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Chapter 1

Introduction

The main interest and high level view of our story will be the prime numbers
and how to recognize them apart from composites. This problem was
formulated by ancient mathematicians long before there were any notions like
time complexity or any practical need of testing large numbers for primality
like we know it nowadays in cryptography. Like many problems in number
theory, it remained unsolved for hundreds of years, until quite recently there
were some significant breakthroughs in this area.

First revolutionary invention were the probabilistic primality tests, which
have some very small probability of giving an incorrect answer. On the
other side, they are very fast, not only polynomial with respect to the length
of the input, but also practically usable. Of course for mathematicians,
any probability that the result might be wrong, however small, still makes
the solution unsatisfactory. In this text we will speak more about another
breakthrough, which was to fill the gap of uncertainty and to construct an
algorithm without this small error probability flaw. We will start with a
brief evolvement overview of the primality testing algorithms and look at the
deterministic test discovered by Indian mathematicians Manindra Agrawal,
Neeraj Kayal and Nitin Saxena in august 2002.

Before the test was discovered, the authors formulated the following
conjecture which they hoped would bring a deterministic primality test.

Conjecture 1.1 (Agrawal) Let n,r be relatively prime integers, for which

(x− 1)n ≡ xn − 1 (mod xr − 1, n)

holds. Then either n is prime, or n2 ≡ 1 (mod r) has to hold.
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2 CHAPTER 1. INTRODUCTION

They have not been successful in proving this conjecture and even now
we do not know whether it is true or not. Finally the test they have found
is based on some other ideas, however, if true, the conjecture would still
provide a significant speed up of the test. In this text we will present our
results related to the conjecture and try to give some new ideas that can help
with the research.

We will first demonstrate some reasons for the formulation of the
conjecture, starting with a question about the choice of parameters made
in the test and when can this choice lead to difficulties. To deal with this
problem, we will try a combinatoric approach of using binomial theorem
and some familiar tricks for manipulating the sums, as an alternative to the
algebraic approach using Chinese remainder theorem. In both ways we will
prove an interesting result showing that for some choices of parameters the
Carmichael numbers are making the same troubles as in other tests. In next
chapter we will present another choice of parameters where Sophie-Germain
prime conjecture comes into play and implies that there is an infinite set of
composite numbers satisfying the congruence in the AKS test.

We will then analyze some special cases of the conjecture and develop an
algorithm for calculating parameters that can be used to test its validity in a
faster way. Along with this algorithm we will provide an alternative proof for
the theorem proposed by Lenstra and Pomerance which suggest that there
is a way to find the counterexample to the conjecture.

As a result of further research of the related theory we will demonstrate
how to use matrices instead of polynomials to find a connection between the
congruence used in AKS test and some special linear recurrent sequences. We
will develop a generic way to construct those sequences and demonstrate in
the special case that it leads to the well-known Fibonacci sequence. This will
give us an alternative way of proving the result of authors of the AKS test
where they have shown the numbers satisfying the test with some special
parameters actually have to be Fibonacci pseudoprimes. In our text we
will additionally show that in some cases we are also dealing with Fermat
pseudoprimes to particular bases.

We will conclude our story with a set of experimental results which we
have collected using the theoretical results from the previous text and some
available records of numbers with special properties. We hope this text
presents our ideas and objectives clearly and will be a pleasant tour for the
reader, possibly inspiring him to a further study of the presented topics or
helping with the research.



Chapter 2

Primality testing

To give the reader a better insight into the motivation of our story, we will
mention in this chapter some of the ways to test whether a given integer is a
prime number. We will give a brief overview of these methods, but to get a
deeper view we strongly recommend the texts [5] and [6], which also contain
the original references for all the theorems in this chapter.

First obvious way to find out whether a number is prime, is to follow the
definition and simply search the range of possible divisors. This approach is
called trial division and it comes as no surprise that it is too slow to use for
large inputs.

What seems to be necessary to speed up the test, is another characteri-
zation of the prime numbers, i.e. some condition equivalent to the primality
which is faster to verify. There are such conditions which may seem good
candidates at the first sight, the following one is a good example.

Theorem 2.1 (Wilson’s theorem) Let p be an integer, p > 1. Then p is
prime if and only if (p− 1)! ≡ −1 (mod p).

However, a closer look tells us that we actually do not know how to
calculate the factorial in the congruence in any faster way than the usual
iterative multiplication, which means that by using the Wilson’s theorem
as a primality test we get an even slower algorithm than the trial division.
Actually, mathematicians were not very successful in searching for a suitable
equivalent condition, but there was another breakthrough idea.

If we consider a necessary condition for primality which is not sufficient
in general, we may get much better results in the sense of the speed. Of
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4 CHAPTER 2. PRIMALITY TESTING

course this also means that there will be composite numbers passing our
test and we have to somehow distinguish them. There is a whole family
based on a simple criterion called Fermat’s little theorem, we will show
some of them in this overview. Apart from the probabilistic tests based
on Fermat’s little theorem, there are some other methods of primality
testing, most notably the Elliptic curve primality proving (ECPP) and the
Adleman-Pomerance-Rumely (APR) test, improved by Cohen and Lenstra
to get the time complexity (log n)O(log log logn). These tests are using quite
complex results and notions from the number theory, which makes them less
intelligible for the general audience.

Theorem 2.2 (Fermat’s little theorem) Let p be a prime number. For
any integer a we have ap ≡ a (mod p). Moreover, if a is coprime to p, we
have ap−1 ≡ 1 (mod p).

There is a fast way to calculate the modular powers which uses the
binary representation of the exponent p, which means we have gained speed.
Another advantage of this condition is the parameter a. If p is prime, the
theorem has to hold for any choice of a, and by choosing more of them we can
increase the probability that the result we get is really true. This parameter
is usually called a base and a composite number that passes the Fermat’s
test for some base a is called base-a pseudoprime. The natural question that
arises is whether we can choose a set of bases such that no composite number
will pass the test for all of them. If there would be such a set which is small
enough, we could turn this into a quickly verifiable sufficient condition as
well. Unfortunately, there is no such set, because there are composites which
pass the test for any base.

Definition 2.1 Let n be a composite integer. If for any integer a it is true
that an ≡ a (mod n), we call the number n a Carmichael number.

It was proved that there are infinitely many Carmichael numbers and the
following criterion was found to recognize them.

Theorem 2.3 (Korselt’s criterion) Let n be an odd integer. Then n is a
Carmichael number if and only if

a) It is square-free, i.e. not divisible by any square of a prime number.

b) For each of its prime divisors p it is true that p− 1 | n− 1.
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Although the Korselt’s criterion characterizes the Carmichael numbers
in an alternative way which is very useful for theoretical manipulations,
without knowing the prime factorization (which we certainly do not know
when testing for primality) it does not help too much to recognize them. On
the other side, when we are lucky enough to pick a composite number which
is not Carmichael, we have a very high chance of identifying it.

Lemma 2.1 Let n be an integer. If there is a number a, coprime to n, for
which the congruence an−1 ≡ 1 (mod n) does not hold, then this congruence
holds for at most half of the numbers in set {1, . . . , n} coprime to n.

The real breakthrough idea is to use this fact and pick base a randomly
multiple times. In each step we have roughly 50% probability of finding out
that the number is composite (if it is not prime or Carmichael). Repeating
such a test decreases the probability of wrong decision exponentially and we
can bound it with such a low constant that for practical purposes we can be
almost sure that the result is correct.

Unfortunately we cannot ignore Carmichael numbers because there are
too many of them. What can be done though, is to formulate the necessary
condition in a different way.

Theorem 2.4 Let p be a prime number, p = 2st, where t is odd. Then for
any a coprime to p we have either at ≡ 1 (mod p) or a2it ≡ −1 (mod p) for
some i ∈ {0, . . . , s− 1}.

Once again we can construct a primality test based on this condition.
The idea itself was first discovered by Artjuhov and later independently by
Selfridge. We call the composite numbers passing the test base-a strong
pseudoprimes and there is a good reason for calling them strong, because
there are no numbers analogous to the Carmichael numbers in this case. In
fact, even the probability of getting false positives is lower in this case.

Theorem 2.5 Let n > 9 be an odd integer. If S(n) is the set of all bases
0 ≤ a < n for which n is a strong pseudoprime, then |S(n)| ≤ 1

4
ϕ(n), where

ϕ(n) is Euler’s totient function.

Theorem 2.6 Let k ≥ 3 and T ≥ 1 be integers. Algorithm which generates
a prime number by testing validity of the condition 2.4 for a random number
n ∈ (2k−1, 2k) and a random number a ∈ 〈2, n− 2〉, doing so T times, has a
probability of producing composite number less than 4−T .
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These two theorems, proved by Monier and Rabin, provide first variation
of the so-called Rabin-Miller test, in this case a probabilistic one which
can test or generate prime numbers based on the criterion from theorem
2.4. Another variation, discovered by Miller (which is the reason why he
appears in the name of the algorithm) is a deterministic version based on the
Extended Riemann hypothesis and the following result.

Theorem 2.7 If the Extended Riemann hypothesis is true, then the smallest
witness of an odd composite number n is less than 2 ln2 n.

Witness is a name for the base which will not make the number a strong
pseudoprime, i.e. when the test is performed with this number as a parameter
a, it will find out that the number is composite. It is therefore enough to
perform the test for all a’s from the set {1, . . . , 2 ln2 n} and we are sure (if
we believe that the Extended Riemann hypothesis is true), that the result is
correct.

Although both of these approaches have their flaws (the first some
non-zero error probability and the second dependency on a conjecture),
the variation of this test is widely used for commercial purposes to test
and generate prime numbers. The main reason for that is the speed and
simplicity. There are many other approaches to probabilistic primality
testing, e.g. Solovay-Strassen test dealing with quadratic residues etc. In
one of the following chapters we will deal with the Fibonacci test and
pseudoprimes, therefore we add it here to our overview.

Theorem 2.8 Let us denote by fn the n-th Fibonacci number (starting with
f0 = 0, f1 = 1). If n is a prime number, then the following holds

a) fn−1 ≡ 0 (mod n) for n ≡ ±1 (mod 5)

b) fn+1 ≡ 0 (mod n) for n ≡ ±2 (mod 5)

Analogously to the previous tests, we call numbers that satisfy this condition
in spite of being composite the Fibonacci pseudoprimes.

Next important step in the family of simple algorithms based on variations
and generalizations of Fermat’s little therorem was an algorithm found in the
year 2002 by Indian mathematicians Agrawal, Kayal and Saxena and is called
by their names, AKS test. The very basic idea of the algorithm is surprisingly
simple, as the next lemma shows.
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Lemma 2.2 Let n be an integer, then for all integers a, for which (a, n) = 1,
the following congruence

(x+ a)n ≡ xn + a (mod n) (2.1)

holds iff n is prime.

Proof Using the binomial theorem, we can expand the left side of the
congruence to a well-known sum

(x+ a)n =
n∑
k=0

(
n

k

)
xkan−k

We are especially interested in the first and the last member of the expansion,
as they are the same degrees as we have on the right side of our congruence.
Therefore let us write

(x+ a)n = xn +
∑

0<k<n

(
n

k

)
xkan−k + an

First, let us assume that n is prime. Then by Fermat’s little theorem we have
an ≡ a (mod n), and all we have to show is that the sum in the middle is
congruent to zero. This is done quite easily – we just have to realize that the
binomial coefficient

(
n
k

)
can be written as nk

k!
, where nk = n · (n− 1) · · · (n−

k + 1). The numerator of this fraction is obviously divisible by n. However,
because n is prime, there is no other number which would divide n and be
less than n (except for 1 of course, but this is irrelevant). Therefore, there is
nothing in the denominator that would cancel out the prime n and the whole
number is divisible by n. This means all the terms of the sum are divisible
by n and the sum itself is congruent to zero, so we are done.

Now let us assume that n is not a prime number and let p be a prime
divisor of n. We will take a look just at the coefficient(

n

p

)
=
n · · · (n− p+ 1)

p · · · 1

If pα is the highest power of p that divides n, then the numerator is divisible
by pα (only the factor n is divisible by p) and the denominator is divisible by
the first power of p (the factor p). Therefore, the whole fraction is divisible
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only by pα−1 and cannot be divisible by n, also the coefficient an−p which
gets multiplied by it will not help, as (a, p) = 1. �

The previous lemma gives us an equivalent condition of primality. We
have seen that there are troubles with such conditions and this is not an
exception – testing it requires to calculate a polynomial of enormous size,
which makes it even slower and more memory consuming than the trial
division test.

To make it more than just another curiosity like Wilson’s theorem, we
take the congruence and reduce it modulo some polynomial of a small degree,
namely xr − 1, where r is of polylogarithmic size. Because we have shown
that the congruence holds for primes, reducing it further cannot break this
property and it is still true that

(x+ a)n ≡ xn + a (mod xr − 1, n) (2.2)

for prime n. For simplicity, we will in the following text refer to this
congruence as T (a, n, r). This new congruence can hold for some composite
n as well – taking the simplest example of r = 1, we have reduced our test
to the Fermat’s test.

Our goal is therefore to choose r and a in such a way that we gain speed,
but do not lose the equivalence with primality condition. Authors of the
test have shown that there is indeed a way to choose those parameters that
makes it fast and still keeps the other direction of the equivalence holding,
at least to some extent. We will state their algorithm here, the proof and
time-complexity analysis can be found in the original article [1].

After the AKS algorithm was discovered, there were many improvements
made by other mathematicians and some of them have shifted the time
complexity from the original O(log7.5+ε n) to O(log6+ε n). There are
some modifications of the proof that only guarantee the time complexity
O(log12+ε n), but make the arguments in a more elementary way which is
intelligible with basic knowledge of algebra and number theory. However,
even these improvements were not enough to make the test practical enough
and it still remains just a theoretical result at this time (for practical
purposes, probabilistic algorithms are used).

An important questions that remains open will be the main topic of our
whole story. We have already mentioned the Agrawal’s conjecture in the
introduction, this is the direction that authors have been trying to go in the
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Algorithm 1 AKS

• check whether n is a perfect power (i.e. for some a, b > 1 : n = ab)
if so, output COMPOSITE

• find the smallest r such that or(n) > lg2 n

• perform a trial division for n up to r
output COMPOSITE if there is a divisor

• check the congruence (2.2) for a ∈ {1, . . . , b
√
ϕ(r) lg nc} and r

output COMPOSITE if it does not hold in some case

• otherwise output PRIME

article [9] before coming to another way of proof. If true, this conjecture
would improve the time complexity of the AKS test to O(log3+ε n), simplify
it and make it really usable in the practical applications. The initial idea that
the conjecture may hold at all came from the experimental searches in the
range n < 1010, r < 100. In the following chapters we will demonstrate some
reasons of its formulation and later present our contribution to the search of
the counterexample.
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Chapter 3

Carmichael numbers

In the previous chapter we have said that putting r = 1 in the congruence
(2.2) reduces testing of the congruence to the Fermat’s test and therefore has
all its flaws in that case. Authors have shown that choosing r in such a way
that or(n) > lg2 n seems to be enough to eliminate any flaws when combined
with a suitable set of a’s. The question we want to ask in this chapter is
whether there are some choices of r which are so bad that there is no set of
a’s that would help to distinguish composites from primes, exactly as it was
with the Carmichael numbers in case of the Fermat’s test.

In the next lemma we will show that AKS test is not worse than Fermat’s
test for any choice of r. What we mean by that is that if it fails for some
number n and all choices of a’s, then this number n has to be Carmichael.

Lemma 3.1 Let n and r be some fixed integers and suppose T (a, n, r) holds
for any choice of a. Then an ≡ a (mod n) for all integers a.

Substituting x = 1 into T (a, n, r) we have directly

(1 + a)n ≡ 1 + a (mod n)

However, this is just a shift of the congruence we want to prove and we can
change a for a− 1, therefore we are done. �

The next step to answer our question is to ask whether there are choices
of r which make the testing of the congruence T (a, n, r) fail for Carmichael
numbers and all choices of a. We will start with the combinatoric approach,
in order to dig deeper into the structure of the polynomial powers in our

11
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congruence, and later we will show the same with a standard algebraic
approach, just to see the difference between the methods.

Theorem 3.1 Let n = p1 · · · pk be a Carmichael number and r | (p1−1, p2−
1, . . . , pk − 1). Then T (a, n, r) holds for any integer a.

We will need two lemmas before coming to the proof.

Lemma 3.2 Let p = rs + 1 be a prime number and let g be a generator of
the cyclic group Z∗p . Then for any integer k it is true that

r−1∑
i=0

gisk ≡
{
r (mod p) when r | k
0 (mod p) when r - k

Proof It is easy to see that the condition r | k is equivalent to p − 1 | sk.
Because g is the generator of the cyclic group Z∗p , this is further equivalent
to the congruence gsk ≡ 1 (mod p). If it holds, every summand is 1 modulo
p, so it is not hard to see that the sum of r such numbers is exactly r. Let
us have a look at the sum in the second case and let us denote its value by
S. We have

gsk · S ≡
r−1∑
i=0

g(i+1)sk = S − g0 + grsk (mod p)

Because rs = p− 1, we have grsk ≡ g0 = 1 (mod p), and therefore

gsk · S ≡ S (mod p)

Another manipulation gives us

S(gsk − 1) ≡ 0 (mod p)

and from the assumption we know that the second factor is not zero, which
means p has to divide the first one, i.e. S ≡ 0 (mod p), which is the fact we
wanted to prove. �

Lemma 3.3 Let n = rq + 1 be a Carmichael number and let p = rs + 1 be
a prime divisor of n. Then for any integers a and t we have

∑
0≤j≤n

j≡t (mod r)

(
n

j

)
aj ≡


1 (mod p) when t ≡ 0 (mod r)
a (mod p) when t ≡ 1 (mod r)
0 (mod p) when t 6≡ 0, 1 (mod r)
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Proof Let g be a generator of the cyclic group Z∗p . Let us have a look at
the following sum

S1 =
r−1∑
i=0

(gsi + a)n · gsi(t−1)

According to the binomial theorem we get

S1 =
r−1∑
i=0

gsi(t−1)

n∑
j=0

(
n

j

)
aj · gsi(n−j) =

r−1∑
i=0

n∑
j=0

(
n

j

)
aj · gsi(n−j+t−1)

Changing the order of the summation we further have

S1 =
n∑
j=0

r−1∑
i=0

(
n

j

)
aj · gsi(n−j+t−1) =

n∑
j=0

(
n

j

)
aj

r−1∑
i=0

gsi(n−j+t−1)

Now we are going to use the lemma 3.2 to calculate the inner sum. Going
from there this sum is always zero modulo p, except for the case when r |
n − j + t − 1, in other words when j ≡ t (mod r). In this case the value of
the sum, according to the lemma 3.2, is exactly r, which means we have

S1 ≡ r ·
∑

0≤j≤n
j≡t (mod r)

(
n

j

)
aj (mod p)

Now let us start with the original sum S1 and follow a different path of
manipulations. We will use the fact that n is a Carmichael number, which
means that (gsi + a)n ≡ gsi + a (mod n), and because p | n this also implies
that (gsi + a)n ≡ gsi + a (mod p). Therefore

S1 ≡
r−1∑
i=0

(gsi + a) · gsi(t−1) (mod p)

and

S1 ≡
r−1∑
i=0

gsit + a ·
r−1∑
i=0

gsi(t−1) (mod p)

Now let us use the lemma 3.2 once again to calculate the value of both sums.
The first one is always zero, except for the case when r | t, having value r in
that case. The second sum is always zero, except for the case when r | t− 1,
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or t ≡ 1 (mod r), having value r in that case. Summing up what we have
learned so far we have

S1 ≡


r (mod p) when t ≡ 0 (mod r)
ra (mod p) when t ≡ 1 (mod r)
0 (mod p) when t 6≡ 0, 1 (mod r)

Now let us call
S2 =

∑
0≤j≤n

j≡t (mod r)

(
n

j

)
aj

We have shown that S1 ≡ r · S2 (mod p) holds, which means we have

r · S2 ≡


r (mod p) when t ≡ 0 (mod r)
ra (mod p) when t ≡ 1 (mod r)
0 (mod p) when t 6≡ 0, 1 (mod r)

The last step is to cancel out the number r in all the congruences (as
p = rs+ 1, the numbers p and r have to be relatively prime). This gives us
the relationship we wanted to prove. �

Now we are ready to prove the theorem 3.1. Apart from the fact that n
is a product of distinct prime numbers, the Korselt’s criterion is telling us
that for all of these prime numbers it is true that pi− 1 | n− 1. Because r is
a common divisor of all terms pi − 1, it has to be true that r | n− 1 as well.
Let us therefore (for a suitable integer q) write n = rq+1. By expanding the
left side of the congruence we are proving according to the binomial theorem
we get

n∑
i=0

(
n

i

)
aixn−i ≡ xn + a (mod xr − 1, n)

Now, realizing that xr ≡ 1 (mod xr − 1), we see that xi ≡ xi mod r

(mod xr − 1) for all non-negative exponents i. Let us denote the sum on the
left side of the congruence by S0 and using this fact rewrite it in the following
way :

S0 ≡
r−1∑
z=0

xz · ∑
0≤j≤n

j≡n−z (mod r)

(
n

j

)
aj

 (mod xr − 1, n)
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Let us now consider any prime number pi, for which according to the
assumption r | pi−1, so there is a suitable si so that we can write pi = rsi+1.
Using the lemma 3.3 we get that

∑
0≤j≤n

j≡n−z (mod r)

(
n

j

)
aj ≡


1 (mod pi) when n− z ≡ 0 (mod r)
a (mod pi) when n− z ≡ 1 (mod r)
0 (mod pi) when n− z 6≡ 0, 1 (mod r)

Using the fact that n ≡ 1 (mod r) we can easily rewrite that to the form

∑
0≤j≤n

j≡n−z (mod r)

(
n

j

)
aj ≡


1 (mod pi) when z ≡ 1 (mod r)
a (mod pi) when z ≡ 0 (mod r)
0 (mod pi) when z 6≡ 0, 1 (mod r)

Additionally, as these congruences hold modulo any prime divisor pi of the
number n, they have to hold modulo n as well, namely because n is a product
of these distinct primes. This gives us

∑
0≤j≤n

j≡n−z (mod r)

(
n

j

)
aj ≡


1 (mod n) when z ≡ 1 (mod r)
a (mod n) when z ≡ 0 (mod r)
0 (mod n) when z 6≡ 0, 1 (mod r)

Using this relationship we can easily calculate the value of the sum S0, we
have S0 ≡ a+x (mod xr−1, n). To conclude the proof, it is enough to realize
that it is true that xn ≡ x (mod xr − 1), as n ≡ 1 (mod r). Therefore we
also have

S0 ≡ a+ xn (mod xr − 1, n)

which is already the congruence we wanted to prove in the first place. �

In addition to the combinatoric proof that we have provided we will now
prove the theorem 3.1 in an alternative way, using the Chinese remainder
theorem for polynomials. Once again we will start from the fact that r | pi−1
for any prime number pi and we will show that if we look at the congruence
T (a, n, r) modulo pi, it is true. Knowing that n is a product of distinct
primes this is enough to show that T (a, n, r) holds also in the original form,
i.e. modulo n.

As a first step, we realize that from r | pi−1 we know that xr−1 | xpi−1−1.
Namely, for a suitable integer s it has to be true that pi = rs+1, which means
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xpi−1− 1 = xrs− 1 = (xr − 1)(x(s−1)r + x(s−2)r + . . .+ 1). Moreover, we have
xpi−1−1 | xpi−x and we know that Zpi

is the splitting field of the polynomial
xpi − x. This is implied by the fact that according to the little Fermat’s
theorem, each member of this field is a root of the polynomial xpi − x and
therefore we can write this polynomial over this field as a product of factors
xpi−x ≡ x·(x−1) · · · (x−pi+1) (mod pi). Because the polynomial xr−1 is its
divisor, there has to be a way of writing it analogically as a product of some of
these factors (it would be r of them obviously), i.e. xr−1 ≡ (x−a1) · · · (x−ar)
(mod pi), where a1, . . . , ar are distinct members of Z∗pi

. Now having the fact
that all the polynomials x − aj are relatively prime we can use the Chinese
remainder theorem to simplify our dealing with the congruence T (a, n, r).
If we are lucky enough to show that for all j ∈ {1, . . . , r} it is true that
(x+ a)n ≡ xn + a (mod x− aj, pi), then knowing that xr − 1 is a product of
these relatively prime polynomials and using the Chinese remainder theorem
we get (x− 1)n ≡ xn − 1 (mod xr − 1, pi) as well. This would be, according
to what has been said so far, enough to show that T (a, n, r) holds for any a.
Fortunately, dealing with the congruence modulo x−aj is very simple, as we
have x ≡ aj (mod x − aj) which effectively means we can substitute aj for
x, getting an equivalent congruence (aj − a)n ≡ anj − a (mod pi). From the
fact that n is a Carmichael number we immediately have (aj − a)n ≡ anj − a
(mod n), which is even more than we need, as pi | n. This means we are
done with the proof. �

We have demonstrated that there are choices of r such that testing the
congruence (2.2) can fail for all choices of a. This shows that there are some
limitations needed on the parameter r and although the condition or(n) >
lg2 n might not be the tightest and there is still a place for improvements,
there is a good reason to limit the r in this way (apart from the fact that it
was needed for the proof). More importantly, we have shown an interesting
example of two different points of view when dealing with the congruence
T (a, n, r). The algebraic approach turned out to be simpler, on the other
side by using the sum approach we have gained more insight into what is
happening when we are calculating powers of polynomials.



Chapter 4

Sophie-Germain primes

Another way of looking at the result from the previous chapter is that we
have shown in the case of r 6= 1 and r | n − 1, that there are infinitely
many composite numbers n for which T (a, n, r) holds. This corresponds
to the Agrawal’s conjecture which is explicitly saying that this is ok when
r | n2 − 1. The question we want to ask now is whether it will help when we
restrict the parameters in such a way that r - n − 1. Will there still be an
infinite set of composite numbers n satisfying the congruence ?

We will use simple choices of r = 4 and a = −1 to show that the situation
seems to be similar when r | n + 1. First, let us start with an equivalent
characterization of the congruence T (−1, n, 4) which will be easier to work
with.

Theorem 4.1 Let n be an integer. The congruence T (−1, n, 4) holds iff

a) 2
n−1

2 · (−1)
n−1

4 ≡ 1 (mod n) for n ≡ 1 (mod 4)

b) 2
n−1

2 · (−1)
n+1

4 ≡ 1 (mod n) for n ≡ 3 (mod 4)

Proof Let n = 4k + 3. It can be easily shown by induction that

22k · ((−22k+1 + (−1)k) + (22k+1 + (−1)k)x+

(−22k+1 − (−1)k)x2 + (22k+1 − (−1)k)x3)

is congruent to (x − 1)n in (x4 − 1, n). In the first step, taking k = 0, the
expression evaluates to x3 − 3x2 + 3x − 1, which is exactly (x − 1)3. In the
induction step we just multiply the expression by (x− 1)4 = 2(−2x3 + 3x2−

17
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2x + 1) and we get the desired result for k + 1. To derive the equivalent
property for T (−1, n, 4), we just have to compare the coefficients of desired
result (x− 1)n, which should be the same as x3 − 1, to what we have in our
expression. This gives us the following congruences :

22k(22k+1 − (−1)k) ≡ 1 (mod n)

22k(22k+1 + (−1)k) ≡ 0 (mod n)

When we subtract these we get directly the congruence 22k+1 · (−1)k+1 ≡ 1
(mod n), which we wanted to prove in the first place. To get the other
direction of equivalence, it is enough to realize that (n, 2) = 1 and by
multiplying the congruence by 2−1 and squaring both sides we can easily
derive both of the congruences equivalent to T (−1, n, 4), which concludes
the proof. In the case of n = 4k + 1, the proof is exactly the same, first we
show by induction that

22k−1 · ((−22k + (−1)k−1) + (22k − (−1)k−1)x+

(−22k − (−1)k−1)x2 + (22k + (−1)k−1)x3)

is in the same class of residues as (x− 1)n, then we compare the coefficients
with the desired result, in this case the polynomial x − 1. This way we get
congruences

22k−1(22k − (−1)k−1) ≡ 1 (mod n)

22k−1(22k + (−1)k−1) ≡ 0 (mod n)

Subtracting them gives us the congruence 22k · (−1)k ≡ 1 (mod n), which we
wanted to prove (the other direction is done once again with squaring both
sides). �

For the concrete choices of parameters that we have made we no longer
have to deal with polynomial congruence, which gives us higher chances
of manipulating it successfully. One observation that is quite simple to
make, is that by squaring the congruences from 4.1 we immediately see that
for a composite number n to satisfy them, it has to be a base-2 Fermat’s
pseudoprime. Therefore we were able to simply use the existing records of
pseudoprimes (up to 1015 collected William Galway – see [7]) to give us a
feeling of how often the congruence T (−1, n, 4) holds. From the overall count
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of 1801533 pseudoprimes in the range we searched through, there were 867198
such that T (−1, n, 4) holds and n ≡ 1 (mod 4), and only 89913 were such
that T (−1, n, 4) holds and n ≡ 3 (mod 4). The reason seems to be that there
is about 10 times more pseudoprimes with residue 1 than with residue 3 and
for both of them about a half satisfies the condition needed for T (−1, n, 4)
to hold.

It all looks like for r = 4 there is a lot of examples we search for. The next
question we want to ask is whether this pattern holds also for large numbers
and whether we can find an infinite sequence of numbers with T (−1, n, 4) and
n ≡ 3 (mod 4). We will show that if the widely believed Sophie-Germain
primes conjecture is true, such a sequence can be easily constructed. First
of all, let us introduce some necessary basics.

Definition 4.1 Let p be a prime number. We say that p is a Sophie-Germain
prime if 2p+ 1 is a prime number as well.

The conjecture says that there are infinitely many Sophie-Germain
primes. Some very large examples were actually found (e.g. p = 8069496435 ·
105072 − 1), but no proof was yet given. However, there are some heuristic
arguments and estimations about the expected count of these numbers.
The next theorem tells us about the connection between Sophie-German
primes and composite Mersenne numbers, which we will need for our proof.
Mersenne numbers are numbers in form 2n − 1, especially interesting when
the exponent n is prime.

Lemma 4.1 If Mn = 2n − 1 is prime, then n has to be a prime.

Proof If the n is composite, we can write n = ab (a, b > 1) and
2n − 1 = 2ab − 1 = (2a − 1)(2a(b−1) + . . . + 1), therefore 2n − 1 is composite
as well. �

While p has to be prime for 2p − 1 to be prime as well, the converse is
not true and actually there are many such Mersenne numbers with prime
exponents that are composite. It is not even known whether there are
infinitely many such composite or infinitely many such prime Mersenne
numbers with prime exponents. We will now show the connection between
such numbers and Sophie-Germain primes (for more properties see [16]).

Theorem 4.2 Let p > 3 be a Sophie-Germain prime for which p ≡ 3
(mod 4). Then the number Mp = 2p − 1 is composite.
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Proof Let q = 2p + 1, we know that this number is prime. In addition,
because p ≡ 3 (mod 4), we know that q ≡ 7 (mod 8). This implies
(calculating the Legendre’s symbol, see e.g. [5]), that the number 2 is a
quadratic residue (mod q), which by Euler’s criterion for quadratic residues
means that 2

q−1
2 = 2p ≡ 1 (mod q). Therefore, we have shown that

Mp = 2p−1 has a non-trivial factor of q = 2p+1, and has to be composite. �

Now we know that relying on a fact of having enough Sophie-Germain
primes (with the desired residue mod 4), there is enough composite Mersenne
numbers with prime exponents as well. To finish our reasoning we will use
these numbers to construct the sequence of numbers which we were looking
for.

Theorem 4.3 If p > 3 is a prime number and Mp = 2p − 1, then
T (−1,Mp, 4) holds.

Proof According to the theorem 4.1, we need to check the equivalent
congruence to know whether T (−1,Mp, 4) holds. The residue mod 4 is in
this case 3, so we have to prove that

2
Mp−1

2 · (−1)
Mp+1

4 ≡ 1 (mod Mp)

The exponent of −1 disappears immediately, as Mp+1

4
= 2p−2 ≡ 0 (mod 2).

The congruence is equivalent to

22p−1−1 ≡ 1 (mod 2p − 1)

Now we will use the fact that p is prime and by Fermat’s theorem p | 2p−1−1.
This means that the exponent is divisible by p and can be written in a form
p · k for some k. This gives us the conclusion that 22p−1−1 = 2p·k = (2p)k ≡
1k = 1 (mod 2p − 1) and the proof is done. �

From the theorem we now see the reason why we needed the Mersenne
numbers to be composite – in the case of composite Mp we directly have an
example of a number for which the congruence holds, but r - n − 1, in fact
r | n + 1, and it seems very probable (based on the mentioned conjectures)
that in this case we have infinitely many of them.



Chapter 5

Lenstra-Pomerance heuristic

If we combine the results from the previous two chapters, we see that
there seem to be infinite sequences of composite numbers n satisfying the
congruence T (−1, n, r) in the case when r | n2− 1. This is a good reason for
having this condition in the formulation of the Agrawal’s conjecture, but it
is not clear whether it covers all the cases. In fact, the scientific community
in the area of the number theory researched this problem and formulated
several notes (see [12]) to the conjecture, most interesting being the following
theorem, which provides a heuristic way to look for the counterexample for
the Agrawal’s conjecture.

Theorem 5.1 (Lenstra, Pomerance) Let p1, . . . , pk be distinct prime num-
bers and let n = p1 · · · pk. If the following conditions hold

a) k ≡ 1 (mod 4) or k ≡ 3 (mod 4)

b) pi ≡ 3 (mod 80) for i ∈ {1, . . . , k}

c) pi − 1 | n− 1 for i ∈ {1, . . . , k}

d) pi + 1 | n+ 1 for i ∈ {1, . . . , k}

then the congruence T (−1, n, 5) holds, while n2 6≡ 1 (mod 5).

The authors in article [13] used arguments from analytical number theory
to show heuristic reasons for the existence of a number n satisfying the
given conditions, and therefore being a counterexample for the Agrawal’s
conjecture. They did not, however, give any concrete estimation of the size

21
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of this number, nor did they give any way to find it. Before we will show that
the theorem itself is true, we will prepare some auxiliary statements. The
proof we will give in this text differs slightly from the original proof and from
the intermediate lemmas we will later derive a way to verify the congruence
T (−1, n, 5) in some special circumstances.

Definition 5.1 Let n be an arbitrary integer, for which (n, 5) = 1. Let us
denote by ρ(n) the smallest integer, for which the following is true

(x− 1)ρ(n)+1 ≡ x− 1 (mod x5 − 1, n) (5.1)

The number ρ(n) represents a multiplicative order of the element x− 1.
First, let us show that the definition is correct and the number ρ(n) actually
exists in all cases.

Lemma 5.1 Let n be an integer and let (n, 5) = 1. Then there is a number
r > 1, for which

(x− 1)r ≡ x− 1 (mod x5 − 1, n)

Proof We will show that if (n, 5) = 1 holds, we can in some limited way
cancel out the term x− 1 from both sides of a congruence, if we have powers
of this polynomial at the both sides of it. First of all, from the condition
(n, 5) = 1 we know that there is an inverse element for the number 5 modulo
n. Let us call this inverse element a and consider the following polynomials
p(x) = 2ax4 + ax3 − ax− 2a and q(x) = x4 + x3 + x2 + x+ 1. We have

p(x) · (x− 1) ≡ −ax4 − ax3 − ax2 − ax+ 4a (mod x5 − 1, n)

what can be written as

p(x) · (x− 1) ≡ 5a− aq(x) (mod x5 − 1, n)

or by the definition of a

p(x) · (x− 1) ≡ 1− aq(x) (mod x5 − 1, n) (5.2)

The next congruence we will use is easy to verify as well

q(x) · (x− 1) ≡ 0 (mod x5 − 1, n) (5.3)
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Putting them together we have

p(x) · (x− 1)2 = p(x) · (x− 1) · (x− 1) ≡
(1− aq(x)) · (x− 1) = x− 1− aq(x) · (x− 1) ≡ (5.4)

x− 1− a · 0 = x− 1 (mod x5 − 1, n)

So we see that p(x) really can be used, in a limited way, as an inverse of
x− 1. Now we will come to the proof of the lemma itself. Because there are
only finitely many residue classes modulo x5 − 1, there has to be a pair of
exponents k 6= l for which

(x− 1)k ≡ (x− 1)l (mod x5 − 1, n) (5.5)

If k = 1 or l = 1, we are already done with the proof. Therefore let us
assume, without the loss of generality that 1 < k < l. To conclude the proof
it is enough to multiply the congruence (5.5) by the polynomial p(x)k−1 and
repeatedly use the relationship (5.4), which gives us

p(x)k−1 · (x− 1)k ≡ p(x)k−1 · (x− 1)l (mod x5 − 1, n)

x− 1 ≡ (x− 1)l−k+1 (mod x5 − 1, n)

and we have found the r = l − k + 1 we were looking for. �

Lemma 5.2 Let k, l be any integers and let ρ be the function we have defined
above. Then the congruence (x− 1)k ≡ (x− 1)l (mod x5− 1, n) holds if and
only if k ≡ l (mod ρ(n)) holds.

Proof The first implication is trivial, it results from the definition of ρ(n).
In the other direction we can without loss of generality assume that k < l,
because in the case k = l there is not much to prove. At the end of the
previous proof we have shown that having the congruence (5.5) we know
that

x− 1 ≡ (x− 1)l−k+1 (mod x5 − 1, n) (5.6)

in the case k = 1 trivially and in the case k > 1 after canceling out the
terms iteratively. On the other side we have defined the number ρ(n) as the
smallest integer with the property (5.1), telling us how often the remainder
x− 1 will repeat itself in the sequence of powers. Because from this point on
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the sequence is periodic, every other repetition has to happen exactly for the
powers that are further by the multiple of ρ(n). This means that ρ(n) | l− k
has to hold, but that is only an equivalent way of stating the congruence that
we are proving. �

Lemma 5.3 Let n be an integer for which (n, 5) = 1 and ρ the function
defined above. If there exists λi(n), i ∈ {2, 3, 4} for which

(x− 1)λi(n) ≡ xi − 1 (mod x5 − 1, n)

then λ2(n)2 ≡ λ4(n) (mod ρ(n)), λ2(n)3 ≡ λ3(n) (mod ρ(n)), λ3(n)2 ≡
λ4(n) (mod ρ(n)) and λ3(n)3 ≡ λ2(n) (mod ρ(n)). In fact, the existence
of λ2(n) or λ3(n) implies the existence of the remaining two.

Proof Let us take first the congruence

(x− 1)λ2(n) ≡ x2 − 1 (mod x5 − 1, n)

substituting x2 for x we get

(x2 − 1)λ2(n) ≡ x4 − 1 (mod x5 − 1, n)

comparing with the original congruence this gives us

(x− 1)λ2(n)2 ≡ x4 − 1 (mod x5 − 1, n)

from where we already have by the definition of the function ρ and lemma
5.2 the first congruence we wanted to prove : λ2(n)2 ≡ λ4(n) (mod ρ(n)).
The remaining congruences can be obtained in a similar way. �

Lemma 5.4 Let n be an integer and ρ the function defined above. If there
are suitable integers λi(n), i ∈ {2, 3, 4} such that

(x− 1)λi(n) ≡ xi − 1 (mod x5 − 1, n)

then
ρ(n) | 10 · (λi(n)2 − 1) for i ∈ {2, 3}

and
ρ(n) | 10 · (λ4(n)− 1)
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Proof Let us assume that for some integer σ it is true that

(x− 1)σ ≡ x4 − 1 (mod x5 − 1, n)

Then we have

(x− 1)σ−1 ≡ x3 + x2 + x+ 1 (mod x4 + x3 + x2 + x+ 1, n)

or
(x− 1)σ−1 ≡ −x4 (mod x4 + x3 + x2 + x+ 1, n)

Squaring both sides we get

(x− 1)2(σ−1) ≡ x3 (mod x4 + x3 + x2 + x+ 1, n)

and now by taking both sides to the 5th power we already have

(x− 1)10(σ−1) ≡ 1 (mod x4 + x3 + x2 + x+ 1, n)

It is as well true that

(x− 1)10(σ−1)+1 ≡ x− 1 (mod x5 − 1, n)

therefore ρ(n) | 10(σ − 1) (according to the lemma 5.2). To conclude the
proof it is enough to realise that we can substitute for the number σ any of
the numbers λ2(n)2, λ3(n)2 and λ4(n), in the last case from the lemma itself
and in the rest based on the congruences from lemma 5.3. �

Now we are ready to prove the Lenstra-Pomerance theorem. We will
include the case of k ≡ 3 (mod 4), as stated in the theorem, which solves
the exercise proposed by authors of the original proof.

Proof of the theorem 5.1 First, let us assume that k ≡ 1 (mod 4) and
let k = 4 · k′+ 1. Because 34 = 81 ≡ 1 (mod 80) and for all i we have pi ≡ 3
(mod 80) , it is true that n = p1 . . . pk ≡ 34k′+1 = (34)k

′ · 3 ≡ 3 (mod 80).
This means the number n gives the remainder 3 when divided by 5 and the
congruence T (−1, n, 5) has the form

(x− 1)n ≡ x3 − 1 (mod x5 − 1, n)
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in this case. Because n is a product of distinct prime numbers, it is enough
to prove the congruence modulo each of these, i.e. to show that it is true
that

(x− 1)n ≡ x3 − 1 (mod x5 − 1, pi) (5.7)

for all i. Having pi ≡ 3 (mod 5) we know that T (−1, pi, 5) holds, therefore

(x− 1)pi ≡ x3 − 1 (mod x5 − 1, pi) (5.8)

According to the lemma 5.2, congruence (5.7) is equivalent to the relationship

n ≡ pi (mod ρ(pi)) (5.9)

Moreover, according to the theorem 5.4 it is true that ρ(pi) | 10 · (p2
i −1) (for

λ3(pi) = pi). This means that if we are lucky enough to prove, instead of the
congruence (5.9), a following stronger one

n ≡ pi (mod 10(p2
i − 1)) (5.10)

we would be done with the proof. Let us first have a look at the modulus
itself. Because we have pi ≡ 3 (mod 80), the number pi − 1 is even, but
not divisible by any higher power of two. Additionally, it is not divisible by
five. The number pi + 1 is divisible by four, but not by any other higher
power of two, and it is not divisible by five as well. In other words, it is true
that 10(p2

i − 1) = 80 · pi−1
2
· pi+1

4
, while all the factors are relatively prime.

To prove the original congruence (5.10) it is enough to prove the congruence
taken modulo each of the factors. In the first case this is very easy – we have
n ≡ 3 (mod 80), as well as pi ≡ 3 (mod 80). In the second and third case we
have to use the conditions c), d) from the theorem itself. These conditions
tell us that n ≡ 1 (mod pi − 1) and n ≡ −1 (mod pi + 1). In the first case
this means that n ≡ 1 (mod pi−1

2
), while obviously pi ≡ 1 (mod pi−1

2
). In the

second case on the other hand n ≡ −1 (mod pi+1
4

), while obviously pi ≡ −1

(mod pi+1
4

). We have finished the proof of the given congruence.
Let us take a look at the differences in the case k ≡ 3 (mod 4). Here

we can write k = 4 · k′ + 3, having n = p1 . . . pk ≡ 34k′+3 = (34)k
′ · 33 ≡ 27

(mod 80). This means in this case the number n has a remainder of 2 when
taken modulo 5 and the congruence we are trying to prove is equivalent to
the system of congruences in the following form

(x− 1)n ≡ x2 − 1 (mod x5 − 1, pi) (5.11)
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Nothing has changed with respect to the congruences (5.8) and once again we
can get from the lemma 5.4 an equivalent formulation of our problem in the
form of congruences n ≡ λ2(pi) (mod ρ(pi)). In this case we will additionally
use the lemma 5.3, which tells us that λ2(pi) ≡ λ3(pi)

3 = p3
i (mod ρ(pi)), to

get the congruence
n ≡ p3

i (mod ρ(pi)) (5.12)

Using the lemma 5.4 once again we will prove the stronger congruence with
modulus 10 · (p2

i − 1) factored to 3 relatively prime factors. We have n ≡ 27
(mod 80) and p3

i ≡ 27 (mod 80), in case of the first factor the remainders are
the same. For the other two we will once again start from the conditions c),d)
stated in the theorem, getting n ≡ 1 (mod pi−1

2
), while pi ≡ 1 (mod pi−1

2
),

and therefore p3
i ≡ 1 (mod pi−1

2
) as well. Analogically n ≡ −1 (mod pi+1

4
),

while pi ≡ −1 (mod pi+1
4

), and therefore p3
i ≡ −1 (mod pi+1

4
) as well. This

concludes the proof also in the second case. �

Although the theorem shows us that a set of properties identifies the
counterexample to the Agrawal’s conjecture, it is not clear whether there is
any number that could really satisfy all of them. In the next chapter we will
show some possible ways to search for the counterexample that could help
us find it, if it exists at all.
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Chapter 6

Search for counterexample

In the previous chapter we have provided an alternative proof to the theorem
of Lenstra and Pomerance which states conditions sufficient for finding a
counterexample for the Agrawal’s conjecture. Looking at the proof it seems
that the conditions we are giving for the counterexample we search are rather
strict, which means it is possible that there could be a counterexample that
does not satisfy them. On the other hand, the authors provided arguments
supporting the confidence that there is a number satisfying these conditions,
although it can be actually very large. We intentionally used a slightly
different method of proof than the original one given by authors, because
this gives us in some special cases (similar to those given by the conditions
in the theorem), a way to test the conjecture directly.

Lemma 6.1 Let m and n be any integers such that λn mod 5(m) exists. Then
the congruence

(x− 1)n ≡ xn − 1 (mod x5 − 1,m)

holds if and only if the congruence n ≡ λn mod 5(m) (mod ρ(m)) holds.

Proof According to the lemma 5.2, the congruence n ≡ λn mod 5(m)
(mod ρ(m)) is equivalent to the congruence

(x− 1)n ≡ (x− 1)λn mod 5(m) (mod x5 − 1,m)

Now from the definition of the function λn mod 5 we know that

(x− 1)λn mod 5(m) ≡ xn mod 5 − 1 (mod x5 − 1,m)

29
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However, it is obvious that xn mod 5− 1 ≡ xn− 1 (mod x5− 1,m), therefore
we are done. �

The lemma 6.1 gives us an interesting tool which we can use to test
the AKS congruence in a different way. More specifically, let us consider a
square-free number n ≡ ±2 (mod 5) that is a product of prime numbers pi
with remainders 2 or 3 modulo 5. The reason for requiring the remainder
of n is obvious – we are searching for a counterexample to the Agrawal’s
conjecture, therefore we need that 5 - n2 − 1. We will also see why we need
the remainders of prime divisors pi to be as specified.

Because n is square-free, according to the Chinese remainder theorem the
congruence T (−1, n, 5) is equivalent to the system of congruences in a form

(x− 1)n ≡ xn − 1 (mod x5 − 1, pi)

According to lemma 6.1, if the value of λn mod 5(pi) is defined for all of them,
it is further equivalent to the system of congruences

n ≡ λn mod 5(pi) (mod ρ(pi))

We know according to the lemma 5.3 that it is enough that one of the
values λ2(pi) and λ3(pi) exists and the second one is not only guaranteed to
exist but we also know how to compute it. For pi ≡ ±2 (mod 5) we always
have at least one of these values – it is exactly the number pi (this fact is
implied directly by the congruence T (−1, pi, 5)). For the calculation of the
second and construction of the equivalent system of congruences we need the
value of ρ(pi). Fortunately, from the theorem 5.4 we have ρ(pi) | 10(p2

i − 1),
which enables us to search through the divisors and find such a number.

To search through the divisors of some number the well-known method
can be used, which takes the prime factorization of the input and decreases
the powers of all the prime factors by one until the point where it finds
the negative result in all of the cases and it gives the product of decreased
powers as a result. The algorithm is based on the fact that the number we
are searching for divides all the numbers having the same property (5.1), so
it does not really matter which way we choose to go and we always get the
correct result.

Because this system of congruences can be calculated for each prime
number independently from the actual product n, we can also go the other
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way – try to combine the prime numbers and their systems of congruences in
such a way that we increase the probability that their product (the number
n) will satisfy all of them. In case where the systems are incompatible (asking
for a different remainder for the same modulus or its multiple), we can
immediately refuse the hypothesis that such a pair of prime numbers can
be in a set of prime divisors of our counterexample. The important fact is
that this can be concluded without knowing anything about the other prime
factors. Intuitively it seems that the optimal choice for the prime divisors
of n is to choose such prime numbers pi for which ρ(pi) is smooth enough
(i.e. has only small prime divisors). In this case the common modulus,
derived from the combination of systems of congruences, is not getting such
large (as the prime factors are repeating more often). If the prime factors
are not repeating at all, the modulus is approximately cubic compared to
the product of the primes, and therefore the probability of it satisfying the
resulting congruence seems to be very small.

This method is not effective enough for searching in larger ranges,
but it gives us a little improvement compared to the naive testing of
the congruence T (−1, n, 5) for smaller cases, when the number n satisfies
additional conditions. In the following chapters we will show another way
of testing this congruence and its relationship to the Fibonacci numbers and
Fermat pseudoprimes.



32 CHAPTER 6. SEARCH FOR COUNTEREXAMPLE



Chapter 7

Fibonacci & matrix approach

In this chapter we will speak about the relationship between the congruence
T (a, n, r) and linear recurrent sequences. We will be especially dealing with
the case T (−1, n, 5), where this recurrent sequence will be the well-known
Fibonacci’s numbers and we will try to derive a generic way of constructing
the sequences for higher values of r. What this means is that we will
be searching for matrices defining sequences, and using these matrices to
formulate an equivalent condition for our congruence. An inspiration for this
approach was the article [9] released by the authors of AKS algorithm before
they discovered the AKS test. They have shown the relationship between
the congruence T (−1, n, 5) and Fibonacci pseudoprimes. We will come to
the same result with a different set of tools and show how to generalize the
way to obtain similar results for other prime r’s.

We want to show that there is a relationship between our congruence,
basically dealing with modular polynomial powers, and linear recurrent
sequences, which can always be defined by a matrix. To help us transform
these notions, we will use the following theorem.

Theorem 7.1 Let a(x) = a0 + a1x + . . . + ar−1x
r−1, b(x) = b0 + b1x +

. . .+ br−1x
r−1 be polynomials representing any of the residue classes modulo

(xr − 1, n). Let us construct the matrices A and B taking the coefficients of
polynomials a(x) and b(x) and arranging them in the following way

A =


a0 a1 · · · ar−1

ar−1 a0 · · · ar−2
...

... . . . ...
a1 a2 · · · a0

 , B =


b0 b1 · · · br−1

br−1 b0 · · · br−2
...

... . . . ...
b1 b2 · · · b0


33
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Let c(x) = c0 + c1x + . . . + cr−1x
r−1 be a polynomial which is the residue of

the product a(x) and b(x), i.e. let a(x) · b(x) ≡ c(x) (mod xr − 1, n). Then
A ·B ≡ C (mod n), where

C =


c0 c1 · · · cr−1

cr−1 c0 · · · cr−2
...

... . . . ...
c1 c2 · · · c0


and by matrix congruence we mean the system of congruences comparing the
entries with the same coordinates.

Proof Let us have a look at the way of constructing the matrices. In all
cases the pattern is the same – the entry of the matrix with coordinates i, j is
the coefficient with index (j−i) mod r, i.e. it is true that (C)i,j = c(j−i) mod r

for any i, j ∈ {1, 2, . . . , r} and analogically for matrices A and B we have
(A)i,j = a(j−i) mod r, (B)i,j = b(j−i) mod r. Using this relationship we can
construct the matrix C from the coefficients of polynomial c(x) = a(x) · b(x)
mod xr − 1. We have

c(x) = (a0 + a1x+ . . .+ ar−1x
r−1) · (b0 + b1x+ . . .+ br−1x

r−1)

and by multiplying those terms we get

c(x) =
2r−2∑
k=0

[( ∑
u+v=k

aubv

)
xk

]
≡

r−1∑
k=0

 ∑
u+v≡k (mod r)

aubv

xk

 (mod xr−1)

where in the last step we use the fact that for k ≡ k′ (mod r) we have
xk ≡ xk

′
(mod xr−1). Using this congruence we can calculate the coefficients

of polynomial c(x) and putting the result into the formula for constructing
the matrix C we obtain

(C)i,j =
∑

u+v≡j−i (mod r)

aubv (7.1)

Now let us construct the matrix C′, this time directly as a product of
matrices A and B, i.e. let C′ = A · B. We will try to derive a formula for
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the entry of matrix C′ with coordinates i, j using the usual way of matrix
multiplication. We have

(C′)i,j = (A ·B)i,j =
r∑

k=1

(A)i,k · (B)k,j =
r∑

k=1

a(k−i) mod r · b(j−k) mod r (7.2)

In the set {1, 2, . . . , r}2 there are exactly r solutions u, v of the congruence
u + v ≡ j − i (mod r), for example if we let the u run through the set
{1, . . . , r}, the v is always determined in exactly one way.

Taking a look at the sum in the equation (7.1) we see that it contains
exactly these solutions and for choices k = 1, . . . , r in (7.2) we get exactly the
same pairs, because the sum of indexes is always in the residue class (j − i)
mod r. With this we have shown that C ≡ C′ (mod n), which concludes the
proof of the original theorem. �

To illustrate the usage of the matrix approach, shown in the last theorem,
we will stop by to take a look at the congruence T (−1, n, 3). It is the simplest
case where it makes sense to analyze anything, even though it is too simple
to deal with the Agrawal’s conjecture. The basic goal is to characterize the
congruence using an equivalent statement, in this case in a form of a matrix
congruence.

Theorem 7.2 Let n ≥ 3 be an integer, then T (−1, n, 3) holds iff n is odd
and

a) (−3)
n−1

2 ≡ 1 (mod n), for n ≡ 1 (mod 6)

b) (−3)
n−1

2 ≡ −1 (mod n), for n ≡ 5 (mod 6)

c) n is a power of 3, for n ≡ 3 (mod 6)

Proof Because in the theorem 7.1 the arrangement of polynomial coef-
ficients when put into the matrix is the same for input matrices A and
B, as for the output matrix C, we can use this theorem to do an iterative
multiplication, i.e. calculating powers of polynomials. Specifically, in the case
of powers of polynomial x− 1, which we have in the congruence T (−1, n, 3),
we will be dealing with matrix

A =

−1 1 0
0 −1 1
1 0 −1
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Before continuing, let us notice the interesting property of this matrix. When
taking it to the third power, we get the matrix

A3 =

 0 3 −3
−3 0 3
3 −3 0

 = (−3) ·

 0 −1 1
1 0 −1
−1 1 0

 = (−3) ·A ·P,

where

P =

0 1 0
0 0 1
1 0 0


is a permutation matrix, commuting with A (we will use this fact later).
Also notice that

P0 = I, P1 = P, P2 =

0 0 1
1 0 0
0 1 0

 , P3 = I, . . .

There is a direct mapping between coefficients of polynomial (x−1)n and
the numbers in the first row of the matrix An (actually only the first row is
the source of the information, as all the other rows are always shifted in the
same way). In particular class of residues modulo 3, we are able to formulate
the congruence T (−1, n, 3) in the form of a matrix congruence. Let us go
through all of those classes now.

a) When n ≡ 1 (mod 3), the congruence looks like xn−1 ≡ x−1 (mod x3−
1), so the resulting matrix An should look exactly like the matrix A.
In other words, it has to be true that An ≡ A (mod n). Let us first
assume n is odd. Using the fact A3 = (−3) · A · P iteratively and
knowing that matrices A and P commute with one another we get
An = (−3)

n−1
2 · Pn−1

2 · A. Because n ≡ 1 (mod 3), we have n−1
2
≡

0 (mod 3) and P
n−1

2 = I, therefore An = (−3)
n−1

2 A. That means
congruence An ≡ A (mod n) holds iff (−3)

n−1
2 ≡ 1 (mod n).

In case of even n we get An = (−3)
n−2

2 ·Pn−2
2 ·A2 and we have n−2

2
≡ 1

(mod 3), therefore congruence (−3)
n−2

2 · P · A2 ≡ A (mod n) has to
hold. However, this is not possible because the first two entries of the
matrix at the left side are equal, which means it must be the same
for the right side, i.e. that 1 ≡ −1 (mod n), which is of course a
contradiction.
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b) When n ≡ 2 (mod 3) and n is odd, the congruence is xn − 1 ≡ x2 − 1
(mod x3 − 1). For the equivalent matrix congruence, according to the
theorem 7.1, we have :

An ≡

−1 0 1
1 −1 0
0 1 −1

 = −P2 ·A (mod n)

Once again taking the relationship A3 = (−3) · A · P into account
we get An = (−3)

n−1
2 · Pn−1

2 · A, while in this case it is true that
n−1

2
≡ 2 (mod 3), so P

n−1
2 = P2. By substituting and comparing with

the desired congruence we already see that this is equivalent to the
congruence (−3)

n−1
2 ≡ −1 (mod n). Applying the same approach for

n which is even we get to the contradiction.

c) In case of odd n divisible by 3, we have xn − 1 ≡ 0 (mod x3 − 1),
which makes the matrix congruence even simpler in this case, it looks
like An ≡ 0 (mod n), where 0 is a zero matrix. Analogically to the
previous cases, we can derive the relationship An = (−3)

n−1
2 ·Pn−1

2 ·A,
which now implies (by comparing the coefficients) that it has to be
true that (−3)

n−1
2 ≡ 0 (mod n). However, this congruence means that

n has to be a power of 3, namely because a large power of 3 has to be
divisible by n (on the other side, when n is a power of 3, it will not
have a bigger exponent that (−3)

n−1
2 has, therefore the congruence will

actually hold). In case of even n, we get exactly the same result (n has
to be a power of 3), this time leading to contradiction, while a power
of 3 is always odd.

We have analyzed all the residue classes, therefore the proof is done. �

In the case of r = 3 we have reached our goal and found the equivalent
characterization of T (−1, n, 3). Actually, in this case we did not even need the
matrix congruence, we were able to derive a simpler one containing powers of
−3. As a direct consequence (by squaring the congruences) we can see that
when (n, 6) = 1, in order to be an AKS pseudoprime n has to be a Fermat
base-3 pseudoprime (although this is not a sufficient condition).

We will see a similar necessary condition in the case of r = 5, but let
us now speak more generally and suppose we have any prime r ≥ 5. In the
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same way as we have done for r = 3 we can construct a square matrix A of
size r, corresponding to the polynomial x−1 according to the transformation
described in the theorem 7.1, i.e. (A)i,j = a(j−i) mod r, where a0 = −1, a1 = 1
and other coefficients are zeros. Let us denote by J the square matrix of the
same size r whose members are all equal to 1, i.e. (J)i,j = 1. It can be easily
shown that A · J = J ·A = 0, the reason for that is that multiplying by J
computes the sum of rows or columns of the matrix A, which are all zeros
(there is exactly one member which is 1 and one which is −1 in each row and
column of A).

Now let us take the (r− 1)-th power of matrix A. We will show that one
can write

Ar−1 = r ·B + J (7.3)

for a suitable matrix B. First of all, what is the intended use of this equation?
We will use it for the computation of power of matrix A in the following way :
Let us assume we know a better way to compute powers of B and let us try
to compute the power An. To do so, let us first write n = (r− 1)q+ t, where
0 < t ≤ r − 1 by Euclidean division, and use the equation (7.3) to write

An = A(r−1)q+t = At · (r ·B + J)q = rq ·At ·Bq (7.4)

In the last step we have used the fact that all the members of the expansion
containing matrix J will multiply to zero matrix with A, therefore we can
simply leave them out and only consider the first one. To see why this works
also for those members where the matrix J is not on the left, let us just
mention that J ·B = B · J = −1

r
· J2, as can be easily seen from (7.3).

Now, is there such an integer matrix B which satisfies (7.3)? We have
shown that powers of the matrix A contain the coefficients of (x − 1)α

mod (xr−1, n). Until we actually come to the r-th power and do not consider
the members of the matrix modulo n, it contains directly the coefficients of
(x − 1)α. In other words, for our case of Ar−1 what we have in the matrix
is some permutation of numbers (−1)k

(
r−1
k

)
for k ∈ {0, . . . , r − 1}. It is

therefore enough to show that

(−1)k
(
r − 1

k

)
≡ 1 (mod r) (7.5)

and we immediately have that B is an integer matrix. The equation (7.5) is
in general only true for prime numbers and this is one of the reasons why we
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need r to be prime. To prove it, let us write

(−1)k
(
r − 1

k

)
=

(r − 1)k

(−1)k

It is obvious that both the numerator and the denominator of the fraction
give the same residue when taken modulo r. Moreover, because r is prime,
this residue will not be zero. Whatever this residue is, the fraction will be
always congruent to one and that is what we need.

We have shown matrix B has integers as its members and we know we
can use it also for calculating modular powers. The question that remains
is whether to power the matrix B is in any way easier to handle or at least
more suitable for other manipulations than that of matrix A. Actually, we
will not stop at the matrix B, instead, we will use it to construct a smaller
symmetric matrix, more suitable for powering and showing us the relationship
with linear recurrent sequences, particularly Fibonacci’s sequence in the case
of r = 5. First let us mention some properties that we will need in order to
achieve that.

We have shown in the theorem 7.1 that there is an equivalent trans-
formation between residue classes modulo (xr − 1, n) and matrices of our
form. More specifically we have shown that multiplying those matrices
gives us the matrix assigned to the polynomial product. It is not hard to
realize that it is the same in case of addition, in fact the proof would be
much simpler in that case. Similarly, multiplying the matrix by a constant
is equivalent to the mutliplying the polynomial by the same constant and
looking at its matrix. What this means is that by doing these operations
we still preserve the structure of the matrix and we can still speak about
the polynomial assigned to it. This is exactly what we have done with
the matrix B = 1

r
(Ar−1 − J), therefore we know that there are numbers

b0, . . . , br−1 such that (B)i,j = b(j−i) mod r. Moreover, these numbers are
not some random numbers, they are just the numbers from first row of the
matrix Ar−1, increased by 1 and divided by r. Because in the first row of
matrix Ar−1 we had exactly the binomial coefficients (−1)k

(
r−1
k

)
, for which

(−1)k
(
r−1
k

)
= (−1)r−1−k( r−1

r−1−k

)
, we now have

br−1−k = bk (7.6)

for all suitable k.
This means there is a kind of symmetry involved in the first row of the

matrix and we know that all its rows are just cyclic shifts of the first one.
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Although this does not mean that the matrix B itself is symmetric, it is very
near to that. What it needs is just to do a suitable number of cyclic shifts of
rows (or columns, which is in this case effectively the same). This suitable
number is about a half of the matrix size, for prime r ≥ 3 it would be r+1

2
.

Let us introduce a new name for our shifted matrix, let C = B ·P r+1
2 , where

P is the permutation matrix representing one cyclic shift.
The most important thing for us is that we do not lose any power by

taking powers of C instead of B. This means we should be able to calculate
Bn from Cn quickly and easily. Fortunately, the permutation matrix did not
indeed increase the complexity – it commutes with B, it is true that

(B ·P
r+1
2 )i,j = (P

r+1
2 ·B)i,j = b( r−1

2
+j−i) mod r (7.7)

and we can identify any of its powers easily. This means the only work
we have to do when we have got Cn is to calculate the exponent (−n · r+1

2
)

mod r (of the inverse permutation matrix), do one matrix multiplication and
we immediately have the desired result, i.e. the matrix Bn.

Now let us see what the cyclic shift has actually brought us. First of all,
putting (7.6) and (7.7) together we see that

Lemma 7.1 Matrix C = B ·P r+1
2 is symmetric.

Proof We know from (7.7) that

(C)i,j = b( r−1
2

+j−i) mod r

and
(C)j,i = b( r−1

2
+i−j) mod r

Without loss of generality let us assume that j ≥ i and consider two following
cases :

a) In the case of r−1
2
≥ j − i we can write (C)i,j = b r−1

2
+j−i and (C)j,i =

b r−1
2

+i−j. Using the equation (7.6) we see that those are the same
numbers and we are done.

b) In the case of r−1
2
< j−i we have (C)i,j = bj−i− r+1

2
and (C)j,i = b 3r−1

2
+i−j.

Once again using (7.6) we see that these are the same. �

Moreover, there is another symmetry still involved in the matrix C :
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Lemma 7.2 Let us call c(n)
i the coefficients of polynomial assigned to the

matrix Cn, i.e. c(n)
i = (Cn)1,i+1 and because of the structure of the matrix

Cn also the other way (Cn)i,j = c
(n)
(j−i) mod r. Then for any integers n ≥ 1

and i ∈ {1, . . . , r − 1} it is true that c(n)
r−i = c

(n)
i .

Proof To improve the readability, let us write ci instead of c(1)
i where

appropriate. Before getting to the general case of n, as a first step let us show
that (C)1,r−i+1 = (C)1,i+1. The way is essentially the same as the previous
proof. We will compare both values according to the (7.7), getting the desired
equality b( r−1

2
+r−i) mod r = b( r−1

2
+i) mod r. To prove this, we consider the two

cases i ≤ r−1
2

and i > r−1
2
, in each of them using (7.6) to conclude the proof.

For the general case, let us write

(Cn)1,r−i+1 =
r∑

k=1

(Cn−1)1,k · (C)k,r−i+1 =
r∑

k=1

(Cn−1)k,1 · (C)r−i+1,k

using the symmetry of matrices C and Cn−1 (lemma 7.1). Further
manipulations give us the following result

=
r∑

k=1

c
(n−1)
(1−k) mod r ·c(k+i−1) mod r = c

(n−1)
0 ·ci+

r∑
k=2

c
(n−1)
(1−k) mod r ·c(k+i−1) mod r

Now we change the order of summation, we will substitute r + 2 − k for k,
getting

= c
(n−1)
0 ·ci+

r∑
k=2

c
(n−1)
(k−1) mod r ·c(i+1−k) mod r =

r∑
k=1

c
(n−1)
(k−1) mod r ·c(i+1−k) mod r

and as a last step we get back to the matrices

=
r∑

k=1

(Cn−1)1,k · (C)k,i+1 = (Cn)1,i+1

which concludes the proof. �

As a direct consequence of the previous lemma we have that

c
(n)
−i mod r = c

(n)
i mod r (7.8)
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which we will use extensively later. We have shown that the matrix C
has some nice properties and symmetries, but we would like to use these
symmetries to make it easier to calculate its powers. The next step of
transforming the matrix will be the last one, giving us a matrix of less than
half the size of C (exactly r−1

2
), which will still be symmetric and we can use

it to calculate powers effectively. We will call it the matrix R and define it
in the following way :

(R)i,j = (−1)i+j ·
(
c(j−i) mod r − c(i+j) mod r

)
(7.9)

Before progressing any further, let us have a look at the case r = 5 and
the matrices we have constructed so far. We have started with the

A =


−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
1 0 0 0 −1

 and B =


0 −1 1 −1 0
0 0 −1 1 −1
−1 0 0 −1 1
1 −1 0 0 −1
−1 1 −1 0 0


further using permutation matrix

P3 =


0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 to get C =


1 −1 0 0 −1
−1 1 −1 0 0
0 −1 1 −1 0
0 0 −1 1 −1
−1 0 0 −1 1


and ended up with

R =

(
1 1
1 2

)
In this case the matrix R is the well-known Fibonacci matrix, we have

Rn =

(
f2n−1 f2n

f2n f2n+1

)
(7.10)

where fn is the n-th Fibonacci number (starting with f0 = 0, f1 = 1). This
means that if we will successfully reach our goal, we can calculate Fibonacci
numbers instead of powering polynomials in the case of r = 5.

After reviewing what we will gain, let us continue with the most important
question which we have to ask once again – is the transformation from the C
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to R reversible in the sense that we can easily calculate Cn from Rn ? Here
it is not so obvious even in the simplest case n = 1. However, it is enough
to realize two things :

a) Thanks to the lemma 7.2 we know that the source of the information in
the matrix Cn is basically just the half of the first row, i.e. the numbers
c
(n)
i for i ∈ {0, . . . , r−1

2
}, all the other members depend on them and

can be calculated from them.

b) We do not actually need to reconstruct the matrix Cn, it is quite enough
to get to some matrix Cn + m · J for any integer m. The reason is
that in the reverse transformation we will get Bn+m ·J instead of Bn,
which is still acceptable because in (7.4) the additional multiple of J
does not make any difference – it will get lost when multiplied by A
anyway. Because the matrix R only contains the differences between
the coefficients of C, we can fix one of them to any number we like
(this will only shift all of them by some constant m which we might
not know but also do not need to know).

Using these two facts we can put c0 := 0 and calculate the rest of the
coefficients from the diagonal of R using the formula (7.9), constructing the
(shifted) matrix C once again. This works for the matrix R, but what about
its powers ? The following lemma shows us that it is exactly the same in the
case of Rn.

Lemma 7.3 For any integer n ≥ 1 and integers i, j from the set {1, . . . , r−1
2
}

it is true that

(Rn)i,j = (−1)i+j ·
(
c
(n)
(j−i) mod r − c

(n)
(i+j) mod r

)
Proof To provide a proof, we will use the mathematical induction. The
first step (n = 1) just states the definition of the matrix R. For the second
step let us write

(Rn)i,j =

r−1
2∑

k=1

(Rn−1)i,k · (R)k,j
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Using the induction hypothesis we have

=

r−1
2∑

k=1

(−1)i+k
(
c
(n−1)
(k−i) mod r − c

(n−1)
(i+k) mod r

)
· (−1)k+j

(
c(j−k) mod r − c(k+j) mod r

)
= (−1)i+j ·

r−1
2∑

k=1

(
c
(n−1)
(k−i) mod r − c

(n−1)
(i+k) mod r

)
·
(
c(j−k) mod r − c(k+j) mod r

)
Now we split the sum by multiplying out the second factor :

= (−1)i+j ·

 r−1
2∑

k=1

c(j−k) mod r ·
(
c
(n−1)
(k−i) mod r − c

(n−1)
(i+k) mod r

)

+

r−1
2∑

k=1

c(k+j) mod r ·
(
c
(n−1)
(i+k) mod r − c

(n−1)
(k−i) mod r

)
Now, if we replace k for −k in the second sum and use (7.8) to adjust the
indices, we are actually able to merge those sums together again, getting
further to

= (−1)i+j
r−1∑
k=1

c(j−k) mod r ·
(
c
(n−1)
(k−i) mod r − c

(n−1)
(k+i) mod r

)
As a next step we notice from (7.8) that for k = 0 the terms of second factor
are equal, therefore the whole summand is in this case zero. This means we
are free to include the k = 0 into the summation range. Moreover, we will
do a substitution k := (j + 1− k) mod r, basically shifting the summation
range modulo r, something that we can do because k is only used in modular
expressions in the summands. We get

= (−1)i+j
r−1∑
k=0

c(k−1) mod r ·
(
c
(n−1)
(j+1−i−k) mod r − c

(n−1)
(j+1+i−k) mod r

)
Another shift of summation range by 1 (without changing the expression)
and multiplying out the second factor gives us

= (−1)i+j

(
r∑

k=1

c(k−1) mod r · c(n−1)
(j+1−i−k) mod r +

r∑
k=1

c(k−1) mod r · c(n−1)
(j+1+i−k) mod r

)
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To conclude the proof, we just need to read the last expression in the right
way :

= (−1)i+j

(
r∑

k=1

(C)1,k · (Cn−1)k,j−i+1 +
r∑

k=1

(C)1,k · (Cn−1)k,j+i+1

)
which is of course

= (−1)i+j ·
(
c
(n)
(j−i) mod r − c

(n)
(i+j) mod r

)
�

We have chosen the matrix R in such a way that the pattern of its
dependency to the matrix C holds also for their powers, therefore the
transformation is reversible where we need it. This gives us a generic way to
calculate the powers of A, and to use them to test the congruence T (−1, n, r).
The time complexity does not improve drastically by this, actually we have
only made a constant speed-up relying on the fact that we have precomputed
some matrices needed for a particular r. However, what is interesting about
this result is that we can use it to derive some interesting properties of
numbers satisfying the congruence T (−1, n, r). As a demonstration of this
approach, we will in the rest of this chapter deal with the case r = 5 and
show the already suggested connection to the Fibonacci numbers.

The method we have designed gives us a technique of constructing
properties equivalent to the congruence T (−1, n, r). The way to get to them
is to start with the congruence An ≡ A′ (mod n) for our matrix A assigned
to the polynomial x − 1 and the matrix A′ assigned to the polynomial
xn mod r − 1. From this congruence we follow the path to the powers of
matrices B, C and R, returning back to construct the equivalent matrix
congruence for the power of the matrix R.

As an example, let us consider n ≡ 3 (mod 20) and r = 5. In this case

A′ =


−1 0 0 1 0
0 −1 0 0 1
1 0 −1 0 0
0 1 0 −1 0
0 0 1 0 −1


From (7.4) we have that An = 5

n−3
4 ·A3 · Bn−3

4 . When we continue to the
matrix C, we realize that C

n−3
4 = (B · P3)

n−3
4 = B

n−3
4 , as n−3

4
≡ 0 (mod 5)
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and therefore P
n−3

4 = I. Now let us denote the diagonal entries of R
n−3

4 by
a and b. Putting c0 := 0 we get the (possibly shifted) matrix

C
n−3

4 + k · J =


0 −b −a −a −b
−b 0 −b −a −a
−a −b 0 −b −a
−a −a −b 0 −b
−b −a −a −b 0


Comparing the entries of the product 5

n−3
4 ·A3 ·Cn−3

4 and the matrix A′ we
finally get to the system of congruences

5
n−3

4 (a− 4b) ≡ 0 (mod n)

5
n−3

4 (2a− 3b) ≡ 1 (mod n)

giving us the resulting equivalent congruence

5
n+1

4 ·R
n−3

4 ≡
(
−4 3
3 −1

)
(mod n)

Progressing the same way for the rest of the residue classes we learn that in
cases where (n, 4) > 1 and 5 - n we get directly to the contradiction and in
all other cases we can specify the equivalent congruences. This gives us the
following result :

Theorem 7.3 T (−1, n, 5) holds iff (n, 4) = 1 or 5 | n and

a) 5
n
4 ·Rn−4

4 ≡ 0 (mod n) for n ≡ 0 (mod 20)

b) 5
n−1

4 ·Rn−1
4 ≡

(
1 0
0 1

)
(mod n) for n ≡ 1 (mod 20)

c) 5
n+1

4 ·Rn−3
4 ≡

(
−4 3
3 −1

)
(mod n) for n ≡ 3 (mod 20)

d) 5
n−1

4 ·Rn−1
4 ≡ 0 (mod n) for n ≡ 5 (mod 20)

e) 5
n+1

4 ·Rn−3
4 ≡

(
4 −3
−3 1

)
(mod n) for n ≡ 7 (mod 20)
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f) 5
n−1

4 ·Rn−1
4 ≡

(
−1 0
0 −1

)
(mod n) for n ≡ 9 (mod 20)

g) 5
n−2

4 ·Rn−2
4 ≡ 0 (mod n) for n ≡ 10 (mod 20)

h) 5
n+1

4 ·Rn−3
4 ≡

(
−3 1
1 −2

)
(mod n) for n ≡ 11 (mod 20)

i) 5
n−1

4 ·Rn−1
4 ≡

(
1 −1
−1 0

)
(mod n) for n ≡ 13 (mod 20)

j) 5
n+1

4 ·Rn−3
4 ≡ 0 (mod n) for n ≡ 15 (mod 20)

k) 5
n−1

4 ·Rn−1
4 ≡

(
−1 1
1 0

)
(mod n) for n ≡ 17 (mod 20)

l) 5
n+1

4 ·Rn−3
4 ≡

(
3 −1
−1 2

)
(mod n) for n ≡ 19 (mod 20)

Using the equation (7.10) we can read directly from the matrix con-
gruences which we have just proved the congruences involving Fibonacci
numbers. This gives us the possibility of proving the following theorem, a
very useful tool for recognizing AKS pseudoprimes.

Theorem 7.4 Let n be a composite integer, for which (n, 10) = 1 and
assume that T (−1, n, 5) holds. Then n is a Fibonacci pseudoprime and a
base-5 Fermat pseudoprime at the same time.

Proof Simply by taking the theorem 7.3 and squaring all the congruences,
in some cases multiplying them by the matrix R, in some cases canceling out
the number 5 (which we can do as (n, 5) = 1) we always get to the congruence

5
n−1

2 ·R
n−1

2 ≡ I (mod n) (7.11)

in the case of n ≡ 1, 4 (mod 5) and to the congruence

5
n−1

2 ·R
n+1

2 ≡ I (mod n) (7.12)

in the case of n ≡ 2, 3 (mod 5). Now comparing with the (7.10) we
immediately see that 5

n−1
2 · fn−1 ≡ 0 (mod n) or in the second case
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5
n−1

2 · fn+1 ≡ 0 (mod n). However, because (n, 5) = 1, this means that
fn−1 ≡ 0 (mod n) or fn+1 ≡ 0 (mod n) respectively, and that is exactly
what we wanted to prove in the first place. For the second part of our proof
we will use the determinant of the matrix R. Its value is exactly 1, that
means also any power of R has a determinant of 1. What this means is that
the following equation is true

f2k−1 · f2k+1 = f 2
2k + 1 (7.13)

for any k. Now, comparing the entries of matrices in (7.11) we see that
5

n−1
2 · fn−2 ≡ 1 (mod n), as well as 5

n−1
2 · fn ≡ 1 (mod n). Multiplying these

together and using (7.13) we see that 5n−1 ≡ 1 (mod n), i.e. the number n is
a base-5 Fermat pseudoprime. Analogically comparing the entries of matrices
in (7.12) we have 5

n−1
2 · fn ≡ 1 (mod n), as well as 5

n−1
2 · fn+2 ≡ 1 (mod n),

which multiplies to 5n−1 ≡ 1 (mod n) when taking (7.13) into consideration.
�

The last theorem showed us that when searching for AKS pseudoprimes
for r = 5, we can start with Fibonacci pseudoprimes and base-5 Fermat
pseudoprimes, which means we can further investigate their properties and
maybe derive a faster method than we would have just for AKS pseudoprimes.
Unfortunately, we have used congruence squaring and multiplying in the
proof and therefore lost the equivalence, which means that finding such
a number n that n ≡ 2, 3 (mod 5) and n is Fibonacci pseudoprime and
base-5 pseudoprime at the same time may not necessarily bring us to the
counterexample for the Agrawal’s conjecture, on the other way if there is no
such number we know that at least for r = 5 we do not have to search any
longer.



Chapter 8

Experimental data

In this last chapter we will present some empirical results from experiments
we have made based on the theoretical observations from the previous
chapters. Our goal was to collect some useful statistics suggesting how near or
far are we from finding a counterexample to the Agrawal’s conjecture and to
collect some data that may help in the future search for the counterexample.
Although most of these experiments were based on the proved results, the
approach remains rather heuristic as we only have some indications but no
evidence that there is any such counterexample.

In the text [9], authors stated that they have made a search up to 1011

for a composite n that would satisfy the congruence T (−1, n, 5) and n ≡ 2, 3
(mod 5) at the same time. For other primes r ≤ 100 they have come up
to 1010 with the same negative result (i.e. it was always true that n2 ≡ 1
(mod r)). In [13] authors provide a proof for the theorem 5.1, afterwards
stating estimations based on heuristic calculations using analytical number
theory to conclude that there should be a constant, a lower bound for the
range where the counterexamples are frequent enough.

Looking at their result it was not difficult to see that although not
explicitly mentioning that, they are dealing with a subset of Carmichael
numbers. On the other hand, the Carmichael numbers are a point of interest
for many mathematicians, amongst all maybe most significantly Richard
Pinch, who has in the last 15 years collected all the Carmichael numbers
up to 1021 and some lists of pseudoprimes as well (see e.g. [15]). We have
used a publicly available subset up to 1018 to perform some experiments,
results of which we present here. We also asked Mr. Pinch for the rest of the
data and we will continue with the experiments as soon as he provides them.
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As a part of a school project in the course of computer algebra, the author
of this work has used the software Maple in version 11 to perform some basic
search in range 〈1, 1016〉 and at first it seemed we have discovered some
counterexamples even in this range. After further tests, we have found out
that the reason why our algorithm reported those numbers as positive was a
bug in the Maple’s function isprime which uses some randomized primality
tests and in the documentation they wrote that

No counterexample is known and it has been conjectured that such a counter
example must be hundreds of digits long.

Actually, we have found the following three Carmichael numbers

43438471758571 = 5503 · 8123 · 971759

54165858332251 = 14071 · 32831 · 117251

367826207971951 = 10531 · 94771 · 368551

that were falsely identified as prime by Maple. We reported this to the
support team and they have admitted this is a bug.

In the version 12 of Maple this bug is already fixed, but we have decided,
most importantly for performance reasons, to try out some other frameworks
that are more suitable for our purposes. We have found two relevant libraries
– LiDIA and NTL (see [8] and [18]) and have decided for the second one
as a main tool for our computations. First, let us have a look at the
most interesting question – taking the theorem 5.1, how many Carmichael
numbers satisfy the individual conditions. As we are dealing with Carmichael
numbers, the Korselt’s criterion tells us that all of them are square-free and
the condition c) is satisfied automatically. Therefore it only makes sense to
ask about the conditions from a), b) and d). The following table shows the
results :
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Table 1
range count of Carmichaels k ≡ 1 (mod 4) k ≡ 3 (mod 4) b) d)
〈1, 1010〉 1547 492 337 0 0
〈1, 1011〉 3605 1336 631 0 0
〈1, 1012〉 8241 3156 1262 0 0
〈1, 1013〉 19279 7083 3198 0 0
〈1, 1014〉 44706 14965 8643 0 0
〈1, 1015〉 105212 29452 25293 0 0
〈1, 1016〉 246683 56448 70966 0 0
〈1, 1017〉 585355 109542 191774 0 0
〈1, 1018〉 1401644 223056 496188 1 0

There is not much surprise in those results, it seems that the number
of prime factors being of the desired form is not a huge restriction, quite
opposite it is the case with conditions b) and d). There was only one number
which satisfied the condition b), i.e. having all the prime factors with pi ≡ 3
(mod 80). It is the number

330468624532072027 = 2003 · 574003 · 287432003

However, none of its prime factors satisfies the condition pi+1 | n+1. There
is no number in this range which would satisfy this condition d) for all its
prime factors, too. In order to get a slightly better insight we have tried to
count the individual prime factors satisfying conditions b) and d). First,
in the table 2 we show the counts of Carmichael numbers with a concrete
number of prime factors (only those which are satisfying condition a) are
highlighted there).

Table 2
range k = 3 k=5 k=7 k=11 k=13 k=15
〈1, 1010〉 335 492 2 0 0 0
〈1, 1011〉 590 1336 41 0 0 0
〈1, 1012〉 1000 3156 262 0 0 0
〈1, 1013〉 1858 7082 1340 1 0 0
〈1, 1014〉 3284 14938 5359 27 0 0
〈1, 1015〉 6083 29282 19210 170 0 0
〈1, 1016〉 10816 55012 60150 1436 0 0
〈1, 1017〉 19539 100707 172234 8835 1 0
〈1, 1018〉 35586 178063 460553 44993 49 0
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The following tables 3 and 4 show the counts of Carmichael numbers with
a concrete number of prime factors satisfying the conditions b) and d).

Table 3
range b) for 1 b) for 2 b) for 3 b) for more than 3
〈1, 1010〉 89 1 0 0
〈1, 1011〉 205 3 0 0
〈1, 1012〉 487 3 0 0
〈1, 1013〉 1149 12 0 0
〈1, 1014〉 2742 39 0 0
〈1, 1015〉 6708 127 0 0
〈1, 1016〉 16077 318 0 0
〈1, 1017〉 39841 832 6 0
〈1, 1018〉 98891 2173 18 0

Table 4
range d) for 1 d) for 2 d) for 3 d) for more than 3
〈1, 1010〉 42 3 0 0
〈1, 1011〉 100 4 0 0
〈1, 1012〉 211 5 0 0
〈1, 1013〉 505 8 0 0
〈1, 1014〉 1085 21 0 0
〈1, 1015〉 2462 57 0 0
〈1, 1016〉 5643 124 1 0
〈1, 1017〉 13076 246 3 0
〈1, 1018〉 30648 513 7 0

Looking at the counts of individual prime factors satisfying the conditions
we can be a little bit more optimistic as it does not seem to be that rare from
this perspective. However, we cannot treat those properties as independent
and even the prime factors themselves are not completely independent and
therefore the pattern does not necessarily have to hold for larger ranges.
Even if it did, the result data suggests that we are still far away from the
counterexample proposed by Lenstra and Pomerance and getting to it by an
exhaustive search may be impossible.

We have actually tried some approaches to get to some much bigger
numbers, where there is no way of performing an exhaustive search but
the Lenstra and Pomerance suggest that the density of counterexamples
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may grow there. First approach is based on the algorithm from chapter
6. There we have found a way of constructing a set of congruences which
together form the necessary and sufficient condition for a prime p to be able to
form (with some other factors) the counterexample for Agrawal’s conjecture.
These congruences are telling us the required remainders of n when taken
modulo some prime powers. For example, if we have a prime p = 113 and
constructing n ≡ 3 (mod 5) , the congruences are as follows

n ≡ 49 (mod 26)

n ≡ 3 (mod 5)

n ≡ 1 (mod 7)

n ≡ −1 (mod 19)

Adding the congruence n ≡ 0 (mod 113) we have a complete set which we
can use for combining with sets of another prime numbers. If we find a
considerable compatibility of these sets of congruences, we can try to use the
Chinese remainder theorem to formulate just one congruence for the result
and search its solutions for numbers having only desired form. In this way
it is possible to construct numbers with many prime factors satisfying the
equivalent condition n ≡ λn mod 5 (mod ρ(p)). Of course, the problem in this
approach is to find a suitable last factor that would be compatible with all the
previous congruences and would therefore satisfy the equivalent condition. It
shows us that the fact of having some, but not all prime factors satisfying
any property seems to have almost no real value for us as we can construct
any number of such examples as we like.

In order to be able to manipulate and combine the sets of congruences
for the particular prime numbers, we have decided to collect this data for
all the prime numbers up to 108. The file is available on request from the
author of this text and contains the value of ρ(p) for all p ≡ 2, 3 (mod 5)
within the range, with their prime factorization and the desired remainders
for each of the prime power factor. One way of searching good candidates for
combination could be a restriction for smoothness (suggested also in [12]).
The table 5 shows some counts of m-smooth numbers between the values of
ρ(p) within our range. Files containing only those primes with smooth ρ(p)
are also available on request from the author of this text.
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Table 5
m count of primes p within 〈1, 108〉 with ρ(p) being m-smooth
30 44
50 134
100 670
500 20524
1000 54270

For r = 5 we have another set to search in, because as we have shown
in chapter 7, congruence T (−1, n, 5) implies that n is a base-5 Fermat
pseudoprime and a Fibonacci pseudoprime at the same time. Actually,
even these loosened conditions are not satisfied at the same time for small
numbers. We have done a search in the set of Fibonacci pseudoprimes up
to 2 · 109 (using records from Anderson, see [2]), where we have found only
25 base-5 Fermat pseudoprimes with n ≡ 4 (mod 5). There were none such
pseudoprimes for residue classes 2 and 3, but on the other hand there were
782 base-5 pseudoprimes in the residue class 1, of which 264 were actually
AKS pseudoprimes.

Using Fibonacci numbers and the result from chapter 7 we were able to try
another approach for creating very large examples of numbers that could form
a counterexample for Agrawal’s conjecture. In this case we were working with
loosened conditions, generating very big Fibonacci pseudoprimes and testing
them for base-5 pseudoprimality. For the purpose of generating we have used
a result from Lehmer, who has shown that if p > 5 is any prime number,
then f2p, i.e. the (2p)−th Fibonacci number, is a Fibonacci pseudoprime as
well.

Although we have not made any significant discovery, we consider this
and similar approaches quite promising because according to the results
of exhaustive searches it seems there is no other way to directly find the
counterexample except for aiming at very large numbers. After performing
all the experiments we strongly believe that if the counterexample exists and
will be found, it would be with some sophisticated method for generating
large possible counterexamples. We will continue with an occasional research
with these methods and try to look for some more ways in the future.
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Conclusion

A couple of years ago the problem of primes recognition was still not known
to belong into the polynomial class of algorithms. Even then we already had
a lot of algorithms for primality testing, using very sophisticated ideas and
some of them were really fast. Each of them had some flaw – from some small
error probability, depending on an unproved conjecture to being polynomial
only on some inputs or being slightly more than polynomial on all of them.

Although these algorithms were not perfect from a strict point of view,
some of them were very elegant and easily understandable, which made them
intelligible and usable both to mathematicians and computer scientists. After
all, only a couple of decades has passed from the discovery of RSA which
launched the heavy usage of number theory in cryptography and made it
attractive to the computer scientists, not only as a theoretical tool, but for
very practical reasons, too.

The year 2002 has brought a breakthrough in this area, the algorithm
AKS which is also an elegant and easy to understand and does not have any
theoretical drawbacks. The only problem still present is that although being
a satisfactory solution for computer scientists, it is not much of a use for
practical applications, e.g. for generating primes for keys. The reason for
that is of course that even though it is polynomial, the large exponent still
makes it too slow. In our thesis we have tried to research some of its aspects
in order to make it faster or show that some of the suggested ways to make
it faster do not work and we should look somewhere else.

We have started with an overview of primality testing algorithms
including the AKS algorithm in order to give the reader some feeling about
it and prepare some necessary terms. We presented the Agrawal’s conjecture
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as a central point of interest for the following story. As a next step we have
demonstrated the use of combinatoric methods to deal with modular sums
in the binomial expansion. In our particular problem this approach was an
interesting way of how to prove the theorem and gain a better insight to the
structure of objects we are dealing with. We have also provided the algebraic
proof as an alternative, just to compare and see the difference.

The main idea of these chapters was to explore the choices of the
parameters in the AKS congruence and in some way show the reason for
the formulation of the Agrawal’s conjecture. In addition to the Carmichael
numbers, we have shown that Mersenne numbers of special form, which
existence is guaranteed by the Sophie-Germain prime conjecture, may
possibly represent an infinite sequence of numbers making troubles to the
AKS congruence.

We have then presented the Lenstra-Pomerance heuristic as an argument
against Agrawal’s conjecture, we have provided an alternative proof for the
theorem that is a base of the heuristic, adding case k = 3, which was
mentioned as an exercise in the original article. The way of proving it also
provided us with an algorithm to search for parameters needed to test the
AKS congruence directly in the case of r = 5.

In the next chapter, we have developed tools involving matrix exponen-
tiation and transformations into smaller symmetric matrices of recurrent
sequences, giving us yet another way of testing the congruence, in this case
more generic one which works also without knowing the prime factorization
of the input or putting any restrictions to it. More importantly, we have
generalized the previously known way of expressing the relationship between
the recurrent sequences (e.g. Fibonacci numbers) and the AKS congruence.

As a conclusion, we have made some concrete experiments to try out the
approaches that we have invented and provide some statistics which would
give us a feeling of how far away is the answer to the questions we have asked
at the begining. We have collected some data that can be used as a basis of
further research in this area.

We believe that we have opened some new possibilities and brought new
ideas which could eventually lead to the discovery of the counterexamples or
proofs of the mentioned conjecture or some other interesting results related
to the AKS test and hope that they were inspiring for the reader. We look
forward to any advances in this area and will try to contribute to it in the
future.
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Abstract

In the text we investigate the AKS test, the choices of the parameters of the
congruence used in this test, as well as the Agrawal’s conjecture leading to
the speed-up of the algorithm. We show that for some choices of parameter
r, the Carmichael numbers are passing for all choices of the parameter a,
providing two different proofs of this fact. We demonstrate that if the
widely believed Sophie-Germain primes conjecture is true, there is another
infinite class of composite numbers satisfying the congruence. Further we
present the heuristic of Lenstra and Pomerance as a potential way of the
disproof of the Agrawal’s conjecture. We give an alternative proof of it,
along with the algorithm derived from a method used in this proof. We
use the matrix approach to generalize a known result about the relationship
between Fibonacci pseudoprimes and AKS congruence. Finally we present
the empiric results contributing to the intuition about the size and existence
of the counterexample to the Agrawal’s conjecture.

V práci sa zaoberáme testom AKS, voľbou parametrov v kongruencii
používanej v tomto teste a hypotézou Agrawala vedúcou k jeho urýchleniu.
Ukazujeme, že pri niektorých voľbách parametra r prechádzajú testom
Carmichaelove čísla bez ohľadu na voľbu parametra a a tento fakt dokazu-
jeme dvoma rôznymi spôsobmi. Demonštrujeme, že v prípade platnosti
všeobecne akceptovanej hypotézy o Sophie-Germainovej prvočíslach vieme
nájsť ďalšiu nekonečnú triedu zložených čísel vyhovujúcich kongruencii.
Ďalej predstavujeme heuristiku Lenstru a Pomerance-a ako možný spôsob
vyvrátenia Agrawalovej hypotézy, spolu s alternatívnym dôkazom, ako aj
algoritmom získaným z metódy použitej pri dôkaze. Používame prístup
využívajúci matice na zovšeobecnenie známeho výsledku o súvislosti medzi
Fibonacciho pseudoprvočíslami a kongruenciou z algoritmu AKS. Nakoniec
predstavujeme empirické výsledky prispievajúce k intuitícii o veľkosti a
existencii protipríkladu na Agrawalovu hypotézu.
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