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ŠVOČ 2013, ktorá je de facto rozšírenou verziou autorovej diplomovej práce. Dôvodom odoslania
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Balanced use of resources in deterministic sequential computations is studied in this report. Sev-
eral definitions of automata with balanced use of resources (equiloaded automata) are presented.
These definitions are presented for abstract deterministic automata, i.e., an abstraction of au-
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ε-transitions, and deterministic one-counter automata. Several characterizations of families of
equiloaded automata are proved. The families of languages accepted by equiloaded automata
are also considered in the report.
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kov (vyvážených automatov). Tieto definície sú formulované pre abstraktné deterministické au-
tomaty, t.j. pre abstrakciu automatov definovanú pre tento účel. Vyváženost’ je potom predme-
tom štúdia pre tri špeciálne prípady abstraktných deterministických automatov: pre determin-
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Introduction

In this report, we shall study the concept of balanced use of resources in deterministic sequential
computations. The problem of balancing the use of computational resources arises in several
practical applications. However, up to now similar problems have received enough theoretical
attention only in a parallel setting – the problem of balancing the load of computational tasks
among several processors has been studied extensively. On the contrary, we are interested in
sequential computations in this report, and our research may be viewed as a theoretical attempt
to study computations with balanced use of multiple parts of a single processor.

Our approach to this problem is to study deterministic sequential models of computation and
to come up with several possible definitions of automata with balanced use of resources. The
resources considered are states and transitions. We shall call such automata equiloaded. We shall
be interested in the properties of several families of equiloaded automata, and in the properties
of families of languages accepted by these automata (equiloaded languages).

In this report, we continue the research initiated in several previous works. In [26] and [27],
the balanced use of states in deterministic finite automata has been studied. In [25], we have
studied the balanced use of transitions in deterministic finite automata.

The definitions of equiloadedness studied in this report are based on the definitions used in
these previous works, however are significantly generalized. This generalization is twofold: first,
the definitions presented in this report do not apply to deterministic finite automata only, but are
defined for an abstract model of computation (abstract deterministic automata) that allows us to
define equiloadedness for a variety of computational models at once. The second generalization
has to do with sets of computations that we are concerned with while studying equiloadedness.

The main goals of this report therefore can be summarized as follows. First of all, we aim to
present several sensible definitions of equiloadedness, suitable for diverse types of deterministic
automata. Second, some of the definitions of state-equiloaded deterministic finite automata, used
in [26] and [27], slightly differ from the definitions of transition-equiloaded deterministic finite
automata, used in [25]. Thus, one of the aims of this report is to unify both theories by show-
ing equivalence of certain definitions and by studying some aspects of equiloaded deterministic
finite automata that have not been studied yet. Finally, since deterministic finite automata are
the only model of computation, for which equiloadedness has been studied so far, we extend our
study also to some other models of computation. In this report, we shall concentrate on equi-
loaded deterministic finite automata with ε-transitions (we shall observe that the possibility of
ε-transitions adds some computational power to equiloaded deterministic finite automata) and
initiate the study of equiloaded deterministic one-counter automata.

The structure of the report is as follows:

• In Chapter 1, after stating some preliminary definitions, we shall define an abstract model
of computation inspired by abstract families of automata of S. Ginsburg [14] – an abstract
deterministic automaton. We shall observe that some widely studied models of computation,
e.g., deterministic finite automata, deterministic one-counter automata, or deterministic
pushdown automata, are special cases of abstract deterministic automata.

Further in this chapter, we shall present definitions of equiloadedness used in this report.
These definitions will be stated for abstract deterministic automata, and thus will apply
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to a large variety of deterministic models of computation. Finally, we shall examine some
properties of equiloadedness that hold for abstract deterministic automata in general.

• In Chapter 2, we shall focus on equiloaded deterministic finite automata. We shall unify the
theories from [26], [27], and [25] and prove some new results. Moreover, we shall extend
the theory to deterministic finite automata with ε-transitions.

• In Chapter 3, we shall initiate the study of equiloaded deterministic one-counter automata.

• In Appendix A, we shall briefly review some of the more advanced mathematics used in this
report.

This report is in fact an extended version of a master’s thesis that is to be submitted in June
2013. However, this report also contains some of the material that has been omitted from this
thesis in order to preserve its reasonable length. Thus, the reader may find here also the proofs
and explanatory material omitted from the thesis.



Chapter 1

Definitions and Basic Abstract
Results

The main aim of this chapter is to present definitions of equiloadedness that we shall use in this
report and to examine some of their basic properties that hold independently from a particular
model of computation. We shall follow two conceptually different approaches to the definition
of balacned use of resources. First, we shall define the concept of strict S-equiloadedness, where S
specifies the set of computation paths considered. Next, we shall define a slightly more involved
concept of S-equiloadedness and a related concept of weak S-equiloadedness.

The chapter is structured as follows. In Section 1.1, we shall present some preliminary defini-
tions that we shall use in this report. Most importantly, we shall present definitions of computa-
tional models that we shall study in this report: deterministic finite automata and deterministic
one-counter automata. There is a need for including these definitions, since there are different
variants of these models commonly used in literature. However, despite these differences usu-
ally do not matter, we shall observe that in the case of equiloaded automata, minor details in
definitions of computational models may have significant consequences for their computational
power.

In Section 1.2, we shall define an abstraction of deterministic automata with a one-way in-
put tape (inspired by the concept of abstract families of automata [14]), the abstract deterministic
automata (ADA). We shall observe that both deterministic finite automata and deterministic one-
counter automata are special cases of ADA. The main reason for introducing this abstraction is
that it enables us to define equiloadedness for a variety of computational models at once. That is,
we shall present only one definition of each kind of equiloadedness that will apply to all models
of computation considered in this report.

In Section 1.3, we shall briefly introduce some basic quantities that will serve as a cornerstone
of our definitions of equiloadedness.

In Section 1.4, we shall define strictly S-equiloaded automata. We shall state the definition
independently from a particular computational model, i.e., for abstract deterministic automata.
Here, S is a parameter specifying the set of computation paths considered.

In Section 1.5, we shall define S-equiloaded automata. By slightly relaxing the conditions im-
posed in this definition, we shall obtain the related definition of weakly S-equiloaded automata.
Similarly as in the case of strict S-equiloadedness, the definition is stated independently from a
particular model of computation, and S specifies the sets of computation paths considered.

In Section 1.6, we shall examine some relations between the families of equiloaded languages
that hold in general for every model of computation that is a special case of ADA.

Finally, in Section 1.7, we shall introduce a concept of prefix-dense languages. This concept
will serve as a useful tool for proving that a given language is not strictly S-equiloaded, for any
computational model that is a special case of ADA.



4 1.1 Preliminaries

1.1 Preliminaries

In this section, we shall briefly present some basic definitions used in this report. First, let us
present our definition of deterministic finite automata. We shall be concerned with two differ-
ent variants of deterministic finite automata: deterministic finite automata without ε-transitions
(DFA) and deterministic finite automata with the possibility of deterministic ε-transitions (DFAε).

Definition 1.1.1 A deterministic finite automaton with ε-transitions (DFAε) A is a five-tuple A =
(K, Σ, δ, q0, F), where K is a nonempty finite set of states, Σ is an alphabet, δ : K× (Σ ∪ {ε})→ K
is a partial transition function that can be defined for (q, ε), q in K, only if δ(q, c) is not defined for
any c in Σ, q0 in K is the initial state, and F ⊆ K is the set of accepting states. A deterministic finite
automaton without ε-transitions (DFA) is a DFAε with a transition function not defined on ε.

Thus, there are two important facts that are necessary to keep in mind about our definition of
deterministic finite automata. First, we are concerned with deterministic finite automata with a
partial transition function, i.e., the transition function need not be defined for all possible inputs.
Second, we are concerned with two different variants of deterministic finite automata, depending
on if deterministic ε-transitions are allowed or not. Further, let us note that every DFA is at the
same time a DFAε. Thus, if a theorem is stated for all DFAε, it holds also for all DFA. However,
this is not true when talking about, e.g., the corresponding families of equiloaded languages.

The definitions of a configuration, a computation step and of the accepted language are stan-
dard. Moreover, we shall define a transition of a DFAε A = (K, Σ, δ, q0, F) to be an arbitrary triple
(p, c, q) in K× (Σ∪ {ε})× K, such that δ(p, c) = q. We shall denote the set of all transitions of the
automaton A by DA, or D.

Further, we shall define a computation path of the automaton A to be an arbitrary sequence of
transitions corresponding to some computation of the automaton A. The formal definition is as
follows.

Definition 1.1.2 Let A = (K, Σ, δ, q0, F) be a DFAε. A computation path of the automaton A is a
finite sequence γ = {(q1, c1, q′1), . . . , (qn, cn, q′n)} of transitions in D, such that q1 = q0, and the
property qk+1 = q′k holds for k = 1, . . . , n− 1. The number n is referred to as the length |γ| of the
computation path γ. A computation path γ is said to be accepting, if the state q′n is accepting, i.e., if
q′n is in F.

We define the graphical representation of the automaton A to be a Σ-weighted digraph (with
the possibility of multiple edges and loops) with the set of vertices corresponding to K, and with
a c-weighted arc from a vertex p to a vertex q, if and only if (p, c, q) is in D. We shall define the
transition matrix of the automaton A to be the adjacency matrix of its graphical representation.
More formally, we shall define the transition matrix as follows.

Definition 1.1.3 Let A = (K, Σ, δ, q0, F) be a DFAε. Let K = {q0, . . . , qm−1}. The transition matrix
of the automaton A is an m×m matrix

∆A :=


d0,0 d0,1 . . . d0,m−1
d1,0 d1,1 . . . d1,m−1

...
...

. . .
...

dm−1,0 dm−1,1 . . . dm−1,m−1

 ,

where di,j is defined by
di,j =

∣∣{c ∈ Σ ∪ {ε} | δ(qi, c) = qj}
∣∣ ,

for all i, j in {0, . . . , m− 1}. We shall omit the subscript A when A is clear from the context.

Now, let us define deterministic one-counter automata. We shall use a definition, in which
a counter is represented by a single nonnegative integer (alternatively, a counter may be repre-
sented by a pushdown store over an unary alphabet).
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Definition 1.1.4 A deterministic one-counter automaton (DOCA) A is a five-tuple A = (K, Σ, δ, q0, F),
where K is a nonempty finite set of states, Σ is an alphabet, δ : K × (Σ ∪ {ε}) × {0, 1} → K ×
{−1, 0, 1} is a deterministic (ε-transition may be defined only if there is not any other transition
defined for given p in K and t in {0, 1}) partial transition function, such that if δ(p, c, 0) = (q, r)
for some p, q in K and c in Σ ∪ {ε}, then r is in {0, 1}, q0 in K is the initial state, and F ⊆ K is the
set of accepting states.

To make the definition of deterministic one-counter automata absolutely clear, we shall also
present formal definitions of a configuration, a computation step, and of the accepted language.

Definition 1.1.5 Let A = (K, Σ, δ, q0, F) be a DOCA. A configuration of the automaton A is a triple

(q, w, t) in K× Σ∗ ×N,

where q is a state of the automaton A, w is an unread part of the input word, and t is a counter
value of the automaton A.

Definition 1.1.6 Let A = (K, Σ, δ, q0, F) be a DOCA. A computation step of the automaton A is a
relation `A on configurations of A defined as follows:

(p, cw, t) `A (q, w, t′) ⇐⇒ ∃r ∈ {−1, 0, 1} : δ(p, c, sgn(t)) = (q, r) ∧ t′ = t + r,

with p, q in K, c in Σ ∪ {ε}, w in Σ∗, t, t′ in N, and with the function sgn : R → R defined for all
x in R by

sgn(x) =

 1 if x > 0
0 if x = 0
−1 if x < 0

.

If A is clear from the context, we shall write only ` instead of `A. By `∗A (resp. `∗), we shall
denote the reflexive and transitive closure of `A.

Definition 1.1.7 Let A = (K, Σ, δ, q0, F) be a DOCA. The language accepted by the automaton A
is the set

L(A) = {w ∈ Σ∗ | ∃(q, t) ∈ F×N : (q0, w, 0) `∗A (q, ε, t)}.

Definition 1.1.8 Let A = (K, Σ, δ, q0, F) be a DOCA. The language accepted by the automaton A
by empty memory is the set

N(A) = {w ∈ Σ∗ | ∃q ∈ K : (q0, w, 0) `∗A (q, ε, ε)}.

Finally, similarly as for deterministic finite automata, we shall define a transition and a com-
putation path of a deterministic one-counter automaton.

Definition 1.1.9 Let A = (K, Σ, δ, q0, F) be a DOCA. A transition of the automaton A is a five-
tuple

(q, c, t, q′, r) in K× (Σ ∪ {ε})× {0, 1} × K× {−1, 0, 1},
such that δ(q, c, t) = (q′, r). We shall denote the set of all transitions of the automaton A by DA
(resp. by D, if A is clear from the context).

Definition 1.1.10 Let A = (K, Σ, δ, q0, F) be a DOCA. A computation path of the automaton A is
a finite sequence γ = {(q1, c1, t1, q′1, r1), . . . , (qn, cn, tn, q′n, rn)} of transitions of the automaton A,
such that q1 = q0, t1 = 0, and for k = 1, . . . , n− 1, the properties qk+1 = q′k and

tk+1 = sgn

(
k

∑
i=1

ri

)
hold. The number n is referred to as the length |γ| of the computation path γ. A computation path
γ is said to be accepting, if the state q′n is accepting, i.e., if q′n is in F. A computation path γ is said
to be accepting by empty memory, if ∑n

i=1 ri = 0.
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1.2 Abstract Deterministic Automata

In this section, we shall define a new abstract model of computation that is meant to serve, for the
purposes of this report, as a simple generalization of several well-known and extensively studied
deterministic computation models. We shall call these abstract automata Abstract Deterministic
Automata (ADA).

Before we present a formal definition of abstract deterministic automata, let us briefly point
out the importance of such a construction. In the next sections of this chapter, we shall define
several types of equiloaded automata. For such definitions, some degree of independence from
the computation model is a highly desired property. We would prefer to avoid separate defini-
tions for each model of computation, and to devise, for each type of equiloadedness, one general
definition applicable to a variety of interesting models of computation (e.g., deterministic finite
automata, deterministic one-counter automata, deterministic pushdown automata, some vari-
ants of deterministic Turing machines, etc.). Since we shall be only concerned with models of
computation that are special cases of ADA in this report, we shall consider definitions stated for
ADA to be independent from a particular computational model.

Several other abstractions of automata are known up to date, for instance Abstract Families
of Automata (AFA) [14], or Balloon Automata [20] [21]. However, both of these constructions are
devised in order to guarantee certain properties of families of languages accepted by such au-
tomata and hence are, for the purposes of this report, unnecessarily complicated. Our definition
of abstract deterministic automata does not guarantee these properties of accepted families of
languages, but on the other hand, the definition is considerably simpler.

We shall define abstract deterministic automata as an abstraction of deterministic one-way au-
tomata. Therefore the requirements imposed on abstract deterministic automata are as follows:

• An ADA has a one-way input tape with ε-transitions allowed (that is, the input tape is read
by the automaton exactly as in the case of, e.g., deterministic pushdown automata), and
some kind of auxiliary memory storage.

• Although the auxiliary memory storage can acquire a possibly infinite number of memory
contents, the transition function of the ADA distinguishes only a finite number of outputs of
reading the auxiliary memory. The transitions of the ADA are executed based only on the
information obtained by this output. For instance, in deterministic pushdown automata,
the number of possible words on the pushdown store is infinite. However, the transition
function distinguishes only between characters on the top of the pushdown store, i.e., mem-
bers of a finite alphabet.

• An ADA is always deterministic – that is, for each state, input symbol, and output of read-
ing the auxiliary memory, at most one transition can be executed.

This leads us to the formal definition that is as follows.

Definition 1.2.1 An abstract deterministic automaton (ADA) is a nine-tuple A = (K, Σ, G, H, ζ, Z, δ,
q0, F), where K is a nonempty finite set of states, Σ is an input alphabet, G is a (finite or infinite)
set of possible auxiliary memory contents, H is a finite set of outputs of reading the auxiliary
memory, ζ : G → H is a read function, Z in G is an initial content of the auxiliary memory,
δ : K × (Σ ∪ {ε})× H → K × GG is a partial transition function, q0 in K is the initial state, and
F ⊆ K is the set of accepting states. Moreover, the transition function δ must be deterministic,
i.e., the property

∀p ∈ K∀h ∈ H : (∃(q, µ) ∈ K× GG : δ(p, ε, h) = (q, µ))⇒
¬(∃a ∈ Σ∃(q′, µ′) ∈ K× GG : δ(p, a, h) = (q′, µ′)).

is required to hold.
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Let us explain the way the transition function δ is defined in the above definition. The tran-
sition function of an abstract deterministic automaton takes three arguments: a state, an input
symbol (or ε, i.e., ε-transitions are allowed), and an output of reading the auxiliary memory. The
transition function outputs a new state, and some transformation of the auxiliary memory µ.
Every such transformation is a function from G to G, i.e., a member of the set GG. We do not
impose any restriction on these transformations, however we shall be interested only in cases,
where these transformations are reasonable. The implication that is required to hold for the tran-
sition function δ ensures that only deterministic ε-transitions are allowed. Let us proceed by the
definition of a configuration.

Definition 1.2.2 Let A = (K, Σ, G, H, ζ, Z, δ, q0, F) be an abstract deterministic automaton. A
configuration of the automaton A is a triple (q, w, g) in K × Σ∗ × G, where q is a state, w is an
unread part of the input word, and g is a content of the auxiliary memory.

Now, let us define a computation step. This definition is more-or-less standard, given an
intuitive idea of ADA presented above. An automaton is supposed to make a computation step
from a given configuration (p, cw, g), where p is a state, c is a symbol (or the empty word ε) to
be read from the input, and g is a content of the auxiliary memory. To make a computation step
to a second configuration (q, w, g′), a transition function δ, given the state p, the symbol c, and
the output ζ(g) after reading the content of the auxiliary memory g, has to return the state q
and an auxiliary memory transformation µ, such that it transforms g into g′, i.e., µ(g) = g′. The
definition of the computation step is thus as follows.

Definition 1.2.3 Let A = (K, Σ, G, H, ζ, Z, δ, q0, F) be an abstract deterministic automaton. A
computation step of the automaton A is a binary relation `A on configurations of the automaton A
defined as follows:

(p, cw, g) `A (q, w, g′) ⇐⇒ δ(p, c, ζ(g)) = (q, µ),

where p, q are in K, c is in Σ∪ {ε}, w is in Σ∗, g, g′ are in G, and µ : G → G is a mapping, such that
µ(g) = g′. If A is clear from the context, we shall write ` instead of `A. By `∗A, we shall denote
the reflexive and transitive closure of the relation `A.

Now, we may define the language accepted by a given abstract deterministic automaton. For
several widely studied models of computation that are special cases of ADA, as for instance for
deterministic one-counter automata or deterministic pushdown automata,1 there is more then
one mode of acceptation extensively studied: for instance, we may consider the language ac-
cepted by the accepting state, the language accepted by empty memory, etc. For ADA, we shall
define two modes of acceptation: acceptation by the accepting state and acceptation by memory,
with a possibility to model the acceptation by empty memory by the latter (at least for some spe-
cial cases of ADA – for DFA for instance, acceptation by empty memory does not make much
sense).

Definition 1.2.4 Let A = (K, Σ, G, H, ζ, Z, δ, q0, F) be an abstract deterministic automaton. The
language accepted by the automaton A is the set

L(A) = {w ∈ Σ∗ | ∃(q, g) ∈ F× G : (q0, w, Z) `∗A (q, ε, g)}.

Definition 1.2.5 Let A = (K, Σ, G, H, ζ, Z, δ, q0, F) be an abstract deterministic automaton, let
M ⊆ G be a set of memory contents. The language accepted by the automaton A by memory in M
is a set

NM(A) = {w ∈ Σ∗ | ∃(q, g) ∈ K×M : (q0, w, Z) `∗A (q, ε, g)}.
1We consider the observation that these models of computation are indeed special cases of ADA, to be obvious. How-

ever, in the end of this section, we shall present some examples, in which we shall formally model some of the widely
known models of computation in terms of ADA.
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For some special cases of ADA, as for instance deterministic one-counter automata or deter-
ministic pushdown automata, we define a special memory content 0A, representing the empty
memory. For such models of computation, we define the language accepted by empty memory,
N(A), to be the language accepted by memory in {0A}. We shall call the special cases of ADA,
for which we define the content 0A, the models of computation with the ability to accept by empty
memory. The definition of a transition is similar as, e.g., in the case of DFA.

Definition 1.2.6 Let A = (K, Σ, G, H, ζ, Z, δ, q0, F) be an abstract deterministic automaton. A
transition of the automaton A is a five-tuple

(q, c, h, q′, µ) ∈ K× (Σ ∪ {ε})× H × K× GG,

such that δ(q, c, h) = (q′, µ). We shall denote the set of all transitions of the automaton A by DA
(or by D, if A is clear from the context).

Finally, let us present the last definition related to abstract deterministic automata: the defi-
nition of a computation path. Similarly as in the case of DFA, a computation path is an arbitrary
finite sequence of transitions corresponding to some computation of the automaton. This intu-
itive idea is formally expressed as follows.

Definition 1.2.7 Let A = (K, Σ, G, H, ζ, Z, δ, q0, F) be an abstract deterministic automaton. A
computation path of the automaton A is a finite sequence

γ = {(q1, c1, h1, q′1, µ1), . . . , (qn, cn, hn, q′n, µn)} ∈ Dn
A

of n transitions of the automaton A, such that q1 = q0, and the following two properties hold:

(i) For k = 1, . . . , n− 1, the property qk+1 = q′k holds.

(ii) There is a sequence of auxiliary memory contents,

g = {g1, . . . , gn+1} ∈ Gn+1,

such that:

1. g1 = Z.

2. For k = 1, . . . , n, the property hk = ζ(gk) holds.

3. For k = 1, . . . , n, the property µk(gk) = gk+1 holds.

The length |γ| of the computation path γ is the number |γ| = n. A computation path γ is said to be
accepting, if q′n is in F. Moreover, if A has an ability to accept by empty memory, a computation
path γ is said to be accepting by empty memory, if gn+1 = 0A.

From the presented definitions, it should be clear that several extensively studied models of
computation, including DFA, DFAε and DOCA, can be viewed as a special case of abstract deter-
ministic automata. In what follows, we shall present formal constructions establishing this fact.
For the sake of clarity of exposition, we shall avoid formal definitions of families of automata,
and related concepts. Moreover, we shall use an intuitive notion of isomorphism of automata. We
shall say that two automata are isomorphic, if all of their computations are isomorphic. However,
we shall not formally define this notion of isomorphism, and shall rely on intuition. The notion
of automata isomorphism is important, since automata defined in Section 1.1 are formally not
the same tuples as abstract deterministic automata. However, we can clearly see if an abstract
deterministic automaton behaves in its essence as one of the models of computation defined in
Section 1.1.
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Example 1.2.8 First, we shall show that deterministic finite automata and deterministic finite
automata with ε-transitions are the special cases of abstract deterministic automata.

Let A = (K, Σ, δ, q0, F) be a deterministic finite automaton with or without ε-transitions. Let
us define the abstract deterministic automaton A′ = (K′, Σ′, G′, H′, ζ ′, Z′, δ′, q′0, F′) isomorphic to
A as follows: let us put down K′ = K, Σ′ = Σ, G′ = {◦}, H′ = {◦}. Next, the read function
ζ ′ : G′ → H′ is defined by ζ ′(◦) = ◦, and Z′ = ◦. The transition function δ′ : K′ × (Σ′ ∪ {ε})×
H′ → K′ × G′G

′
is defined by

δ′(p, c, ◦) = (q, Id) ⇐⇒ δ(p, c) = q,

where p, q are in K = K′, c is in Σ ∪ {ε} = Σ′ ∪ {ε}, and Id : G′ → G′ is an identical mapping on
G′ (i.e., Id(◦) = ◦). Finally, let us define q′0 = q0, and F′ = F.

Automata A and A′ are clearly isomorphic. Moreover, A′ has ε-transitions iff A has ε-transit-
ions. That is, deterministic finite automata and deterministic finite automata with ε-transitions
are both special cases of abstract deterministic automata.

Example 1.2.9 Now, we shall show that deterministic one-counter automata can be viewed as a
special case of abstract deterministic automata. Let A = (K, Σ, δ, q0, F) be a deterministic one-
counter automaton. We shall construct the isomorphic abstract deterministic automaton A′ =
(K′, Σ′, G′, H′, ζ ′, Z′, δ′, q′0, F′) as follows: let us define K′ = K, Σ′ = Σ, G′ = N, H′ = {0, 1}. The
read function ζ ′ : G′ → H′ will be defined by

∀n ∈N : ζ ′(n) = sgn(n).

Next, Z′ = 0, and the transition function δ′ : K′ × (Σ′ ∪ {ε})× H′ → K× G′G
′

will be defined by

δ′(p, c, t) = (q, µr) ⇐⇒ δ(p, c, t) = (q, r),

where p, q are in K = K′, c is in Σ∪{ε} = Σ′ ∪{ε}, t is in {0, 1}, r is in {−1, 0, 1}, and µr : G′ → G′

is defined by
∀n ∈N : µr(n) = max{0, n + r}.

Since the definition of deterministic one-counter automata ensures that if t = 0 then r ≥ 0, the
function µr always adds r to the counter (auxiliary memory). Finally, let us define q′0 = q0, and
F′ = F.

Moreover, we shall define 0A′ = 0. Thus, deterministic one-counter automata are able to
accept by empty memory.

Thus, if we define concepts or state theorems for abstract deterministic automata in the rest of
this report, we shall always keep in mind that the same concepts or theorems apply to all types
of automata that we are concerned with in this report.

Finally in this section, let us introduce a notation for some special sets of computation paths
that we shall use in this report.

Notation 1.2.10 Let A be an abstract deterministic automaton.

a) Comp(A) denotes the (possibly infinite) set of all computation paths of A.

b) Comp(A, n) denotes the (always finite) set of all computation paths of A of length n in N.

c) Comp(A,≤ n) denotes the (always finite) set of all computation paths of A of length less
than or equal to n in N.

d) Acc(A) denotes the (possibly infinite) set of all accepting computation paths of A.

e) Acc(A, n) denotes the (always finite) set of all accepting computation paths of A of length
n in N.
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f) Acc(A,≤ n) denotes the (always finite) set of all accepting computation paths of A of length
less than or equal to n in N.

Moreover, if A is an abstract deterministic automaton with an ability to accept by empty memory,
we shall use the following notation:

g) eAcc(A) denotes the (possibly infinite) set of all computation paths of A accepting by empty
memory.

h) eAcc(A, n) denotes the (always finite) set of all computation paths of A of length n in N

accepting by empty memory.

i) eAcc(A,≤ n) denotes the (always finite) set of all computation paths of A of length less
than or equal to n in N accepting by empty memory.

1.3 Basic Quantities

In this section, we shall briefly introduce some notation that will serve as a cornerstone of our
definitions of equiloadedness, presented in the later sections of this chapter.

Notation 1.3.1 Let A be an ADA with the set of states K, and the set of transitions D. Let γ be a
computation path of the automaton A, q in K be a state, and e in D be a transition. By the symbol
#A[q, γ], we shall denote the number of uses of the state q in the computation path γ. Similarly,
by the symbol #A[e, γ], we shall denote the number of uses of the transition e in the computation
path γ.

Further, let Cmp be a finite set of computation paths of the automaton A. We shall use the
notation

#A[q, Cmp] = ∑
γ∈Cmp

#A[q, γ], #A[e, Cmp] = ∑
γ∈Cmp

#A[e, γ].

If A is clear from the context, we shall omit the subscript A from the notation.

1.4 Strict S-Equiloadedness

In this section, we shall present a definition of strict S-equiloadedness, representing a first possible
viewpoint on the nature of balanced use of resources. Informally, an automaton is strictly state-
S-equiloaded (strictly transition-S-equiloaded), if its states (transitions) are used approximately
the same number of times in every computation path from some set specified by S . Thus, S is a
parameter that specifies the set of computation paths considered.

Similar definitions have been used in [26], [27], and [25], in order to study balanced use of
resources in DFA. However, the definition used in this report is more general. First, it is stated
for ADA instead of DFA (this is also a reason for certain formal differences between the present
definition and the definitions from the previous works). Second, the possibility to choose the
parameter S is new – the definitions from the previous works have been concerned solely with
the fixed set of all accepting computation paths.

The set S(A) of computation paths considered for a given automaton A is required to be spec-
ified for all ADA at once. Thus, S is a function defined on the family of all abstract deterministic
automata that returns some set of computation paths of its input.

The formal definition is as follows.

Definition 1.4.1 Let S be a function that for each ADA A returns some set S(A) of computation
paths of the automaton A. Let A be an ADA with the set of states K and the set of transitions D.
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a) A is said to be strictly state-S-equiloaded, if a real constant η in R exists, such that for all
computation paths γ in S(A) and for all pairs of states p, q in K, the property

|#[p, γ]− #[q, γ]| ≤ η

holds.

b) A is said to be strictly transition-S-equiloaded, if a real constant η in R exists, such that for all
computation paths γ in S(A) and for all pairs of transitions e, f in D, the property

|#[e, γ]− #[ f , γ]| ≤ η

holds.

Further, let x in {DFA, DFAε, DOCA, . . .} be an abbreviation of some model of computation that
is a special case of ADA. A language L is said to be a strictly state-S-equiloaded x-language, if a
strictly state-S-equiloaded ADA A of type x exists, such that L(A) = L. Similarly, a language L
is said to be a strictly transition-S-equiloaded x-language, if a strictly transition-S-equiloaded ADA
A of type x exists, such that L(A) = L.

We shall denote the family of strictly state-S-equiloaded x-languages by LK−SEQ−x(S). The
family of all strictly transition-S-equiloaded x-languages will be denoted by Lδ−SEQ−x(S).

Similarly, a strictly state-S-equiloaded x-language accepted by empty memory, and a strictly tran-
sition-S-equiloaded x-language accepted by empty memory may be defined. We shall denote the
family of strictly state-S-equiloaded x-languages accepted by empty memory by NK−SEQ−x(S),
and the family of strictly transition-S-equiloaded x-languages accepted by empty memory by
Nδ−SEQ−x(S).

In this report, we shall be concerned with three particular choices of S only. The first choice
is S = C, defined for every ADA A by C(A) = Comp(A), i.e., the set of all computation paths
of the automaton A. The second choice is S = A, defined for every ADA A by A(A) = Acc(A),
i.e., the set of all accepting computation paths of the automaton A. Finally, the third choice is
S = E , defined for every ADA A by E(A) = eAcc(A), i.e., the set of all computation paths of the
automaton A accepting by empty memory.

1.5 S-Equiloadedness

In this section, we shall proceed to the definition of S-equiloadedness, representing a formalization
of a second, conceptually different idea of balanced use of resources. As in the case of strict S-
equiloadedness, the parameter S specifies a set of computation paths considered, however in a
slightly different way.

In contrast with strict S-equiloadedness, we shall not require the resources to be used ap-
proximately the same number of times in every computation path from S(A). Instead, we shall
consider the (infinite) sequence of finite sets of computation paths

{S(A, n)}∞
n=0 = {S(A, 0),S(A, 1),S(A, 2), . . .},

add up the numbers of uses of each resource in every of these finite sets, and require the resulting
numbers of uses to be approximately the same in limit for n→ ∞. To make this intuitive require-
ment formal, we shall define the concept of equiloadedness quotient and equiloadedness measure.

The presented definition is a generalization of the definition that we have presented in [25]
in order to study the balanced use of transitions in DFA. It also has a relation to definitions from
[26] and [27]. This relation will become clear in Chapter 2, where we shall observe that these
definitions are equivalent for DFA and DFAε.

In addition to S-equiloadedness, we shall define also the concept of weak S-equiloadedness (by
a relaxation of the requirements imposed on S-equiloaded automata).

The formal definitions of an equiloadedness quotient and of an equiloadedness measure are
as follows.
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Definition 1.5.1 Let S be a function which for each pair (A, n), A being an ADA and n a nonneg-
ative integer, returns some finite set S(A, n) of computation paths of A. Let A be an ADA with
the set of states K, and the set of transitions D. Let us denote Sn := S(A, n). Then we define the
equiloadedness S-quotients as follows:

a) The n-th state-equiloadedness S-quotient of the automaton A is defined by:

βA(S , n) =
minp∈K #[p, Sn] + 1
maxq∈K #[q, Sn] + 1

.

b) The n-th transition-equiloadedness S-quotient of the automaton A is defined by:

BA(S , n) =
mine∈D #[e, Sn] + 1
max f∈D #[ f , Sn] + 1

.

Moreover, we define the equiloadedness S-measures as follows:

a) The (lower) state-equiloadedness S-measure of an automaton A is defined by:

βA(S) = lim inf
n→∞

βA(S , n).

b) The (lower) transition-equiloadedness S-measure of an automaton A is defined by:

BA(S) = lim inf
n→∞

BA(S , n).

The equiloadedness measure of an ADA is clearly a real number from the closed interval [0, 1],
with the value 1 representing the most balanced use of resources and the value 0 representing the
least balanced use of resources. This motivates our definitions of S-equiloadedness and weak S-
equiloadedness.

Definition 1.5.2 Let S be a function which for each pair (A, n), A being an ADA and n a nonneg-
ative integer, returns some finite set S(A, n) of computation paths of A. Let A be an ADA.

a) A is said to be (weakly) state-S-equiloaded, if βA(S) = 1 (βA(S) > 0).

b) A is said to be (weakly) transition-S-equiloaded, if BA(S) = 1 (BA(S) > 0).

Further, let x in {DFA, DFAε, DOCA, . . .} be an abbreviation of some model of computation that
is a special case of ADA. A language L is said to be a (weakly) state-S-equiloaded x-language, if a
(weakly) state-S-equiloaded ADA A of type x exists, such that L(A) = L. Similarly, a language
L is said to be a (weakly) transition-S-equiloaded x-language, if a (weakly) transition-S-equiloaded
ADA A of type x exists, such that L(A) = L.

We shall denote the family of all (weakly) state-S-equiloaded x-languages by the symbol
LK−EQ−x(S) (LK−WEQ−x(S)). Similarly, we shall denote the family of all (weakly) transition-
S-equiloaded x-languages by Lδ−EQ−x(S) (Lδ−WEQ−x(S)).

Analogously, we define the families of (weakly) S-equiloaded x-languages accepted by empty
memory. The difference in the notation is in the use of the symbol N instead of L .

In this report, we shall be concerned mainly by the following six particular choices of the
parameter S :

• S(A, n) = C=(A, n) = Comp(A, n)

• S(A, n) = A=(A, n) = Acc(A, n)

• S(A, n) = E=(A, n) = eAcc(A, n)

• S(A, n) = C≤(A, n) = Comp(A,≤ n)
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• S(A, n) = A≤(A, n) = Acc(A,≤ n) • S(A, n) = E≤(A, n) = eAcc(A,≤ n)

In what follows, we shall state a lemma that provides us with an alternative formula for the
computation of equiloadedness S-measures. We shall use the lemma extensively in this report,
since it makes the manipulation with equiloadedness S-measures easier. For DFA and DFAε, the
following lemma will allow us to numerically compute equiloadedness S-measures.

Lemma 1.5.3 Let S be a function which for each pair (A, n), A being an ADA and n a nonnegative
integer, returns some finite set S(A, n) of computation paths of A. Let A be an ADA with the set
of states K, and the set of transitions D. Let us denote Sn := S(A, n). Then

βA(S) = min
(p,q)∈K2

lim inf
n→∞

#[p, Sn] + 1
#[q, Sn] + 1

, (1.1)

and

BA(S) = min
(e, f )∈D2

lim inf
n→∞

#[e, Sn] + 1
#[ f , Sn] + 1

. (1.2)

Proof. We shall prove the equation (1.1) for states, the equation (1.2) for transitions can be proved
in a similar manner. First, we shall prove that the left side of (1.1) is less than or equal to the right
side of (1.1). Let p′, q′ in K be states of the automaton A. For all n in N, we have

#[p′, Sn] ≥ min
p∈K

#[p, Sn],

#[q′, Sn] ≤ max
q∈K

#[q, Sn].

Thus, for all n in N, the inequality

βA(S , n) =
minp∈K #[p, Sn] + 1
maxq∈K #[q, Sn] + 1

≤ #[p′, Sn] + 1
#[q′, Sn] + 1

holds. Thus,

βA(S) = lim inf
n→∞

βA(S , n) ≤ lim inf
n→∞

#[p′, Sn] + 1
#[q′, Sn] + 1

. (1.3)

Since (1.3) holds for all p′, q′ in K, we can clearly conclude

βA(S) ≤ min
(p,q)∈K2

lim inf
n→∞

#[p, Sn] + 1
#[q, Sn] + 1

.

Now, let us prove that the left side of (1.1) is greater than or equal to the right side of (1.1). Let
us denote

mn := min
p∈K

#[p, Sn],

Mn := max
q∈K

#[q, Sn].

For the purpose of contradiction, let us suppose that the inequality

βA(S) = lim inf
n→∞

mn + 1
Mn + 1

< min
(p,q)∈K2

lim inf
n→∞

#[p, Sn] + 1
#[q, Sn] + 1

=: ` (1.4)

holds. Let us denote

λ :=
βA(S) + `

2
.
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From (1.4), it is possible to conclude that there is an infinite sequence {jn}∞
n=0 of nonnegative

integers, such that
mjn + 1
Mjn + 1

< λ

for all n in N. Since the set of all pairs of states is finite, and since for all n in N, a pair of states
(pn, qn) in K2 exists, such that

#[pn, Sn] = mn, and #[qn, Sn] = Mn,

there is an infinite sequence {kn}∞
n=0 of nonnegative integers, and states p′, q′ in K, such that

mjkn
+ 1

Mjkn
+ 1

=
#[p′, Sjkn

] + 1

#[q′, Sjkn
] + 1

< λ

holds for all n in N. Thus, we have

lim inf
n→∞

#[p′, Sn] + 1
#[q′, Sn] + 1

≤ λ,

and, as a consequence,

min
(p,q)∈K2

lim inf
n→∞

#[p, Sn] + 1
#[q, Sn] + 1

≤ λ,

which contradicts our assumption that

min
(p,q)∈K2

lim inf
n→∞

#[p, Sn] + 1
#[q, Sn] + 1

= `.

The lemma is proved. �

1.6 Relations between the Families of Equiloaded Languages

In this section, we shall briefly examine some relations between the families of strictly S-equi-
loaded and S-equiloaded x-languages that hold for arbitrary x (being an abbreviation of some
computational model that is a special case of ADA). These generally valid relations are rather
basic. We shall prove more involved relations later in this report for particular models of compu-
tation.

Theorem 1.6.1 Let S be a function which for each pair (A, n), A being an ADA and n a nonneg-
ative integer, returns some finite set S(A, n) of computation paths of the automaton A. Let x in
{DFA, DFAε, DPDA, . . .} be an abbreviation of some model of computation that is a special case
of ADA. Then, the following inclusions hold:

1. LK−EQ−x(S) ⊆ LK−WEQ−x(S),

2. Lδ−EQ−x(S) ⊆ Lδ−WEQ−x(S),

3. NK−EQ−x(S) ⊆ NK−WEQ−x(S),

4. Nδ−EQ−x(S) ⊆ Nδ−WEQ−x(S).

(In the claims 3 and 4, it is assumed that automata of the type x have an ability to accept by
empty memory.)

Proof. Let A be an ADA. If βA(S) = 1, then also βA(S) > 0. Thus, every state-S-equiloaded
ADA is also weakly state-S-equiloaded. Similarly for transitions. �

Theorem 1.6.2 Let x in {DFA, DFAε, DPDA, . . .} be an abbreviation of some model of computa-
tion that is a special case of ADA. Then, the following inclusions hold:
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1. LK−SEQ−x(C) ⊆ LK−EQ−x(C=),

2. Lδ−SEQ−x(C) ⊆ Lδ−EQ−x(C=),

3. LK−SEQ−x(A) ⊆ LK−EQ−x(A=),

4. Lδ−SEQ−x(A) ⊆ Lδ−EQ−x(A=),

5. NK−SEQ−x(C) ⊆ NK−EQ−x(C=),

6. Nδ−SEQ−x(C) ⊆ Nδ−EQ−x(C=),

7. NK−SEQ−x(E) ⊆ NK−EQ−x(E=),

8. Nδ−SEQ−x(E) ⊆ Nδ−EQ−x(E=).

(It is assumed in the claims 5 – 8 that automata of the type x have an ability to accept by empty
memory.)

Proof. We shall prove the theorem only for the case of transition-equiloadedness, the case of
state-equiloadedness is analogous.

Let S= be a function in {C=,A=, E=}, and S be a function defined for every abstract deter-
ministic automaton A by

S(A) =
∞⋃

n=0
S=(A, n)

(i.e., if S= = C=, then S = C, and similarly for the other two choices of S=).
It clearly suffices to prove that if a given abstract deterministic automaton A with the set of

transitions D is strictly transition-S-equiloaded, then it is also transition-S=-equiloaded.
Since the number of transitions of any abstract deterministic automaton is finite, and since the

identity
∑

e∈D
#[e,S=(A, n)] = n · |S=(A, n)|

holds, it follows from the Pigeonhole principle that

max
f∈D

#[ f ,S=(A, n)] ≥ n
|D| · |S=(A, n)|. (1.5)

Now, if the abstract deterministic automaton A is strictly transition-S-equiloaded, the obvious
inclusion S=(A, n) ⊆ S(A) implies

min
e∈D

#[e,S=(A, n)] = min
e∈D

∑
γ∈S=(A,n)

#[e, γ] ≥ max
f∈D

∑
γ∈S=(A,n)

(#[ f , γ]− η) =

=

max
f∈D

∑
γ∈S=(A,n)

#[ f , γ]

− η · |S=(A, n)| =

= max
f∈D

#[ f ,S=(A, n)]− η · |S=(A, n)|,

for some real constant η in R. From this inequality, we obtain

BA(S=) = lim inf
n→∞

mine∈D #[e,S=(A, n)] + 1
max f∈D #[ f ,S=(A, n)] + 1

≥

≥ lim inf
n→∞

max f∈D #[ f ,S=(A, n)]− η · |S=(A, n)|+ 1
max f∈D #[ f ,S=(A, n)] + 1

=

= lim inf
n→∞

(
1− η · |S=(A, n)|

max f∈D #[ f ,S=(A, n)] + 1

)
= 1,

if the automaton A is strictly transition-S-equiloaded, since, by the inequality (1.5),

0 ≤ lim sup
n→∞

η · |S=(A, n)|
max f∈D #[ f ,S=(A, n)] + 1

≤ lim sup
n→∞

η · |S=(A, n)|
n
|D| · |S=(A, n)|+ 1

= 0,
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i.e.,

lim sup
n→∞

η · |S=(A, n)|
max f∈D #[ f ,S=(A, n)] + 1

= 0.

Thus, we have proved that if the automaton A is strictly transition-S-equiloaded, then the in-
equality BA(S=) ≥ 1 holds. However, the converse inequality holds trivially. That is, BA(S=) =
1, and the automaton A is transition-S=-equiloaded. The theorem is proved. �

Theorem 1.6.3 Let x in {DFA, DFAε, DPDA, . . .} be an abbreviation of some model of computa-
tion that is a special case of ADA. Then, the following inclusions hold:

1. LK−SEQ−x(C) ⊆ LK−SEQ−x(A),

2. Lδ−SEQ−x(C) ⊆ Lδ−SEQ−x(A),

3. NK−SEQ−x(C) ⊆ NK−SEQ−x(E).

4. Nδ−SEQ−x(C) ⊆ Nδ−SEQ−x(E).

(It is assumed in the claims 3 – 4 that automata of the type x have an ability to accept by empty
memory.)

Proof. It is obvious that for all abstract deterministic automata A of the type x, the inclusions
C(A) ⊇ A(A) and C(A) ⊇ E(A) hold. Thus, if the inequality

|#[p, γ]− #[q, γ]| ≤ η,

where η in R is a real constant holds for every two states p, q in K and every computation path
γ in C(A), then it holds also for every computation path γ in A(A), and for every computation
path γ in E(A).

Thus, if the automaton A is strictly state-C-equiloaded, then it is also strictly state-A-equi-
loaded and strictly state-E -equiloaded. The same property can be analogously proved also for
the case of transition-equiloadedness. The inclusions from the statement of the theorem then
follow as a consequence. �

1.7 Prefix-Dense Languages and Strict S-Equiloadedness

In this section, we shall introduce a notion of a prefix-dense language and connect this notion to
the theory of strict S-equiloadedness. The theory developed in this section will serve as a useful
method for proving that certain languages are not strictly S-equiloaded.

We shall achieve this proof method as follows: first, we shall prove that languages belonging
to certain families of strictly S-equiloaded languages are always prefix-dense (this will be done
independently from the model of computation, i.e., for abstract deterministic automata). How-
ever, prefix-density of the language will be defined in such a manner that this property is usually
easy to disprove for a given language.

Definition 1.7.1 Let L be an arbitrary language. The language L is said to be prefix-dense, if a non-
negative integer constant K in N exists, such that for every word w in L, the following property
holds: let i, j in N, 0 ≤ i ≤ j ≤ |w|, j − i ≥ K, be nonnegative integers. Then, a nonnegative
integer k in N, i ≤ k ≤ j exists, such that the prefix w[1 . . . k] of the word w is in L.

That is, the language L is said to be prefix-dense, if a constant K exists, such that for all words
w from the language L, at least one of every K + 1 consecutive prefixes of w is in L. In the
following lemma, we shall prove an alternative description of prefix-density. This alternative
description is useful, since it can be manipulated more easily.

Lemma 1.7.2 Let L be an arbitrary language. The language L is prefix-dense, if and only if a
nonnegative integer constant K′ in N exists, such that for all words w in L, the property

Prefw,K′(i) ∩ L 6= ∅, i = 0, . . . ,
⌊
|w|/K′

⌋
(1.6)
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holds, where Prefw,K′(i) is a language defined by

Prefw,K′(i) =
{

w[1 . . . k]
∣∣ k = iK′, . . . , (i + 1)K′ − 1

}
for i = 0, . . . , b|w|/K′c − 1, and by

Prefw,K′(i) =
{

w[1 . . . k]
∣∣ k = iK′, . . . , |w|

}
for i = b|w|/K′c.

Proof. If the language L is prefix-dense in the sense of Definition 1.7.1, for some constant K,
then it clearly satisfies also the condition stated by this lemma, for the constant K′ = K + 1: the
language Prefw,K′(b|w|/K′c) contains the word w, and thus (1.6) is satisfied for i = b|w|/K′c. The
languages Prefw,K′(i), i = 0, . . . , b|w|/K′c − 1, consist each of K′ = K + 1 consecutive prefixes of
the word w. Thus, since Definition 1.7.1 is satisfied by assumption, the property (1.6) holds also
for i = 0, . . . , b|w|/K′c − 1.

Conversely, let the language L satisfy the condition imposed by this lemma, for some constant
K′. It can be easily observed that it also satisfies the condition imposed by Definition 1.7.1, for
K = 2K′. �

Before making a link to the theory of strict S-equiloadedness, we shall state one more-or-less
trivial observation:

Lemma 1.7.3 Let L be a finite language. Then it is prefix-dense.

Proof. Let l be the length of the longest word in the language L. Then, the condition imposed in
Lemma 1.7.2 is clearly satisfied for K′ = l + 1. �

Notation 1.7.4 We shall denote the family of all prefix-dense languages by Lpre f ix.

The observation that is of crucial importance for the theory of strict S-equiloadedness may be
stated as follows:

Theorem 1.7.5 Let x in {DFA, DFAε, DPDA, . . .} be an abbreviation of some model of computa-
tion that is a special case of abstract deterministic automata. Let S be a function in {C,A}. Then,
the following inclusions hold:

1. LK−SEQ−x(S) ⊆ Lpre f ix, 2. Lδ−SEQ−x(S) ⊆ Lpre f ix.

Proof. By Theorem 1.6.3, it suffices to prove the theorem for the case S = A. The remaining case
S = C is an immediate corollary.

Let us first prove that LK−SEQ−x(A) ⊆ Lpre f ix. For the purpose of contradiction, let us
suppose that a language L in LK−SEQ−x(A) exists, such that L is not prefix-dense (i.e., not in
Lpre f ix). Let A = (K, Σ, G, H, ζ, Z, δ, q0, F) be a strictly state-A-equiloaded abstract deterministic
automaton, such that L(A) = L.

Since the automaton A is strictly state-A-equiloaded, a nonnegative real constant η in R exists,
such that for all p, q in K and all accepting computation paths γ in Acc(A), the property

|#[p, γ]− #[q, γ]| ≤ η

holds. Moreover, by Lemma 1.7.3, if the language L is finite, it is in Lpre f ix. Thus, we may assume
that the language L is infinite. Thus, the language L is also nonempty and therefore, at least one
accepting state qF in F exists.

Since the language L is not prefix-dense, it is clear that for every s in N, words us, vs ∈ Σ∗

exist, such that usvs is in L, |vs| ≥ s and that there is no nonempty prefix w of vs, such that usw is
in L.
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Let γs be the accepting computation path of the automaton A on the word usvs. Let γ′ be the
computation path of the automaton A on the word us (determinism implies that γ′ is a prefix of
γ). The property

#[qF, γ′] ≤ #[q, γ′] + η (1.7)

has to hold for the computation path γ′ and for all q in K. The reason for this is as follows:
clearly, this property has to hold for the empty computation path. Moreover, it has to hold for
every accepting prefix of the computation path γ′ (of course, such a prefix need not exist). Let
us denote by γ′′ the longest such prefix (if there is not any, let us define γ′′ to be the empty
computation path). We have

#[qF, γ′′] ≤ #[q, γ′′] + η.

However, we also clearly have
#[qF, γ′] = #[qF, γ′′]

and
#[q, γ′] ≥ #[q, γ′′]

for all q in K. Thus, the inequality (1.7) is proved. However, since the state qF is accepting, we
also have

#[qF, γ] = #[qF, γ′]. (1.8)

On the other hand, it follows from the Pigeonhole principle that for at least one p in K, we have

#[p, γ] ≥ #[p, γ′] + bs/|K|c . (1.9)

Thus, by (1.7), (1.8) and (1.9) we obtain

|#[qF, γ]− #[p, γ]| ≥ bs/|K|c − η.

However, since η is a constant and bs/|K|c can be made arbitrarily high, this contradicts our
assumption that the abstract deterministic automaton A is strictly state-S-equiloaded.

The proof of the inclusion Lδ−SEQ−x(A) ⊆ Lpre f ix is similar. The same train of thought can
be followed, with the difference that instead in the number of uses of qF, we would be interested
in the number of uses of some transition leading to qF. The details are left to the reader. �

Example 1.7.6 The language L1 = {a, b}∗ is clearly prefix-dense, since for every given w in L1,
every prefix of w is in L1 as well.

However, we shall be more interested in languages that are not prefix-dense, since in that case
we can also make negative statements about their strict S-equiloadedness.

The language L2 = {anbn | n ≥ 0} is not prefix-dense, since for each n in N, a counterexample
wn = anbn in L2 exists, such that none of its 2n− 1 proper prefixes

wn[1 . . . 1], wn[1 . . . 2], . . . , wn[1 . . . 2n− 1]

is in L2. For the similar reason, also the language L3 = {anb | n ≥ 1} ∪ {ε} is not prefix-dense.
Thus, by Theorem 1.7.5, it follows that the languages L2 and L3 are not in any of the families
LK−SEQ−x(C), LK−SEQ−x(A), Lδ−SEQ−x(C), and Lδ−SEQ−x(A), where x is an abbreviation of
some computation model that is a special case of abstract deterministic automata.

However, if we are interested in acceptance by empty memory, prefix-density has only mi-
nor implications for strict S-equiloadedness. In Chapter 3 (more precisely, in Examples 3.1.4
and 3.1.6), we shall show that the language L2 is in NK−SEQ−DOCA(E), and that L3 is both in
NK−SEQ−DOCA(C) and in NK−SEQ−DOCA(E).



Chapter 2

Deterministic Finite Automata

In the previous chapter, we have studied various aspects of several equiloadedness definitions for
abstract deterministic automata. This general approach resulted in several useful observations
that apply to all models of computation that can be viewed as a special case of ADA.

In this chapter, we begin the study of equiloadedness for particular models of computation
and concentrate on Deterministic Finite Automata (with or without ε-transitions). A determinis-
tic finite automaton is considered to be the simplest reasonable model of computation (at least
among the models that are special cases of ADA) and is the only model of computation, for which
the balanced use of resources has been studied up to now. In [26] and [27], some families of state-
equiloaded DFA have been studied. In [25], we have initiated the study of transition-equiloaded
DFA.

The definitions of equiloadedness used in [26], [27], and [25] slightly differ from those used
in this report. However, using the terminology introduced in this report, we can say that in
[26] and [27], families of strictly state-A-equiloaded DFA and state-A=-equiloaded DFA have
been studied1 and in [25], we have studied the families of strictly transition-A-equiloaded DFA,
transition-A=-equiloaded DFA, and weakly transition-A=-equiloaded DFA.

In this chapter, we shall briefly restate the main results obtained in [26], [27], and [25] using
the terminology and notation of this report (proofs will be omitted). However, the main focus will
be on new results (those compose the great majority of this chapter). The definitions used in this
report are far more general than the definitions used in [26], [27], and [25] and so it is desirable
to give the known results an appropriate place in our theory. Therefore, this chapter will not
consist of two separated parts, one consisting of the known results and one consisting of the new
results. Instead of that, we shall be switching between the known and the new results. However,
if a result is already known, a citation is always included. Therefore, it shall be relatively easy to
distinguish between the known and the new results.

The new results presented later in this chapter can be roughly divided into the following
categories:

• All known results have been about DFA, i.e., deterministic finite automata without ε-tran-
sitions. In this chapter, we shall study also DFAε, i.e., deterministic finite automata with
ε-transitions.

• The definition of S-equiloadedness presented in this report is far more general than re-
lated definitions used in [26], [27], and [25]. It can be proved that these older definitions
are equivalent to A=-equiloadedness. However, in this chapter we shall study also other
types of S-equiloadedness. This involves also some new results on enumeration of basic
quantities for DFA and DFAε, etc.

• A similar remark applies also to strict S-equiloadedness.

1Up to now, the equivalence of the definition used in [26] and [27] and the definition of state-A=-equiloaded DFA has
been an open problem. However, in this chapter we shall prove this equivalence.
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• In this chapter, we shall solve an open problem concerning equivalence of certain defini-
tions. This will lead to a unification of theories developed in [26] and [27], and in [25].

• We shall study weakly state-equiloaded DFA and DFAε that have not been studied up to
now.

Before we concentrate on particular families of equiloaded DFA and DFAε, we shall show
that several basic quantities used in the study of equiloaded finite automata may be computed
relatively easily as solutions to certain initial value problems for systems of O∆Es (i.e., recur-
rences). Thus, we will be able to characterize the class of functions emerging in the numerator
and the denominator of equiloadedness S-quotients and thus to state several powerful results
about equiloadedness S-measures. Moreover, as a by-product, we will obtain a numerical algo-
rithm for computing equiloadedness S-measures for deterministic finite automata.

Afterwards, we shall first study strictly S-equiloaded DFA and DFAε (Section 2.2), and sub-
sequently S-equiloaded (Section 2.3) DFA and DFAε for diverse choices of S .

2.1 Enumeration of Basic Quantities for DFA and DFAε

In this section, we shall present systems of O∆Es (i.e., recurrences) that allow us to easily compute
exact closed forms of several basic quantities used in the study of equiloaded DFA and DFAε,
such as the number of computation paths of a given length, the number of uses of a given state
or transition in computation paths of a given length, etc. These quantities form the basis of the
theory of S-equiloaded finite automata and the methods of their exact computation, presented in
what follows, are crucial for the further developments of our theory.

To be more specific, we shall show that these basic quantities can be computed by solving
certain initial value problems for homogeneous systems of first-order linear O∆Es with constant
coefficients. Initial value problems of this kind can be solved relatively easily. For a general
introduction to the topic, see, e.g., [10]. The method of solving systems of this kind is briefly
reviewed in the end of this section. A brief treatment of the underlying theory, including the
derivation of this method, can be found also in the appendix of this report.

The main idea behind the construction of systems presented in this subsection can be sum-
marized as follows. For instance, one of the quantities we are interested in is the number of
computation paths of length n. Let us slightly generalize this quantity, and let us consider the
number of computation paths of length n beginning in a specified state q instead of q0. More
formally, let us denote by Aq the automaton identical to A except that its initial state is q. Then,
this generalized quantity can be described as the number of computation paths of length n in
the automaton Aq. Every such computation path is unambigously described by some transition
leading from q and some computation path of length n − 1 beginning in the resulting state of
that transition. Thus, it is clear that the number of such computation paths can be computed as
a sum through all transitions (q, c, q′) in D of the numbers of computation paths of length n− 1
in the automaton Aq′ . These generalized quantities for all states of the automaton thus form a
homogeneous system of first-order linear O∆Es with constant coefficients. The systems for other
basic quantities can be derived in a similar manner.

As we shall observe, the matrices of the systems presented are always nonnegative, and thus
can be transformed into the normal form of a reducible matrix (see, e.g., [31]). Later in this
chapter, we shall make use of this fact and apply the Perron-Frobenius theory (see, e.g., [31]) to
study the asymptotic properties of the basic quantities studied in this section.

Now we shall derive the systems for our basic quantities. While doing so, we shall use the
following notation:

Notation 2.1.1 Let A = (K, Σ, δ, q0, F) be a DFAε. Let q in K be a state. By Aq, we shall denote the
deterministic finite automaton

Aq = (K, Σ, δ, q, F),

i.e., the automaton A with the initial state replaced by q. Obviously, Aq0 = A.
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Notation 2.1.2 Let A = (K, Σ, δ, q0, F) be a DFAε with K = {q0, q1, . . . , qm−1}. Let (qj, c, qk) in D
be a transition, and ql in K be a state. We shall use the following notation:

Fi(n) = |Comp(Aqi , n)|, i = 0, 1, . . . , m− 1,

fi(n) = |Acc(Aqi , n)|, i = 0, 1, . . . , m− 1,

Gi(n) = |Comp(Aqi ,≤ n)|, i = 0, 1, . . . , m− 1,

gi(n) = |Acc(Aqi ,≤ n)|, i = 0, 1, . . . , m− 1,

T
(qj ,c,qk)
i (n) = #[(qj, c, qk), Comp(Aqi , n)], i = 0, 1, . . . , m− 1,

t
(qj ,c,qk)
i (n) = #[(qj, c, qk), Acc(Aqi , n)], i = 0, 1, . . . , m− 1,

U
(qj ,c,qk)
i (n) = #[(qj, c, qk), Comp(Aqi ,≤ n)], i = 0, 1, . . . , m− 1,

u
(qj ,c,qk)
i (n) = #[(qj, c, qk), Acc(Aqi ,≤ n)], i = 0, 1, . . . , m− 1,

Sql
i (n) = #[ql , Comp(Aqi , n)], i = 0, 1, . . . , m− 1,

sql
i (n) = #[ql , Acc(Aqi , n)], i = 0, 1, . . . , m− 1,

Vql
i (n) = #[ql , Comp(Aqi ,≤ n)], i = 0, 1, . . . , m− 1,

vql
i (n) = #[ql , Acc(Aqi ,≤ n)], i = 0, 1, . . . , m− 1.

That is, to compute the number of all (all accepting) computation paths of length n, it suffices
to compute F0(n) ( f0(n)), and similarly for the rest of the quantities.

Now, we are finally prepared to state theorems about the systems for computing our basic
quantities. We shall be interested in the eigenvalues of system matrices, since they are of key
importance in the method of solving O∆Es of this type (see the end of this section, the appendix
of this report, or the textbook [10]).

Theorem 2.1.3 Let A = (K, Σ, δ, q0, F) be a DFAε with K = {q0, q1, . . . , qm−1}. The functions

F0, F1, . . . , Fm−1

are the unique solution to the initial value problem for the system of O∆Es

Fn = ∆ · Fn−1, n ≥ 1,

with Fn denoting a column vector

Fn = (F0(n), F1(n), . . . , Fm−1(n))T

and with the initial conditions given by

F0 = (1, 1, . . . , 1︸ ︷︷ ︸
m

)T .

Thus, the eigenvalues corresponding to this system are precisely the eigenvalues of the transition
matrix ∆.

Proof. Let us first examine the trivial case n = 0. Clearly, for each k, there is exactly one
computation path of length 0 beginning in qk – in particular, the empty computation path. Thus,
the initial conditions are indeed as in the statement of the theorem.

Now, let n ≥ 1. Let k be fixed. We shall try to express Fk(n) in terms of Fi(n− 1), with i in
{0, . . . , m − 1}. Clearly, every computation path γ beginning in qk must first go through some
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transition e beginning in qk. This leads to some state qi. Then, γ follows a computation path γ′ of
length n− 1, beginning in qi. Moreover, γ is clearly unambiguously determined by e and γ′.

Thus, Fk(n) can be expressed as a sum of Fi(n − 1) for all i, such that there is a transition
beginning in qk, and ending in qi (and each term in the sum is weighted by the number of such
transitions). Formally,

Fk(n) = ∑
(qk ,c,qi)∈D

Fi(n− 1) (2.1)

(where qk is fixed and the sum goes through all c and i). Now, if we write down the equation (2.1)
for each k in {0, . . . , m− 1}, we obtain the system (with the sums going through all c and i)

F0(n) = ∑
(q0,c,qi)∈D

Fi(n− 1),

F1(n) = ∑
(q1,c,qi)∈D

Fi(n− 1),

...

Fm−1(n) = ∑
(qm−1,c,qi)∈D

Fi(n− 1).

If we write this in the matrix-vector form, we obtain exactly the system

Fn = ∆ · Fn−1, n ≥ 1.

Thus, the theorem is proved. �

A similar theorem may be stated also for the computation of functions enumerating the num-
ber of all accepting computation paths of a given length.

Theorem 2.1.4 Let A = (K, Σ, δ, q0, F) be a DFAε with K = {q0, q1, . . . , qm−1}. The functions

f0, f1, . . . , fm−1

are the unique solution to the initial value problem for the system of O∆Es

fn = ∆ · fn−1, n ≥ 1,

with fn denoting a column vector

(fn = f0(n), f1(n), . . . , fm−1(n))T

and with the initial conditions given by

f0 = (C0, C1, . . . , Cm)T ,

where

Ci =
{

1 if qi ∈ F
0 otherwise i = 0, 1, . . . , m− 1.

The eigenvalues corresponding to this system are, again, precisely the eigenvalues of the transi-
tion matrix ∆.

Proof. For each k, if qk is accepting, then there is exactly one accepting computation path of
length 0 beginning in qk – the empty computation path. Otherwise, there is not any. Thus, the
initial conditions are indeed as in the statement of the theorem. The rest may be proved in exactly
the same way as in Theorem 2.1.3. �

The following two systems may be used to enumerate the number of all (all accepting) com-
putation paths of a length at most n.



Deterministic Finite Automata 23

Theorem 2.1.5 Let A = (K, Σ, δ, q0, F) be a DFAε with K = {q0, q1, . . . , qm−1}. The functions

G0, G1, . . . , Gm−1, F0, F1, . . . , Fm−1

are the unique solution to the initial value problem for the system of O∆Es

Gn =
(

Im ∆
0 ∆

)
·Gn−1, n ≥ 1,

where Im denotes the m × m identity matrix, 0 denotes the m × m zero matrix, Gn denotes a
column vector with 2m entries

Gn = (G0(n), G1(n), . . . , Gm−1(n), F0(n), F1(n), . . . , Fm−1(n))T ,

and where the initial conditions are given by

G0 = (1, 1, . . . , 1, 1, 1, . . . , 1︸ ︷︷ ︸
2m

)T .

Since the system matrix is an upper triangular block matrix, from its form it is obvious that if ∆
has eigenvalues λ1, . . . , λk with multiplicities α1, . . . , αk, then the block matrix of the system has
exactly these eigenvalues plus m times the eigenvalue one.

Proof. The number of all computation paths of length at most n can be clearly expressed as a
number of all computation paths of length exactly n plus the number of all compuation paths of
length at most n− 1. That is, we have

G0(n) = G0(n− 1) + F0(n)
G1(n) = G1(n− 1) + F1(n)

...
Gm−1(n) = Gm−1(n− 1) + Fm−1(n)

with initial conditions
Gi(0) = 1, i = 0, 1, . . . , m− 1.

This can be viewed either as a nonhomogeneous system with m unknown functions, or after
expressing the functions F0, . . . , Fm−1 from the system presented in Theorem 2.1.3, as a homoge-
neous system with 2m unknown functions

G0, G1, . . . , Gm−1, F0, F1, . . . , Fm−1.

In the latter case, the system can be written in a (block) matrix form as

Gn =
(

Im ∆
0 ∆

)
·Gn−1, n ≥ 1,

with the initial conditions given by

G0 = (1, 1, . . . , 1, 1, 1, . . . , 1︸ ︷︷ ︸
2m

)T .

Thus, the theorem is proved. �

Theorem 2.1.6 Let A = (K, Σ, δ, q0, F) be a DFAε with K = {q0, q1, . . . , qm−1}. The functions

g0, g1, . . . , gm−1, f0, f1, . . . , fm−1
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are the unique solution to the initial value problem for the system of O∆Es

gn =
(

Im ∆
0 ∆

)
· gn−1, n ≥ 1,

where Im denotes the m × m identity matrix, 0 denotes the m × m zero matrix, gn denotes a
column vector with 2m entries

gn = (g0(n), g1(n), . . . , gm−1(n), f0(n), f1(n), . . . , fm−1(n))T .

The initial conditions are given by

g0 = (C0, C1, . . . , Cm−1, D0, D1, . . . , Dm−1)T ,

where

Ci = Di =
{

1 if qi ∈ F
0 otherwise i = 0, 1, . . . , m− 1.

Since the system matrix is an upper triangular block matrix, from its form it is obvious that if ∆
has eigenvalues λ1, . . . , λk with multiplicities α1, . . . , αk, then the block matrix of the system has
exactly these eigenvalues plus m times the eigenvalue one.

Proof. The proof is analogous as in the case of Theorem 2.1.5. �

In what follows, we shall present the systems for the computation of the number of uses of a
given transition in certain computation paths.

Theorem 2.1.7 Let A = (K, Σ, δ, q0, F) be a DFAε with K = {q0, q1, . . . , qm−1}. Let (qj, c, qk) in D
be a transition. The functions

T
(qj ,c,qk)
0 , T

(qj ,c,qk)
1 , . . . , T

(qj ,c,qk)
m−1 , F0, F1, . . . , Fm−1

are the unique solution to the initial value problem for the system of O∆Es

Tn =
(

∆ ∗
0 ∆

)
· Tn−1, n ≥ 1,

where 0 is the m×m zero matrix, ∗ is the placeholder for an arbitrary m×m matrix,2 Tn denotes
a column vector with 2m entries

Tn =
(

T
(qj ,c,qk)
0 (n), T

(qj ,c,qk)
1 (n), . . . , T

(qj ,c,qk)
m−1 (n), F0(n), F1(n), . . . , Fm−1(n)

)T
,

and the initial conditions are given by

T0 = (0, 0, . . . , 0︸ ︷︷ ︸
m

, 1, 1, . . . , 1︸ ︷︷ ︸
m

)T .

It is clear that the block matrix of the presented system has exactly the same eigenvalues as the
matrix ∆, although with doubled multiplicities.

Proof. If n = 0, T
(qj ,c,qk)
i (0) is clearly 0 for i = 0, . . . , m − 1, since no transition is used in

computation paths of length 0.
Let n ≥ 1. Every computation path γ of length n beginning in some state qi can be decom-

posed into a transition, and a computation path γ′ of length n− 1 beginning in a state determined
by that transition. If i 6= j, then the transition (qj, c, qk) is not among the transitions leading from

2Although we could be able to exactly characterize this block, it is irrelevant for the purposes of this report.
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qi, and the number of uses of the transition (qj, c, qk) can be therefore computed as a sum of the
numbers of uses of that transition in all possible computation paths γ′. If i = j, then the total
number of uses of the transition (qj, c, qk) consists of this sum plus the number of computation
paths γ beginning with the transition (qj, c, qk).

This leads us to the system (with the sums going through all c and i)

T
(qj ,c,qk)
0 (n) = ∑

(q0,c,qi)∈D
T

(qj ,c,qk)
i (n− 1)

T
(qj ,c,qk)
1 (n) = ∑

(q1,c,qi)∈D
T

(qj ,c,qk)
i (n− 1)

...

T
(qj ,c,qk)
j−1 (n) = ∑

(qj−1,c,qi)∈D
T

(qj ,c,qk)
i (n− 1)

T
(qj ,c,qk)
j (n) = Fk(n− 1) + ∑

(qj ,c,qi)∈D
T

(qj ,c,qk)
i (n− 1)

T
(qj ,c,qk)
j+1 (n) = ∑

(qj+1,c,qi)∈D
T

(qj ,c,qk)
i (n− 1)

...

T
(qj ,c,qk)
m−1 (n) = ∑

(qm−1,c,qi)∈D
T

(qj ,c,qk)
i (n− 1)

with initial conditions
T

(qj ,c,qk)
i (0) = 0 ∀i ∈ {0, 1, . . . , m− 1}.

This can be viewed either as a nonhomogeneous system with m unknown functions, or as a
homogeneous system with 2m unknown functions

T
(qj ,c,qk)
0 , T

(qj ,c,qk)
1 , . . . , T

(qj ,c,qk)
m−1 , F0, F1, . . . , Fm−1,

incorporating the system from Theorem 2.1.3. In the latter case, the system can be written in a
(block) matrix form as in the statement of the theorem. Thus, the theorem is proved. �

Theorem 2.1.8 Let A = (K, Σ, δ, q0, F) be a DFAε with K = {q0, q1, . . . , qm−1}. Let (qj, c, qk) in D
be a transition. The functions

t
(qj ,c,qk)
0 , t

(qj ,c,qk)
1 , . . . , t

(qj ,c,qk)
m−1 , f0, f1, . . . , fm−1

are the unique solution to the initial value problem for the system of O∆Es

tn =
(

∆ ∗
0 ∆

)
· tn−1, n ≥ 1,

where 0 is the m×m zero matrix, ∗ is the placeholder for an arbitrary m×m matrix, tn denotes a
column vector with 2m entries

tn =
(

t
(qj ,c,qk)
0 (n), t

(qj ,c,qk)
1 (n), . . . , t

(qj ,c,qk)
m−1 (n), f0(n), f1(n), . . . , fm−1(n)

)T
,

and the initial conditions are given by

t0 = (0, 0, . . . , 0︸ ︷︷ ︸
m

, C0, C1, . . . , Cm−1)T ,
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where

Ci =
{

1 if qi ∈ F
0 otherwise i = 0, 1, . . . , m− 1.

It is clear that the block matrix of the presented system has exactly the same eigenvalues as the
matrix ∆, although with doubled multiplicities.

Proof. The proof is analogous to the proof of Theorem 2.1.7. �

Theorem 2.1.9 Let A = (K, Σ, δ, q0, F) be a DFAε with K = {q0, q1, . . . , qm−1}. Let (qj, c, qk) in D
be a transition. The functions

U
(qj ,c,qk)
0 , U

(qj ,c,qk)
1 , . . . , U

(qj ,c,qk)
m−1 , T

(qj ,c,qk)
0 , T

(qj ,c,qk)
1 , . . . , T

(qj ,c,qk)
m−1 , F0, F1, . . . , Fm−1

are the unique solution to the initial value problem for the system of O∆Es

Un =

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

 ·Un−1, n ≥ 1,

where Im is the m × m identity matrix, 0 is the m × m zero matrix, ∗ is the placeholder for an
arbitrary m×m matrix, and where Un denotes a column vector with 3m entries

Un =
(

U
(qj ,c,qk)
0 (n), U

(qj ,c,qk)
1 (n), . . . , U

(qj ,c,qk)
m−1 (n), T

(qj ,c,qk)
0 (n), T

(qj ,c,qk)
1 (n), . . . , T

(qj ,c,qk)
m−1 (n),

F0(n), F1(n), . . . , Fm−1(n)
)T

.

The initial conditions are given by

U0 = (0, 0, . . . , 0︸ ︷︷ ︸
m

, 0, 0, . . . , 0︸ ︷︷ ︸
m

, 1, 1, . . . , 1︸ ︷︷ ︸
m

)T .

Clearly, if the transition matrix ∆ has eigenvalues λ1, . . . , λk with respective multiplicities α1, . . . , αk,
then the eigenvalues of the system matrix are3

2α1 × λ1, . . . , 2αk × λk + m× 1.

Proof. We consider the statement to be clear. �

Theorem 2.1.10 Let A = (K, Σ, δ, q0, F) be a DFAε with K = {q0, q1, . . . , qm−1}. Let (qj, c, qk) in D
be a transition. The functions

u
(qj ,c,qk)
0 , u

(qj ,c,qk)
1 , . . . , u

(qj ,c,qk)
m−1 , t

(qj ,c,qk)
0 , t

(qj ,c,qk)
1 , . . . , t

(qj ,c,qk)
m−1 , f0, f1, . . . , fm−1

are the unique solution to the initial value problem for the system of O∆Es

un =

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

 · un−1, n ≥ 1,

3In our symbolic notation (that is also used later in Table 2.1), α × λ means that the eigenvalue λ has the algebraic
multiplicity α. The operator + can be viewed as a union on a multiset representing the spectrum, i.e., if S is a spectrum,
S + α× λ is S with the multiplicity of the eigenvalue λ increased by α (the original multiplicity of λ in S could have been
zero or nonzero).
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where Im is the m × m identity matrix, 0 is the m × m zero matrix, ∗ is the placeholder for an
arbitrary m×m matrix, and where un denotes a column vector with 3m entries

un =
(

u
(qj ,c,qk)
0 (n), u

(qj ,c,qk)
1 (n), . . . , u

(qj ,c,qk)
m−1 (n), t

(qj ,c,qk)
0 (n), t

(qj ,c,qk)
1 (n), . . . , t

(qj ,c,qk)
m−1 (n),

f0(n), f1(n), . . . , fm−1(n)
)T

.

The initial conditions are given by

u0 = (0, 0, . . . , 0︸ ︷︷ ︸
m

, 0, 0, . . . , 0︸ ︷︷ ︸
m

, D0, D1, . . . , Dm−1)T ,

where

Di =
{

1 if qi ∈ F
0 otherwise i = 0, 1, . . . , m− 1.

Since the matrix of the system is the same as in the previous case, the eigenvalues are the same
as well. That is, if the transition matrix ∆ has eigenvalues λ1, . . . , λk with respective multiplicities
α1, . . . , αk, then the eigenvalues of the system matrix are

2α1 × λ1, . . . , 2αk × λk + m× 1.

Proof. The statement is clear. �

The matrices and corresponding eigenvalues for the above studied systems are summarized
in Table 2.1. For the rest of the basic quantities, we shall not explicitly construct systems of O∆Es
(although it is certainly possible), but we shall express these quantities in terms of quantities, for
which we already have systems constructed.

Next, we shall present a theorem on the enumeration of the number of uses of a given state in
all (or all accepting) computation paths of length n (≤ n). The functions for these quantities shall
be expressed in terms of functions counting the number of uses of a given transition.

Theorem 2.1.11 Let A = (K, Σ, δ, q0, F) be a DFAε with K = {q0, q1, . . . , qm−1}. Let ql in K be a
state. Then the following equations hold for ql 6= q0:

Sql
0 (n) = ∑

(qk ,c,ql)∈D
T(qk ,c,ql)

0 (n),

sql
0 (n) = ∑

(qk ,c,ql)∈D
t(qk ,c,ql)
0 (n),

Vql
0 (n) = ∑

(qk ,c,ql)∈D
U(qk ,c,ql)

0 (n),

vql
0 (n) = ∑

(qk ,c,ql)∈D
u(qk ,c,ql)

0 (n).

The following equations hold for ql = q0:

Sq0
0 (n) = F0(n) + ∑

(qk ,c,q0)∈D
T(qk ,c,q0)

0 (n),

sq0
0 (n) = f0(n) + ∑

(qk ,c,q0)∈D
t(qk ,c,q0)
0 (n),

Vq0
0 (n) = G0(n) + ∑

(qk ,c,q0)∈D
U(qk ,c,q0)

0 (n),
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Quantity Function Matrix Eigenvalues

|Comp(A, n)| F0(n) ∆ α1 × λ1, . . . , αk × λk

|Acc(A, n)| f0(n) ∆ α1 × λ1, . . . , αk × λk

|Comp(A,≤ n)| G0(n)
(

Im ∆
0 ∆

)
α1 × λ1, . . . , αk × λk + m× 1

|Acc(A,≤ n)| g0(n)
(

Im ∆
0 ∆

)
α1 × λ1, . . . , αk × λk + m× 1

#[(qj, c, qk), Comp(A, n)] T
(qj ,c,qk)
0 (n)

(
∆ ∗
0 ∆

)
2α1 × λ1, . . . , 2αk × λk

#[(qj, c, qk), Acc(A, n)] t
(qj ,c,qk)
0 (n)

(
∆ ∗
0 ∆

)
2α1 × λ1, . . . , 2αk × λk

#[(qj, c, qk), Comp(A,≤ n)] U
(qj ,c,qk)
0 (n)

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

 2α1 × λ1, . . . , 2αk × λk + m× 1

#[(qj, c, qk), Acc(A,≤ n)] u
(qj ,c,qk)
0 (n)

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

 2α1 × λ1, . . . , 2αk × λk + m× 1

Table 2.1: Summary of matrices and corresponding eigenvalues for systems of O∆Es presented in this
section. Sets of eigenvalues and multiplicities for the specified matrices are listed in terms of eigenvalues of
the transition matrix ∆, denoted λ1, . . . , λk, and their multiplicities, α1, . . . , αk. By m, we denote the number
of states of the automaton A, i.e., the transition matrix ∆ is of the type m×m.

vq0
0 (n) = g0(n) + ∑

(qk ,c,q0)∈D
u(qk ,c,q0)

0 (n),

(the sums go through all qk in K and c in Σ ∪ {ε}).

Proof. We consider the theorem to be obvious. �

Of course, an analogous theorem holds also for Sql
i , sql

i , Vql
i , and vql

i , for i = 1, . . . , m − 1.
However, we are not interested in these functions.

It is a direct corollary of the presented theorem and of the method for solving initial value
problems of our kind that solutions for functions counting the number of uses of a given state
have the same form (the solutions differ only in constant coefficients) as the solutions for func-
tions counting the number of uses of a given transition. Thus, it essentially does not matter if we
are enumerating the number of uses of a given state or a given transition – the solution has al-
ways the same form, and the only difference is in the values of the constant coefficients occurring
in this solution.

Now, let us briefly outline the method of solving initial value problems for homogeneous
systems of first-order linear O∆Es with constant coefficients (more details can be found, e.g., in
[10], or in the appendix of this report). A system of this kind can be always written in a matrix-
vector form

xn = M · xn−1, n ≥ 1, (2.2)

where M is an m×m matrix, and for every n in N, xn is a column vector with m entries

xn = (x0(n), . . . , xm−1(n))T .
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In an initial value problem, the vector x0 is given explicitly as a vector of initial conditions

x0 = (C0, . . . , Cm−1)T .

In this report, we are not interested in solving initial value problems precisely as described
above, since instead of the closed form for xn, we are interested in the closed form of x0(n) only.
This allows us to avoid the computation of eigenvectors, or possibly generalized eigenvectors
(without loosing anything). The method of finding the closed form of x0(n) can be summarized
as follows:

1. Write down the system in the matrix-vector form (2.2).

2. Compute eigenvalues of the matrix M. Let us denote distinct nonzero eigenvalues of the
matrix M by λ1, . . . , λk, and their algebraic multiplicities by α1, . . . , αk. Let us denote by α
the multiplicity of a zero eigenvalue.

3. The solution for x0(n) has a form

x0(n) =
k

∑
i=1

αi−1

∑
j=0

ci,j · njλn
i +

α−1

∑
j=0

cn=j · [n = j] (2.3)

for some constants ci,j, i = 1, . . . , k, j = 0, . . . , αi − 1 and cn=j, j = 0, . . . , α − 1 to be deter-
mined.

4. Determine the unknown constants in (2.3) by solving the system of linear equations ob-
tained from the initial conditions.

Thus, we may conclude that we have successfully developed a method for enumeration of all
basic quantities listed in the beginning of this subsection. Moreover, by Lemma 1.5.3, the compu-
tation of equiloadedness S-measures is (at least for several most important choices of S) reduced
to the computation of a lower limit of a certain very special form. That is, the methods presented
in this subsection may be turned into a numerical algorithm for computing equiloadedness S-
measures.4

Example 2.1.12 Now, we shall demonstrate the established method on an example. Let us con-
sider a deterministic finite automaton A = (K, Σ, δ, q0, F) with K = {q0, q1, q2}, Σ = {a, b},
F = {q2}, and with the transition function δ defined by

δ(q0, a) = q1,
δ(q0, b) = q2,
δ(q1, a) = q0,
δ(q2, a) = q2,
δ(q2, b) = q2.

It is clear that the transition matrix ∆ of the deterministic finite automaton A is

∆ =

 0 1 1
1 0 0
0 0 2

 ,

and that the automaton A accepts the language L = {aa}∗{b}{a, b}∗.
We shall compute some of the basic quantities (namely the functions counting the number of

computation paths, the number of uses of the transition (q1, a, q0), and the number of uses of the
state q0) for this automaton.

4Probably the least trivial step is the computation of eigenvalues. However, eigenvalues can be numerically computed
by using, e.g., the QR algorithm (for details, see, e.g., [15]).
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q0 q1q2

a

a

b

a

b

Figure 2.1: The automaton A accepting the language L = {aa}∗{b}{a, b}∗. The basic quantities are being
computed for this automaton.

Let us first compute the eigenvalues of the transition matrix ∆. By computing the character-
istic polynomial of this matrix, we obtain

ch(λ) =

∣∣∣∣∣∣
−λ 1 1
1 −λ 0
0 0 2− λ

∣∣∣∣∣∣ = (2− λ)(λ− 1)(λ + 1).

Thus, the eigenvalues of ∆ are

λ1 = 2,
λ2 = 1,
λ3 = −1,

and (since all of these eigenvalues are simple) the corresponding algebraic multiplicities are

α1 = 1,
α2 = 1,
α3 = 1.

Since there is no zero eigenvalue, the multiplicity α of the zero eigenvalue is α = 0, thus we are
allowed to omit the second sum in the general solution.

The general solutions for the basic quantities follow directly from the results established ear-
lier in this section. It is therefore clear, that the general solutions for these quantities can be
expressed in the form

F0(n) = c(1)
1,1,0 · 2

n + c(1)
2,1,0 · 1

n + c(1)
3,1,0 · (−1)n,

f0(n) = c(2)
1,1,0 · 2

n + c(2)
2,1,0 · 1

n + c(2)
3,1,0 · (−1)n,

G0(n) = c(3)
1,1,0 · 2

n + c(3)
2,1,0 · 1

n + c(3)
2,2,0 · n · 1

n + c(3)
2,3,0 · n

2 · 1n + c(3)
2,4,0 · n

3 · 1n + c(3)
3,1,0 · (−1)n,

g0(n) = c(4)
1,1,0 · 2

n + c(4)
2,1,0 · 1

n + c(4)
2,2,0 · n · 1

n + c(4)
2,3,0 · n

2 · 1n + c(4)
2,4,0 · n

3 · 1n + c(4)
3,1,0 · (−1)n,

T(q1,a,q0)
0 (n) = c(5)

1,1,0 · 2
n + c(5)

1,2,0 · n · 2
n + c(5)

2,1,0 · 1
n + c(5)

2,2,0 · n · 1
n + c(5)

3,1,0 · (−1)n + c(5)
3,2,0 · n · (−1)n,

t(q1,a,q0)
0 (n) = c(6)

1,1,0 · 2
n + c(6)

1,2,0 · n · 2
n + c(6)

2,1,0 · 1
n + c(6)

2,2,0 · n · 1
n + c(6)

3,1,0 · (−1)n + c(6)
3,2,0 · n · (−1)n,

U(q1,a,q0)
0 (n) = c(7)

1,1,0 · 2
n + c(7)

1,2,0 · n · 2
n + c(7)

2,1,0 · 1
n + c(7)

2,2,0 · n · 1
n + c(7)

2,3,0 · n
2 · 1n + c(7)

2,4,0 · n
3 · 1n+

+ c(7)
2,5,0 · n

4 · 1n + c(7)
3,1,0 · (−1)n + c(7)

3,2,0 · n · (−1)n,

u(q1,a,q0)
0 (n) = c(8)

1,1,0 · 2
n + c(8)

1,2,0 · n · 2
n + c(8)

2,1,0 · 1
n + c(8)

2,2,0 · n · 1
n + c(8)

2,3,0 · n
2 · 1n + c(8)

2,4,0 · n
3 · 1n+

+ c(8)
2,5,0 · n

4 · 1n + c(8)
3,1,0 · (−1)n + c(8)

3,2,0 · n · (−1)n,

Sq0
0 (n) = c(9)

1,1,0 · 2
n + c(9)

1,2,0 · n · 2
n + c(9)

2,1,0 · 1
n + c(9)

2,2,0 · n · 1
n + c(9)

3,1,0 · (−1)n + c(9)
3,2,0 · n · (−1)n,
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sq0
0 (n) = c(10)

1,1,0 · 2
n + c(10)

1,2,0 · n · 2
n + c(10)

2,1,0 · 1
n + c(10)

2,2,0 · n · 1
n + c(10)

3,1,0 · (−1)n + c(10)
3,2,0 · n · (−1)n,

Vq0
0 (n) = c(11)

1,1,0 · 2
n + c(11)

1,2,0 · n · 2
n + c(11)

2,1,0 · 1
n + c(11)

2,2,0 · n · 1
n + c(11)

2,3,0 · n
2 · 1n + c(11)

2,4,0 · n
3 · 1n+

+ c(11)
2,5,0 · n

4 · 1n + c(11)
3,1,0 · (−1)n + c(11)

3,2,0 · n · (−1)n,

vq0
0 (n) = c(12)

1,1,0 · 2
n + c(12)

1,2,0 · n · 2
n + c(12)

2,1,0 · 1
n + c(12)

2,2,0 · n · 1
n + c(12)

2,3,0 · n
2 · 1n + c(12)

2,4,0 · n
3 · 1n+

+ c(12)
2,5,0 · n

4 · 1n + c(12)
3,1,0 · (−1)n + c(12)

3,2,0 · n · (−1)n,

for some constants c(k)
i,j,0 in C. In what follows, we shall determine these constants and thus com-

plete the process of finding closed form solutions for the enumerated quantities.
First of all, let us find a closed form solution for the function F0(n). The value of F0(n) is the

first component of the vector Fn. From the initial conditions, we have

F0 = (1, 1, 1)T .

Thus, F0(0) = 1. However, to determine the constants c(1)
1,1,0, c(1)

2,1,0, and c(1)
3,1,0, we need the values

of F0(n) for n = 0, 1, 2. We shall compute the values of F0(1) and F0(2) from F1 and F2, which we
shall compute by a direct left-multiplication of the vector F0 by the matrix ∆. We shall obtain

F1 = ∆ · F0 = (2, 1, 2)T ,

F2 = ∆2 · F0 = (3, 2, 4)T .

Thus, F0(1) = 2 and F0(2) = 3. The constants c(1)
1,1,0, c(1)

2,1,0, and c(1)
3,1,0 therefore satisfy the system of

linear equations

c(1)
1,1,0 + c(1)

2,1,0 + c(1)
3,1,0 = 1,

2 · c(1)
1,1,0 + c(1)

2,1,0 − c(1)
3,1,0 = 2,

4 · c(1)
1,1,0 + c(1)

2,1,0 + c(1)
3,1,0 = 3,

i.e., in the matrix-vector form, 1 1 1
2 1 −1
4 1 1

 ·


c(1)
1,1,0

c(1)
2,1,0

c(1)
3,1,0

 =

 1
2
3

 .

By solving this system, we obtain

c(1)
1,1,0 =

2
3

, c(1)
2,1,0 =

1
2

, c(1)
3,1,0 = −1

6
.

The closed form solution for the function F0(n) therefore is

F0(n) =
2
3
· 2n +

1
2
− 1

6
· (−1)n.

Similarly, we shall determine these constants also for the rest of enumerated functions. For
f0(n), we have

f0 = (0, 0, 1)T ,

from which we get

f1 = ∆ · f0 = (1, 0, 2)T ,

f2 = ∆2 · f0 = (2, 1, 4)T .
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The constants c(2)
1,1,0, c(2)

2,1,0, and c(2)
3,1,0 therefore satisfy the system of linear equations

 1 1 1
2 1 −1
4 1 1

 ·


c(2)
1,1,0

c(2)
2,1,0

c(2)
3,1,0

 =

 0
1
2

 .

By solving this system, we obtain

c(2)
1,1,0 =

2
3

, c(2)
2,1,0 = −1

2
, c(2)

3,1,0 = −1
6

.

The closed form solution for the function f0(n) therefore is

f0(n) =
2
3
· 2n − 1

2
− 1

6
· (−1)n.

Now, we shall compute G0(n). From the initial conditions, we have

G0 = (1, 1, 1, 1, 1, 1),

from which we get

G1 =
(

Im ∆
0 ∆

)
·G0 = (3, 2, 3, 2, 1, 2)T ,

G2 =
(

Im ∆
0 ∆

)2
·G0 = (6, 4, 7, 3, 2, 4)T ,

G3 =
(

Im ∆
0 ∆

)3
·G0 = (12, 7, 15, 6, 3, 8)T ,

G4 =
(

Im ∆
0 ∆

)4
·G0 = (23, 13, 31, 11, 6, 16)T ,

G5 =
(

Im ∆
0 ∆

)5
·G0 = (45, 24, 63, 22, 11, 32)T .

Thus, the constants c(3)
1,1,0, c(3)

2,1,0, c(3)
2,2,0, c(3)

2,3,0, c(3)
2,4,0, and c(3)

3,1,0 satisfy the following system of linear
equations: 

1 1 0 0 0 1
2 1 1 1 1 −1
4 1 2 4 8 1
8 1 3 9 27 −1
16 1 4 16 64 1
32 1 5 25 125 −1

 ·



c(3)
1,1,0

c(3)
2,1,0

c(3)
2,2,0

c(3)
2,3,0

c(3)
2,4,0

c(3)
3,1,0


=


1
3
6

12
23
45

 .

By solving this system, we obtain

c(3)
1,1,0 =

4
3

, c(3)
2,1,0 = −1

4
, c(3)

2,2,0 =
1
2

,

c(3)
2,3,0 = 0, c(3)

2,4,0 = 0, c(3)
3,1,0 = − 1

12
.

Thus, the closed form solution for the function G0(n) is

G0(n) =
4
3
· 2n − 1

4
+

1
2
· n− 1

12
· (−1)n.
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Let us now compute the closed form solution for g0(n). From the initial conditions, we have

g0 = (0, 0, 1, 0, 0, 1).

From that we get

g1 =
(

Im ∆
0 ∆

)
· g0 = (1, 0, 3, 1, 0, 2)T ,

g2 =
(

Im ∆
0 ∆

)2
· g0 = (3, 1, 7, 2, 1, 4)T ,

g3 =
(

Im ∆
0 ∆

)3
· g0 = (8, 3, 15, 5, 2, 8)T ,

g4 =
(

Im ∆
0 ∆

)4
· g0 = (18, 8, 31, 10, 5, 16)T ,

g5 =
(

Im ∆
0 ∆

)5
· g0 = (39, 18, 63, 21, 10, 32)T .

Thus, for the constants to be determined, the following system of linear equations holds:


1 1 0 0 0 1
2 1 1 1 1 −1
4 1 2 4 8 1
8 1 3 9 27 −1

16 1 4 16 64 1
32 1 5 25 125 −1

 ·



c(4)
1,1,0

c(4)
2,1,0

c(4)
2,2,0

c(4)
2,3,0

c(4)
2,4,0

c(4)
3,1,0


=


0
1
3
8

18
39

 .

The solution to this system is

c(4)
1,1,0 =

4
3

, c(4)
2,1,0 = −5

4
, c(4)

2,2,0 = −1
2

,

c(4)
2,3,0 = 0, c(4)

2,4,0 = 0, c(4)
3,1,0 = − 1

12
.

The closed form solution for the function g0(n) therefore is

g0(n) =
4
3
· 2n − 5

4
− 1

2
· n− 1

12
· (−1)n.

Up to now, we have found the closed form solutions for functions counting the number of
computation paths. Now, we shall turn our attention to functions counting the number of uses
of the transition (q1, a, q0).

First of all, we shall compute the closed form solution for the function T(q1,a,q0)
0 (n). From the

initial conditions, we have
T0 = (0, 0, 0, 1, 1, 1),

from which we obtain

T1 =
(

∆ ∗
0 ∆

)
· T0 = (0, 1, 0, 2, 1, 2)T ,

T2 =
(

∆ ∗
0 ∆

)2
· T0 = (1, 2, 0, 3, 2, 4)T ,

T3 =
(

∆ ∗
0 ∆

)3
· T0 = (2, 4, 0, 6, 3, 8)T ,
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T4 =
(

∆ ∗
0 ∆

)4
· T0 = (4, 8, 0, 11, 6, 16)T ,

T5 =
(

∆ ∗
0 ∆

)5
· T0 = (8, 15, 0, 22, 11, 32)T .

Of course, in these computations we cannot work with ∗ as a general placeholder for an arbitrary
matrix,5 but we have to work with a concrete matrix that can be determined from the correspond-
ing system of recurrences, i.e., in this case,

∗ =

 0 0 0
1 0 0
0 0 0

 .

Thus, for the constants to be determined, the following system of linear equations holds:


1 0 1 0 1 0
2 2 1 1 −1 −1
4 8 1 2 1 2
8 24 1 3 −1 −3
16 64 1 4 1 4
32 160 1 5 −1 −5

 ·



c(5)
1,1,0

c(5)
1,2,0

c(5)
2,1,0

c(5)
2,2,0

c(5)
3,1,0

c(5)
3,2,0


=


0
0
1
2
4
8

 .

By solving this system, we obtain

c(5)
1,1,0 =

2
9

, c(5)
1,2,0 = 0, c(5)

2,1,0 = −1
2

,

c(5)
2,2,0 =

1
4

, c(5)
3,1,0 =

5
18

, c(5)
3,2,0 = − 1

12
.

Thus, the closed form solution for the function T(q1,a,q0)
0 (n) is

T(q1,a,q0)
0 (n) =

2
9
· 2n − 1

2
+

1
4
· n +

5
18
· (−1)n − 1

12
· n · (−1)n.

Let us now find the closed form solution for the function t(q1,a,q0)
0 (n). From the initial condi-

tions, we have
t0 = (0, 0, 0, 0, 0, 1).

From that we obtain

t1 =
(

∆ ∗
0 ∆

)
· t0 = (0, 0, 0, 1, 0, 2)T ,

t2 =
(

∆ ∗
0 ∆

)2
· t0 = (0, 1, 0, 2, 1, 4)T ,

t3 =
(

∆ ∗
0 ∆

)3
· t0 = (1, 2, 0, 5, 2, 8)T ,

t4 =
(

∆ ∗
0 ∆

)4
· t0 = (2, 6, 0, 10, 5, 16)T ,

5This is one of the rare cases that we are interested in the form of the matrix corresponding to ∗. However, we can

avoid this, since the initial values of T(q1 ,a,q0)
0 (n) can be computed also by manually examining all computation paths of

length n, for initial values of n.
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t5 =
(

∆ ∗
0 ∆

)5
· t0 = (6, 12, 0, 21, 10, 32)T .

Once again,

∗ =

 0 0 0
1 0 0
0 0 0

 .

Thus, for the constants to be determined, the following system of linear equations holds:


1 0 1 0 1 0
2 2 1 1 −1 −1
4 8 1 2 1 2
8 24 1 3 −1 −3
16 64 1 4 1 4
32 160 1 5 −1 −5

 ·



c(6)
1,1,0

c(6)
1,2,0

c(6)
2,1,0

c(6)
2,2,0

c(6)
3,1,0

c(6)
3,2,0


=


0
0
0
1
2
6

 .

By solving this system, we obtain

c(6)
1,1,0 =

2
9

, c(6)
1,2,0 = 0, c(6)

2,1,0 = −1
4

,

c(6)
2,2,0 = −1

4
, c(6)

3,1,0 =
1

36
, c(6)

3,2,0 = − 1
12

.

Thus, the closed form solution for the function t(q1,a,q0)
0 (n) is

t(q1,a,q0)
0 (n) =

2
9
· 2n − 1

4
− 1

4
· n +

1
36
· (−1)n − 1

12
· n · (−1)n.

Now, we shall compute the closed form solution for U(q1,a,q0)
0 (n). From the initial conditions,

we have
U0 = (0, 0, 0, 0, 0, 0, 1, 1, 1)T .

From that we get

U1 =

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

 ·U0 = (0, 1, 0, 0, 1, 0, 2, 1, 2)T ,

U2 =

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

2

·U0 = (1, 3, 0, 1, 2, 0, 3, 2, 4)T ,

U3 =

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

3

·U0 = (3, 7, 0, 2, 4, 0, 6, 3, 8)T ,

U4 =

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

4

·U0 = (7, 15, 0, 4, 8, 0, 11, 6, 16)T ,

U5 =

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

5

·U0 = (15, 30, 0, 8, 15, 0, 22, 11, 32)T ,

U6 =

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

6

·U0 = (30, 60, 0, 15, 30, 0, 43, 22, 64)T ,
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U7 =

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

7

·U0 = (60, 118, 0, 30, 58, 0, 86, 43, 128)T ,

U8 =

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

8

·U0 = (118, 234, 0, 58, 116, 0, 171, 86, 256)T .

Again,

∗ =

 0 0 0
1 0 0
0 0 0

 .

Thus, for the constants to be determined, the following system of linear equations holds:



1 0 1 0 0 0 0 1 0
2 2 1 1 1 1 1 −1 −1
4 8 1 2 4 8 16 1 2
8 24 1 3 9 27 81 −1 −3

16 64 1 4 16 64 256 1 4
32 160 1 5 25 125 625 −1 −5
64 384 1 6 36 216 1296 1 6

128 896 1 7 49 343 2401 −1 −7
256 2048 1 8 64 512 4096 1 8


·



c(7)
1,1,0

c(7)
1,2,0

c(7)
2,1,0

c(7)
2,2,0

c(7)
2,3,0

c(7)
2,4,0

c(7)
2,5,0

c(7)
3,1,0

c(7)
3,2,0



=



0
0
1
3
7
15
30
60

118


.

By solving this system, we obtain

c(7)
1,1,0 =

4
9

, c(7)
1,2,0 = 0, c(7)

2,1,0 = − 9
16

,

c(7)
2,2,0 = −3

8
, c(7)

2,3,0 =
1
8

, c(7)
2,4,0 = 0,

c(7)
2,5,0 = 0, c(7)

3,1,0 =
17

144
, c(7)

3,2,0 = − 1
24

.

Thus, the closed form solution for the function U(q1,a,q0)
0 (n) is

U(q1,a,q0)
0 (n) =

4
9
· 2n − 9

16
− 3

8
· n +

1
8
· n2 +

17
144
· (−1)n − 1

24
· n · (−1)n.

Next, we shall compute the closed form solution for u(q1,a,q0)
0 (n). From the initial conditions,

we have
u0 = (0, 0, 0, 0, 0, 0, 0, 0, 1)T .

From that we obtain

u1 =

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

 · u0 = (0, 0, 0, 0, 0, 0, 1, 0, 2)T ,

u2 =

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

2

· u0 = (0, 1, 0, 0, 1, 0, 2, 1, 4)T ,

u3 =

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

3

· u0 = (1, 3, 0, 1, 2, 0, 5, 2, 8)T ,
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u4 =

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

4

· u0 = (3, 9, 0, 2, 6, 0, 10, 5, 16)T ,

u5 =

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

5

· u0 = (9, 21, 0, 6, 12, 0, 21, 10, 32)T ,

u6 =

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

6

· u0 = (21, 48, 0, 12, 27, 0, 42, 21, 64)T ,

u7 =

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

7

· u0 = (48, 102, 0, 27, 54, 0, 85, 42, 128)T ,

u8 =

 Im ∆ ∗
0 ∆ ∗
0 0 ∆

8

· u0 = (102, 214, 0, 54, 112, 0, 170, 85, 256)T .

Again,

∗ =

 0 0 0
1 0 0
0 0 0

 .

Thus, for the constants to be determined, the following system of linear equations holds:



1 0 1 0 0 0 0 1 0
2 2 1 1 1 1 1 −1 −1
4 8 1 2 4 8 16 1 2
8 24 1 3 9 27 81 −1 −3

16 64 1 4 16 64 256 1 4
32 160 1 5 25 125 625 −1 −5
64 384 1 6 36 216 1296 1 6

128 896 1 7 49 343 2401 −1 −7
256 2048 1 8 64 512 4096 1 8


·



c(8)
1,1,0

c(8)
1,2,0

c(8)
2,1,0

c(8)
2,2,0

c(8)
2,3,0

c(8)
2,4,0

c(8)
2,5,0

c(8)
3,1,0

c(8)
3,2,0



=



0
0
0
1
3
9
21
48

102


.

By solving this system, we get

c(8)
1,1,0 =

4
9

, c(8)
1,2,0 = 0, c(8)

2,1,0 = − 7
16

,

c(8)
2,2,0 = −3

8
, c(8)

2,3,0 = −1
8

, c(8)
2,4,0 = 0,

c(8)
2,5,0 = 0, c(8)

3,1,0 = − 1
144

, c(8)
3,2,0 = − 1

24
.

The closed form solution for the function u(q1,a,q0)
0 (n) therefore is

u(q1,a,q0)
0 (n) =

4
9
· 2n − 7

16
− 3

8
· n− 1

8
· n2 − 1

144
· (−1)n − 1

24
· n · (−1)n.

Finally, we shall find the closed form solutions for functions counting the number of uses of
the state q0. One possibility how to achieve this goal is to find the unknown constant coefficients
in exactly the same way as in the previous cases. However, from Theorem 2.1.11, we know the
strong relation between functions counting the number of uses of states, and functions counting
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the number of uses of transitions. That is, according to Theorem 2.1.11, we directly obtain the
following equations for unknown constant coefficients:

c(9)
1,1,0 =c(1)

1,1,0 + c(5)
1,1,0, c(10)

1,1,0 =c(2)
1,1,0 + c(6)

1,1,0, c(11)
1,1,0 =c(3)

1,1,0 + c(7)
1,1,0, c(12)

1,1,0 =c(4)
1,1,0 + c(8)

1,1,0,

c(9)
1,2,0 = c(5)

1,2,0, c(10)
1,2,0 = c(6)

1,2,0, c(11)
1,2,0 = c(7)

1,2,0, c(12)
1,2,0 = c(8)

1,2,0,

c(9)
2,1,0 =c(1)

2,1,0 + c(5)
2,1,0, c(10)

2,1,0 =c(2)
2,1,0 + c(6)

2,1,0, c(11)
2,1,0 =c(3)

2,1,0 + c(7)
2,1,0, c(12)

2,1,0 =c(4)
2,1,0 + c(8)

2,1,0,

c(9)
2,2,0 = c(5)

2,2,0, c(10)
2,2,0 = c(6)

2,2,0, c(11)
2,2,0 =c(3)

2,2,0 + c(7)
2,2,0, c(12)

2,2,0 =c(4)
2,2,0 + c(8)

2,2,0,

c(11)
2,3,0 =c(3)

2,3,0 + c(7)
2,3,0, c(12)

2,3,0 =c(4)
2,3,0 + c(8)

2,3,0,

c(11)
2,4,0 =c(3)

2,4,0 + c(7)
2,4,0, c(12)

2,4,0 =c(4)
2,4,0 + c(8)

2,4,0,

c(11)
2,5,0 = c(7)

2,5,0, c(12)
2,5,0 = c(8)

2,5,0,

c(9)
3,1,0 =c(1)

3,1,0 + c(5)
3,1,0, c(10)

3,1,0 =c(2)
3,1,0 + c(6)

3,1,0, c(11)
3,1,0 =c(3)

3,1,0 + c(7)
3,1,0, c(12)

3,1,0 =c(4)
3,1,0 + c(8)

3,1,0,

c(9)
3,2,0 = c(5)

3,2,0, c(10)
3,2,0 = c(6)

3,2,0, c(11)
3,2,0 = c(7)

3,2,0, c(12)
3,2,0 = c(8)

3,2,0.

Thus, for the functions Sq0
0 (n), sq0

0 (n), Vq0
0 (n), and vq0

0 (n), we have the following closed form
solutions:

Sq0
0 (n) =

8
9
· 2n +

1
4
· n +

1
9
· (−1)n − 1

12
· n · (−1)n,

sq0
0 (n) =

8
9
· 2n − 3

4
− 1

4
· n− 5

36
· (−1)n − 1

12
· n · (−1)n,

Vq0
0 (n) =

16
9
· 2n − 13

16
+

1
8
· n +

1
8
· n2 +

5
144
· (−1)n − 1

24
· n · (−1)n,

vq0
0 (n) =

16
9
· 2n − 27

16
− 7

8
· n− 1

8
· n2 − 13

144
· (−1)n − 1

24
· n · (−1)n.

2.2 Strict S-Equiloadedness

In this section, we shall study strictly S-equiloaded DFA and DFAε, for S = C and S = A. Since
acceptance by empty memory does not make sense for deterministic finite automata, we shall
not study the case S = E in this section.

Although, as we shall see, the families of strictly C-equiloaded and strictly A-equiloaded de-
terministic finite automata differ, we shall observe that these differences are only minor, and
that the corresponding families of languages are in fact the same, both for the case of state-
equiloadedness and for the case of transition-equiloadedness.

In Subsection 2.2.1, we shall start our study of strictly S-equiloaded deterministic finite au-
tomata by proving characterizations of the families of strictly state-S-equiloaded and strictly
transition-S-equiloaded DFA and DFAε, for S = C and S = A. Next, in Subsection 2.2.2, we
shall study the relations between the corresponding families of languages. Finally, in Subsection
2.2.3, we shall examine the closure properties of these families of languages.

Some families of strictly S-equiloaded deterministic finite automata and corresponding fam-
ilies of languages have already been studied. In [26] and [27], the family of strictly state-A-
equiloaded DFA and the corresponding family of languages LK−SEQ−DFA(A) have been stud-
ied. Moreover, in [25], we have studied the family of strictly transition-A-equiloaded DFA and
the corresponding family Lδ−SEQ−DFA(A). All of the results on these families of automata and
languages, presented in this section, have been already obtained in these earlier works. How-
ever, strict C-equiloadedness for DFA and DFAε, as well as strict S-equiloadedness for DFAε
have not been studied yet. Thus, all of the results on the corresponding families of automata and
languages, presented in this section, are new.



Deterministic Finite Automata 39

2.2.1 Characterizations of Strict S-Equiloadedness for S = C and S = A
In this subsection, we shall prove the characterizations of families of strictly state-S-equiloaded
and strictly transition-S-equiloaded DFA and DFAε, for S = A and S = C. The characterization
of strictly state-A-equiloaded DFA is due to [26] and [27], and we have proved the characteri-
zation of strictly transition-A-equiloaded DFA in [25]. The remaining characterizations are new.
However, we shall state all of these characterizations in two theorems.

Theorem 2.2.1 Let A = (K, Σ, δ, q0, F) be a DFAε.

a) A is strictly state-C-equiloaded, if and only if its graphical representation either does not
contain any reachable directed cycle, or is a directed multicycle through all states.

b) A is strictly state-A-equiloaded, if and only if its graphical representation either does not
contain any reachable directed cycle from which some accepting state is reachable,6 or is a
directed multicycle through all states.

Proof. Let us first prove the left-to-right implication. Let the automaton A be strictly state-C-
equiloaded, i.e., let the inequality

|#[p, γ]− #[q, γ]| ≤ k (2.4)

hold for some k in N, every computation path γ in Comp(A) and every two states p, q in K. For
the purpose of contradiction, let us suppose that the graphical representation contains a reachable
directed cycle, and at the same time, is not a directed multicycle through all states.

This clearly implies that states p, q in K exist, such that for some words u, v in Σ∗,

(q0, uv) `∗ (p, v) `+ (p, ε),

where the state q is not used in the computation

(p, v) `+ (p, ε)

and is used at most once in the computation

(q0, uv) `∗ (p, v).

Now, let us consider the word uvk+2 and let us denote the corresponding computation path by
γ. Then it is clear that

|#[p, γ]− #[q, γ]| ≥ k + 1,

which contradicts (2.4).
Similarly, let the automaton A be strictly state-A-equiloaded, i.e., let the inequality (2.4) hold

for some k in N, every accepting computation path γ in Acc(A) and every two states p, q in K.
Let us suppose that the graphical representation contains a reachable directed cycle from which
some accepting state is reachable, and at the same time, is not a directed multicycle through all
states.

This implies that for some states p, q in K, accepting state qF in F and words u, v, w in Σ∗,

(q0, uvw) `∗ (p, vw) `+ (p, w) `∗ (qF, ε),

where the state q is not used in the computation

(p, vw) `+ (p, w)

6This means that the accepted language L(A) is finite, and at the same time, there is no state q in K, such that (q, w) `+

(q, w) `∗ (qF , ε) for some w in Σ∗ and qF in F (i.e., there is no ε-cycle from which an accepting state is reachable). Thus,
for DFA, this condition is equivalent to the finiteness of the accepted language L(A).
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and is used at most once in the computations

(q0, uvw) `∗ (p, vw)

and
(p, w) `∗ (qF, ε).

Let us consider the word uvk+3w, and let us denote the corresponding accepting computation
path by γ. Then,

|#[p, γ]− #[q, γ]| ≥ k + 1,

which contradicts (2.4) that is supposed to hold for γ.
Now, let us prove the right-to-left implication. If the graphical representation of the automa-

ton A does not contain any reachable directed cycle, then each state of the automaton A can be
used at most once in a given computation path. That is,

0 ≤ #[q, γ] ≤ 1

for all computation paths γ and each state q in K. Thus, for every two states p, q in K and all
computation paths γ,

|#[p, γ]− #[q, γ]| ≤ 1,

and the automaton A is strictly state-C-equiloaded.
Now, let us suppose that the graphical representation of the automaton A is a directed mul-

ticycle through all states. Then it can be clearly seen that for every two states p, q in K and all
computation paths γ,

|#[p, γ]− #[q, γ]| ≤ 1.

Thus, the automaton A is strictly state-C-equiloaded.
Similarly, if the graphical representation of the automaton A does not contain any reachable

directed cycle from which some accepting state is reachable, then each state of the automaton A
can be used at most once in a given accepting computation path. That is,

0 ≤ #[q, γ] ≤ 1

for all accepting computation paths γ and each state q in K. Thus, for each pair of states p, q in K
and all accepting computation paths γ,

|#[p, γ]− #[q, γ]| ≤ 1,

and the automaton A is strictly state-A-equiloaded.
Now, let us suppose that the graphical representation of the automaton A is a directed mul-

ticycle through all states. Then, we have already proved that the automaton A is strictly state-C-
equiloaded, and thus, clearly, also strictly state-A-equiloaded. �

Theorem 2.2.2 Let A = (K, Σ, δ, q0, F) be a DFAε with connected graphical representation.7

a) A is strictly transition-C-equiloaded, if and only if its graphical representation either does
not contain any reachable directed cycle, or is a directed cycle through all states.

b) A is strictly transition-A-equiloaded, if and only if its graphical representation either does
not contain any reachable directed cycle from which some accepting state is reachable, or is
a directed cycle through all states.

7This is only a minor technical assumption. If this assumption had been omitted, the rest of the characterization
would have not been true for automata that, aside a connected component containing the initial state, have some number
of other connected components, each consisting of one isolated state. However, to every deterministic finite automaton
it is easy to find an equivalent automaton with connected graphical representation – it suffices to delete all connected
components not containing the initial state.
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Proof. The proof of this theorem will be analogous to the proof of Theorem 2.2.1. First, let us
prove the left-to-right implication. Let the automaton A be strictly transition-C-equiloaded, i.e.,
let the inequality

|#[e, γ]− #[ f , γ]| ≤ k (2.5)

hold for some k in N, every computation path γ in Comp(A) and each pair of transitions e, f in
D. For the purpose of contradiction, let us suppose that the graphical representation contains a
reachable directed cycle, and at the same time, is not a directed cycle through all states.

As in the proof of Theorem 2.2.1, this implies that a computation path γ in Comp(A) exists,
such that some transition f in D is used at most once in γ and some other transition e in D is used
at least k + 2 times in γ. That yields an obvious contradiction to (2.5).

For the case of A being strictly transition-A-equiloaded, the inequality (2.5) is required to hold
for some k in N, every accepting computation path γ in Acc(A) and each pair of transitions e, f
in D. Let us suppose that the graphical representation contains a reachable directed cycle from
which some accepting state is reachable, and at the same time, is not a directed cycle through all
states.

Again, similarly as in the proof of Theorem 2.2.1, this implies that an accepting computation
path γ in Acc(A) exists, such that some transition f in D is used at most twice in γ and some
other transition e in D is used at least k + 3 times in γ. Again, this contradicts (2.5) that is required
to hold for γ.

Now, let us prove the right-to-left implication. If the graphical representation of the automa-
ton A does not contain any reachable directed cycle, then each transition of the automaton A can
be used at most once in a given computation path in Comp(A). That is,

0 ≤ #[e, γ] ≤ 1,

for each transition e in D and every computation path γ in Comp(A). That is,

|#[e, γ]− #[ f , γ]| ≤ 1

for each pair of transitions e, f in D and every computation path γ in Comp(A). In other words,
the automaton A is strictly transition-C-equiloaded.

If the graphical representation of the automaton A does not contain any reachable directed
cycle from which some accepting state is reachable, then the reasoning above applies to all ac-
cepting computation paths γ in Acc(A), and the automaton A is strictly transition-A-equiloaded.

Finally, if the graphical representation of the automaton A is a directed cycle through all states,
it is obvious that the inequality

|#[e, γ]− #[ f , γ]| ≤ 1

holds for every two transitions e, f in D and all computation paths γ in Comp(A) (and thus
also all accepting computation paths γ in Acc(A)), and the automaton A is strictly transition-C-
equiloaded, as well as strictly transition-A-equiloaded. We have proved both implications for
both claims. Thus, the theorem is proved. �

Finally in this subsection, we shall state two theorems and one corollary concerning strictly S-
equiloaded DFA (i.e., deterministic finite automata without ε-transitions) that have been proved
for S = A in [26], [27] (Theorem 2.2.3), and [25] (Theorem 2.2.4 and Corollary 2.2.5). However,
since the proof for the case S = C is analogous to the proof for the case S = A, we shall omit
proofs of these statements.

Theorem 2.2.3 Let L in R be a regular language, and S be in {C,A}. The language L is a strictly
state-S-equiloaded DFA-language, if and only if the minimal DFA accepting L is strictly state-S-
equiloaded.
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Theorem 2.2.4 Let L in R, L ⊆ Σ∗, be a regular language, and S be in {C,A}. The language L is
a strictly transition-S-equiloaded DFA-language, if and only if L is finite, or if

L = {u1u2 . . . unv}∗{u1, u1u2, . . . , u1u2 . . . un}

for some fixed n in N, u1, u2, . . . , un in Σ∗ and v in Σ+.

Corollary 2.2.5 Let S be in {C,A}, and L in Lδ−SEQ−DFA(S) be an infinite language. Let u and
v be words in L, such that |u| ≤ |v|. Then u is a prefix of v.

2.2.2 Relations between the Families of Strictly S-Equiloaded Languages

In this subsection, we shall prove several relations between the families of strictly S-equiloaded
DFA-languages and DFAε-languages. We shall observe that some of these families are in fact the
same.

Theorem 2.2.6 The following identities hold:

1. LK−SEQ−DFA(C) = LK−SEQ−DFA(A) =: LK−SEQ−DFA,

2. LK−SEQ−DFAε(C) = LK−SEQ−DFAε(A) =: LK−SEQ−DFAε,

3. Lδ−SEQ−DFA(C) = Lδ−SEQ−DFA(A) =: Lδ−SEQ−DFA,

4. Lδ−SEQ−DFAε(C) = Lδ−SEQ−DFAε(A) =: Lδ−SEQ−DFAε.

Proof. The theorem is a direct consequence of Theorem 2.2.1, Theorem 2.2.2, and the obvious fact
that to each deterministic finite automaton A (with or without ε-transitions) without a reachable
directed cycle in the graphical representation, from which some accepting state is reachable, an
equivalent deterministic finite automaton A′ exists, such that there is not any reachable directed
cycle in its graphical representation: it clearly suffices to delete all states of the automaton A that
belong to some reachable directed cycle – since there is not any accepting state reachable from
these states in A, the resulting automaton A′ would be clearly equivalent to A. �

Thus, we have proved that, in terms of families of languages, strict C-equiloadedness and
strict A-equiloadedness are equivalent for DFA and DFAε. However, let us note that these con-
cepts are not equivalent in terms of families of automata. It is obviously possible to construct a
deterministic finite automaton that is strictly A-equiloaded, but not strictly C-equiloaded (both
for states and for transitions). The family of strictly A-equiloaded DFA (DFAε) is a proper super-
set of the family of strictly C-equiloaded DFA (DFAε).

From this observation, it is also possible to conclude that, in terms of families of languages,
strict C-equiloadedness and strictA-equiloadedness are not equivalent for general families of au-
tomata that can be viewed as a special case of ADA. It suffices to consider a family x of automata
consisting of a single deterministic finite automaton that is strictly state-A-equiloaded (strictly
transition-A-equiloaded), but not strictly state-C-equiloaded (strictly transition-C-equiloaded).
Then, the family of languages LK−SEQ−x(A) (Lδ−SEQ−x(A)) consists of one single regular lan-
guage, while the family LK−SEQ−x(C) (Lδ−SEQ−x(C)) is empty.

Remark 2.2.7 Henceforth, in the context of Theorem 2.2.6, we shall call strictly state-S-equiload-
ed (strictly transition-S-equiloaded) DFA-languages (DFAε-languages), for S = A or S = C,
strictly state-equiloaded (strictly transition-equiloaded) DFA-languages (DFAε-languages).

Theorem 2.2.8 The following strict inclusions hold:

1. LK−SEQ−DFA ( LK−SEQ−DFAε,

2. Lδ−SEQ−DFA ( Lδ−SEQ−DFAε.
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Proof. The claims LK−SEQ−DFA ⊆ LK−SEQ−DFAε and Lδ−SEQ−DFA ⊆ Lδ−SEQ−DFAε are obvi-
ous, since every DFA is also a DFAε.

We shall prove that these inclusions are proper. Let us consider the language L = {a}+. We
shall construct a DFAε A = (K, Σ, δ, q0, F), such that L(A) = L. Let us define the automaton A as
follows: K = {q0, q1}, Σ = {a}, F = {q1}, and

δ(q0, a) = q1,
δ(q1, ε) = q0.

q0 q1

a

ε

Figure 2.2: The deterministic finite automaton A with ε-transitions, accepting the language L = {a}+.

The automaton A is strictly state-S-equiloaded for both S = C and S = A (however, the equi-
loadedness of the automaton for one of these S would suffice), since its graphical representation
is a directed multicycle through all states. Moreover, the graphical representation of the automa-
ton A is in fact a directed cycle, and thus the automaton is also strictly transition-S-equiloaded
for S in {C,A}. The claim L(A) = L is considered to be obvious. Thus, L is both in LK−SEQ−DFAε

and in Lδ−SEQ−DFAε.
However, by applying Theorem 2.2.3, it is easy to prove that L is neither in LK−SEQ−DFA, nor

in Lδ−SEQ−DFA (the minimal DFA accepting L does not satisfy any of the presented characteriza-
tions of strict S-equiloadedness). The theorem is proved. �

Theorem 2.2.9 The following strict inclusions hold:

1. Lδ−SEQ−DFA ( LK−SEQ−DFA,

2. Lδ−SEQ−DFAε ( LK−SEQ−DFAε.

Proof. The correctness of the inclusions is obvious, since every directed cycle is at the same time
a directed multicycle (and thus, by the characterizations given in Theorem 2.2.1 and in Theorem
2.2.2, every strictly transition-S-equiloaded DFA(ε) is strictly state-S-equiloaded as well).

Let us prove that these inclusions are proper and consider the language L = {a, b}∗. It is
obvious that L is in LK−SEQ−DFA (since it can be accepted by a DFA consisting of one single state),
and thus, by Theorem 2.2.8, also in LK−SEQ−DFA. We shall prove that L is not in Lδ−SEQ−DFAε

(and, by Theorem 2.2.8, neither in Lδ−SEQ−DFA).
For the purpose of contradiction, let us suppose that a strictly transition-A-equiloaded DFAε

A = (K, Σ, δ, q0, F) exists, such that L(A) = L. Since the language L is infinite, the number of
accepting computation paths of the automaton A has to be infinite as well. Thus, according to
the characterization from Theorem 2.2.2, the graphical representation of the automaton A is a
directed cycle through all states. Moreover, F is a nonempty set.

Let q in K be the first state after q0 in the direction of the directed cycle, such that there is a
transition on a character from Σ (that is, not an ε-transition), leading from q (such a state has to
exist, since the language L(A) is nonempty). Since the graphical representation of the automaton
A is a directed cycle through all states, there has to be exactly one transition leading from q. But if
this transition is on a, then every word from L(A) has to begin with a, and if this transition is on
b, then every word from L(A) has to begin with b. In both cases, this is a contradiction with the
assumption L(A) = L. �
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2.2.3 Closure Properties

In this subsection, we shall examine the closure properties of the families of strictly S-equiloaded
DFA-languages and DFAε-languages. We shall prove only the closure properties that have not
been examined yet. The proofs of the closure properties that have already been examined, can be
found in [26], [27], and [25].

Closure Properties of the Family LK−SEQ−DFA

Closure properties of the family of languages LK−SEQ−DFA(A) = LK−SEQ−DFA have been proved
in [26] and [27]. Thus, we shall omit the proof of the following theorem.

Theorem 2.2.10 The family LK−SEQ−DFA is closed under intersection and not closed under con-
catenation, union, complementation, Kleene star, Kleene plus, reversal, homomorphism, and
inverse homomorphism.

Closure Properties of the Family LK−SEQ−DFAε

Closure properties of the family LK−SEQ−DFAε have not been studied yet. Thus, we shall include
also proofs of the following theorems.

Theorem 2.2.11 The family LK−SEQ−DFAε is not closed under concatenation.

Proof. Let us consider languages L1 = {a}∗ and L2 = {b}. For both of these languages, it
is clearly possible to construct a strictly state-A-equiloaded automaton accepting that language,
and thus, both of these languages are in LK−SEQ−DFAε. Now, let us consider the language

L1 · L2 = {a}∗ · {b} = {aib | i ∈N}.

We shall prove that L1 · L2 is not in LK−SEQ−DFAε. For the purpose of contradiction, let us sup-
pose that a strictly state-A-equiloaded DFAε A exists, such that L(A) = L1 · L2. The language
L1 · L2 is infinite and hence, the set Acc(A) is infinite. Thus, by Theorem 2.2.1, the graphical
representation of the automaton A is a directed multicycle through all states. Thus, the graph-
ical representation of the automaton A is strongly connected. Moreover, the automaton A has
to have at least one accepting state. Since there are words in the language L1 · L2 containing the
character b, the automaton A has to have at least one transition e on the character b. Then, the
strong connectedness of the graphical representation together with the existence of at least one
accepting state implies that an accepting computation path of the automaton A exists, such that
the transition e is used at least twice in this computation. That is, the language L1 · L2 contains
at least one word with at least two occurrences of the character b, and this clearly contradicts the
assumption L(A) = L1 · L2. �

Theorem 2.2.12 The family LK−SEQ−DFAε is not closed under union.

Proof. Again, let us consider languages L1 = {a}∗ and L2 = {b}, both in LK−SEQ−DFAε. We
shall prove that the language

L1 ∪ L2 = {a}∗ ∪ {b}

is not in LK−SEQ−DFAε. By contradiction. Let us suppose that a strictly state-A-equiloaded DFAε
A exists, such that L(A) = L1 ∪ L2. Since the language L1 ∪ L2 is infinite, it follows from Theorem
2.2.1 that the graphical representation of the automaton A is a directed multicycle through all
states, and thus, is strongly connected. Moreover, the automaton A has at least one transition
e on the character b, since otherwise it could not accept the language L1 ∪ L2. Further, since
the automaton A accepts a nonempty language, it has at least one accepting state. From these
observations, it follows that at least one accepting computation path γ of the automaton A exists,
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such that the transition e is used at least twice in γ. Thus, obviously, L(A) 6= L1 ∪ L2 and that is
a contradiction. �

To prove that the family LK−SEQ−DFAε is closed under intersection, we shall need the follow-
ing lemma.

Lemma 2.2.13 Let L be an infinite language in LK−SEQ−DFAε. Then a strictly state-A-equiloaded
DFAε A = (K, Σ, δ, q0, F) exists, in the following normal form:

(i) The automaton A has exactly one ε-transition e.

(ii) The transition e leads to the state q0.

Proof. Since L is an infinite language in LK−SEQ−DFAε, it follows from Theorem 2.2.1 that a
DFAε A′ = (K′, Σ′, δ′, q′0, F′) accepting L exists, such that its graphical representation is a directed
multicycle through all states. We shall prove by induction on m = |K′| that the automaton A′ can
be transformed to an equivalent automaton A satisfying (i) and (ii).

1. Let m = 1. From the definition of DFAε, the transitions leading from (and to) the only state
q′0 are either all on some character in Σ, or there is only one ε-transition. If the latter was
true, then the language L would be finite, and we would get a contradiction. Thus, there is
not any ε-transition in A.
Moreover, the state q′0 has to be accepting, since otherwise the language L would be empty,
and thus finite. Thus, it is obviously possible to define the automaton A = (K, Σ, δ, q0, F) as
follows: K = {q0, q1}, Σ = Σ′, F = {q0}, and

δ(q0, c) = q1, ∀c ∈ Σ : δ′(q′0, c) = q′0,
δ(q1, ε) = q0.

It is clear that L(A) = L(A′) = L, and that the conditions (i) and (ii) are satisfied by A.

2. Let the property hold for all m ≤ k for some k in N. We shall show that it holds also for
m = k + 1.
If the automaton A′ does not have any ε-transition, then it can be inserted in a manner
similar to basis of the induction. More formally, it is possible to define the automaton
A = (K, Σ, δ, q0, F) as follows: K = K′ ∪ {q}, where q is a new state, Σ = Σ′, q0 = q′0, F = F′,
and

δ(p, c) = δ′(p, c), ∀p ∈ K′∀c ∈ Σ : δ′(p, c) = r 6= q′0,

δ(p, c) = q, ∀p ∈ K′∀c ∈ Σ : δ′(p, c) = q′0,

δ(q, ε) = q′0.

It is obvious that L(A) = L(A′) = L, and that the conditions (i) and (ii) are satisfied by A.
Now, since the graphical representation of the automaton A′ has a form of a directed mul-
ticycle through all states, only two possibilities are left. The first is that the conditions (i)
and (ii) are satisfied. In that case, the induction step is proved. The second possibility is
that there is an ε-transition e = (p, ε, q) that does not lead to q0. Then, let us define a DFAε
A′′ = (K′′, Σ′′, δ′′, q′′0 , F′′) as follows: K′′ = K′ − {q}, Σ′′ = Σ′,

δ′′(r, c) = δ′(r, c), ∀r ∈ K′′ − {p}∀c ∈ Σ′′ ∪ {ε},
δ′′(p, c) = δ′(q, c), ∀c ∈ Σ′′ ∪ {ε},

q′′0 = q′0, and finally,

F′′ =
{

(F′ − {q}) ∪ {p} if q is in F′

F′ − {q} if q is not in F′ .

Clearly, L(A′′) = L(A′). Moreover, |K′′| ≤ k, and thus, the induction hypothesis applies.
The induction step is therefore proved.
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Thus, the lemma is proved. However, let us note that in general, it is not possible to get com-
pletely rid of ε-transitions while preserving strict state-equiloadedness: let w in Σ+ be a word,
such that

(q0, w) `∗ (q0, ε).

Now, if w is in L and, at the same time, ε is not in L, then the ε-transition leading to q0 is necessary.
After all, this is the reason for which LK−SEQ−DFAε is a proper superset of LK−SEQ−DFA. �

Theorem 2.2.14 The family LK−SEQ−DFAε is closed under intersection.

Proof. Let L1, L2 be languages in LK−SEQ−DFAε. If at least one of these languages is finite, then
also their intersection L1 ∩ L2 is finite, and thus in LK−SEQ−DFAε. The same is true, if L1, L2 are
infinite languages with finite intersection.

Now, let both of the languages L1, L2 be infinite, and let also their intersection L1 ∩ L2 be
infinite. Let A1 = (K1, Σ1, δ1, p0, F1) and A2 = (K2, Σ2, δ2, r0, F2) be strictly state-A-equiloaded
DFAε in the normal form from Lemma 2.2.13, such that L(A1) = L1 and L(A2) = L2.

Let us denote the states of the automaton A1 in the direction of the multicycle by p0, p1, . . . , pm,
where m is in N. Similarly, let us denote the states of the automaton A2 in the direction of the
multicycle by r0, r1, . . . , rn, where n is in N. Without loss of generality, let pm be in F1 whenever
p0 is in F1 and rn be in F2 whenever r0 is in F2. Let k be the least common multiple of the numbers
m and n.

We shall define a DFAε A = (K, Σ, δ, q0, F) accepting L1 ∩ L2 as follows: K = {q0, q1, . . . , qk},
Σ = Σ1 ∩ Σ2. The set of accepting states F shall be defined by

q0 ∈ F ⇐⇒ p0 ∈ F1 ∧ r0 ∈ F2,

and for i in {1, 2, . . . , k},

qi ∈ F ⇐⇒ p[(i−1) mod m]+1 ∈ F1 ∧ r[(i−1) mod n]+1 ∈ F2.

Finally, the transition function δ shall be defined for qi with i in {0, 1, . . . , k− 1} by

δ(qi, c) = qi+1 ⇐⇒ δ1(pi mod m) = p[i mod m]+1 ∧ δ2(ri mod n) = r[i mod n]+1

and for qk as
δ(qk, ε) = q0.

Clearly, L(A) = L1 ∩ L2. Since the intersection L1 ∩ L2 is infinite, the graphical representation
of the automaton A is a directed multicycle through all states. Thus, the automaton A is strictly
state-A-equiloaded, and this implies that L(A) = L1 ∩ L2 is in LK−SEQ−DFAε. �

Theorem 2.2.15 The family LK−SEQ−DFAε is not closed under complementation.

Proof. Let us consider a language L = {ε, a}. The language L is finite, and thus in LK−SEQ−DFAε.
We shall prove that LC = {ak | k ≥ 2} is not in LK−SEQ−DFAε.

For the purpose of contradiction, let us suppose that LC is in LK−SEQ−DFAε. Then, a strictly
state-A-equiloaded DFAε A = (K, Σ, δ, q0, F) exists, such that L(A) = LC. Since the language LC

is infinite, the graphical representation of the automaton A is a directed multicycle through all
states and A has at least one accepting state.

We can clearly assume that Σ = {a}. This implies that we can without loss of generality
suppose that the graphical representation of the automaton A is a directed cycle through all states.
Let w = aj be a shortest word in Σ∗, such that

(q0, w) `∗ (q0, ε).

Clearly, j ≥ 2, since otherwise it would be possible to reach all states of the automaton A by
reading ε or a, and that contradicts the assumption that A has at least one accepting state.

Obviously, there is not any accepting state q, such that (q0, a) `∗ (q, ε). This implies that there
is not any accepting state p, such that (q0, aj+1) `∗ (p, ε). Thus, aj+1 is not in L(A). However,
since j ≥ 2, this contradicts the assumption that L(A) = LC. �
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Theorem 2.2.16 The family LK−SEQ−DFAε is not closed under closure.

Proof. Let us consider a language L = {aa, bb}. Since the language L is finite, L is a member of
the family LK−SEQ−DFAε. We shall prove that the language L∗ = {aa, bb}∗ is not in LK−SEQ−DFAε.

By contradiction. Let us suppose that L∗ is in LK−SEQ−DFAε. Then, a strictly state-A-equi-
loaded DFAε A = (K, Σ, δ, q0, F) exists, such that L(A) = L. Since the language L∗ is infinite, the
graphical representation of the automaton A is a directed multicycle through all states and the
automaton A has at least one accepting state. Moreover, the automaton A has to have at least one
state p in K, such that a transition (p, b, p′) on the character b exists in D – otherwise, it would be
L(A) 6= L∗.

Further, we can observe that if a transition e on a leads between some two states, then also
some transition on b leads between these two states, and vice versa. Otherwise, for some n0 in
N, all words in L(A) of length n ≥ n0 would have at least one occurrence of the character a (resp.
b). However, this contradicts L(A) = L∗. Thus, we have proved that each state of the automaton
A can be reached from each other state without reading the character a, and also, by some in
general different sequence of transitions, without reading the character b.

We shall prove that nonnegative integers i, j in N exist, such that aibaj is in L(A), and thus,
L(A) 6= L∗. Since each state of the automaton A is reachable from each other state without
reading the character b, a nonnegative integer i in N exists, such that

(q0, ai) `∗ (p, ε),

and a nonnegative integer j in N exists, such that

(p′, aj) `∗ (q, ε),

where q in F is an arbitrary accepting state. Thus,

(q0, aibaj) `∗ (p, baj) `∗ (p′, aj) `∗ (q, ε),

i.e., aibaj is in L(A). This implies L(A) 6= L∗, and that is a contradiction. �

Theorem 2.2.17 The family LK−SEQ−DFAε is not closed under positive closure.

Proof. Exactly the same counterexample and exactly the same argumentation can be used, as in
the proof of Theorem 2.2.16. �

Theorem 2.2.18 The family LK−SEQ−DFAε is not closed under reversal.

Proof. Let us consider a language L = {ab}∗{ε, a}. Clearly, L is in LK−SEQ−DFAε. We shall prove
that LR is not in LK−SEQ−DFAε.

For the purpose of contradiction, let us suppose that LR is in LK−SEQ−DFAε. Then, a strictly
state-A-equiloaded DFAε A = (K, Σ, δ, q0, F) exists, such that L(A) = LR. Since the language LR

is infinite, the graphical representation of the automaton A is a directed multicycle through all
states. For the same reason, the set of accepting states F is nonempty.

Clearly, a state p in K exists, such that (q0, a) `∗ (p, ε). Further, a state q in K exists, such that
(q0, b) `∗ (q, ε). Since the language L(A) is infinite, at least one word w in Σ+ exists, such that
(q0, w) `∗ (q0, ε).

If the last character of the word w is a (that is, w = ua for some u in Σ∗), we obtain

(q0, uaa) `∗ (q0, a) `∗ (p, ε).

However, since an accepting state is reachable from each state of the automaton A, it follows that
a word in L(A) exists, such that uaa is its prefix. But that clearly contradicts L(A) = LR.

If the last character of the word w is b, it is possible to obtain a contradiction by a symmetrical
argumentation. �



48 2.2 Strict S-Equiloadedness

Theorem 2.2.19 The family LK−SEQ−DFAε is not closed under homomorphism.

Proof. Let us consider a language L = {a, c}∗. It can be easily observed that L is in LK−SEQ−DFAε.
Now, let us consider a homomorphism h : {a, c}∗ → {a, b, c}∗ defined by

h(a) = ab,
h(c) = c.

We shall prove that the language h(L) = {ab, c}∗ is not in LK−SEQ−DFAε.
By contradiction. Let the language h(L) be in LK−SEQ−DFAε. Then, a strictly state-A-equi-

loaded DFAε A = (K, Σ, δ, q0, F) exists, such that L(A) = h(L). Since h(L) is infinite, the graph-
ical representation of the automaton A is a directed multicycle through all states and the set of
accepting states F is nonempty.

We shall prove that at least one word w in L(A) exists, such that w is in {a, c}+ and #a(w) ≥ 1.
This would lead to a contradiction, since there clearly is not any such word in h(L).

The automaton A clearly has at least one transition on a, at least one transition on b, and at
least one transition on c – otherwise, it could not accept the language h(L). Moreover, if

(p, b) `∗ (q, ε)

for some p, q in K, then also
(p, a) `∗ (q, ε)

or
(p, c) `∗ (q, ε)

(since there is a word in h(L), that does not contain any occurrence of b). But this, together with
the obvious reachability of some transition on a, clearly implies that the automaton A accepts at
least one word w in {a, c}+, such that #a(w) ≥ 1. �

Theorem 2.2.20 The family LK−SEQ−DFAε is not closed under inverse homomorphism.

Proof. Let us consider a language L = {a}. Since the language L is finite, it belongs to the family
LK−SEQ−DFAε. Moreover, let us consider a homomorphism h : {a, b}∗ → {a, b}∗ defined by

h(a) = a,
h(b) = ε.

We shall prove that the language h−1(L) = {w ∈ {a, b}∗ | #a(w) = 1} is not in LK−SEQ−DFAε.
By contradiction. Let us suppose that h−1(L) is in LK−SEQ−DFAε. Then a strictly state-A-

equiloaded DFAε A = (K, Σ, δ, q0, F) exists, such that L(A) = h−1(L). Since the language h−1(L)
is infinite, the graphical representation of the automaton A is a directed multicycle through all
states, and thus, this graphical representation is strongly connected. Moreover, the automaton A
has at least one accepting state.

The automaton a has to have at least one transition on a, since otherwise it could not accept
the language h−1(L). However, the strong connectedness of the graphical representation of the
automaton A implies that an accepting computation path γ of the automaton A exists, such that
this transition on a is used at least twice in γ. Thus, a word w in L(A) exists, such that #a(w) ≥ 2,
and that is an obvious contradiction. �

Closure Properties of the Family Lδ−SEQ−DFA

We have proved the closure properties of the family Lδ−SEQ−DFA(A) = Lδ−SEQ−DFA already in
[25]. Thus, we shall omit the proof of the following theorem.

Theorem 2.2.21 The family Lδ−SEQ−DFA is closed under intersection and not closed under con-
catenation, union, complementation, Kleene star, Kleene plus, reversal, homomorphism, and
inverse homomorphism.
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Closure Properties of the Family Lδ−SEQ−DFAε

Now, we shall study the closure properties of the family Lδ−SEQ−DFAε. The closure properties of
this family have not been studied yet, so we shall include the proofs as well.

Theorem 2.2.22 The family Lδ−SEQ−DFAε is not closed under concatenation.

Proof. Let us consider languages L1 = {a}∗ and L2 = {b}. As can be easily seen, both L1 and
L2 are in Lδ−SEQ−DFAε. However, in the proof of Theorem 2.2.11, we have observed that their
concatenation, i.e., the language

L1 · L2 = {a}∗ · {b} = {aib | i ∈N},

is not in LK−SEQ−DFAε. Thus, by applying Theorem 2.2.9, we may also conclude that L1 · L2 is
not in Lδ−SEQ−DFAε. �

Theorem 2.2.23 The family Lδ−SEQ−DFAε is not closed under union.

Proof. Again, let us consider languages L1 = {a}∗ and L2 = {b}, both in Lδ−SEQ−DFAε. In
the proof of Theorem 2.2.12, it have been shown that their union L1 ∪ L2 is not in LK−SEQ−DFAε.
Thus, the language L1 ∪ L2 is also not in Lδ−SEQ−DFAε. �

Theorem 2.2.24 The family Lδ−SEQ−DFAε is closed under intersection.

Proof. Let L1, L2 be languages in Lδ−SEQ−DFAε. Then, by Theorem 2.2.9, they are also in
LK−SEQ−DFAε and by Theorem 2.2.14, also their intersection L1 ∩ L2 is in LK−SEQ−DFAε.

Now, if the intersection L1 ∩ L2 is finite, then it also is in Lδ−SEQ−DFAε, and the theorem is
proved. Thus, let us suppose that this intersection is infinite. Then, a DFAε A = (K, Σ, δ, q0, F)
exists, such that the graphical representation of the automaton A is a directed multicycle through
all states.

Since both L1 and L2 are infinite languages in Lδ−SEQ−DFAε, for each n in N there is at most
one word of length n in L1, and at most one word of length n in L2. Thus, there is at most one
word of length n in L1 ∩ L2. This implies that the graphical representation of the automaton A is
in fact a directed cycle, i.e., the language L1 ∩ L2 is in Lδ−SEQ−DFAε. �

Theorem 2.2.25 The family Lδ−SEQ−DFAε is not closed under complementation.

Proof. Let us consider a language L = {ε, a} that is clearly in Lδ−SEQ−DFAε. In the proof of
Theorem 2.2.15, we have observed that the language

LC = {ak | k ≥ 2}

is not in LK−SEQ−DFAε, and thus also not in Lδ−SEQ−DFAε. �

Theorem 2.2.26 The family Lδ−SEQ−DFAε is not closed under closure.

Proof. Let us consider a language L = {aa, bb}. This language is finite, and thus in Lδ−SEQ−DFAε.
However, in the proof of the Theorem 2.2.16, it was shown that the language L∗ = {aa, bb}∗ is
not in LK−SEQ−DFAε, and thus also not in Lδ−SEQ−DFAε. �

Theorem 2.2.27 The family Lδ−SEQ−DFAε is not closed under positive closure.

Proof. Exactly the same counterexample and an analogous argumentation can be used, as in the
proof of Theorem 2.2.26 (see also the proof of Theorem 2.2.17). �

Theorem 2.2.28 The family Lδ−SEQ−DFAε is not closed under reversal.
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Proof. Let us consider a language L = {ab}∗{ε, a}. Clearly, L is in Lδ−SEQ−DFAε. However, in
the proof of Theorem 2.2.18, we have observed that its reversal, the language LR = {ε, a}{ba}∗,
is not in LK−SEQ−DFAε. Thus, the language LR is also not in Lδ−SEQ−DFAε. �

Theorem 2.2.29 The family Lδ−SEQ−DFAε is closed under homomorphism.

Proof. Let L be a language in Lδ−SEQ−DFAε over an alphabet Σ, let h : Σ∗ → Γ∗ be a homomor-
phism. We shall prove that the language h(L) is in Lδ−SEQ−DFAε.

Since L is in Lδ−SEQ−DFAε, a strictly transition-A-equiloaded DFAε A = (K, Σ, δ, q0, F) exists,
such that L(A) = L. If the language L is finite, then also the language h(L) is finite, and thus also
in Lδ−SEQ−DFAε. Let us therefore suppose that the language L is infinite. Then, the graphical
representation of the automaton A is a directed cycle through all states.

We shall now construct a DFAε A′ = (K′, Γ, δ′, q′0, F′), such that its graphical representation is
a directed cycle through all states, and L(A′) = h(L). The idea of the following construction is
to replace each transition of the automaton A with a nonempty8 sequence of transitions, so that if
the transition of A is on c in Σ ∪ {ε}, then the word read after going through the corresponding
sequence of transitions in A′, is h(c).

Formally, we shall construct the automaton A′ as follows:

K′ = K ∪


⋃

q∈K
c∈Σ

∃p∈K:δ(q,c)=p
i∈{2,...,|h(c)|}

{pq,c,i}


,

q′0 = q0, F′ = F. Now, if δ(q, c) = p for some states p, q in K and some c in Σ ∪ {ε}, let us denote
pq,c,1 := q. Then,

∀pq,c,i ∈ K′ : δ′(pq,c,i, h(c)[i]) =
{

p if δ(q, c) = p ∧ i = max{1, |h(c)|}
pq,c,(i+1) if i < |h(c)| .

It is clear that L(A′) = h(L) and that the automaton A′ is strictly transition-A-equiloaded. Thus,
the language h(L) is in Lδ−SEQ−DFAε. �

Theorem 2.2.30 The family Lδ−SEQ−DFAε is not closed under inverse homomorphism.

Proof. Let us consider a language L = {a} and a homomorphism h : {a, b}∗ → {a, b}∗ defined
by

h(a) = a,
h(b) = ε.

Since the language L is finite, it belongs to the family Lδ−SEQ−DFAε. However, in the proof of
Theorem 2.2.20, we have observed that the language

h−1(L) = {w ∈ {a, b}∗ | #a(w) = 1}

is not in LK−SEQ−DFAε, and thus also not in Lδ−SEQ−DFAε. �

8The nonemptiness of that sequence of transitions is of crucial importance here. This is also the reason, why the
family Lδ−SEQ−DFA is not closed under homomorphism: without the use of ε-transitions, there is not any such nonempty
sequence for the case h(c) = ε.
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2.3 S-Equiloadedness

In this section, we shall study S-equiloaded DFA and DFAε. However, in most results presented
in this section, we shall not be concerned with S-equiloadedness for general S , but with several
special cases of S . The most important choices of S are C=, C≤,A=, and A≤.

Some of the families of S-equiloaded automata and languages have already been studied
(although the terminology and definitions have been slightly different, since the concept of S-
equiloadedness is introduced in this report as a generalization of the older definitions).

In [26] and [27], state-A=-equiloaded deterministic finite automata without ε-transitions have
been studied. However, the definition used in [26] and [27] is conceptually different from the def-
inition used in this report and, up to now, the equivalence of both definitions has been an open
problem. This open problem is solved in Subsection 2.3.1. Moreover, in Subsection 2.3.1, anal-
ogous equivalence theorems are proved also for S = C=, and for deterministic finite automata
with ε-transitions.

In [25], we have studied transition-A=-equiloaded deterministic finite automata without ε-
transitions. We have used the definition from [25] as a basis for the more general definition
of S-equiloadedness used in this report, and can therefore be viewed as its special case. Thus,
there is no need to prove the equivalence. However, in [25], we have proved the equivalence of
the alternative definition of transition-A=-equiloadedness analogous to the definitions used in
[26] and [27] for state-equiloadedness and, in Subsection 2.3.1 of this report, we shall prove that
these alternative definitions are equivalent to transition-S-equiloadedness also for several other
choices of S , and for DFAε.

In addition to alternative definitions, we shall also study some other aspects of S-equiloaded-
ness in this section. In [25], we have presented the characterization of weakly transition-A=-
equiloaded DFA. In Subsection 2.3.5, we shall generalize this result to several other choices of S
and to DFAε. Moreover, we shall prove also the characterization of weakly state-C=-equiloaded
DFA and DFAε. Subsequently, we shall be interested in the relations between corresponding
families of languages. Finally, in Subsection 2.3.7, we shall examine the closure properties of
families of languages corresponding to S-equiloaded DFA.

2.3.1 Alternative Definitions of S-Equiloadedness for S = C= and S = A=

In this subsection, we shall prove a theorem providing alternative definitions of state-S-equi-
loadedness and transition-S-equiloadedness for two most important choices of S – for C=, and
A=. The basic definitions of the concept of S-equiloadedness via the measure of S-equiloaded-
ness, as presented in Section 1.5, are a generalization of the definition of transition-A=-equiload-
ed DFA that we have used in [25]. The alternative definitions of S-equiloadedness, provided by
Theorem 2.3.4 presented in this subsection, are based on the definitions of state-A=-equiloaded
DFA used in [26] and [27].

However, before we present these alternative definitions, we shall prove three lemmas that we
shall use in the proof of Theorem 2.3.4. First, in Lemma 2.3.1, we shall observe that the asymptotic
growth of the quantity representing the number of computation paths of length n in a strongly
connected automaton is determined by the Perron-Frobenius eigenvalue of the transition matrix.

Lemma 2.3.1 Let A = (K, Σ, δ, q0, F) be a DFAε with strongly connected graphical representation,
and ∆ be the transition matrix of the automaton A. Let ρ be the Perron-Frobenius eigenvalue of
the transition matrix ∆. Then

F0(n) = |Comp(A, n)| = Θ(ρn).

Proof. Since the graphical representation of the automaton A is strongly connected, the tran-
sition matrix ∆ is either an irreducible matrix, or the 1× 1 null matrix. For the case of the 1× 1
null matrix, the statement of the lemma is clearly true for ρ = 0 (i.e., the 1× 1 null matrix can be
assumed to have a zero Perron-Frobenius eigenvalue). In the rest of the proof, we shall therefore
assume that the matrix ∆ is irreducible.
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By the Perron-Frobenius theorem, the transition matrix ∆ has the Perron-Frobenius eigen-
value, i.e., the statement of the lemma makes sense. Moreover, the eigenvalues of ∆ are complex
numbers

ρ, ρ · e2πi/p, . . . , ρ · e2πi(p−1)/p, λ1, . . . , λk,

where p in N+ is a positive integer, k in N is a nonnegative integer and

|λj| < ρ,

for j = 1, . . . , k. Moreover, all eigenvalues of the absolute value ρ are simple, i.e., of algebraic
multiplicity 1. Let us denote the algebraic multiplicities of λ1, . . . , λk by α1, . . . , αk.

Since the graphical representation of the automaton A is strongly connected with at least one
transition (a strongly connected digraph does not have any edge only if its adjacency matrix is
the 1× 1 null matrix), it is clear that F0(n) is nonzero for all n. Thus, by the results obtained in
Section 2.1, the transition matrix ∆ has at least one nonzero eigenvalue (otherwise, every possible
solution for F0(n) would be nonzero only for finite number of n) and, for n greater than some n0
in N, the property

F0(n) =
p−1

∑
j=0

cj · ρn · e2πinj/p +
k

∑
j=1

αj−1

∑
h=0

cj,h · nh · λn
j =

=

(
p−1

∑
j=0

cj · e2πinj/p

)
· ρn +

k

∑
j=1

αj−1

∑
h=0

cj,h · nh · λn
j (2.6)

holds (terms corresponding to zero eigenvalues have been omitted, since they have effect on the
value of F0(n) only for the finite number of n) for some complex constants cj, j = 0, . . . , p− 1 and
cj,h, j = 1, . . . , k, h = 0, . . . , αj − 1.

The function (of the variable n)
p−1

∑
j=0

cj · e2πinj/p, (2.7)

arising in (2.6), is clearly periodic with period p. We shall prove that the value of the function
(2.7) is nonzero for all n in N.

By the results obtained in Section 2.1,

Fn = ∆n · F0,

with
Fn = (F0(n), F1(n), . . . , Fm−1(n))T

and
F0 = (1, 1, . . . , 1︸ ︷︷ ︸

m

)T ,

where m = |K|. Let us denote by Em the standard (m− 1)-simplex, i.e., the set

Em =

{
(x1, . . . , xm) ∈ Rm

∣∣∣∣∣ x1 ≥ 0, . . . , xm ≥ 0,
m

∑
i=1

xi = 1

}
.

Now, let xρ in Em be the Perron-Frobenius eigenvector of the matrix ∆, corresponding to the
Perron-Frobenius eigenvalue ρ. Since xρ is in Em,

F0 ≥ xρ.

Thus,
Fn = ∆n · F0 ≥ ∆n · xρ = ρn · xρ.
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Since the Perron-Frobenius eigenvector xρ is always positive, we may conclude that a positive
real constant Q in R+ exists, such that

F0(n) ≥ Q · ρn. (2.8)

Now, for the purpose of contradiction, let us suppose that (2.7) is zero for some n in N. Then,
the periodicity implies that (2.7) is zero for infinitely many n in N. However, this clearly contra-
dicts (2.8). Thus, the value of the function (2.7) is nonzero for all n in N.

Moreover, the function (2.7) has to be real. Otherwise, for some j in {0, . . . , p− 1}, the function
would have to attain a nonreal complex value z = a + bi, b 6= 0, for all n · p + j, n in N. However,
for n greater than some n0 in N, clearly∣∣∣∣∣∣

k

∑
j=1

αj−1

∑
h=0

cj,h · nh · λn
j

∣∣∣∣∣∣ < b · ρn

and thus, the function F0(n) would have to attain nonreal complex values for n greater than n0.
However, F0(n) is clearly a real function. Thus, the function (2.7) has to be real as well.

Further, we shall prove that the function (2.7) is not only real, but in fact positive. We have
already proved that the value of the function (2.7) at given n is real and nonzero. For the purpose
of contradiction, let us suppose that it attains a negative value for some n. Then, by the periodicity
of the function (2.7), it follows that (2.7) attains a negative value for infinitely many n. However,
by applying a similar argument as above, it can be easily seen that this implies that also the
function F0(n) attains at least one negative value. But this is a contradiction, since the function
F0(n) is clearly nonnegative.

Thus, we have proved that (2.7) is a positive function periodic with period p. This implies
that it has to be bounded from below and from above by a positive constant. This clearly implies

F0(n) = |Comp(A, n)| = Θ(ρn).

Thus, the lemma is proved. �

Next, in Lemma 2.3.2, we shall prove that a similar property as in Lemma 2.3.1 holds also for
the number of all accepting computation paths of a given length. The only difference is that in
this case, lengths n, such that there is not any accepting computation of length n, are a serious
problem. However, if we omit these lengths from our consideration, the property holds.

Lemma 2.3.2 Let A = (K, Σ, δ, q0, F) be a DFAε with strongly connected graphical representation,
and ∆ be the transition matrix of the automaton A. Let ρ be the Perron-Frobenius eigenvalue
of the transition matrix ∆. Let F be nonempty and {nk}∞

k=0 be the increasing sequence of all
nonnegative integers nk, such that at least one accepting computation path of length nk exists in
the automaton A. Then

f0(nk) = |Acc(A, nk)| = Θ(ρnk ).

Proof. The statement of the lemma is obviously true in the case when ∆ is the 1× 1 null matrix.
Thus, let us suppose that ∆ is irreducible. Then F0(n) is nonzero for all n in N and thus, by
Lemma 2.3.1, the Perron-Frobenius eigenvalue ρ of the matrix ∆ is nonzero (this can be of course
easily proved also without the use of Lemma 2.3.1).

Let us denote by d the greatest common divisor of lengths of the closed walks in the graphical
representation of the automaton A, with the beginning and end in the vertex corresponding to
the initial state q0. Let q in F be an accepting state, and r in N be a nonnegative integer, such that

(q0, w) `r (q, ε)

for some w in Σ∗.
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Let S be a set of nonnegative integers s, such that a word w in Σ∗ exists, such that

(q0, w) `s (q0, ε).

Clearly, the greatest common divisor of elements of S is d, and the set S is closed under addition.
Thus, by Lemma A.5.3, a nonnegative integer n0 in N exists, such that for all n in N, n ≥ n0, such
that d divides n, n is in S. Let n1 be the smallest nonnegative integer greater than or equal to n0,
such that d divides n1.

Let k be in N. By Lemma 2.3.1,

F0(nk − (|K| − 1)− n1 − r) = |Comp(A, nk − (|K| − 1)− n1 − r)| = Θ(ρnk−(|K|−1)−n1−r) =
= Θ(ρnk ).

Now, since the graphical representation of the automaton A is strongly connected, each state is
reachable from each other state in at most |K| − 1 steps. Thus, every computation path of length
nk − (|K| − 1) − n1 − r can be prolonged to a computation path of length at most nk − n1 − r,
ending in state q0. Moreover, if two computation paths are distinct, then every two computation
paths obtained by prolonging these two computation paths are distinct as well. Thus, if we
denote by ϕ(nk− n1− r) the number of maximal9 computation paths of length at most nk− n1− r
ending in q0, we have

ϕ(nk − n1 − r) ≥ F0(nk − (|K| − 1)− n1 − r) = Θ(ρnk ),

i.e.,
ϕ(nk − n1 − r) = Ω(ρnk ).

Clearly, all of these ϕ(nk − n1 − r) computation paths are of length divisible by d. Thus, by
the structure of the set S, all of these ϕ(nk − n1 − r) can be prolonged to a computation path of
length nk − r ending in q0. Since the computation paths involved are maximal, the prolonged
computation paths are all distinct. Thus, if we denote by ψ(nk − r) the number of computation
paths of length exactly nk − r ending in q0, we have

ψ(nk − r) ≥ ϕ(nk − n1 − r) = Ω(ρnk ),

i.e.,
ψ(nk − r) = Ω(ρnk ).

However, since the accepting state q is reachable from q0 in r steps, this implies

f0(nk) = |Acc(A, nk)| ≥ ψ(nk − r) = Ω(ρnk ),

i.e.,
f0(nk) = |Acc(A, nk)| = Ω(ρnk ).

However, on the other hand we have

f0(nk) = |Acc(A, nk)| ≤ |Comp(A, nk)| = F0(nk) = Θ(ρnk ),

i.e.,
f0(nk) = |Acc(A, nk)| = O(ρnk ).

Thus,
f0(nk) = |Acc(A, nk)| = Θ(ρnk )

and the lemma is proved. �

Finally, in Lemma 2.3.3, we shall state one easy observable yet useful property that we shall
use later in our study.

9In the sense that a computation path cannot be prolonged to another computation path satisfying the property that
its length is at most nk − n1 − r and it ends in q0.
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Lemma 2.3.3 Let A = (K, Σ, δ, q0, F) be a DFAε, and ∆ be the transition matrix of the automaton
A. The transition matrix ∆ has a nonzero eigenvalue if and only if the graphical representation
of the automaton A contains at least one directed cycle.

Proof. Without loss of generality, let us suppose that the matrix ∆ is in the normal form of a
reducible matrix. The spectrum of the matrix ∆ is the union of spectra of its diagonal blocks (cor-
responding to strongly connected components of the graphical representation of the automaton
A) that are either irreducible or 1× 1 null matrices.

If the graphical representation of the automaton A contains at least one directed cycle, then
there is at least one strongly connected component with at least one directed cycle. Then, the
number of computation paths in this strongly connected component (with arbitrary initial state)
of length n has to be nonzero for all n in N. Thus, by Lemma 2.3.1, the corresponding diagonal
block has to have at least one nonzero eigenvalue (the Perron-Frobenius eigenvalue of that block).

If the graphical representation does not contain any directed cycle, then each state forms one
strongly connected component. The number of computation paths in all strongly connected com-
ponents is thus 1 for the computation paths of length 0 and 0 otherwise. Thus, by Lemma 2.3.1,
the eigenvalue of each diagonal 1 × 1 block is 0 (that is, all diagonal blocks are null), and the
matrix ∆ does not have any nonzero eigenvalue. �

Now we are prepared to prove the key result of this subsection, providing an alternative
definition of S-equiloadedness, for S = C= and S = A=. The following theorem implies that a
definition of DFA with balanced use of states in accepting computations, used in [26] and [27], is
equivalent to our definition of state-A=-equiloadedness, and that a similar property holds also
for some other types of S-equiloadedness defined in this report.

Theorem 2.3.4 Let A = (K, Σ, δ, q0, F) be a DFAε. Let S be a function in {C=,A=}.

a) A is state-S-equiloaded if and only if a real constant η in R exists, such that, for all pairs of
states p, q in K and for all n in N, the property

|#[p,S(A, n)]− #[q,S(A, n)]| ≤ η · |S(A, n)|

holds.

b) A is transition-S-equiloaded if and only if a real constant η in R exists, such that, for all
pairs of transitions e, f in D and for all n in N, the property

|#[e,S(A, n)]− #[ f ,S(A, n)]| ≤ η · |S(A, n)|

holds.

Proof. We shall prove only the statement for transitions, the proof of the statement for states is
analogous.

We shall start with the proof of the easier right-to-left implication. Clearly, since every com-
putation path of length n consists of n transition uses, and since both C=(A, n) = Comp(A, n)
and A=(A, n) = Acc(A, n) contain only computation paths of length n, we have

∑
e∈D

#[e,S(A, n)] = n · |S(A, n)|.

Thus,
n
|D| · |S(A, n)| ≤ max

e∈D
#[e,S(A, n)] ≤ n · |S(A, n)|,

i.e.,
max
e∈D

#[e,S(A, n)] = g(n)|S(A, n)|,

where g(n) is Θ(n). Now, if the inequality

|#[e,S(A, n)]− #[ f ,S(A, n)]| ≤ η · |S(A, n)|
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holds for all e, f in D and for all n in N, then the number of uses of each transition e in D can be
written as

#[e,S(A, n)] = (g(n) + re(n))|S(A, n)|,

where re : N→ R is a function, such that |re(n)| = O(1).
Now, if |S(A, n)| is zero for all n ≥ n0 for some n0 in N, then, applying Lemma 1.5.3,

BA(S) = min
(e, f )∈D2

lim inf
n→∞

(g(n) + re(n))|S(A, n)|+ 1
(g(n) + r f (n))|S(A, n)|+ 1

= lim inf
n→∞

1
1

= 1.

Thus, in this case the implication holds.
Now, let us suppose that |S(A, nk)| > 0 for infinitely many nonnegative integers nk, k =

0, 1, 2, . . .. Then,

BA(S) = min
(e, f )∈D2

lim inf
n→∞

(g(n) + re(n))|S(A, n)|+ 1
(g(n) + r f (n))|S(A, n)|+ 1

=

= min
(e, f )∈D2

lim inf
k→∞

(g(nk) + re(nk))|S(A, nk)|
(g(nk) + r f (nk))|S(A, nk)|

=

= min
(e, f )∈D2

lim inf
k→∞

g(nk) + re(nk)
g(nk) + r f (nk)

= min
(e, f )∈D2

lim inf
k→∞

g(nk)
nk

+ re(nk)
nk

g(nk)
nk

+
r f (nk)

nk

= 1,

since both re(nk)
nk

and
r f (nk)

nk
tend to 0 as k goes to infinity and g(nk)

nk
is bounded from below (and

also from above) by a positive constant. Thus, the first implication is proved.
Now, let us prove the remaining left-to-right implication. Let S be in {C=,A=}. Let us sup-

pose that the automaton A is transition-S-equiloaded. We shall show that the alternative defini-
tion applies to A.

If the graphical representation of the automaton A does not contain any directed cycle, the
implication clearly holds. Let us therefore suppose that there is a directed cycle in the graphical
representation of the automaton A.

Let f : N → N denote the function F0(n) = |Comp(A, n)| for the case of S = C=, and the
function f0(n) = |Acc(A, n)| for the case of S = A=.

Let m be a number of states of the automaton A. For the transition matrix ∆ of the automaton
A, an m×m permutation matrix P exists, such that P ·∆ · P−1 is in the normal form of a reducible
matrix. That is, for some µ in N,

P · ∆ · P−1 =


∆1,1 ∆1,2 . . . ∆1,µ

0 ∆2,2 . . . ∆2,µ
...

. . .
...

0 0 . . . ∆µ,µ

 ,

where ∆j,j are square blocks for j = 1, . . . , µ that are either irreducible or 1 × 1 null matrices.
Since the matrices ∆ and P · ∆ · P−1 are similar, they have the same spectrum. Moreover, since
the matrix P · ∆ · P−1 is an upper triangular block matrix, its spectrum is the union of the spectra
of the blocks ∆j,j, for j = 1, . . . , µ. Thus, also the spectrum of the transition matrix ∆ is the union
of the spectra of the blocks ∆j,j, for j = 1, . . . , µ.

Let us denote the Perron-Frobenius eigenvalue of the irreducible (or null) block ∆j,j by ρ′j (if
∆j,j is a null block, then ρ′j = 0), for j = 1, . . . , µ. Moreover, let pj, for j = 1, . . . , µ, denote the
greatest natural number, such that

ρ′j, ρ′j · e
2πi/pj , . . . , ρ′j · e

2πi(pj−1)/pj
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are eigenvalues of ∆j,j. By the Perron-Frobenius theorem, all these are simple eigenvalues of ∆j,j
(although not necessarily simple eigenvalues of ∆). Let us denote the pairwise distinct nonzero
eigenvalues ρ, such that ρ = ρ′j for some j = 1, . . . , µ, by

ρ1, . . . , ρr,

where r is the number of such pairwise distinct nonzero eigenvalues. Since the graphical repre-
sentation of the automaton A contains a directed cycle, it follows from Lemma 2.3.3 that r ≥ 1.

Now, let us consider the spectrum of the transition matrix ∆. Let S be a set of all pairs of
nonnegative integers (s1, s2) in N2, such that s1 < s2, s1, s2 are coprime and ρj · e2πis1/s2 is an
eigenvalue of ∆, for some j in {1, . . . , r}. The set S is clearly finite. For given j in {1, . . . , r} and
(s1, s2) in S, let us denote by β j,s1,s2 the algebraic multiplicity of the eigenvalue ρj · e2πis1/s2 (more
precisely, ρj · e2πis1/s2 need not to be an eigenvalue, since the pair (s1, s2) in S may not correspond
to j – in that case we define β j,s1,s2 = 0). Moreover, let us denote the (pairwise distinct) nonzero
eigenvalues that are not of this form by λ1, . . . , λk and their algebraic multiplicities by α1, . . . , αk,
where k in N is the number of pairwise distinct eigenvalues of ∆ that are not of the above defined
form. By the results obtained in Section 2.1, for n greater than some n0 in N (we shall assume
this in the rest of the proof),

f (n) =
r

∑
j=1

∑
(s1,s2)∈S

β j,s1,s2
−1

∑
h=0

cj,s1,s2,h · nh · ρn
j · e2πins1/s2 +

k

∑
j=1

αj−1

∑
h=0

cj,h · nh · λn
j ,

where
cj,s1,s2,h, j = 1, . . . , r, (s1, s2) ∈ S, h = 0, . . . , β j,s1,s2 − 1

and
cj,h, j = 1, . . . , k, h = 0, . . . , αj − 1

are constants. Clearly, we may replace each β j,s1,s2 by the number

β = max
j=1,...,r

(s1,s2)∈S

β j,s1,s2

by setting the newly introduced constants cj,s1,s2,h to 0. Thus, we obtain

f (n) =
r

∑
j=1

β−1

∑
h=0

nh ·

 ∑
(s1,s2)∈S

cj,s1,s2,h · e2πins1/s2

 · ρn
j +

k

∑
j=1

αj−1

∑
h=0

cj,h · nh · λn
j . (2.9)

Next, since e2πiN = 1 for all nonnegative integers N in N, the function

∑
(s1,s2)∈S

cj,s1,s2,h · e2πins1/s2 (2.10)

(of variable n) is clearly periodic with period s, where s is the least common multiple of all non-
negative integers s2 in N, such that (s1, s2) is in S for some s1 in N (the set S is finite, so the least
common multiple is well-defined).

Now, for a = 0, . . . , s− 1, let us denote by ϕa : N→N the function defined by

ϕa(n) = f (n · s + a)

for n in N. From (2.9) and from the periodicity of the function (2.10), it follows that

ϕa(n) =
r

∑
j=1

β−1

∑
h=0

(n · s + a)h · Cj,h · ρns+a
j +

k

∑
j=1

αj−1

∑
h=0

cj,h · (n · s + a)h · λns+a
j (2.11)
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for a = 0, . . . , s − 1, where Cj,h is a complex constant for j = 1, . . . , r and h = 0, . . . , β − 1.
Moreover, in a similar way as in the proof of Lemma 2.3.1, it is possible to prove that the constants
Cj,h are in fact real.

Let a in {0, . . . , s− 1} be fixed. We shall show that if the greatest Perron-Frobenius eigenvalue,
for which some nonzero coefficient Cj,h exists in (2.11), is ρJ for some J in {1, . . . , r}, then each
eigenvalue λj (with j in {1, . . . , k}) with some nonzero coefficient cj,l (with l in {0, . . . , αj − 1}) in
(2.11) is of absolute value strictly smaller then ρJ .

We shall first prove this for the case f (n) = F0(n) = |Comp(A, n)|. For the purpose of
contradiction, let us suppose that the converse is true, i.e., that an eigenvalue λj of absolute value
greater than or equal to ρJ exists, such that cj,l is nonzero in (2.11) for some l. This implies that
a computation path γ of the automaton A exists, such that γ visits some state q belonging to
the strongly connected component of the graphical representation, to which the eigenvalue λj
corresponds (if there are more such components, then it visits at least one of them). Otherwise,
the function ϕa(n) would be the same as the function ϕa(n) corresponding to the automaton with
this strongly connected component deleted. This argument can be repeated while the reduced
automaton has λj as an eigenvalue. At the end of this process, we obtain an automaton with
the same ϕa(n), but without λj as an eigenvalue. However, by linear independence of involved
functions, this implies that all coefficients cj,l , l = 0, . . . , αj − 1 are zero, i.e., a contradiction.

This strongly connected component has a Perron-Frobenius eigenvalue ρb for some b taken
from {1, . . . , r}. Thus, clearly ρb > |λj| ≥ ρJ . Now, if we construct an automaton B from this
strongly connected component by choosing q to be its initial state (the set of accepting states
may be arbitrary), and if we denote by ψ(n) the number of computation paths of length n in the
automaton B, by Lemma 2.3.1 we have ψ(n) = Θ(ρn

b ). Thus,

ϕa(n) = f (n · s + a) = F0(n · s + a) ≥ ψ(n · s + a− |γ|) = Ω
(

ρ
ns+a−|γ|
b

)
,

since the computation path γ may continue by all of ψ(n) computation paths of the automaton
B. However, this is an obvious contradiction.

Now, let us prove the claim for the case f (n) = f0(n) = |Acc(A, n)|. Let us suppose that
the converse is true. By a similar argument as in the previous case, a computation path γ of the
automaton A exists, such that:

(i) The computation path γ is accepting.

(ii) The computation path γ is of length |γ| = nγ · s + a for some nγ in N.

(iii) The computation path γ visits some state q of the strongly connected component, to which
the eigenvalue λj corresponds. Let us denote by B = (K′, Σ, δ′, q′0, F′) the automaton con-
structed from this component by setting q′0 = q and F′ = {q}.

Let us denote by d the greatest common divisor of lengths of closed walks in the graphical
representation of the automaton B, beginning and ending in q. The set S of lengths of such closed
walks is clearly closed under addition. Thus, by Lemma A.5.3 in Subsection A.5 of Appendix A,
a positive integer n0 in N exists, such that S contains all multiples of d greater than or equal to
n0. There are clearly infinitely many multiples of s in S. Let {nk}∞

k=0 be the increasing sequence
of all multiples of s in S. Since q is accepting, there is at least one accepting computation path of
length nk in B, for all k in N. Let us denote by ψ(nk) the number of accepting computation paths
of the automaton B of length nk. By Lemma 2.3.2,

ψ(nk) = |Acc(B, nk)| = Θ(ρ
nk
b ),

where ρb > |λj| ≥ ρJ . Thus, if nk = mk · s for all k in N, we have

ϕa(mk + nγ) = f ((mk + nγ) · s + a) = f0((mk + nγ) · s + a) ≥ ψ(mk · s) = ψ(nk) = Θ(ρ
nk
b ).

This is an obvious contradiction.
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Thus, we may conclude that

ϕa(n) = Θ
(
(n · s + a)H · ρns+a

J

)
, (2.12)

where H is a greatest nonnegative integer, such that cJ,H is nonzero (by our assumptions, at least
one such nonnegative integer exists).

Now, we can finally prove the left-to-right implication from the statement of the theorem. Let
g(1) : N → N denote, depending on the case for which the implication is being proved, one of
the basic quantities Te

i (n) = #[e, Comp(A, n)], and te
i (n) = #[e, Acc(A, n)]. Let g(2) : N → N

denote one of the functions T f
i (n) = #[ f , Comp(A, n)], and t f

i (n) = #[ f , Acc(A, n)] (depending
on the case for which the implication is being proved).

Moreover, let ϕ
(1)
a : N→N denote the function

ϕ
(1)
a (n) = g(1)(n · s + a)

for a = 0, . . . , s− 1, and ϕ
(2)
a : N→N denote the function

ϕ
(2)
a (n) = g(2)(n · s + a)

for a = 0, . . . , s− 1. Let a in {0, . . . , s− 1} be fixed. By the results obtained in Section 2.1, and by
the same argumentation as for the case of functions f (n) and ϕa(n), we obtain

ϕ
(1)
a (n) =

r

∑
j=1

2β−1

∑
h=0

(n · s + a)h · D(1)
j,h · ρ

ns+a
j +

k

∑
j=1

2αj−1

∑
h=0

d(1)
j,h · (n · s + a)h · λns+a

j , (2.13)

ϕ
(2)
a (n) =

r

∑
j=1

2β−1

∑
h=0

(n · s + a)h · D(2)
j,h · ρ

ns+a
j +

k

∑
j=1

2αj−1

∑
h=0

d(2)
j,h · (n · s + a)h · λns+a

j , (2.14)

where D(1)
j,h , D(2)

j,h , j = 1, . . . , r, h = 0, . . . , 2β − 1 are real constants, and d(1)
j,h , d(2)

j,h , j = 1, . . . , k,
h = 0, . . . , 2αj − 1 are complex constants.

We assume that the automaton A is transition-S-equiloaded. Moreover, for both S to which
the statement of the theorem applies,

∑
y∈D

#[y,S(A, n)] = n · |S(A, n)|.

Thus, for at least one transition eg in D, an infinite increasing sequence of nonnegative integers
{nk}∞

k=0 exists, such that

#[eg,S(A, nk)] ≥
nk
|D| · |S(A, nk)|

for all k in N. Thus, taking into account (2.12), (2.13), and (2.14), it can be easily seen that if the
automaton A is equiloaded, then the constants D(1)

J,H+1 and D(2)
J,H+1 have to be both nonzero and

equal. Moreover, the constants D(1)
J,L and D(2)

J,L have to be zero for L > H + 1. Thus, the coefficient

at (n · s + a)h · ρns+a
J is zero for h > H, in

∣∣∣ϕ(1)
a (n)− ϕ

(2)
a (n)

∣∣∣. Thus, we have∣∣∣ϕ(1)
a (n)− ϕ

(2)
a (n)

∣∣∣ = O
(
(n · s + a)H · ρns+a

J

)
.

The correctness of the implication then clearly follows from (2.12).
We have proved both implications for both possible choices of S . That is, the theorem is

proved. �

It can be easily seen that the equivalence provided by Theorem 2.3.4 does not hold for S = C≤
and S = A≤ – it is a trivial task to construct a deterministic finite automaton accepting a finite
language, such that it satisfies the alternative definition from Theorem 2.3.4, but at the same time,
the automaton is not S-equiloaded.
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2.3.2 Computation of Basic Quantities via Convolutions

In this subsection, we shall derive an alternative method for computing the basic quantities
#[e, Comp(A, n)] and #[e, Acc(A, n)], for a given transition e, and the quantities #[q, Comp(A, n)]
and #[q, Acc(A, n)], for a given state q. We shall show that these quantities may be computed
from certain convolutions. We shall use this alternative method of computation to prove Theo-
rem 2.3.14 on asymptotic properties of the quantities #[e, Comp(A, n)] and #[e, Acc(A, n)], and,
most importantly, to prove the characterization of weakly state-C=-equiloaded deterministic fi-
nite automata (Theorem 2.3.31 and preceeding lemmas).

Notation 2.3.5 Let A = (K, Σ, δ, q0, F) be a DFAε. In addition to the notation Aq = (K, Σ, δ, q, F),
where q is in K, introduced in Section 2.1, we shall use the notation AS = (K, Σ, δ, q0, S), where S
is a subset of K. That is, by AS we shall denote the automaton A with the set of accepting states
changed to S.

Now, we shall state a lemma that provides an alternative method for computing the number
of uses of a given transition in computation paths of a given length.

Lemma 2.3.6 Let A = (K, Σ, δ, q0, F) be a DFAε with K = {q0, q1, . . . , qm−1}, for some m in N. Let
e = (qj, c, qk) in D be a transition, for some c in Σ ∪ {ε} and j, k in {0, 1, . . . , m− 1}. Then, for all
n in N, the identities

#[e, Comp(A, n)] =
n−1

∑
i=0
|Acc(A{qj}, i)| · |Comp(Aqk , n− i− 1)|,

and

#[e, Acc(A, n)] =
n−1

∑
i=0
|Acc(A{qj}, i)| · |Acc(Aqk , n− i− 1)|

hold.

Proof. We shall prove only the second identity, since the first identity is clearly its special case:
obviously, Comp(A, n) = Acc(AK, n).

The first method how to prove the second identity, is by direct combinatorial insight. In fact,
the number of uses of the transition e as an (i + 1)-th step of accepting computation paths of
length n, can be clearly expressed as

|Acc(A{qj}, i)| · |Acc(Aqk , n− i− 1)|.

The overall number of uses of this transition in accepting computation paths of length n is then
clearly the sum of this quantity for all possible i.

However, we shall also present the second proof that does not make use of combinatorial
insight. As we have already noted in Section 2.1, the system of O∆Es for

te
0(n) = #[e, Acc(A, n)]

can be viewed either as a homogeneous system of 2m O∆Es in 2m unknown functions, or as a
nonhomogeneous system of m O∆Es in m unknown functions. Up to now, we have always used
the perspective of the homogeneous system of 2m O∆Es. However, if we express the quantity
te
0(n) by a nonhomogeneous system, we obtain the system

t′n = ∆ · t′n−1 + xn−1,

where
t′n =

(
te
0(n), te

1(n), . . . , te
m−1(n)

)T
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and
xn = (0, . . . , 0︸ ︷︷ ︸

j−1

, |Acc(Aqk , n)|, 0, . . . , 0︸ ︷︷ ︸
m−j

)T . (2.15)

The initial conditions are given by
t′0 = (0, 0, . . . , 0︸ ︷︷ ︸

m

)T .

Thus, it is clear that the column vector t′n can be expressed from this nonhomogeneous system
of O∆Es as

t′n = Im · xn−1 + ∆ · xn−2 + . . . + ∆n−2 · x1 + ∆n−1 · x0 =
n−1

∑
i=0

∆i · xn−i−1. (2.16)

Thus, if we introduce the notation

∆i =


d(i)

0,0 d(i)
0,1 . . . d(i)

0,m−1

d(i)
1,0 d(i)

1,1 . . . d(i)
1,m−1

...
...

. . .
...

d(i)
m−1,0 d(i)

m−1,1 . . . d(i)
m−1,m−1


for i in N, from (2.15) and (2.16) we obtain the identity

#[e, Acc(A, n)] = te
0(n) =

n−1

∑
i=0

d(i)
0,j · |Acc(Aqk , n− i− 1)|. (2.17)

However, if we define
y = (0, . . . , 0︸ ︷︷ ︸

j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−j

)T ,

then d(i)
0,j is clearly the first entry of the column vector ∆i · y, i.e., by Theorem 2.1.4,

d(i)
0,j = |Acc(A{qj}, i)|.

Thus, (2.17) can be rewritten as

#[e, Acc(A, n)] = te
0(n) =

n−1

∑
i=0
|Acc(A{qj}, i)| · |Acc(Aqk , n− i− 1)|.

That is, the lemma is proved. �

The following lemma provides us with an alternative method for computing the quantities
#[q, Comp(A, n)] and #[q, Acc(A, n)], counting the number of uses of a specified state. The lemma
may be proved analogously as Lemma 2.3.6, or can be proved as a corollary of this lemma. We
shall present the proof using the second approach.

Lemma 2.3.7 Let A = (K, Σ, δ, q0, F) be a DFAε with K = {q0, q1, . . . , qm−1}, for some m in N. Let
qj in K be a state, for some j in {0, 1, . . . , m− 1}. Then, for all n in N, the identities

#[qj, Comp(A, n)] =
n

∑
i=0
|Acc(A{qj}, i)| · |Comp(Aqj , n− i)|,

and

#[qj, Acc(A, n)] =
n

∑
i=0
|Acc(A{qj}, i)| · |Acc(Aqj , n− i)|

hold.
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Proof. Once again, the lemma can be proved by a direct combinatorial insight. However, we
shall present also a proof based on the use of Lemma 2.3.6. We shall prove only the second
identity, since the first one is clearly its special case.

Clearly, the equation

#[qj, Acc(A, n)] = |Acc(A{qj}∩F, n)|+ ∑
(qj ,c,qk)∈D

#[(qj, c, qk), Acc(A, n)] (2.18)

holds, where the sum goes through all c in Σ ∪ {ε} and all qk in K. Then, by Lemma 2.3.6, the
equation (2.18) becomes

#[qj, Acc(A, n)] = |Acc(A{qj}∩F, n)|+ ∑
(qj ,c,qk)∈D

n−1

∑
i=0
|Acc(A{qj}, i)| · |Acc(Aqk , n− i− 1)| =

= |Acc(A{qj}∩F, n)|+
n−1

∑
i=0

|Acc(A{qj}, i)| · ∑
(qj ,c,qk)∈D

|Acc(Aqk , n− i− 1)|

 =

= |Acc(A{qj}∩F, n)|+
n−1

∑
i=0
|Acc(A{qj}, i)| · |Acc(Aqj , n− i)| =

=
n

∑
i=0
|Acc(A{qj}, i)| · |Acc(Aqj , n− i)|,

where the next to the last step is by Theorem 2.1.4, and the last step makes use of the obvious fact
that |Acc(A{qj}∩F, n)| > 0 implies |Acc(Aqj , 0)| = 1. Thus, the theorem is proved. �

2.3.3 Asymptotic Properties of Quantities for Strongly Connected Automata

In this subsection, we shall focus on one remarkable property of deterministic finite automata
with strongly connected graphical representation. This property is stated in Theorem 2.3.14 and,
in the case of automata with strongly connected graphical representation, significantly simplifies
the asymptotic estimates for the quantities representing the number of uses of a given transition.
This theorem also implies that a similar property holds also for the quantities representing the
number of uses of a given state (Corollary 2.3.15).

However, before we proceed to the statement and proof of Theorem 2.3.14, let us briefly in-
troduce the concept of the period of a given strongly connected automaton. The period of an
automaton is essentialy the same as the period of its transition matrix (see, e.g., [31]). We shall
present three alternative characterizations of this concept. We shall omit proofs of Lemma 2.3.8
and of Theorem 2.3.10. The reason for this is that the proofs are lengthy and technical, how-
ever they are essentially the same as the proofs of analogous results in the theory of nonnegative
matrices (see, e.g., [31]).

Lemma 2.3.8 Let A = (K, Σ, δ, q0, F) be a DFAε with strongly connected graphical representation.
Then, a positive integer PA in N+ exists, such that K can be partitioned into PA disjoint sets

P(0), P(1), . . . , P(PA − 1),

such that

(i) If, for some q in K, w in Σ∗ and n in N, the property

(q0, w) `n (q, ε)

holds, then q is in P(n mod PA).
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(ii) A nonnegative integer n0 in N exists, such that for all n ≥ n0 and all q in P(n mod PA), a
word w in Σ∗ exists, such that the property

(q0, w) `n (q, ε)

holds.

Definition 2.3.9 Let A = (K, Σ, δ, q0, F) be a DFAε with strongly connected graphical representa-
tion. We shall call the positive integer PA from the previous lemma the period of the automaton
A.

Theorem 2.3.10 Let A = (K, Σ, δ, q0, F) be a DFAε with strongly connected graphical representa-
tion. Then, the period PA of the automaton A is equal to the number of distinct eigenvalues of ∆
with the absolute value equal to the spectral radius ρ(∆) (i.e., their absolute value is equal to the
Perron-Frobenius eigenvalue ρ). This is further equal to the greatest common divisor of lengths
of closed directed walks in the graphical representation of the automaton A.

Now we are prepared to proceed to our study of asymptotics for the number of uses of a given
transition. However, before we state Theorem 2.3.14, let us prove one lemma that we shall use in
its proof.

Lemma 2.3.11 Let A = (K, Σ, δ, q0, F) be a DFAε with strongly connected graphical representa-
tion. Let S, T ⊆P(k) be nonempty sets, for some fixed k in {0, 1, . . . , PA − 1}. Then∣∣∣Acc(AS, n)

∣∣∣ = c ·
∣∣∣Acc(AT , n)

∣∣∣± o
(

max
{

1,
∣∣∣Acc(AS, n)

∣∣∣}) ,

for some real constant c in R.

Proof. If the automaton A consists of one isolated state without any transition, the statement
of the lemma is trivial. Thus, let us suppose that A has at least one transition. Then, since the
graphical representation of the automaton A is strongly connected, the transition matrix ∆ is
irreducible. Thus, by the Perron-Frobenius Theorem and by the results obtained in Section 2.1,
we have ∣∣∣Acc(AS, n)

∣∣∣ =

(
p−1

∑
j=0

cj · e2πinj/p

)
· ρn + o(ρn)

and ∣∣∣Acc(AT , n)
∣∣∣ =

(
p−1

∑
j=0

dj · e2πinj/p

)
· ρn + o(ρn),

where ρ is the Perron-Frobenius eigenvalue of the transition matrix ∆, and where c0, . . . , cp−1
and d0, . . . , dp−1 are (in general complex) constants. Further, by Theorem 2.3.10, p is equal to the
period PA of the automaton A.

The functions
p−1

∑
j=0

cj · e2πinj/p and
p−1

∑
j=0

dj · e2πinj/p

are clearly periodic with period p = PA. Moreover, in the proof of Lemma 2.3.1, we have ob-
served that these functions are real.

Now, since both S and T are subsets of P(k), it follows that both |Acc(AS, n)| and |Acc(AT , n)|
are zero for n such that n mod p 6= k. Moreover, since both S and T are nonempty, it follows from
Lemma 2.3.2 that both

p−1

∑
j=0

cj · e2πikj/p and
p−1

∑
j=0

dj · e2πikj/p
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are nonzero. Thus, clearly, the statement of the lemma holds for the real constant c defined by

c =
∑

p−1
j=0 cj · e2πikj/p

∑
p−1
j=0 dj · e2πikj/p

.

Thus, the lemma is proved. �

Before we use this lemma to prove the main result of this subsection, Theorem 2.3.14, let us
prove one auxiliary lemma and its corollary that we shall use in the proof of Theorem 2.3.14.

Lemma 2.3.12 Let {an}∞
n=0, {bn}∞

n=0 be sequences of real numbers, such that an ≥ 0, bn > 0 for
all n ≥ n0, where n0 is in N, bn → ∞ for n→ ∞, and

lim
n→∞

an

bn
= L,

where L is in R.10 Then also

lim
n→∞

∑n
k=0 ak

∑n
k=0 bk

= L.

Proof. By the definition of limit, it follows that for every ε > 0, a nonnegative integer Nε in N

exists (without loss of generality, let Nε ≥ n0 for all ε > 0), such that for all n ≥ Nε,

L− ε <
an

bn
< L + ε,

i.e.,
Lbn − εbn < an < Lbn + εbn.

Thus, for given ε > 0 and for n ≥ Nε, we have

L ·
(

n

∑
k=Nε

bk

)
− ε ·

(
n

∑
k=Nε

bk

)
<

n

∑
k=Nε

ak < L ·
(

n

∑
k=Nε

bk

)
+ ε ·

(
n

∑
k=Nε

bk

)
,

i.e.,

L− ε <
∑n

k=Nε
ak

∑n
k=Nε

bk
< L + ε.

That is,

lim
n→∞

∑n
k=Nε

ak

∑n
k=Nε

bk
= L.

However, since bn → ∞ for n→ ∞,

lim
n→∞

∑n
k=0 ak

∑n
k=0 bk

= lim
n→∞

∑Nε−1
k=0 ak + ∑n

k=Nε
ak

∑Nε−1
k=0 bk + ∑n

k=Nε
bk

= lim
n→∞

∑Nε−1
k=0 ak

∑n
k=Nε

bk
+ ∑n

k=Nε
ak

∑n
k=Nε

bk

∑Nε−1
k=0 bk

∑n
k=Nε

bk
+ 1

= lim
n→∞

∑n
k=Nε

ak

∑n
k=Nε

bk
= L.

Thus, the lemma is proved. �

Corollary 2.3.13 Let {an}∞
n=0, {bn}∞

n=0 be sequences of real numbers, such that bn 6= 0 for all
n ≥ n0, where n0 is in N, bn → ∞ for n→ ∞, and

an = o(bn).

Then also
n

∑
k=0

ak = o

(
n

∑
k=0

bk

)
.

10The statement holds also for L = ±∞, but the case where L is in R is sufficient for the purposes of this report.



Deterministic Finite Automata 65

Proof. The claim is a special case of the statement of Lemma 2.3.12, where L = 0. �

Now we shall proceed to the main result of this subsection. For deterministic finite automata
without ε-transitions, and for the case of accepting computation paths, we have proved a similar
result already in [25]. However, the proof presented in [25] is lengthy, technical, and complicated.
The proof presented in what follows is considerably simpler. Thus, the presented theorem may
be viewed as a generalization of the result presented in [25], and its proof may be viewed as a
significant simplification of the proof from [25].

Theorem 2.3.14 Let A = (K, Σ, δ, q0, F) be a DFAε with strongly connected graphical representa-
tion. Then for each transition e in D, a real constant ae in R exists, such that

#[e, Comp(A, n)] = (aen±O(1)) · |Comp(A, n)|,

and
#[e, Acc(A, n)] = (aen±O(1)) · |Acc(A, n)|.

Proof. To prove the theorem, it clearly suffices to show that a real constant ae in R exists, such
that

#[e, Acc(AS, n)] = (aen±O(1)) · |Acc(AS, n)| (2.19)

for all sets of states S ⊆ K. If S is empty, then both |Acc(AS, n)| and #[e, Acc(AS, n)] are zero and
the property is trivially satisfied for all constants ae. Thus, we shall assume that S is nonempty.

We shall suppose that A has at least one transition – otherwise, the claim is trivial. Then, since
the graphical representation of the automaton A is strongly connected, the transition matrix ∆ is
irreducible. Thus, it follows from the results obtained in Section 2.1, from Theorem 2.3.10, and
from Lemma 2.3.2, that

#[e, Acc(AS, n)] =

(
PA−1

∑
j=0

cj · e2πinj/PA

)
· n · ρn ±O(1) · |Acc(AS, n)|,

where ρ is the Perron-Frobenius eigenvalue of the transition matrix ∆, and where c0, . . . , cPA−1
in C are constants. Moreover, as we have observed in the proof of Lemma 2.3.1, the periodic
function

PA−1

∑
j=0

cj · e2πinj/PA

is always real, and, by Lemma 2.3.2, |Acc(AS, nk)| = Θ(ρnk ), where {nk}∞
k=0 is the infinite increas-

ing sequence of all nonnegative integers n, such that |Acc(AS, n)| is nonzero (such a sequence
exists, since the graphical representation of A is strongly connected, at least one transition exists,
and the set S is nonempty). Thus, we may restate this as follows: a sequence {bS

n}∞
n=0 periodic

with period PA exists, such that

#[e, Acc(AS, n)] = (bS
nn±O(1)) · |Acc(AS, n)|. (2.20)

We shall first prove that a real constant ae in R exists, such that (2.19) holds for all sets S, such
that S ⊆ P(k) for some fixed k in {0, 1, . . . , PA − 1}. In that case, |Acc(AS, n)| is zero for all n in
N, such that n mod PA 6= k. Thus, clearly, for every such given S, the property

#[e, Acc(AS, n)] = (bS
k n±O(1)) · |Acc(AS, n)|

holds. We shall prove that bS
k is the same for all such S, and that will be our constant ae.

First, we shall prove that bS
0 = bT

0 for all nonempty S, T ⊆P(0). By Lemma 2.3.11,

|Acc(AS, n)| = c ·
∣∣∣Acc(AT , n)

∣∣∣± o
(

max
{

1,
∣∣∣Acc(AS, n)

∣∣∣}) . (2.21)
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By Lemma 2.3.6, and subsequently by (2.21), Corollary 2.3.13, and once again Lemma 2.3.6,

#[e, Acc(AS, n)] =
n−1

∑
i=0
|Acc(A{qj}, i)| · |Acc(AS

qk
, n− i− 1)| =

=
n−1

∑
i=0
|Acc(A{qj}, i)| ·

(
c · |Acc(AT

qk
, n− i− 1)|±

± o
(

max
{

1, |Acc(AS
qk

, n− i− 1)|
}) )

=

=

(
n−1

∑
i=0

c · |Acc(A{qj}, i)| · |Acc(AT
qk

, n− i− 1)|
)
±O(1) · |Acc(AS, n)| =

=

(
c ·

n−1

∑
i=0
|Acc(A{qj}, i)| · |Acc(AT

qk
, n− i− 1)|

)
±O(1) · |Acc(AS, n)| =

= c · #[e, Acc(AT , n)]±O(1) · |Acc(AS, n)|.

This clearly implies that bS
0 = bT

0 =: b0.
Now, let T ⊆ P(k) for some k in {1, 2, . . . , PA − 1}. We shall show that bT

k = b0. By what we

have proved up to now, it clearly suffices to show that bP(k)
k = b0. However,

#[e, Acc(AP(k), n)] = ∑
q∈P(0)

(
#[e, Acc(A{q}, n− k)] · |Acc(AP(k)

q , k)|+

+ |Acc(A{q}, n− k)| · #[e, Acc(AP(k)
q , k)]

)
=

= ∑
q∈P(0)

(
#[e, Acc(A{q}, n− k)] · |Acc(AP(k)

q , k)|
)

+

+ ∑
q∈P(0)

(
|Acc(A{q}, n− k)| · #[e, Acc(AP(k)

q , k)]
)

. (2.22)

Moreover, clearly,

|Acc(AP(k), n)| = ∑
q∈P(0)

|Acc(A{q}, n− k)| · |Acc(AP(k)
q , k)|.

Thus, by what we have proved above,

∑
q∈P(0)

(
#[e, Acc(A{q}, n− k)] · |Acc(AP(k)

q , k)|
)

=

= ∑
q∈P(0)

(
(b0(n− k)±O(1)) · |Acc(A{q}, n− k)| · |Acc(AP(k)

q , k)|
)

=

= ∑
q∈P(0)

(
(b0n±O(1)) · |Acc(A{q}, n− k)| · |Acc(AP(k)

q , k)|
)

=

= (b0n±O(1)) · ∑
q∈P(0)

|Acc(A{q}, n− k)| · |Acc(AP(k)
q , k)| =

= (b0n±O(1)) · |Acc(AP(k), n)|. (2.23)

Moreover, since #[e, Acc(AP(k)
q , k)] is a constant that is zero whenever |Acc(AP(k)

q , k)| is zero, we
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have

∑
q∈P(0)

(
|Acc(A{q}, n− k)| · #[e, Acc(AP(k)

q , k)]
)

=

= O

 ∑
q∈P(0)

|Acc(A{q}, n− k)| · |Acc(AP(k)
q , k)|

 =

= O(|Acc(AP(k), n)|) = O(1) · |Acc(AP(k), n)|. (2.24)

Now, by plugging (2.23) and (2.24) into (2.22), we obtain

#[e, Acc(AP(k), n)] = (b0n±O(1)) · |Acc(AP(k), n)|.

Thus, we have proved that for all sets of states T, such that T ⊆ P(k) for some k in the set
{0, 1, . . . , PA − 1}, the property

#[e, Acc(AT , n)] = (b0n±O(1)) · |Acc(AT , n)|.

holds. It remains to prove that the property holds also for all other sets of states S. However, this
is clear, since for n such that n mod PA = k,

#[e, Acc(AS, n)] = #[e, Acc(AS∩P(k), n)] = (b0n±O(1)) · |Acc(AS∩P(k), n)| =
= (b0n±O(1)) · |Acc(AS, n)|.

Since this holds for all k in {0, 1, . . . , PA − 1}, the theorem is proved. �

Theorem 2.3.14 directly implies the following corollary for the quantities representing the
numbers of uses of states.

Corollary 2.3.15 Let A = (K, Σ, δ, q0, F) be a DFAε with strongly connected graphical representa-
tion. Then for each state q in K, a real constant aq in R exists, such that

#[q, Comp(A, n)] = (aqn±O(1)) · |Comp(A, n)|,

and
#[q, Acc(A, n)] = (aqn±O(1)) · |Acc(A, n)|.

Proof. In Theorem 2.1.11, we have observed that the identities

#[q, Comp(A, n)] = ∑
(p,c,q)∈D

#[(p, c, q), Comp(A, n)],

#[q, Acc(A, n)] = ∑
(p,c,q)∈D

#[(p, c, q), Acc(A, n)]

hold for all states q 6= q0, and that for the state q0, the identities

#[q0, Comp(A, n)] = |Comp(A, n)|+ ∑
(p,c,q0)∈D

#[(p, c, q0), Comp(A, n)],

#[q0, Acc(A, n)] = |Acc(A, n)|+ ∑
(p,c,q0)∈D

#[(p, c, q0), Acc(A, n)]

hold (the sums go through all p in K and c in Σ ∪ {ε}). Thus, as a direct consequence, the claim
holds for

aq = ∑
(p,c,q)∈D

a(p,c,q).

That is, the corollary is proved. �
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2.3.4 Almost-Equivalence of Transition-Equiloadedness S-Measures

In this subsection, we shall use Theorem 2.3.14 to prove Theorem 2.3.16 that will be of key impor-
tance for the theory of transition-equiloaded DFA and DFAε. We shall prove that the transition-
equiloadedness S-measures are almost equivalent for S in {C=,A=, C≤,A≤}. These measures are
not equivalent only for DFAε that do not contain any reachable directed cycle from which at least
one accepting state is reachable, i.e., for a subset of DFAε accepting finite languages.

This fact can be viewed as a justification of the definition of transition-equiloadedness, since
it shows a certain robustness of this definition – no matter which of the standard parameters S is
chosen, there are only minor differences in the resulting family of automata and languages.

However, for the case of state-equiloadedness, this property does not hold. We shall prove
that the values of state-equiloadedness S-measures may significantly vary for different S also for
automata, for which the measures of transition-equiloadedness have to be the same.

Theorem 2.3.16 Let A = (K, Σ, δ, q0, F) be a DFAε, such that in the graphical representation of A,
there is at least one reachable directed cycle from which an accepting state is reachable. Then,

BA(C=) = BA(A=) = BA(C≤) = BA(A≤).

Proof. First, let us suppose that the graphical representation of the automaton A is not strongly
connected. Then, there is at least one transition e in D, such that

#[e, γ] ≤ 1

for all computation paths γ. Thus,

#[e, Comp(A, n)] = O(1) · |Comp(A, n)| (2.25)

and
#[e, Acc(A, n)] = O(1) · |Acc(A, n)|. (2.26)

On the other hand, clearly,

∑
y∈D

#[y, Comp(A, n)] = n · |Comp(A, n)|

and
∑

y∈D
#[y, Acc(A, n)] = n · |Acc(A, n)|.

Thus, transitions f1, f2 in D and infinite increasing sequences {nk}∞
k=0, {mk}∞

k=0 of nonnegative
integers have to exist (since there is a reachable directed cycle in the graphical representation of
A, from which an accepting state is reachable), such that

|Comp(A, nk)| > 0,
|Acc(A, mk)| > 0,

#[ f1, Comp(A, nk)] ≥
nk
|D| · |Comp(A, nk)|,

and
#[ f2, Acc(A, mk)] ≥

mk
|D| · |Acc(A, mk)|

for all k in N. Thus, by Lemma 1.5.3,

BA(C=) ≤ lim inf
n→∞

#[e, Comp(A, n)] + 1
#[ f1, Comp(A, n)] + 1

≤ lim inf
k→∞

#[e, Comp(A, nk)] + 1
#[ f1, Comp(A, nk)] + 1

= 0,
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and

BA(A=) ≤ lim inf
n→∞

#[e, Acc(A, n)] + 1
#[ f2, Acc(A, n)] + 1

≤ lim inf
k→∞

#[e, Acc(A, mk)] + 1
#[ f2, Acc(A, mk)] + 1

= 0.

Thus, BA(C=) = BA(A=) = 0. Moreover, clearly,

#[e, Comp(A, nk)] = o (#[ f1, Comp(A, nk)]) ,

and
#[e, Acc(A, mk)] = o (#[ f2, Acc(A, mk)]) .

Thus, by Corollary 2.3.13,

k

∑
j=0

#[e, Comp(A, nj)] = o

(
k

∑
j=0

#[ f1, Comp(A, nj)]

)
, (2.27)

and
k

∑
j=0

#[e, Acc(A, mj)] = o

(
k

∑
j=0

#[ f2, Acc(A, mj)]

)
. (2.28)

Now, let us assume that the sequences {nk}∞
k=0 and {mk}∞

k=0 contain all nonnegative integers,
such that the conditions imposed on them are satisfied. Then, by what we have observed in the
proof of Theorem 2.3.4, for some k0 in N, the sequences {nk}∞

k=k0
and {mk}∞

k=k0
are periodic with

period s in N. Thus, adding terms #[e, Comp(A, l)] resp. #[e, Acc(A, l)] for l not in {nk}∞
k=0 resp.

{mk}∞
k=0 to the sum on the left side of (2.27) resp. (2.28) will preserve the asymptotic relation.

Thus, we obtain

#[e, Comp(A,≤ nk)] = o

(
k

∑
j=0

#[ f1, Comp(A, nj)]

)
,

and

#[e, Acc(A,≤ mk)] = o

(
k

∑
j=0

#[ f2, Acc(A, mj)]

)
,

and, as a direct consequence,

#[e, Comp(A,≤ n)] + 1 = o (#[ f1, Comp(A,≤ n)] + 1) ,

and
#[e, Acc(A,≤ n)] + 1 = o (#[ f2, Acc(A,≤ n)] + 1) .

But this is equivalent to that BA(C≤) = BA(A≤) = 0. Thus, we have proved that if the graphical
representation of the automaton A is not strongly connected, then the property

BA(C=) = BA(A=) = BA(C≤) = BA(A≤) = 0

holds.
Now, let us suppose that the graphical representation of the automaton A is strongly con-

nected. Then, by Theorem 2.3.14, for each transition e in D a constant ae in R exists, such that

#[e, Comp(A, n)] = (aen±O(1)) · |Comp(A, n)|,

and
#[e, Acc(A, n)] = (aen±O(1)) · |Acc(A, n)|.

Let us denote
B = min

(e, f )∈D2

ae

a f
.
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By Lemma 1.5.3,

BA(C=) = min
(e, f )∈D2

lim inf
n→∞

#[e, Comp(A, n)] + 1
#[ f , Comp(A, n)] + 1

=

= min
(e, f )∈D2

lim inf
n→∞

(aen±O(1))|Comp(A, n)|+ 1
(a f n±O(1))|Comp(A, n)|+ 1

= min
(e, f )∈D2

ae

a f
= B,

and

BA(A=) = min
(e, f )∈D2

lim inf
n→∞

#[e, Acc(A, n)] + 1
#[ f , Acc(A, n)] + 1

=

= min
(e, f )∈D2

lim inf
n→∞

(aen±O(1))|Acc(A, n)|+ 1
(a f n±O(1))|Acc(A, n)|+ 1

= min
(e, f )∈D2

ae

a f
= B.

Moreover, by Lemma 1.5.3,

BA(C≤) = min
(e, f )∈D2

lim inf
n→∞

#[e, Comp(A,≤ n)] + 1
#[ f , Comp(A,≤ n)] + 1

= min
(e, f )∈D2

lim inf
n→∞

∑n
k=0 #[e, Comp(A, k)] + 1

∑n
k=0 #[ f , Comp(A, k)] + 1

=

= min
(e, f )∈D2

lim inf
n→∞

∑n
k=0 ((aek±O(1)) · |Comp(A, k)|) + 1

∑n
k=0((a f k±O(1)) · |Comp(A, k)|) + 1

=

= min
(e, f )∈D2

lim inf
n→∞

ae ·∑n
k=0 ((k±O(1)) · |Comp(A, k)|) + 1

a f ·∑n
k=0 ((k±O(1)) · |Comp(A, k)|) + 1

= min
(e, f )∈D2

ae

a f
= B.

Similarly,

BA(A≤) = min
(e, f )∈D2

lim inf
n→∞

#[e, Acc(A,≤ n)] + 1
#[ f , Acc(A,≤ n)] + 1

= min
(e, f )∈D2

lim inf
n→∞

∑n
k=0 #[e, Acc(A, k)] + 1

∑n
k=0 #[ f , Acc(A, k)] + 1

=

= min
(e, f )∈D2

lim inf
n→∞

∑n
k=0 ((aek±O(1)) · |Acc(A, k)|) + 1

∑n
k=0((a f k±O(1)) · |Acc(A, k)|) + 1

=

= min
(e, f )∈D2

lim inf
n→∞

ae ·∑n
k=0 ((k±O(1)) · |Acc(A, k)|) + 1

a f ·∑n
k=0 ((k±O(1)) · |Acc(A, k)|) + 1

= min
(e, f )∈D2

ae

a f
= B.

Thus, we have proved that if the graphical representation of the automaton A is strongly con-
nected, then

BA(C=) = BA(A=) = BA(C≤) = BA(A≤) = B.

That is, the theorem is proved. �

As we have already anticipated, the situation is far more complicated for the case of state-S-
equiloadedness. In the following example, we shall show an example of a deterministic finite
automaton, for which the properties proved for transition-equiloadedness measures are violated
for state-equiloadedness measures. To be more specific, we shall construct a deterministic finite
automaton A, such that state-equiloadedness measures βA(C=), βA(A=), βA(C≤), and βA(A≤)
attain pairwise distinct values.

Example 2.3.17 Let us consider a deterministic finite automaton A = (K, Σ, δ, q0, F) defined as
follows: K = {q0, q1, q2, q3, q4, q5}, Σ = {a, b, c, d}, F = {q2, q3, q5}, and

δ(q0, a) = q1, δ(q0, b)= q1, δ(q0, c) = q2, δ(q0, d)= q4, δ(q1, a) = q0,
δ(q1, b) = q0, δ(q2, a)= q3, δ(q2, b) = q3, δ(q3, a)= q2, δ(q3, b) = q2,
δ(q4, a) = q5, δ(q5, a)= q4, δ(q5, b) = q4, δ(q5, c)= q4, δ(q5, d) = q4.
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q0q1

q2 q3

q4 q5

Figure 2.3: The automaton A. Since the number of transitions is relatively high, and since the characters
are not important in this example, character labels are omitted in the diagram.

The graphical representation of the automaton A is depicted in Figure 2.3 (without labels at
transitions specifying characters – this example works no matter what characters are used in the
transitions, and there is not enough space in the figure to include these labels).

By implementing the method for computing the closed form of the basic quantities, presented
in Section 2.1, on a computer, one may easily obtain the following results:

|Comp(A, n)| = 7
16
· n · 2n +

5
4
· 2n − 1

16
· n · (−2)n − 1

4
· (−2)n,

|Acc(A, n)| = 5
16
· n · 2n +

1
8
· 2n +

1
16
· n · (−2)n − 1

8
· (−2)n,

|Comp(A,≤ n)| = 7
8
· n · 2n +

13
8
· 2n − 1

24
· n · (−2)n − 13

72
· (−2)n − 4

9
,

|Acc(A,≤ n)| = 5
8
· n · 2n − 3

8
· 2n +

1
24
· n · (−2)n − 5

72
· (−2)n +

4
9

,

#[q0, Comp(A, n)] =
7

64
· n2 · 2n +

27
32
· n · 2n +

15
16
· 2n − 1

64
· n2 · (−2)n − 5

32
· n · (−2)n+

+
1

16
· (−2)n,

#[q1, Comp(A, n)] =
7

64
· n2 · 2n +

13
32
· n · 2n +

3
16
· 2n − 1

64
· n2 · (−2)n − 3

32
· n · (−2)n−

− 3
16
· (−2)n,

#[q2, Comp(A, n)] =
1

16
· n2 · 2n +

3
16
· n · 2n +

3
32
· 2n − 1

16
· n · (−2)n − 3

32
· (−2)n,

#[q3, Comp(A, n)] =
1

16
· n2 · 2n +

1
16
· n · 2n − 1

32
· 2n +

1
16
· n · (−2)n +

1
32
· (−2)n,

#[q4, Comp(A, n)] =
3

64
· n2 · 2n +

5
32
· n · 2n +

3
32
· 2n − 1

64
· n2 · (−2)n − 3

32
· n · (−2)n−

− 3
32
· (−2)n,

#[q5, Comp(A, n)] =
3

64
· n2 · 2n +

1
32
· n · 2n − 1

32
· 2n − 1

64
· n2 · (−2)n +

1
32
· n · (−2)n+

+
1

32
· (−2)n,

#[q0, Acc(A, n)] =
5

64
· n2 · 2n +

7
32
· n · 2n +

3
32
· 2n +

1
64
· n2 · (−2)n − 1

32
· n · (−2)n−

− 3
32
· (−2)n,
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#[q1, Acc(A, n)] =
5

64
· n2 · 2n − 3

32
· n · 2n − 1

32
· 2n +

1
64
· n2 · (−2)n − 3

32
· n · (−2)n+

+
1

32
· (−2)n,

#[q2, Acc(A, n)] =
1

16
· n2 · 2n +

3
16
· n · 2n +

3
32
· 2n − 1

16
· n · (−2)n − 3

32
· (−2)n,

#[q3, Acc(A, n)] =
1

16
· n2 · 2n +

1
16
· n · 2n − 1

32
· 2n +

1
16
· n · (−2)n +

1
32
· (−2)n,

#[q4, Acc(A, n)] =
1

64
· n2 · 2n +

1
32
· n · 2n +

1
64
· n2 · (−2)n +

1
32
· n · (−2)n,

#[q5, Acc(A, n)] =
1

64
· n2 · 2n +

1
32
· n · 2n +

1
64
· n2 · (−2)n +

1
32
· n · (−2)n,

#[q0, Comp(A,≤ n)] =
7

32
· n2 · 2n +

5
4
· n · 2n +

27
32
· 2n − 1

96
· n2 · (−2)n − 1

9
· n · (−2)n+

+
7

864
· (−2)n +

4
27

,

#[q1, Comp(A,≤ n)] =
7

32
· n2 · 2n +

3
8
· n · 2n +

7
32
· 2n − 1

96
· n2 · (−2)n − 5

72
· n · (−2)n−

− 125
864
· (−2)n − 2

27
,

#[q2, Comp(A,≤ n)] =
1
8
· n2 · 2n +

1
8
· n · 2n +

3
16
· 2n − 1

24
· n · (−2)n − 11

144
· (−2)n − 1

9
,

#[q3, Comp(A,≤ n)] =
1
8
· n2 · 2n − 1

8
· n · 2n +

3
16
· 2n +

1
24
· n · (−2)n +

5
144
· (−2)n − 2

9
,

#[q4, Comp(A,≤ n)] =
3

32
· n2 · 2n +

1
8
· n · 2n +

5
32
· 2n − 1

96
· n2 · (−2)n − 5

72
· n · (−2)n−

− 71
864
· (−2)n − 2

27
,

#[q5, Comp(A,≤ n)] =
3

32
· n2 · 2n − 1

8
· n · 2n +

5
32
· 2n − 1

96
· n2 · (−2)n +

1
72
· n · (−2)n+

+
25
864
· (−2)n − 5

27
,

#[q0, Acc(A,≤ n)] =
5

32
· n2 · 2n +

1
8
· n · 2n +

7
32
· 2n +

1
96
· n2 · (−2)n − 1

72
· n · (−2)n−

− 61
864
· (−2)n − 4

27
,

#[q1, Acc(A,≤ n)] =
5

32
· n2 · 2n − 1

2
· n · 2n +

19
32
· 2n +

1
96
· n2 · (−2)n − 1

18
· n · (−2)n−

− 1
864
· (−2)n − 16

27
,

#[q2, Acc(A,≤ n)] =
1
8
· n2 · 2n +

1
8
· n · 2n +

3
16
· 2n − 1

24
· n · (−2)n − 11

144
· (−2)n − 1

9
,

#[q3, Acc(A,≤ n)] =
1
8
· n2 · 2n − 1

8
· n · 2n +

3
16
· 2n +

1
24
· n · (−2)n +

5
144
· (−2)n − 2

9
,

#[q4, Acc(A,≤ n)] =
1

32
· n2 · 2n +

1
32
· 2n +

1
96
· n2 · (−2)n +

1
36
· n · (−2)n +

5
864
· (−2)n−

− 1
27

,
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#[q5, Acc(A,≤ n)] =
1

32
· n2 · 2n +

1
32
· 2n +

1
96
· n2 · (−2)n +

1
36
· n · (−2)n +

5
864
· (−2)n−

− 1
27

.

Thus, it is possible to observe that, by Lemma 1.5.3,

βA(C=) = min
(p,q)∈K2

lim inf
n→∞

#[p, Comp(A, n)] + 1
#[q, Comp(A, n)] + 1

= lim inf
n→∞

#[q4, Comp(A, n)] + 1
#[q0, Comp(A, n)] + 1

=
1
3

,

βA(A=) = min
(p,q)∈K2

lim inf
n→∞

#[p, Acc(A, n)] + 1
#[q, Acc(A, n)] + 1

= lim inf
n→∞

#[q4, Acc(A, n)] + 1
#[q0, Acc(A, n)] + 1

= 0,

βA(C≤) = min
(p,q)∈K2

lim inf
n→∞

#[p, Comp(A,≤ n)] + 1
#[q, Comp(A,≤ n)] + 1

= lim inf
n→∞

#[q4, Comp(A,≤ n)] + 1
#[q0, Comp(A,≤ n)] + 1

=
2
5

,

βA(A≤) = min
(p,q)∈K2

lim inf
n→∞

#[p, Acc(A,≤ n)] + 1
#[q, Acc(A,≤ n)] + 1

= lim inf
n→∞

#[q4, Acc(A,≤ n)] + 1
#[q0, Acc(A,≤ n)] + 1

=
1
7

.

That is, these four state-equiloadedness S-measures are pairwise different.

2.3.5 Characterizations of Weak S-Equiloadedness for several S
In this subsection, we shall prove characterizations of weakly transition-S-equiloaded and weakly
state-S-equiloaded DFA and DFAε, for several possible choices of S .

We shall start with the characterization of weak transition-equiloadedness for S in {C=,A=}.
In [25], we have presented the characterization of weak transition-A=-equiloadedness for DFA
(without ε-transitions). The proof presented in this report is based on the proof from [25], how-
ever is slightly different. The remaining characterizations presented in this subsection are entirely
new.

Theorem 2.3.18 Let A = (K, Σ, δ, q0, F) be a DFAε with connected graphical representation.

a) A is weakly transition-C=-equiloaded, if and only if its graphical representation either does
not contain any reachable directed cycle, or it is strongly connected.

b) A is weakly transition-A=-equiloaded, if and only if its graphical representation either does
not contain any reachable directed cycle from which some accepting state is reachable, or it
is strongly connected.

Proof. First, we shall prove the easier left-to-right implications (i.e., the only if part). Let the au-
tomaton A be weakly transition-A=-equiloaded. If the graphical representation of the automaton
A does not contain any reachable directed cycle from which some accepting state is reachable,
the number of accepting computation paths is finite and the implication holds trivially.

Now, let the graphical representation of the automaton A contain such directed cycle, i.e.,
the number of accepting computation paths be infinite. For the purpose of contradiction, let us
suppose that the graphical representation of the automaton A is not strongly connected. Since
the graphical representation is connected, this implies that a bridge has to exist in the graphical
representation.

In other words, a transition e in D exists, such that

#[e, Acc(A, n)] ≤ |Acc(A, n)|

for all n in N. However, since the number of accepting computation paths is infinite and since

∑
y∈D

#[y, Acc(A, n)] = n · |Acc(A, n)|,
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a transition f in D and an infinite increasing sequence of nonnegative integers {nk}∞
k=0 have to

exist, such that |Acc(A, nk)| > 0 and

#[ f , Acc(A, nk)] ≥
nk
|D| · |Acc(A, nk)|

for all k in N. However, existence of such a pair of transitions clearly implies that the transition-
equiloadedness A=-measure of the automaton A is zero.

The case S = C= is analogous.
Now, let us prove the more difficult right-to-left implications. First, let the graphical repre-

sentation of the automaton A be without a reachable directed cycle from which some accepting
state is reachable. Then, there is only a finite number of accepting computation paths. As a
consequence, a nonnegative integer n0 in N exists, such that there is no accepting computation
path of length n, for all nonnegative integers n ≥ n0. Thus, both the numerator and the de-
nominator of the n-th transition-equiloadedness A=-quotient are 1, for all n ≥ n0. This implies
that BA(A=) = 1 > 0, i.e., the automaton A is transition-A=-equiloaded, and thus also weakly
transition-A=-equiloaded.

Further, let us suppose that the graphical representation of the automaton A does not contain
any reachable directed cycle. Then a nonnegative integer n0 in N exists, such that there is not any
(accepting or nonaccepting) computation path of length n, for all nonnegative integers n ≥ n0.
Thus, again, both the numerator and the denominator of the n-th transition-equiloadedness C=-
quotient are 1, for all n ≥ n0. Thus, the automaton A is transition-C=-equiloaded, and therefore
also weakly transition-C=-equiloaded.

Now, we shall prove that if the graphical representation of the automaton A is strongly con-
nected, then the automaton A is both C=-equiloaded and A=-equiloaded.

Let us start with the proof of C=-equiloadedness. First, we shall prove that a constant M in R

exists, such that for all nonnegative integers n ≥ |K|, all transitions e, f in D and for all states q in
K, the property

#Aq [ f , Comp(Aq, n)] ≤ M · #Aq [e, Comp(Aq, n)] (2.29)

holds (as above in this report, Aq denotes the automaton A with its initial state changed to q). To
be more specific, we shall define the constant M as follows. Since the graphical representation
of the automaton A is strongly connected, also the graphical representation of Ap is strongly
connected, for each p in K. Thus, by Lemma 2.3.1,

|Comp(Ap, n)| = Θ(ρn)

for each p in K. Therefore, it follows that a real number M′ ≥ 1 exists, such that

max
p∈K
|Comp(Ap, n)| ≤ M′ ·min

p∈K
|Comp(Ap, n)|

for all n in N. We define M by
M = 2|K||Σ|2|K| ·M′.

We shall prove the inequality (2.29) by a variant of the mathematical induction. In essence, it
shall be an induction on n, but in one induction step, we shall prove the property for |K| values
of n at once. Let the transitions e, f in D be fixed.

1. Let n be in {|K|, |K|+ 1, . . . , 2|K| − 1}. Since the graphical representation of the automaton
A is strongly connected, it is clearly possible to reach the initial state of the transition e in
at most |K| − 1 steps from the state q. One step is needed to pass this transition and the
corresponding computation path can be arbitrarily prolonged – thus, it can be prolonged
also to the length of n.

That is, we have proved that

#Aq [e, Comp(Aq, n)] ≥ 1.
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However, on the other hand, clearly

#Aq [ f , Comp(Aq, n)] ≤ 2|K||Σ|2|K|

(since in each state there are at most |Σ| transitions through which the computation path
can proceed – this holds also for DFAε, since the ε-transition can lead from the state only if
there is no other transition leading from that state). Thus,

#Aq [ f , Comp(Aq, n)] ≤ 2|K||Σ|2|K| · #Aq [e, Comp(Aq, n)].

That is, since 2|K||Σ|2|K| ≤ M, the basis of the induction is proved. However, we shall keep
in mind that for n in {|K|, |K|+ 1, . . . , 2|K| − 1}, we can use also 2|K||Σ|2|K| instead of M –
we shall use this fact in the proof of the induction step.

2. Let us suppose that (2.29) holds for all n in {|K|, |K|+ 1, . . . , k|K| − 1}. We shall prove that
the property (2.29) holds also for all n in the set {k|K|, k|K|+ 1, . . . , (k + 1)|K| − 1}.
Let n be in {k|K|, k|K|+ 1, . . . , (k + 1)|K| − 1}. Every computation path γ′ of the automaton
Aq of length n can be decomposed into a computation path γ of length |K| ending in some
state p(γ) and a computation path of the automaton Ap(γ) of length n − |K|. Thus, if we
denote by p(γ) the state, in which the computation path γ ends, we have

#Aq [ f , Comp(Aq, n)] = ∑
γ∈Comp(Aq ,|K|)

(
#Aq [ f , γ] · |Comp(Ap(γ), n− |K|)|+

+ #Ap(γ)
[ f , Comp(Ap(γ), n− |K|)]

)
≤

≤ ∑
γ∈Comp(Aq ,|K|)

(
#Aq [ f , γ] ·max

p∈K
|Comp(Ap, n− |K|)|+

+ #Ap(γ)
[ f , Comp(Ap(γ), n− |K|)]

) IH
≤

IH
≤ #Aq [ f , Comp(Aq, |K|)] ·max

p∈K
|Comp(Ap, n− |K|)|+

+ ∑
γ∈Comp(Aq ,|K|)

M · #Ap(γ)
[e, Comp(Ap(γ), n− |K|)],

where IH stands for the application of the induction hypothesis. Thus, by applying the
result obtained in the basis of the induction to the quantity #Aq [ f , Comp(Aq, |K|)], we may
continue the derivation as

#Aq [ f , Comp(Aq, n)] ≤ 2|K||Σ|2|K| · #Aq [e, Comp(Aq, |K|)] ·max
p∈K
|Comp(Ap, n− |K|)|+

+ M · ∑
γ∈Comp(Aq ,|K|)

#Ap(γ)
[e, Comp(Ap(γ), n− |K|)]

and since, as we have already noted,

max
p∈K
|Comp(Ap, n− |K|)| ≤ M

2|K||Σ|2|K|
·min

p∈K
|Comp(Ap, n− |K|)|,

we obtain

#Aq [ f , Comp(Aq, n)] ≤ M · #Aq [e, Comp(Aq, |K|)] ·min
p∈K
|Comp(Ap, n− |K|)|+

+ M · ∑
γ∈Comp(Aq ,|K|)

#Ap(γ)
[e, Comp(Ap(γ), n− |K|)] =



76 2.3 S-Equiloadedness

= M · ∑
γ∈Comp(Aq ,|K|)

(
#Aq [e, γ] ·min

p∈K
|Comp(Ap, n− |K|)|+

+ #Ap(γ)
[e, Comp(Ap(γ), n− |K|)]

)
≤

≤ M · ∑
γ∈Comp(Aq ,|K|)

(
#Aq [e, γ] · |Comp(Ap(γ), n− |K|)|+

+ #Ap(γ)
[e, Comp(Ap(γ), n− |K|)]

)
=

= M · #Aq [e, Comp(Aq, n)].

Thus, we have proved that the inequality (2.29) holds for all nonnegative integers n ≥ |K|, all
transitions e, f in D and for all states q in K. However, by Lemma 1.5.3,

BA(C=) = min
(e, f )∈D2

lim inf
n→∞

#[e, Comp(A, n)] + 1
#[ f , Comp(A, n)] + 1

≥

≥ min
(e, f )∈D2

lim inf
n→∞

#[e, Comp(A, n)] + 1
M · #[e, Comp(A, n)] + 1

=
1
M

> 0,

since #[e, Comp(A, n)] → ∞ for n → ∞ and for all e in D. Thus, the automaton A is weakly
transition-C=-equiloaded.

It remains to prove the implication for S = A=. Let e, f in D be transitions. Let {nk}∞
k=0 be

the infinite increasing sequence of all nonnegative integers n, such that |Acc(A, n)| > 0. First,
we shall show that a constant s in N exists, such that for all nonnegative integers k, nk ≥ s, the
property

#[ f , Comp(A, nk − s)] ≤ #[ f , Acc(A, nk)] (2.30)

holds. To prove this, let S be the set of all lengths of closed walks in the graphical representation
of the automaton A, beginning and ending in the vertex corresponding to the initial state q0. Let
d be the greatest common divisor of elements of S. Clearly, the set S is closed under addition and
thus, by Lemma A.5.3, contains all multiples of d greater than some nonnegative integer N in N.

Moreover, let us define the set R as follows: a nonnegative integer n in N is in R, if r in
{0, 1, . . . , d − 1} exists, such that n is the smallest nonnegative integer with residue r after the
division by d, such that (q0, w) `n (q, ε) for some word w in Σ∗ and accepting state q in F. It is
clear that R is a finite set, since it contains at most d elements. Moreover, it is clear that if nk has a
residue r after the division by d for some k in N, then there exists an element R(nk) in R with the
residue r as well. Let us denote the maximal element of R by Rmax.

We shall prove that the inequality (2.30) holds for

s = N + |K|+ Rmax.

It clearly suffices to show that every computation path γ of length nk − s can be prolonged to at
least one accepting computation path of length nk. In fact:

1. The initial state q0 can be reached from the resulting state of the computation path γ in
at most |K| − 1 steps. If we denote the corresponding prolonged computation path by
γ′, then |γ′| has to be divisible by d, since the walk in the graphical representation of A
corresponding to the computation path γ′ is obviously closed.

2. Since nk−R(nk) and thus also (nk−R(nk))− |γ′| are divisible by d, and since the inequality
(nk − R(nk))− |γ′| ≥ N holds, the computation path γ′ can be prolonged to a computation
path γ′′ of length nk − R(nk) ending in q0.

3. From the definition of the set R, it follows that the computation path γ′′ can be prolonged
to a computation path of length nk, ending in an accepting state.
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Thus, we have proved that (2.30) holds. Moreover, clearly

#[ f , Acc(A, nk)] ≤ #[ f , Comp(A, nk)].

for all k in N. Thus, for all k in N, such that nk ≥ s, we have

#[ f , Comp(A, nk − s)] ≤ #[ f , Acc(A, nk)] ≤ #[ f , Comp(A, nk)]. (2.31)

Once again, for a given computation path γ, let us denote by p(γ) the resulting state of this
computation. Now, for k in N, such that nk ≥ s, we have

#[ f , Comp(A, nk)] = ∑
γ∈Comp(A,nk−s)

(
#[ f , γ] · |Comp(Ap(γ), s)|+ #Ap(γ)

[ f , Comp(Ap(γ), s)]
)
≤

≤ #[ f , Comp(A, nk − s)] ·max
p∈K
|Comp(Ap, s)|+

+ ∑
γ∈Comp(A,nk−s)

#Ap(γ)
[ f , Comp(Ap(γ), s)] ≤

≤ #[ f , Comp(A, nk − s)] ·max
p∈K
|Comp(Ap, s)|+

+ |Comp(A, nk − s)| ·max
p∈K

#Ap [ f , Comp(Ap, s)].

Now, both
max
p∈K
|Comp(Ap, s)| and max

p∈K
#Ap [ f , Comp(Ap, s)]

are constants (they do not depend on n). Thus, if we denote by Q the greater of these two con-
stants, we have

#[ f , Comp(A, nk)] ≤ Q · (#[ f , Comp(A, nk − s)] + |Comp(A, nk − s)|) .

However, since we have already proved that the automaton with strongly connected graphical
representation is weakly transition-C=-equiloaded, clearly

#[ f , Comp(A, nk − s)] = ω (|Comp(A, nk − s)|) ,

and thus,
#[ f , Comp(A, nk)] ≤ 2Q · #[ f , Comp(A, nk − s)] (2.32)

for nk greater than some N′ in N. Thus, for nk greater than some N0 in N, we have

#[ f , Acc(A, nk)]
(2.31)
≤ #[ f , Comp(A, nk)]

(2.32)
≤ 2Q · #[ f , Comp(A, nk − s)]

(2.29)
≤

(2.29)
≤ 2MQ · #[e, Comp(A, nk − s)]

(2.31)
≤ 2MQ · #[e, Acc(A, nk)],

since (2.31) holds also for f = e. Thus, by Lemma 1.5.3,

BA(A=) = min
(e, f )∈D2

lim inf
n→∞

#[e, Acc(A, n)] + 1
#[ f , Acc(A, n)] + 1

≥

≥ min
(e, f )∈D2

lim inf
n→∞

#[e, Acc(A, n)] + 1
2MQ · #[e, Acc(A, n)] + 1

=
1

2MQ
> 0,

i.e., the automaton A is weakly transition-A=-equiloaded. The theorem is proved. �

In the theorem that follows, we shall prove the characterization of weakly transition-C≤-
equiloaded and weakly transition-A≤-equiloaded deterministic finite automata. We shall prove
that for DFA and DFAε, the weak transition-C≤-equiloadedness is equivalent to the weak tran-
sition-C=-equiloadedness, and that the weak transition-A≤-equiloadedness is equivalent to the
weak transition-A=-equiloadedness.
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Theorem 2.3.19 Let A = (K, Σ, δ, q0, F) be a DFAε with connected graphical representation.

a) A is weakly transition-C≤-equiloaded, if and only if its graphical representation either does
not contain any reachable directed cycle, or is strongly connected. That is, the automaton
A is weakly transition-C≤-equiloaded, if and only if the automaton A is weakly transition-
C=-equiloaded.

b) A is weakly transition-A≤-equiloaded, if and only if its graphical representation either does
not contain any reachable directed cycle from which some accepting state is reachable, or
is strongly connected. That is, the automaton A is weakly transition-A≤-equiloaded, if and
only if the automaton A is weakly transition-A=-equiloaded.

Proof. First, let us suppose that the graphical representation of the automaton A does not contain
any reachable directed cycle from which some accepting state is reachable. Then, there is only
a finite number of accepting computation paths of the automaton A, and thus, a nonnegative
integer n0 in N exists, such that for all n ≥ n0 and for each transition e in D, the property

#[e, Acc(A,≤ n)] = #[e, Acc(A,≤ n0)]

holds. Thus,

BA(A≤) = min
(e, f )∈D2

#[e, Acc(A,≤ n0)] + 1
#[ f , Acc(A,≤ n0)] + 1

> 0,

i.e., the automaton A is weakly transition-A≤-equiloaded.
Similarly, let us suppose that the graphical representation of the automaton A does not contain

any reachable directed cycle. Then, by the same reasoning as above,

BA(C≤) = min
(e, f )∈D2

#[e, Comp(A,≤ n0)] + 1
#[ f , Comp(A,≤ n0)] + 1

> 0,

and the automaton A is weakly transition-C≤-equiloaded.
Now, let us suppose that the automaton A contains at least one reachable directed cycle from

which some accepting state is reachable. Then, by Theorem 2.3.16, the equality

BA(A≤) = BA(A=)

holds. Thus, by Theorem 2.3.18, it follows that the automaton A is weakly transition-A≤-equi-
loaded, if and only if its graphical representation is strongly connected.

Finally, let us suppose that the automaton A contains at least one reachable directed cycle.
Then, for each transition e in D and all n in N, the property

#[e, Comp(A,≤ n)] = #[e, Acc(AK,≤ n)]

holds, where AK = (K, Σ, δ, q0, K) is the automaton A with all states accepting. Thus, by Theorem
2.3.16, we obtain

BA(C≤) = BAK (A≤) = BAK (A=).

Since the graphical representation of the automaton A is strongly connected if and only if the
graphical representation of the automaton AK is strongly connected, it follows from Theorem
2.3.18 that the automaton A is weakly transition-C≤-equiloaded, if and only if its graphical rep-
resentation is strongly connected. Thus, the theorem is proved. �

Before we turn our attention to weakly state-S-equiloaded DFA and DFAε, we shall state
a theorem that we have proved in [25] for weakly transition-A=-equiloaded DFA (without ε-
transitions), and that can be clearly extended to hold also for another choices of S . Since the
original proof is not very complicated, we shall not present it here. We shall prove only the
extension of the theorem to S in {C=, C≤,A≤}.
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Theorem 2.3.20 Let L in R be a regular language. Let S be in {C=,A=, C≤,A≤}. The language
L is a weakly transition-S-equiloaded DFA-language, if and only if the minimal DFA accepting
L is weakly transition-S-equiloaded.

Proof. The proof for S = A= can be found in [25]. By Theorem 2.3.19, the theorem holds also
for S = A≤.

Now, by Theorem 2.3.18, it is clear that Lδ−WEQ−DFA(C=) ⊆ Lδ−WEQ−DFA(A=) (in fact, we
shall prove in Subsection 2.3.6 that these families are equal). That is, if L is in Lδ−WEQ−DFA(C=),
then it is also in Lδ−WEQ−DFA(A=) and thus, the minimal DFA accepting L is weakly transition-
A=-equiloaded. Moreover, it is clear that if the graphical representation of the minimal DFA
accepting L does not contain any reachable directed cycle from which some accepting state is
reachable, then it also does not contain any other reachable directed cycle – otherwise, it would be
possible to delete the states of the cycle without changing the accepted language, and that would
be a contradiction with the assumption that the given automaton is minimal. However, this
property together with Theorem 2.3.18 implies that this minimal DFA is also weakly transition-
C=-equiloaded. Since the converse implication is trivial, the theorem holds also for the case
S = C=.

The last remaining case, S = C≤, follows directly from the case S = C= and from Theorem
2.3.19. �

In what follows, we shall characterize the family of weakly state-C=-equiloaded determin-
istic finite automata. However, before we state this characterization (Theorem 2.3.31), we shall
introduce some notation and prove several technical lemmas that we shall use in its proof.

Notation 2.3.21 Let A = (K, Σ, δ, q0, F) be a DFAε, such that its graphical representation has k
strongly connected components, corresponding to disjoint sets of states K0, K1, . . . , Kk−1, such
that

k−1⋃
i=0

Ki = K,

and q0 is in K0. Let i be in {0, 1, . . . , k − 1}, and q be in Ki. Then, by A[Ki, q], we denote the
automaton obtained by the restriction of the set of states of A to Ki, and by choosing q as an
initial state of the resulting automaton. Formally, A[Ki, q] = (Ki, Σ, δ′, q, F ∩ Ki), where, for p, q in
Ki and c in Σ, δ′(p, c) = q whenever δ(p, c) = q.

Definition 2.3.22 Let the symbols have the same meaning as in Notation 2.3.21. We shall define
the SCC-dag SCC(A) of the automaton A as follows: SCC(A) is a directed acyclic graph with the
set of vertices {K0, K1, . . . , Kk−1}, and with an edge from the vertex Ki to the vertex Kj (for some
i, j in {0, 1, . . . , k − 1}), if and only if states p in Ki and q in Kj exist, such that (p, c) ` (q, ε) for
some c in Σ ∪ {ε}.

Notation 2.3.23 Let the symbols have the same meaning as above. Let x = (Ki1 , Ki2 , . . . , Kis) be a
path in SCC(A). Let q be a state in Ki1 . Then, by Compx(Aq, n), we denote the set of computation
paths γ of the automaton Aq, such that γ follows the path x, i.e., it first visits some nonzero
number of states in Ki1 , then some nonzero number of states in Ki2 , etc., and finally ends in some
state in Kis . Similarly, by Accx(Aq, n), we denote the set of all such accepting computation paths.

Notation 2.3.24 Let A = (K, Σ, δ, q0, F) be a DFAε, let Ki and Kj be vertices of its SCC-dag. Then,
by Pth[Ki, Kj], we denote the set of all paths in SCC(A), from the vertex Ki to the vertex Kj.

Lemma 2.3.25 Let the symbols have the same meaning as above. Let x = (Ki1 , Ki2 , . . . , Kis) be a
path in SCC(A). Let q be a state in Ki1 . For j = 0, 1, . . . , k − 1, let us denote by ρj the Perron-
Frobenius eigenvalue of the transition matrix ∆A[Kj ,qj ] of the automaton A[Kj, qj], where qj is an
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arbitrary11 state in Kj, for j = 1, . . . , k − 1. Let us denote by ρmax the greatest of the Perron-
Frobenius eigenvalues corresponding to strongly connected components on the path x, i.e.,

ρmax = max
j=1,...,s

ρij .

Then, if ρmax > 0, the number of computation paths in Compx(Aq, n) is asymptotically equal to

|Compx(Aq, n)| = Θ
(

nr−1 · ρn
max

)
,

where r is the number of strongly connected components corresponding to vertices on x, such
that their Perron-Frobenius eigenvalue is ρmax, i.e.,

r =
∣∣∣{j ∈ {1, . . . , s}

∣∣∣ ρij = ρmax

}∣∣∣ .

If ρmax = 0, then a nonnegative integer constant R exists, such that

|Compx(Aq, n)| = R · [n = s].

Proof. For j = 1, . . . , s, let us denote by xj the path xj = (Ki1 , Ki2 , . . . , Kij). We shall prove by
induction on j that the statement of the lemma holds for all xj, j = 1, . . . , s.

For this purpose, let us denote by ρ
(j)
max the greatest of the Perron-Frobenius eigenvalues cor-

responding to strongly connected components on the path xj, and by r(j), the number of strongly
connected components corresponding to vertices on xj, such that their Perron-Frobenius eigen-

value is ρ
(j)
max. That is, ρ

(j)
max and r(j) are defined analogously as ρmax and r, but for the path xj

instead of x.

1. For j = 1, it is obvious that the property

|Compx1
(Aq, n)| = |Comp(A[Ki1 , q], n)|

holds. However, the graphical representation of the automaton A[Ki1 , q] is strongly con-
nected, and thus, by Lemma 2.3.1,

|Comp(A[Ki1 , q], n)| = Θ(ρn
i1).

However, since Ki1 is the only vertex on the path x1, clearly ρ
(1)
max = ρi1 , and r(1) = 1. Thus,

the basis of the induction is proved.

2. Let us suppose that the statement of the lemma holds for all xj, j = 1, . . . , t, for some t in
{1, . . . , s− 1}. We shall prove that it holds also for xt+1. Let qtrans in Kit be a state, such that
a state q′trans in Kit+1 exists, such that

(qtrans, c) ` (q′trans, ε)

for some c in Σ ∪ {ε}. Let P = PA[Kit ,qt ] be the period of the automaton A[Kit , qt]. Then,
obviously, at least one number p in {0, 1, . . . , P − 1} and a nonnegative integer n0 in N

exists, such that
Accxt(A{qtrans}

q , n · P + p)

is nonempty for all n ≥ n0. Thus, it can be easily seen (a similar reasoning has been used a
number of times up to now in this report) that a constant C in N exists, such that for n ≥ n0,

11This eigenvalue is obviously the same, no matter what state qj in Kj is chosen.
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every computation path of length (n− C) · P + p can be prolonged to a computation path
of length n · P + p, ending in qtrans. In other words,∣∣∣Accxt(A{qtrans}

q , n · P + p)
∣∣∣ ≥ ∣∣∣Compxt

(Aq, (n− C) · P + p)
∣∣∣ ≥

≥ C′ ·
∣∣∣Compxt

(Aq, n · P + p)
∣∣∣ , (2.33)

for some positive real constant C′ in R+ (the second inequality is a direct consequence of
the induction hypothesis).
Now, it is obvious that the number of computation paths in Compxt+1

(Aq, n) is greater than
or equal to the number of uses of the transition (qtrans, c, q′trans) in these computation paths.
Moreover, by a direct combinatorial insight, it is clear that Lemma 2.3.6 can be generalized
to hold also for Compxt+1

(Aq, n) instead of Comp(A, n). That is,∣∣∣Compxt+1
(Aq, n)

∣∣∣ ≥ #
[
(qtrans, c, q′trans), Compxt+1

(Aq, n)
]

=

=
n−1

∑
i=0

∣∣∣Accxt(A{qtrans}
q , i)

∣∣∣ · ∣∣Comp(A[Kit+1 , q′trans], n− i− 1)
∣∣ . (2.34)

Further, from the induction hypothesis and Lemma 2.3.1, it is clear that a positive real con-
stant D in R+ exists, such that∣∣∣Compxt

(Aq, i · P + p)
∣∣∣ · ∣∣Comp(A[Kit+1 , q′trans], n− (i · P + p)− 1)

∣∣ ≥
≥ D ·

2P−1

∑
l=0

∣∣∣Compxt
(Aq, i · P + l)

∣∣∣ · ∣∣Comp(A[Kit+1 , q′trans], n− (i · P + l)− 1)
∣∣ . (2.35)

Thus, with use of inequalities (2.33) and (2.35), we may continue12 the derivation (2.34) as
follows:∣∣∣Compxt+1

(Aq, n)
∣∣∣ ≥ n−1

∑
i=0

∣∣∣Accxt(A{qtrans}
q , i)

∣∣∣ · ∣∣Comp(A[Kit+1 , q′trans], n− i− 1)
∣∣ ≥

≥
b(n−1−p)/Pc

∑
i=0

∣∣∣Accxt(A{qtrans}
q , i · P + p)

∣∣∣ ·
·
∣∣Comp(A[Kit+1 , q′trans], n− (i · P + p)− 1)

∣∣ (2.33)
≥

(2.33)
≥ C′ ·

b(n−1−p)/Pc

∑
i=0

∣∣∣Compxt
(A{qtrans}

q , i · P + p)
∣∣∣ ·

·
∣∣Comp(A[Kit+1 , q′trans], n− (i · P + p)− 1)

∣∣ (2.35)
≥

(2.35)
≥ C′ · D ·

n−1

∑
i=0

∣∣∣Compxt
(Aq, i)

∣∣∣ · ∣∣Comp(A[Kit+1 , q′trans], n− i− 1)
∣∣ .

Now, let us first examine the case 0 < ρit+1 = ρ
(t)
max = ρ

(t+1)
max =: ρ. Then, r(t+1) = r(t) + 1,

and by the use of induction hypothesis and Lemma 2.3.1, we obtain∣∣∣Compxt+1
(Aq, n)

∣∣∣ ≥ C′ · D ·
n−1

∑
i=0

Θ
(

ir
(t)−1 · ρi

)
·Θ
(

ρn−i−1
)

=

= E · ρn
n−1

∑
i=0

ir
(t)−1 = Θ

(
nr(t+1)−1 · ρn

)
.

12At least for automata with infinite number of accepting computation paths in Accxt (A{qtrans}
q ). However, the case of

automata with finite number of such computation paths is trivial.
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where E in R+ is a positive real constant. Thus, in this case,∣∣∣Compxt+1
(Aq, n)

∣∣∣ = Ω
(

nr(t+1)−1 · ρn
)

.

We consider to be obvious that the theorem holds also for the case 0 = ρit+1 = ρ
(t)
max = ρ

(t+1)
max .

Now, let us examine the case ρit+1 = ρ
(t+1)
max > ρ

(t)
max > 0. Then, r(t+1) = 1. The reader may

easily convince himself that for arbitrary two distinct real numbers, a, b in R, a > b, the
formula

n

∑
i=0

aibn−i−1 =
−a

b− a
· an +

b
b− a

· bn = Θ(an) (2.36)

holds. We obtain∣∣∣Compxt+1
(Aq, n)

∣∣∣ ≥ C′ · D ·
n−1

∑
i=0

Θ
(

ir
(t)−1 ·

(
ρ
(t)
max

)i
)
·Θ
(

ρn−i−1
it+1

)
.

For some ε > 0, such that ρ
(t)
max + ε < ρit+1 , we have

n−1

∑
i=0

Θ
((

ρ
(t)
max

)i
)
·Θ
(

ρn−i−1
it+1

)
�

�
n−1

∑
i=0

Θ
(

ir
(t)−1 ·

(
ρ
(t)
max

)i
)
·Θ
(

ρn−i−1
it+1

)
�

�
n−1

∑
i=0

Θ
((

ρ
(t)
max + ε

)i
)
·Θ
(

ρn−i−1
it+1

)
.

However, both
n−1

∑
i=0

Θ
((

ρ
(t)
max

)i
)
·Θ
(

ρn−i−1
it+1

)
,

and
n−1

∑
i=0

Θ
((

ρ
(t)
max + ε

)i
)
·Θ
(

ρn−i−1
it+1

)
are Θ

(
ρn

it+1

)
, by (2.36). Thus, also

n−1

∑
i=0

Θ
(

ir
(t)−1 ·

(
ρ
(t)
max

)i
)
·Θ
(

ρn−i−1
it+1

)
= Θ

(
ρn

it+1

)
,

and that implies ∣∣∣Compxt+1
(Aq, n)

∣∣∣ = Ω
(

nr(t+1)−1 ·
(

ρ
(t+1)
max

)n)
.

The proof of the previous case with ρ
(t)
max = 0 is left to the reader.

Finally, let us examine the case 0 < ρit+1 < ρ
(t+1)
max = ρ

(t)
max. In this case, we have r(t+1) = r(t).

By a slightly more involved process than in the previous case, it is possible to prove that

n−1

∑
i=0

Θ
(

ir
(t)−1 ·

(
ρ
(t)
max

)i
)
·Θ
(

ρn−i−1
it+1

)
= Θ

(
nr(t)−1 ·

(
ρ
(t)
max

)n)
,

and thus also ∣∣∣Compxt+1
(Aq, n)

∣∣∣ = Ω
(

nr(t+1)−1 ·
(

ρ
(t+1)
max

)n)
.
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The proof of the previous case with ρit+1 = 0 is left to the reader, once again.

Thus, we have proved that∣∣∣Compxt+1
(Aq, n)

∣∣∣ = Ω
(

nr(t+1)−1 ·
(

ρ
(t+1)
max

)n)
holds for all three possible cases, and it remains to prove that∣∣∣Compxt+1

(Aq, n)
∣∣∣ = O

(
nr(t+1)−1 ·

(
ρ
(t+1)
max

)n)
.

However, this asymptotic relation may be proved in a similar manner (this estimate is eas-
ier) and the details are left to the reader.

The lemma is proved. �

Lemma 2.3.26 Let the symbols have the same meaning as in Notation 2.3.21. Let q be a state in
Kj, for some j in {0, 1, . . . , k− 1}. Let s be in {0, 1, . . . , k− 1}. Then,

∣∣∣Acc(AKs
q , n)

∣∣∣ = ∑
x∈Pth[Kj ,Ks ]

∣∣Compx(Aq, n)
∣∣ = Θ

(
max

x∈Pth[Kj ,Ks ]

∣∣Compx(Aq, n)
∣∣) .

Proof. It is clear that every computation path γ in Acc(AKs
q , n) is also in Compx(Aq, n), for some

x in Pth[Kj, Ks]. The converse is also obviously true. Moreover, if γ1 is in Compx(Aq, n), and γ2
is in Compy(Aq, n), for some x, y in Pth[Kj, Ks], x 6= y, then clearly γ1 6= γ2. That is, the first
identity is proved.

Now, obviously,

max
x∈Pth[Kj ,Ks ]

∣∣Compx(Aq, n)
∣∣ ≥ 1
|Pth[Kj, Ks]|

· ∑
x∈Pth[Kj ,Ks ]

∣∣Compx(Aq, n)
∣∣ ,

and
max

x∈Pth[Kj ,Ks ]

∣∣Compx(Aq, n)
∣∣ ≤ ∑

x∈Pth[Kj ,Ks ]

∣∣Compx(Aq, n)
∣∣ ,

and since 1/|Pth[Kj, Ks]| is a constant, the second asymptotic identity is proved as well. Thus,
the lemma is proved. �

Notation 2.3.27 Let the symbols have the same meaning as in Notation 2.3.21. Let Ki, Kj, Kl be
vertices of SCC(A). Then, by Pth[Ki, Kj, Kl ], we shall denote the set of all paths x = (Ki1 , Ki2 , . . . , Kis)
in SCC(A), such that r in {1, 2, . . . , s} exists, such that (Ki1 , . . . , Kir ) is in Pth[Ki, Kj], and (Kir , . . . , Kis)
is in Pth[Kj, Kl ]. That is, by Pth[Ki, Kj, Kl ] we denote the set of all paths x in SCC(A) from the ver-
tex Ki to the vertex Kl , such that the vertex Kj lies on x.

Furthermore, we shall use a notation

Pth[Ki, Kj, ∗] =
k−1⋃
l=0

Pth[Ki, Kj, Kl ].

Lemma 2.3.28 Let the symbols have the same meaning as in Notation 2.3.21. Let q be a state
in Kj, for some j in {0, 1, . . . , k − 1}. Let s be a member of the set {0, 1, . . . , k − 1}. Let us de-
note by ρj the Perron-Frobenius eigenvalue corresponding to Kj, and by ρmax the greatest of
the Perron-Frobenius eigenvalues corresponding to strongly connected components on paths in
Pth[K0, Kj, Ks]. Let us denote by r the greatest positive integer, such that a path x in Pth[K0, Kj, Ks]
exists, such that there are r strongly connected components on x with the Perron-Frobenius eigen-
value equal to ρmax. Then:
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(i) If ρmax > 0, and ρj = ρmax, then

#
[
q, Acc(AKs , n)

]
= Θ (nr · ρn

max) .

(ii) If ρmax > 0, and ρj < ρmax, then

#
[
q, Acc(AKs , n)

]
= Θ

(
nr−1 · ρn

max

)
.

(iii) If ρmax = ρj = 0, then

#
[
q, Acc(AKs , n)

]
= 0

for all n greater than some n0 in N.

Proof. We shall prove these three claims separately:

(i) In this case, there has to be a path x1 in Pth[K0, Kj] with r1 strongly connected compo-
nents with Perron-Frobenius eigenvalue ρmax, and a path x2 in Pth[Kj, Ks] with r2 strongly
connected components with Perron-Frobenius eigenvalue ρmax, so that r1 + r2 = r + 1.
Moreover, since Kj lies both on x1 and x2, it follows that r1 > 0, and also r2 > 0.

Thus, from Lemma 2.3.25 and Lemma 2.3.26, it follows that∣∣∣Acc(AKj , n)
∣∣∣ = Θ

(
nr1−1 · ρn

max

)
.

Similarly, ∣∣∣Acc(AKs
q , n)

∣∣∣ = Θ
(

nr2−1 · ρn
max

)
.

Moreover, by a standard reasoning concerning the period of the j-th strongly connected
component, it is possible to prove that

n

∑
i=0

∣∣∣Acc(A{q}, i)
∣∣∣ · ∣∣∣Acc(AKs

q , n− i)
∣∣∣ = Θ

(
n

∑
i=0

∣∣∣Acc(AKj , i)
∣∣∣ · ∣∣∣Acc(AKs

q , n− i)
∣∣∣)

(the definition of Θ that is required to hold for all n greater than some n0 in N is used here).
Thus, by Lemma 2.3.7, we have

#
[
q, Acc(AKs , n)

]
=

n

∑
i=0

∣∣∣Acc(A{q}, i)
∣∣∣ · ∣∣∣Acc(AKs

q , n− i)
∣∣∣ =

= Θ

(
n

∑
i=0

∣∣∣Acc(AKj , i)
∣∣∣ · ∣∣∣Acc(AKs

q , n− i)
∣∣∣)

=
n

∑
i=0

Θ
(

ir1−1 · ρi
max

)
·Θ
(
(n− i)r2−1 · ρn−i

max

)
=

= Θ

(
ρn

max ·
n

∑
i=0

ir1−1 · (n− i)r2−1

)
= Θ

(
nr1+r2−1 · ρn

max

)
=

= Θ (nr · ρn
max) .

(ii) In this case, there has to be a path x1 in Pth[K0, Kj] with r1 strongly connected components
with Perron-Frobenius eigenvalue ρmax, and a path x2 in Pth[Kj, Ks] with r2 strongly con-
nected components with Perron-Frobenius eigenvalue ρmax, so that r1 + r2 = r.

Then, the result may be proved in a similar manner that in the case of claim (i), with the
difference that the case r1 = 0 (resp. r2 = 0) has to be handled as well.
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(iii) This claim is considered to be obvious.

The lemma is proved. �

Lemma 2.3.29 Let the symbols have the same meaning as in Notation 2.3.21. Let q be a state in Kj,
for some j in {0, 1, . . . , k− 1}. Let us denote by ρj the Perron-Frobenius eigenvalue corresponding
to Kj, and by ρmax the greatest of the Perron-Frobenius eigenvalues corresponding to strongly
connected components on paths in Pth[K0, Kj, ∗]. Let us denote by r the greatest positive integer,
such that a path x in Pth[K0, Kj, ∗] exists, such that there are r strongly connected components on
x with the Perron-Frobenius eigenvalue equal to ρmax. Then:

(i) If ρmax > 0, and ρj = ρmax, then

# [q, Comp(A, n)] = Θ (nr · ρn
max) .

(ii) If ρmax > 0, and ρj < ρmax, then

# [q, Comp(A, n)] = Θ
(

nr−1 · ρn
max

)
.

(iii) If ρmax = ρj = 0, then
# [q, Comp(A, n)] = 0

for all n greater than some n0 in N.

Proof. The lemma is a direct consequence of Lemma 2.3.28, and of the obvious fact that

# [q, Comp(A, n)] =
k−1

∑
i=0

#
[
q, Acc(AKi , n)

]
,

where k is a constant. �

Example 2.3.30 Now, we shall demonstrate Lemma 2.3.29 on an example. Let us consider a
deterministic finite automaton A = (K, Σ, δ, q0, F) defined as follows: K = {q0, q1, . . . , q9}, Σ =
{a, b, c, d}, and

δ(q0, a) = q1, δ(q0, b) = q1, δ(q1, a) = q0, δ(q1, b) = q0,
δ(q1, c) = q2, δ(q1, d) = q4, δ(q2, a) = q3, δ(q2, b) = q3,
δ(q3, a) = q2, δ(q3, b) = q2, δ(q4, a) = q5, δ(q5, a) = q4,
δ(q5, c) = q6, δ(q6, a) = q7, δ(q6, b) = q7, δ(q7, a) = q6,
δ(q7, b) = q6, δ(q7, c) = q8, δ(q8, a) = q9, δ(q8, b) = q9,
δ(q9, a) = q8, δ(q9, b) = q8.

The set of accepting states F does not matter for the purposes of this example, let us for instance
suppose that F = K. The graphical representation of the automaton A is depicted in Figure 2.4
(without irrelevant character labels).

The graphical representation of the automaton A has 5 strongly connected components, cor-
responding to the sets of states

K0 = {q0, q1},
K1 = {q2, q3},
K2 = {q4, q5},
K3 = {q6, q7},
K4 = {q8, q9}.
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q0 q1

q2 q3

q4 q5 q6 q7 q8 q9

Figure 2.4: The automaton A (the character labels at transitions are not depicted).

The corresponding Perron-Frobenius eigenvalues are ρ0 = ρ1 = ρ3 = ρ4 = 2, and ρ2 = 1. Let us
examine the number of uses of states q0, q2, q4, and q6. By Lemma 2.3.29, it follows that

# [q0, Comp(A, n)] = Θ(n3 · 2n),

# [q2, Comp(A, n)] = Θ(n2 · 2n),

# [q4, Comp(A, n)] = Θ(n2 · 2n),

# [q6, Comp(A, n)] = Θ(n3 · 2n)

(to the states q0, q2, and q6, the point (i) of Lemma 2.3.29 applies, to the state q4, the point (ii) of
the lemma applies).

In deed, by numerically computing these quantities by the method presented in Section 2.1,
we may obtain the approximate13 results

# [q0, Comp(A, n)] ≈ 0.0017 · n3 · 2n + 0.0668 · n2 · 2n + 0.7781 · n · 2n + 0.5111 · 2n+

+ 0.0026 · n2 · (−2)n + 0.1502 · n · (−2)n + 0.2914 · (−2)n+
+ 0.1852 + 0.0123 · (−1)n,

# [q2, Comp(A, n)] ≈ 0.0625 · n2 · 2n + 0.0625 · n · 2n − 0.0312 · 2n + 0.0625 · n · (−2)n+
+ 0.0312 · (−2)n,

# [q4, Comp(A, n)] ≈ 0.0139 · n2 · 2n − 0.0231 · n · 2n + 0.6042 · 2n + 0.0139 · n · (−2)n+
+ 0.2106 · (−2)n − 0.2778 · n− 0.6481− 0.0185 · n · (−1)n−
− 0.1667 · (−1)n,

# [q6, Comp(A, n)] ≈ 0.0017 · n3 · 2n + 0.0043 · n2 · 2n − 0.0344 · n · 2n + 0.0423 · 2n+

+ 0.0026 · n2 · (−2)n + 0.0043 · n · (−2)n − 0.0177 · (−2)n − 0.0370+
+ 0.0123 · (−1)n.

The above derived asymptotic estimates are clearly satisfied.

Now, we shall finally use the theory developed to prove the characterization of the family of
weakly state-C=-equiloaded deterministic finite automata.

Theorem 2.3.31 Let A = (K, Σ, δ, q0, F) be a DFAε having a connected graphical representation,
such that its graphical representation has k strongly connected components, corresponding to
disjoint sets of states K0, K1, . . . , Kk−1, such that

k−1⋃
i=0

Ki = K,

13The coefficients have been computed numerically, and thus, they are only approximate. However, the eigenvalues
and their multiplicities are exact.
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q0 is in K0, and every strongly connected component is reachable.14 For i = 0, 1, . . . , k − 1, let
ρi denote the Perron-Frobenius eigenvalue of the transition matrix ∆A[Ki ,qi ] of the automaton
A[Ki, qi], where qi is an arbitrary state in the set Ki, for i = 1, . . . , k− 1. Then, the automaton A is
weakly state-C=-equiloaded, if and only if the following properties hold:

(i) The Perron-Frobenius eigenvalues corresponding to the strongly connected components of
the graphical representation of the automaton A are all the same, i.e.,

ρ0 = ρ1 = . . . = ρk−1.

(ii) The length of the longest path xi in Pth[K0, Ki, ∗], is equal for all i in {0, 1, . . . , k − 1}, or
ρi = 0 for i = 0, 1, . . . , k− 1.

Proof. We shall prove each implication separately.

⇒: First, let us suppose that the property (i) does not hold. Then, indices i, j in {0, 1, . . . , k− 1}
exist, such that ρi < ρj. Moreover, let ρj be the greatest of all Perron-Frobenius eigenvalues.
Let qi in Ki be a state. Let ρmax be a greatest of the Perron-Frobenius eigenvalues corre-
sponding to the strongly connected components on the paths in Pth[K0, Ki, ∗]. It follows
from Lemma 2.3.29 that

#[qi, Comp(A, n)] = Θ (nr · ρn
max) ,

for some r in N.

Now, if ρmax < ρj, then, by Lemma 2.3.29, the property

#[qj, Comp(A, n)] = Θ
(

nr′ · ρn
j

)
holds for some qj in Kj and r′ in N, and the automaton A is obviously not weakly state-C=-
equiloaded.

If ρmax = ρj, then s in {0, 1, . . . , k− 1} has to exist, such that ρs = ρj = ρmax, and by Lemma
2.3.29, such that

#[qs, Comp(A, n)] = Ω
(

nr+1 · ρn
max

)
for some qs in Ks. It is clear that the automaton A is not weakly state-C=-equiloaded.

Finally, let us suppose that the property (i) holds, and that the property (ii) does not hold. It
clearly follows from Lemma 2.3.29 that the automaton A is not weakly state-C=-equiloaded.

⇐: This implication follows directly from Lemma 2.3.29.

The characterization is proved. �

Although we leave the characterizations of weakly state-S-equiloaded DFA and DFAε open
for S in {A=, C≤,A≤}, let us note that the above-presented characterization for S = C= and the
methods used in its proof give us a sharp intuition also for the remaining cases. Thus, we may
conjecture that a deterministic finite automaton is weakly state-C≤-equiloaded if and only if it is
weakly state-C=-equiloaded. Furthermore, we suppose that the characterization of weak state-
A=-equiloadedness will be the same as the characterization of weak state-C=-equiloadedness,
with an additional requirement related to periodicity. Anyway, we leave the details as a subject
for the later study.

14It is clearly possible to construct an equivalent DFAε satisfying the property of reachability to every DFAε by simply
deleting the strongly connected components that are not reachable.
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2.3.6 Relations between the Families of S-Equiloaded Languages

In this subsection, we shall examine the mutual relations between the families of S-equiloaded
and weakly S-equiloaded DFA-languages and DFAε-languages. Since the only families of such
languages that have been studied up to now are the families LK−EQ−DFA(A=), Lδ−EQ−DFA(A=),
and Lδ−WEQ−DFA(A=), most of the results presented in this subsection are completely new.

We shall start by presenting the result that shows a certain robustness of the definition of weak
transition-S-equiloadedness: we shall prove that the families of weakly transition-S-equiloaded
DFA-languages are the same, no matter what S from the set {C=,A=, C≤,A≤} is chosen. The
same property holds also for the families of weakly transition-S-equiloaded DFAε-languages.

Theorem 2.3.32 The following identities hold:

1. Lδ−WEQ−DFA(C=) = Lδ−WEQ−DFA(A=) = Lδ−WEQ−DFA(C≤) = Lδ−WEQ−DFA(A≤),

2. Lδ−WEQ−DFAε(C=) = Lδ−WEQ−DFAε(A=) = Lδ−WEQ−DFAε(C≤) = Lδ−WEQ−DFAε(A≤).

Proof. Let L be a regular language, for which a deterministic finite automaton (with or without
ε-transitions) A exists, such that L(A) = L and the graphical representation of the automaton
A does not contain any reachable directed cycle from which some accepting state is reachable.
Then, clearly, a deterministic finite automaton A′ accepting L exists, such that its graphical rep-
resentation does not contain any reachable directed cycle – it clearly suffices to delete all states q
of the automaton A, such that there is not any accepting state reachable from q in A.

The statement of the theorem is then a direct consequence of this fact, of Theorem 2.3.18, and
of Theorem 2.3.19. �

Now we shall prove that, similarly as in the case of the strict S-equiloadedness, the use of
ε-transitions strengthens the computational power of weakly transition-S-equiloaded determin-
istic finite automata, as well as transition-S-equiloaded deterministic finite automata.

Theorem 2.3.33 The following strict inclusions hold for all S in {C=,A=, C≤,A≤}:

1. Lδ−WEQ−DFA(S) ( Lδ−WEQ−DFAε(S),

2. Lδ−EQ−DFA(S) ( Lδ−EQ−DFAε(S).

Proof. According to Theorem 2.3.32, it is sufficient to prove the theorem for one arbitrary S in
the set {C=,A=, C≤,A≤}. We shall prove the theorem for S = C=.

Let us consider the language L = {a}+. In the proof of Theorem 2.2.8, we have constructed
a deterministic finite automaton with ε-transitions accepting L. It can be easily proved that this
automaton is transition-C=-equiloaded. Thus, the language L is both in Lδ−WEQ−DFAε(C=) and
in Lδ−EQ−DFAε(C=).

However, on the other hand, the graphical representation of the minimal DFA accepting L
(that can be easily constructed by the reader) is not strongly connected and, at the same time,
contains a reachable directed cycle. Thus, by Theorem 2.3.20, the language L is not the member
of the family Lδ−WEQ−DFA(C=) and, as a consequence, nor of the family Lδ−EQ−DFA(C=). That
is, the theorem is proved. �

In the following theorem we shall observe that, unlike in the case of weak transition-S-
equiloadedness, the families of transition-S-equiloaded DFA(ε)-languages are not all the same
for S in {C=,A=, C≤,A≤}. However, in Theorem 2.3.35, we shall prove that the only difference
between these families of languages is in finite languages – that is, these families of languages
are almost the same.

Theorem 2.3.34 The following relations hold:

1. Lδ−EQ−DFA(C≤) ( Lδ−EQ−DFA(C=) = Lδ−EQ−DFA(A=),
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2. Lδ−EQ−DFAε(C≤) ( Lδ−EQ−DFAε(C=) = Lδ−EQ−DFAε(A=),

3. Lδ−EQ−DFA(A≤) ( Lδ−EQ−DFA(C=) = Lδ−EQ−DFA(A=),

4. Lδ−EQ−DFAε(A≤) ( Lδ−EQ−DFAε(C=) = Lδ−EQ−DFAε(A=).

5. The families Lδ−EQ−DFA(C≤) and Lδ−EQ−DFA(A≤) are incomparable.

6. The families Lδ−EQ−DFAε(C≤) and Lδ−EQ−DFAε(A≤) are incomparable.

Proof. First, we shall prove that Lδ−EQ−DFA(C=) = Lδ−EQ−DFA(A=) and Lδ−EQ−DFAε(C=) =
Lδ−EQ−DFAε(A=). Let L be a finite language. Then, clearly, a deterministic finite automaton
with acyclic graphical representation exists, accepting L. However, deterministic finite automata
with acyclic graphical representation are clearly both transition-C=-equiloaded and transition-
A=-equiloaded. Thus, both identities hold for finite languages. Now, let L be an infinite lan-
guage. Then, the graphical representation of every deterministic finite automaton accepting L
has to contain at least one reachable directed cycle from which some accepting state is reach-
able. However, by Theorem 2.3.16, such an automaton is transition-C=-equiloaded if and only
if it is transition-A=-equiloaded. Thus, the identities Lδ−EQ−DFA(C=) = Lδ−EQ−DFA(A=) and
Lδ−EQ−DFAε(C=) = Lδ−EQ−DFAε(A=) are proved.

Now, we shall prove the proper inclusions from claims 1 – 4. First, we shall at once prove
the inclusions Lδ−EQ−DFA(C≤) ( Lδ−EQ−DFA(C=) and Lδ−EQ−DFAε(C≤) ( Lδ−EQ−DFAε(C=).
Let us consider the language L1 = {ab}. The language L1 is finite, and thus, clearly is both in
Lδ−EQ−DFA(C=), and in Lδ−EQ−DFAε(C=). We shall prove that there is not any transition-C≤-
equiloaded DFAε accepting L1. This will also clearly imply that there is not any transition-C≤-
equiloaded DFA accepting L1. For the purpose of contradiction, let us suppose that such a DFAε
A exists. Let q be the first state of this automaton (in the direction of every computation path of
the automaton A), such that there is a non-ε transition leading from q. Clearly, there has to be a
transition e = (q, a, q′) on a leading from q to some other state q′ – otherwise, there would not
be any word in L1 beginning with a, and that would be a contradiction. Moreover, there has to
be a transition f on b reachable from q′, such that for every computation path γ in Comp(A),
the inequality #[ f , γ] ≤ 1 holds, and #[ f , γ] = 1 implies also #[e, γ] = 1 – otherwise, the word
ab would either not be in L1, or there would be some other word in L1. This, togehter with our
assumption of C≤-equiloadedness, implies also that Comp(A) is finite. However, there clearly
is a computation path γ′ in Comp(A), such that #[e, γ] ≥ 1 and, at the same time, #[ f , γ] = 0.
Thus, #[e, Comp(A)] > #[ f , Comp(A)]. However, since Comp(A) is finite, there is a nonnegative
integer n0 in N, such that Comp(A) = Comp(A,≤ n) for all n ≥ n0. Thus, #[e, Comp(A,≤ n)] >
#[ f , Comp(A,≤ n)] for all n ≥ n0, and that clearly implies that the inequality BA(C≤) < 1 holds.
That contradicts our assumption that the automaton A is transition-C≤-equiloaded.

Now, we shall simultaneously prove the inclusions Lδ−EQ−DFA(A≤) ( Lδ−EQ−DFA(C=),
and Lδ−EQ−DFAε(A≤) ( Lδ−EQ−DFAε(C=). Let us consider the language L2 = {a, b, aa, ba, cc, dc}.
Since the language L2 is finite, it is clearly both in Lδ−EQ−DFA(C=), and in Lδ−EQ−DFAε(C=).
Again, we shall prove that there is not any transition-A≤-equiloaded DFAε accepting L2, and
this will imply the same consequence also for DFA. For the purpose of contradiction, let us sup-
pose that a transition-A≤-equiloaded DFAε A exists, such that L(A) = L2. Let q be the first (in
the direction of every computation path of the automaton) state of the automaton A, such that
there is at least one non-ε transition leading from A. Then, there has to be a transition ex on
each character x in the set {a, b, c, d} leading from q – otherwise, the property L(A) = L2 would
not be satisfied. Moreover, it is clear that the property (q, w) `+ (q, ε) cannot hold for any w in
Σ+ – otherwise the language L(A) would be either empty or infinite, and that would contradict
L(A) = L2. Thus, each of these transitions is used exactly once in accepting computations on
words beginning with the corresponding character, and is not used in other accepting computa-
tions. Thus, for each x in {a, b, c, d},

#[x, Acc(A)] = |{w ∈ L2 | w[1] = x}|.
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However, there are two words in L2 beginning with a and b, but only one word in L beginning
with c and d. Thus,

#[a, Acc(A)] > #[c, Acc(A)],

and since the accepted language L2 is finite, for n greater than some n0 in N, we have also

#[a, Acc(A,≤ n)] > #[c, Acc(A,≤ n)].

That is, BA(A≤) < 1, and that contradicts our assumption that the automaton A is transition-
A≤-equiloaded.

It remains to prove the claims from points 5 and 6. These claims will be obviously proved, if
we construct a transition-A≤-equiloaded DFA (that can be obviously viewed also as a DFAε)
A1 = (K1, Σ1, δ1, p0, F1), such that L(A1) = L1, and a transition-C≤-equiloaded DFA A2 =
(K2, Σ2, δ2, q0, F2), such that L(A2) = L2. We shall define these automata as follows: K1 =
{p0, p1, p2}, Σ1 = {a, b}, F = {p2}, and

δ1(p0, a) = p1,
δ1(p1, b) = p2.

As it can be easily observed,
#[e, Acc(A,≤ n)] = 1

for every transition e in DA1 and all n in N, such that n ≥ 2. Thus, the automaton A1 is transition-
A≤-equiloaded.

p0 p1 p2
a b

(a) The automaton A1.

q0

q1 q2

q3 q4

a

b

c

d

a

c

(b) The automaton A2.

Figure 2.5: The transition-A≤-equiloaded automaton A1 accepting the language L1 and the transition-C≤-
equiloaded automaton A2 accepting the language L2.

For the automaton A2, we shall define K2 = {q0, q1, q2, q3, q4}, Σ = {a, b, c, d}, F = {q1, q2, q4},
and

δ2(q0, a) = q1, δ2(q0, b)= q1, δ2(q0, c) = q3,
δ2(q0, d) = q3, δ2(q1, a)= q2, δ2(q3, c) = q4.

The reader may easily convince himself that L(A2) = L2. Moreover, as can be clearly observed,

#[e, Comp(A,≤ n)] = 2

for every transition e in DA2 and all n in N, such that n ≥ 2. Thus, the automaton A2 is transition-
C≤-equiloaded. That is, the theorem is proved. �

Theorem 2.3.35 For a given family of languages L , let L in f denote the family of all infinite
languages in L . Then, the following identities hold:

1. L
in f
δ−EQ−DFA(C=) = L

in f
δ−EQ−DFA(A=) = L

in f
δ−EQ−DFA(C≤) = L

in f
δ−EQ−DFA(A≤),
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2. L
in f
δ−EQ−DFAε(C=) = L

in f
δ−EQ−DFAε(A=) = L

in f
δ−EQ−DFAε(C≤) = L

in f
δ−EQ−DFAε(A≤).

Proof. Let L in R in f be an infinite regular language. Then, since L is infinite, the graphical
representation of every deterministic finite automaton accepting L has to contain at least one
reachable directed cycle from which some accepting state is reachable. Thus, both claims are
direct consequences of Theorem 2.3.16. �

In Theorem 2.3.38, we shall prove that the families of transition-S-equiloaded DFA-languages
are the proper subsets of the corresponding families of weakly transition-S-equiloaded DFA-
languages, for S in {C=,A=, C≤,A≤}. In [25], we have already proved this for S = A=. We
shall observe that this proof can be easily generalized also to other choices of S .

For DFAε, the situation seems to be more complicated, and we shall leave the problem of
relation between the families Lδ−EQ−DFAε(S) and Lδ−WEQ−DFAε(S) as an open problem.

We shall present the main idea of the proof for DFA in Lemma 2.3.37. The key is to find
an efficient proof method for proving that a given language is not in the family of transition-S-
equiloaded DFA-languages. Unlike the proofs presented up to now, this proof method is required
to apply also to languages that are weakly transition-S-equiloaded DFA-languages. The method
based on Lemma 2.3.37 will prove to be sufficient for the purpose of proving the above mentioned
relation.

However, before we state this lemma, we shall present a notation that we shall use in Lemma
2.3.37, and subsequently also in the proof of Theorem 2.3.38.

Notation 2.3.36 Let A = (K, Σ, δ, q0, F) be a DFA, let c in Σ be a character. Then, by Dc
A, we shall

denote the set of all transitions of the automaton A on the character c, i.e.,

Dc
A = {(q, c, q′) ∈ K× {c} × K | (q, c, q′) ∈ DA}.

If A is clear from the context, we shall write only Dc instead of Dc
A.

Lemma 2.3.37 Let L in R be a regular language over an alphabet Σ. Let A1, A2 be DFA (without
ε-transitions), such that L(A1) = L(A2) = L. Then, the identity

∑
e∈Dc

A1

#[e, Acc(A1, n)] = ∑
f∈Dc

A2

#[ f , Acc(A2, n)] = ∑
w∈L∩Σn

#c(w).

holds for every character c in Σ and all n in N.

Proof. The lemma is a direct consequence of the fact that if a word w is in L ∩ Σn, then the
accepting computation path γ on the word w is both in Acc(A1, n), and in Acc(A2, n). �

Theorem 2.3.38 For every S in {C=,A=, C≤,A≤}, the strict inclusion

Lδ−EQ−DFA(S) ( Lδ−WEQ−DFA(S)

holds.

Proof. The proof will follow the idea of the proof for S = A=, presented in [25], and will make
use of Lemma 2.3.37.

The inclusion Lδ−EQ−DFA(S) ⊆ Lδ−WEQ−DFA(S) is trivially satisfied, since every transition-
S-equiloaded automaton is a weakly transition-S-equiloaded automaton as well.

To prove that the inclusion is proper, let us consider a language L = {a, bb}∗. There is a
deterministic finite automaton without ε-transitions, A = (K, Σ, δ, q0, F), accepting L, and defined
as follows: K = {q0, q1}, Σ = {a, b}, F = {q0}, and

δ(q0, a) = q0,
δ(q0, b) = q1,
δ(q1, b) = q0.
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q0 q1

b

b

a

Figure 2.6: The automaton A with strongly connected graphical representation, accepting the language
L = {a, bb}∗.

The graphical representation of the automaton A is depicted in Figure 2.6. The claim L(A) =
L is considered to be obvious. Since the graphical representation of the automaton A is strongly
connected, the DFA A is weakly transition-S-equiloaded for all S in {C=,A=, C≤,A≤}. That is,
L is in Lδ−WEQ−DFA(S) for all S in {C=,A=, C≤,A≤}.

However, on the other hand, by applying the method presented in Section 2.1, it can be easily
computed that
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1 +
√

5
10

· n ·
(

1 +
√

5
2

)n

+
2

5
√

5
·
(

1 +
√

5
2

)n

+

+
1−
√

5
10

· n ·
(

1−
√

5
2

)n

− 2
5
√

5
·
(

1−
√

5
2

)n

,

#[(q0, b, q1), Acc(A, n)] =
1
5
· n ·

(
1 +
√

5
2

)n

− 1
5
√

5
·
(

1 +
√

5
2

)n

+

+
1
5
· n ·

(
1−
√

5
2

)n

+
1

5
√

5
·
(

1−
√

5
2

)n

,

#[(q1, b, q0), Acc(A, n)] =
1
5
· n ·

(
1 +
√

5
2

)n

− 1
5
√

5
·
(

1 +
√

5
2

)n

+

+
1
5
· n ·

(
1−
√

5
2

)n

+
1

5
√

5
·
(

1−
√

5
2

)n

.

Now, for the purpose of contradiction, let us suppose that a transition-A=-equiloaded DFA A′

exists, such that L(A′) = L. Then, by Lemma 2.3.37 and by the assumption that BA′ = 1, we have

#[e, Acc(A′, n)] =
1 +
√

5
10 · |Da

A′ |
· n ·

(
1 +
√

5
2

)n

+ o

(
n ·
(

1 +
√

5
2

)n)

for all e in Da
A′ , and

#[ f , Acc(A′, n)] =
2

5 · |Db
A′ |
· n ·

(
1 +
√

5
2

)n

+ o

(
n ·
(

1 +
√

5
2

)n)

for all f in Db
A′ . Thus, obviously, from the assumption that the automaton A is transition-A=-

equiloaded, we have
1 +
√

5
10 · |Da

A′ |
=

2
5 · |Db

A′ |
,

i.e.,
1 +
√

5
10

· |Db
A′ | =

2
5
· |Da

A′ |.
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But this equation cannot hold, since |Da
A′ | and |Db

A′ | are both nonnegative integers, since 2
5 is a

rational number, and since 1+
√

5
10 is an irrational number. Thus, there is not any transition-A=-

equiloaded DFA accepting L, i.e., L is not in Lδ−EQ−DFA(A=). However, since the language L
is infinite, it follows from Theorem 2.3.35, that L is not in Lδ−EQ−DFA(S) for any S . That is, the
theorem is proved. �

We leave an analogous property for the families of S-equiloaded resp. weakly S-equiloaded
DFAε-languages as an open problem.

Open Problem 2.3.39 The inclusion Lδ−EQ−DFAε(S) ⊆ Lδ−WEQ−DFAε(S) holds trivially for all
S in {C=,A=, C≤,A≤}. Is this inclusion proper or does Lδ−EQ−DFAε(S) = Lδ−WEQ−DFAε(S)
hold for S in the set {C=,A=, C≤,A≤}?

Example 2.3.40 A transition-S-equiloaded DFAε can be found for a surprisingly high number
of weakly transition-S-equiloaded languages (however, to little examples have been worked out
yet, to conjecture the equality of the families).

First, we shall observe that the counterexample used for the case of DFA cannot be used
in the case of DFAε, i.e., that there is a transition-A=-equiloaded DFAε accepting the language
L = {a, bb}∗. We shall define such automaton as follows: A = (K, Σ, δ, q0, F), K = {q0, q1, q2},
F = {q0}, and

δ(q0, a) = q2, δ(q0, b) = q1, δ(q1, b) = q0, δ(q2, ε) = q0.

q0 q1q2

b

b

a

ε

Figure 2.7: The transition-A=-equiloaded DFAε A accepting the language L = {a, bb}∗.

The reader may convince himself that the automaton A is transition-A=-equiloaded, by com-
puting the transition-equiloadedness A=-measure, using the method presented in Section 2.1.
That is, L is in Lδ−EQ−DFAε(A=), and since the language L is infinite, it follows from Theorem
2.3.35 that L is in Lδ−EQ−DFAε(S), for all S in {C=,A=, C≤,A≤}.

Example 2.3.41 Further, let us consider a language L accepted by a deterministic finite automa-
ton A = (K, Σ, δ, q0, F) defined as follows: K = {q0, q1, q2, q3}, Σ = {a, b}, F = {q0}, and

δ(q0, a) = q1, δ(q1, a) = q3, δ(q1, b) = q2, δ(q2, b) = q3, δ(q3, a) = q0.

Clearly, the language accepted by the automaton A is the same as the language accepted by a
DFAε defined as follows: A′ = (K′, Σ′, δ′, q′0, F′), K′ = {q′0, q′1, . . . , q′6}, Σ′ = {a, b}, F′ = {q′0, q′4},
and

δ′(q′0, a) = q′1, δ′(q′1, a) = q′2, δ′(q′1, b) = q′5, δ′(q′2, ε) = q′3,

δ′(q′3, a) = q′4, δ′(q′4, a) = q′1, δ′(q′5, b) = q′6, δ′(q′6, a) = q′0.

By computing the transition-equiloadedness A=-measure, it can be verified that the automa-
ton A′ is transition-A=-equiloaded. Thus, L is in Lδ−EQ−DFAε(A=), and since the language L is
infinite, it follows from Theorem 2.3.35 that L is in Lδ−EQ−DFAε(S), for all S in {C=,A=, C≤,A≤}.

Now, let us consider the families of state-S-equiloaded and weakly state-S-equiloaded lan-
guages. Let us note that a theorem analogous to Theorem 2.3.33 holds also for the families of
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(a) The automaton A.
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(b) The automaton A′.

Figure 2.8: The automaton A, and the transition-A=-equiloaded automaton A′, such that L(A′) = L(A).

(weakly) state-S-equiloaded languages. Since exactly the same counterexample L = {a}+ may
be used to prove the theorem,15 we shall omit the proof.

Theorem 2.3.42 The following strict inclusions hold for all S in {C=,A=, C≤,A≤}:

1. LK−WEQ−DFA(S) ( LK−WEQ−DFAε(S),

2. LK−EQ−DFA(S) ( LK−EQ−DFAε(S).

We shall leave open the relations between the families of (weakly) state-S-equiloaded lan-
guages for different choices of S .

Finally in this subsection, let us consider the relations between S-equiloaded and strictly S-
equiloaded DFA(ε)-languages, for S = C= and S = A=.

Theorem 2.3.43 The following strict inclusions hold:

1. LK−SEQ−DFA(C) ( LK−EQ−DFA(C=),

2. Lδ−SEQ−DFA(C) ( Lδ−EQ−DFA(C=),

3. LK−SEQ−DFA(A) ( LK−EQ−DFA(A=),

4. Lδ−SEQ−DFA(A) ( Lδ−EQ−DFA(A=),

5. LK−SEQ−DFAε(C) ( LK−EQ−DFAε(C=),

6. Lδ−SEQ−DFAε(C) ( Lδ−EQ−DFAε(C=),

7. LK−SEQ−DFAε(A) ( LK−EQ−DFAε(A=),

8. Lδ−SEQ−DFAε(A) ( Lδ−EQ−DFAε(A=).

Proof. The inclusions are a direct consequence of Theorem 1.6.2. Let us prove that these in-
clusions are proper. Let us consider the languages L1 = {a}∗ · {b}∗ and L2 = {a, b}∗. It is
an easy exercise to prove that L1 is not in LK−SEQ−DFA(C), nor in LK−SEQ−DFA(A) and that it
is in LK−EQ−DFA(C=), as well as in LK−EQ−DFA(A=). Similarly, it is easy to prove that L2 is
not in Lδ−SEQ−DFA(C), nor in Lδ−SEQ−DFA(A), and that it is both in Lδ−EQ−DFA(C=), and in
Lδ−EQ−DFA(A=). �

2.3.7 Closure Properties

In this subsection, we shall examine some of the closure properties of the families of S-equi-
loaded and weakly S-equiloaded languages. We shall omit proofs of the results that have been
already known (these proofs may be found in the theses [26], [27] and [25]) and prove only the
new closure properties.

15It is easy to prove that this language is not in LK−WEQ−DFA(S) by using the Myhill-Nerode theorem [32].
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Closure Properties of the Families of (Weakly) State-S-Equiloaded DFA(ε)-Languages

For the case of the families of state-S-equiloaded and weakly state-S-equiloaded DFA(ε)-lan-
guages, we leave most of their closure properties open. In the following theorem, we shall only
restate the closure properties of the family LK−EQ−DFA(A=), proved already in [26] and [27].
The main reason for this is our belief that these closure properties will be less painfully provable
after slightly extending the theory from the previous subsection (it will be possible to prove more
closure properties at once, and thus the need to examine each case separately will be eliminated).

Theorem 2.3.44 The family LK−EQ−DFA(A=) is not closed under concatenation, union, intersec-
tion, complementation, reversal, homomorphism, and inverse homomorphism.

Closure Properties of the Families of (Weakly) Transition-S-Equiloaded DFA(ε)-Languages

In what follows, we shall prove some of the closure properties of the families of transition-S-
equiloaded and weakly transition-S-equiloaded DFA(ε)-languages. The results obtained in the
previous subsection enable us to prove the closure properties for relatively large numbers of
families of languages at once. Thus, our knowledge of the closure properties is better than in the
case of state-S-equiloaded and weakly state-S-equiloaded languages.

Theorem 2.3.45 Let S be in {C=,A=, C≤,A≤}. The families Lδ−EQ−DFA(S), Lδ−EQ−DFAε(S),
Lδ−WEQ−DFA(S), and Lδ−WEQ−DFAε(S) are not closed under concatenation.

Proof. The languages L1 = {a}∗ and L2 = {b} are clearly in all of these families. However, the
language L1 · L2 = {a}∗ · {b} is in none of these families. This can be easily proved by observing
that in every DFAε accepting L1 · L2, a b-transition e has to exist, such that it is used at most once
in every computation path. However, a computation path of arbitrary length has to exist in every
such automaton. �

Theorem 2.3.46 Let S be in {C=,A=, C≤,A≤}. The families Lδ−EQ−DFA(S), Lδ−EQ−DFAε(S),
Lδ−WEQ−DFA(S), and Lδ−WEQ−DFAε(S) are not closed under union.

Proof. The same counterexample can be used as in the proof of Theorem 2.3.45. �

Theorem 2.3.47 Let S be in {C=,A=, C≤,A≤}. The families Lδ−EQ−DFA(S), Lδ−EQ−DFAε(S),
Lδ−WEQ−DFA(S), and Lδ−WEQ−DFAε(S) are not closed under intersection.

Proof. Let us consider the languages L1 = {aa, bc}∗ · {b} and L2 = {aa, bd}∗ · {b}. It can be
easily observed that these languages are in all of the families from the statement of the theo-
rem. However, their intersection, the language L1 ∩ L2 = {aa}∗ · {b}, is clearly in none of these
families. This can be proved by similar reasoning as in the proof of Theorem 2.3.45. �

Theorem 2.3.48 Let S be in {C=,A=, C≤,A≤}. The families Lδ−EQ−DFA(S), Lδ−EQ−DFAε(S),
Lδ−WEQ−DFA(S), and Lδ−WEQ−DFAε(S) are not closed under complementation.

Proof. Let us consider the language L = {a}. This language clearly is in all of the families from
the statement of the theorem. We shall prove that the language LC = {ε} ∪ {an | n ≥ 2} is not in
any of these families.

For the purpose of contradiction, let us suppose that LC is in some of this families. Since the
language LC is infinite, a DFAε A = (K, Σ, δ, q0, F) with a strongly connected graphical repre-
sentation has to exist, such that L(A) = LC. Clearly, the relation (q0, a) `∗ (q, ε) cannot hold
for any accepting state q in F. However, since the automaton A is strongly connected, a positive
integer k exists, such that (q0, ak) `∗ (q0, ε). This implies that also the relation (q0, ak+1) `∗ (q, ε)
cannot hold for any accepting state q, and that implies that ak+1 is not in LC. However, this is a
contradiction since k is positive. �
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Theorem 2.3.49 Let S be in {C=,A=, C≤,A≤}. The families Lδ−EQ−DFA(S) and Lδ−WEQ−DFA(S)
are not closed under closure.

Proof. Corollary of a theorem proved in [25] (the counterexample used in the proof for S = A=
can be easily shown to apply also for the remaining choices of S). �

Open Problem 2.3.50 Let S be a parameter in {C=,A=, C≤,A≤}. Are the families Lδ−EQ−DFAε(S)
and Lδ−WEQ−DFAε(S) closed under closure?

Theorem 2.3.51 Let S be in {C=,A=, C≤,A≤}. The families Lδ−EQ−DFA(S) and Lδ−WEQ−DFA(S)
are not closed under positive closure.

Proof. Corollary of a theorem proved in [25]. �

Open Problem 2.3.52 Let S be a parameter in {C=,A=, C≤,A≤}. Are the families Lδ−EQ−DFAε(S)
and Lδ−WEQ−DFAε(S) closed under positive closure?

Theorem 2.3.53 Let S be in {C=,A=, C≤,A≤}. The families Lδ−EQ−DFA(S) and Lδ−WEQ−DFA(S)
are not closed under reversal.

Proof. Corollary of a theorem proved in [25]. �

Open Problem 2.3.54 Let S be a parameter in {C=,A=, C≤,A≤}. Are the families Lδ−EQ−DFAε(S)
and Lδ−WEQ−DFAε(S) closed under reversal?

Theorem 2.3.55 Let S be in {C=,A=, C≤,A≤}. The families Lδ−EQ−DFA(S) and Lδ−WEQ−DFA(S)
are not closed under homomorphism.

Proof. Corollary of a theorem proved in [25]. �

Open Problem 2.3.56 Let S be a parameter in {C=,A=, C≤,A≤}. Are the families Lδ−EQ−DFAε(S)
and Lδ−WEQ−DFAε(S) closed under homomorphism?

Theorem 2.3.57 Let S be in {C=,A=, C≤,A≤}. The families Lδ−EQ−DFA(S), Lδ−EQ−DFAε(S),
Lδ−WEQ−DFA(S), and Lδ−WEQ−DFAε(S) are not closed under inverse homomorphism.

Proof. Let us consider the language L = {b} (clearly, L is in all of the families from the statement
of the theorem) and the homomorphism h defined by

h(a) = ε,
h(b) = b.

Clearly,
h−1(L) = {w ∈ {a, b}∗ | #b(w) = 1}.

We shall prove that h−1(L) is not in any of the families from the statement of the theorem. For
the purpose of contradiction, let us suppose that it is in at least one of these families. Since
the language h−1(L) is infinite, this implies that a DFAε A with strongly connected graphical
representation has to exist, such that L(A) = h−1(L). However, this automaton has to have at
least one b-transition and at least one accepting state, and from that a contradiction is easy to
reach. �



Chapter 3

Strictly S-Equiloaded Deterministic
One-Counter Automata

In this chapter, we shall study the families of strictly S-equiloaded deterministic one-counter au-
tomata and the corresponding families of languages, for S = C, S = A, and S = E . Equiloaded
one-counter automata have not been studied yet. That is, all results presented in this chapter are
new.

3.1 Examples of Strictly S-Equiloaded DOCA-Languages

In order to build an adequate picture of the computational power of strictly S-equiloaded one-
counter automata, we shall work out several examples.

Example 3.1.1 In this example, we shall present three examples of languages in the families
LK−SEQ−DOCA(C), and LK−SEQ−DOCA(A). Let us consider the following three regular lan-
guages: L1 = {a}∗{b}∗, L2 = {a}∗{ε, b}, and L3 = {a}∗ ∪ {b}. For each of these languages,
we shall construct a deterministic one-counter automaton that is both strictly state-C-equiloaded,
and strictly state-A-equiloaded.

We shall define a deterministic one-counter automaton A1 = (K1, Σ1, δ1, q0,1, F1) accepting the
language L1 as follows: K1 = {q0}, Σ1 = {a, b}, q0,1 = q0, F1 = {q0}, and

δ1(q0, a, 0) = (q0, 0), δ1(q0, b, 0) = (q0, +1), δ1(q0, b, 1) = (q0, 0).

The claim L(A1) = L1 is considered to be obvious. The strict state-S-equiloadedness of the
automaton A1 for S in {C,A} is a direct consequence of the fact that the automaton has only one
state.

Now, let us construct a deterministic one-counter automaton A2 = (K2, Σ2, δ2, q0,2, F2), such
that L(A2) = L2. We shall define the automaton as follows: K2 = {q0}, Σ2 = {a, b}, q0,2 = q0,
F2 = {q0}, and

δ2(q0, a, 0) = (q0, 0), δ2(q0, b, 0) = (q1, +1).

Once again, the claim L(A2) = L2 is considered to be obvious, and the strict state-S-equiload-
edness of the automaton A2 for S in {C,A} follows from the fact that there is only one state in
K2.

Finally, we shall construct a deterministic one-counter automaton A3 = (K3, Σ3, δ3, q0,3, F3)
accepting the language L3. We shall define the automaton as follows: K3 = {q0, q1}, Σ3 = {a, b},
q0,3 = q0, F3 = {q0, q1}, and

δ3(q0, a, 0) = (q1, +1), δ3(q0, b, 0) = (q1, 0),
δ3(q0, a, 1) = (q1, 0), δ3(q1, a, 1) = (q0, 0).
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The claim L(A3) = L3 is considered to be obvious. The strict state-S-equiloadedness of the au-
tomaton A3 for S in {C,A} follows from the fact that every computation path γ of the automaton
A3 alternates between states q0 and q1. Thus, as a consequence we have

|#[q0, γ]− #[q1, γ]| ≤ 1

for every computation path γ, and the automaton A3 is strictly state-C-equiloaded, as well as
strictly state-A-equiloaded.

In the construction of each of the three automata from the previous example, we have ex-
ploited the fact that we can use one state of a deterministic one-counter automaton to act like
two states of a deterministic finite automaton – if we use only two values of the counter, 0 and
1, then we may view the deterministic one-counter automaton with the set of states K as a deter-
ministic finite automaton with the set of states K× {0, 1}. However, the differences between the
number of uses of a state q with the counter value 0 and the number of uses of the state q with
the counter value 1 have no effect on the strict equiloadedness: the only thing we care about is
the overall number of uses of the state q (without taking the counter value into consideration).
Thus, the families of strictly state-S-equiloaded DOCA-languages contain also some regular lan-
guages that are not strictly state-S-equiloaded DFAε-languages (however, as we shall observe
later, strictly state-S-equiloaded DOCA may accept also nonregular languages).

This method cannot be used for strict transition-S-equiloadedness. Unlike in the case of
states, the transition from a state q on some c in Σ ∪ {ε} is a different transition for a counter
value 0, and for a counter value greater than 0. However, there are other methods that can be
used in the construction of strictly transition-S-equiloaded DOCA for languages that are not in
Lδ−SEQ−DFA and Lδ−SEQ−DFAε. We shall present one such method in the following example.

Example 3.1.2 Let us consider the language L = {ab, ba}∗. We shall observe that this language
is both in Lδ−SEQ−DOCA(C), and in Lδ−SEQ−DOCA(A). The main idea of the construction of a
strictly transition-S-equiloaded DOCA A = (K, Σ, δ, q0, F) accepting L is as follows: each com-
putation of the automaton A is required to begin with a sequence of ε-transitions that increases
the counter from 0 to 5. Afterwards, the computation is required to “decide” (in the state q5)
between two cycles: after passing the first of the cycles, the character a is read, and the counter
is decreased by the value of 2 (if the counter value is less than 2 at the beginning of the cycle, the
computation gets stuck during the cycle). After passing the second cycle, the character b is read,
and the counter is decreased by the value of 3. The computation is allowed to proceed from the
state q5 to the initial state only if the counter value 0 is reached. This is clearly the case if and only
if each of the cycles is passed exactly once.

Formally, we shall construct the deterministic one-counter automaton A as follows: we shall
define K = {q0, q1, . . . , q8}, Σ = {a, b}, F = {q0}, and

δ(q0, ε, 0) = (q1, +1), δ(q1, ε, 1) = (q2, +1), δ(q2, ε, 1) = (q3, +1), δ(q3, ε, 1) = (q4, +1),
δ(q4, ε, 1) = (q5, +1), δ(q5, ε, 0) = (q0, 0), δ(q5, a, 1) = (q6,−1), δ(q5, b, 1) = (q7,−1),
δ(q6, ε, 1) = (q5,−1), δ(q7, ε, 1) = (q8,−1), δ(q8, ε, 1) = (q5,−1).

The reader may easily convince himself that L(A) = L. The automaton is strictly transition-S-
equiloaded for S in {C,A}, since, for the above explained reasons, the property

|#[e, γ]− #[ f , γ]| ≤ 3

has to hold for all e, f in D, and for every computation path γ (for accepting computation paths,
the constant 3 may be replaced by 0).

Example 3.1.3 Let us consider the deterministic one-counter automaton A from the previous ex-
ample, once again. Clearly,

N(A) = {ab, ba}∗{ε, aaa, aab, bb} =: L′.
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We have already noted that the automaton A is strictly transition-C-equiloaded, and thus also
strictly transition-E -equiloaded. Thus, the language L′ is both in Nδ−SEQ−DOCA(C), and in
Nδ−SEQ−DOCA(E).

In the final three examples of this section, we shall return to strictly state-S-equiloaded DOCA-
languages. We shall show that among these languages, there are also some nonregular lan-
guages. Moreover, we shall observe that in the families of languages NK−SEQ−DOCA(C) and
NK−SEQ−DOCA(C), there are also some languages that are not prefix-dense.

Example 3.1.4 In this example, we shall show that the (obviously nonregular) language

L = {anbn | n ≥ 0}

is in NK−SEQ−DOCA(E). Let us define a deterministic one-counter automaton A = (K, Σ, δ, q0, F)
as follows: K = {q0, q1}, Σ = {a, b}, F = ∅ (since we are interested in the language accepted by
empty memory, the set F is irrelevant), and

δ(q0, a, 0) = (q0, +1), δ(q0, a, 1) = (q0, +1),
δ(q0, b, 1) = (q1,−1), δ(q1, b, 1) = (q1,−1).

We consider the claim L(A) = L to be obvious. Moreover, in every computation path γ of the
automaton A, accepting by empty memory, the following property clearly holds:

#[q1, γ] = #[q0, γ]− 1.

Thus, the automaton A is strictly state-E -equiloaded. As a consequence, the language L is in
NK−SEQ−DOCA(E).

As shown in Example 1.7.6, the language L is not prefix-dense. Thus, it is neither in the family
LK−SEQ−DOCA(C), nor in the family LK−SEQ−DOCA(A).

Example 3.1.5 In this example, we shall observe that also the families LK−SEQ−DOCA(C) and
LK−SEQ−DOCA(A) contain some nonregular languages. Let us consider the language

L = {w ∈ {a, b}∗ | ∀u ∈ {a, b}∗, u is a prefix of w : #a(u) ≥ #b(u)} .

The language L is clearly nonregular. However, let us consider a deterministic one-counter au-
tomaton A = (K, Σ, δ, q0, F), defined as follows: K = {q0}, Σ = {a, b}, F = {q0}, and

δ(q0, a, 0) = (q0, +1), δ(q0, a, 1) = (q0, +1), δ(q0, b, 1) = (q0,−1).

Clearly, L(A) = L. The strict state-S-equiloadedness of the automaton A, for both S in {C,A},
follows from the fact that the automaton A has only one state. Thus, L is both in the family
LK−SEQ−DOCA(C), and in the family LK−SEQ−DOCA(A).

Example 3.1.6 In this final example, we shall show that also the family NK−SEQ−DOCA(C) con-
tains some non-prefix-dense language. Let us consider the language

L = {anb | n ≥ 1} ∪ {ε}.

This language clearly is not prefix-dense. Let us consider the following deterministic one-counter
automaton: A = (K, Σ, δ, q0, F), where K = {q0, q1}, Σ = {a, b}, F = ∅, and

δ(q0, a, 0) = (q0, +1), δ(q0, ε, 1) = (q1, 0),
δ(q1, a, 1) = (q0, 0), δ(q1, b, 1) = (q1,−1).

The statement N(A) = L, as well as the strict state-S-equiloadedness of the automaton A for S
in {C,A}, are considered to be clear. Thus, L is both in the family NK−SEQ−DOCA(C), and in the
family NK−SEQ−DOCA(E).
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3.2 Lemmas

In this section, we shall prove some auxiliary results that we shall use later on in our study of
strictly S-equiloaded deterministic one-counter automata.

Lemma 3.2.1 Let A = (K, Σ, δ, q0, F) be a deterministic one-counter automaton.

1. Let an upper bound exist for the length of computation paths γ, such that γ reaches a
configuration with the state q0 and with the counter value 0 only at its beginning. Let H∗1
be the smallest of such upper bounds. Then,

H∗1 ≤ |K|(|K|+ 1).

2. Let an upper bound exist for the length of accepting computation paths γ, such that γ
reaches a configuration with the state q0 and with the counter value 0 only at its begin-
ning. Let H∗2 be the smallest of such upper bounds. Then,

H∗2 ≤ |K|(|K|+ 1).

3. Let an upper bound exist for the length of computation paths γ accepting by empty memory,
such that γ reaches a configuration with the state q0 and with the counter value 0 only at
its beginning. Let H∗3 be the smallest of such upper bounds. Then,

H∗3 ≤ |K|(|K|+ 1).

Proof. We shall prove all three claims at once. For the purpose of contradiction, let us suppose
that H∗1 > |K|(|K|+ 1) (that H∗2 > |K|(|K|+ 1)) [that H∗3 > |K|(|K|+ 1)]. Then, a computation
path γ1 (an accepting computation path γ2) [a computation path γ3 accepting by empty memory]
exists, such that a configuration with the state q0 and with the counter value 0 is reached only at
its beginning, and such that |γ1| = H∗1 (|γ2| = H∗2 ) [|γ3| = H∗3 ].

First, let us suppose that the greatest counter value achieved by the computation path γ1
(the computation path γ2) [the computation path γ3] is t ≤ |K|. Since, by our assumption, the
length of the computation path is greater than |K|(|K|+ 1), it follows by the Pigeonhole principle
that the computation path reaches at least two configurations with the same state and the same
counter value. That is, the computation path γ1 (the accepting computation path γ2) [the compu-
tation path γ3 accepting by empty memory] corresponds to some computation (some accepting
computation) [some computation accepting by empty memory] of the form

(q0, uvw, 0) `∗ (q, vw, t) `+ (q, w, t) `∗ (q′, ε, t′),

where u, v, and w in Σ∗ are words, t and t′ in N are nonnegative integer counter values, and q
and q′ in K are states. Moreover, for the case of the computation path γ2, the state q′ is accepting
(in F), and for the case of the computation path γ3, the counter value t′ is zero.

It is clear that there is a computation (an accepting computation) [a computation accepting by
empty memory] on the word uv2w of the form

(q0, uv2w, 0) `∗ (q, v2w, t) `+ (q, vw, t) `+ (q, w, t) `∗ (q′, ε, t′).

Clearly, the length of the corresponding computation path (accepting computation path) [com-
putation path accepting by empty memory] is greater than the length of the computation path
γ1 (the computation path γ2) [the computation path γ3]. However, this computation path clearly
reaches a configuration with the state q0 and with the counter value 0 only at its beginning, and
thus, H∗1 (H∗2 ) [H∗3 ] is not an upper bound for the length of the corresponding set of computation
paths. That is a contradiction.
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Now, let us suppose that the greatest counter value achieved by the computation path γ1 (the
computation path γ2) [the computation path γ3] is t ≥ |K|+ 1. Then, it follows from the Pigeon-
hole principle that the computation path γ1 (the computation path γ2) [the computation path
γ3] corresponds to some computation (to some accepting computation) [to some computation
accepting by empty memory] of the form

(q0, uvwx, 0) `∗ (q, vwx, t1) `+ (q, wx, t2) `∗ (p, x, t) `∗ (p′, ε, t′), (3.1)

where u, v, w, and x are words in Σ∗, p, q, and p′ in K are states, and t1, t2 and t′ are nonnegative
integer counter values in N, such that 0 < t1 < t2. Moreover, the counter value is always positive
during the computation

(q, vwx, t1) `+ (q, wx, t2) `∗ (p, x, t).

For the case of the computation path γ2, the state p′ is in F, and for the case of the computation
path γ3, the counter value t′ is zero.

Now, let us first suppose that the counter value is always positive during the computation

(p, x, t) `∗ (p′, ε, t′).

(Let us note that this may be the case only for the computation path γ1 or for the computation
path γ2, not for the computation path γ3.) It directly follows that

(q0, uv2wx, 0) `∗ (q, v2wx, t1) `+ (q, vwx, t2) `+ (q, wx, 2t2 − t1) `∗

`∗ (p, x, t + t2 − t1) `∗ (p′, ε, t′ + t2 − t1).

The corresponding computation path clearly reaches the configuration with the state q0 and with
the counter value 0 only at its beginning. Moreover, it is longer than the computation path γ1
(the computation path γ2). Thus, H∗1 (H∗2 ) is not an upper bound of the corresponding lengths of
computation paths. That is a contradiction.

Let us now consider the remaining case when the counter value zero is reached during the
computation

(p, x, t) `∗ (p′, ε, t′).

Then, it follows from the Pigeonhole principle that words x1, x2, x3 in Σ∗ exist, such that x =
x1x2x3, and such that the computation (3.1) can be rewritten as

(q0, uvwx1x2x3, 0) `∗ (q, vwx1x2x3, t1) `+ (q, wx1x2x3, t2) `∗ (p, x1x2x3, t) `∗

`∗ (q′, x2x3, t′2) `+ (q′, x3, t′1) `∗ (p′, ε, t′),

for some state q′ in K and some nonnegative integer counter values t′1, t′2 in N, such that 0 < t′1 <
t′2, so that the counter value is always positive during the computation

(p, x1x2x3, t) `∗ (q′, x2x3, t′2) `+ (q′, x3, t′1).

Now, let us denote by L the least common multiple of positive integers t2 − t1 and t′2 − t′1. Let r, s
in N+ be positive integers, such that (r− 1)(t2 − t1) = (s− 1)(t′2 − t′1) = L. Then, it is obvious
that

(q0, uvrwx1xs
2x3, 0) `∗ (q, vrwx1xs

2x3, t1) `+ (q, vr−1wx1xs
2x3, t2) `+ . . . `+

`+ (q, vwx1xs
2x3, t2 + (r− 2)(t2 − t1)) `+ (q, wx1xs

2x3, t2 + (r− 1)(t2 − t1)) `∗

`∗ (p, x1xs
2x3, t + (r− 1)(t2 − t1)) `∗ (q′, xs

2x3, t′2 + (r− 1)(t2 − t1)) `+

`+ (q′, xs−1
2 x3, t′1 + (r− 1)(t2 − t1)) `+ . . . `+

`+ (q′, x2x3, t′1 + (r− 1)(t2 − t1)− (s− 2)(t′2 − t′1)) `+

`+ (q′, x3, t′1 + (r− 1)(t2 − t1)− (s− 1)(t′2 − t′1)) `0 (q′, x3, t′1) `∗ (p′, ε, t′).
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That is, r− 1 loops from the state q, each increasing the counter value by t2 − t1, and s− 1 loops
from the state q′, each decreasing the counter value by t′2 − t′1, can be added to the computation,
without changing any of its important properties.

Clearly, the computation path corresponding to this computation reaches a configuration with
the state q0 and with the counter value 0 only at its beginning. Moreover, it is longer than the
computation path γ1 (the computation path γ2) [the computation path γ3].

Thus, H∗1 (H∗2 ) [H∗3 ] is not an upper bound of the corresponding lengths of computation paths.
Once again, this is a contradiction. The lemma is proved. �

Lemma 3.2.2 Let A = (K, Σ, δ, q0, F) be a deterministic one-counter automaton. Let q, q′ in K be
states and t in N be a nonnegative integer counter value. If the state q′ is reachable from some
configuration with the state q and with the counter value t, then a computation

(q, w, t) `∗ (q′, ε, t′)

exists for some w in Σ∗ and t′ in N, such that the counter value does not exceed the value

T = t + |K|3

during the computation.1

Proof. The lemma can be immediately seen to be true for |K| = 1. Thus, let us suppose that
|K| ≥ 2.

Let us denote by tmin the minimal nonnegative integer counter value, such that the state q′ is
reachable from some configuration with the state q and the counter value t, with the counter value
not exceeding tmin during the corresponding computation. For the purpose of contradiction, let
us suppose that tmin > T.

Clearly, since |K|3 ≥ |K|2 and tmin ≥ t + |K|3 + 1, the computation corresponding to tmin is of
the form

(q, u1v1x1y1u2v2x2y2u3 . . . ukvkxkz, t) `∗ (p(1)
1 , v1x1y1u2v2x2y2u3 . . . ukvkxkz, t + |K|2 + 1) `∗

`∗ (p(2)
1 , x1y1u2v2x2y2u3 . . . ukvkxkz, tmin) `∗

`∗ (p(3)
1 , y1u2v2x2y2u3 . . . ukvkxkz, tmin) `∗

`∗ (p(4)
1 , u2v2x2y2u3 . . . ukvkxkz, t + |K|2 + 1) `∗

`∗ (p(1)
2 , v2x2y2u3 . . . ukvkxkz, t + |K|2 + 1) `∗

`∗ (p(2)
2 , x2y2u3 . . . ukvkxkz, tmin) `∗

`∗ (p(3)
2 , y2u3 . . . ukvkxkz, tmin) `∗

`∗ (p(4)
2 , u3 . . . ukvkxkz, tmin) `∗ . . . `∗

`∗ (p(1)
k , vkxkz, t + |K|2 + 1) `∗ (p(2)

k , xkz, tmin) `∗

`∗ (p(3)
k , z, tmin) `∗ (q′, ε, t′). (3.2)

where ui, vi, xi, i = 1, . . . , k, yi, i = 1, . . . , k− 1, and z in Σ∗ are words, and where p(1)
i , p(2)

1 , p(3)
i ,

i = 1, . . . , k, and p(4)
i , i = 1, . . . , k− 1, are states. Moreover,

(p(2)
i , xiyiui+1 . . . ukvkxkz, tmin)

is the first and
(p(3)

i , yiui+1 . . . ukvkxkz, tmin)

1This upper bound is not meant to be tight.
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is the last configuration (without loss of generality, we assume that configurations do not repeat
in the computation) in the computation

(p(1)
i , vixiyiui+1 . . . ukvkxkz, t + |K|2 + 1) `∗ (p(4)

i , ui+1 . . . ukvkxkz, t + |K|2 + 1),

such that the counter value is tmin, for i = 1, . . . , k− 1, and

(p(2)
k , xkz, tmin)

is the first and
(p(3)

k , z, tmin)

is the last configuration in the computation

(p(1)
k , vkxkz, t + |K|2 + 1) `∗ (q′, ε, t′),

such that the counter value is tmin. Furthermore, the counter value is strictly less2 than tmin in
computations

(q, u1v1x1y1u2v2x2y2u3 . . . ukvkxkz, t) `∗ (p(1)
1 , v1x1y1u2v2x2y2u3 . . . ukvkxkz, t + |K|2 + 1)

and
(p(4)

i , ui+1vi+1 . . . ukvkxkz, t + |K|2 + 1) `∗ (p(1)
i+1, vi+1 . . . ukvkxkz, t + |K|2 + 1)

for i = 1, . . . , k− 1, and the counter value is greater than or equal to t + |K|2 + 1 in computations

(p(1)
i , vixiyiui+1 . . . ukvkxkz, t + |K|2 + 1) `∗ (p(4)

i , ui+1 . . . ukvkxkz, t + |K|2 + 1),

for i = 1, . . . , k− 1, and

(p(1)
k , vkxkz, t + |K|2 + 1) `∗ (p(3)

k , z, tmin).

That is, the configuration can be divided into parts corresponding to the subwords of the
input word as follows: in its parts corresponding to words ui, i = 1, . . . , k, the computation never
reaches the counter value tmin, i.e., the counter value is strictly less than tmin. That is, to obtain the
contradiction (i.e., to construct a computation reaching the state q′ from some configuration with
the state q and the counter value t, such that the counter value is strictly less than tmin during the
computation), nothing has to be done with these parts. In its parts corresponding to the words
vixiyi, i = 1, . . . , k − 1, the counter value is always greater than or equal to t + |K|2 + 1. In the
process of constructing a computation, existence of which implies the contradiction, this fact shall
enable us to omit some computation steps in these parts of the computation, without reaching the
counter value 0. The same fact is true for the part of the computation corresponding to the word
vkxk. Moreover, the counter value tmin is reached for the first time in these parts after reading the
subword vi, and for the last time after reading the subword xi.

Now, it follows from the Pigeonhole principle that if t1, t2 in N are nonnegative integer
counter values, such that t2 − t1 ≥ |K|, then every computation

(q1, y, t1) `∗ (q2, ε, t2),

where y in Σ∗ is a word and q1, q2 in K are states, is of the form

(q1, y1y2y3, t1) `∗ (q3, y2y3, t3) `∗ (q3, y3, t4) `∗ (q2, ε, t2),

where y1, y2, y3 are words in Σ∗, such that y = y1y2y3, and t3, t4 in N are nonnegative integer
counter values, t1 ≤ t3 ≤ t4 ≤ t2, such that t4 − t3 is in {1, 2, . . . , |K|}.

2This assumption can be made since |K| ≥ 2.
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Similarly, if t′1, t′2 in N are nonnegative integer counter values, such that t′1 − t′2 ≥ |K|, then
every computation

(q′1, y′, t′1) `∗ (q′2, ε, t′2),

where y′ in Σ∗ is a word and q′1, q′2 in K are states, is of the form

(q′1, y′1y′2y′3, t′1) `∗ (q′3, y′2y′3, t′3) `∗ (q′3, y′3, t′4) `∗ (q′2, ε, t′2),

where y′1, y′2, y′3 in Σ∗ are words, such that y′ = y′1y′2y′3, and t′3, t′4 in N are nonnegative integer
counter values, t′1 ≥ t′3 ≥ t′4 ≥ t′2, such that t′3 − t′4 is in {1, 2, . . . , |K|}.

We shall call computations of the form

(p, u, t1) `∗ (p, ε, t2),

where u in Σ∗ is a word, p in K is a state, and t1, t2 in N are nonnegative integer counter values,
such that 1 ≤ t2 − t1 ≤ |K| resp. 1 ≤ t1 − t2 ≤ |K|, bounded increasing resp. bounded decreasing
loops. The property observed above can be thus restated as that every computation that increases
the counter by at least |K| contains a bounded increasing loop, and every computation that de-
creases the counter by at least |K| contains a bounded decreasing loop.

Now, let us return to the computation (3.2). Since, for i = 1, . . . , k, the counter value is in-
creased by the value of

tmin − (t + |K|2 + 1) ≥ t + |K|3 + 1− t− |K|2 − 1 = |K|3 − |K|2

in the computation

(p(1)
i , vixiyiui+1 . . . ukvkxkz, t + |K|2 + 1) `∗ (p(2)

i , xiyiui+1 . . . ukvkxkz, tmin), (3.3)

it follows from the Generalized pigeonhole principle that the computation (3.3) contains at least
|K| nonoverlapping3 bounded increasing loops, increasing the counter by the same value t+i in
{1, 2, . . . , |K|}.

Similarly, since for i = 1, . . . , k− 1, the counter value is decreased by the value of

tmin − (t + |K|2 + 1) ≥ t + |K|3 + 1− t− |K|2 − 1 = |K|3 − |K|2

in the computation

(p(3)
i , yiui+1 . . . ukvkxkz, tmin) `∗ (p(4)

i , ui+1 . . . ukvkxkz, t + |K|2 + 1), (3.4)

the computation (3.4) contains at least |K| nonoverlapping bounded decreasing loops, decreasing
the counter by the same value t−i in {1, 2, . . . , |K|}.

Now, it can be easily seen that, for i = 1, . . . , k− 1, t−i of these bounded increasing loops and
t+i of these bounded decreasing loops can be deleted, without changing almost any important
property of the computation. In fact, the computation

(p(1)
i , vixiyiui+1 . . . ukvkxkz, t + |K|2 + 1) `∗ (p(2)

i , xiyiui+1 . . . ukvkxkz, tmin) `∗

`∗ (p(3)
i , yiui+1 . . . ukvkxkz, tmin) `∗

`∗ (p(4)
i , ui+1 . . . ukvkxkz, t + |K|2 + 1)

becomes

(p(1)
i , v′ix

′
iy
′
iui+1 . . . ukvkxkz, t + |K|2 + 1) `∗ (p(2)

i , x′iy
′
iui+1 . . . ukvkxkz, tmin − t+i · t

−
i ) `∗

`∗ (p(3)
i , y′iui+1 . . . ukvkxkz, tmin − t+i · t

−
i ) `∗

`∗ (p(4)
i , ui+1 . . . ukvkxkz, t + |K|2 + 1)

3In the sense that there are not any two of these bounded increasing loops with common computation step.
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for some words v′i, x′i , y′i in Σ∗. This property holds, since the counter value 0 is never reached
in this computation (since t+i · t

−
i ≤ |K|

2 < t + |K|2 + 1). However, the greatest counter value
reached by this computation is tmin − t+i · t

−
i < tmin.

That is, to construct a computation reaching the state q′ from some configuration with the
state q and the counter value t (existence of which would lead to a contradiction), it suffices to
do analogously decrease the greatest counter value reached in the part of the computation corre-
sponding to the input subword ukvkxk. However, this can be done easily: if in the computation

(p(3)
k , z, tmin) `∗ (q′, ε, t′),

the counter value t + |K|2 + 1 is reached, then the bounded increasing loops and bounded de-
creasing loops can be deleted from the computation in exactly the same manner as above. Oth-
erwise, it suffices to simply delete one bounded increasing loop. That is, the statement of the
lemma is proved. �

Lemma 3.2.3 Let A = (K, Σ, δ, q0, F) be a deterministic one-counter automaton. Let p, q in K be
states, and s, t in N be nonnegative integer counter values. If, for some u in Σ∗, (p, u, s) `∗ (q, ε, t),
then a nonnegative integer n in N exists, such that

n ≤ max{s, t} · |K|+ |K|4 + |K| − 1,

and (p, v, s) `n (q, ε, t) for some word v in Σ∗.

Proof. Let n be the smallest nonnegative integer, such that, for some v in Σ∗,

(p, v, s) `n (q, ε, t). (3.5)

We shall prove that n ≤ max{s, t} · |K| + |K|4 + |K| − 1 by showing that the counter value is
always less than or equal to max{s, t}+ |K|3 during the computation (3.5).

For the purpose of contradiction, let us suppose that this is not true, i.e., that the computation
(3.5) can be rewritten as

(p, v1v2v3v4, s) `n1 (q1, v2v3v4, max{s, t}+ |K|2 + 1) `n2 (q2, v3v4, max{s, t}+ |K|3 + 1) `n3

`n3 (q3, v4, max{s, t}+ |K|2 + 1) `n4 (q, ε, t)

for some words v1, v2, v3, v4 in Σ∗, such that v1v2v3v4 = v, and nonnegative integers n1, n2, n3, n4
in N, such that n1 + n2 + n3 + n4 = n, so that the counter value is always greater than or equal
to max{s, t}+ |K|2 + 1 during the computation

(q1, v2v3v4, max{s, t}+ |K|2 + 1) `n2 (q2, v3v4, max{s, t}+ |K|3 + 1) `n3

`n3 (q3, v4, max{s, t}+ |K|2 + 1).

In the computation

(q1, v2v3v4, max{s, t}+ |K|2 + 1) `n2 (q2, v3v4, max{s, t}+ |K|3 + 1), (3.6)

the counter value is increased by |K|3 − |K|2, and is decreased by the same value in the compu-
tation

`n2 (q2, v3v4, max{s, t}+ |K|3 + 1) `n3 (q3, v4, max{s, t}+ |K|2 + 1). (3.7)

Thus, it follows from the Generalized pigeonhole principle that at least |K| nonoverlapping
bounded increasing loops4 exist in the computation (3.6), each increasing the counter value by
the same value of t+ in N. Similarly, the computation (3.7) contains at least |K| nonoverlapping
bounded decreasing loops, each decreasing the counter value by some t− in N. Since the counter

4For the definition, see the proof of Lemma 3.2.2.
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value is greater than or equal to max{s, t}+ |K|2 + 1 during both of the computations, t− such
increasing loops and t+ such decreasing loops can be deleted.

The resulting computation clearly begins in some configuration with the state p and the
counter value s, and ends in some configuration with the state q and the counter value t. How-
ever, it is shorter than the original computation, and that contradicts the assumption that n is the
smallest nonnegative integer with the above specified properties.

Thus, we have proved that the counter value is always less than or equal to max{s, t}+ |K|3
during the computation (3.5). Now, we shall prove that

n ≤ max{s, t} · |K|+ |K|4 + |K| − 1.

For the purpose of contradiction, let us suppose that

n ≥ max{s, t} · |K|+ |K|4 + |K|.

Since there are exactly max{s, t}+ |K|3 + 1 possibilities for the counter value in the computation
(3.5), it follows by the Pigeonhole principle that the computation (3.5) has a form

(p, w1w2w3, s) `∗ (qrep, w2w3, trep) `+ (qrep, w3, trep) `∗ (q, ε, t),

for some words w1, w2, w3 in Σ∗, such that w1w2w3 = v, for some state qrep in K, and for some
nonnegative integer counter value trep in N. However, the part

(qrep, w2w3, trep) `+ (qrep, w3, trep)

of the computation can be omitted, and this results in a shorter computation beginning in a
configuration with the state p and the counter value s, and ending in a configuration with the
state q and the counter value t. This contradicts the minimality of n. �

Corollary 3.2.4 Let A = (K, Σ, δ, q0, F) be a deterministic one-counter automaton, let q in K be a
state, and t in N be a nonnegative integer counter value.

1. If some configuration with the state q0 and the counter value 0 is reachable from some
configuration with the state q and the counter value t, then it is reachable in at most

(t + 1) · |K|+ |K|4 − 1

computation steps.

2. If some accepting configuration is reachable from some configuration with the state q and
the counter value t, then it is reachable in at most

(t + 1) · |K|+ 2 · |K|4 − 1

computation steps.

3. If some configuration with the counter value 0 is reachable from some configuration with
the state q and the counter value t, then it is reachable in at most

(t + 1) · |K|+ |K|4 − 1

computation steps.

Proof. The claims 1 and 3 are direct corollaries of Lemma 3.2.3. The claim 2 follows from Lemma
3.2.2 and Lemma 3.2.3. �
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3.3 Characterization of Strict Transition-S-Equiloadedness

In this section, we shall prove the characterization of strictly transition-S-equiloaded determin-
istic one-counter automata, for S = C, S = A, and S = E . We shall prove this characterization
in Theorem 3.3.1. Later in this section, we shall prove that this characterization is decidable
and present an algorithm for deciding if a given deterministic one-counter automaton is strictly
transition-S-equiloaded.

Theorem 3.3.1 Let A = (K, Σ, δ, q0, F) be a deterministic one-counter automaton.

a) A is strictly transition-C-equiloaded, if and only if the following two properties hold:

(i) For every computation path γ, such that |γ| ≥ 1 and γ reaches a configuration with
the state q0 and the counter value 0 at its beginning, at its end, but not otherwise, the
property

#[e, γ] = 1

holds for every transition e in D.

(ii) If γ is a computation path of the automaton A, such that γ reaches a configuration
with the state q0 and the counter value 0 only at its beginning, then |γ| ≤ M for some
fixed constant M in N.

b) A is strictly transition-A-equiloaded, if and only if L(A) is empty or if the following two
properties hold:

(i) For every computation path γ, such that |γ| ≥ 1 and γ reaches a configuration with
the state q0 and the counter value 0 at its beginning, at its end, but not otherwise, the
property

#[e, γ] = 1

holds for every transition e in D.

(ii′) If γ is an accepting computation path of the automaton A, such that γ reaches a con-
figuration with the state q0 and the counter value 0 only at its beginning, then |γ| ≤ M
for some fixed constant M in N.

c) A is strictly transition-E -equiloaded, if and only if the following two properties hold:

(i) For every computation path γ, such that |γ| ≥ 1 and γ reaches a configuration with
the state q0 and the counter value 0 at its beginning, at its end, but not otherwise, the
property

#[e, γ] = 1

holds for every transition e in D.

(ii′′) If γ is a computation path of the automaton A accepting by empty memory, such that γ
reaches a configuration with the state q0 and the counter value 0 only at its beginning,
then |γ| ≤ M for some fixed constant M in N.

Proof. We shall prove all three claims at once. First, let us prove the left-to-right implications.
For the purpose of contradiction, let us suppose that the automaton A is strictly transition-S-
equiloaded for some S in {C,A, E}, and that the property (i) does not hold. Moreover, if S = A,
let us further suppose that L(A) is nonempty.

Since (i) does not hold, a computation path γ exists, such that γ corresponds to a computation

(q0, w, 0) `n (q0, ε, 0)

for some word w in Σ∗ and some positive integer n in N+, and

|#[e, γ]− #[ f , γ]| ≥ 1
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for some e, f in D (this is the case because every transition leading from the state q0 at the counter
value 0 can be used at most once in computation paths that we are concerned with in (i)). That
is, for all k in N, a computation path γk exists, such that γk corresponds to a computation

(q0, wk, 0) `kn (q0, ε, 0),

and
|#[e, γk]− #[ f , γk]| ≥ k. (3.8)

In the case S = C, (3.9) clearly contradicts an assumption of strict transition-C-equiloadedness
of the automaton A. Moreover, γk is clearly a computation path accepting by empty memory for
all k in N. Thus, (3.9) clearly leads to a contradiction also in the case S = E . Finally, in the case
S = A, there has to be a nonnegative integer constant r, such that

(q0, u, 0) `r (q, ε, t)

for some word u in Σ∗, some accepting state q in F, and some nonnegative integer t in N. Thus,
for an accepting computation path γ′k, corresponding to the computation

(q0, wku, 0) `kn (q0, u, 0) `r (q, ε, t),

the property ∣∣#[e, γ′k]− #[ f , γ′k]
∣∣ ≥ k− r (3.9)

holds. This clearly contradicts the assumption that the automaton A is strictly transition-A-
equiloaded.

Now, let us suppose that S = C and the property (ii) does not hold. Then, for each l in N, a
computation path κl exists, such that |κl | ≥ l, and #[e, κl ] ≤ 1 for each transition e = (q0, c, 0, q′, r),
where c is in Σ, q′ is in K, and r is in {0, 1}. However, by the Pigeonhole principle, a transition f
in D exists, such that

#[ f , κl ] ≥
l
|D| .

Thus, we may conclude that for all k in N, a computation path κlk exists, such that∣∣#[e, κlk ]− #[ f , κlk ]
∣∣ ≥ k.

This clearly contradicts the assumption that the automaton A is strictly transition-C-equiloaded.
For the cases S = A and S = E , an analogous reasoning can be used to obtain a contradiction,

if we suppose that the property (ii′) resp. (ii′′) does not hold.
Now, let us prove the easier right-to-left implications. We consider to be obvious that if the

properties (i) and (ii) are satisfied, then the inequality

|#[e, γ]− #[ f , γ]| ≤ M (3.10)

holds for all computation paths γ, and each two transitions e, f in D. Similarly, if (i) and (ii′)
are satisfied, the inequality (3.10) holds for all accepting computation paths γ, and if (i) and (ii′′)
are satisfied, the inequality holds for all computation paths γ accepting by empty memory. The
theorem is proved. �

In what follows, we shall show that the previous theorem is a good characterization of strictly
transition-S-equiloaded DOCA. That is, we shall prove that the characterization from the pre-
vious theorem is decidable: we shall present an algorithm deciding the strict transition-S-equi-
loadedness of a given DOCA by deciding, if the characterization from Theorem 3.3.1 is satisfied.

The algorithm shall proceed as follows: first, it examines all computation paths γ of length at
most

M = max{|D|, |K|(|K|+ 1)}+ 1,
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such that γ visits a configuration with the state q0 and the counter value 0 only at its beginning.
This is done by generating all possible computation paths. If a computation path that visits
a configuration with the state q0 and the counter value 0 for the second time is discovered, it is
thrown away. However, before this is done, the algorithm checks if each transition is used exactly
once in the computation path. If not, the property (i) is violated, and the automaton is not strictly
transition-S-equiloaded.

At the end of this part of the algorithm, all computation paths γ of length exactly M are
generated, such that γ visits a configuration with the state q0 and the counter value 0 only at
its beginning. It is obvious that the property (i) of the characterization from Theorem 3.3.1 is
satisfied, if and only if none of these computation paths can be prolonged to a computation path
ending in a configuration with the state q0 and the counter value 0. Corollary 3.2.4, together with
a simple fact that the counter value at the end of a computation path is always less than or equal
to the length of the computation path, implies that to decide if this property holds, it suffices to
check all possible prolongments by at most

(M + 1) · |K|+ |K|4 − 1

transitions. Moreover, it follows from Lemma 3.2.1 that the property (ii) of the characterization
from Theorem 3.3.1 is satisfied, if and only if the set of computation paths generated by the first
part of the algorithm is empty. Further, by Lemma 3.2.1, the property (ii′) of the characterization
is satisfied, if and only if none of these computation paths is accepting, and none of them can
be prolonged to an accepting computation path. It follows from Corollary 3.2.4 that it suffices to
check all possible prolongments by at most

(M + 1) · |K|+ 2 · |K|4 − 1

transitions. Finally, again by Lemma 3.2.1, the property (ii′′) of the characterization is satisfied,
if and only if none of these computation paths is accepting by empty memory, and none of them
can be prolonged to a computation path accepting by empty memory. Corollary 3.2.4 implies
that it suffices to check all possible prolongments by at most

(M + 1) · |K|+ |K|4 − 1

transitions. These observations result in Algorithm 1.

Algorithm 1 Deciding a strict transition-S-equiloadedness of a DOCA by checking if the charac-
terization from Theorem 3.3.1 is satisfied.
Input: Finitely described DOCA A = (K, Σ, δ, q0, F), name of the function S in {C,A, E}.
Output: TRUE, if the automaton A is strictly transition-S-equiloaded, FALSE otherwise.

1: M← max{|D|, |K|(|K|+ 1)}+ 1
2: C ← {the empty computation path}
3: for i← 1, M do
4: C′ ← ∅
5: for each γ in C do
6: Let S be the set of all computation paths γ′ of length i, such that γ′ is a computation

path γ prolonged by one extra transition.
7: C′ ← C′ ∪ S
8: end for
9: C ← C′
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Algorithm 1 continued.

10: for each γ in C do
11: if γ begins and ends in a configuration with the state q0 and the counter value 0 then
12: C ← C− {γ}
13: if #[e, γ] 6= 1 for some e in D then
14: return FALSE
15: end if
16: end if
17: end for
18: end for
19: if S = C then
20: if C = ∅ then
21: return TRUE
22: else
23: return FALSE
24: end if
25: else if S = A then
26: for i← 1, (M + 1) · |K|+ 2 · |K|4 do
27: for each γ in C do
28: if γ ends in an accepting state or in q0 with the counter value 0 then
29: return FALSE
30: end if
31: end for
32: C′ ← ∅
33: for each γ in C do
34: Let S be the set of all computation paths γ′ of length i, such that γ′ is a computa-

tion path γ prolonged by one extra transition.
35: C′ ← C′ ∪ S
36: end for
37: C ← C′

38: end for
39: return TRUE
40: else if S = E then
41: for i← 1, (M + 1) · |K|+ |K|4 do
42: for each γ in C do
43: if γ ends in a configuration with the counter value 0 then
44: return FALSE
45: end if
46: end for
47: C′ ← ∅
48: for each γ in C do
49: Let S be the set of all computation paths γ′ of length i, such that γ′ is a computa-

tion path γ prolonged by one extra transition.
50: C′ ← C′ ∪ S
51: end for
52: C ← C′

53: end for
54: return TRUE
55: end if
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3.4 Further Lemmas

In this section, we shall state and prove some additional lemmas that we shall use mainly in our
study of relations between various families of strictly S-equiloaded DOCA-languages.

Lemma 3.4.1 Let A = (K, Σ, δ, q0, F) be a strictly transition-S-equiloaded DOCA, for some S in
{C,A, E}, accepting an infinite language. Then, for each q in K, δ(q, c, 0) is defined for at most
one c in Σ ∪ {ε}.

Proof. By contradiction. Let us suppose that two distinct (and thus necessarily non-ε) sym-
bols c, d in Σ exist, such that both δ(q, c, 0) and δ(q, d, 0) are defined for some state q in K. That
is, (q, c, 0, pr1(δ(q, c, 0)), pr2(δ(q, c, 0))) and (q, d, 0, pr1(δ(q, d, 0)), pr2(δ(q, d, 0))) are two distinct
transitions in D.

Since the language L(A) is infinite, it follows from the characterization given in Theorem 3.3.1
that

(q0, w, 0) `+ (q0, ε, 0),

for some word w in Σ∗. Moreover, the property (i) of the characterization from Theorem 3.3.1
has to hold. That is, for every computation path γ, such that |γ| ≥ 1 and γ reaches a configura-
tion with the state q0 and the counter value 0 at its beginning, at its end, but not otherwise, the
property

#[e, γ] = 1

holds for every transition e in D. Now, if q = q0, this is a clear contradiction. Let us there-
fore suppose that q 6= q0. Then, since there are at least two distinct transitions leading from
q at the counter value 0, every such computation path γ has to visit the state q at least twice
with the counter value 0. Now, let us consider γ to be fixed. Without loss of generality, let
us suppose that the transition (q, c, 0, pr1(δ(q, c, 0)), pr2(δ(q, c, 0))) is used before the transition
(q, d, 0, pr1(δ(q, d, 0)), pr2(δ(q, d, 0))) in the computation path γ. Then, obviously, there is a com-
putation subpath γ′ of γ, corresponding to some computation

(q, cu, 0) `+ (q, ε, 0)

for some u in Σ∗, such that a configuration with the state q0 and with the counter value 0 is
not visited by γ′. Clearly, γ′ can be iterated arbitrarily many times as a subpath of γ. Thus, a
computation path violating the property (i) exists, and that is a contradiction. �

Lemma 3.4.2 Let A = (K, Σ, δ, q0, F) be a strictly transition-S-equiloaded DOCA, for some S in
{C,A, E}, accepting an infinite language. Then, a unique positive integer k in N+, a unique
sequence of states {qi}k+1

i=1 in Kk+1, and a unique partition of the set of transitions {Si}k
i=1 in(

2D)k exists, such that the following statement holds: let γ be an arbitrary computation path
of the automaton A, such that |γ| ≥ 1 and γ reaches a configuration with the state q0 and the
counter value 0 at its beginning, at its end, but not otherwise. Then, the sequence of states of
the automaton A visited by γ with the counter value being 0 is identical to {qi}k+1

i=1 , and the set
of transitions used by γ between the i-th and (i + 1)-th visit of a configuration with the counter
value 0 is Si, for i = 1, . . . , k. Clearly, q1 = qk+1 = q0.

Proof. We shall first prove that k is unique. This can be easily observed since, according to
Lemma 3.4.1, every computation path γ satisfying the imposed conditions has to visit each state
q in K, such that δ(q, c, 0) is defined for some c in Σ ∪ {ε}, exactly once (except q = q0 that is
visited twice). Clearly, no other state can be visited by γ with the counter value being 0, since the
computation would get stuck.

Now, we shall prove that {qi}k+1
i=1 is unique. For the purpose of contradiction, let us suppose

that {pi}k+1
i=1 is a sequence of states, such that it is followed (in the sense of the statement of

the lemma) by some computation path γ1, and {ri}k+1
i=1 is a different sequence of states, such
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that it is followed by some different computation path γ2, where both computation paths γ1, γ2
satisfy the conditions imposed in the statement of the lemma. By what we have stated above, the
second sequence can be viewed as a nonidentical permutation of the first sequence (however, this
permutation is required to preserve the first and the last element). Thus, integers i, j in {1, . . . , k}
exist, such that i < j, and pi = rj. Clearly, the computation path γ1 can be cut after reaching a
configuration with the state pi and the counter value 0, and then continued as the computation
path γ2. However, the resulting computation path γ clearly contradicts the property that k is
always unique, since the number of visits of a configuration with the counter value 0 by the
computation path γ is strictly less than k + 1.

Finally, we shall prove that {Si}k
i=1 is unique. Since the automaton A is strictly transition-S-

equiloaded for some S in {C,A, E}, and since the accepted language L(A) is infinite, it follows
from the characterization given in Theorem 3.3.1 that a computation path γ exists, such that
|γ| ≥ 1 and γ reaches a configuration with the state q0 and the counter value 0 at its beginning,
at its end, but not otherwise. By the property (i) of the characterization from Theorem 3.3.1, the
property #[e, γ] = 1 has to hold for all e in D.

Let us suppose that {Ti}k
i=1 is a sequence of sets of transitions, followed by (in the sense of

the statement of the lemma) the computation path γ. By our assumption, at least one another se-
quence of sets of transitions {Ui}k

i=1 exists, such that it is followed by some another computation
path, say γ′, such that it is nonempty, and such that it reaches a configuration with the state q0
and the counter value 0 at its beginning, at its end, but not otherwise. Then, at least one index j
in {1, . . . , k} exists, such that Tj 6= Uj. Moreover, since the sequence {qi}k+1

i=1 is unique, it follows
that the computation of the form (qj, u, 0) `∗ (qj+1, ε, 0) exists for some u in Σ∗, such that it uses
exactly all transitions from Tj (as in the computation path γ), and another computation of the
form (qj, v, 0) `∗ (qj+1, ε, 0) exists for some v in Σ∗, such that it uses exactly all transitions from
Uj (as in the computation path γ′).

Now, let us consider a computation path γ′′ such that it is identical to γ except that between
the states qj and qj+1 it follows the path of γ′, i.e., the corresponding computation is the above
mentioned computation of the form (qj, v, 0) `∗ (qj+1, ε, 0). Clearly, |γ′′| ≥ 1 and γ′′ reaches
a configuration with the state q0 and the counter value 0 at its beginning, at its end, but not
otherwise. However, it is obvious that the property #[e, γ] = 1 cannot hold for all e in D. This
contradicts the characterization of strictly transition-equiloaded DOCA given in Theorem 3.3.1.
The lemma is proved. �

3.5 Families of Strictly S-Equiloaded Languages

In this section, we shall examine the relations that hold between various families of strictly S-
equiloaded DOCA-languages and the relations of these families to some families of languages
studied earlier in this report.

Theorem 3.5.1 The following strict inclusions hold:

1. Nδ−SEQ−DOCA(C) ( Lδ−SEQ−DOCA(C), 2. Nδ−SEQ−DOCA(E) ( Lδ−SEQ−DOCA(A).

Proof. We shall prove only the first statement, the proof of the second statement is analo-
gous. Let L in Nδ−SEQ−DOCA(C) be a strictly transition-C-equiloaded DOCA-language accepted
by empty memory. Let A = (K, Σ, δ, q0, F) be a strictly transition-C-equiloaded deterministic one-
counter automaton, such that N(A) = L. We shall construct a strictly transition-C-equiloaded
deterministic one-counter automaton A′ = (K′, Σ′, δ′, q′0, F′), such that L(A′) = L, as follows:
K′ = K × {old, new}, Σ′ = Σ, the transition function δ′ is defined for all q, q′ in K, c in Σ′ ∪ {ε}
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and r in {−1, 0, 1} by

δ′((q, old), c, 1) = ((q′, old), r) ⇐⇒ δ(q, c, 1) = (q′, r),

δ′((q, old), ε, 0) = ((q, new), 0),

δ′((q, new), c, 0) = ((q′, old), r) ⇐⇒ δ(q, c, 0) = (q′, r),

q′0 = (q0, old), and F′ = K × {new}. The idea behind this construction is to replace each state
of the automaton A by two states: the „old” one and the „new” one. If the counter value is
greater than zero, then the computation proceeds by using old states, exactly as in the automaton
A. However, when the counter value 0 is reached, the computation first makes an ε-transition
from the old state to the new states and only then continues to simulate the computation of the
automaton A (by using old states, again). The reason why the new states are introduced is that a
state (q, new) of the automaton A′ can be reached after reading some w in Σ∗ if and only if some
configuration of the automaton A with the state q and the counter value 0 can be reached after
reading w. Thus, if A accepts w by empty memory, then some new state of the automaton A′ can
be reached after reading w. Conversely, if some new state of A′ can be reached after reading w,
then A accepts w by empty memory. It therefore suffices to define the set F′ to be K× {new}.

Conversely, every language in Nδ−SEQ−DOCA(C) has to contain the empty word ε. However,
it is easy to find a language L in Lδ−SEQ−DOCA(C), such that ε is not in L. The language L = {a}+
may serve as an easy counterexample. The construction of a strictly transition-C-equiloaded
DOCA accepting L is easy and left to the reader. The theorem is proved. �

Theorem 3.5.2 The following strict inclusions hold:

1. Lδ−SEQ−DOCA(C) ( Lδ−SEQ−DOCA(A), 2. Nδ−SEQ−DOCA(C) ( Nδ−SEQ−DOCA(E).

Proof. The improper inclusions follow immediately from Theorem 1.6.3. We shall prove that
these inclusions are proper.

Let us consider the language L = {abcd, acbd, bacd, bcad}∗. We shall prove that this language
is in Lδ−SEQ−DOCA(A), but not in Lδ−SEQ−DOCA(C).

We shall construct a deterministic one-counter automaton A = (K, Σ, δ, q0, F), such that A is
strictly transition-A-equiloaded, and such that L(A) = L as follows: the set of states K shall be
defined by

K = {qi | i = 0, . . . , 21} ∪ {p1,i | i = 1, . . . , 4} ∪ {p2,i | i = 1, . . . , 5} ∪ {p3,i | i = 1, . . . , 9},

the alphabet Σ shall be Σ = {a, b, c, d}, the transition function δ shall be defined as follows:

δ(q0, ε, 0) = (q1, +1), δ(q1, a, 1) = (p1,1, +1),
δ(q1, b, 1) = (p2,1, +1), δ(q1, c, 1) = (p3,1,−1),
δ(q1, d, 1) = (q2,−1), δ(qi, ε, 1) = (qi+1,−1), i = 2, . . . , 20,

δ(q21, ε, 0) = (q0, 0), δ(p1,i, ε, 1) = (p1,i+1, +1), i = 1, . . . , 3,
δ(p1,4, ε, 1) = (q1, +1), δ(p2,i, ε, 1) = (p2,i+1, +1), i = 1, . . . , 4,
δ(p2,5, ε, 1) = (q1, +1), δ(p3,i, ε, 1) = (p3,i+1, +1), i = 1, . . . , 8,
δ(p3,9, ε, 1) = (q1, +1),

and the set F of accepting states shall consist only of the initial state, i.e., F = {q0}. It is not hard
to see that this automaton indeed accepts the language L: to arrive from the state q1 to the only
accepting state q0, it is first obviously necessary to reach a configuration with the state q1 and
with the counter value 20. When the state q1 is reached for the first time after the last visit of the
state q0, the counter value is always 1. That is, before leaving the state q1 for the last time before
the next visit of q0, the counter value has to be increased by the value of 19.
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There are three “cycles” from the state q1: one consists of the states p1,i, i = 1, . . . , 4, and the
character a is read during the cycle, second of the states p2,i, i = 1, . . . , 5, and the character b is
read during the cycle, and third of the states p3,i, i = 1, . . . , 9, and the character c is read. The
counter value is increased by the value of 5 in the first cycle, by the value of 6 in the second cycle,
and by the value of 8 in the third cycle. The reader may easily convince himself that the only way
how to express the number 19 as an integer conical combination of numbers 5, 6 and 8 is

5 + 6 + 8 = 19.

Thus, to increase the counter value by the value of 19, the computation has to go through each of
these cycles exactly once. However, the third cycle cannot be used as the first of these cycles, since
it can be easily seen that if the initial counter value is 1, the computation gets stuck in this cycle.
After going through these cycles, the character d is always read. Thus, the statement L(A) = L
is proved. Moreover, the above reasoning also clearly implies that the automaton A is strictly
transition-A-equiloaded. That is, L is in Lδ−SEQ−DOCA(A).

Now we shall prove that the language L is not in Lδ−SEQ−DOCA(C). For the purpose of contra-
diction, let us suppose that a strictly transition-C-equiloaded deterministic one-counter automa-
ton A′ = (K′, Σ, δ′, q′0, F′) exists, such that L(A′) = L (we can clearly assume that the alphabet
of A′ is Σ, since a transition on a character not in Σ would either spoil the strict transition-C-
equiloadedness, or change the accepted language).

The requirement of determinism of the automaton A′ implies that every computation of the
automaton A′ begins with a sequence of ε-transitions and then arrives to some configuration with
a state q and a counter value t, where it can choose (at least) between some a-transition and some
b-transition (but there is not any ε-transition). Moreover, Lemma 3.4.1 implies that t ≥ 1.

That is, the setting is as follows: for some q in K′ and t ≥ 1, we have (q0, ε, 0) `+ (q, ε, t).
Moreover, for some qa, qb in K′ and ra, rb in {−1, 0, +1}, ea = (q, a, 1, qa, ra) and eb = (q, b, 1, qb, rb)
are transitions of A′.

Since the automaton A′ is strictly transition-C-equiloaded, the properties (i) and (ii) of the
characterization given in Theorem 3.3.1 have to hold. Since, in addition, an arbitrarily long word
beginning by a (resp. b) can be found in L(A′), this implies that if the transition ea is chosen, the
computation path has to be able to return to the transition eb, and vice versa. That is, words wa
and wb in Σ∗ exist, such that

(q, awa, t) ` (qa, wa, t + ra) `∗ (q, ε, ta) (3.11)

and
(q, bwb, t) ` (qb, wb, t + rb) `∗ (q, ε, tb) (3.12)

for some ta, tb in N. Clearly, the transitions ea and eb can be used in an arbitrary order. Thus,
it follows from Lemma 3.4.2 that the counter value is always positive in both the computation
(3.11) and the computation (3.12). Furthermore, the inequalities 0 < ta < t and 0 < tb < t have
to hold, since otherwise either the counter value 0 would be reached, or the “cycles” (3.11) and
(3.12) could be “executed” arbitrarily many times and the automaton A′ would not be strictly
transition-C-equiloaded (the property (ii) of the characterization from Theorem 3.3.1 would be
violated).

Now, let us examine the possible lengths of the word wa. The length of the word wa clearly
cannot be 4k + 3 for some k in N, since otherwise the computation clearly could continue by
the use of some a-transition. However, the only a-transition leading from q at the counter value
greater than 0 is ea. But if this transition was used, the property (i) of the characterization from
Theorem 3.3.1 would be violated.

If the length of the word wa is 4k + 2 for some k in N, then the “accepting branch” of the com-
putation would have to continue by some d-transition leading from q at the counter value greater
than 0. However, the transition eb would still be unused. This implies that this computation as
well as the word wa can be prolonged so that the prolonged length of wa is 4k + 1 or 4k for some
k in N.
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If the length of the word wa is 4k for some k in N, then, clearly, the computation can continue
by the use of some c-transition. That is, there is a transition ec = (q, c, 1, qc, rc), for some qc in K′

and rc in {−1, 0, 1}. For the same reasons as above, a word wc in Σ∗ has to exist, such that

(q, cwc, ta) ` (qc, wc, ta + rc) `∗ (q, ε, tc), (3.13)

and such that the counter value is always positive during this computation. However, since
t > ta, it is also possible to reverse the order of the cycles, that is, to first use the c-cycle and only
then to use the a-cycle. Instead of the word awacwc, the word cwcawa would be read, but the
terminal configuration would be exactly the same. But since the word awacwc can be prolonged5

to some word from L(A′), the same is true for cwcawa. But this is a contradiction, since the first
character of this word is c and there is not any such word in L(A′).

Thus, the only possible length of the word wa that is left, is 4k + 1 for some k in N. However,
it is clearly possible to construct an arbitrarily long word w in L(A′), such that for every k in N,
the character w[4k + 2], if defined, is c and not b. That is, the number of steps needed until the
transition eb is used in some accepting computation, is not bounded by any constant. This clearly
contradicts the characterization given in Theorem 3.3.1.

Now, let us consider the language L′ = {abcd, acbd, bacd, bcad}∗{ε, c}. Clearly, N(A) =
L′. Furthermore, the automaton A is obviously strictly transition-E -equiloaded. Thus, L′ is in
Nδ−SEQ−DOCA(E).

To prove that L′ is not in Nδ−SEQ−DOCA(C), exactly the same reasoning as above can be used.
The only minor difference is in the case when the word wa is supposed to have the length 4k for
some k in N. Then, the contradiction is reached not only by noting that a word beginning by c
would have been in L(A′), but by noting that a word of length at least 2 beginning by c would
have been in L(A′) (that is clearly not the case for the language L′). The theorem is proved. �

In what follows, we shall examine the relations of the families of strictly transition-S-equi-
loaded DOCA-languages to some families of languages studied in the previous chapter. We
shall observe that the computational power of (state-accepting) strictly transition-S-equiload-
ed DOCA is greater than the computational power of strictly transition-S-equiloaded DFA or
DFAε. However, on the other hand, we shall also make one slightly less optimistic observation:
strictly transition-S-equiloaded DOCA accept only some proper subset of the family of regular
languages.

Theorem 3.5.3 The following strict inclusions hold:

1. Lδ−SEQ−DOCA(C) ) Lδ−SEQ−DFAε, 2. Lδ−SEQ−DOCA(A) ) Lδ−SEQ−DFAε.

Proof. It clearly suffices to prove the first statement: the second statement is a clear corollary of
the first statement and of Theorem 3.5.2.

First, let us prove the improper inclusion. Let L in Lδ−SEQ−DFAε be a strictly transition-
equiloaded DFAε-language. Recall that Lδ−SEQ−DFAε is defined by

Lδ−SEQ−DFAε := Lδ−SEQ−DFAε(C) = Lδ−SEQ−DFAε(A).

Thus, there exists a strictly transition-C-equiloaded deterministic finite automaton with ε-tran-
sitions A = (K, Σ, δ, q0, F), such that L(A) = L. Moreover, we can clearly suppose that the
graphical representation of the automaton A is connected. Thus, by Theorem 2.2.2, the graphical
representation of the automaton A either does not contain any reachable directed cycle, or is a
directed cycle through all states.

Let us define a strictly transition-C-equiloaded deterministic one-counter automaton A′ =
(K′, Σ′, δ′, q′0, F′) accepting L as follows: K′ = K, Σ′ = Σ, q′0 = q0, F′ = F, and

∀p, q ∈ K′ ∀c ∈ Σ′ ∪ {ε} : δ′(p, c, 0) = (q, 0) ⇐⇒ δ(p, c) = q
5This obviously holds for at least one possible wa, since otherwise the contradiction with L(A′) = L could be easily

reached. Without loss of generality, let us suppose that we have chosen such wa.
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(transitions for the counter values greater than zero are left undefined). That is, the DOCA A′

merely simulates the DFAε A with the counter value being constantly 0. The statement L(A′) = L
is obvious.

It remains to prove that the deterministic one-counter automaton A′ is strictly transition-C-
equiloaded. As we have already noted, the graphical representation of the automaton A either
does not contain any reachable directed cycle, or is a directed cycle through all states.

If the graphical representation of the automaton A does not contain any reachable directed
cycle, then, clearly, there is not any word w in Σ∗, such that (q0, w) `∗A (q0, ε). By the definition of
the automaton A′, this implies that there is not any word w in (Σ′)∗ = Σ∗, such that (q0, w, 0) `∗A′
(q0, ε, 0). Thus, the property (i) of the characterization given in Theorem 3.3.1 is trivially satisfied.
Moreover, there clearly is a nonnegative integer k in N, such that for every computation path γ
of the automaton A, the inequality |γ| ≤ k holds. Thus, the same property holds also for every
computation path of the automaton A′. In other words, the property (ii) of the characterization
given in Theorem 3.3.1 is satisfied as well and the deterministic one-counter automaton A′ is
strictly transition-C-equiloaded.

Similarly, if the graphical representation of the automaton A is a directed cycle through all
states, it follows directly from the definition of the automaton A′ that the properties (i) and (ii)
of the characterization given in Theorem 3.3.1 are satisfied. That is, the deterministic one-counter
automaton A′ is again strictly transition-C-equiloaded.

Let us prove that the inclusion is proper. In Example 3.1.2, we have observed that the language
L = {ab, ba}∗ is in Lδ−SEQ−DOCA(C). We shall prove that L is not in Lδ−SEQ−DFAε.

For the purpose of contradiction, let us suppose that L is in Lδ−SEQ−DFAε. Since the language
L is infinite, a DFAε A = (K, Σ, δ, q0, F) with the graphical representation of the form of a directed
cycle through all states exists, such that L(A) = L. Let q in K be the first (in the direction of the
directed cycle) state of the automaton A, such that at least one non-ε transition (q, c, q′) in D leads
from q. Such a state has to exist, since otherwise the accepted language L(A) would be finite. If
c = a, then every word in L(A) begins by a, and that contradicts the assumption L(A) = L. An
analogous contradiction can be reached also in the case c = b. Clearly, these are the only two
possibilities. Thus, L is not in Lδ−SEQ−DFAε. The theorem is proved. �

Corollary 3.5.4 The following strict inclusions hold:

1. Lδ−SEQ−DOCA(C) ) Lδ−SEQ−DFA, 2. Lδ−SEQ−DOCA(A) ) Lδ−SEQ−DFA.

Proof. Follows directly from Theorem 3.5.3 and Theorem 2.2.8. �

Theorem 3.5.5 The following relations hold:

1. The families Nδ−SEQ−DOCA(C) and Lδ−SEQ−DFAε are incomparable.

2. The families Nδ−SEQ−DOCA(E) and Lδ−SEQ−DFAε are incomparable.

3. The families Nδ−SEQ−DOCA(C) and Lδ−SEQ−DFA are incomparable.

4. The families Nδ−SEQ−DOCA(E) and Lδ−SEQ−DFA are incomparable.

Proof. We shall prove all four statements at once. That is, we shall find an example of a language
that is in both families of strictly transition-S-equiloaded DOCA-languages accepted by empty
memory, mentioned in the statement of the theorem, but not in Lδ−SEQ−DFAε and Lδ−SEQ−DFA,
and vice versa.

Let us consider the language L′ = {ab, ba}∗{ε, aaa, aab, bb} from Example 3.1.3. There, we
have already observed that the language L′ is both in the family Nδ−SEQ−DOCA(C), and in the
family Nδ−SEQ−DOCA(E). However, L′ is neither in Lδ−SEQ−DFAε, nor in Lδ−SEQ−DFA, since it
contains two words beginning by different characters.

On the other hand, let us consider the language L = {a}. The language L is finite, and
thus clearly is both in Lδ−SEQ−DFAε and in Lδ−SEQ−DFA. However, obviously, every language
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accepted by some deterministic one-counter automaton by empty memory has to contain the
empty word ε. Thus, L is neither in Nδ−SEQ−DOCA(C), nor in Nδ−SEQ−DOCA(E). The theorem is
proved. �

Theorem 3.5.6 The following strict inclusions hold:

1. Lδ−SEQ−DOCA(C) ( R,

2. Lδ−SEQ−DOCA(A) ( R,

3. Nδ−SEQ−DOCA(C) ( R,

4. Nδ−SEQ−DOCA(E) ( R.

Proof. It follows from Theorem 3.5.1 and Theorem 3.5.2 that it suffices to prove the second
strict inclusion Lδ−SEQ−DOCA(A) ( R, and the remaining strict inclusions will follow as a direct
corollary.

First, let us prove the inclusion. Let L be a language in Lδ−SEQ−DOCA(A). Then, a strictly
transition-A-equiloaded deterministic one-counter automaton A = (K, Σ, δ, q0, F) exists, such
that L(A) = L.

Since the automaton A is strictly transition-A-equiloaded, the properties (i) and (ii′) of the
characterization from Theorem 3.3.1 have to be satisfied. Let us denote by H∗ the highest possi-
ble nonnegative integer, such that a configuration with the counter value H∗ is reachable by A.
Clearly, the properties (i) and (ii′), together with Lemma 3.2.1 imply that H∗ ≤ |K|(|K|+ 1) =:
M.

Thus, we may construct a DFAε A′ = (K′, Σ′, δ′, q′0, F′) accepting the language L as follows:
K′ = K × {0, . . . , M}, Σ′ = Σ, q′0 = (q0, 0), F′ = F × {0, . . . , M}, and for all q, q′ in K, all t, t′ in
{0, . . . , M}, and all c in Σ ∪ {ε}:

δ′((q, t), c) = (q′, t′) ⇐⇒ δ(q, c, sgn(t)) = (q′, r),

where t′ = t + r. The transitions that would increase the counter value of the automaton A above
the value of M shall remain undefined for A′. We consider the statement L(A′) = L(A) = L to
be obvious.

Several examples of regular languages that are not strictly transition-A-equiloaded, shall be
constructed in the subsection dealing with closure properties. Thus, the above proved inclusion
is strict, and the theorem is proved. �

Now, let us turn our attention to the families of strictly state-S-equiloaded DOCA-languages.

Theorem 3.5.7 The following relations hold:

1. The families NK−SEQ−DOCA(C) and LK−SEQ−DOCA(C) are incomparable.

2. The families NK−SEQ−DOCA(E) and LK−SEQ−DOCA(A) are incomparable.

3. The families NK−SEQ−DOCA(C) and LK−SEQ−DOCA(A) are incomparable.

4. The families NK−SEQ−DOCA(E) and LK−SEQ−DOCA(C) are incomparable.

Proof. We shall prove all four incomparability relations at once. In Example 3.1.6, we have
observed that the (obviously non-prefix-dense) language

L1 = {anb | n ≥ 1} ∪ {ε}

is a member of the family NK−SEQ−DOCA(C) and thus, as a consequence of Theorem 1.6.3, also
of the family NK−SEQ−DOCA(E). However, since the language L1 is not prefix-dense, it fol-
lows from Theorem 1.7.5 that it is neither in the family LK−SEQ−DOCA(C), nor in the family
LK−SEQ−DOCA(A).

On the other hand, let us consider the finite language L2 = {a}. It is trivial to construct a
strictly state-C-equiloaded deterministic one-counter automaton accepting L2 by accepting state.



118 3.5 Families of Strictly S-Equiloaded Languages

Thus, L2 is in the family LK−SEQ−DOCA(C) and, as a consequence of Theorem 1.6.3, also in the
family LK−SEQ−DOCA(A). However, since L2 does not contain the empty word ε, it cannot be
accepted by any deterministic one-counter automaton by empty memory, and thus, L2 is neither
the member of the family NK−SEQ−DOCA(C), nor of the family NK−SEQ−DOCA(E). The theorem
is proved. �

Theorem 3.5.8 The following strict inclusion holds:

NK−SEQ−DOCA(C) ( NK−SEQ−DOCA(E).

Proof. The inclusion follows immediately from Theorem 1.6.3. We shall prove that this inclusion
is strict.

Let us consider the language L = {anbn | n ≥ 0}. In Example 3.1.4, we have observed that
the language L is in NK−SEQ−DOCA(E). We shall prove that the language L is not in the family
NK−SEQ−DOCA(C).

For the purpose of contradiction, let us suppose that A = (K, Σ, δ, q0, F) is a strictly state-
C-equiloaded deterministic one-counter automaton, such that N(A) = L. Since the language
L is not regular, for every t in N a nonnegative integer m in N exists, such that the counter
value t is reached during the computation on a word ambm. This, together with the strict state-C-
equiloadedness of the automaton A, implies that6 a nonnegative integer n in N exists, such that
the computation of the automaton A on the word anbn has a form

(q0, anbn, 0) `+ (q, an1 bn, t1) `+ (q, an2 bn, t2) `+ (q, bn3 , t3) `+ (q, bn4 , t4) `+ (q′, ε, 0),

where q and q′ in K are states, n1, n2, n3 and n4 in N are nonnegative integers, such that 0 < n2 <
n1 < n and 0 < n4 < n3 < n, t1, t2, t3 and t4 in N are counter values, such that 0 < t1 < t2,
0 < t4 < t3 and t1 ≤ t4, and the counter value is always positive during the computation
(q, an1 bn, t1) `∗ (q, bn4 , t4).

However, this clearly implies that positive integers d1, d2 in N+ exist,7 such that the word
w = anbn−n4 a(n1−n2)d1 b(n3−n4)d2 bn4 is in N(A). However, clearly, w is not in L. Thus, N(A) 6= L,
and that is a contradiction with our assumption. The theorem is proved. �

We leave the relation between the analogous families of languages accepted by accepting state
open.

Open Problem 3.5.9 What is the relation between the family LK−SEQ−DOCA(C) and the family
LK−SEQ−DOCA(A)? Clearly, Theorem 1.6.3 implies LK−SEQ−DOCA(C) ⊆ LK−SEQ−DOCA(A). Is
this inclusion proper or are these two families equal?

Theorem 3.5.10 The following strict inclusions hold:

1. LK−SEQ−DOCA(C) ) LK−SEQ−DFAε, 2. LK−SEQ−DOCA(A) ) LK−SEQ−DFAε.

Proof. We shall prove both strict inclusions at once. First, let us prove the inclusions. Every
strictly state-equiloaded deterministic finite automaton with ε-transitions can be simulated by a
strictly state-C-equiloaded (and thus also strictly state-A-equiloaded) deterministic one-counter
automaton with the counter value being constantly zero. Details of this construction are as in the
proof of Theorem 3.5.3.

Now, let us prove that these inclusions are strict. In Example 3.1.5, we have observed that
both the family LK−SEQ−DOCA(C) and the family LK−SEQ−DOCA(A) contains some nonregular
language. However, a nonregular language cannot be in LK−SEQ−DFAε neither. The theorem is
proved. �

Corollary 3.5.11 The following strict inclusions hold:
6The proof of the following statement is straightforward and since similar ideas have already been used a number of

times in this thesis, we consider it to be clear. The details are therefore left to be worked out by the reader (if needed).
7These positive integers can be defined to be positive integers d1, d2, such that (t2 − t1)d1 = (t3 − t4)d2.
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1. LK−SEQ−DOCA(C) ) LK−SEQ−DFA, 2. LK−SEQ−DOCA(A) ) LK−SEQ−DFA.

Proof. The statement is a direct corollary of Theorem 3.5.10 and of Theorem 2.2.8. �

Theorem 3.5.12 The following relations hold:

1. The families NK−SEQ−DOCA(C) and LK−SEQ−DFAε are incomparable.

2. The families NK−SEQ−DOCA(E) and LK−SEQ−DFAε are incomparable.

3. The families NK−SEQ−DOCA(C) and LK−SEQ−DFA are incomparable.

4. The families NK−SEQ−DOCA(E) and LK−SEQ−DFA are incomparable.

Proof. We shall prove all four incomparability relations at once. In Example 3.1.6, we have
observed that the non-prefix-dense language

L = {anb | n ≥ 1} ∪ {ε}

is both in NK−SEQ−DOCA(C), and in NK−SEQ−DOCA(E). However, it is a direct consequence of
Theorem 1.7.5 that the language L is neither in LK−SEQ−DFAε, nor in LK−SEQ−DFA.

On the other hand, clearly, the language L′ = {a} is both in the family LK−SEQ−DFAε and
in the family LK−SEQ−DFA. However, since it does not contain the empty word ε, it cannot be
neither in NK−SEQ−DOCA(C), nor in NK−SEQ−DOCA(E). The theorem is proved. �

Theorem 3.5.13 The following relations hold:

1. The families LK−SEQ−DOCA(C) and R are incomparable.

2. The families LK−SEQ−DOCA(A) and R are incomparable.

3. The families NK−SEQ−DOCA(C) and R are incomparable.

4. The families NK−SEQ−DOCA(E) and R are incomparable.

Proof. In all four cases, let us disprove both possible inclusions. In Example 3.1.5, we have
observed that the nonregular language

L1 = {w ∈ {a, b}∗ | ∀u ∈ {a, b}∗, u is prefix of w : #a(u) ≥ #b(u)}

is both in LK−SEQ−DOCA(C), and in LK−SEQ−DOCA(A). In Example 3.1.4, we have observed that
the nonregular language

L2 = { anbn | n ≥ 0}

is in NK−SEQ−DOCA(E). Finally, let us consider the state-C-equiloaded deterministic one-counter
automaton A from example 3.1.5, with the property L(A) = L1. Clearly,

N(A) = {w ∈ {a, b}∗ | #a(w) = #b(w) and ∀u ∈ {a, b}∗, u is prefix of w : #a(u) ≥ #b(u)} .

This language is obviously nonregular, however is in NK−SEQ−DOCA(C).
To disprove the converse inclusions, let us consider an arbitrary regular non-prefix-dense

language, e.g., L3 = {a}∗{b}. By Theorem 1.7.5, this language cannot be neither in the family
LK−SEQ−DOCA(C), nor in the family LK−SEQ−DOCA(A). Further, the language L3 does not con-
tain the empty word ε.8 Thus, it is not neither in NK−SEQ−DOCA(C), nor in NK−SEQ−DOCA(E).
The theorem is proved. �

8In contrast to our previous statement, this is not the general property of regular non-prefix-dense languages. In fact,
in Example 3.1.6, we have observed that there is a language that is non-prefix-dense, regular, contains ε, and is both in
NK−SEQ−DOCA(C) and in NK−SEQ−DOCA(E).
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In what follows, we shall focus on the relation between the families of strictly state-S-equi-
loaded DOCA-languages and the families of strictly transition-S-equiloaded DOCA-languages.
In Theorem 2.2.9, we have observed that in the case of deterministic finite automata, strictly
state-equiloaded automata have greater computational power than strictly transition-equiloaded
automata. In the following theorem, we shall prove that this observation generalizes also to the
case of deterministic one-counter automata.

Theorem 3.5.14 The following strict inclusions hold:

1. Lδ−SEQ−DOCA(C) ( LK−SEQ−DOCA(C),

2. Lδ−SEQ−DOCA(A) ( LK−SEQ−DOCA(A),

3. Nδ−SEQ−DOCA(C) ( NK−SEQ−DOCA(C),

4. Nδ−SEQ−DOCA(E) ( NK−SEQ−DOCA(E).

Proof. We shall prove all four statements at once. First, let us prove the improper inclusions. Let
A = (K, Σ, δ, q0, F) be a strictly transition-S-equiloaded deterministic one-counter automaton, for
some S in {C,A, E}. We shall construct a strictly state-S-equiloaded deterministic one-counter
automaton A′ = (K′, Σ′, δ′, q′0, F′), such that L(A′) = L(A), and N(A′) = N(A).

The idea behind the construction shall be as follows: the set of states of the automaton A′ shall
be precisely the set of transitions of the automaton A. Moreover, the following invariant shall be
hold: if a nonempty computation path γ of the automaton A on a word w ends by going through
a transition e in DA and with the counter value being t, then the corresponding computation path
γ′ of the automaton A′ on the word w ends in the state e in K′ = DA and with the couter value
being t as well.

Two further details need to be addressed. The initial state of the automaton A′ shall be an
arbitrary transition of the automaton A leading to the state q0 (we shall suppose that such a
transition exists; otherwise, the accepted language would be necessarily finite and a discussion
would become more-or-less trivial). Finally, the set of accepting states of the automaton A′ shall
be the set of all transitions of the automaton A leading to accepting states.

The formal construction is as follows: K′ = DA, Σ′ = Σ, the transition function δ′ is defined
for p, q in K, c, d in Σ, t, t′ in {0, 1} and r′ in {−1, 0, 1} by

δ′((p, c, t′, q, r′), d, t) = ((q, d, t, pr1(δ(q, d, t)), pr2(δ(q, d, t))), pr2(δ(q, d, t)))

if δ(q, d, t) is defined for the automaton A. If it is not defined, then the transition function δ′ is
left undefined for the corresponding inputs as well. Moreover, q′0 is defined to be an arbitrary
member of the set

{(p, c, t, q, r) ∈ DA | q = q0}.
Finally, the set of accepting states F′ is defined by

F′ = {(p, c, t, q, r) ∈ DA | q ∈ F}.

It is obvious that the above mentioned invariant holds. Thus, it is not hard to see that indeed
L(A′) = L(A) and N(A′) = N(A), and that the automaton A′ is strictly state-S-equiloaded
(assuming that A is strictly transition-S-equiloaded).

Now, let us prove that these inclusions are proper. The statement is a direct corollary of
Theorem 3.5.6 and of Theorem 3.5.13. To be more specific, in Theorem 3.5.13 we have proved
that each of the four families on the right side of our relations contain at least one nonregular
language. However, in Theorem 3.5.6 we have proved that none of the four families of languages
on the left side contain any nonregular language. The theorem is proved. �

3.6 Closure Properties

In this section, we shall prove some of the closure properties of the families of strictly S-equiloaded
DOCA-languages. The closure properties that are not stated in this section are open up to now.
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Closure Properties of the Families of Strictly Transition-S-Equiloaded DOCA-Languages

Now, we shall concentrate on closure properties of the families of strictly transition-S-equiload-
ed languages, Lδ−SEQ−DOCA(C), Lδ−SEQ−DOCA(A), Nδ−SEQ−DOCA(C), and, finally, the fam-
ily Nδ−SEQ−DOCA(E). By Theorem 3.5.1 and Theorem 3.5.2, to prove that none of these fam-
ilies is closed under a certain operation, it suffices to find operands,9 such that they are in
Nδ−SEQ−DOCA(C), but the result of the operation applied to these operands is not a member
of the family Lδ−SEQ−DOCA(A). This is the case because the fact that a language is in the family
Nδ−SEQ−DOCA(C) implies that it is also in the other three families. Conversely, if a language is
not in the family Lδ−SEQ−DOCA(A), it also cannot be in any of the remaining three families.

Theorem 3.6.1 None of the families Lδ−SEQ−DOCA(C), Lδ−SEQ−DOCA(A), Nδ−SEQ−DOCA(C),
and Nδ−SEQ−DOCA(E) is closed under concatenation.

Proof. Let us consider the languages L1 = {a}∗, and L2 = {ε, b}. Clearly, both the language L1
and the language L2 are in Nδ−SEQ−DOCA(C): the construction of strictly transition-C-equiloaded
deterministic one-counter automata accepting these languages by empty memory is left to the
reader as a more-or-less trivial exercise.

We shall prove that the concatenation of these languages, the language

L1 · L2 = {anbi | n ∈N, i ∈ {0, 1}},

is not in Lδ−SEQ−DOCA(A). For the purpose of contradiction, let us suppose that the language
L1 · L2 is in Lδ−SEQ−DOCA(A). Then, a strictly transition-A-equiloaded deterministic one-counter
automaton A = (K, Σ, δ, q0, F) exists, such that L(A) = L1 · L2. Since A is strictly transition-A-
equiloaded, a nonnegative integer constant k in N exists, such that the inequality

|#[e, γ]− #[ f , γ]| ≤ k (3.14)

holds for all transitions e, f in D and all accepting computation paths γ of the automaton A. Let
us denote the number of a-transitions of the automaton A by m. Let us consider some accepting
computation path γw corresponding to some accepting computation on the word w = akm+1. It
follows from the Pigeonhole principle that an a-transition ea in D exists, such that

#[ea, γw] ≥ k + 1.

Furthermore, since there is a word containing the character b in the accepted language L(A), the
automaton A has to have at least one b-transition eb. However, clearly,

#[eb, γw] = 0.

Thus,
|#[ea, γw]− #[eb, γw]| ≥ k + 1. (3.15)

However, (3.15) contradicts (3.14), and thus, the language L1 · L2 is not a member of the family
Lδ−SEQ−DOCA(A). �

Theorem 3.6.2 None of the families Lδ−SEQ−DOCA(C), Lδ−SEQ−DOCA(A), Nδ−SEQ−DOCA(C),
and Nδ−SEQ−DOCA(E) is closed under union.

Proof. Let us consider the same counterexample as in the proof of the previous theorem, i.e., the
languages L1 = {a}∗ and L2 = {ε, b}.

By a very similar reasoning as in the proof of the previous theorem, we shall prove that the
language L1 ∪ L2 is not in Lδ−SEQ−DOCA(A). For the purpose of contradiction, let us suppose
that the language L1 ∪ L2 is in Lδ−SEQ−DOCA(A). Then, a strictly transition-A-equiloaded de-
terministic one-counter automaton A = (K, Σ, δ, q0, F) exists, such that L(A) = L1 ∪ L2. Since

9Or an operand, in the case of unary operations.
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A is strictly transition-A-equiloaded, a nonnegative integer constant k in N exists, such that the
inequality

|#[e, γ]− #[ f , γ]| ≤ k (3.16)

holds for all transitions e, f in D and for all accepting computation paths γ of the automaton A.
Let m denote the number of a-transitions of the automaton A, and let us consider some accepting
computation path γw corresponding to some accepting computation on the word w = akm+1. By
the Pigeonhole principle, an a-transition ea in D exists, such that

#[ea, γw] ≥ k + 1.

As in the proof of the previous theorem, the automaton A has to have at least one b-transition eb,
such that

#[eb, γw] = 0.

Thus,
|#[ea, γw]− #[eb, γw]| ≥ k + 1. (3.17)

However, the inequality (3.17) contradicts the inequality (3.16). �

Theorem 3.6.3 None of the families Lδ−SEQ−DOCA(C), Lδ−SEQ−DOCA(A), Nδ−SEQ−DOCA(C),
and Nδ−SEQ−DOCA(E) is closed under complementation.

Proof. Let us consider the language L = {ε, a} over the alphabet Σ = {a}. Clearly, the language
L is a member of the family of languages Nδ−SEQ−DOCA(C).

We shall prove that the complement of the language L, the language

LC = {ak | k ≥ 2}

is not in Lδ−SEQ−DOCA(A). For the purpose of contradiction, let us suppose that the language
LC is in Lδ−SEQ−DOCA(A). Then, a strictly transition-A-equiloaded deterministic one-counter
automaton A = (K, Σ, δ, q0, F) exists, such that L(A) = LC. For every i in N, let us define the set
of states

Ki = {q ∈ K | ∃t ∈N : (q0, ai, 0) `∗ (q, ε, t)}.

Clearly, none of the states in K0 and K1 is accepting.
Since the language LC is infinite, it follows from the characterization given in Theorem 3.3.1

that a nonnegative integer j ≥ 1 in N exists, such that

(q0, aj, 0) `∗ (q0, ε, 0).

Then, since the automaton A is deterministic, we have

K j+1 = K1.

Thus, none of the states in K j+1 is accepting. However, by the definition of K j+1, this implies that
aj+1 is not in L(A). However, since j ≥ 1, this contradicts our assumption that L(A) = LC. �

Theorem 3.6.4 None of the families Lδ−SEQ−DOCA(C), Lδ−SEQ−DOCA(A), Nδ−SEQ−DOCA(C),
and Nδ−SEQ−DOCA(E) is closed under closure.

Proof. Let us consider the language L = {ε, a, b}. Obviously, the language L is in the family of
languages Nδ−SEQ−DOCA(C).

We shall prove that the language L∗ = {a, b}∗ is not in Lδ−SEQ−DOCA(A). For the purpose
of contradiction, let us suppose that L∗ is in Lδ−SEQ−DOCA(A). Then, a strictly transition-A-
equiloaded deterministic one-counter automaton A = (K, Σ, δ, q0, F) exists, such that L(A) = L∗.
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Since the automaton A is strictly transition-A-equiloaded, a nonnegative integer constant k in N

exists, such that
|#[e, γ]− #[ f , γ]| ≤ k (3.18)

holds for all transitions e, f in D and all accepting computation paths γ. Let us denote by m the
number of a-transitions in D, and let us consider some accepting computation path γw corre-
sponding to some accepting computation on the word w = akm+1. By the Pigeonhole principle,
an a-transition ea in D exists, such that

#[ea, γw] ≥ k + 1.

Furthermore, since L(A) = L∗, at least one b-transition eb has to exist in D. Clearly,

#[eb, γw] = 0.

Thus,
|#[ea, γw]− #[eb, γw]| ≥ k + 1. (3.19)

The inequality (3.19) contradicts (3.18). �

Theorem 3.6.5 None of the families Lδ−SEQ−DOCA(C), Lδ−SEQ−DOCA(A), Nδ−SEQ−DOCA(C),
and Nδ−SEQ−DOCA(E) is closed under positive closure.

Proof. Exactly the same counterexample, i.e., the language L = {ε, a, b}, and exactly the same
reasoning can be used as in the proof of Theorem 3.6.4. �

Theorem 3.6.6 None of the families Lδ−SEQ−DOCA(C), Lδ−SEQ−DOCA(A), Nδ−SEQ−DOCA(C),
and Nδ−SEQ−DOCA(E) is closed under reversal.

Proof. Let us consider the language L = {ab}∗{ε, a}. It is not hard to construct a strictly
transition-C-equiloaded deterministic one-counter automaton accepting L by empty memory.
That is, L is in Nδ−SEQ−DOCA(C).

We shall prove that the language LR = {ε, a}{ba}∗ is not in Lδ−SEQ−DOCA(A). For the pur-
pose of contradiction, let us suppose that LR is in Lδ−SEQ−DOCA(A). Then, a strictly transition-A-
equiloaded deterministic one-counter automaton A = (K, Σ, δ, q0, F) exists, such that L(A) = LR.
The properties (i) and (ii′) of the characterization given in Theorem 3.3.1 have to be satisfied by
the automaton A.

By the infiniteness of the language L(A) = LR, and by the property (ii′) of this characteriza-
tion, at least one word w in Σ+ exists, such that (q0, w, 0) `+ (q0, ε, 0). If every such word was of
the form ax for some x in Σ∗, then there would be only a finite number of words in L(A) begin-
ning by b, and that would contradict our assumption L(A) = LR. An analogous contradiction
can be reached also in the case when every such word is of the form by for some y in Σ∗.

Thus, a word u in Σ∗ exists, such that (q0, au, 0) `+ (q0, ε, 0), and a word v in Σ∗ exists, such
that (q0, bv, 0) `+ (q0, ε, 0).

Let the word au end with the character a. Then, the word auau contains at least one occurence
of the subword aa. Furthermore,

(q0, auau, 0) `+ (q0, au, 0) `+ (q0, ε, 0).

Since the language L(A) is infinite, it is possible to reach an accepting configuration from some
configuration with the state q0 and the counter value 0. In other words, a word z in Σ∗ exists, such
that (q0, z, 0) `∗ (q, ε, t), where q in F is an accepting state and t in N is a nonnegative integer.
This implies that

(q0, auauz, 0) `+ (q0, auz, 0) `+ (q0, z, 0) `∗ (q, ε, t),

i.e., auauz is in L(A). However, since aa is a subword of auauz, this contradicts our assumption
that L(A) = LR.
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Thus, the word au ends with the character b. Then, the word aubv contains at least one oc-
curence of the subword bb. Similarly as in the previous case, it is possible to prove that

(q0, aubvz, 0) `+ (q0, bvz, 0) `+ (q0, z, 0) `∗ (q, ε, t),

where z is in Σ∗, q is in F, and t is in N. Consequently, aubvz is in L(A), and that is again a
contradiction with our assumption that L(A) = LR. �

Theorem 3.6.7 None of the families Lδ−SEQ−DOCA(C), Lδ−SEQ−DOCA(A), Nδ−SEQ−DOCA(C),
and Nδ−SEQ−DOCA(E) is closed under inverse homomorphism.

Proof. Let us consider the language L = {ε, a}, and the homomorphism h : {a, b}∗ → {a, b}∗
defined as follows:

h(a) = a,
h(b) = ε.

The language L is clearly in Nδ−SEQ−DOCA(C). We shall prove that the language

h−1(L) = {w ∈ {a, b}∗ | #a(w) ≤ 1}

is not in Lδ−SEQ−DOCA(A). For the purpose of contradiction, let us suppose that h−1(L) is in
Lδ−SEQ−DOCA(A). Then, a strictly transition-A-equiloaded deterministic one-counter automa-
ton A = (K, Σ, δ, q0, F) exists, such that L(A) = h−1(L). For the automaton A, a nonnegative
integer constant k in N exists, such that for every two transitions e, f in D, and for all accepting
computation paths γ, the inequality

|#[e, γ]− #[ f , γ]| ≤ k (3.20)

has to hold. Let us denote the number of b-transitions of the automaton A by m, and let us
consider some accepting computation path γw corresponding to some accepting computation on
the word w = bmk+1. By the Pigeonhole principle, a b-transition eb in D exists, such that

#[eb, γw] ≥ k + 1.

Furthermore, L(A) contains a word u such that #a(u) > 0. Thus, the automaton A has to have at
least one a-transition ea. However, clearly,

#[ea, γw] = 0.

Thus, we have
|#[eb, γw]− #[ea, γw]| ≥ k + 1, (3.21)

and that is a clear contradiction with (3.20). �

Closure Properties of the Families of Strictly State-S-Equiloaded DOCA-Languages

In what follows, we shall discuss some of the closure properties of the families of strictly state-S-
equiloaded DOCA-languages.

Theorem 3.6.8 The families LK−SEQ−DOCA(C) and LK−SEQ−DOCA(A) are not closed under con-
catenation.

Proof. Let us consider the languages L1 = {a}∗ and L2 = {b}. It is a trivial task to construct
strictly state-C-equiloaded deterministic one-counter automata accepting these languages. Thus,
L1 and L2 are both in LK−SEQ−DOCA(C), and in LK−SEQ−DOCA(A). However, the concatenation
L1 · L2 of these languages is clearly not prefix-dense, and thus, by Theorem 1.7.5, is neither in
LK−SEQ−DOCA(C), nor in LK−SEQ−DOCA(A). �
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Theorem 3.6.9 The families LK−SEQ−DOCA(C) and LK−SEQ−DOCA(A) are not closed under com-
plementation.

Proof. Let us consider the language L = {anb | n ≥ 0}C. We shall show that this language is
both in LK−SEQ−DOCA(C) and in LK−SEQ−DOCA(A). Let us define a deterministic one-counter
automaton A = (K, Σ, δ, q0, F) as follows: K = {q0, q1}, Σ = {a, b},

δ(q0, a, 0) = (q1, 0), δ(q0, b, 0) = (q1, +1), δ(q1, ε, 0) = (q0, 0),
δ(q0, ε, 1) = (q1, 0), δ(q1, a, 1) = (q0, 0), δ(q1, b, 1) = (q0, 0),

and F = {q0}. Clearly, L(A) = L. Moreover, since every computation path of the automaton A
alternates between states q0 and q1, the automaton A is strictly state-C-equiloaded, and thus also
strictly state-A-equiloaded. Thus, L is both LK−SEQ−DOCA(C) and in LK−SEQ−DOCA(A).

However, the language LC = {anb | n ≥ 0} is not prefix-dense, and thus, by Theorem 1.7.5, is
neither in LK−SEQ−DOCA(C), nor in LK−SEQ−DOCA(A). �

Theorem 3.6.10 The families LK−SEQ−DOCA(C) and LK−SEQ−DOCA(A) are not closed under re-
versal.

Proof. Let us consider the language L = {ban | n ≥ 0}. This language is both in LK−SEQ−DOCA(C)
and in LK−SEQ−DOCA(A), since it can be accepted by the automaton A = (K, Σ, δ, q0, F) defined
as follows: K = {q0, q1}, Σ = {a, b},

δ(q0, b, 0) = (q1, +1), δ(q1, a, 1) = (q0, 0), δ(q0, ε, 1) = (q1, 0),

and F = {q1}. This automaton is clearly strictly state-C-equiloaded, and thus also strictly state-
A-equiloaded.

However, the reversal of the language L, the language LR = {anb | n ≥ 0}, clearly is not prefix-
dense and thus, by Theorem 1.7.5, is neither in LK−SEQ−DOCA(C), nor in LK−SEQ−DOCA(A). �

Theorem 3.6.11 The families LK−SEQ−DOCA(C) and LK−SEQ−DOCA(A) are not closed under in-
verse homomorphism.

Proof. The finite language L = {b} is clearly both in LK−SEQ−DOCA(C) and in LK−SEQ−DOCA(A).
Now, let us consider the homomorphism h : {a, b}∗ → {a, b}∗ defined by

h(a) = ε,
h(b) = b.

It is clear that the language h−1(L) = {w ∈ {a, b}∗ | #b(w) = 1} is not prefix-dense, and thus, by
Theorem 1.7.5, is neither in LK−SEQ−DOCA(C), nor in LK−SEQ−DOCA(A). �
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Conclusion

In this report, we have presented and analyzed several definitions of balanced use of resources
in deterministic sequential computations. The main aims of this report have been to generalize
the earlier definitions for DFA, presented in [26], [27] and [25] to higher models of computation,
to unify the earlier theories of state-equiloadedness and transition-equiloadedness for DFA, and
to initiate the study of equiloadedness for some model of computation accepting nonregular sets.
We may conclude that these aims have been successfully achieved.

In Section 1.2, we have defined a new abstract model of computation, the abstract deterministic
automata (ADA). ADA are an AFA-inspired abstraction of deterministic automata with a one-way
input tape and some kind of auxiliary memory. Many widely used models of computation, e.g.,
DFA, DFAε, DOCA, DPDA, or some variants of deterministic Turing machines, can be viewed as
special cases of ADA. This has enabled us to present our definitions of equiloadedness indepen-
dently from a particular model of computation – the definition for ADA applies to all models of
computation that we examine in this report.

Next, in Section 1.4 and Section 1.5, we have presented our definitions of strict S-equiloaded-
ness, S-equiloadedness, and weak S-equiloadedness. All of these definitions have been presented for
ADA and both for states and for transitions. These definitions generalize the earlier definitions
from [25], [26] and [27]. This generalization is twofold: first, the definitions are stated for ADA
instead of DFA. Second, in the earlier works, only accepting computation paths have been taken
into account. Our definitions include the parameter S that makes it possible to specify the set of
computation paths that we are interested in.

Further, we have examined some properties of equiloadedness that hold for abstract deter-
ministic automata in general. Most importantly, we have proved some relations between the
families of equiloaded languages that hold for every model of computation that is a special case
of ADA. Moreover, we have defined the concept of prefix-dense languages that can be used to
prove that a given language is not strictly S-equiloaded for any model of computation that is a
special case of ADA.

Later in this report, we have studied several families of equiloaded DFA, DFAε and DOCA, as
well as the corresponding families of equiloaded languages. Equiloaded DFA have been studied
already in the earlier works [26], [27] and [25], however we have presented some new results.
Equiloaded DFAε and DOCA have not been studied yet.

For several families of equiloaded automata, we have proved their characterizations. Table
Concl.1 contains the summary of these characterizations, including the numbers of correspond-
ing theorems. Among characterizations, probably the most important results are the characteri-
zation of weakly state-C=-equiloaded DFA and DFAε (Theorem 2.3.31) and the characterization
of strictly transition-S-equiloaded DOCA for S in {C,A, E} (Theorem 3.3.1). Both these charac-
terizations are completely new. The first of these characterization emphasizes the importance of
Perron-Frobenius eigenvalues related to DFA and DFAε as a characteristic that can be used to an-
alyze various quantitative properties of finite automata. The second is up to now the only known
characterization of equiloaded DOCA. Since it characterizes the families of strictly transition-S-
equiloaded DOCA by some properties of computation paths, the decidability of this characteriza-
tion have not been immediately clear. However, we have proved this decidability and presented
an algorithm that decides if a given DOCA is strictly transition-S-equiloaded by deciding if the
conditions imposed in the characterization from Theorem 3.3.1 are satisfied.
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The Model Type of Equiloadedness Resource For S in Characterization

DFA and DFAε

Strict S-Equiloadedness States C,A Theorem 2.2.1
Transitions C,A Theorem 2.2.2

Weak S-Equiloadedness
States C= Theorem 2.3.31

A=,C≤,A≤ ?

Transitions C=,A= Theorem 2.3.18
C≤,A≤ Theorem 2.3.19

S-Equiloadedness States C=,A=, C≤,A≤ ?
Transitions C=,A=, C≤,A≤ ?

DOCA Strict S-Equiloadedness States C,A, E ?
Transitions C,A, E Theorem 3.3.1

Table Concl.1: The summary of theorems providing characterizations of the families of equiloaded au-
tomata studied in this report.

In Section 2.1, we have observed that several basic quantities used in our study of S-equi-
loaded DFA and DFAε may be computed as solutions to initial value problems for homogeneous
systems of first-order linear O∆Es with constant coefficients. Moreover, we have observed some
relations between the matrices of these systems and the transition matrix of a given automa-
ton. Since systems of this kind can be solved relatively easily, this have lead us to the elegant
mathematical method of computing closed forms of these basic quantities, and to the numerical
algorithm of computing equiloadedness measures for DFA and DFAε. Furthermore, since the
matrices of the presented systems are all nonnegative, the results obtained in Section 2.1 have
enabled us to use the Perron-Frobenius theory to study the asymptotic properties of these basic
quantities.

In Subsection 2.3.1, we have proved that the alternative definition of S-equiloaded DFA and
DFAε, based on the definitions given in [26] and [27], is equivalent to our definition of S-equi-
loadedness. This result unifies the earlier theory of state-equiloaded DFA ([26] and [27]) with the
earlier theory of transition-equiloaded DFA ([25]).

Lδ−SEQ−DOCA(C) Lδ−SEQ−DOCA(A) R

Lδ−SEQ−DFAε

Lδ−SEQ−DFA

Nδ−SEQ−DOCA(C) Nδ−SEQ−DOCA(E )

Figure Concl.1: The diagram of relations between various families of strictly transition-S-equiloaded lan-
guages. If L1 and L2 are families of languages, the arrow L1 → L2 is supposed to be read as a proper
inclusion L1 ( L2. A dotted line between two families of languages indicates that the families are incom-
parable.

Relations between various families of equiloaded languages have also been a subject of our
study. We have proved numerous results on inclusions, strict inclusions, identities and incom-
parability relations between the families of equiloaded languages. We depict some of them in
diagrams. In Figure Concl.1, the diagram representing the relations between the families of
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strictly transition-S-equiloaded languages is shown. The diagram in Figure Concl.2 represents
the relations between the analogous families of strictly state-S-equiloaded languages. Finally,
the diagram in Figure Concl.3 shows the relations between the families of transition-equiloaded
DFA-languages and DFAε-languages.

R LK−SEQ−DOCA(C) LK−SEQ−DOCA(A) R

LK−SEQ−DFAε

LK−SEQ−DFA

NK−SEQ−DOCA(C) NK−SEQ−DOCA(E )

Figure Concl.2: The diagram of relations between various families of strictly state-S-equiloaded languages.
If L1 and L2 are families of languages, an arrow L1 → L2 is supposed to be read as a proper inclusion
L1 ( L2. A dashed arrow L1 99K L2 is an inclusion L1 ⊆ L2 with a strict inclusion being open. A dotted
line between two families of languages indicates that the families are incomparable.

Lδ−SEQ−DFA(C) Lδ−SEQ−DFA(A)

Lδ−EQ−DFA(C≤) Lδ−EQ−DFA(C=) Lδ−EQ−DFA(A=) Lδ−EQ−DFA(A≤)

Lδ−WEQ−DFA(C≤) Lδ−WEQ−DFA(C=) Lδ−WEQ−DFA(A=) Lδ−WEQ−DFA(A≤)

Lδ−WEQ−DFAε(C≤) Lδ−WEQ−DFAε(C=) Lδ−WEQ−DFAε(A=) Lδ−WEQ−DFAε(A≤)

Lδ−EQ−DFAε(C≤) Lδ−EQ−DFAε(C=) Lδ−EQ−DFAε(A=) Lδ−EQ−DFAε(A≤)

Lδ−SEQ−DFAε(C) Lδ−SEQ−DFAε(A)

Figure Concl.3: The diagram of relations between various families of transition-equiloaded DFA(ε)-
languages. If L1 and L2 are families of languages, an arrow L1 → L2 is supposed to be read as a proper
inclusion L1 ( L2. A dashed arrow L1 99K L2 is an inclusion L1 ⊆ L2 with a strict inclusion being open.
A solid line between two families of languages indicates that the families are equal.

We have also studied the closure properties of several families of equiloaded languages. We
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summarize our results in Table Concl.2. The families of languages, for which we have not stud-
ied the closure properties yet, are omitted from the table. Some of the closure properties pre-
sented in this table have already been proved earlier – the closure properties of LK−SEQ−DFA and
LK−EQ−DFA(A=) are due to [26] and [27], the closure properties of the families Lδ−SEQ−DFA,
Lδ−EQ−DFA(A=) and Lδ−WEQ−DFA(A=) are due to [25].

· ∪ ∩ C ∗ + R h h−1

LK−SEQ−DFA No No Yes No No No No No No
LK−SEQ−DFAε No No Yes No No No No No No
Lδ−SEQ−DFA No No Yes No No No No No No
Lδ−SEQ−DFAε No No Yes No No No No Yes No

LK−EQ−DFA(A=) No No No No ? ? No No No
Lδ−EQ−DFA(C=) No No No No No No No No No
Lδ−EQ−DFA(A=) No No No No No No No No No
Lδ−EQ−DFA(C≤) No No No No No No No No No
Lδ−EQ−DFA(A≤) No No No No No No No No No
Lδ−EQ−DFAε(C=) No No No No ? ? ? ? No
Lδ−EQ−DFAε(A=) No No No No ? ? ? ? No
Lδ−EQ−DFAε(C≤) No No No No ? ? ? ? No
Lδ−EQ−DFAε(A≤) No No No No ? ? ? ? No
Lδ−WEQ−DFA(C=) No No No No No No No No No
Lδ−WEQ−DFA(A=) No No No No No No No No No
Lδ−WEQ−DFA(C≤) No No No No No No No No No
Lδ−WEQ−DFA(A≤) No No No No No No No No No
Lδ−WEQ−DFAε(C=) No No No No ? ? ? ? No
Lδ−WEQ−DFAε(A=) No No No No ? ? ? ? No
Lδ−WEQ−DFAε(C≤) No No No No ? ? ? ? No
Lδ−WEQ−DFAε(A≤) No No No No ? ? ? ? No
LK−SEQ−DOCA(C) No ? ? No ? ? No ? No
LK−SEQ−DOCA(A) No ? ? No ? ? No ? No
Lδ−SEQ−DOCA(C) No No ? No No No No ? No
Lδ−SEQ−DOCA(A) No No ? No No No No ? No
Nδ−SEQ−DOCA(C) No No ? No No No No ? No
Nδ−SEQ−DOCA(E) No No ? No No No No ? No

Table Concl.2: The summary of closure properties of various families of equiloaded languages that have
been proved up to now.

In our future research, we plan to focus mainly on the families of S-equiloaded and weakly
S-equiloaded DOCA and to extend the theory also to some models of computation higher than
DOCA. However, also some interesting open problems on equiloaded DFA(ε) and strictly S-
equiloaded DOCA have arisen in this report that may be as well a subject of a fruitful future
research.
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Appendix A

Mathematical Preliminaries

In this appendix, we shall briefly review some of the mathematical concepts used in this report.
We shall concentrate only on (from the perspective of theoretical computer science) more ad-
vanced topics. That is, we assume that the reader is familiar with some of the basic mathematics,
most importantly linear algebra, discrete mathematics, and calculus.

A.1 Vandermonde and Generalized Vandermonde Matrices

In this section, we shall define Vandermonde matrices and generalized Vandermonde matrices and
shall state the formulas for their determinants (the proof of the formula for a generalized Vander-
monde determinant will be omitted). The results obtained in this section shall be used in Section
A.2 dealing with proving linear independence of sequences.

Definition A.1.1 Let α1, α2, . . . , αn in C be complex numbers. A matrix

V(α1, α2, . . . , αn) =


1 1 . . . 1
α1 α2 . . . αn
...

...
. . .

...
αn−1

1 αn−1
2 . . . αn−1

n


is said to be a Vandermonde matrix. The determinant of a Vandermonde matrix is said to be a
Vandermonde determinant.

Some authors define a Vandermonde matrix to be the transpose of this matrix (see, e.g., [36]).
In this report we follow the definition used, e.g., in [10], or [15].1 However, this ambiguity does
not have any effect on the value of a Vandermonde determinant and in most applications of
Vandermonde matrices, we are concerned solely by the value of the determinant. The choice
of one of these definitions can be therefore considered to be only a matter of convenience. The
formula for a Vandermonde determinant is being proved in the following theorem.

Theorem A.1.2 Let α1, α2, . . . , αn in C be complex numbers, let V(α1, α2, . . . , αn) be the corre-
sponding Vandermonde matrix. Then the value of the corresponding Vandermonde determinant
is

|V(α1, α2, . . . , αn)| = ∏
1≤i<j≤n

(αj − αi).

Proof. By induction on n (we shall follow a proof presented in [22]).

1. If n = 1, then the determinant |V(α1)| is clearly 1. That is, the theorem holds.

1However, in [15], a Vandermonde matrix is defined only for real entries.
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2. Let us suppose, that the theorem holds for n = k. We shall prove that it holds for n = k + 1.
Let us denote

g(t) = |V(α1, α2, . . . , αk, t)|,
that is clearly a polynomial of degree k with roots α1, . . . , αk. The leading coefficient of the
polynomial g(t) is obtained by the Laplace expansion along the (k + 1)-st column, that is
the leading coefficient is |V(α1, α2, . . . , αk)|. Thus, we have

g(t) = |V(α1, α2, . . . , αk)| ·
k

∏
i=1

(t− αi).

Using the induction hypothesis, we get

g(t) = ∏
1≤i<j≤k

(αj − αi) ·
k

∏
i=1

(t− αi),

therefore for t = αk+1 we get

|V(α1, α2, . . . , αk, αk+1)| = ∏
1≤i<j≤k+1

(αj − αi),

that is, the theorem holds also for n = k + 1.

The theorem is thus proven. �

Now, we shall define a generalized Vandermonde matrix [22]. Let us note, that for k = n, and
n1 = n2 = . . . = nk = 1, the generalized Vandermonde matrix is exactly the above-defined
Vandermonde matrix.

Definition A.1.3 Let α1, α2, . . . , αk in C be arbitrary complex numbers, let n1, n2, . . . , nk in N be
nonnegative integers, such that ∑k

i=1 ni = n for some positive n in N. The generalized Vandermonde
Matrix V(α1, . . . , αk; n1, . . . , nk) is defined to be a block matrix

V(α1, . . . , αk; n1, . . . , nk) = (R1, R2, . . . , Rk) ,

where, for i = 1, . . . , k, Ri is a matrix of type n× ni with columns ci,1, . . . , ci,ni defined by

ci,j =
1

(j− 1)!
f(j−1)(αi)

for j = 1, . . . , ni, where f(t) is defined to be a column vector

f(t) = (1, t, . . . , tn−1)T ,

and f(k)(t) is its k-th derivative (i.e., a column vector consisting of k-th derivatives of entries of
f(t)).

The determinant of a generalized Vandermonde matrix is said to be a generalized Vandermonde
determinant.

Next, we shall state a formula for a generalized Vandermonde determinant. However, since
the proof is rather technical, we shall not present it in this report.

Theorem A.1.4 Let α1, α2, . . . , αk in C be complex numbers, let n1, n2, . . . , nk in N be nonnegative
integers, such that ∑k

i=1 ni = n for some positive n in N. Then the value of the corresponding
generalized Vandermonde determinant is given by

|V(α1, . . . , αk; n1, . . . , nk)| = ∏
1≤i<j≤k

(αj − αi)
ninj .

Proof. A sketch of several possible proofs of this theorem can be found in [22]. Another sketch
of a proof can be found in [10]. �
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A.2 Proving Linear Independence of Sequences

In this section, we shall provide basic information about proving linear independence of se-
quences. More concretely, we shall introduce the concept of the matrix of Casorati, and state
a theorem about linear independence of sequences of certain specific form. The linear indepen-
dence of these special sequences is used in our examinations in Chapter 2. The results can be
also used to build up the theory of systems of linear O∆Es. However, in Section A.3 dealing with
these matters, we use a different, faster approach.

First, we shall introduce the concept of the matrix of Casorati and its determinant, referred to
as the Casoratian. These concepts are closely related to the matrix of Wronski and the Wronskian,
playing a crucial role in the theory of linear differential equations (see, e.g., [6]).

Definition A.2.1 Let x1, x2, . . . , xm : N → C be given complex sequences. The matrix of Casorati
for sequences x1, x2, . . . , xm is the matrix

W(n) =


x1(n) x2(n) . . . xm(n)

x1(n + 1) x2(n + 1) . . . xm(n + 1)
...

...
. . .

...
x1(n + m− 1) x2(n + m− 1) . . . xm(n + m− 1)

 .

The determinant
w(n) = |W(n)|

of the matrix of Casorati is called the Casoratian.

In the following theorem we shall prove that if a Casoratian of a given set of complex se-
quences is non-zero, then the set is linearly independent.

Theorem A.2.2 Let x1, x2, . . . , xm : N→ C be given complex sequences. Let w(n) be a Casoratian
for these sequences and for some n in N. If w(n) 6= 0, then the sequences x1, x2, . . . , xm are
linearly independent.

Proof. For the purpose of contradiction, let us suppose that w(n) 6= 0 and sequences x1, x2, . . . , xm
are linearly dependent, that is not-all-zero constants c1, c2, . . . , cm in C exist such that for all non-
negative integers k in N

c1x1(k) + c2x2(k) + . . . + cmxm(k) = 0. (A.1)

Since the equation (A.1) holds for all k in N, it holds also for k = n, n + 1, . . . , n + m− 1. From
that we have

c1x1(n) + c2x2(n) + . . . + cmxm(n) = 0,
c1x1(n + 1) + c2x2(n + 1) + . . . + cmxm(n + 1) = 0,

...
c1x1(n + m− 1) + c2x2(n + m− 1) + . . . + cmxm(n + m− 1) = 0.

That is, we have a homogeneous system of linear equations with unknowns c1, c2, . . . , cm, which
can be written in a matrix form as

x1(n) x2(n) . . . xm(n)
x1(n + 1) x2(n + 1) . . . xm(n + 1)

...
...

. . .
...

x1(n + m− 1) x2(n + m− 1) . . . xm(n + m− 1)

 ·


c1
c2
...

cm

 =


0
0
...
0

 ,
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i.e.,

W(n) ·


c1
c2
...

cm

 =


0
0
...
0

 .

Since w(n) 6= 0, the matrix of the system W(n) is nonsingular and a system has only one
trivial solution (c1, c2, . . . , cm) = (0, 0, . . . , 0), and that contradicts (A.1). �

Thus, the Casoratian can be used as a powerful tool for proving linear independence of se-
quences. In the following theorem, we shall use the Casoratian to prove the linear independence
of sequences of certain specific form.

Theorem A.2.3 Let z1, z2, . . . , zk in C \ {0} be distinct nonzero complex numbers, for some k in
N. Let m1, m2, . . . , mk be nonnegative integers. Then the sequences

{zn
1}

∞
n=0 , {n · zn

1}
∞
n=0 , . . . , {nm1 · zn

1}
∞
n=0 ,

{zn
2}

∞
n=0 , {n · zn

2}
∞
n=0 , . . . , {nm2 · zn

2}
∞
n=0 ,

...

{zn
k }

∞
n=0 , {n · zn

k }
∞
n=0 , . . . , {nmk · zn

k }
∞
n=0

are linearly independent.

Proof. For the purpose of contradiction, let us suppose that the sequences are linearly depen-
dent. That is, constants ci,j in C exist for i = 1, . . . , k, j = 0, . . . , mi, such that

k

∑
i=1

mi

∑
j=0

ci,j · nj · zn
i = 0.

Now, since (n
j) is a polynomial of degree j, it is clear that for each j in N constants d0, d1, . . . , dj in

C exist such that

nj =
j

∑
i=0

di ·
(

n
j

)
.

Thus, if the sequences

{zn
1}

∞
n=0 , {n · zn

1}
∞
n=0 , . . . , {nm1 · zn

1}
∞
n=0 ,

{zn
2}

∞
n=0 , {n · zn

2}
∞
n=0 , . . . , {nm2 · zn

2}
∞
n=0 ,

...

{zn
k }

∞
n=0 , {n · zn

k }
∞
n=0 , . . . , {nmk · zn

k }
∞
n=0

are linearly dependent, then also the sequences{(
n
0

)
· zn

1

}∞

n=0
,
{(

n
1

)
· zn

1

}∞

n=0
, . . . ,

{(
n

m1

)
· zn

1

}∞

n=0
,{(

n
0

)
· zn

2

}∞

n=0
,
{(

n
1

)
· zn

2

}∞

n=0
, . . . ,

{(
n

m2

)
· zn

2

}∞

n=0
,

...{(
n
0

)
· zn

k

}∞

n=0
,
{(

n
1

)
· zn

k

}∞

n=0
, . . . ,

{(
n

mk

)
· zn

k

}∞

n=0
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are linearly dependent. Moreover, since z1, . . . , zk are nonzero, zn
i = zj · zn−j for all j in N and

i = 1, . . . , k, where zj is a constant term. That is, the sequences{(
n
0

)
· zn

1

}∞

n=0
,
{(

n
1

)
· zn−1

1

}∞

n=0
, . . . ,

{(
n

m1

)
· zn−m1

1

}∞

n=0
,{(

n
0

)
· zn

2

}∞

n=0
,
{(

n
1

)
· zn−1

2

}∞

n=0
, . . . ,

{(
n

m2

)
· zn−m2

2

}∞

n=0
,

...{(
n
0

)
· zn

k

}∞

n=0
,
{(

n
1

)
· zn−1

k

}∞

n=0
, . . . ,

{(
n

mk

)
· zn−mk

k

}∞

n=0

are also linearly dependent. However, the matrix of Casorati for these sequences is clearly the
generalized Vandermonde matrix V(z1, . . . , zk; m1 + 1, . . . , mk + 1), and therefore the Casoratian
for these sequences has a value of the generalized Vandermonde determinant

w(n) = ∏
1≤i<j≤k

(zj − zi)
(mi+1)(mj+1).

However, since z1, . . . , zk are distinct, the Casoratian w(n) is clearly nonzero, and the sequences
are linearly independent, i.e., a contradiction. �

A.3 Systems of Linear O∆Es

In this section, we shall discuss systems of first-order linear ordinary difference equations (O∆Es,
i.e., recurrences)2 and present a linear-algebraic method of solving initial value problems for ho-
mogeneous systems of first-order linear O∆Es with constant coefficients. The presented method
can also be easily extended to nonhomogeneous systems. For a more comprehensive treatment,
see, e.g., [10], or [24].

Definition A.3.1 An initial value problem for a system of first-order linear O∆Es is a problem of de-
termining m unknown functions3

x1, x2, . . . , xm : N→ C,

satisfying

x1(n) = a1,1(n)x1(n− 1) + a1,2(n)x2(n− 1) + . . . + a1,m(n)xm(n− 1) + f1(n)
x2(n) = a2,1(n)x1(n− 1) + a2,2(n)x2(n− 1) + . . . + a2,m(n)xm(n− 1) + f2(n)

...
xm(n) = am,1(n)x1(n− 1) + am,2(n)x2(n− 1) + . . . + am,m(n)xm(n− 1) + fm(n)

for n ≥ 1 with initial conditions

x1(0) = C1, x2(0) = C2, . . . , xm(0) = Cm,

where ai,j : N+ → C (with 1 ≤ i, j ≤ m) and fi : N+ → C (with 1 ≤ i ≤ m) are functions and
C1, C2, . . . , Cm in C are complex constants.

2Not to be confused with differential equations. Although this need not be always true, in this report we use the terms
difference equation and recurrence as synonyms. However, we shall prefer the term difference equation.

3From a strictly mathematical viewpoint, the term sequence is more appropriate. However, in computer science it is
common to call sequences of this type functions. In this section, we shall therefore be switching between both terms.
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The system can be therefore expressed in a vector-matrix notation as

xn = An · xn−1 + fn, n ≥ 1,

where
xn = (x1(n), x2(n), . . . , xm(n))T

is the n-th vector of unknown functions,

An =


a1,1(n) a1,2(n) . . . a1,m(n)
a2,1(n) a2,2(n) . . . a2,m(n)

...
...

. . .
...

am,1(n) am,2(n) . . . am,m(n)


is the n-th matrix of the system,

fn = ( f1(n), f2(n), . . . , fm(n))T

is the n-th vector of known functions fi, and where the vector of initial conditions

x0 = (C1, C2, . . . , Cm) ∈ Cm

is given. A sequence {xn}∞
n=0 with values in Cm is said to be a solution to the initial value problem,

if it satisfies the conditions above.
Moreover, we shall say that the system is homogeneous, if the identities

fi(n) ≡ 0, i = 1, . . . , m

hold. Otherwise, we shall say that the system is nonhomogeneous. Finally, if constants ci,j in
C, 1 ≤ i, j ≤ m exist, such that

ai,j(n) ≡ ci,j, i, j = 1, . . . , m,

we say that the system has constant coefficients.4 Thus, any homogeneous system of first-order linear
O∆Es with constant coefficients can be written as

xn = A · xn−1, n ≥ 1,

where xn is the n-th vector of unknown functions, and A is a matrix. Initial conditions are given
by

x0 = (C1, C2, . . . , Cm)T .

In what follows, we shall present a method based on linear algebra that enables us to solve
any initial value problem for homogeneous systems of first-order linear O∆Es with constant co-
efficients (to be more precise, in this report we shall be interested only in finding the closed form
for x1(n) instead of xn). Let us begin with the theorem that ensures that every such initial value
problem has exactly one solution.

Theorem A.3.2 The initial value problem for homogeneous system of first-order linear O∆Es
with constant coefficients

xn = A · xn−1, n ≥ 1 (A.2)

has a unique solution for each given x0.

4Systems with constant coefficients are also referred to as autonomous systems.
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Proof. Let us define xn for n ≥ 1 by
xn = An · x0.

Clearly, this is a solution to the initial value problem.
The uniqueness of the solution stems from the fact that for every solution y = {y0, y1, . . .},

the equation (A.2) implies
yn = An · y0 = An · x0.

However, x = {x0, x1, . . .} is clearly the only sequence of vectors satisfying this property. �

In what follows, we shall make a strict distinction between systems and initial value problems
in the sense that for systems there is no initial vector x0 given.

By a particular solution of a given system, we shall understand any solution of some initial
value problem for that system. By the general solution of a system, we shall understand the set
of all particular solutions of the system. In what follows, we shall show that a general solution
of a system is in fact a linear space – that is, for each particular solution, any scalar multiple of
that solution is also a particular solution, and for any two particular solutions, their sum is also
a particular solution. More concisely, any linear combination of two particular solutions is also a
particular solution.

Theorem A.3.3 Let u = {u0, u1, . . .}, v = {v0, v1, . . .} be particular solutions of a homogeneous
system of first-order linear O∆Es with constant coefficients,

xn = A · xn−1, n ≥ 1, (A.3)

and let α, β in C be arbitrary complex numbers. Then

z = αu + βv = {αu0 + βv0, αu1 + βv1, . . .}

is a particular solution of the system (A.3).

Proof. The particular solution u is a solution to an initial value problem for system (A.3), where
the initial conditions are given by u0. Similarly, v is a solution to an initial value problem for
system (A.3), where the initial conditions are given by v0.

Let us now consider an initial value problem for system (A.3), where the initial conditions
are given by αu0 + βv0. By Theorem A.3.2, this initial value problem has a unique solution, say
w = {w0, w1, . . .}. We shall prove that w = z.

Clearly, for w we have
w0 = αu0 + βv0, (A.4)

and
wn = Anw0, n ≥ 1. (A.5)

By plugging the right side of (A.4) into (A.5), we get

wn = An(αu0 + βv0) = αAnu0 + βAnv0 = αun + βvn = zn, n ≥ 1,

that is, w = z. Thus, we have proved that z is a solution to some initial value problem for (A.3),
that is, z is a particular solution. �

The general solution of a given homogeneous system of first-order linear O∆Es with constant
coefficients therefore forms a linear space.

There is more then one possible way to solve initial value problems for systems of our type.
One frequently used approach is based on finding m linearly independent particular solutions
(where m is the size of the matrix of the system) and proving that every system with the matrix
of size m has a general solution of dimension at most m. Thus, the general solution is the set of
all linear combinations of those m particular solutions. Each particular solution has a form f (n)c,
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where f : N → C is a function, and c ∈ Cm is a constant vector. Thus, the general solution is
then expressed as a set of linear combinations

c(1) f (1)(n)c(1) + . . . + c(m) f (m)(n)c(m),

where f (1), . . . , f (m) : N→ C are fixed functions, c(1), . . . , c(m) are fixed vectors, and c(1), . . . , c(m)

are variable coefficients. For a given initial value problem, it is possible to determine the variable
coefficients by solving a system of linear equations. This approach is similar to the methods used
in the theory of linear differential equations (see, e.g., [6]). For proving linear independence of
functions occurring in the general solution, one needs the concepts of the matrix of Casorati (see
Section A.2), and of the generalized Vandermonde matrix (see Section A.1).

In this report, we shall use a slightly different (though closely related) method of solving
initial value problems. Instead of finding a general solution for xn, we shall find a “general
solution” for each of its components xi(n), i = 1, . . . , m. Thus, instead of m variable coefficients,
we will have m2 variable coefficients. However, the derivation of the method will be considerably
simpler and we shall avoid the need of computing (possibly generalized) eigenvectors. Moreover,
in this report we shall be always interested only in finding a solution for one single component
of xn, so the number of variable coefficients to be determined will remain unchanged (i.e., m).

However, let us note that although the method to be presented works fine for the purpose of
solving initial value problems, it is insufficient for the purpose of finding the general solution for
xn – for this purpose, the method sketched above is more suitable.

Theorem A.3.4 Let m in N+ be a positive integer, and A be an m×m matrix with distinct eigen-
values λ1, λ2, . . . , λk with algebraic multiplicities α1, α2, . . . , αk, α1 + α2 + . . . + αk = m. Then, for
s = 1, . . . , m, the s-th component of the solution to the initial value problem

xn = A · xn−1, n ≥ 1 (A.6)

with xn denoting a column vector

xn = (x1(n), x2(n), . . . , xm(n))T

and with initial conditions given by a column vector

x0 = (C1, C2, . . . , Cm)T ∈ Cm×1

can be expressed in a form

xs(n) =
k

∑
i=1

αi−1

∑
j=0

ci,j,s

(
n
j

)
λ

n−j
i (A.7)

for some constants ci,j,s, i = 1, . . . , k, j = 0, . . . , αi − 1.5

Proof. It is clear that the equation
x1(n)
x2(n)

...
xm(n)

 = An ·


C1
C2
...

Cm

 (A.8)

holds. By the well-known result of linear algebra (see, e.g., [41]), the matrix A can be decomposed
into the form

A = P · J · P−1,

5In this result, we use these common conventions: (n
j)λn−j = 0 for j > n, and 00 = 1.
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where P is an invertible matrix, and J is a matrix in the Jordan canonical form, i.e., J is a block-
diagonal matrix

J =


J1

J2
. . .

Jr

 ,

where r in N+ is a positive integer satisfying k ≤ r ≤ m, and for each i = 1, . . . , r, Ji is a Jordan
block corresponding to some eigenvalue6 λj, 1 ≤ j ≤ k, i.e., a square matrix of size mi ×mi (for
some nonnegative integer mi in N satisfying 1 ≤ mi ≤ αj)7 of the form

Ji =


λj 1

λj
. . .
. . . 1

λj

 .

According to basic results of linear algebra [41], the properties

Jn
i =


λn

j (n
1)λn−1

j . . . ( n
mi−1)λ

n−mi+1
j

0 λn
j . . . ( n

mi−2)λ
n−mi+2
j

...
...

. . .
...

0 0 . . . λn
j

 , i = 1, . . . , r,

and

Jn =


Jn
1

Jn
2

. . .
Jn
r


hold. Moreover, it is clear that

An = P · Jn · P−1. (A.9)

Therefore, by plugging the right-hand side of (A.9) to (A.8), we obtain
x1(n)
x2(n)

...
xm(n)

 = P · Jn · P−1 ·


C1
C2
...

Cm

 .

However, since C1, . . . , Cm are all constants, and since all of the entries of P and P−1 are constant
as well, from the form of Jn it is obvious that the s-th entry of the left-hand side column vector
has a form

xs(n) =
k

∑
i=1

αi−1

∑
j=0

ci,j,s

(
n
j

)
λ

n−j
i (A.10)

for some suitable constants ci,j,s, i = 1, . . . , k, j = 0, . . . , αi − 1 (the size of each Jordan block
corresponding to eigenvalue λi is at most αi). The theorem is proved. �

6There can be more than one Jordan block corresponding to the same eigenvalue.
7Moreover, m1 + m2 + . . . + mr = m. The number of blocks corresponding to a given eigenvalue is its geometric

multiplicity. Each block corresponds to some subspace of dimension 1 of the eigenspace corresponding to the given
eigenvalue and its size is given by the number of eigenvectors from this subspace.
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Since (n
j) is a polynomial of degree j,8 it is clear that for λi 6= 0

αi−1

∑
j=0

ci,j,s

(
n
j

)
λ

n−j
i =

αi−1

∑
j=0

ci,j,s

(
n
j

)
1

λ
j
i

λn
i = p(n)λn

i , (A.11)

where p(n) is a polynomial of degree at most αi − 1. Thus, it seems that (A.7) can be significantly
simplified. However, there is a problem with repeated zero eigenvalues, since in general it is
impossible to write 0n−j in a form c · 0n for some constant c (as it was in the case of nonzero λi).
However, (n

j)0n−j can be expressed in the Iverson notation9 as [n = j]. Thus, we have proved the
following corollary:

Corollary A.3.5 Let m in N+ be a positive integer, and A be a m×m matrix with distinct eigen-
values λ1, λ2, . . . , λk with algebraic multiplicities α1, α2, . . . , αk, α1 + α2 + . . . + αk = m. Let α be a
multiplicity of the zero eigenvalue. Then, for s = 1, . . . , m, the s-th component of the solution to
the initial value problem

xn = A · xn−1, n ≥ 1 (A.12)

with xn denoting a column vector

xn = (x1(n), x2(n), . . . , xm(n))T

and with initial conditions given by a column vector

x0 = (C1, C2, . . . , Cm)T ∈ Cm×1

can be expressed in a form

xs(n) = ∑
i

λi 6=0

αi−1

∑
j=0

ci,j,s · njλn
i +

α−1

∑
j=0

cn=j,s · [n = j] (A.13)

for some constants ci,j,s, i = 1, . . . , k, j = 0, . . . , αi − 1 and cn=j,s, j = 0, . . . , α− 1.

Thus, the method of solving initial value problems for homogeneous systems of first-order
linear O∆Es with constant coefficients can be summarized as follows:

1. Write down the system in a matrix form xn = A · xn−1.

2. Compute the eigenvalues of the matrix A.

3. The solution for each component of xn has a form (A.13).

4. Determine the constants in (A.13) by solving a system of linear equations obtained from the
initial conditions.

Let us note that this method can be easily turned into a numerical algorithm for solving these
systems, with a time complexity constant with respect to n (i.e., dependent only on m). The only
nontrivial step in this method is the computation of eigenvalues. However, these can be numeri-
cally computed by using, e.g., the QR algorithm [11][12][28] (for an explanatory treatement, see,
e.g., [15]).

However, for not extremely large values of n, one could consider using a simple (but suffi-
ciently efficient) algorithm with time complexity O(log n) (m is considered to be negligible com-
pared to n). Anyhow, in this report we are not interested in numerical computation, but solely in
theoretical matters of this method.

Finally, in order to practically demonstrate the above described method, we shall work out
few examples. Example applications of the method to solving problems concerning deterministic
finite automata can be found in Section 2.1.

8From the definition (n
j) = n(n−1)...(n−j+1)

j! .
9If P is a predicate, then [P] = 1, if P is true, and [P] = 0 otherwise.
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Example A.3.6 Let us consider an initial value problem for a homogeneous system of first-order
linear O∆Es given by

x1(n) = 3x1(n− 1) + 2x3(n− 1)
x2(n) = −2x1(n− 1) + x2(n− 1)− 2x3(n− 1)
x3(n) = 2x3(n− 1)

for n ≥ 1, with initial conditions x1(0) = 1, x2(0) = 1, x3(0) = 2. We shall solve this initial value
problem successively for all unknown functions x1, x2, x3 (although in practical applications of
this method to problems concerning automata, we shall be interested only in determining one of
the functions).

The first step of the method is to write down the system in a matrix form. If we introduce a
notation xn = (x1(n), x2(n), x3(n))T , we shall clearly get

xn =

 3 0 2
−2 1 −2
0 0 2

 · xn−1, n ≥ 1,

with initial conditions given by x0 = (1, 1, 2)T .
The next step is to compute the eigenvalues of the matrix of the system. The characteristic

polynomial of the matrix is

ch(λ) =

∣∣∣∣∣∣
3− λ 0 2
−2 1− λ −2
0 0 2− λ

∣∣∣∣∣∣ = (3− λ)(1− λ)(2− λ).

Therefore, the eigenvalues clearly are

λ1 = 1, λ2 = 2, λ3 = 3

and their multiplicities are
α1 = α2 = α3 = 1,

i.e., all of the eigenvalues are simple.
Now, we shall find a closed form for x1. According to Corollary A.3.5,

x1(n) = c1,1,1 · 1n + c2,1,1 · 2n + c3,1,1 · 3n (A.14)

for some constants c1,1,1, c2,1,1, c3,1,1. As a final step, we shall determine these constants. From
initial conditions, we have

x0 = (1, 1, 2)T .

Moreover, we can easily compute

x1 =

 3 0 2
−2 1 −2
0 0 2

 ·
 1

1
2

 = (7,−5, 4)T ,

and

x2 =

 3 0 2
−2 1 −2
0 0 2

2

·

 1
1
2

 = (29,−27, 8)T .

From that we have x1(0) = 1, x1(1) = 7, and x1(2) = 29. Thus, from (A.14) we obtain a system
of linear equations

c1,1,1 · 10 + c2,1,1 · 20 + c3,1,1 · 30 = 1

c1,1,1 · 11 + c2,1,1 · 21 + c3,1,1 · 31 = 7

c1,1,1 · 12 + c2,1,1 · 22 + c3,1,1 · 32 = 29
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with c1,1,1, c2,1,1, and c3,1,1 as the unknowns. By solving this system by Gaussian elimination, we
get

c1,1,1 = 0,
c2,1,1 = −4,
c3,1,1 = 5.

The solution for x1 therefore is
x1(n) = 5 · 3n − 4 · 2n.

Next, we shall find a closed form solution for x2. According to Corollary A.3.5, the solution is
the same as in the case of x1, i.e.,

x2(n) = c1,1,2 · 1n + c2,1,2 · 2n + c3,1,2 · 3n (A.15)

for some constants c1,1,2, c2,1,2, c3,1,2. From this we get a system of linear equations

c1,1,2 · 10 + c2,1,2 · 20 + c3,1,2 · 30 = 1

c1,1,2 · 11 + c2,1,2 · 21 + c3,1,2 · 31 = −5

c1,1,2 · 12 + c2,1,2 · 22 + c3,1,2 · 32 = −27

with c1,1,2, c2,1,2, and c3,1,2 as the unknowns. By solving this system, we obtain the values of the
coefficients

c1,1,2 = 2,
c2,1,2 = 4,
c3,1,2 = −5.

Thus,
x2(n) = −5 · 3n + 4 · 2n + 2.

Finally, we shall find a closed form solution for the unknown function x3. Once again, the
solution has a form

x3(n) = c1,1,3 · 1n + c2,1,3 · 2n + c3,1,3 · 3n (A.16)

for some constants c1,1,3, c2,1,3, c3,1,3. For these, we obtain a system of linear equations

c1,1,3 · 10 + c2,1,3 · 20 + c3,1,3 · 30 = 2

c1,1,3 · 11 + c2,1,3 · 21 + c3,1,3 · 31 = 4

c1,1,3 · 12 + c2,1,3 · 22 + c3,1,3 · 32 = 8

with c1,1,3, c2,1,3, and c3,1,3 as the unknowns. By solving this system, we get the solution for the
coefficients

c1,1,3 = 0,
c2,1,3 = 2,
c3,1,3 = 0.

Thus,
x3(n) = 2 · 2n = 2n+1.
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Example A.3.7 This example will be rather trivial, but we would like to demonstrate that the
above described method can be also applied to solve systems of this kind. Let us consider an
initial value problem for a homogeneous system of first-order linear O∆Es given by

x1(n) = x2(n− 1)
x2(n) = 0

for n ≥ 1, and with initial conditions given by x1(0) = 0, x2(0) = 1. We are interested in finding
a closed form solution for x1. If we denote xn = (x1(n), x2(n))T , we can write the system in a
matrix form as

xn =
(

0 1
0 0

)
· xn−1, n ≥ 1,

with initial conditions x0 = (0, 1)T .
The characteristic polynomial of the matrix is

ch(λ) =
∣∣∣∣ −λ 1

0 −λ

∣∣∣∣ = λ2.

Thus, the matrix has only one distinct eigenvalue λ1 = 0 with multiplicity α1 = 2. Thus, accord-
ing to Corollary A.3.5, the solution for x1 has a form

x1(n) = cn=0,1 · [n = 0] + cn=1,1 · [n = 1]

for some constants cn=0,1, and cn=1,1. From the initial conditions, we have

x0 = (0, 1)T ,

and

x1 =
(

0 1
0 0

)
·
(

0
1

)
= (1, 0)T .

Thus, we can determine the unknown coefficients cn=0,1 and cn=1,1 from the system of linear
equations

cn=0,1 · [0 = 0] + cn=1,1 · [0 = 1] = 0
cn=0,1 · [1 = 0] + cn=1,1 · [1 = 1] = 1

with cn=0,1 and cn=1,1 as the unknowns. By solving these system, we determine the coefficients
as

cn=0,1 = 0,
cn=1,1 = 1.

Therefore, the solution for x1 is
x1(n) = [n = 1],

which can be alternatively written as

x1(n) =
{

1 if n = 1
0 otherwise .

Example A.3.8 Finally, let us consider an initial value problem for a homogeneous system of
first-order linear O∆Es given by

x1(n) = x1(n− 1) + 2x2(n− 1) + 5x3(n− 1) + 10x4(n− 1)
x2(n) = 2x2(n− 1) + x3(n− 1)
x3(n) = 2x3(n− 1) + 2x4(n− 1)
x4(n) = 2x4(n− 1)



146 A.4 Nonnegative Matrices

with initial conditions x1(0) = 1, x2(0) = 1, x3(0) = 2, and x4(0) = 3. We shall be interested in
finding a closed form solution for x1.

In the matrix form, the system becomes

xn =


1 2 5 10
0 2 1 0
0 0 2 2
0 0 0 2

 · xn−1

with initial conditions given by x0 = (1, 1, 2, 3)T .
The characteristic polynomial of the matrix is

ch(λ) =

∣∣∣∣∣∣∣∣
1− λ 2 5 10

0 2− λ 1 0
0 0 2− λ 2
0 0 0 2− λ

∣∣∣∣∣∣∣∣ = (1− λ)(2− λ)3.

Thus, the matrix has two distinct eigenvalues

λ1 = 1, λ2 = 2

with algebraic multiplicities
α1 = 1, α2 = 3.

Thus, according to Corollary A.3.5, the solution for the unknown function x1 has a form

c1,1,1 + c2,1,1 · 2n + c2,2,1 · n2n + c2,3,1 · n22n

for some unknown constants c1,1,1, c2,1,1, c2,2,1, and c2,3,1. These constants can be determined as
the solution to the system of linear equations

1 1 0 0
1 2 2 2
1 4 8 16
1 8 24 72

 ·


c1,1,1
c2,1,1
c2,2,1
c2,3,1

 =


1

43
161
477

 .

By solving this system, we get

c1,1,1 = −19, c2,1,1 = 20,

c2,2,1 =
19
2

, c2,3,1 =
3
2

.

Thus, the closed form for x1 is

x1(n) =
(

3
2

n2 +
19
2

n + 20
)
· 2n − 19.

A.4 Nonnegative Matrices

In this section, we shall cover the basics of the theory of nonnegative matrices. Most importantly,
we shall state and prove the Perron-Frobenius theorem, which plays a crucial role in the theory of
equiloaded deterministic finite automata (Chapter 2). We shall present only several most impor-
tant concepts of the theory, applied in this report. However, the theory of nonnegative matrices
is a quite extensive subject on which whole monographs have been written. Classical treatments
of the subject include [2] and [31]. Moreover, [39] also has a chapter on nonnegative matrices.
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Definition A.4.1 Let A be an n × m matrix, for some n, m in N. The matrix A is said to be
nonnegative, if all of its entries are nonnegative. The matrix A is said to be positive, if all of its
entries are positive.

Let us note that every transition matrix of a deterministic finite automaton (or every adja-
cency matrix of a digraph) is a nonnegative matrix (in fact, these matrices are nonnegative integer
matrices). This is the main reason of the immense importance of nonnegative matrices in the
theory of equiloaded DFA and DFAε.

A.4.1 Irreducible Matrices

Now, we shall define the concepts of reducible and irreducible matrices, following the definition of
[31].

Definition A.4.2 Let A be an n × n square matrix, for some nonnegative integer n in N. For
n ≥ 2, the matrix A is said to be reducible (or decomposable), if there exists an n× n permutation
matrix P, such that

P · A · PT =
(

B C
0 D

)
,

where B and D are square submatrices, and 0 is a zero submatrix. The matrix A is said to be
irreducible (or indecomposable), if it is not reducible. For n = 1, the nonzero matrix is said to be
irreducible by definition. However, we shall consider the 1× 1 null matrix to be reducible.10

Let us note that since every permutation matrix is orthogonal, we can rewrite the condition
from the previous definition also as

P · A · P−1 =
(

B C
0 D

)
.

Following [31], we shall derive the alternative definition of irreducible matrices (Theorem
A.4.8).

Lemma A.4.3 Let A be an n× n irreducible nonnegative matrix, for some n in N, n ≥ 2. Let y
be a nonnegative column vector with n entries that has exactly k, 1 ≤ k ≤ n− 1, positive entries.
Then (In + A) · y has more than k positive entries.

Proof. Let us denote
y = (y1, y2, . . . , yn)T .

By our assumption, exactly k numbers of y1, y2, . . . , yn are positive and the rest n− k numbers are
zero. Moreover, let P be a permutation matrix, such that for

P · y = x = (x1, x2, . . . , xn)T ,

the entries x1, . . . , xk are positive, and the entries xk+1, . . . , xn are zero.
Since A is nonnegative, the column vector

(In + A) · y = y + A · y

must have at least k positive entries and at most n − k zero entries. We shall prove, that it has
more than k positive entries and less than n− k zero entries.

For the purpose of contradiction, let us suppose that it has exactly n − k zero entries. This
implies that if yi = 0, then (A · y)i = 0, for i = 1, . . . , n. Therefore (P · A · y)i = 0, whenever

10Since otherwise, many presented theorems on irreducible matrices would have to exclude this special case. However,
in [31], the 1× 1 zero matrix is considered to be irreducible.
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xi = 0, i.e., (P · A · y)i = 0 for i = k + 1, . . . , n. Furthermore, y = P−1 · x = PT · x (since P is a
permutation matrix, that is always orthogonal). So (P · A · PT · x)i = 0 for i = k + 1, . . . , n.

Now, let us denote R = P · A · PT = (ri,j)n×n. Then

(R · x)i =
n

∑
j=1

ri,jxj =
k

∑
j=1

ri,jxj = 0

for i = k + 1, . . . , n. But since xj > 0 for j = 1, . . . , k, we have ri,j = 0 for i = k + 1, . . . , n and
j = 1, . . . , k. Thus the matrix R = P · A · PT has a form

R = P · A · PT =
(

B C
0 D

)
,

where B and D are square submatrices, and 0 is a zero submatrix. Thus, A is reducible, and that
contradicts our assumption. �

Corollary A.4.4 Let A be an n× n irreducible nonnegative matrix, for some n in N, n ≥ 1. Let y
be a nonzero nonnegative column vector with n entries. Then (In + A)n−1 · y is a positive column
vector.

Proof. According to Lemma A.4.3, for n ≥ 2, (In + A)i · y has at least one more positive entry
than (In + A)i−1 · y, for i = 1, . . . , n− 1. Since y = (In + A)0 · y has at least one positive entry,
(In + A)n−1 · y must have at least n positive entries, i.e., (In + A)n−1 · y is a positive column
vector. For n = 1, the statement of the corollary is obvious. �

Corollary A.4.5 Let A be an n× n nonnegative matrix, for some n in N, n ≥ 1. The matrix A is
irreducible if and only if (In + A)n−1 is a positive matrix.

Proof. Let the matrix A be irreducible. Let us denote the unit column vectors with n entries by

ei = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

)T , i = 1, . . . , n.

Then, according to Corollary A.4.4, (In + A)n−1 · ei is a positive vector for i = 1, . . . , n. In other
words, all columns of the matrix (In + A)n−1 are positive. Thus, (In + A)n−1 is a positive matrix.

On the contrary, let (In + A)n−1 be a positive matrix. It is clear that each positive matrix
is irreducible, and so (In + A)n−1 is an irreducible matrix. But this implies that In + A is also
irreducible, since if it was reducible, we could write

P · (In + A) · P−1 =
(

B C
0 D

)
and therefore

P · (In + A)n−1 · P−1 =
(

P · In + A · P−1
)n−1

=
(

B C
0 D

)n−1
=
(

B′ C′

0 D′

)
,

i.e., (In + A)n−1 would be reducible. That is, In + A is irreducible. But then also A is irreducible,
since for each matrix M, the diagonal entries of M have effect only on diagonal entries of the
matrix P ·M · PT , but no effect on off-diagonal entries. The matrix A is therefore irreducible and
the corollary is proven. �

Lemma A.4.6 Let A be an n× n irreducible nonnegative matrix, for some n in N. Then A does
not have any zero column.
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Proof. For the purpose of contradiction, let us suppose that the s-th column of the matrix A is
zero, for some s in {1, . . . , n}. Let us define the permutation matrix P by

P =


p1,1 p1,2 . . . p1,n
p2,1 p2,2 . . . p2,n

...
...

. . .
...

pn,1 pn,2 . . . pn,n

 ,

where

pi,j =
{

1 if (i, j) = (1, s) or (i, j) = (s, 1) or 1 6= i = j 6= s
0 otherwise , i, j = 1, . . . , n.

The left-multiplication of A with P does only permute the rows of the matrix A, and the zero
column is still present in the matrix P · A. The right-multiplication with PT permutes columns,
and therefore the first column of the matrix P · A · PT is zero. Now, if we define the submatrix B
to be the 1× 1 null matrix, it is clear that the matrix P · A · PT has a form

P · A · PT =
(

B C
0 D

)
,

where B and D are square submatrices, and 0 is a zero submatrix. Thus, the matrix A is reducible,
i.e., a contradiction. �

Lemma A.4.7 Let A be an n× n irreducible nonnegative matrix, for some n in N. Then A does
not have any zero row.

Proof. The lemma can be easily proved in a similar manner as Lemma A.4.6. �

Theorem A.4.8 Let A be a nonnegative n× n matrix for some n in N,

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

an,1 an,2 . . . an,n

 .

For k in N, let us denote11

Ak =


a(k)

1,1 a(k)
1,2 . . . a(k)

1,n

a(k)
2,1 a(k)

2,2 . . . a(k)
2,n

...
...

. . .
...

a(k)
n,1 a(k)

n,2 . . . a(k)
n,n

 .

The matrix A is irreducible if and only if for all i, j in {1, . . . , n}, nonnegative integer k in N exists,
such that a(k)

i,j > 0.

Proof. Let A be irreducible. From the Corollary A.4.5 it follows, that the matrix (In + A)n−1 is
positive. Let us denote

A′ = (a′i,j)n×n = (In + A)n−1 · A.

Since (In + A)n−1 is positive and, according to Lemma A.4.6, A does not have any zero column,
the matrix A′ is positive as well. Let c1, c2, . . . , cn−1 in R be constants, such that

A′ = An + cn−1 · An−1 + . . . + c2 · A2 + c1 · A,

11We shall use this notation also later on in this section.
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i.e.,
a′i,j = a(n)

i,j + cn−1 · a
(n−1)
i,j + . . . + c2 · a

(2)
i,j + c1 · a

(1)
i,j

for all i, j in {1, . . . , n}. But since a′i,j > 0 for all i, j in {1, . . . , n}, it follows that for all i, j in

{1, . . . , n} there must be a nonnegative integer k in {1, . . . , n} such that a(k)
i,j > 0.

Now, let us prove the converse statement. We shall prove, that if the matrix A is reducible,
then there exist i, j in {1, . . . , n}, such that a(k)

i,j = 0 for all k in N. Since A is reducible, a permuta-
tion matrix P exists, such that

P · A · PT =
(

B C
0 D

)
,

where B and D are square submatrices, and 0 is a zero submatrix. Let B be an s× s submatrix.
Clearly, for all (i, j) with i in {s + 1, . . . , n} and with j in {1, . . . , s}, the (i, j) entry of P · Ak · PT is
zero for all k in N. But there clearly is a one-to-one correspondence between entries of P ·M · PT

and entries of M, that is the same for all matrices M of size n× n (for fixed P). Thus, the matrix A
also has the entry (i′, j′) in {1, . . . , n}2, such that a(k)

i′ ,j′ = 0 for all k in N. The theorem is therefore
proven. �

As already mentioned, Theorem A.4.8 provides the alternative definition of irreducible matri-
ces. In fact, the manipulation with the definition according to Theorem A.4.8 is sometimes more
easier than the manipulation with the original formulation from Definition A.4.2 (at least for the
purposes of this report). In some texts, the definition provided by Theorem A.4.8 is actually used
as a primary definition (e.g., in [5]). However, the definition provided by Theorem A.4.8 says
almost nothing about the etymology of the term irreducible.

There is an interesting connection of the notion of an irreducible matrix to graph theory (and
as a consequence also to the theory of deterministic finite automata). From Theorem A.4.8, it
is clear that a digraph has an irreducible adjacency matrix if and only if the digraph is strongly
connected and different from the isolated vertex without any loops (because the entry (i, j) of the
k-th power of the adjacency matrix is exactly the number of walks of length k from the i-th vertex
to the j-th vertex). In other words, a deterministic finite automaton has an irreducible transition
matrix if and only if its graphical representation is strongly connected and different from the
isolated state without any transitions.

However, this can also be seen, after a little effort, directly from Definition A.4.2. A transfor-
mation P · A · PT of an adjacency matrix A of a given graph, where P is a permutation matrix,
can be interpreted simply as a relabeling of vertices. The graph therefore has a reducible tran-
sition matrix if and only if its set of vertices V(G) can be decomposed into two sets V1 and V2
(corresponding to submatrices B and D in Definition A.4.2) such that there is not any edge from
vertex in V2 to vertex in V1. If we would contract the vertices of both of this sets into a single
vertex, the resulting graph would be clearly a directed acyclic graph. In other words, the graph
is not strongly connected. The converse can be observed in a similar manner. The role of permu-
tation matrix P is only to relabel the vertices in order to “bring together” the vertices in the same
strongly connected component.

In the following theorem, we shall show that every nonnegative eigenvector of an irreducible
nonnegative matrix is strictly positive.

Theorem A.4.9 Let A be an n× n nonnegative irreducible matrix. Let x be a nonnegative eigen-
vector of A with corresponding eigenvalue λ. Then x is positive.

Proof. Since x is an eigenvector with corresponding eigenvalue λ,

A · x = λ · x. (A.17)

Since both the matrix A and the eigenvector x are nonnegative, (A.17) implies that λ has to be
nonnegative as well. Moreover, from (A.17) we have

(In + A) · x = (1 + λ) · x. (A.18)
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For the purpose of contradiction, let us suppose that x is not positive, i.e., that x has k > 0 zero
entries. It is clear that (1 + λ) · x has k zero entries as well. However, according to Lemma A.4.3,
(In + A) · x has less than k zero entries, which contradicts (A.18). Thus, x cannot have a zero
entry, i.e., the eigenvector x is strictly positive. �

A.4.2 The Collatz-Wielandt Function

In this subsection, we shall define and study some properties of the Collatz-Wielandt function.
The Collatz-Wielandt function will be of crucial importance for the proof of the Perron-Frobenius
theorem, presented in Subsection A.4.5. In this subsection, we shall follow [31]. Moreover, in this
subsection we shall use the symbol P to denote the set of nonnegative real numbers.

Definition A.4.10 (The Collatz-Wielandt Function [7] [40]) Let A be an n × n irreducible non-
negative matrix, for some n in N. The Collatz-Wielandt function associated with the matrix A is
the function fA : Pn \ {0} → P defined by

fA(x) = min
xi 6=0

(
A · xT)

i
xi

for all nonzero x = (x1, . . . , xn) in Pn.12

In the following lemma, we shall prove several basic properties of this function. As a con-
sequence of the lemma, we shall also acquire an intuitive understanding of the concept of the
Collatz-Wielandt function.

Lemma A.4.11 Let A be an n× n irreducible nonnegative matrix, for some nonnegative integer
n in N. Let fA : Pn \ {0} → P be the Collatz-Wielandt function associated with A. Then the
following three properties hold:

1. The function fA is homogeneous of degree zero, i.e., for all x in Pn \ {0} and for all α in
P \ {0},

fA(α · x) = α0 · fA(x) = fA(x).

2. For given x in Pn \ {0}, fA(x) can be defined by

fA(x) = max
{

ρ ∈ P

∣∣∣ A · xT ≥ ρ · xT
}

,

i.e., fA(x) is the largest nonnegative13 real number ρ, such that A · xT ≥ ρ · xT .

3. For given x in Pn \ {0} and y =
(
(In + A)n−1 · xT)T , the inequality fA(y) ≥ fA(x) holds.

Proof. We shall prove each claim separately.

1. Let x = (x1, . . . , xn) be in Pn \ {0} and α be in P \ {0}. Then,

fA(α · x) = min
xi 6=0

(
A ·
(
α · xT))

i
α · xi

= min
xi 6=0

α ·
(

A · xT)
i

α · xi
= min

xi 6=0

(
A · xT)

i
xi

= fA(x).

12In the context of the Collatz-Wielandt function (unlike in the rest of this report) we work primarily with row vec-
tors instead of column vectors. The reason for this is notational convenience (despite some complications with using
transposes).

13It is obvious that A · xT ≥ 0, so the number ρ is well defined. The number ρ therefore could be, equivalently, defined
to be the largest such real number.
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2. It follows directly from the definition of the Collatz-Wielandt function that

A · xT ≥ fA(x) · xT

and that for at least one coordinate k in {1, . . . , n},
(

A · xT)
k =

(
fA(x) · xT)

k. Thus, for all
ρ′ > fA(x), there is at least one coordinate k in {1, . . . , n}, such that

(
ρ′ · xT)

k is greater than(
A · xT)

k. The claim is therefore proved.

3. As we have observed,
A · xT ≥ fA(x) · xT . (A.19)

By multiplying both sides of (A.19) by (In + A)n−1, we obtain

(In + A)n−1 · A · xT ≥ fA(x) · (In + A)n−1 · xT . (A.20)

Now, clearly A · (In + A)n−1 = (In + A)n−1 · A, that is, we can rewrite (A.20) as

A · (In + A)n−1 · xT ≥ fA(x) · (In + A)n−1 · xT ,

i.e., A · yT ≥ fA(x) · yT . The result fA(y) ≥ fA(x) now follows from the claim 2.

The lemma is proved. �

As we have already anticipated, it is possible to acquire an intuitive understanding of the
concept of the Collatz-Wielandt function from Lemma A.4.11. From the claim 2 of the lemma, it
is clear that if xT is the (right) eigenvector of the matrix A, then fA(x) is equal to the eigenvalue
corresponding to xT (since both the matrix A and the eigenvector xT are real and nonnegative,
the eigenvalue corresponding to xT has to be real and nonnegative as well). If xT is not the
eigenvector, then the value of the Collatz-Wielandt function at x can be interpreted as a “lower
eigenvalue” corresponding to xT . In other words, the matrix A “behaves as” the scalar value
fA(x) for at least one coordinate of xT , and for each other coordinate of xT , the matrix A “behaves
as” some larger scalar value.

Notation A.4.12 Let n be in N. By En, we denote the standard (n− 1)-simplex, i.e., the set

En =

{
(x1, . . . , xn) ∈ Pn

∣∣∣∣∣ n

∑
i=1

xi = 1

}
.

The following theorem is of crucial importance for the proof of the Perron-Frobenius theorem,
presented in Subsection A.4.5.

Theorem A.4.13 Let A be an n × n irreducible nonnegative matrix, for some n in N. Then the
Collatz-Wielandt function fA associated with A attains a maximum in En.

Proof. Let us define the set G by

G =
{(

(In + A)n−1 · xT
)T
∣∣∣∣ x ∈ En

}
.

The set G can be clearly seen to be a closed and bounded subset of Rn, and thus, G is compact.14

By Corollary A.4.5, (In + A)n−1 is a positive matrix, and therefore all n-tuples in G have all
components strictly positive. It can be easily seen that fA is continuous at any such n-tuple, thus
fA is continuous on G.

14This follows from the Generalized Heine-Borel theorem (see, e.g., [35]).
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Every continuous function defined on a compact subset S of Rn attains a maximum in S.15

Thus, fA attains a maximum in G (at some point ymax = (ymax
1 , . . . , ymax

n ) in G). Now, let xmax be
defined by

xmax = (xmax
1 , . . . , xmax

n ) =
1

∑n
i=1 ymax

i
· ymax.

Clearly, ∑n
i=1 xmax

i = 1, and thus xmax is in En. Now, let x be an arbitrary vector in En, and

let y in G be defined by y =
(
(In + A)n−1 · xT)T . By the claim 3 of Lemma A.4.11, we have

fA(x) ≤ fA(y). By the maximality of ymax in G, we have fA(y) ≤ fA (ymax). And finally, by the
claim 1 of Lemma A.4.11, we obtain

fA (ymax) = fA

((
n

∑
i=1

ymax
i

)
· xmax

)
= fA (xmax) .

Thus, fA(x) ≤ fA (xmax) for all x in En, i.e., the function fA attains a maximum in En at the point
xmax. �

A.4.3 The Perron-Frobenius Eigenvalue

In this subsection, we shall in fact prove a part of the Perron-Frobenius theorem and show that ev-
ery irreducible nonnegative matrix has a unique (as to the algebraic multiplicity) real eigenvalue
equal to its spectral radius, referred to as the Perron-Frobenius eigenvalue. However, the Perron-
Frobenius theorem involves more claims, and we shall state and prove the complete theorem in
Subsection A.4.5. We shall follow the presentation of [31].

Theorem A.4.14 Let A be an n× n irreducible nonnegative matrix,

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

an,1 an,2 . . . an,n

 ,

for some n in N. Let ρ be the spectral radius of A. Then ρ is an eigenvalue of A, referred to as
the Perron-Frobenius eigenvalue [4] of the matrix A.16 Moreover, there is a positive eigenvector xρ

in En corresponding to ρ17 and the formulas18

ρ = max
x∈En

fA (x) , xρ =
(

arg max
x∈En

fA (x)
)T

hold.

Proof. According to Theorem A.4.13, a vector xmax in En exists, such that fA (xmax) ≥ fA(x) for
all x in En. Let us define

λ := fA (xmax) .

The number λ is clearly positive, since for u = 1
n · (1, 1, . . . , 1︸ ︷︷ ︸

n

) we have

λ ≥ fA(u) = min
i=1,...,n

(
A · uT)

i
1
n

= min
i=1,...,n

n

∑
j=1

ai,j > 0,

15See, e.g., [29].
16The eigenvalue ρ is also referred to as the maximal eigenvalue [31], or as the leading eigenvalue [18] of the matrix A.
17Referred to as the Perron-Frobenius eigenvector, the maximal eigenvector, or as the leading eigenvector.
18The first formula is referred to as the Collatz-Wielandt formula [30].
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where the last inequality follows from the fact that an irreducible matrix cannot have a zero row
(Lemma A.4.7). We shall first show that λ is an eigenvalue, and that there is a positive eigenvector
corresponding to λ. Later, we shall show that λ is equal to the spectral radius ρ.

Let us show that λ is an eigenvalue of A with corresponding eigenvector (xmax)T . According
to the claim 2 of Lemma A.4.11, A · (xmax)T ≥ λ · (xmax)T . We shall show that A · (xmax)T =
λ · (xmax)T , i.e., that λ is an eigenvalue and that (xmax)T is a corresponding eigenvector. For the
purpose of contradiction, let us suppose that A · (xmax)T 6= λ · (xmax)T . Then

A · (xmax)T − λ · (xmax)T

is a nonzero nonnegative column vector. Thus, according to Corollary A.4.4, the column vector

(In + A)n−1 ·
(

A · (xmax)T − λ · (xmax)T
)

is positive. Now, let us define ymax = (ymax
1 , . . . , ymax

n ) =
(
(In + A)n−1 · (xmax)T

)T
. Since clearly

(In + A)n−1 · A = A · (In + A)n−1,

the column vector
A · (ymax)T − λ · (ymax)T

is positive as well. Thus, a positive number ε exists, such that the column vector

A · (ymax)T − (λ + ε) · (ymax)T

is nonnegative. Thus, by the claim 2 of Lemma A.4.11,

λ + ε ≤ fA (ymax) ,

i.e.,
λ < fA (ymax) . (A.21)

Now, let us define x< by

x< =
1

∑n
i=1 ymax

i
· ymax.

Then by the claim 1 of Lemma A.4.11,

fA (ymax) = fA
(
x<
)

.

Thus, (A.21) implies
λ < fA

(
x<
)

,

which, since x< is clearly in En, contradicts the definition of λ. Thus, λ is an eigenvalue and
xmax is a corresponding eigenvector. Since xmax is in En, xmax is nonnegative, and therefore, by
Theorem A.4.9, positive.

It remains to show that λ = ρ. Since λ is a positive real number, it suffices to show that for all
eigenvalues λ′ of A, |λ′| ≤ λ.

In fact, let λ′ in C be an eigenvalue of A and z = (z1, . . . , zn)T be a corresponding eigenvector,
i.e.,

A · z = λ′ · z.

Then,

λ′ · zt =
n

∑
j=1

at,j · zj, t = 1, . . . , n,
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and thus ∣∣λ′∣∣ · |zt| ≤
n

∑
j=1

at,j · |zj|, t = 1, . . . , n.

That is, ∣∣λ′∣∣ · |z| ≤ A · |z| ,

where |z| denotes the column vector |z| = (|z1|, . . . , |zn|)T . Thus,

∣∣λ′∣∣ ≤ fA(|z|) = fA

(
1

∑n
i=1 |zi|

· |z|
)
≤ λ,

where the first step is by the claim 2 of Lemma A.4.11, the second step is by the claim 1 of Lemma
A.4.11 (the vector |z| is being normed as to belong to En), and the third step is by the definition
of λ. �

In the following lemma, we shall observe that the dimension of the eigenspace corresponding
to the Perron-Frobenius eigenvalue (i.e., its geometric multiplicity) is always 1. We shall use the
lemma in the proof of Theorem A.4.16, where we shall show the same for the algebraic multiplic-
ity of the Perron-Frobenius eigenvalue.

Lemma A.4.15 Let A be an n× n irreducible nonnegative matrix, for some n in N. Let ρ be the
Perron-Frobenius eigenvalue of the matrix A. Then the geometric multiplicity of ρ is 1.

Proof. According to Theorem A.4.14, a positive eigenvector x = (x1, . . . , xn)T corresponding to
ρ exists. Let y be an arbitrary eigenvector of A corresponding to ρ. We shall show that x and y
are linearly dependent and the result will follow.

Since y is an eigenvector corresponding to ρ, y = (y1, . . . , yn)T is a nonzero column vector
and the identity

A · y = ρ · y (A.22)

holds. From (A.22), we may derive (in exactly the same way as in the proof of Theorem A.4.14,
with the use of the fact that ρ is positive) the inequality

A · |y| ≥ ρ · |y|,

where |y| = (|y1|, . . . , |yn|)T . If A · |y| 6= ρ · |y|, then, in the same way as in the proof of Theorem
A.4.14, it is possible to conclude that for y′ = (In + A)n−1 · |y|, the inequality

ρ < fA(y′)

holds. This leads to the same contradiction as in the proof of Theorem A.4.14. Thus, |y| is an
eigenvector of A corresponding to ρ. The eigenvector |y| is clearly nonnegative, and therefore,
by Theorem A.4.9, positive. Thus, y does not have any zero entry. Specially, y1 6= 0. Moreover,
this is true for all eigenvectors y corresponding to ρ, so we may conclude that if a column vector
has a zero entry, then it is not an eigenvector corresponding to ρ.

Let us now consider a column vector y1 · x − x1 · y. The first entry of this column vector is
zero, and thus it is not an eigenvector corresponding to ρ. However, it is a linear combination of
eigenvectors corresponding to ρ and therefore is in the eigenspace corresponding to ρ. Thus,

y1 · x− x1 · y = 0,

where x1, y1 6= 0, i.e., the vectors x and y are linearly dependent. �

In the following theorem, we shall show that the Perron-Frobenius eigenvalue is always sim-
ple, i.e., its algebraic multiplicity is always equal to 1.



156 A.4 Nonnegative Matrices

Theorem A.4.16 Let A be an n× n irreducible nonnegative matrix,

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

an,1 an,2 . . . an,n

 ,

for some n in N. Let ρ be the Perron-Frobenius eigenvalue of the matrix A. Then the algebraic
multiplicity of ρ is 1.

Proof. Let ch(λ) = |A− λ · In| be the characteristic polynomial of the matrix A. We shall show
that ρ is a simple root of the polynomial ch(λ). We have already proved that ρ is an eigenvalue of
A, and therefore is a root of ch(λ). Thus, it remains to show that ρ is not a multiple root of ch(λ).
To prove this, it suffices to show that ch′(ρ) 6= 0, where ch′(λ) is the first derivative of ch(λ).

Let us first derive a formula for the first derivative of the determinant of a matrix of differen-
tiable functions. Let X(λ) be a matrix

X(λ) =


x1,1(λ) x1,2(λ) . . . x1,n(λ)
x2,1(λ) x2,2(λ) . . . x2,n(λ)

...
...

. . .
...

xn,1(λ) xn,2(λ) . . . xn,n(λ)

 ,

with xi,j : R→ R being a differentiable function of variable λ, for i, j = 1, . . . , n. Then,

d
dλ
|X(λ)| = d

dλ ∑
σ∈Sn

sgn(σ) ·
n

∏
i=1

xi,σ(i)(λ) = ∑
σ∈Sn

sgn(σ) ·
(

d
dλ

n

∏
i=1

xi,σ(i)(λ)

)
=

= ∑
σ∈Sn

sgn(σ) ·
n

∑
i=1

(
d

dλ
xi,σ(i)(λ)

)
· ∏

1≤k≤n
i 6=k

xk,σ(k)(λ) =

=
n

∑
i=1

∑
σ∈Sn

(
d

dλ
xi,σ(i)(λ)

)
· sgn(σ) · ∏

1≤k≤n
i 6=k

xk,σ(k)(λ) =

=
n

∑
i,j=1

(
d

dλ
xi,j(λ)

)
· ∑

σ′∈Sn−1

(−1)i+j · sgn(σ′) ·
n−1

∏
k=1

xk+[k≥i],σ′(k+[k≥i])+[σ′(k+[k≥i])≥j](λ) =

=
n

∑
i,j=1

(
d

dλ
xi,j(λ)

)
· (−1)i+j · ∑

σ′∈Sn−1

sgn(σ′) ·
n−1

∏
k=1

xk+[k≥i],σ′(k+[k≥i])+[σ′(k+[k≥i])≥j](λ) =

=
n

∑
i,j=1

(
d

dλ
xi,j(λ)

)
· Xi,j(λ),

where Xi,j(λ) is the cofactor of the entry (i, j) of the matrix X(λ), i.e., Xi,j(λ) = (−1)i+j · |Yi,j(λ)|,
where Yi,j(λ) is an (n− 1)× (n− 1) matrix obtained from matrix X(λ) by deleting the i-th row
and the j-th column.

Thus, we may express the derivative ch′(λ) of the characteristic polynomial (we shall denote
the cofactor of the entry (i, j) of the matrix A− λ · In by cofi,j(A− λ · In)) as

ch′(λ) =
d

dλ
|A− λ · In| =

n

∑
i,j=1

(
d

dλ

(
ai,j − δi,j · λ

))
· cofi,j(A− λ · In) =

=
n

∑
i=1

(
d

dλ
(ai,i − λ)

)
· cofi,i(A− λ · In) = −

n

∑
i=1

cofi,i(A− λ · In) =

= −tr(adj(A− λ · In)).
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Thus,
ch′(ρ) = −tr(adj(A− ρ · In)).

Now, from the elementary properties of the adjugate matrix and from the fact that ρ is a root of
|A− λ · In|, we obtain

(A− ρ · In) · adj(A− ρ · In) = |A− ρ · In| · In = 0. (A.23)

By Lemma A.4.15, the Perron-Frobenius eigenvalue ρ has a geometric multiplicity equal to 1,
i.e., the eigenspace corresponding to ρ has dimension 1. Thus, the rank of the matrix A− ρ · In is
n− 1. As a consequence, at least one cofactor of A− ρ · In is nonzero, and thus

adj(A− ρ · In) 6= 0.

The adjugate matrix adj(A− ρ · In) therefore has at least one nonzero column. Let i in {1, . . . , n}
be a number of some nonzero column of adj(A− ρ · In), and let ci be the corresponding column
vector.

By (A.23), we get (A − ρ · In) · ci = 0. Thus, ci is an eigenvector corresponding to ρ. Since
ρ is of geometric multiplicity 1 and by Theorem A.4.14, ρ has a positive eigenvector, ci has to
be a nonzero real multiple of a positive column vector, i.e., the entries of ci are either all strictly
positive, or all strictly negative.

Since ci has been chosen as an arbitrary nonzero column of adj(A− ρ · In), it follows that each
column of adj(A− ρ · In) is either strictly positive or strictly negative or zero. Moreover, there is
at least one nonzero column of adj(A− ρ · In).

Further, adj(A− ρ · In)T = adj(AT − ρ · In), where AT is an irreducible nonnegative matrix
with the Perron-Frobenius eigenvalue ρ. Thus, we may conclude the same for the columns of
adj(A− ρ · In)T , i.e., each column of adj(A− ρ · In)T is either strictly positive or strictly negative
or zero, and there is at least one nonzero column of adj(A− ρ · In)T . In other words, each row
of adj(A − ρ · In) is either strictly positive or strictly negative or zero, and there is at least one
nonzero row of adj(A− ρ · In).

As we have already observed, adj(A− ρ · In) has at least one nonzero entry, say, (i, j). Then the
whole i-th row must be strictly positive or strictly negative, which implies that either all columns
of adj(A− ρ · In) are strictly positive or all columns are strictly negative. Thus, adj(A− ρ · In) is
a positive matrix or a negative matrix. Therefore,

ch′(ρ) = −tr(adj(A− ρ · In)) 6= 0,

i.e., the algebraic multiplicity of ρ is 1. �

We shall end up this subsection by a simple corollary of Lemma A.4.15, which assures that
the Perron-Frobenius eigenvector of a given irreducible nonnegative matrix is unique.

Corollary A.4.17 Let A be an n × n irreducible nonnegative matrix, for some n in N. Let ρ be
the Perron-Frobenius eigenvalue of the matrix A. Then there is exactly one eigenvector xρ in En,
corresponding to ρ. Moreover, the Collatz-Wielandt function fA(x) attains exactly one maximum
in En.

Proof. Theorem A.4.14 assures the existence of at least one such eigenvector x′ρ. However, by
Lemma A.4.15, the dimension of the eigenspace corresponding to ρ is 1, and thus each eigenvec-
tor corresponding to ρ has to be a scalar multiple of x′ρ. However, for c 6= 1, c · x′ρ cannot be in En.
Thus, the eigenvector xρ = x′ρ is unique.

The existence of a maximum of fA(x) in En is assured by Theorem A.4.13. However, in The-
orem A.4.14 we have proved that every such maximum is an eigenvector of A corresponding to
ρ. Thus, this maximum is unique as well. �
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A.4.4 Dominating Nonnegative Matrix

In this subsection, we shall present a definition of a dominating nonnegative matrix and prove an
important theorem (Theorem A.4.19) due to Wielandt [40] pointing out an interesting property of
these matrices. We shall use the presented theorem in the proof of the Perron-Frobenius theorem
in Section A.4.5. As in the previous subsections, we shall follow the presentation of [31].

Definition A.4.18 Let C =
(
ci,j
)

n×n in Cn×n be a complex matrix, and A =
(
ai,j
)

n×n in Pn×n be
a nonnegative real matrix, for some n in N. The nonnegative matrix A is said to dominate the
complex matrix C, if for all i, j in {1, . . . , n}, the inequality |ci,j| ≤ ai,j holds.

In other words, a nonnegative matrix A dominates the complex matrix C, if each entry of A is
greater than or equal to the absolute value of the corresponding entry of C.

Theorem A.4.19 (Wielandt [40]) Let C =
(
ci,j
)

n×n in Cn×n be a complex matrix, and A =
(
ai,j
)

n×n
in Pn×n be an irreducible nonnegative matrix dominating C. Let ρ be the Perron-Frobenius eigen-
value of the matrix A, and λ be an arbitrary eigenvalue of C. Then the inequality

|λ| ≤ ρ (A.24)

holds. Moreover, the equality occurs in (A.24), if and only if a real number ϕ in R exists, such
that λ = ρ · eiϕ, and

C = eiϕ · D · A · D−1

for some complex diagonal matrix D = (di,j)n×n in Cn×n, such that |di,i| = 1 for i = 1, . . . , n.

Proof. Let y be an eigenvector of the matrix C corresponding to the eigenvalue λ, i.e., a column
vector y = (y1, . . . , yn)T 6= 0, such that

C · y = λ · y. (A.25)

By the triangle inequality, we may prove (in exactly the same way as in the proof of Theorem
A.4.14) that

|C| · |y| ≥ |λ| · |y|, (A.26)

where |C| is the matrix (|ci,j|)n×n, and |y| is the column vector (|y1|, . . . , |yn|)T . Now, since the
matrix A dominates C, and since all entries of |y| are nonnegative, (A.26) implies

A · |y| ≥ |C| · |y| ≥ |λ| · |y|, (A.27)

and thus, consecutively by the claim 2 of Lemma A.4.11, by the claim 1 of Lemma A.4.11, and by
Theorem A.4.14,

|λ| ≤ fA(|y|) = fA

(
1

∑n
i=1 |yi|

· |y|
)
≤ ρ, (A.28)

and the first part of the theorem is proved.
Now, let us prove the second part of the theorem. For the proof of the first implication, let

us suppose that C = eiϕ · D · A · D−1 for some ϕ in R, and for some complex diagonal matrix
D = (di,j)n×n in Cn×n, such that |di,i| = 1 for i = 1, . . . , n. The matrices C and eiϕ · A are then
similar, i.e., λ = ρ · eiϕ is an eigenvalue of C, and clearly |λ| = ρ.

Let us now prove the converse implication. For this purpose, let us suppose that in (A.24), the
equality holds, i.e., |λ| = ρ. Then, a real number ϕ exists, such that λ = ρ · eiϕ. Then from (A.28),
we get fA(|y|) = ρ. Thus, according to Theorem A.4.14,

|y| =
(

n

∑
i=1
|yi|
)
·
(

1
∑n

i=1 |yi|
· |y|

)
=

(
n

∑
i=1
|yi|
)
· xρ
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is a positive eigenvector corresponding to ρ (i.e., a nonzero scalar multiple of the Perron-Frobenius
eigenvector). Therefore, (A.27) implies

A · |y| = |C| · |y| = ρ · |y|, (A.29)

i.e.,
(A− |C|) · |y| = 0. (A.30)

Since |y| is a nonnegative column vector and, at the same time, a nonzero scalar multiple of
the Perron-Frobenius eigenvector, |y| must be positive (since, by Theorem A.4.14, the Perron-
Frobenius eigenvector is positive). Moreover, since A dominates C, A − |C| is a nonnegative
matrix, and thus (A.30) implies

A = |C|. (A.31)

Now, let us define the diagonal matrix D by

D =


y1
|y1| y2

|y2|
. . .

yn
|yn |

 .

Moreover, let us define
G = (gi,j)n×n = e−iϕ · D−1 · C · D.

Since clearly y = D · |y|, from (A.25) we obtain

C · D · |y| = λ · D · |y| = ρ · eiϕ · D · |y|.

Thus,
G · |y| = ρ · |y|,

and by (A.29),
G · |y| = A · |y|. (A.32)

Now, G was defined so that |G| = |C| holds (where, as in the previous cases, |G| is defined to be
a matrix (|gi,j|)n×n), and therefore, by (A.31),

|G| = A.

Thus, (A.32) implies
|G| · |y| = G · |y|.

That is,
(|G| − G) · |y| = 0

i.e.,
n

∑
j=1

(|gi,j| − gi,j) · |yj| = 0, i = 1, . . . , n.

As we have already noted, the vector |y| is positive, and therefore, |yj| > 0 for j = 1, . . . , n.
Thus, since the real part of |gi,j| − gi,j is clearly nonnegative for i, j = 1, . . . , n, |gi,j| − gi,j = 0 for
i, j = 1, . . . , n. Thus, we have proved that

G = |G| = A.

Thus, from the definition of G, we have

C = eiϕ · D · G · D−1 = eiϕ · D · A · D−1

and the theorem is proved. �
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A.4.5 The Perron-Frobenius Theorem

Now we are prepared to state and prove the main result of this section, i.e., the Perron-Frobenius
theorem. The core of the proof is by [31].

Theorem A.4.20 (Perron, Frobenius [33] [13]) Let A =
(
ai,j
)

n×n be an n× n irreducible nonneg-
ative matrix, for some n in N. Let λ := ρ(A) be the spectral radius of the matrix A. Then a
positive integer p in N+ exists, such that the following properties hold:

1. The matrix A has exactly p complex eigenvalues of absolute value λ, which are

λ, λ · e2πi/p, . . . , λ · e2πi(p−1)/p.

All of these eigenvalues have their algebraic multiplicity equal to 1.

2. The (right) eigenvector x of the matrix A corresponding to the eigenvalue λ is positive.
Moreover, all nonnegative eigenvectors of the matrix A are scalar multiples of x.

3. The matrix A is similar to e2πi/p · A, i.e., the spectrum of the matrix A is invariant under the
multiplication by e2πi/p.

Proof. In Theorem A.4.14, we have proved that λ is an eigenvalue of the matrix A, and in
Theorem A.4.16, we have proved that the algebraic multiplicity of λ is 1. Now, let us suppose
that the matrix A has p eigenvalues of absolute value λ,

λ1, λ2, . . . , λp.

Without loss of generality, let us suppose that λ1 = λ, and λ2, . . . , λp 6= λ. Then, each of the
eigenvalues λj, j = 2, . . . , p, can be written as

λj = λ · eiϕj ,

for some nonzero ϕj in R. Moreover, the matrix A clearly dominates itself. Thus, by Theorem
A.4.19, a complex diagonal matrix Dj exists for j = 2, . . . , p, such that

A = eiϕj · Dj · A · D−1
j . (A.33)

In other words, the matrices A and eiϕj · A are similar, and therefore have the same spectrum.
Moreover, since λ is a simple eigenvalue of A, λ · eiϕj is a simple eigenvalue of eiϕj · A. That is,
for j = 2, . . . , p, λ · eiϕj is a simple eigenvalue of A. Since λ is real, let ϕ1 = 0.

Without loss of generality, let us suppose 0 = ϕ1 < ϕ2 < . . . < ϕp < 2π. We shall show that

ϕj =
2π(j− 1)

p
, (A.34)

for j = 1, . . . , p. To achieve this, let r, s be two (not necessarily distinct) numbers in {2, . . . , n}.
Then, by (A.33),

A = eiϕr · Dr · A · D−1
r = eiϕr · Dr ·

(
eiϕs · Ds · A · D−1

s

)
· D−1

r =

= ei(ϕr+ϕs) · (Dr · Ds) · A · (Dr · Ds)−1 ,

i.e., the matrices A and ei(ϕr+ϕs) · A are similar for all r, s in {2, . . . , p} and thus for all r, s in
{1, . . . , p}. Thus, for all r, s in {1, . . . , p}, λ · ei(ϕr+ϕs) is an eigenvalue of A, and since its absolute
value is λ, the equality

λ · ei(ϕr+ϕs) = λ · eiϕt = λt
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has to hold for some t in {1, . . . , p}. It can be easily seen that this implies that eiϕ1 , . . . , eiϕp are dis-
tinct p-th roots of unity, and from our assumptions about the order of ϕ1, . . . , ϕp, (A.34) follows.

Now, let us prove the claim 2. The existence of the positive eigenvector x = (x1, . . . , xn)T

corresponding to λ follows directly from Theorem A.4.14. Thus, it remains to show the second
part of the claim, i.e., that every nonnegative eigenvector of A is a scalar multiple of x.

To achieve this, it is clearly sufficient to show that the matrix A has exactly one eigenvector
in En (see Denotation A.4.12). In fact, let y be a positive column vector in En defined to be the
Perron-Frobenius eigenvector of AT . Since the spectrum of AT is the same as the spectrum of A,
y corresponds to the eigenvalue λ.

Now, let z in En be an eigenvector of the matrix A corresponding to an eigenvalue ζ, i.e.,
A · z = ζ · z. If we denote the standard inner product on Rn×1 by 〈·, ·〉, we obtain

ζ · 〈z, y〉 = 〈A · z, y〉 = 〈z, AT · y〉 = λ · 〈z, y〉. (A.35)

However, y is positive and z is in En, and therefore 〈z, y〉 > 0. Thus, (A.35) implies ζ = λ, i.e., z
is an eigenvector of A corresponding to λ. The uniqueness of z then follows from Lemma A.4.15.

The claim 3 follows from (A.33) for j = 2. The theorem is therefore proved. �

Remark A.4.21 The Perron-Frobenius theorem obviously holds also for the 1 × 1 zero matrix,
which is not considered to be irreducible in this report (although is considered to be irreducible,
e.g., in [31]). Thus, we shall extend the notion of the Perron-Frobenius eigenvalue also to this
matrix (clearly, this eigenvalue is zero).

A.4.6 The Normal Form of a Reducible Matrix

The Perron-Frobenius theorem, presented in Subsection A.4.5, provides us with a useful partial
characterization of eigenvalues of irreducible matrices. However, as we have already mentioned,
in this report we are interested in the theory of nonnegative matrices mainly for the reason that
transition matrices of deterministic finite automata are nonnegative. But a transition matrix of
a deterministic finite automaton need not to be irreducible. Thus, the need arises to study the
eigenvalues of nonnegative matrices in general, without the assumption of irreducibility.

As we shall show in this subsection, a useful partial characterization of eigenvalues of non-
negative matrices in general can be obtained by using the concept of the normal form of a reducible
matrix. We shall show that a spectrum of a general nonnegative matrix is in fact a union of spectra
of irreducible matrices that can be found easily for a given nonnegative matrix.

In this report, we use the definition of [39], i.e., the normal form of a reducible matrix is an
upper-triangular block matrix. However, in [31], the normal form of a reducible matrix is defined
to be a lower-triangular block matrix.

Definition A.4.22 Let A be an n× n nonnegative matrix, for some n in N. The matrix A is said
to be in the normal form of a reducible matrix, if it has a block form

A =


A1,1 A1,2 . . . A1,m

0 A2,2 . . . A2,m
...

. . .
...

0 0 . . . Am,m

 ,

where m is in N, and Ai,i are square submatrices for i = 1, . . . , m that are either irreducible or
1× 1 null matrices.

Let us note that talking about the normal form of a reducible matrix may be quite misleading,
since in fact every irreducible matrix satisfies the normal form. That is, talking about the normal
form of a nonnegative matrix would probably be more accurate.

The concept of the normal form of a reducible matrix has a connection to graph theory. If a
digraph G has an adjacency matrix A, it is clear that a permutation matrix P exists, such that the
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matrix P · A · P−1 is in the normal form: it suffices to topologically sort the strongly connected
components of the digraph G and choose a permutation matrix P such that rows and columns
of P · A · P−1 corresponding to vertices of a given strongly connected component C have lower
indices than the rows and columns corresponding to vertices of each strongly connected com-
ponent that is after C in the topological order. Each diagonal block of a matrix in the normal
form of a reducible matrix therefore corresponds to one strongly connected component of the
corresponding digraph. Thus, it is intuitively clear that the following theorem holds.

Theorem A.4.23 Let A be an n× n nonnegative matrix, for some n in N. Then an n× n permu-
tation matrix P exists, such that the matrix

P · A · P−1

is in the normal form of a reducible matrix.

Proof. By induction on n.

1. Let n = 1. Then the matrix A is either irreducible or 1× 1 null, and thus A is in the normal
form of a reducible matrix.

2. Let us suppose that the theorem holds for all n ≤ k− 1 for some k ≥ 2. We shall show that
it holds also for n = k. Let A be a k × k nonnegative matrix. Then it is either irreducible
or reducible. If it is irreducible, then it is in the normal form of a reducible matrix and a
theorem holds.

Let us therefore suppose that A is reducible. Then, by the definition of reducible matrices,
square matrices B and D exist, such that

P · A · P−1 =
(

B C
0 D

)
,

for some permutation matrix P and submatrix C. But B and D are nonnegative matrices of
size smaller than is the size of A and therefore, by the induction hypothesis, permutation
matrices P1, P2 exist, such that

P1 · B · P−1
1

and

P2 · D · P−1
2

are in the normal form of a reducible matrix. Thus, clearly,

(
P1 0
0 P2

)
· P · A · P−1 ·

(
P1 0
0 P2

)−1
=
((

P1 0
0 P2

)
· P
)
· A ·

((
P1 0
0 P2

)
· P
)−1

is in the normal form of a reducible matrix.

The theorem is proved. �

In other words, we have proved that each matrix is similar to a matrix in the normal form of
a reducible matrix. Moreover, the proof of Theorem A.4.23 provides us with a method of finding
this matrix. Therefore, for a given nonnegative matrix, to find eigenvalues with the maximal
absolute value it is sufficient to find this normal form and the Perron-Frobenius eigenvalues of
its diagonal blocks.
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A.5 Three Number-Theoretic Lemmas

In this section, we shall present three number-theoretic lemmas, third of which we use in the
study of S-equiloaded deterministic finite automata, in Section 2.3 of Chapter 2 (the former two
are necessary for the proof of the third lemma). The presented lemmas are also of great use
in the theory of nonnegative matrices. For instance, they can be used to prove an extremely
useful characterization of primitive matrices (however, we are not concerned with this kind of
nonnegative matrices in Section A.4). More generally, we can say that the presented lemmas are
useful in situations, when there is a need to analyze the behaviour of cycles in directed graphs
(that are closely related to nonnegative matrices as well as deterministic finite automata). We
shall follow the presentation of [3].

Lemma A.5.1 Let S ⊆ Z be a set of integers containing at least one nonzero element c 6= 0.
Moreover, let S be closed under addition and under subtraction. Then a positive integer a in N+

exists, such that S = {ka | k ∈ Z}.

Proof. Since S is closed under subtraction and c 6= 0 is in S, also 0 = c − c and −c = 0− c
are in S. Thus, S contains both c and −c, which implies that S contains at least one positive
element. Let a be the smallest positive element in S. Since S is closed under addition, the elements
a, 2a = a + a, 3a = 2a + a, . . . are all in S. Moreover, since S is closed under subtraction, the
elements −a = 0− a,−2a = −a− a,−3a = −2a− a, . . . are all in S. Thus S ⊇ {ka | k ∈ Z}.

Now we shall prove S ⊆ {ka | k ∈ Z}. Let b be in A. Then b = ka + r, where k is in Z, and
r is in {0, 1, . . . , a− 1}. But since S is closed under subtraction, b− ka = r is also in S. If r was
in {1, . . . , a− 1}, then a would not be the smallest positive element of S, i.e., we would obtain a
contradiction. Thus, r = 0 and b = ka for some k in Z. Since this holds for all b in A, the inclusion
S ⊆ {ka | k ∈ Z} has to hold. �

Lemma A.5.2 (Bézout’s lemma) Let a1, . . . , ak in N+ be positive integers with greatest common
divisor d. Then integers n1, . . . , nk in Z exist,19 such that

d =
k

∑
i=1

niai.

Proof. Let us define the set S by

S =

{
k

∑
i=1

miai

∣∣∣∣∣ m1, . . . , mk ∈ Z

}
.

Let b and c be in S. Then

b =
k

∑
i=1

m(b)
i ai

and

c =
k

∑
i=1

m(c)
i ai

for some m(b)
1 , . . . , m(b)

k , m(c)
1 , . . . , m(c)

k in Z. Thus,

b + c =
k

∑
i=1

(
m(b)

i + m(c)
i

)
ai

and

b− c =
k

∑
i=1

(
m(b)

i −m(c)
i

)
ai,

19The values of n1, . . . , nk can be found by the Extended Euclidean algorithm (see, e.g., [8]).
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i.e., b + c and b− c are also in S. That is, the set S is closed under addition and under subtraction.
Therefore, according to Lemma A.5.1, a positive integer a in N+ exists, such that S can be written
as S = {ka | k ∈ Z}. Let

a =
k

∑
i=1

m(a)
i ai

for some m(a)
1 , . . . , m(a)

k in Z.
Now, d is the greatest common divisor of a1, . . . , ak, and therefore d divides each ai, i =

1, . . . , k. Thus d divides a, which implies 0 < d ≤ a. Moreover, a1, . . . , ak are clearly all in S,
and since S = {ka | k ∈ Z}, a divides each ai, i = 1, . . . , k. Therefore a is a common divisor of
a1, . . . , ak, and thus a ≤ d, since d is their greatest common divisor. Thus, we have d ≤ a and
a ≤ d, i.e., a = d. Thus, d is in S and integers n1, . . . , nk in Z exist such that

d =
k

∑
i=1

niai.

The lemma is therefore proved. �

Lemma A.5.3 Let S be a set of positive integers, satisfying the following two conditions:

(i) The greatest common divisor of the elements of S is d.

(ii) The set S is closed under addition.

Then a positive integer n0 exists, such that for all positive integers n ≥ n0, such that d divides n,
n is in S.

Proof. Let us first assume that d = 1. Every set of positive integers is countable, and therefore
the elements of S can be ordered into a sequence {an}∞

n=1. Let us define the function f (n) to be
the greatest common divisor of a1, . . . , an for all N+. The function f (n) is clearly non-increasing
and bounded below by 1. Therefore, f (n) has a limit (the greatest common divisor20 of elements
of S). Since the values of f (n) are integers, the limit has to be attained after a finite number of
steps. Therefore, a positive integer k in N+ exists, such that f (n) is the greatest common divisor
of elements of S, for all n ≥ k.

Since the greatest common divisor of elements of S is 1, there is a positive integer k in N+,
such that the greatest common divisor of a1, . . . , ak is 1. Therefore, by Lemma A.5.2, integers
n1, . . . , nk in Z exist, such that

1 =
k

∑
i=1

niai. (A.36)

Let us define
P+ = ∑

1≤i≤k
ni>0

niai

to be the sum of the positive elements of the sum in (A.36), and

P− = − ∑
1≤i≤k
ni<0

niai

20It is clear that if the limit exists, it has to be equal to the value of the greatest common divisor. Formally, it can
be proved as follows: since all function values f (n) are positive integers, the limit has to be a positive integer as well.
Now, if the limit L is smaller than the greatest common divisor, there has to be n such that f (n) = L, and that is the
contradiction. On the other hand, if the limit L is greater than the greatest common divisor, there must be a positive
integer m, such that am is not divisible by L (if not, L would be a common divisor greater than the greatest common
divisor, i.e., a contradiction). But this implies f (m) < L, and since f (n) is non-increasing, f (n) < L for all n ≥ m. But
then the function f (n) cannot have L as the limit.
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to be the sum of the negative elements (made positive). From (A.36), we clearly have 1 = P+ −
P−. Clearly, both P+ and P− are in S.

Now, let n in N+ be an arbitrary positive integer, such that n ≥ P−(P− − 1). As well as any
other positive integer, n can be written as

n = aP− + r,

where a is in N and r is in {0, 1, . . . , P− − 1}. Clearly, a ≥ P− − 1 (otherwise, we would have
a ≤ P− − 2, and therefore n = aP− + r < P−(P− − 1)). Now, since 1 = P+ − P−, we have

n = aP− + r = aP− + r(P+ − P−) = (a− r)P− + rP+.

But since a ≥ P− − 1, we also have the inequality a ≥ r, i.e., a− r ≥ 0. Since n ≥ P−(P− − 1) > 0,
at least one of the numbers a− r and r is positive. Thus, since P− and P+ are both in S, both a− r
and r are nonnegative and at least one of them is positive, from the fact that S is closed under
addition, we may conclude that n is in S. Thus, we have proved the statement of the lemma for
n0 = P−(P− − 1).

Now, let d > 1. Then, if we divide all elements of S by d, we obtain the set S′ that is closed
under addition and the greatest common divisor of its elements is 1. Thus, by what we have
proved above, the positive integer n′0 in N+ exists, such that for all n ≥ n′0, n is in S′. Thus, if we
multiply all elements of S′ by d, the resulting set will be clearly equal to S and the property from
the statement of the lemma will clearly hold. Thus, the lemma is proved. �
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