, Jun 2005.

[Hil05] Jefrey Hill. The voice of the blog: The attitudes and experi-
ences of small business bloggers using blogs as a marketing and
communications tool. Master’s thesis, University of Liverpool,
2005.

[HKP+05] Susan C. Herring, Inna Kouper, John C. Paolillo, Lois Ann Scheidt,
Michael Tyworth, Peter Welsch, Elĳah Wright, and Ning Yu. Con-
versations in the blogosphere: An analysis "from the bottom up".

BIBLIOGRAPHY 59

In HICSS ’05: Proceedings of the Proceedings of the 38th Annual
Hawaii International Conference on System Sciences (HICSS’05) -
Track 4, page 107.2, Washington, DC, USA, 2005. IEEE Computer
Society.

[KC06] Peter Kuhns and Adrienne Crew. Blogosphere: Best of Blogs. Que,
January 2006.

[Kle99] Jon Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM 46, 1999.

[KS03] Apostolos Kritikopoulos and Martha Sideri. The compass filter:
Search engine result personalization using web communities. In
Bamshad Mobasher and Sarabjot S. Anand, editors, ITWP, vol-
ume 3169 of Lecture Notes in Computer Science, pages 229–240.
Springer, 2003.

[KSV06] Apostolos Kritikopoulos, Martha Sideri, and Iraklis Varlamis. Blo-
grank: ranking weblogs based on connectivity and similarity fea-
tures. In AAA-IDEA ’06: Proceedings of the 2nd international
workshop on Advanced architectures and algorithms for internet
delivery and applications, page 8, New York, NY, USA, 2006.
ACM.

[Leh01] Patrick Lehti. Design and implementation of a datat manipulation
processor for an xml query language. Master’s thesis, Technische
Universität Darmstadt, 2001.

[LM04] A.N. Langville and C.D. Meyer. Deeper inside pagerank. Internet
Mathematics, 1(3):335–380, 2004.

[Mei02] Wolfgang Meier. exist: An open source native xml database.
Available online, at http://www.old.netobjectdays.org/pdf/
02/papers/ws-webdb/01-Meier.pdf, 2002.

[Mey00] Carl D. Meyer. Matrix analysis and applied linear algebra. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2000.

[MG06] Gilad Mishne and Natalie Glance. Leave a reply: An analysis
of weblog comments. 3rd Annual Workshop on the Weblogging
Ecosystem, 2006.

[MT07] MODIS-Team. Sedna programmer’s guide. Available online, at
http://modis.ispras.ru/sedna/progguide/ProgGuide.html,
2007. Institute of System Programming of the Russian Academy
of Sciences.

60 BIBLIOGRAPHY

[NTH+05] S. Nakajima, J. Tatemura, Y. Hino, Y. Hara, and K. Tanaka.
Discovering important bloggers based on analyzing blog threads.
In Procs. of 2nd Annual Workshop on the Weblogging Ecosystem:
Aggregation, Analysis and Dynamics, page 8, 2005.

[PBMW98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Wino-
grad. The pagerank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Library Technologies Project,
Brisbane, Australia, 1998.

[Rai05] Lee Rainie. The state of blogging. Available online, at http://
www.pewinternet.org/pdfs/PIP_blogging_data.pdf, January
2005.

[RZC03] Awais Rashid, Roberto Zicari, and Akmal B. Chaudri. XML Data
Managmnet: Native and XML-Enabled Database Systems. Addison
Wesley Professional, 2003.

[Sif08] David Sifry. The state of the live web, april 2007. Available
online, at http://www.sifry.com/alerts/archives/000493.
html, April 2008.

[Sta01] Kimbro Staken. Introduction to native xml databases. Available on-
line, at http://www.xml.com/pub/a/2001/10/31/nativexmldb.
html, October 2001.

[THM07] Mohammad A. Tayebi, S. Mehdi Hashemi, and Ali Mohades.
B2rank: An algorithm for ranking blogs based on behavioral
features. In WI ’07: Proceedings of the IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence, pages 104–107, Washington,
DC, USA, 2007. IEEE Computer Society.

[Tor05] James Torio. Blogs: A global conversation. Master’s thesis,
Syracuse University, 2005.

[Ups05] Trystan Garrett Upstill. Document ranking using web evidence.
PhD thesis, The Australian National University, 2005.

[W3C06] W3C. Extensible markup language (xml) 1.0 (fourth edition).
Available online at: http://www.w3.org/TR/REC-xml/, August
2006.

[W3C07] W3C. Xml query test suite. Available online, at: http://www.w3.
org/XML/Query/test-suite/, July 2007.

[Wes04] Markus Westner. Weblog service providing: Identification of func-
tional requirements and evaluation of existing weblog services in

BIBLIOGRAPHY 61

german and english languages. Master’s thesis, UNITEC Institute
of Technology, 2004.

[wik08] Wikipedia, the free encyclopedia. http://www.wikipedia.org,
2008.

62 BIBLIOGRAPHY

List of Figures

2.1 Sedna architecture according to [FGK06] 14

3.1 Growth of blogs’ count in the Blogosphere from March 2003 to
March 2007 . 22

3.2 The Anatomy of a common blog 25

4.1 Graph of the old karma. x = views and y = votes 30
4.2 The distribution of the actual karma. x = views and y = votes 30
4.3 How agents provision and evaluate objects. 33
4.4 Graph of function f(x) = 1− 1

x+1 36

5.1 Interface for XML databases . 44
5.2 Data model scheme . 45
5.3 Dependency the iterations count on α 47
5.4 Class diagram for data manipulation 48
5.5 Class diagram for the presentation layer 49
5.6 blog.matfyz.sk title page . 50

A.1 Queries performance 1 – 3 . 53
A.2 Queries performance 4 – 5 . 53
A.3 Simplified use-case diagram for blog.matfyz.sk 54
A.4 Simple schema of PageRank computation 54

64 LIST OF FIGURES

Abstrakt

Blogy sú neustále rastúcim sociálno-ekonomickým fenoménom ovplyvňujúcim
mnohé aspekty nášho života. Menia pohľad na novodobú žurnalistiku, výrazne
začali konkurovať tradičným periodikám na Internete, ktoré majú svoju oporu
aj v printových médiách. Denne vznikajú tisícky nových blogov a objem blo-
gosféry, celého univerza blogov, sa zdojnásobuje každých päť mesiacov. Tento
veľký objem dát, podobne ako celý Web, obsahuje články rôznych kvalít; od
vysoko cenných až po bezcenný spam. Klasické algoritmy pre hodnotenie kval-
ity webstránok ako sú PageRank a HITS sa ukazujú ako nedostatočné, lebo
nevyužívajú dodatočné informácie – charakteristiky blogov. V posledných rokoch
sa z tohto dôvodu prebiehajú rôzne výskumy zamerané na analýzu blogov a
návrh hodnotiacich algorimtov, ktoré by umožnili triediť ich podľa kvality, či
popularity.

Jazyk XML sa stal abecedou webových jazykov. Je to jednoduchý, ľahko
rozšíriteľný jazyk vhodný na výmenu a ukladanie štruktúrovaných dát, ktoré sa
uplatňujú v rôznych aplikáciach (medicína, legislatíva, personalistika, katalógy).
Výhodou jazyka XML je textový formát, dobre čitateľný pre ľudí i stroje.

Uchovávanie údajov v XML nie je nová myšlienka. Uskutočniť ju efektívne
v súborovom systéme sa však dá iba nad malou množinou dát z dôvodu neprí-
tomnosti indexov, ktoré by zrýchlili pomalé prehľadávanie rozsiahlych XML
dokumentov. Problémom je tiež neexistencia aparátu na modifikáciu XML
skombinovateľná s dopytovacími jazykmi pre jazyk XML. Ako riešenie týchto
problémov sa ponúka nie veľmi známy a pomerne nový koncept – XML databázy.
XML databáza je špecialne určená na ukladanie a manipuláciu s XML doku-
mentami. Podporuje indexovanie, transakcie a kultivované nástroje na úpravu
dát.

Náplňou tejto diplomovej práce je skĺbiť výskum v oblasti XML databáz
a hodnotiacich algoritmov pre blogy. Za týmto účelom bol zhotovený plne
funkčný komunitný blog portál blog.maftyz.sk, na ktorom boli aplikované
výsledky výskumu. Portál beží v súčasnoti na natívnej XML databáze Sedna
vyvinutej pri Ruskej Akadémii vied a získava si čím ďalej väčšií záujem vere-
jnosti. V apríli 2008 mal 150 registrovaných používateľov a 600 publikovaných
príspevkov. Aj vďaka týmto používateľom sa dala overiť úspešnosť autormi
upravenej verzie EigenRumor algoritmu, v ktorej boli zohľadnené špecifické

66 ABSTRAKT

podmienky a výhody tohoto portálu. Rozšírenie ponúknuté v tejto práci využíva
zhustený graf príspevkov. Vďaka tejto inovácii po aplikovaní iteratívneho Eigen-
Rumor algoritmu dosahuje hodnotenie, ktoré lepšie odráža názor a smerovanie
komunity.

Kľučové slová: blogy, XML, XML databázy, hodnotiace algoritmy

