
Comenius University in Bratislava
Faculty of mathematics, physics and informatics

Finding Conserved Gene Clusters in
Duplicated Genomes

Master Thesis

2014 Ing. Soňa Gibaštíková

Comenius University in Bratislava
Faculty of mathematics, physics and informatics

Finding Conserved Gene Clusters in
Duplicated Genomes

Master Thesis

Study Program: Computer Science (Conversion Programme)
Branch of Study: 2508 Computer Science
Department: Department of Computer Science
Supervisor: Mgr. Bronislava Brejová, PhD.

Bratislava, 2014 Ing. Soňa Gibaštíková

65376645

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Ing. Soňa Gibaštíková
Študijný program: informatika (konverzný program) (Jednoodborové štúdium,

magisterský II. st., denná forma)
Študijný odbor: 9.2.1. informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Finding Conserved Gene Clusters in Duplicated Genomes
Hľadanie zachovaných zhlukov génov v duplikovaných genómoch

Cieľ: Cieľom práce je vyvinúť a implementovať efektívne algoritmy na porovnávanie
poradia génov v genómoch, ktoré boli v priebehu evolúcie duplikované.
Úlohou je hľadať skupiny génov, ktoré sa vyskytujú blízko seba v referenčnom
neduplikovanom genóme, ale aj na dvoch miestach v duplikovanom genóme.

Vedúci: Mgr. Bronislava Brejová, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: doc. RNDr. Daniel Olejár, PhD.

Dátum zadania: 23.10.2012

Dátum schválenia: 26.11.2012 prof. RNDr. Branislav Rovan, PhD.
garant študijného programu

študent vedúci práce

65376645

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Ing. Soňa Gibaštíková
Study programme: Computer Science (Conversion Programme) (Single degree

study, master II. deg., full time form)
Field of Study: 9.2.1. Computer Science, Informatics
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Finding Conserved Gene Clusters in Duplicated Genomes

Aim: The goal of the thesis is to design and implement efficient algorithms for
comparing gene orders in genomes that underwent a whole genome duplication
event in their evolutionary history. The task is to find groups of genes that are
located near each other in a given reference non-duplicated genome, as well as
in two regions of the duplicated genome.

Supervisor: Mgr. Bronislava Brejová, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

doc. RNDr. Daniel Olejár, PhD.

Assigned: 23.10.2012

Approved: 26.11.2012 prof. RNDr. Branislav Rovan, PhD.
Guarantor of Study Programme

Student Supervisor

v

First of all, I want to thank my supervisor Mgr. Broňa Brejová, PhD for her guidance,
generous contribution of knowledge and experience, valuable comments and encour-
agement while working on the thesis. I would like to thank my parents and friends for
their support during my studies.

Soňa Gibaštíková

vi

Abstrakt

Cieľom našej práce je hľadanie génových regiónov v duplikovanom genóme. Génové
regióny sú skupiny génov, ktoré sú zakonzervované v niekoľkých genómoch a ktoré
plnia rovnakú alebo podobnú funkciu. V našej práci formálne definujeme problém
hľadania takýchto génových regiónov v duplikovanom genóme a navrhneme algoritmus
založený na dynamickom programovaní, ktorý rieši daný problém v polynomiálnom
čase. Predstavíme niekoľko heuristických zlepšení, ktoré znížia výpočtový čas a model
otestujeme na biologických a generovaných dátach.

Kľúčové slová: celogenómová duplikácia, duplikovaný genóm, génový región, aproxi-
mačný génový región

vii

Abstract

The purpose of this thesis is finding conserved gene clusters in genomes that have un-
derwent the whole genome duplication. Gene clusters are regions of genes conserved
in several genomes that have virtually the same function and their identifications have
many applications in genomics. In out thesis we formally define the problem of find-
ing gene clusters in duplicated genomes and propose an algorithm based on dynamic
programming solving the problem in polynomial time. We develop several heuristic
improvements decreasing the computation time and we test our model on biological
and generated data.

Key words: whole genome duplication, duplicated genome, gene cluster, approxi-
mate gene cluster, Magnusiomyces

Contents

Introduction . 1

1 Biological background and overview of algorithms 3
1.1 Biological background . 3
1.2 Overview of algorithms . 7

1.2.1 Basic definitions . 7
1.2.2 Gene cluster models . 8
1.2.3 Algorithms reconstructing duplicated genome 14

2 Model and algorithms 17
2.1 Problem definition . 17
2.2 Scoring system . 18
2.3 Simplified problem formulation . 21
2.4 Dynamic programming . 23
2.5 Time complexity . 27
2.6 General problem of the maximum sum of k disjoint intervals 27
2.7 All locations problem . 28

2.7.1 Filtering covering intervals . 30
2.7.2 Filtering overlapping intervals 32

2.8 Application of our algorithm to biological data 34

3 Heuristic improvements 40
3.1 Simple heuristics . 41
3.2 Low score heuristic . 41
3.3 Contig heuristic . 42
3.4 Segmentation of duplicated genome into runs 45
3.5 Comparison between heuristics applied to biological data 47

3.5.1 Magnusiomyces magnusii - Magnusiomyces ingens 48
3.5.2 Magnusiomyces magnusii - Yarrowia lipolytica 50
3.5.3 Assessments of heuristic improvements 51

viii

CONTENTS ix

3.6 Generated data . 52
3.6.1 Model of data generator . 52
3.6.2 Comparison between heuristics applied to generated data 53

Conclusion . 57

Bibliography 58

List of Figures

1.1 WGD and following diploidization process [HKC09] 5
1.2 Chromosomal mutations [Glo]. 6
1.3 Fractionation leading to different adjacencies in current diploid and its

ancestor [SZ12] . 16

2.1 Example of an reference interval, intervals in the duplicated genome and
in the sequence D′ if α = −1, β = 1. 23

2.2 Example of reference intervals where an interval R[i, j] covers an interval
R[k, l] or the interval R[k, l] is covered by the interval R[i, j]. 29

2.3 Example of overlapping reference intervals. 29
2.4 Phylogenetic tree of species from the genus Magnusiomyces [KFT]. . . 35
2.5 Significant best interval locations for M. magnusii, if M. ingens is used

as the reference organism. The best interval location with the highest
score is highlighted. 36

2.6 Histogram showing the number of the best interval locations identified
in M. magnusii using two different reference genomes: M. ingens and
M. capitatus . 37

2.7 Histogram showing the number of the best interval locations identified
in M. tetrasperma using two different reference genomes: M. ingens and
M. capitatus . 37

2.8 Histogram showing the number of the best locations identified in M.
magnusii andM. tetrasperma using a reference genome ofYarrowia lipoly-
tica. 37

3.1 A reference interval R[i, j] and an interval R[i, j + 1] extended by gene
R[j + 1]. 41

3.2 A schematic picture of the identified best local double (red) and best
local single (blue) location in the chromosomes in the duplicated genome
for the reference interval R[i, j] = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16) 44

x

LIST OF FIGURES xi

3.3 A schematic picture of the sequence D′ either as a sequence of −α, β
values or as a sequence of positive and negative runs, where each run is
characterized by its start, end point and score. 46

3.4 Graph for the time comparison of the standard algorithm with different
heuristic combinations in test for M. magnusii - M. ingens. 48

3.5 Number of the dynamic programming (DP) calls in the standard al-
gorithm and in the algorithms implementing simple heuristics or the
combination of simple and low score heuristics. 48

3.6 Graph for the time comparison of the standard algorithm with the dif-
ferent heuristic combinations. 50

3.7 Number of the dynamic programming (DP) calls in the standard algo-
rithm and in the algorithms implementing simple heuristic or the com-
bination of simple and low score heuristics. 51

List of Tables

2.1 The number of identified best locations in M. magnusii, when M. ingens
is the reference organism, using Standard method with no additional ad-
justments to the data set, Reduced genome and Triple location strategy.
The minimal score parameter is set to be minScore = 10. 39

3.1 Time comparison of the different heuristic combinations with the stan-
dard algorithm in test for M. magnusii - M. ingens. Tests are performed
for the different values of minScore . 49

3.2 Percentage of the omitted dynamic programming (DP) calls from the
total amount calculated in the standard algorithm for the different values
of minScore by implementing simple heuristics and the combination of
simple and low score heuristics. 50

3.3 Percentage of the omitted dynamic programming (DP) calls from the
total amount computed in the standard algorithm for the different values
of minScore by implementing simple heuristics and the combination of
simple and low score heuristics. 51

xii

1

Introduction

The aim of our work is to find gene clusters in genomes that have underwent the whole
genome duplication. In order to redefine this biological problem to some informatics
problem we have to found suitable representations for involved biological terms. For us
a genome is a sequence of genes which are represented by integers and the same genes
have the same number.

One of the typical bioinformatics problem is to compare several genomes from
different species and find an interval in each genome such that these intervals contain
the same or almost the same set of genes. The set of these intervals then forms a gene
cluster. The purpose of the finding gene clusters is to reveal functional coupling between
genes and to better understand evolutionary processes. The first gene cluster models
required the gene cluster to be conserved i.e. the sets of genes from the intervals in the
compared genomes have to be equal. These models are too strict, because genes can be
inserted or deleted during evolution. The latest approaches can be characterized by the
term approximate gene clusters because they allow occurrence of outsider genes inside
the cluster. An outsider gene is a gene which does not occur in every interval from the
gene cluster and allows to model gene deletion and insertion. After introducing the
term gene cluster we will explain what duplicated genome means.

A whole genome duplication is an evolution event when the whole genome is doubled
and each gene has two copies. We can imagine it as having two identical sequences
instead of one sequence. A genome after the whole genome duplication is subject to
fractionation which is a process in which one of two copies of a gene in the duplicated
genome is often deleted. So current organism have some genes in two copies and some
in single copy. If we apply problem of finding gene clusters to duplicated genome, than
is better to find a pair of two intervals instead of one. Today exists only a model of
conserved gene clusters in duplicated genome and it was introduced by Sankoff [SZ12]
in his consolidation algorithm. He tries to reconstruct the fractionated duplicated
genome to the state when all genes had two copies. He uses the other non-duplicated
reference genome to help him identify the positions where some genes were deleted. To
achieve it, he is finding a pair of two disjoint intervals in the duplicated genome and
one interval in the non-duplicated genome such that union of genes from intervals in
the duplicated genome is the same set of genes as set from the interval in the reference
genome.

In our approach we extend the problem from Sankoff’s algorithm to allow approx-
imate gene clusters with outsiders. We define a problem and called it formally as the
best interval location. In the problem we are aiming to localize a pair of two intervals
in the duplicated genome which are the best match for some reference interval. The

2

degree of similarity of the intervals in the duplicated genome to the reference interval
is expressed by score. We propose our scoring scheme which reflects the quality of the
best interval location and can be easily calculated. The problem of the best interval
location can be reduced to the mathematical problem of maximum sum of two disjoin
intervals in a sequence of integers. We prove this reduction and design an algorithm
solving the problem in linear time.

We want to identify as many as possible conserved gene regions in the duplicated
genome, so we iterate through the whole reference genome and for each reference inter-
val we determine its best interval location in the duplicated genome. As many found
intervals are insignificant or overlapping with others, we have designed the mechanisms
selecting only the significant reference intervals and their best interval locations.

We apply our algorithm to the genomes of yeasts from the genus Magnusiomyces.
We form several pairs of genomes, always one with a hypothesis of whole genome
duplication event and one sister non-duplicated genome. We identify the best interval
locations and discuss the results. Our test organisms do not have fully assembled
chromosomes and the size of their genome is quite small, therefore the basic algorithm
runs fast. In order to achieve fast performance in more complex and bigger genomes, we
develop several heuristic approaches which modify the original algorithm and decrease
the computational time. We test the heuristics by applying them to real and generated
data. The data generator is designed by ourselves and produces data with different
features such as the length of chromosome and the level of similarity between genomes.
It allows us to compare and contrast the strengths and weakness of each heuristic
approach.

The thesis is organised as follows. We start with Chapter 1 where we define the
basic terminology, summarize different known gene cluster models and different algo-
rithms reconstructing duplicated genome. In the next chapter we propose our gene
cluster model in the duplicated genome, define our scoring scheme, and reduce a bio-
logical problem of the best interval location to the problem of maximum sum of two
disjoin intervals. In addition, we describe the dynamic programming algorithm solving
the problem of maximum sum of two disjoint intervals and discuss its complexity. In
the last part of this chapter we explain our filtering mechanisms selecting only the sig-
nificant interval locations, and apply the algorithm to biological data. In the Chapter 3
we propose a few heuristic improvements which either calculate the dynamic program-
ming separately for each chromosome or skip the dynamic programming if score of the
previous best interval location is too low. We apply heuristics to real and generated
data, and we discuss advantages and disadvantages of different heuristics approaches.
In the conclusion we outline a few open problems for the future research.

Chapter 1

Biological background and overview
of algorithms

1.1 Biological background

Organism’s complete genetic information is encoded via double-stranded DNAmolecule.
This genetic package is called genome and is usually located in the cell nucleus. Genome
consists of chromosomes and the number of chromosomes differs from organism to or-
ganism. For example, bacteria has only one circular chromosome and humans have
two sets of chromosomes, each set containing 23 chromosomes. Each chromosome is a
sequence of genes and gene is a stretch of DNA which has a function in the organism.

A polyploidization defines a mechanism for a duplication of whole genetic material
of an organism i.e. a duplication of a complete set of chromosomes. Such an organism
is called polyploid, but a more specific term may be used according to the number
of sets of chromosomes. Usually a eukaryotic cell has two paired chromosomal sets,
and such organisms (including humans) are called diploids. If a cell has three sets of
chromosomes, it is a triploid, four sets a tetraploid, five sets a pentaploid etc.

Historically it was assumed that whole genome duplication (WGD) occurs only
rarely and in terms of evolution it is undesirable (deleterious) process and does not
have an important role in the formation of new species. Today WGD is understood as a
dynamic process, which plays a crucial role in the evolutionary process and has a strong
impact on species diversification, especially among plants, fungi and lower organisms.
Studies suggest that at least one event of polyploidization has occurred in 30-70 % of
the flowering plants [J.94] and in addition many of them underwent several independent
rounds of whole genome duplication. WGD was observed in animals as well, especially
in insects, but to a lesser extent even in mammals. Ohno [Sou74] proposed that the
increased complexity and genome size of vertebrates has resulted from two rounds

3

CHAPTER 1. BIOLOGICAL BACKGROUND AND OVERVIEW OF ALGORITHMS4

of whole genome duplication in early vertebrate evolution, which provided genome
redundancy for new evolutionary possibilities. Lower number of polyploids in animals
is caused by their sexual reproduction, because polyploids have decreased ability to
find an optimal sexual partner. On the contary, development of asexual reproduction
(for example in plants) has increased their chances to survive WGD. Polyploidization
also offers a possible explanation for the increase of genomic content in eukaryotic cells
compared to prokaryotes (bacteria) [GL]. Polyploidization can have different causes at
the cellular level, either asexual when a cell is divided abnormally, or sexual(which is
considered to occur more frequently) when a polyploid cell is a result of a merging of
two non-reduced sexual cells (gametes).

Corresponding duplicated genes in polyploids are called paralogous genes and they
can be either maintained in multiple copies, lost or may be subject to subfunction-
alization or neofunctionalization. If a gene is beneficial for individuals then remains,
otherwise is deleted. (Theory : "Use it or lose it !" [LB97]). Subfunctionalization means
a redistribution of ancestral functions among the new copies of the given gene. Much
more interesting is the process of neofunctionalization, when one copy of the duplicated
gene acquires a new beneficial function, which is subject to positive selection, and the
other copy retains the original function.

After the polyploids are created, they undergo early stages of instability before
becoming adapted and joining the evolutionary fray as efficient competitors of their
diploid relatives. Adapted polyploids that avoid extinction enter an evolutionary tra-
jectory of diploidization during which genome redundancy is reduced [L.05](See Fig.
1.1).

CHAPTER 1. BIOLOGICAL BACKGROUND AND OVERVIEW OF ALGORITHMS5

Figure 1.1: WGD and following diploidization process [HKC09]

Diploidization is a dynamic process of fractionation, shuffling, chromosomal rear-
rangements and divergence of duplicated portions of genome. The scale of the events
ranged from loss of single genes (Fig. 1.1) to the loss of entire chromosomes. After
a sufficiently long period the original polyploid is changed back to a diploid state. A
current diploid whose ancestor was a polyploid is called a paleoploid or an "ancient"
polyploid. The most common chromosomal rearrangements are depicted in Figure
1.2. The diploidization results in the large-scale reorganization of genomes and overall
structure of the genome is significantly different compared to a non-duplicated ancestor.
Immediately after the WGD the duplicated genome contained two identical copies of
each original chromosome, but the order of genes and gene content has been eventually
disrupted as the results of the diploidization.

CHAPTER 1. BIOLOGICAL BACKGROUND AND OVERVIEW OF ALGORITHMS6

Figure 1.2: Chromosomal mutations [Glo].

Advantages of polyploids

Some plants with polyploidization history produce more biomass and have bigger fruit
and seeds. Evident advantage compared to diploid organisms is their greater adaptabil-
ity to new, unfavourable environmental conditions. An example of the rapid adaptation
of polyploids to new and extreme niches has been provided by the study of the arctic
flora [BBA+04]. It is a consequence of the presence of duplicated copies of the genes,
which are not required to perform their original function, and therefore have a higher
rate of mutation which leads to a more rapid adaptability to new environmental con-
ditions. Moreover, polyploids can mask harmful (deleterious) gene mutations, if they
contain non-mutated copy of the same gene.

CHAPTER 1. BIOLOGICAL BACKGROUND AND OVERVIEW OF ALGORITHMS7

1.2 Overview of algorithms

In this section we summarize the current state of research in two areas of bioinformatics
related to our work. We start by giving mathematical definitions of basic biological
terms needed in this section. Next we outline present models and algorithms for finding
gene clusters. A gene cluster is a group of genes that code for the same function in the
organism. Finally, two algorithms which try to reconstruct the genome after the process
of diploidization to the moment immediately after the whole genome duplication, when
all genes were doubled and correctly ordered, will be introduced at the end of this
section. Until now, information about genome duplication was not incorporated in
models of gene clusters with the exceptions of perfectly conserved clusters used for
ancestral genome reconstruction by Sankoff [SZ12]. This gap in the analysis of gene
clusters was a motivation for our work with the goal to improve the model of gene
clusters for organisms with a whole genome duplication. The latest results in the area
of finding gene clusters were starting points in the process of designing our gene cluster
model specialized for duplicated genomes.

1.2.1 Basic definitions

The genetic information is stored in a strand of DNA. A gene in a biological definition
is a sequence of this strand which encodes some protein that fulfils some function in
the organism. However, for us a gene will be simply a marker representing a certain
region of DNA. Genes that encode proteins with similar functions and sequence are
grouped into one gene family. Typically, a gene family contain corresponding genes
from related species, but we can also have several from the same family in one genome.

Definition 1 (Gene). A single gene is represented as a non-negative integer. The
genes from the same gene family share the same integer id.

Definition 2 (Chromosome). A chromosome is represented as a finite sequence of
genes, i.e. a sequence over a finite set of genes ids.

Due to the limitations of DNA sequencing technologies, we are often not able to
reconstruct whole chromosomes, but only partial segments called contigs. In the thesis
we define formally only the term chromosome and use it interchangeably for real chro-
mosomes and for contigs. Genome G is in the biological sense a set of chromosomes
G = {ch1, ch2, .., chn}. To simplify the problem formulation and algorithm description,
the genome will be represented as one sequence of genes, in which chromosomes will
be separated by some terminal character not used for representing genes.

CHAPTER 1. BIOLOGICAL BACKGROUND AND OVERVIEW OF ALGORITHMS8

Definition 3 (Genome). Genome G is a linear sequence obtained as a concatenation
of several chromosomal sequences joined by a terminal character #.

The length of genome G is denoted |G|. The i-th position in genome G is denoted
by G[i](1 ≤ i ≤ |G|) and may correspond to a gene id or the terminal character.

Definition 4 (Interval). Let G be a genome. Then G[i, j] denotes the interval
(G[i], G[i+ 1], .., G[j]) where i, j are positions in genome G, such that 1 ≤ i ≤ j ≤ n .

The empty interval is a special interval with no elements and will be denoted as
G∅.

1.2.2 Gene cluster models

A gene cluster is a genomic region, which is conserved in several genomes, which
means that in each genome the cluster contains genes which encode the same or similar
products. Genomes which initially have the same gene content and order become
divergent because of genome rearrangements, gene duplications and deletions. Without
selective pressure on these processes, gene content and order would be randomized over
time. The fact that some gene clusters remain conserved during evolution indicates
some functional relation of genes in these clusters. Examples are operons (group of
genes that operate together) in prokaryotic genomes, or group of genes responsible for
some metabolic function. Common ancestor of two species with a shared gene cluster
was likely to contain the same cluster, so studying gene clusters is a method to track
back ancestral genomes and compute evolutionary histories. Gene clusters have been
applied in several areas of comparative genomics, including annotation of genomes,
prediction of protein functions, localization of operons in prokaryotic organisms and
discovery of horizontal gene transfer.

The main problem is that formal definition of gene clusters is not consistent and
there exist many models and formulations. Most cluster definitions are constructive in
the sense that they support an algorithm for finding such conserved regions. There are
two basic aspects which gene cluster models have incorporated into their definition.

The first one is gene order. Do the identified genomic regions have to have genes
in the same order or not? If yes, a cluster is usually defined as a string pattern over
the alphabet of gene ids and the problem is stated as recognition of gene patterns in
several genomes. Alternatively, a cluster can be characterized by a set of genes and two
regions are then considered as copies of the same cluster if they contain an arbitrary
permutation over this set of genes.

The second aspect of gene cluster definition is flexibility in the gene content. Do
the gene clusters have to contain exactly the same set of genes? Some approaches

CHAPTER 1. BIOLOGICAL BACKGROUND AND OVERVIEW OF ALGORITHMS9

allow gene clusters to contain a certain number of "outsiders", i.e. genes that are not
common to all copies of an identified gene cluster. The flexibility in the gene content
is not arbitrary, and individual models introduce some threshold parameter to control
the difference in the gene content between clusters.

Many methods define clusters in a very relaxed way and primarily do not put any
condition on the length of a cluster, so algorithms for finding these gene clusters usually
identify numerous intervals, but many of them are either too short or are overlapping
each other. So a natural step is a modification of the basic model which selects only
the the most significant or maximal clusters.

Every approach has some advantages and disadvantages. Over the time, small
genome rearrangements modify even the gene clusters at a small scale, so the expec-
tation that the gene content and order will be fully conserved is unrealistic. Methods
which allow some mismatch in the gene content and order between gene clusters there-
fore better capture the biological reality. On the other side, approaches without this
extra freedom can be more easily defined, and faster and simpler algorithm can be
developed.

Conserved regions common to two genomes are the simplest scenario. However,
most of the models are extended to search for gene clusters in more then two genomes,
but computational complexity is usually higher. In the following text, we give the
overview of existing cluster models and algorithms.

Conserved gene clusters

We start with the strictest model, which does not allow any deviation in gene order
or content, and gene clusters have to be fully conserved [BCG07]. Such clusters are
sometimes called co-linear clusters [Jah10]. This model assumes that genes in the
genome do not repeat.

Definition 5. (Conserved gene cluster) Let G1 and G2 be two different genomes. Then
intervals G1[i, j], G2[k, l] form a conserved gene cluster if interval G2[k, l] is equal to
G1[i, j], i.e. |G1[i, j]| = |G2[k, l]| and G1[i+ z] = G2[k + z]|z = 0, .., (j − i).

In order to filter out overlapping clusters, the basic definition stated above is ex-
tended to the concept of a maximal conserved gene cluster, i.e a gene cluster which
can not be extended on either side. These maximal conserved clusters are separated
by breakpoints.

The algorithm for identifying these clusters works in O(Kn) time, where K is the
number of genomes and n is the length of one genome (assuming that genomes have
the same size). The algorithm is very simple and requires some preprocessing. We

CHAPTER 1. BIOLOGICAL BACKGROUND AND OVERVIEW OF ALGORITHMS10

will describe the case when two genomes are compared, but the technique is easily
transformable to more genomes. We select one genome as reference and for the other
genome we construct a table containing position of each gene. The reference genome is
then scanned, and for each gene pair G[i], G[i+ 1] we check if they are consecutive also
in the other genome. If not, we mark a breakpoint in the reference genome. Regions
between breakpoints are then maximal conserved clusters.

Example 1. Consider genomes: G1 = (1, 2, 3, 4, 5, 6), G2 = (1, 4, 5, 6, 2, 3).
The conserved gene clusters include all singletons: (1), (2), (3), (4), (5), (6), (7)
as well as some larger groups: (1, 2), (2, 3), (3, 4), (4, 5), (3, 4, 5)
The maximal conserved gene clusters are : (1, 2), (2, 3), (3, 4, 5)
Genome G1 after identifying breakpoints : G1 = (1, 2||3, 4, 5||2, 3)

While conserved gene clusters are very easily to detect, many biological significant
clusters will be missed, because of tiny rearrangements in gene order or changes in gene
content due to gene deletion or insertion.

This method does not have many practical applications, but was used in a phylo-
genetic study and for reconstruction of ancestral genomes [BS99].

Common intervals

The model of common intervals was first introduced by Uno and Yagiura [UY00] who
defined the problem for two genomes, later it was extended to K genomes. It was
the first attempt to relax gene cluster definition. This model requires the same gene
content in all occurrences of the cluster, but the order of the genes can be arbitrary.
Such gene clusters are called common intervals.

Definition 6. Let G1, G2 be two genomes. Then two intervals G1[a1, b1], G2[a2, b2] (1 ≤
a1 ≤ b1 ≤ |G1|, 1 ≤ a2 ≤ b2 ≤ |G2|) are common intervals if {G1[i]|a1 ≤ i ≤ b1} =
{G2[i]|a2 ≤ i ≤ b2}.

Uno and Yagioura proposed a basic simple algorithm for two permutations which
works in O(n2) time, but the average time is O(n) for two randomly chosen permu-
tations. Input genomes are required to be permutation over the same set of gene ids
and genes do not repeat in the permutations. The basic algorithm scans through all
intervals in one genome and checks if the length of the interval between the rightmost
and leftmost occurrence of some gene from this interval found in the second genome has
the same length. If yes, between the rightmost and leftmost occurrence in the second
genome are located only genes from the interval from the first genome and common
interval was identified. During linear-time preprocessing, we store for all genes from

CHAPTER 1. BIOLOGICAL BACKGROUND AND OVERVIEW OF ALGORITHMS11

the first genome their position in the second genome. The same authors also developed
algorithm working in O(n+N) time, where N is the number of common intervals and
N ≤

(
n
2

)
. The main technique is called reduced candidate (RC). The idea is to identify

"wasteful" right end of an interval in the first genome from past search information and
decrease the set of possible intervals which have to be checked in order to find common
intervals. This algorithm is optimal because it runs proportionally to the size of input
plus output. This algorithm was later improved to find all common intervals between
K permutations by Heber and Stoye and it runs in time O(Kn + N) [HS01]. They
modify the problem to search for a set of so called "irreducible" intervals, which is a
subset of common intervals such that common intervals can be easily reconstructed
from irreducible intervals. However, the algorithm itself as well as used data structures
are complex.

Similarly as in the previous strict model, there is an interest to filter out less sig-
nificant clusters. In the work [LPW05] the authors introduced a method for find a
strong intervals. Strong intervals are common intervals if they are not covered by other
common intervals. We have one strong common interval of length |S| and |S| singleton
intervals. Each bigger common strong interval contains at least two strong common in-
tervals, so in total we have O(n) strong common intervals. In the article, an algorithm
with the complexity of O(Kn) using a data structure called PQ tree is presented (K
is the number of genomes).

Example 2. Consider two genomes G1 = (1, 2, 3, 4, 5, 6, 7) and G2 = (4, 2, 3, 1, 7, 6, 5)
which are the permutations over the same set.
Common intervals :
{1}, {2}, {3}, {4}, {5}, {6}, {7} - singletons
{1, 2, 3}, {1, 2, 3, 4}, {2, 3}, {2, 3, 4}, {5, 6}{5, 6, 7}, {6, 7}
{1, 2, 3, 4, 5, 6, 7} - whole set S
Strong common intervals:
{2, 3}, {1, 2, 3, 4}, {5, 6, 7}, {1, 2, 3, 4, 5, 6, 7}

A disadvantage of modelling a genome as a permutation is that this model does not
allow occurrences of multiple genes. Schmidt and Stoye [ST04] introduced a model of
common intervals based on genome which is represented as a string not as a permu-
tation, so clusters with duplicated genes can be identified. Their algorithm solves the
problem for two genomes in O(n2).

Even this variations does not describe gene clusters in a way which corresponds to
their real biological structure, and the model is still too strict, because gene losses and
insertions which can slightly change the gene content of gene clusters prevent these
clusters to be identified by the model of common intervals.

CHAPTER 1. BIOLOGICAL BACKGROUND AND OVERVIEW OF ALGORITHMS12

r-window gene clusters

This is the simplest gene cluster model introducing a possibility of a flexibility in the
gene content between the occurrences of gene cluster in different genomes. A cluster
is defined as a pair of windows with size r which share at lest k genes, so there is at
most r − k outsider genes in every window.

Definition 7. Consider genome G1, G2 (|G1| ≤ |G2|) and constants r, k (1 ≤ r ≤
|G1|, 0 ≤ k ≤ r) where r is the length of a window. A pair of two intervals G1[a1, b1],
G2[a2, b2] (1 ≤ a1 ≤ b1 ≤ |G1|, 1 ≤ a2 ≤ b2 ≤ |G2|) is r-windows cluster if |G1[a1, b1]| =
|G2[a2, b2]| = r and | {G1[i]|a1 ≤ i ≤ b1} ∩ {G2[i]|a2 ≤ i ≤ b2}| ≥ k.

If k = r then the model is equivalent to the model of common intervals with
length k. The method was used to detect duplicated blocks of genes in yeasts genomes
[CGL03, FH01].

The essential part is to appropriately set the constant r and k. If k is too big, then
many interesting gene clusters will be missed and if k is too small than many intervals
will be detected by pure chance.

This model was not intensively studied in order to develop effective algorithms or
heuristics. It is a basic model for testing the statistical significance of gene clusters.
When a gene cluster is found it may show conservancy and similarity because of the
pure randomness. Durand and Sankoff [dur03] created this model and they used r-
windows sampling to test significance of the gene cluster in various scenarios. They
expressed probability of finding a set of k genes in the window of length r and derived
significance test for conserved clusters.

Max-gap clusters

Max-gap cluster is an another model [BBCR04] allowing a flexibility in the gene con-
tent. Genomes are considered as a permutations over some sets of genes, which are not
required to be equal and do not contain duplicated genes. Gene cluster is modelled as a
set of common genes for all occurrences of that gene cluster in the compared genomes.
Each pair of adjacent mutual genes in the identified occurrence of gene cluster can
not have more outsider genes between the mutual genes than a defined constant δ i.e.
adjacent common genes are allowed to be separated by the gap that does not exceed
a fixed threshold δ. In the original article these gene clusters were denoted as gene
teams.

Definition 8. Assume genomes G1, G2 and a fixed constant δ such that δ ≥ 0. A
pair of intervals G1[a1, b1], G2[a2, b2] (1 ≤ a1 ≤ b1 ≤ |G1|, 1 ≤ a2 ≤ b2 ≤ |G2|) is δ

CHAPTER 1. BIOLOGICAL BACKGROUND AND OVERVIEW OF ALGORITHMS13

max-gap cluster if C = {G1[i]|a1 ≤ i ≤ b1} ∩ {G2[i]|a2 ≤ i ≤ b2} is a set of common
genes, |G1[x, y]| ≤ δ (∀ consecutive genes x,y ∈ C in the interval G1[a1, b1]) and the
same condition holds for the all common genes in the interval G2[a2, b2]

If δ = 0 then this model equals to the previous model of common intervals. An
algorithm based on the divide and conquer technique is running in O(n log2 n) time
where n is the length of genomes. An idea behind the algorithm is based on the
maximal δ max-gap clusters in terms of inclusion. We start with the whole genome
and if it is not a δ max-gap cluster then the genome can be divided into two smaller
intervals and the problem is solved recursively until we finally get some maximal δ
max-gap cluster.

Example 3. * denotes genes that are not in the set of common genes.
Assume having δ = 1 and these two genomes :
G1 = (1 * 2 * 3 4 * * 5 6 7 8 9)
G2 = (* 3 * 1 4 * 2 5 6 7 * 9 8)
δ max-gap clusters together with lonely genes (singletons):
{1}, {2}, {3}, .., {9}, {1, 2, 3, 4}, {5, 6}, {5, 6, 7}, {5, 6, 7, 8, 9}, {6, 7}, {6, 7, 8, 9}, {7, 8, 9}, {8, 9}
maximal δ max-gap clusters : {1, 2, 3, 4}, {5, 6, 7, 8, 9}.

Bergeron, He and Goldwasser [PBR+05, HG05] later expanded this model for
genomes represented as a string, so duplicated genes can be incorporated into clus-
ters. They implemented a modified divide and conquer algorithm to solve a newly
defined problem in time O(n + m), where n,m are the number of common genes in
both genomes.

A disadvantage of this approach is that from the biological point of view we do not
have evidence that more small gaps are more likely than few bigger gaps.

Approximate gene clusters

As was mentioned in the beginning of the section, micro rearrangements break the gene
order in the gene cluster and gene insertions and deletions violate the gene content of
the cluster by outsider genes. We describe now a model which has the highest generality
and allows the irregularities in the gene content and order between the intervals of gene
cluster, and therefore enables to detect gene clusters with different diverse conservation
patterns [K.11]. Genome is represented as a string and cluster as a set of genes. The
goal is to find such two intervals in the compared genomes for which the symmetrical
difference between the sets of genes from these intervals (occurrences of the gene cluster)
is bounded by some threshold parameter δ.

CHAPTER 1. BIOLOGICAL BACKGROUND AND OVERVIEW OF ALGORITHMS14

Definition 9. Consider two genomes G1,G2 and threshold parameter δ such that δ ≥ 0.
A pair of intervals G1[a1, b1], G2[a2, b2] (1 ≤ a1 ≤ b1 ≤ |G1|, 1 ≤ a2 ≤ b2 ≤ |G2|) is
δ-approximate gene cluster if C1 = {G1[i]|a1 ≤ i ≤ b1} , C2 = {G2[i]|a2 ≤ i ≤ b2} are
sets of genes from the intervals G1[a1, b1], G2[a2, b2] and |C1\C2|+ |C2\C1| ≤ δ.

The max-gap cluster model deals with gene losses indirectly. The gene which is not
presented in both intervals is considered as a outsider and is part of the gap between
common genes. As a consequence, the set of genes representing gene cluster is reduced
to a minimal consensus, i.e. genes which are mutual for both intervals. On the other
side, the approximate gene cluster is not a minimal consensus but a set of genes which
is optimized in the sense that symmetric distance between genes in the intervals is
minimized [K.11].

The idea of defining a flexibility in the gene content between the intervals of the
cluster as a set distance was introduced in [CDH+06]. Later, a median gene cluster
as the best approximate gene cluster for K genomes was defined and computed in
[BJMS09]. The latest results from this topic can be found in the dissertation thesis
of Katharina Jahn [Jah10]. The algorithm finding approximate gene clusters is based
on Stoye and Schimdt algorithm developed for common intervals, and it has time
complexity O(K2n2(δ + 1)2) where K is the number of compared genomes. We do
not aim to find all δ-approximate gene clusters, but only the maximal ones which are
called δ-optimal approximate clusters, and therefore we can achieve polynomial time
complexity. An interval of the optimal approximate gene cluster does not have at the
positions directly to the right and to the left genes which are contained inside the
interval.

Example 4. Assume genomes G1, G2 and threshold parameter δ = 3.
G1 = (6 2 1 4 3 9 4 5 3 8 12 2 10 6 3)
G2 = (11 14 7 12 7 1 5 3 8 13 4 7 1 12 15 3 9 1 15 8 1 5)
If G1[3, 10] is an interval in the genome G1 and
G2[6, 9], G2[6, 11], G2[13, 23], G2[15, 23], G2[16, 19], G2[21, 23] are intervals in the genome
G2, then each pair of G1[3, 10] and any interval from G2 forms a δ-optimal approximate
gene cluster.

1.2.3 Algorithms reconstructing duplicated genome

In this subsection we describe two algorithms designed especially for duplicated genomes.
As was already mentioned in the biological background, a duplicated genome under-
goes chromosomal rearranges and the process of fractionation, after the whole genome
duplication. The goal is to reconstruct a current genome of an organism with WGD

CHAPTER 1. BIOLOGICAL BACKGROUND AND OVERVIEW OF ALGORITHMS15

to the state immediately after the whole genome duplication where gene order was not
disrupted and each gene has two copies. Algorithms differ from each other by the type
of mutation which effect on the genome they try to reconstruct.

Genome halving problem

A problem was introduced by El-Mabrouk and Sankoff [EMNS98]. Assuming that a
genome is duplicated and then rearranged over time, is possible to reconstruct ancestral
genome from the current gene order? The reconstructed genome should have a minimal
distance, that means a minimal number of rearrangements to transform the original
genome to the genome we are observing today. In the original article [EMNS98] authors
defined a problem of genome halving only as a number of translocations (see Fig. 1.2)
needed to replace n chromosomes of current genome with n new chromosomes where is
exactly n/2 pairs of identical chromosomes. Later, the translocation was replaced by
more universal JCD (double cut and join) operation, which can model all chromosomal
rearrangements [WS09]. The other model is a guided genome halving where the genome
reconstruction is guided with the help of one or more reference genomes [ZZAS08].

A consolidation algorithm

Another important mechanism causing gene order disruption after the event of whole
genome duplication is fractionation, when one copy of duplicated gene is deleted. If
the evolutionary distance is estimated on the number of chromosomal rearrangementes,
the comparison between duplicated genome and its non duplicated sister genome shows
significant overestimation of the chromosomal rearrangements. When a number of the
adjacent duplicated gene pairs lose some genes from one chromosome and the other
pairs lose genes from the other chromosome, then all these places are considered as the
rearrangement break points (Fig. 1.3).

CHAPTER 1. BIOLOGICAL BACKGROUND AND OVERVIEW OF ALGORITHMS16

Figure 1.3: Fractionation leading to different adjacencies in current diploid and its
ancestor [SZ12]

A problem of an exaggerate amount of chromosomal rearrangements because of
the diploidization was formulated by Sankoff and Zheng [SZ12]. Their algorithm re-
constructing the places of diploidization is called a consolidation algorithm and has
O(n2) time complexity. Subsequently, the algorithm was improved to run in linear
time and to deal with genomes with higher degree of polyploidization [JZKS12]. The
consolidation algorithm is based on the identification of fractionation intervals, regions
in duplicated genome and its sister non duplicated reference genome. Two intervals
in duplicated genome correspond to a single region in sister genome if their union of
genes is a set equal to the set of genes from the reference interval.

These fractionation intervals correspond to conserved gene clusters in the duplicated
genome, although Sankoff does not formulate his problem as a problem of finding gene
clusters. In our work we take these fractionation regions and modify them to resemble
the approximate gene clusters.

Chapter 2

Model and algorithms

2.1 Problem definition

In this section, we formally define the problem of our interest and describe algorithms
for solving it. As it was mentioned previously,the main goal is to find a pair of con-
served gene clusters in the duplicated genome for some specific interval in the reference
genome.
Before defining our problem, it is necessary to introduce additional terminology.

Definition 10 (Double location). A double location is a pair of two disjoint intervals
in genome G.

If both of the intervals from the double location are non-empty, it will be denoted
as G[a1, b1][a2, b2], where interval G[a1, b1] occurs to the left of G[a2, b2] in genome G.
If one of the intervals from the pair is empty, then the double location is equivalent to
the non-empty interval. If both intervals are empty, the double location is an empty
interval as well.

Definition 11 (Interval location). An interval location for an interval R[i, j] from
the reference genome R is defined as a pair (R[i, j], D[a1, b1][a2, b2]) where D[a1, b1][a2, b2]
is a double location in the duplicated genome D.

Definition 12 (Scoring function). A scoring function S is a function which assigns
a real valued score to each interval location (R[i, j], D[a1, b1][a2, b2]).

Definition 13 (Best interval location problem). The goal of the best interval
location problem is to find the interval location Li,j = (R[i, j], D[a1, b1][a2, b2]) in the
duplicate genome D for a fixed reference interval R[i, j] such that its score is maximal.

17

CHAPTER 2. MODEL AND ALGORITHMS 18

Definition 14 (All locations problem). For each interval in the reference genome R
find its best location in the duplicated genome D. Solution of this problem P (SOL(P))
is the set of the best interval locations Li,j.
SOL(P) = {Li,j : ∀i, j such that R[i, j] is an interval in R }

A disadvantage of the All location problem is that the final set of solutions is too
large and many of its elements are not meaningful. Many of the reference intervals
R[i, j] are too short to be considered as significant, many have very low score and
many intervals are overlapping each other. Therefore these intervals have to be filtered
under some set of conditions, which will be denoted as Cfilt and described later (Section
2.7).

Definition 15 (Significant solution). A significant solution to the above defined
problem P is the set of the best interval locations Li,j from SOL(P) which satisfy each
condition defined in Cfilt. This set is denoted as SOL(P).

An unanswered question is, how score of each interval location will be evaluated.
The problem of defining scoring function S is outlined in the next section.

2.2 Scoring system

Defining a relevant scoring function can be complicated because a score assigned to each
interval location should express its biological quality and should allow us to differentiate
the bad interval locations from the good ones. Moreover, score calculation has to be
efficient in terms of time complexity.

Before giving the formula for scoring function itself, we define gene content of an
interval and discuss a few key ideas leading to our scoring scheme.

Definition 16 (Gene content). Let G[i, j] be an interval in genome G. Then the
gene content of this interval GC(G[i, j]) is the set of unique genes from this interval:
GC(G[i, j]) = {G[k]|i ≤ k ≤ j}.
The gene content of the whole genome G is defined in the similar way and contains all
genes from this genome:
GC(G) = {G[i]|1 ≤ i ≤ |G|}.

What is the best interval location we can get for some reference interval? In the
ideal case, we would expect to find two disjoint intervals in the duplicated genome
which are both equal to the original interval in the reference genome. Assumption
that an order of the paralogous genes in the double location and the order of genes
in the reference interval is identical, is too rigorous. Both Sankoff in his interval

CHAPTER 2. MODEL AND ALGORITHMS 19

reconstruction algorithm [SZ12] and Jahn [K.11] in her scoring system for gene clusters
detections disregard gene order inside intervals and emphasize only their gene content.
To translate it to our problem, gene content of the reference interval and the best
interval location should equal in optimal case, i.e GC(R[i, j]) = GC(D[a1, b1][a2, b2]).
Note that here we compare gene content of R[i, j] with the union of genes in D[a1, b1]
and D[a2, b2]. Thus a gene from R[i, j] can have one or more copies in the double
location.

Longer intervals R[i, j] conserved in the duplicated genome are more significant,
because they are less likely a result of chance than in the case of short reference inter-
vals. Over time, every genome undergoes several minor or bigger mutations, so perfect
content conservation is observed only at the early stages after the WGD. Therefore
we allow some differences in the gene content thus extended model of [SZ12] who seek
perfect gene content conservation. Divergence in the gene content is due to extra genes
(outsiders) either in the reference interval or in the double location. Such an outsider
can be result of gene deletion in the other genome, insertion of the outsider itself or
rearrangements which moved the outsider to a new position in one of the two genomes.

In the scoring system used by Jahn [K.11], every extra gene in the gene content of the
reference interval or localized gene cluster decreases the score equally. Straightforward
adaptation of this scoring system to our problem of the best interval location leads
to several problems. Comparison of gene content of the double location to the gene
content of the reference interval requires a calculation of the union of the gene sets from
the double location intervals and a calculation of symmetric difference between gene
sets from the double location and reference interval. In this scenario, it is difficult to
devise an algorithm which finds the best interval location efficiently. Another problem
is that imperfections in the interval location can be observable even if the gene content
of the reference interval and double location are equal and Jahn’s scoring system would
not penalize it. For example, if one copy of a duplicated gene in the duplicated genome
is outside the identified double location and the other inside, then the copy inside would
cause that the gene content does not change, and the score of this location is the same
as a score of a double location where both copies are included within the location.
Naturally we would like to give some penalty for this discrepancy and thus distinguish
between these two interval locations. We propose our own scoring scheme which is not
based on differences between sets of genes, but is based on an additive penalization
assigned to each gene causing divergence from the perfect interval location. Later
we show that computation of this scoring function is very simple and can be done in
constant time.

From the biological point of view, proposed scoring system does not give optimal

CHAPTER 2. MODEL AND ALGORITHMS 20

score all the time. One example is, when some gene has two or more copies in the
reference genome as a consequence of an older WGD event or some mutation. If
a reference interval does not contain all copies of such a gene, then how should be
penalized copies of the gene which are outside the identified best interval location in
the duplicated genome? Some of them could originate from the copies which are not
inside the reference interval. Our scheme penalizes them because it recognizes them
as copies of the gene from the reference interval and in an ideal interval location they
would be localized inside. On the other side, Jahn’s scoring system would not penalize
them as long as there is at least one copy inside the double location, so gene content
is matched to the gene content of the reference interval. An other example happens
when some outsider gene inside the double location is excessively copied so we have
many copies of the same extra gene inside the double location. Our scoring scheme
penalizes each copy separately, but Jahn’s scheme would penalize only one, because all
of the copies increase the gene content set by the same gene.

Definition 17 (Scoring function formula). Let R[i, j] be a reference interval and
L = (R[i, j], D[a1, b1][a2, b2]) an interval location of this interval in the duplicated
genome D. Scoring function S assigns the following value to the interval location
L:
S(L) = |R[i, j]| − αSIN − βSOUT − γSMIS, where

SIN = ∑
k∈[a1,b1]∪[a2,b2](1− I[k]) and I[k] =

1 ⇐⇒ D[k] ∈ GC(R[i, j])

0 else

SOUT = ∑
k∈[1,a1−1]∪[b1+1,a2−1]∪[b2+1,|D|] I[k]

SMIS = ∑
k∈[i,j] J [k] and J [k] =

1 ⇐⇒ R[k] /∈ GC(D)

0 else
Constants α, β, γ are parameters of the scoring function.

The first term of the scoring system is the length of the reference interval which de-
termines the probability that the double location for a given interval would be conserved
by chance. Term −α|SIN | decreases the score by the amount equivalent to the number
of outsider genes in the double location D[a1, b1][a2, b2], i.e. the number of genes which
are not found in the gene content of the reference interval GC(R[i, j]). Term −β|SOUT |
decreases the score for each gene from the reference interval occurring outside the iden-
tified double location in D, i.e in the intervals D[1, a1−1], D[b1+1, a2−1], D[b2+1, |D|].
The last term −γ|SMIS| deals with the genes from the reference interval which are not
found in the whole duplicated genome, so are considered as missing.

CHAPTER 2. MODEL AND ALGORITHMS 21

Example 5. Consider reference interval R[2, 7] and its interval location
L = (R[2, 7], D[2, 7][16, 19])

For the sake of score calculation for L, the following values were computed:
|SMIS| = |{5}| = 1
|SIN | = |{10}| = 1
|SOUT | = |{2, 3}| = 2
If parameters α = β = γ = 1 then a score of the interval location L equals to :
S(L) = |R[i, j]| − αSIN − βSOUT − γSMIS = 6− 1− 1− 2 = 2
Note that for these values of α, β, γ, L is the best interval location L2,7.

2.3 Simplified problem formulation

In this section we introduce a mathematical formulation for the maximum sum of
two disjoint intervals problem and show the equivalence of this problem with the best
interval location problem.

Definition 18 (Maximum sum of two disjoint intervals problem - MS2DIP).
Given a sequence S of integers s1, s2, .., sn find at most two disjoint intervals S[a1, b1]
and S[a2, b2] such that they maximize the sum MS2DIP (S[a1, b1][a2, b2]) = ∑b1

i=a1 si +∑b2
j=a2 sj.

Solution to this problem consists of the maximum sum as well as the identified in-
tervals (S[a1, b1], S[a2, b2]). If all integers in the sequence are positive, then the solution
is trivially the whole sequence. In contrast, if all integers are negative then the solution
is the empty interval and the sum is set to zero.

In order to show the equivalence of this problem with the proposed definition of
the best interval location, the genome as a sequence of gene ids has to be transformed
to a sequence of integers, where each integer should characterize a gene in terms of its
quality for some reference interval. This integer will correspond to the partial score
assigned to each gene and the score of the i-th gene in the duplicated genome will be
denoted as c[i].

Lemma 1. Let R[i, j] be a reference interval, Li,j = (R[i, j], D[a1, b1][a2, b2]) its best in-
terval location in the duplicated genome and S scoring function with parameters α, β, γ.

CHAPTER 2. MODEL AND ALGORITHMS 22

Partial score c[k] is assigned to each gene in the duplicated genome D so that c[k] = β

iff D[k] ∈ GC(R[i, j]) or c[i] = −α otherwise. If the newly obtained sequence from du-
plicated genome D is denoted D′, then solution L′ = (D′[a1, b1], D′[a2, b2]) of MS2DIP
is equal to the solution of the best interval location Li,j.

To prove this lemma, we have to show the equivalence between the score of Li,j

and the score of L′. The next lemma gives the calculation of the score L′ and it claims
that such computed value is equal to the score of S(Li,j). The statement formulated
in the lemma is even stronger and claims, that for the reference interval R[i, j] is the
score of any double location D[a1, b1][a2, b2] in the duplicated genome equals to the sum
of corresponding intervals D′[a1, b1], D′[a2, b2] in the sequence D′. We will denote as
occ(R[i]) the number of occurrences of reference gene R[i] in the duplicated genome D.
Further, let occ(R[i, j]) = ∑j

k=i occ(R[k]) be the number of occurrences of genes from
the whole reference interval in the duplicated genome. SMIS is the number of missing
genes from the reference interval as explained in the definition of the scoring function
(Definition 8).

Lemma 2. Let R[i, j] be a reference interval and L′ = (D′[a1, b1], D′[a2, b2]) a pair
of disjoint intervals in the sequence D′. Score of L′ calculated as |R[i, j]| − γSMIS −
βocc(R[i, j]) + MS2DIP (D′[a1, b1][a2, b2]) has the same value as the score of interval
location (R[i, j], D[a1, b1][a2, b2]) given by scoring function S with parameters α, β, γ.

Proof. Terms |Ri,j| and γSMIS are the same as in the scoring system for the interval
location. To prove the identity of scores, negative value of the −αSIN and −βSOUT

in the formula for scoring function S has to be equal to the value of −βocc(R[i, j]) +
MS2DIP (D′[a1, b1][a2, b2]). All integers in the intervals D′[a1, b1], D′[a2, b2] have ei-
ther value −α or β, so the maximum possible score is the sum of the lengths of these
intervals multiplied by constant β , i.e. |(D′[a1, b1]| + |D′[a2, b2]|)β. The score is low-
ered by the the number of −α integers inside the intervals D′[a1, b1], D′[a2, b2] and the
number of negative α integers corresponds to the cardinality of set SIN . Moreover, the
difference between βocc(R[i, j]) and the number of positive β integers in the intervals
D′[a1, b1]D′[a2, b2] agrees with the cardinality of the set SOUT . This finishes the proof
about the score equivalence.

Lemma 1 follows from Lemma 2 because terms |R[i, j]| − γSMIS − βocc(R[i, j])
depend only on reference interval R[i, j], but not on [a1, b1], [a2, b2]. Therefore score of
the interval location is maximized by interval pair maximizing MS2DIP .

To sum it up, if genes in the duplicated genome are assigned the partial score −α
or β according to their membership in the gene content of the reference interval R[i, j],
the problem of the best interval location can be reduced to the problem of the maximal

CHAPTER 2. MODEL AND ALGORITHMS 23

sum of two disjoint intervals in the sequence obtained by replacing gene ids by their
partial scores. Identified intervals D′[a1, b1],D′[a2, b2] as a solution to the MS2DIP ,
correspond to the best interval location, and the score of the best interval location
Li,j can be computed from the solution of the MS2DIP by the formula from lemma
2. We will call intervals D′[a1, b1],D′[a2, b2] conserved intervals, because they represent
conserved sequences of reference genes in the duplicated genome. To be strict with
formalism, terminal characters # in the duplicated genome have score −∞ in the
sequence D′.

2.4 Dynamic programming

In this section we describe an efficient algorithm based on dynamic programming for
finding the maximum sum of two disjoint intervals. The idea of the algorithm is to
compute maximum sum of two intervals gradually for longer and longer prefixes of
the input sequence. Conserved intervals from MS2DIP will be denoted as C1 =
D′[a1, b1] and C2 = D′[a2, b2]. One or even both conserved intervals in MS2DIP can
be empty, but these special cases will be handled by the algorithm without any special
calculations. Parts of the sequence not included in intervals C1, C2 form at most three
intervals (see Figure 2.1). We will call them residual intervals and denote them by
R1, R2, R3, where: R1 = D′[1, a1− 1], R2 = D′[b1 + 1, a2− 1], R3 = D′[a2 + 1, n], where
n is the length of D′.

Figure 2.1: Example of an reference interval, intervals in the duplicated genome and
in the sequence D′ if α = −1, β = 1.

Recurrence equations for dynamic programming are slightly different for conserved

CHAPTER 2. MODEL AND ALGORITHMS 24

intervals and residual intervals.
Conserved intervals:

Ci[j] = max

Ci[j − 1] + c[j]

Ri[j]

C0[j] = 0 j = 1, .., n

Residual intervals:

Ri[j] = max

Ri[j − 1]

Ci−1[j]

R1[j] = 0 j = 1, .., n

C referrers to conserved and R to residual interval. Index i references corresponding
interval and j position in the sequence. Two subproblems for dynamic programming
are defined by the above recurrences. The first subproblem Ci[j] is the maximum
sum of i conserved intervals in the subsequence D′[1, j] if the i-th conserved interval
ends at the position j. The second subproblem Ri[j] is defined in a similar way as
the maximum sum of i − 1 conserved intervals in the subsequence D′[1, j] if the i-th
residual interval ends an the position j.

To compute value Ci[j] recursively from the values of the already solved subprob-
lems, the algorithm chooses the better alternative from two options. We can enlarge
the i-th conserved interval by adding the integer an the j-th position (c[j]) to the
optimal value calculated for sequence D′[1, j − 1] which is stored in Ci[j − 1]. The
other option is to start the i-th conserved interval at the position j and take the best
score reached in the previous residual interval as its initial score. Perhaps we would
expect to take the value stored in the Ri[j − 1] and add the value c[j], but because
this i− th interval can be empty, we consider the interval as empty at the beginning.
So we do not add integer c[j] and the initial score is equal to the score Ri[j] from the
previous residual interval ending at position j. The idea behind the computing score
for i − th residual interval is the same. Again we can extend the optimal solution for
i− th residual interval from the subsequence D′[1, j − 1] just by copying this value to
Ri[j]. We do not add any integer value stored in the position j, because now we do not
extend conserved interval. The other option is just to start the i-th residual interval at
the j-th position, so we take the best score we reached by previous conserved interval
Ci−1. Because residual interval can again be empty, we take the score Ci−1[j] of the
conserved interval ending at the position j.

Dynamic programming in our implementation does not calculate two separate ma-
trices for C and R, but merges them together into one final matrix F . The goal of the

CHAPTER 2. MODEL AND ALGORITHMS 25

problem of the maximum sum of two disjoint interval is to divide the sequence into at
most five intervals, starting and ending with residual interval. Conserved intervals and
residual intervals alternate in the sequence, and each has its matching row in matrix
F . Values in F are calculated gradually from left top to right bottom and value F [i, j]
can be evaluated if values from F [i − 1, j] and F [i, j − 1] are known. The final score
of the maximum sum is stored in the bottom-right cell. The following equations are
simply merged from the previously defined recursive equations.

Recurrence equations:

Fi[j] = max

Fi[j − 1] if i is odd, i.e. it corresponds to a residual interval

Fi[j − 1] + c[j] if i is even i.e it corresponds to a conserved interval

Fi−1[j]

F0[j] = 0 j = 1, .., n

Fi[0] = 0 ∀i

An identification of the positions of the conserved intervals is equivalent to the
identification of a trajectory of choices in the matrix F which led to the final score.
During evaluation of the matrix F , pointers showing from which cell the value of Fi[j]
was calculated are stored in another matrix T . At the end, the algorithm uses trace-
back to recover the positions of the conserved and residual intervals from matrix T .
We start at the bottom-right cell and follow the pointers until we get to the left-top
cell. There are only two possible moves: up, if a value in a cell was derived from the
above cell or left if the value was calculated using the left cell. Detections of the ends
points of the intervals is pretty simple. We follow pointers to the left until we reach
pointer to the upper row, then the beginning of the currently identified interval is the
position next to the cell with up pointer from the right and the end of the interval is
the position where we started our back-trace in the current row. If in the starting cell
for trace back in the current row contains a pointer to the upper row, the interval is
empty.

We will illustrate the algorithm on the following example.

Example 6. Let consider reference interval R[1, 4] = {1, 2, 3, 4}.
Our problem is to find the best interval location for this interval in the duplicated
genome D = (5, 1, 3, 7, 4, 2, 6, 8, 3, 2, 9) by the algorithm presented earlier.
Let us score the genes in the duplicated genome with α = 1 and β = 1, obtaining a
sequence of scores D′ = (−1, 1, 1,−1, 1, 1,−1,−1, 1, 1,−1)
The next step is computation of matrices F and T .

CHAPTER 2. MODEL AND ALGORITHMS 26

Matrix F:
D 5 1 3 7 4 2 6 8 3 2 9
D’ -1 1 1 -1 1 1 -1 -1 1 1 -1

0 0 0 0 0 0 0 0 0 0 0
R1 0 0 0 0 0 0 0 0 0 0 0 0
C1 0 0 1 2 1 2 3 2 1 2 3 2
R2 0 0 1 2 2 2 3 3 3 3 3 3
C2 0 0 1 2 2 3 4 3 3 4 5 4
R3 0 0 1 2 2 3 4 4 4 4 5 5

Matrix T:
D 5 1 3 7 4 2 6 8 3 2 9
R1 ↓ ↓ → ↓ → ↓ → ↓ → ↓ → ↓ → ↓ → ↓ → ↓ → ↓ →
C1 ↓ → → → → → → → → → →
R2 ↓ ↓ ↓ → ↓ → ↓ → → → ↓ → →
C2 ↓ ↓ → ↓ → ↓ → → ↓ → ↓ → → →
R3 ↓ ↓ ↓ ↓ → ↓ ↓ → → ↓ → ↓ →

Using matrix T we can identify the best interval location of the reference interval
L1,4 = (R[1, 4], D[2, 6][9, 10]) = ((1, 2, 3, 4), (1, 3, 7, 4, 2)(3, 2))

Solution of MS2DIP is the sum of the identified conserved intervals and is stored
in the bottom-right cell in matrix F . Conserved intervals are equivalent with the best
interval location and lemma 2 shows how to calculate the score of the best interval
location from the solution of the MS2DIP .

Example 7. Calculate a score of the best interval location identified in Example 2.
Li,j = (R[1, 4], D[2, 6][9, 10]), MS2DIP (D′) = 5 and α = β = γ = 1
SMIS = 0
occ(R[i, j]) = 6
|R[i, j]| = 4
Now the score of the best interval location L1,4 equals :
S(L1,4) = |R[i, j]|−γSMIS−βocc(R[i, j])+MS2DIP (D′[2, 6][9, 10]) = 4−0−6+5 = 3

All positions of the genes from the reference genome in the duplicated genome are
preprocessed and stored before the running the dynamic programming algorithm. The
second output form this preprocessing step is a set of missing genes, i.e the genes not
found in the duplicated genome. After this pre calculations a number of occurrences of
the genes from reference interval in the duplicated genome occ(R[i, j]) and the number
of missing genes SMIS can be determined easily.

CHAPTER 2. MODEL AND ALGORITHMS 27

2.5 Time complexity

Lemma 3. Maximum sum of two disjoint intervals problem has time complexity O(n),
where n is the length of the sequence.

Dynamic programming algorithm evaluates matrix F which have a constant num-
ber of rows, because sequence from MS2DIP is divided at most into two reserved and
three residual intervals. Length of F is equal to the length of the duplicated genome,
so complexity of the dynamic programming is O(cn) = O(n), where c is the number
of conserved and residual intervals. The preprocessing step of getting number of oc-
currences and missing genes from the reference interval can be calculated in the linear
time.

2.6 General problem of the maximum sum of k dis-
joint intervals

A whole genome duplication is the most frequent case of a polyploidization event and
the result is that the whole set of chromosomes is doubled. However some species
have undergone polyploidization of higher orders. After a WGD an organism has
four chromosomal sets, but for example strawberries can have four, six, eight or even
ten chromosomal sets. An other plant example is wheat which can have four or six
chromosomal sets.

We can easily extend our model to localize gene clusters not only in duplicated
genomes but also in the genomes with higher polyploidy, where the genes are in more
than in two copies. We will parametrize our model by parameter k which denotes
the order of the polyploidization. For k = 2 we get a problem of the whole genome
duplication studied and defined in the previous chapters. For k = 3 we deal with
hexaploidization, k = 4 octaploidization and so on.

The general problem of the best interval location is defined in the following way. For
some reference interval R[i, j] we want to localize k disjoint intervals with maximum
score in the polyploid genome. Scoring function from Definition 12 is easily modified to
deal with the higher number of intervals. This biological problem can be transformed to
the mathematical problem of the maximal sum of k disjoint intervals and solved by the
same algorithm based on dynamic programming as for MS2DIP . The only difference
is that sequence will be divided into at most k conserved intervals and k + 1 residual
intervals so the number of rows in the matrix F will increase to 2k + 1 rows plus the
initial row. Complexity of this generalized problem solved by dynamic programming
is O(kn).

CHAPTER 2. MODEL AND ALGORITHMS 28

Problem of the maximal sum for k disjoint intervals was studied by Csűrös [Csu04]
as Maximal scoring segment sets problem. They do not use dynamic programming
to solve problem but an algorithm based on set covering. Complexity was the same
as our O(kn) in the basic implementation. He also proposed an algorithm running in
O(n log n) time, but in our application domain the size of k is incomparably smaller
than the length of a genome so this complexity is worse than O(kn). Bengtsson and
Chen [BJ07] developed a linear-time algorithm. Owing to the fact that parameter k
acquires just small values, our dynamic programming will run sufficiently fast with the
advantages of a simple implementation and using simple data structures.

2.7 All locations problem

The goal of the All location problem is to find the best interval locations for all possible
reference intervals. To solve the problem, we will simply iterate through the reference
genome via two nested loops. The outer loop has fixed starting position i of the
reference interval, and the inner loop is then changing the ending position j gradually
in every iteration. Adopting this strategy will allow us to use a modified version of
sequence D′ computed for the reference interval R[i, j] in calculation for R[i, j + 1].
Preprocessing phase is then reduced only to changing the values from −α to β in all
positions in D′ corresponding to occurrences of the newly added gene R[j + 1]. If the
reference genome has length m, then we consider O(m2) different reference intervals,
and each round of MS2DIP linearly depends on the length of duplicated genome n,
so the overall complexity is O(m2n).

In order to get only significant solutions according to Definition 15, we need to spec-
ify filtering conditions Cfilt. In our implementation we defined one non-parametrized
and two parametrized conditions.

Condition 1: The first parameter is the minimal score,denoted minScore. From all
the best interval locations in SOL(P) we select into a set P1 only those whose
score achieves at least the specified minimal value.

Condition 2: The second condition considers reference intervals covering each other.
(See Figure 2.2). Many reference intervals in set SOL(P) are covered by other
reference intervals or cover these reference intervals. We say that interval R[a, b]
covers an interval R[c, d] if a < c and b > d. To set P2 we select only the best
locations from SOL(P) whose reference interval does not cover or is not covered
by other reference interval, whose best location has a higher score. More precisely,
no two reference intervals in P2 cover each other and for each interval which is

CHAPTER 2. MODEL AND ALGORITHMS 29

in SOL(P) but not in P2, there exists a reference interval in the set P2 which
covers or is covered by that interval and its score is higher or equal.

Condition 3: The third parametrized condition refers to overlapping reference inter-
vals. (See Figure 2.3). We introduce a parameter overlay which defines what
length of overlaps is still admissible, and for pairs with longer overlaps we select
only the higher scoring location into a set P3.

Figure 2.2: Example of reference intervals where an interval R[i, j] covers an interval
R[k, l] or the interval R[k, l] is covered by the interval R[i, j].

Figure 2.3: Example of overlapping reference intervals.

We could apply each condition to set SOL(P) independently, and then define the set
of significant solution of the All interval locations problem P as the intersection of the
output sets from all conditions, i.e. SOL(P) = P1

⋂
P2
⋂
P3. In our implementation,

we instead filter the set SOL(P) in the order as conditions were stated, and use the
output set from one condition as an input to the next one, so at the end the final set
of significant solution is equal to the set P3, i.e. SOL(P) = P3.

Selecting the best locations using the condition of minimal score does not require
any special algorithm. All the best locations are simply scanned, and the ones not

CHAPTER 2. MODEL AND ALGORITHMS 30

meeting minScore requirement are filtered out. Filtering procedures for Condition 2,
Condition 3 and setting of overlay parameter we be will briefly described in more detail
in the following subsections.

2.7.1 Filtering covering intervals

In this subsection we introduce our filtering algorithm for choosing the best locations
with the highest score whose reference interval does not cover or is not covered by
intervals with higher score.

Prior to describing the algorithm itself, concept of the right and left neighbour to
some interval is introduced. Consider a set X of intervals
R[a1, b1], R[a2, b2], .., R[an, bn], which are ordered by their starting coordinates ai. Then
the left neighbour of interval R[a, b] is an interval R[al, bl] from X such that al ≤ a

and al is the biggest one satisfying this condition (no interval from X starts between
al and a). The right neighbour, X[ar, br] is an interval from X such that a ≤ ar and
ar is the smallest value satisfying this condition (no interval form X starts between a
and ar).

Let a set I be the set of all reference intervals from the best locations in the set
P1, which are ordered in descending order by the score of their corresponding best
locations. The set I is an input to a proposed filtering Algorithm 1. An output from
the Algorithm 1 is a set O which contains reference intervals ordered by the start
coordinates such that no interval covers any other interval from O or is covered by any
interval from O. To get the corresponding output set P2 from Condition 2, reference
intervals from O have to be associated back with their best interval locations.

CHAPTER 2. MODEL AND ALGORITHMS 31

Algorithm 1 Filtering covering intervals
Input: Input set I of n reference intervals R[a1, b1], R[a2, b2], ..., R[an, bn] ordered by
the score in descending order
Input: Output set O of reference intervals ordered by the start coordinates where
no interval covers an other interval from O, neither is covered by any interval from
O

1: insert the first interval from I to O and remove it from I;
2: while I 6= ∅ do
3: i = R[ai, bi]← first interval from I;
4: l = R[al, bl]← left neighbour of i from the set O or NULL if not exists;
5: r = R[ar, br]← right neighbour of i from the set O or NULL if not exists;
6: if (l = NULL) ∨ (bl < bi) ∧ (r = NULL) ∨ (bi < br) then
7: add interval i to the set O;
8: end if
9: remove interval i from set I;

10: end while
11: return O

Lemma 4. Consider an input set I of n reference intervals R[a1, b1], R[a2, b2], ..R[an, bn]
ordered by the score of their corresponding best locations from the most valuable to the
least one. Algorithm 1 filters these intervals and outputs result set O ⊆ I such that no
interval from set O is covered by other interval from O. In addition, for each interval
R[ax, bx] from the set I\O, there exists an interval R[ay, by] in the final set O which
covers R[ax, bx] or is cover by R[ax, bx] and the score of R[ay, by] is higher or equal to
the score R[ax, bx].

Proof. The invariant is that set O never contains two intervals such that one covers
the other. This invariant is valid during the whole algorithm, because in line 7 only
non conflicting intervals are added to the set O.
To test if interval i from line 3 is covered by some interval in O, we consider its left
neighbour.

1. If interval i does not have a left neighbour, no interval starting earlier than i

exists in O. For that reason, no interval from O can cover i.

2. If the interval i has a left neighbour l from the set O (line 3), then it is necessary
to test if i is not covered by l by comparing end points bl and bi. If bl < bi

then the same is true for all intervals R[ax, bx] form O which start earlier than l
(ax < al < ai) because of the assumption of valid invariant(bx < bl < bi).

CHAPTER 2. MODEL AND ALGORITHMS 32

Similarly, to test if interval i is covering any interval from O, we consider its right
neighbour.

1. If interval i does not have a right neighbour i, no interval from O can be covered
by i.

2. If interval i has a right neighbour r, we check if i is covering r by testing whether
bi < br. For every other interval R[ax, bx] from O with ax > ar holds (due to the
valid invariant) that bx > br > bi and R[ax, bx] can not be covered by i.

If condition form line 3 is true, then the interval i is added to the set O.
Every interval from I\O was considered as interval i at some point and because it
was filtered out, at the time of its investigation, there existed an interval in the set O
which covered this interval or i covered it. Intervals are in I ordered by their score in
descending order, so at the time of the investigation, all intervals in the set O have
the same or higher score compared to i. This finishes the proof of the last part of the
lemma.

The input set I from the algorithm 1 has n reference intervals and is obtained from
the set P1 by sorting the reference intervals by the score in descending order. It can
be implemented in O(n log n) time. The worst case scenario for the algorithm 1 is,
that all reference intervals from I will be added to the set O. If the set O is stored in
an effective data structure, retrieving a left and right neighbour from O can be done
in O(log n) time. This is done for each reference interval form I, therefore the overall
time complexity of the filtering algorithm 1 is O(n log n).

2.7.2 Filtering overlapping intervals

Overlapping best locations are such locations whose reference intervals intersect, i.e.
the end of one reference interval overlaps start of an other one or vice versa. For
simplicity, we will assume that no interval covers another, which is the case after
applying filtering algorithm from the previous section. As we can see from Figure 2.3,a
reference interval can overlap with one interval (case a and b) or with two intervals from
both sides (case c). An important aspect of our design was to define a rule for removing
insignificant overlapping intervals. If two intervals have a large overlap as case a in
Figure 2.3, we want to save only the interval with the higher score. Parameter overlay
defines the maximum length of the overlap. Setting overlay to a constant value would
be difficult, because intuitively the threshold depends on the interval length. If the
intervals from case a in Fig. 2.3 would be two times longer, then the same long overlap
would not be seen as significant, because both intervals would have sufficiently long

CHAPTER 2. MODEL AND ALGORITHMS 33

regions that are not shared. The best solution appears to set the overlay dynamically
so that the overlay would be a constant fraction (0 ≤ overlay < 1) of the length of the
overlapping intervals. In our implementation, the overlay is half of the length of the
shorter of the two intervals. For example, in case b from Fig. 2.3 it means, that the
distance |j − k| has to be less than half of the length of the reference interval R[i, j]
and the reference interval R[k, l], i.e. |j − i| ≤ |R[i, j]|/2 and |j − i| ≤ |R[k, l]|/2. If
this conditions is fulfilled, we preserve both intervals R[i, j], R[k, l] and if not, then
the interval with the smaller score is thrown away. Situation in case c from Fig. 2.3 is
handled n the same way.

We outline the algorithm used to handle the overlapping intervals. Input to the
Algorithm 2 is a set I of the reference intervals obtained as set P2 from Condition 2.
The intervals in I are ordered by score in descending order. The other input parameter
is overlay. The output set O contains reference intervals which either do not overlap
at all or if they overlap, then the length of their intersection is less than the specified
fraction of the lengths of both overlapping intervals.

Algorithm 2 Filtering overlapping intervals
Input: Input set I of n reference intervals R[a1, b1], R[a2, b2], ..., R[an, bn] sorted by
score in descending order and parameter overlay
Input: Output set O of correctly overlapping reference intervals ordered by the be-
ginnings

1: insert the first interval from I to O and remove it from I;
2: while I 6= ∅ do
3: i = R[ai, bi]← first interval from I;
4: l = R[al, bl]← left neighbour of i from set O or NULL if not exists;
5: r = R[ar, br]← right neighbour of i from set O or NULL if not exists;
6: if

(
l = NULL ∨ (bl − ai + 1 < (bl − al + 1) ∗ overlay ∧

∧ bl − ai + 1 < (bi − ai + 1) ∗ overlay)
)
∧
(
r = NULL ∨

∨ bi−ar + 1 < (bl−al + 1)∗ overlay∧ bi−ar + 1 < (bi−ai + 1)∗ overlay
)
then

7: add interval i to set O;
8: end if
9: remove interval i from set I;

10: end while
11: return O

We investigate each interval i from the set I and find its right and left neighbour
from the current set O. It is sufficient to check conflicts only with these neighbours,
because if in the set O would be other interval more to the left or to the right causing

CHAPTER 2. MODEL AND ALGORITHMS 34

conflict with i, it would also have a conflict with i’s right or left neighbour, and that
is not possible because the set O always contains only non conflicting intervals. We
assume the same kind of invariant as in Algorithm 1. In line 6 we check for overlaps
the left and right neighbour. Note that, if interval i does not overlap with its left
neighbour, bl−a1 +1 will be negative and thus automatically less than overlay fraction
of lengths of i and l. If the overlay limit is not violated for interval i and its neighbours,
then in the line 7 we add this interval i into the set O.

2.8 Application of our algorithm to biological data

We run the algorithm for All location problem on several pairs of yeast genomes and
filtered best locations to obtain the significant solution. Our data set contains genomes
of four species from the genus Magnusiomyces and one species from the sister genus
Yarrowia which both belong to the family Dipodascaceae, class Saccharomycetes and
the kingdom Fungi. Genomes from the Magnusiomyces were recently sequenced by
the group of Prof. Jozef Nosek from the Faculty of Natural Sciences of Comenius
University. The genome of Yarrowia lipolytica was downloaded from the Genebank
database. Figure 2.4 shows the phylogenetic tree of the genus Magnusiomyces([KFT]).
Micro-organisms in the red rectangles are species where we hypothesize that a whole
genome duplication occurred, and their genomes are refereed to as duplicated in our
test. Species in the green rectangles are used as reference organisms. Genomes of our
available Magnusiomyces are not fully assembled into the chromosomes, but only into
contigs. In order to test the designed algorithm and the concept of identifying gene
clusters on more complex data, we also use the genome of Yarrowia lipolytica as a
reference, because its genome is available as whole chromosomes.

CHAPTER 2. MODEL AND ALGORITHMS 35

Figure 2.4: Phylogenetic tree of species from the genus Magnusiomyces [KFT].

We run a test for every combination of the duplicated and reference genome. For
all combinations we used value minScore = 10 as the minimal score threshold from
Condition 1, except for those combinations where Yarrowia lipolytica was used as the
reference organism. Yarrowia is from a sister genus, so the phylogenetic distance is
longer compared to the other reference genomes of M. ingens and M. Capitatus, so
in these tests we set minScore = 5. We implemented a small interactive application
for displaying identified significant best locations. Figure 2.5 shows a snapshot of the
results for the combination M. magnusii - M. ingens. A whole genomes is drawn as
a sequence of contigs which are numbered in ascending order. Each reference interval
in the reference genome has its color and number and its corresponding best double
location in the duplicated genome has the same color and number. Best locations are
numbered in descending order by their scores. In the example from the picture, the
best location with the highest score is highlighted in the circles.

CHAPTER 2. MODEL AND ALGORITHMS 36

Figure 2.5: Significant best interval locations for M. magnusii, if M. ingens is used as
the reference organism. The best interval location with the highest score is highlighted.

All results are summarized in the following histograms. Histogram number 2.6
reveals how many best interval locations of some score (minimal value is set to be
minScore = 10) are found in M. magnusii, if either M. ingens or M. capitatus are
used as the reference genomes. M. ingens appears to be a better reference genome
with significantly more identified best locations. The second histogram 2.7 shows the
same results but for the duplicated genome of M. tetrasperma. Again M. ingens turns
out to be a better reference genome. This is even supported by the phylogenetic tree
from Fig. 2.4 which shows that M. ingens is phylogenetically closer to both duplicated
yeasts compared to M. capitatus, which is located on the branch which was separated
from the rest at the beginning. The last histogram 2.8 depicts the number of the best
locations identified in both duplicated genomes when Yarrowia lipolytica is used as
the reference genome. In this case, the minimal score is set to minScore = 5, and
because of Yarrowia being phylogenetically further, only fewer interval locations are
determined.

CHAPTER 2. MODEL AND ALGORITHMS 37

Figure 2.6: Histogram showing the number of the best interval locations identified in
M. magnusii using two different reference genomes: M. ingens and M. capitatus
.

Figure 2.7: Histogram showing the number of the best interval locations identified in
M. tetrasperma using two different reference genomes: M. ingens and M. capitatus
.

Figure 2.8: Histogram showing the number of the best locations identified in M. mag-
nusii andM. tetrasperma using a reference genome of Yarrowia lipolytica.

Trying to get better results in terms of the number of the best interval locations
with high score, we implemented two improvements.

Reduced genome The first strategy is based on a modification of the input genomes
into a form resembling ideal genomes after the event of the WGD, when all
reference genes were in the duplicated genome in two copies and no other genes

CHAPTER 2. MODEL AND ALGORITHMS 38

were present. We scan the reference and duplicated genome and retain only genes
that occur in one copy in the reference genome and in one or two copies in the
duplicated genome.

Triple location The second strategy is based on the fact that our available duplicated
genomes consist only of contigs. thus a region which would be significant interval
location in the whole region can be missed by our algorithm, because one of the
duplicated copy is spilt into to different contigs. Our algorithm is easily extensible
to look for more than two intervals in the duplicated genome and so we run it
to localize three intervals in the duplicated genome with the best score for some
reference interval.

Both strategies were proven to be successful in our tests on real data, and we present
only one illustrative table 2.1 the genomes of M. Magnusii and M. ingens. In the
second column is the number of intervals of a given score from the first column for
the standard run without any data adjustments. In the third column are numbers for
the test with adapted strategy Reduced genome and in the forth for Triple location.
Both strategies result in an increase of the identified best interval locations with the
score meeting the required minimal value minScore = 10. All locations from the
second column occur in the third and forth column either as the same location with a
higher score or as a part of a bigger and more valuable interval location. Score of some
reference intervals was improved by applying only the two adjusted methods. On the
other side, for many reference intervals the best locations with sufficient score are found
by applying both strategies. In this case, each strategy corrects different deficiencies,
but both are efficient enough in increasing the score so the intervals are then detected
by the algorithm.

It is difficult to determine which strategy is better. Both have their disadvantages,
but on this input Triple location produces more significant interval locations than Re-
duced genome method. Ideally the algorithm should be run again once the contigs are
joined into the chromosomes to avoid to avoid the necessity of Triple method. The
Reduced genome strategy changes the content of the genomes so that the reference
and duplicated genome show fewer differences, but we ignore the current divergence of
the genomes, so it is difficult to estimate biological relevance of the results. The Triple
location method is based on the assumption that two of the found intervals should be
assembled together.However this might not be a case in the reality.

CHAPTER 2. MODEL AND ALGORITHMS 39

Score Standard Reduced Triple
28 0 0 1
27 0 0 0
26 0 0 0
25 0 0 1
24 0 0 1
23 0 0 1
22 1 2 1
21 1 1 0
20 0 1 0
19 1 2 1
18 0 0 1
17 1 0 0
16 0 6 3
15 1 3 6
14 4 5 5
13 4 4 2
12 4 8 11
11 6 5 8
10 12 17 16

Total 35 54 58

Table 2.1: The number of identified best locations in M. magnusii, when M. ingens is
the reference organism, using Standard method with no additional adjustments to the
data set, Reduced genome and Triple location strategy. The minimal score parameter
is set to be minScore = 10.

Chapter 3

Heuristic improvements

The goal of this chapter is to design strategies decreasing runtime of the algorithm
solving the All location problem. We develop few heuristics which improve the original
algorithm and are based either on breaking down the Best interval location problem to
sub-problems defined for each chromosome, or on skipping the dynamic programming
if the score of the best interval location is predicted to achieve too low value. All
developed heuristics do not reduced time complexity in the worst case scenario, but
they considerably speed up the algorithm applied to biological and generated data.

The relatively fast execution of the dynamic programming solving MS2DIP prob-
lem in yeast genomes is due to the few reasons. The first reason is, that we do not solve
the Best locations problem for the reference intervals excessing the boundary of chro-
mosomes. The second argument is, that tested yeasts from the genus Magnusiomyces

have short contings instead of chromosomes. These two facts cause that MS2DIP is
executed only for quite small subset of all O(m2) possible reference intervals.

However, motivation for developing efficient heuristics still exists. Firstly, if tests in
previous chapter are performed using Yarrowia lipolytica with whole chromosomes as
reference genome, the computation time is several times longer. Secondly, the lengths
of used genomes are pretty small compared to other species, and therefore in case of
applying our model to longer genomes we want to achieve feasible computation time.
The last motivation comes from the statistical significance of the best interval location.
The statistically significant score of the best interval location can be determine experi-
mentally by solving the All location problem repeatedly on randomized data, and this
method is computationally expensive.

In the following subsections we describe four heuristic improvements.

40

CHAPTER 3. HEURISTIC IMPROVEMENTS 41

3.1 Simple heuristics

We describe two simple improvements which reduce the set of reference intervals for
the All location problem and shorten the sequence D′ for MS2DIP . The first im-
provement use the value minScore to skip the execution of dynamic programming
for many reference intervals. According to the scoring function S from Definition 17,
the maximal possible score of the reference interval R[i, j] is equal to its length. As
a result, the reference intervals shorter than minScore will never achieve minScore
and will be filtered out. This fact enables us to reduce the set of reference intervals
for the All location problem by those reference intervals which length is too short, i.e.
|R[i, j]| < minScore.

The second improvement shortens the sequence D′ for MS2DIP to such maximal
subsequence which contains all genes from the reference interval R[i, j]. Precisely, the
starting and ending position of subsequence correspond to the leftmost and rightmost
occurrence of some gene from the reference interval and can be detected from the
outcome of preprocessing phase.

Both these simple heuristics require only small modifications in the algorithm for
MS2DIP and no additional data structures are needed.

3.2 Low score heuristic

An idea behind this heuristic is to mathematically characterize the situation, when the
score of the best interval location S(Li,j) is so low, that the score of the best interval
location for the next reference interval R[i, j + 1] will not achieve sufficiently hight
value to meet the minScore requirement. (Figure 3.1)

Figure 3.1: A reference interval R[i, j] and an interval R[i, j + 1] extended by gene
R[j + 1].

If we know S(Li,j) and the number of occurrences of the gene R[j + 1] in the
duplicated genome, then we can define an upper bound for the score of the best interval
location for the next reference interval R[i, j + 1] according to the following lemma.

Lemma 5. Assume that the score S(Li,j) for the reference interval R[i, j] was calculated
by the scoring function S with parameters α, β, γ and let occ(R[j+1]) denote the number

CHAPTER 3. HEURISTIC IMPROVEMENTS 42

of occurrences of the reference gene R[j+1]. Then the score of the best interval location
for the reference interval R[i, j + 1] is bounded by this inequality:
S(Li,j+1) ≤ S(Li,j) + αocc(R[j + 1]) + 1.

Proof. We prove the lemma backwards. Consider the best interval location Li,j+1

for reference interval R[i, j + 1]. Let us estimate the score of its double location in
combination with reference interval R[i, j]. The worst scenario is after removing R[j+1]
gene is that all occurrences ofR[j+1] remain as outsider genes inside the double location
and would be counted in term SIN from the scoring function S. Then the score would
be decreased by the value αocc(R[j + 1]) compared to S(li,j+1). This score is denoted
as S̃. However, in the optimal solution for R[i, j], some occurrences of the gene R[j+1]
may be localized outside the double location and not be counted as a part of the set
SIN , so the optimal score S(Li,j) can not be worse than S̃. As a result the following
inequality holds: S(Li,j) ≥ S̃ = S(Li,j+1)− αocc(R[j + 1])− 1.
−1 term on the left side is due to the fact that interval R[i, j] is shorter by one gene
compared to R[i, j + 1]. We get the inequality from the lemma statement by applying
simple mathematical operations to the previous inequality.

The incorporation of this heuristic to the original algorithm for MS2DIP is not
difficult and requires only few modifications. Before solvingMS2DIP for the reference
interval R[i, j + 1], we calculate its predicted best score according to formula from
Lemma 5. If it is smaller than minScore, then we skip this reference interval. We
store the computed best possible score for the omitted interval R[i, j + 1] (S(Li,j) +
αocc(R[j + 1]) + 1), so the value can be used in the next iterations for the longer
reference intervals. As soon as the predicted score achieves the minScore value, we
run the dynamic programming for MS2DIP again.

3.3 Contig heuristic

The standard method of solvingMS2DIP runs the dynamic programming in the whole
sequence D′. The terminal character using to join the chromosomes in the duplicated
genome into the sequence D′ has the score equals to −∞. Thus, no interval from
the double location is localized in two chromosomes. In more details, interval in the
duplicated genome never exceeds the boundaries of chromosome, because its score
would be close to −∞ and an empty interval with the score 0 would be chosen instead.
This fact enables us to break down theMS2DIP problem into sub-problems and solve
the instance of MS2DIP for each chromosome separately. We call this heuristic as
Contig heuristic because genomes of available yeasts consisting of contigs were the first
organisms where this improvement was tested.

CHAPTER 3. HEURISTIC IMPROVEMENTS 43

IfMS2DIP is calculated for every chromosome independently, then we have to cor-
rectly combine these partial solutions to give the final solution to the originalMS2DIP
problem. An interval location for some reference interval has at most two disjoint in-
tervals in the duplicated genome. These two intervals in the duplicated genome can be
either localized together in the same chromosome or separately in two different chromo-
somes. Therefore each modified instance of MS2DIP has to find in each chromosome
the best two intervals with the maximum score which are referred to as the best local
double location, and also the best single interval with the maximum score which is
called the best local single location. If the solution of the Best interval location prob-
lem has the double location situated in one chromosome from the duplicated genome,
then we return the best global double location, i.e the best local double location hav-
ing the highest score over the all best local double locations. If the intervals from the
double location are in the different chromosomes, then we return the first two best
global single locations, i.e two best local single locations which have the highest and
the second highest score over the all best local single locations.

In the Figure 3.2 are shown few possibilities how the best local single location and
the best local double location can be situated in the chromosomes.

The best local double location in some chromosome is obtained as the standard
solution of MS2DIP problem by replacing the sequence D′ by its subsequence which
corresponds to the given chromosome. Matrices F and T used in dynamic programming
will be helpful in solving the problem of the maximum sum of one interval. To find
the best local single location in the same chromosome, we do not have to developed a
new algorithm, because the solution can be simply determined from already calculated
matrices F and T . If we want to find only one interval with the maximum sum, then the
sequence for MS2DIP is divided into one reserved interval and two residual intervals
situated on the sides(see Fig. 3.2). The maximum sum of one interval is stored in the
rightmost cell in the row from matrix F which corresponds in the original problem to
the second residual interval. For more details see section 2.4.

CHAPTER 3. HEURISTIC IMPROVEMENTS 44

Figure 3.2: A schematic picture of the identified best local double (red) and best local
single (blue) location in the chromosomes in the duplicated genome for the reference
interval R[i, j] = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)

When it comes to the implementation of this heuristic, there are required few mod-
ifications to the standard algorithm. We run MS2DIP in each chromosome and as
the result we get the best local double location (Ldouble

i,j) and best local single loca-
tion (Lsingle

i,j). To give the final solution we need to store only the best global double
location(GLdouble

i,j) and two best global single locations (Lsingle1
i,j ,Lsingle2

i,j) selected from
the all chromosomal solutions. After MS2DIP returns the partial results for some
chromosome, we have to compare the values of Ldouble

i,j and Lsingle
i,j with the correspond-

ing global values:

if S(Ldouble
i,j) > S(GLdouble

i,j) then
GLdouble

i,j = Ldouble
i,j ;

end if
if S(Lsingle

i,j) > S(GLsingle1
i,j) then

GLsingle1
i,j = Lsingle

i,j ;
GLsingle2

i,j = GLsingle1
i,j ;

end if
if S(Lsingle

i,j) > S(GLsingle2
i,j) then

GLsingle2
i,j = Lsingle

i,j ;
end if

At the end we test if S(GLdouble
i,j) > S(GLsingle1

i,j) + S(GLsingle2
i,j) and return as the

final solution either the best global double location or combination of two best global
single locations.

The other crucial advantage of this heuristic is that MS2DIP does not have to
be usually executed in every chromosome. Let occi(R[i, j]) denotes the number of
occurrences of the genes from the reference interval R[i, j] in the chromosome i. If we

CHAPTER 3. HEURISTIC IMPROVEMENTS 45

order the chromosomes by occi(R[i, j]) in descending order and perform MS2DIP in
the chromosomes in the same order, then we can formulate the condition of terminating
the heuristic execution.

Lemma 6. Consider n chromosomes ch1, ch2, .., chn ordered by the number of occur-
rences of the genes from the reference interval R[i, j] in descending order. Assume that
MS2DIP is performed in the chromosomes in the same order. Let S be the scoring
function with the parameters α, β, γ. The variable GLsingle2

i,j stores the score of the sec-
ond best global single location. As soon as the chromosome chi chosen for MS2DIP
satisfies the condition: βocci(R[i, j]) ≤ GLsingle2

i,j , the execution of Contig heuristic can
terminated.

Proof. When all genes from the reference interval R[i, j] occur in the best local single
interval in the chromosome i and the interval does not contain any outsider genes,
than the score is equal to βocci(R[i, j]). This is the maximum possible score for the
given reference interval R[i, j] in the chromosome i. If this value is smaller or equal
than the score of the second global best single location GLsingle2

i,j , than the result of
MS2DIP in this chromosome i will not change the global values. The other chro-
mosomes chi+1, .., chn will have even lower score due to their ordering, so from this
moment the global values of GLdouble

i,j , GLsingle1
i,j , GLsingle2

i,j remain unchanged so we
can terminate the execution of this heuristic approach. The comparison to the best
global double location GLdouble

i,j is not needed, because the score of the global dou-
ble location is always higher or equal than the score of the global single location, i.e
GLglobal

i,j ≥ GLsingle1
i,j ≥ GLsingle2

i,j , and it can be easily proved. The inequality holds also
for the best local double and single location. If we have some outsider genes inside the
best local single location, then by splitting the interval in the position where at least
one outsider gene is localized, we get the local double location with better score. (See
chromosome 1 in the Figure 3.2).

3.4 Segmentation of duplicated genome into runs

This heuristic does not modify the original algorithm, but changes the data structure
used in the dynamic programming. In the standard implementation of MS2DIP , the
sequence D′ is stored in an array where each cell has either value −α or β (resp. −∞
for the terminal character). If we look closer at the sequence D′ (Fig. 3.3), we see
continuous subsequences of either −α or β values. We can merge them into the one
object and we refer to this positive (or negative) subsequences as positive (negative)
runs (terminology is adopted from[BJ07]). As a result, an individual gene score does

CHAPTER 3. HEURISTIC IMPROVEMENTS 46

not have to be wastefully stored in an array as a single value, but is sufficiently to
remember only the beginning, end and the score of the run containing that gene. The
sequence D′ is then segmented into the runs(see Fig. 3.3).

Figure 3.3: A schematic picture of the sequence D′ either as a sequence of −α, β values
or as a sequence of positive and negative runs, where each run is characterized by its
start, end point and score.

If we have the sequence D′ for the reference interval R[i, j] represented as an array,
then solving MS2DIP for the next interval R[i, j + 1] requires changing the values
form −α to β in the all occurrences of the new gene R[j + 1]. This can be done in
O(occ(R[j + 1])) time. In order to have the best time complexity for the operations
maintaining the runs up to date, we do not store them in an array, but in the binary
tree sorted by the start coordinates of the runs. To change the value from −α to β
for some occurrence of the gene R[j + 1], we have to look up the run containing this
occurrence in the binary tree. The found run is always negative and two situation can
happen.

1. An occurrence of R[j+1] gene is inside the negative run. Then this run is divided
into three new runs, one positive containing only one β value for R[j + 1] gene
occurrence, and two runs on both sides with appropriate negative score.

2. An occurrence of R[j + 1] gene is the end point of the identified negative run.
Then we enlarge the left or right positive run localized next to this negative run
and add β to its positive score. At the end we modify the score of the negative
run by adding the value α.

Update of all occurrences ofR[j+1] gene in the binary tree takesO(occ(R[j + 1])log(occ(R[i, j + 1]))
time. Every gene from the reference interval R[i, j] can create a new positive run in
the duplicate genome, so the maximum number of runs is proportional to the number
of occurrences of all genes from the reference interval R[i, j]. Time complexity of the
insertion to the binary tree is logarithmic, therefore log(occ(R[i, j + 1])).

The following lemma states the equivalence of the solutions calculated by using the
array and the binary tree of runs.

CHAPTER 3. HEURISTIC IMPROVEMENTS 47

Lemma 7. Assume that the sequence D′ for MS2DIP is represented as an array and
as a binary tree of runs ordered by the start coordinates. If the dynamic programming
solving MS2DIP is performed in the array and in the tree of runs, then it outputs the
same best interval location Li,j for the reference interval R[i, j].

Proof. It is necessary to show that the intervals from the double locations, calculated
by the dynamic programming using an array to store the sequence D′, do not start
or end at such positions which are located in the middle of the corresponding positive
runs. If the interval from the best location begins or ends at the position which is in
the middle of the positive run, then the score of such double location would not be the
highest and there would be a conflict with its maximality (we can get better solution
just by including this remaining (outside) β values into the interval).

3.5 Comparison between heuristics applied to bio-
logical data

In this section we compare the running time of standard algorithm from the section2.4
with some combinations of introduced heuristic improvements. We will show results
of two simulations for the duplicated organism Magnusiomyces magnusii. Due to the
simplicity we will refer to this genome as duplicated, although this hypothesis was not
officially published. The first test uses Magnusii ingens(both are in the same genus) as
the reference organism and the second Yarrowia lipolytica because of its fully assembled
genome, so the running time is longer.
We have these combinations of heuristics :

standard Standard dynamic programming algorithm where the sequence D′ is stored
in an array.

simple Standard algorithm with the implemented simple heuristics from the section
3.1.

simple+lowScore Standard algorithm with the simple heuristics and the low score
improvement from the section 3.2.

simple+lowScore+contig Standard algorithm as in the simple+lowScore combina-
tion, but MS2DIP is solved in each chromosome separately (See section 3.3).

simple+runs Standard algorithm with the simple heuristics running in the binary
tree of the positive and negative runs (See section 3.4).

CHAPTER 3. HEURISTIC IMPROVEMENTS 48

3.5.1 Magnusiomyces magnusii - Magnusiomyces ingens

Figure 3.4: Graph for the time comparison of the standard algorithm with different
heuristic combinations in test for M. magnusii - M. ingens.

In the next graph is shown another aspects of the heuristic improvements. We compare
how many times the dynamic programming is executed during the calculation of the All
location problem. The difference between the standard algorithm and either the simple
heuristics or the combination of simple heuristics and low score heuristic correspond
to the number of skipped calls of the dynamic programming. The table shows the
percentage of the skipped calls compared to the standard algorithm where none calls
are omitted.

Figure 3.5: Number of the dynamic programming (DP) calls in the standard algorithm
and in the algorithms implementing simple heuristics or the combination of simple and
low score heuristics.

CHAPTER 3. HEURISTIC IMPROVEMENTS 49

m
in
Sc
or
e

st
an

da
rd
[s
]

si
m
pl
e[
s]

si
m
pl
e+

lo
w
Sc
or
e[
s]

si
m
pl
e+

lo
w
Sc
or
e+

co
nt
ig
[s
]

si
m
pl
e+

ru
ns
[s
]

3
24
,8
0

17
,6
6

10
,2
3

1,
12

0,
45

4
24
,3
4

16
,8
8

8,
89

1,
05

0,
42

5
24
,2
6

16
,1
5

7,
67

0,
93

0,
41

6
24
,4
3

15
,6
3

6,
73

0,
87

0,
41

7
24
,4
4

14
,7
0

5,
73

0,
82

0,
41

8
24
,1
9

14
,0
6

4,
92

0,
69

0,
38

9
24
,1
0

13
,3
9

4,
39

1,
02

0,
37

10
24
,3
7

12
,6
9

3,
71

0,
71

0,
42

11
24
,2
9

12
,3
0

3,
28

0,
66

0,
40

12
24
,1
8

11
,4
6

2,
83

0,
62

0,
37

13
24
,2
1

10
,8
8

2,
49

0,
63

0,
41

14
24
,0
1

10
,2
2

2,
13

0,
61

0,
42

15
24
,4
7

9,
62

1,
94

0,
58

0,
41

Table 3.1: Time comparison of the different heuristic combinations with the standard
algorithm in test for M. magnusii - M. ingens. Tests are performed for the different
values of minScore

CHAPTER 3. HEURISTIC IMPROVEMENTS 50

minScore simple[%] simple+lowScore[%]
3 5,8 40,8
4 11,2 49,3
5 16,3 57,0
6 21,1 63,4
7 25,6 68,9
8 29,8 73,6
9 33,9 77,5
10 37,7 80,8
11 41,3 83,5
12 44,7 85,8
13 47,9 87,7
14 50,9 89,4
15 53,8 90,7

Table 3.2: Percentage of the omitted dynamic programming (DP) calls from the total
amount calculated in the standard algorithm for the different values of minScore by
implementing simple heuristics and the combination of simple and low score heuristics.

3.5.2 Magnusiomyces magnusii - Yarrowia lipolytica

Figure 3.6: Graph for the time comparison of the standard algorithm with the different
heuristic combinations.

CHAPTER 3. HEURISTIC IMPROVEMENTS 51

Figure 3.7: Number of the dynamic programming (DP) calls in the standard algorithm
and in the algorithms implementing simple heuristic or the combination of simple and
low score heuristics.

minScore simple[%] simple+lowScore[%]
3 0,18 94,51
4 0,36 95,16
5 0,53 95,64
6 0,71 96,01
7 0,89 96,29
8 1,06 96,52
9 1,24 96,70
10 1,42 96,86
11 1,59 96,99
12 1,77 97,11
13 1,95 97,21
14 2,12 97,30
15 2,30 97,39

Table 3.3: Percentage of the omitted dynamic programming (DP) calls from the total
amount computed in the standard algorithm for the different values of minScore by
implementing simple heuristics and the combination of simple and low score heuristics.

3.5.3 Assessments of heuristic improvements

From the graph 3.4 is evident that all heuristic combinations help to decrease the
execution time of the All location problem comparing to the standard algorithm. The

CHAPTER 3. HEURISTIC IMPROVEMENTS 52

simple heuristics and lowScore heuristic show better results with the higher value of
the parameter minScore. This is due the fact that, the higher minScore is then
there are more reference intervals for which MS2DIP is not calculated. The best
improvement was reached either by performing dynamic programming in each contig
separately or by using a binary tree of runs instead of an array. The effect of the
minScore parameter is minimal so these heuristics appear to be more robust. The
reference and duplicated genome do not have the whole chromosomes so even simple
heuristics save many calls of dynamic programming(Table 3.2). In the Fig. 3.6 is graph
for Yarrowia lipolytica showing comparison of heuristic approaches. We can see that
heuristicminScore shows the significant decrease in the execution time. The reason for
it is, that we compare phylogenetically further organisms and less resemblance occurs
between two genomes and therefore many of the best locations have very low score
and could be filtered out. The addition of contig’s heuristic then cause only a small
improvement. This is visible in the table 3.3 where the lowScore heuristic causes that
more than 90% of dynamic programming calls are omitted even for small values of
minScore parameter. Heuristic approach based on runs does not improve execution
time so much as it did in the previous simulation with M. ingens when the reference
genome was phylogenetically closer to M. magnusii. On the other side, we may expect
better performance by combining run heuristic with lowScore heuristic.

3.6 Generated data

There were two main reasons which forced us to design a model for generating simulated
data. The first one was that available biological data are not 100% assembled into the
chromosomes and even Yarrowia lipolytica with the whole chromosomes has a quite
short genome compared to other organisms. Tests of the developed heuristics in longer
data should better demonstrate the achieved time improvement. The other reason
is, that we can set up the parameters of the model and generate data with different
features. This enables us to test advantages of different heuristics for various types of
data.

3.6.1 Model of data generator

We introduced few model parameters which are connected to biological events influ-
encing the real biological data.

numOfGenes: A number of genes in the reference genome. This parameter designate
the size of the reference and also of the duplicated genome.

CHAPTER 3. HEURISTIC IMPROVEMENTS 53

endOfChrom: A probability that in the given position in the sequence of genes will
be the end of chromosome or contig. The bigger value is the shorter chromosomes
are.

delProb: A probability that a gene in the given position will be deleted from the
chromosome. This parameter simulates the mutation of gene deletion which
affects both the reference and duplicated genome.

numOfShuffle: A number of processes, where we randomly choose two position in the
genome and flip the gene content between these positions. The goal is to violate
the order conservation of genes. If both positions are from the same chromosome,
then this process is equal to chromosomal inversion. However, in our model
the positions could be chosen from different chromosomes, so we are trying to
simulate a more complicated mutations when the structure of chromosomes can
be disrupted.

A process of generating simulated data has the following steps:

1. According to the defined parameter numOfGenes and probability endOfChrom
we generate the sequence with numOfGenes different genes divided into chro-
mosomes.

2. We create a duplicated genome which is the product of WGD and contains two
copies of the reference genome form the previous step. Both reference and dupli-
cated genome are perfectly conserved so far with no divergence between them.

3. We iterate through the entire duplicated and reference genome and gene in the
each position is deleted with the probability delProb.

4. We perform the numOfShuffle shuffles in both reference and duplicated genome.
We select two positions uniformly and flip the content between the positions.

After the data generation, we test standard algorithm and developed heuristics.

3.6.2 Comparison between heuristics applied to generated data

In this section we try to compare the behaviour of the different types of heuristics for
various types of data. To shows the advantages and disadvantages of each heuristic
improvement itself, we do not combine them together as we did in the biological tests
where primary task was to solve the All location problem as fast as possible. We chose
two basic characteristics of the generated data whose effects to heuristics we want to
examine.

CHAPTER 3. HEURISTIC IMPROVEMENTS 54

length of chromosome An average length of chromosome in the reference and in
the duplicated genome. This characteristic is controlled by the parameter end-
OfChrom. The higher the value is then we have higher probability that chromo-
some will finish at current position during the data generation and subsequently
the higher probability of shorter chromosomes. On the contrary, the smaller the
value is, the longer chromosomes are generated.

similarity A level of similarity between the reference and duplicated genome, i.e. how
much two genomes differ in the gene content and gene order. This characteristic
is set by adjusting two values which can increase or decrease how the reference
and duplicated genome are similar to each other. The first one is delProb which
has indirect correlation with the level of similarity and numOfShuffle which has
a direct correlation, i.e. the higher value results in the higher similarity.

We set parameters in our model in a way that we got data with all combinations of the
characteristics length of chromosome and similarity. Every combination has its graph
of time results.

1. small length of chromosome + high level of similarity

2. small length of chromosome + low level of similarity

CHAPTER 3. HEURISTIC IMPROVEMENTS 55

3. large length of chromosome + high level of similarity

4. large length of chromosome + low level of similarity

From the tests in generated data we get these key results.

1. Contig heuristic is not suitable heuristic for data with the longer chromosomes,
because the execution of MS2DIP in long chromosome is pretty computational
expensive. On the other side, this technique is more practical for data with
the short chromosomes. The best results for contig heuristic are observed when
the compared genomes are phylogenetically closed. The gene content is still quite
conserved and the groups of genes are localized together only in few chromosomes,
so we do not run MS2DIP many times.

2. lowScore heuristic is observed to be the most advantageous especially in the data
with the long chromosomes and long phylogenetic distance. In the data with the
short chromosomes, this heuristic is few times faster in genomes with low level
of the similarity. It is difficult to find best interval location with some significant
score in genomes which are not similar enough, so many reference intervals are
filtered out and problem MS2DIP is not computed for them.

CHAPTER 3. HEURISTIC IMPROVEMENTS 56

3. The heuristic run is the winner in almost all combinations excepts from the last
one, where low level of similarity causes that duplicated genome is segmented
into too many runs.

57

Conclusion

In our thesis we defined a formal model of approximate gene clusters in a duplicated
genome which we referred to as the best interval location. We reduced this biological
problem to the mathematical problem of maximum sum of two disjoint intervals and we
designed a dynamic programming algorithm with linear time complexity. In addition,
we proposed a scoring system which assigns a score to each interval location and helps
us to filter out the less significant interval locations. We ran the algorithm on a bio-
logical data set which consists of two duplicated genomes and three reference genomes.
As a result we identified the significant best interval locations in organisms which are
assumed to have underwent a whole genome duplication event. In the last chapter we
developed four heuristic approaches which improved the execution time of our algo-
rithm. Heuristics proved their benefits especially in the tests with Yarrowia lipolytica,
the yeast with genome consisting of whole chromosomes, where computational time
was significantly reduced. In the very last part, we tested heuristic improvements on
generated data with different features and showed their advantages and disadvantages.

There are few directions for extending this work. The first one is to develop a
faster algorithm for the All location problem to get better time complexity than our
O(m2n), where m is the length of reference and n the length of duplicated genome. We
assume that it may be achieved by using more complex data structures. The second
direction is to redefine the scoring function of the best interval location. In particular,
the score of the interval location can be computed as symmetric difference between
the gene content of the double location and the gene content of the reference interval,
similarly as in the work of [K.11] for non-duplicated genomes. The third one is to
define and calculate the statistical significance of the best interval location. As soon
as we know how high the score of the statistically significant best location is, we can
correctly set parameter minScore and choose appropriate heuristic to calculate the All
location problem as fast as possible.

Bibliography

[BBA+04] C. Brochmann, A.K. Brysting, I.G. Alsos, L. Borgen, H.H. Grundt, A.C.
Scheen, and R. Elven. Polyploidy in arctic plants. BIOLOGICAL JOUR-
NAL OF THE LINNEAN SOCIETY, 82:521–536, August 2004.

[BBCR04] Marie-Pierre Béal, Anne Bergeron, Sylvie Corteel, and Mathieu Raf-
finot. An algorithmic view of gene teams. Theoretical Computer Science,
320(2–3):395 – 418, 2004.

[BCG07] Anne Bergeron, Cedric Chauve, and Yannick Gingras. Formal Models of
Gene Clusters, pages 175–202. John Wiley & Sons, Inc., 2007.

[BJ07] F. Bengtsson and Ch. Jingsen. Computing maximum-scoring segments op-
timally. Technical report, Research Report, Luleå University of Technology,
2007.

[BJMS09] Sebastian Böcker, Katharina Jahn, Julia Mixtacki, and Jens Stoye. Com-
putation of median gene clusters. Journal of Computational Biology,
16(8):1085–1099, 2009.

[BS99] T. Blanchette, M. nad Kunisawa and D. Sankoff. Gene order breakpoint
evidence in animal mitochondrial phylogeny. In In Proc. of COCOON, 1999.

[CDH+06] Cedric Chauve, Yoan Diekmann, Steffen Heber, Julia Mixtacki, Sven Rah-
mann, and Jens Stoye. On common intervals with errors, 2006.

[CGL03] Andre R O Cavalcanti, Zhenglong Gu, and Wen-Hsiung Li. Patterns of
gene duplication in saccharomyces cerevisiae and caenorhabditis elegans.
Journal of molecular evolution, 56:28–37, January 2003.

[Csu04] M. Csuros. Algorithms for finding maximal-scoring segment sets. Algo-
rithms in Bioinformatics, pages 62–73, 2004.

[dur03] Tests for gene clustering. J Comput Biol, 10:453–482, 2003.

58

BIBLIOGRAPHY 59

[EMNS98] Nadia El-Mabrouk, Joseph H. Nadeau, and David Sankoff. Genome halving.
In Combinatorial Pattern Matching, pages 235–250. Springer, 1998.

[FH01] R Friedman and A L Hughes. Gene duplication and the structure of eu-
karyotic genomes. Genome research, 11:373–381, March 2001.

[GL] D. Graur and W.H. Li. Fundamentals of Molecular Evolution. Sinauer
Associates, 2 edition, January.

[Glo] National Human Genome Research Institute’s Talking Glossary.

[HG05] Xin He and Michael H Goldwasser. Identifying conserved gene clusters in
the presence of homology families. Journal of computational biology : a
journal of computational molecular cell biology, 12:638–656, July–August
2005.

[HKC09] M. Ha, E.D. Kim, and Z.J. Chen. Duplicate genes increase expression
diversity in closely related species and allopolyploids. PNAS, 106(7):2295–
2300, February 2009.

[HS01] Steffen Heber and Jens Stoye. Finding all common intervals of k permuta-
tions. In Amihood Amir, editor, Combinatorial Pattern Matching, volume
2089 of Lecture Notes in Computer Science, pages 207–218. Springer Berlin
Heidelberg, 2001.

[J.94] Masterson J. Stomatal size in fossil plants: Evidence for polyploidy in
majority of angiosperms. Science, 264(5157):421–424, 1994.

[Jah10] Katharina Jahn. Approximate Common Intervals Based Gene Cluster Mod-
elsg. PhD thesis, Faculty of Technology, Bielefeld University, Germany,
2010.

[JZKS12] Katharina Jahn, Chunfang Zheng, Jakub Kováč, and David Sankoff. A
consolidation algorithm for genomes fractionated after higher order poly-
ploidization. BMC bioinformatics, 13 Suppl 1(Suppl 19):S8, 2012.

[K.11] Jahn K. Efficient computation of approximate gene clusters based on ref-
erence occurrences. Comaparative genomics, 6398:264–277, 2011.

[KFT] C. Kurtzman, J.W. Fell, and Boekhout T. The Yeasts A Taxonomic Study.
Elsevier.

[L.05] Comai L. The advantages and disadvantages of being polyploid. Nature
Reviews Genetics, 6:836–846, November 2005.

BIBLIOGRAPHY 60

[LB97] I.J. Leitch and M. D. Bennet. Polyploidy in angiosperms. Trends in Plant
Science, 2:470–476, December 1997.

[LPW05] G. M. Landau, L. Parida, and O. Weimann. Gene proximity analysis across
whole genomes via pq trees. Journal of Computational Biology, 12:1289–
1306, 2005.

[PBR+05] Sophie Pasek, Anne Bergeron, Jean-Loup Risler, Alexandra Louis, Em-
manuelle Ollivier, and Mathieu Raffinot. Identification of genomic features
using microsyntenies of domains: domain teams. Genome research, 15:867–
874, June 2005.

[Sou74] Shirley W. Soukup. Evolution by gene duplication. s. ohno. springer-verlag,
new york. 1970. 160 pp. Teratology, 9(2):250–251, 1974.

[ST04] Stoye J. Schmidt T. Quadratic time algorithms for finding common intervals
in two and more sequences. In SuleymanCenk Sahinalp, S. Muthukrishnan,
and Ugur Dogrusoz, editors, Combinatorial Pattern Matching, volume 3109
of Lecture Notes in Computer Science, pages 347–358. Springer Berlin Hei-
delberg, 2004.

[SZ12] D. Sankoff and C. Zheng. Fractionation, rearrangement and subgenome
dominance. BMC Bioinformatics, 13, 2012.

[UY00] T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals
of two permutations. Algorithmica, 26:2000, 2000.

[WS09] Robert Warren and David Sankoff. Genome aliquoting with double cut and
join. BMC Bioinformatics, 10(Suppl 1):1–11, 2009.

[ZZAS08] Chunfang Zheng, Qian Zhu, Zaky Adam, and David Sankoff. Guided
genome halving: hardness, heuristics and the history of the hemias-
comycetes. Bioinformatics, 24:i96–104, July 2008.

	Introduction
	Biological background and overview of algorithms
	Biological background
	Overview of algorithms
	Basic definitions
	Gene cluster models
	Algorithms reconstructing duplicated genome

	Model and algorithms
	Problem definition
	Scoring system
	Simplified problem formulation
	Dynamic programming
	Time complexity
	General problem of the maximum sum of k disjoint intervals
	All locations problem
	Filtering covering intervals
	Filtering overlapping intervals

	Application of our algorithm to biological data

	Heuristic improvements
	Simple heuristics
	Low score heuristic
	Contig heuristic
	Segmentation of duplicated genome into runs
	Comparison between heuristics applied to biological data
	Magnusiomyces magnusii - Magnusiomyces ingens
	Magnusiomyces magnusii - Yarrowia lipolytica
	Assessments of heuristic improvements

	Generated data
	Model of data generator
	Comparison between heuristics applied to generated data

	Conclusion

	Bibliography

