
COMENIUS UNIVERSITY, BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

AN IMPROVED ALGORITHM FOR ANCESTRAL GENE

ORDER RECONSTRUCTION

Master’s Thesis

2014

Bc. Albert Herencsár

COMENIUS UNIVERSITY, BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

AN IMPROVED ALGORITHM FOR ANCESTRAL GENE

ORDER RECONSTRUCTION

Master’s Thesis

Study Program: Computer Science

Branch of Study: 2508 Computer Science

Department: Department of Computer Science

Supervisor: Mgr. Bronislava Brejová, PhD.

Bratislava, 2014

Bc. Albert Herencsár

88808553

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Albert Herencsár
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: 9.2.1. informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: An Improved Algorithm for Ancestral Gene Order Reconstruction
Vylepšenie algoritmu pre rekonštrukciu ancestrálnych poradí génov

Cieľ: Cieľom práce je vyvinúť lepšiu metódu na rekonštrukciu ancestrálnych poradí
génov pre danú sadu poradí genóv v niekoľkých súčasných organizmoch. Táto
úloha sa dá sformulovať ako optimalizačný problém, ktorý je ale NP úplný
a zvyčajne sa v praxi rieši heuristickými algoritmami. Cieľom je zlepšiť tieto
heuristické algoritmy, čo môže viesť k nájdeniu histórií bližších k optimálnej.

Vedúci: Mgr. Bronislava Brejová, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: doc. RNDr. Daniel Olejár, PhD.

Spôsob sprístupnenia elektronickej verzie práce:
bez obmedzenia

Dátum zadania: 23.09.2013

Dátum schválenia: 30.09.2013 prof. RNDr. Branislav Rovan, PhD.
garant študijného programu

študent vedúci práce

88808553

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Albert Herencsár
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: 9.2.1. Computer Science, Informatics
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: An Improved Algorithm for Ancestral Gene Order Reconstruction

Aim: The goal of the thesis is to develop a better method for reconstructing
ancestral gene orders given gene orders in several extant species. This task
can be formulated as an optimization problem, which is NP-complete and
usually adressed by heuristic algorithms. The goal is to improve these heuristic
algorithms, which may lead to finding histories closer to optimum.

Supervisor: Mgr. Bronislava Brejová, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

doc. RNDr. Daniel Olejár, PhD.

Assigned: 23.09.2013

Approved: 30.09.2013 prof. RNDr. Branislav Rovan, PhD.
Guarantor of Study Programme

Student Supervisor

v

I hereby declare that I wrote this thesis by myself, only

with the help of the referenced literature, under the careful

supervision of my thesis advisor.

. .

vi

I am deeply grateful to my supervisor Mgr. Broňa Brejová, PhD. for her invaluable

help and guidance.

Bc. Albert Herencsár

Abstrakt

Genómové preusporiadania sú rozsiahle mutácie, ktoré menia poradie a orientáciu

génov v genómoch. Rekonštrukcia ancestrálnych poradí génov fylogenetického stromu

je známa pod pojmom malý fylogenetický problém. Na vstupe máme fylogenetický

strom, čo je binárny strom popisujúci evolučnú históriu, a taktiež poradia génov

súčasných druhov. Úlohou je rekonštruovat’ ancestrálne poradia génov a súčasne

minimalizovat’ celkový počet preusporiadavacích operácií, ktoré museli nastat’ počas

evolúcie. Malý fylogenetický problém je NP-t’ažký pre väčšinu modelov genómového

preusporiadania. Na riešenie malého fylogenetického problému vyvinul Kováč a kol.

univerzálnu metódu (PIVO), ktorá používa procedúru iteratívnej lokálnej optimal-

izácie [1]. Vytvorili sme nový algoritmus, nazvaný PIVO2, ktorý vylepšuje pôvodný

algoritmus PIVO v rôznych oblastiach. K nim patrí vylepšená inicializácia, generovanie

kandidátov a výber kandidátov. Algoritmus PIVO2 obsahuje niekol’ko pridaných vo-

litel’ných rozšírení. V PIVO2 sme taktiež vylepšili rýchlost’ pôvodného algoritmu a to

vytvorením novej a efektívnejšej metódy výpočtu genómovej vzdialenosti. V tejto práci

tiež prezentujeme praktické experimenty a porovnania pôvodného algoritmu PIVO a

algoritmu PIVO2. Tieto experimenty ukazujú, že algoritmus PIVO2 je skutočne lepší

než pôvodný algoritmus PIVO v nájdení evolučných historií s nižším skóre. Naviac, na

nájdenie histórie s dobrým skóre algoritmus PIVO2 potrebuje podstatne nižší počet be-

hov. Experimenty takisto potvrdzujú, že nová metóda výpočtu genómovej vzdialenosti

skutočne zvyšuje rýchlost’ výpočtu.

Kl’účové slová: malý fylogenetický problém, ancestrálne poradie génov, genómové

preusporiadanie, breakpoint vzdialenost’, DCJ vzdialenost’

vii

Abstract

Genome rearrangements are large scale mutations, which change the order and orien-

tation of genes in genomes. Reconstruction of ancestral gene orders on a phylogeny

is known as the small phylogeny problem. On input, we have a phylogenetic tree,

which is a binary tree describing the evolutionary history, as well as gene orders in

present day species. The task is to reconstruct the gene orders of ancestors, while min-

imizing the overall number of rearrangement operations that had to occur during the

evolution. The small phylogeny problem is NP-hard for most genome rearrangement

models. A universal heuristic method (PIVO) was developed by Kováč et al. for solving

the small phylogeny problem using an iterative local optimization procedure [1]. We

created a new algorithm, called PIVO2, which improves the original PIVO algorithm

in various areas. These include improved initialization, candidate generation, and

candidate selection. The PIVO2 algorithm contains several added optional extensions.

In PIVO2, we also improved the speed of the original PIVO algorithm by creating a

new and more efficient method for genome distance calculation. In this thesis, we also

present practical experiments and comparisons of the original PIVO and the PIVO2

algorithms. The experiments show that the PIVO2 algorithm is indeed better than the

original PIVO algorithm in finding evolutionary histories with lower score. Moreover,

to find a history with a good score, the PIVO2 algorithm requires a significantly lower

number of runs. The experiments also confirm that the new method of genome

distance calculation really increases the computational speed.

Key words: small phylogeny problem, ancestral gene order, genome rearrangement,

breakpoint distance, DCJ distance

viii

Contents

Introduction 1

1 Background and Related Work 3

1.1 Basic Biological Terms . 3

1.2 Genome Rearrangements . 3

1.3 Genome Representation . 6

1.4 Distances Between Genomes . 7

1.4.1 Breakpoint Distance . 8

1.4.2 Double Cut and Join Distance 9

1.4.3 Other Distances . 12

1.5 The Median Problem . 12

1.6 Small Phylogeny Problem . 13

1.6.1 Solving the Small Phylogeny Problem 14

1.6.2 Definition of the Small Phylogeny Problem from a Computer

Scientist’s Perspective . 15

2 The PIVO Software 17

2.1 Introduction . 17

2.2 The Algorithm . 17

2.3 The Usage of the PIVO Algorithm . 20

2.4 Improved Initialization and Candidate Generation in PIVO2 20

2.4.1 Initialization . 20

2.4.2 Candidate Generation . 21

2.4.3 Strategies for Candidate Generation 22

2.4.4 Candidate Generation Strategies in PIVO2 23

2.5 Alternative Genomes in Leaves . 23

2.6 Randomization of Candidate Selection in the PIVO2 Algorithm 23

2.7 Tabu Search in the PIVO2 Algorithm 25

2.8 Combining Previous Solutions in PIVO2 26

ix

CONTENTS x

2.9 Preferred Chromosome Types in PIVO2 26

2.10 Implementation Details of the PIVO2 algorithm 27

2.10.1 Genome Representation . 27

2.10.2 Rearrangement Model . 28

3 Efficient Distance Calculation 29

3.1 Breakpoint Distance . 29

3.1.1 Efficient Distance Calculation Between a Genome and a Set of

Genomes . 31

3.1.2 Efficient Distance Calculation Between Two Sets of Genomes . . 32

3.2 Double Cut and Join Distance . 35

3.2.1 Efficient Distance Calculation Between Two Sets of Genomes . . 36

4 Experiments 43

4.1 Comparing the Results . 43

4.1.1 Real Data . 43

4.1.2 Experimental Data . 45

4.2 Number of iterations . 48

4.3 Speed comparison . 49

Conclusion 51

Bibliography 53

List of Figures

1.1 Human chromosomes, with segments containing at least two genes

whose order is conserved in the mouse genome as color blocks. Each

color corresponds to a particular mouse chromosome. Source [2]. . . . 4

1.2 Types of rearrangements. Each gene is shown as an arrow to indicate

its orientation. 5

1.3 Gene with its tail and head . 6

1.4 Possible orientations of two neighbouring genes 6

1.5 Different ways of representing a genome 7

1.6 Breakpoint distance of the genomes is 5− 2− 1/2 = 2.5 9

1.7 Simulating some genome rearrangements using DCJ operations 10

1.8 Adjacency graph AG(π, σ) . 11

1.9 The preferred genome for A is the median of π, σ, and γ 13

1.10 Small phylogeny problem: We know the phylogeny tree structure and

the genomes of the extant species S1, ..., S5 (black nodes). The task is

to compute the genomes of ancestors S6, ..., S9 (red nodes). 13

1.11 Steinerization method: the genome of vertex v is replaced by the

median πM , if it improves the score of the phylogenetic tree 14

2.1 One iteration of the algorithm: For every internal node (red) the

candidate sets are generated (green). Then the PIVO algorithm selects

the best combination of the candidates (blue). 18

2.2 The genome array of genome: 1 -3 4 $ -2 -5 6 @ 28

3.1 The differing columns are marked in red, the breakpoint distance is 1.5 30

3.2 Efficient breakpoint distance calculation between a genome and a set

of genomes . 31

3.3 Efficient breakpoint distance calculation of a set versus a set 33

3.4 Efficient DCJ distance calculation of a set versus a set 36

3.5 Adjacency graph AG(π, σ) . 36

3.6 Paths of the adjacency graph AG(π, σ) 37

xi

LIST OF FIGURES xii

3.7 The arrays for storing the paths . 38

3.8 Disconnecting a circular component: ext1 is in Pk[r] and ext2 is in Pk[r+1] 39

3.9 Disconnecting a linear component: ext1 is in Pk[r] and ext2 is in Pk[r + 1] 39

3.10 Connecting two linear components: ext1 is in Pk[ek], and ext2 is in Pn[en]. 40

3.11 ext1 is in P1[s1], and ext2 is in Pk[ek]. So, we are connecting the two

ends of a linear path. 40

3.12 Tracking the changes . 41

4.1 Phylogenetic trees used in the tests . 44

4.2 Score distribution in test case 1. (blue: original PIVO, red: PIVO2) . . 46

4.3 Score distribution in test case 2. (blue: original PIVO, red: PIVO2) . . 46

4.4 Score distribution in test case 3. (blue: original PIVO, red: PIVO2) . . 47

4.5 Score distribution in test case 4. (blue: original PIVO, red: PIVO2) . . 47

4.6 Score distribution in test case 5. (blue: original PIVO, red: PIVO2) . . 48

4.7 Decrease of score with the increasing number of iterations. (blue:

original PIVO, red: PIVO2) . 49

4.8 PIVO2: The increase of r =
tOFF

tON

with the increasing number of genes 50

List of Tables

4.1 Scores for the Campanulaceae dataset 44

4.2 Scores for the Hemiascomycetes dataset 45

4.3 Comparison of the average number of iterations needed to reach a local

optimum . 48

4.4 Comparison of the speeds of the PIVO2 algorithm with efficient distance

calculation mode off and on . 50

List of Algorithms

1 Steinerization method . 15

2 Selecting the candidates . 19

3 The structure of the PIVO algorithm . 20

4 Repeated runs of the PIVO algorithm . 21

5 Initialization with the genomes of extant species in PIVO2 21

6 Efficient breakpoint distance calculation between a genome and a set of

genomes . 33

7 Efficient breakpoint distance calculation of a set versus a set 35

xiii

Introduction

In evolution, genome rearrangements are rare genomic events. They are large scale

mutations, which change the order and orientation of genes in genomes. Genome

rearrangements are thought to play a significant role in speciation [3]. Various

branches of biology require computational tools which contribute to understanding of

evolution of genome organisation. Using algorithmic approaches in the analysis of

rearrangement data helps to resolve difficult questions e.g. about branching patterns

in evolution.

Reconstruction of ancestral gene orders on a phylogeny is known as the small

phylogeny problem. On input, we have a phylogenetic tree, which is a binary tree

describing an evolutionary history. The leaves of the tree are the extant species, and

the internal nodes are their ancestors. We also know the order of the genes in the

genomes of the extant species. The task is to reconstruct the gene orders of ancestors,

while minimizing the overall number of rearrangement operations that had to occur

during the evolution.

Many genome rearrangement models have been developed [4]. These models

enable the measurement of the distance of two genomes, which is defined as the

minimal number of rearrangement operations needed to transform one genome into

the other. In this thesis, we use the Breakpoint model [5] and the DCJ model [6].

The small phylogeny problem is NP-hard for most genome rearrangement models.

A popular heuristic method for solving this problem uses the steinerization method

[7].

To handle multiple chromosome structures and provide more precise solutions

than the software based on the steinerization method, a universal heuristic method

was developed by Kováč et al. for solving the small phylogeny problem using an

iterative local optimization procedure (PIVO) [1]. In every iteration, a set of candidate

genomes is generated for every ancestral node of the phylogenetic tree. Then, by

dynamic programming, the genomes in the phylogenetic tree are replaced with the

best combination of the candidates.

In this thesis, we improved the PIVO algorithm in various areas. These include

1

2

improved initialization, candidate generation, and candidate selection. Several op-

tional extensions were added to the algorithm. We also improved the speed of the

PIVO algorithm by creating a new and more efficient distance calculation method. We

named the reimplemented and improved version of the original algorithm as PIVO2.

We present practical experiments and comparisons, which evaluate the imple-

mented improvements and confirm their benefit.

Chapter 1

Background and Related Work

1.1 Basic Biological Terms

The Genome is all the genetic material of an organism. It is a set of instructions

for creating, keeping alive, and reproducing an organism. In most living things, the

genome is made of a chemical called DNA.

The DNA is a long molecule made up of smaller building blocks called nucleotides.

These nucleotides are: adenine, cytosine, guanine, and thymine, often abbreviated by

letters A, C, G, T. The DNA molecule has a double helix structure.

The Genome of an organism is packaged into smaller chunks called chromosomes.

The chromosomes can have linear or circular structure.

A gene is a distinct sequence of nucleotides forming part of a chromosome. Genes

describe the characteristics of an organism.

The DNA of an organism can change, these changes are called mutations. Muta-

tions range in size from a single nucleotide to a large segment of a chromosome.

We can imagine the genome as a book, in which chromosomes are the chapters.

The sentences in the book are the genes, and the nucleotides are the letters of the

book.

1.2 Genome Rearrangements

If we compare genomes of various species, we can often find very similar segments

of DNA. However, these segments are usually ordered differently, have different

orientation and they can be inside different chromosomes. For example, humans and

mice have similar genomes. In figure 1.1, we can see a chromosome-level comparison

of the human and mouse genomes [2].

3

CHAPTER 1. BACKGROUND AND RELATED WORK 4

Figure 1.1: Human chromosomes, with segments containing at least two genes whose

order is conserved in the mouse genome as color blocks. Each color corresponds to a

particular mouse chromosome. Source [2].

This similarity between genomes exists because both species had a common

ancestor in the past. During evolution, large-scale mutations rearranging the genome

occurred, and the order of genes was changed.

Genome rearrangements are evolutionary events that change the order and the

orientation of genes in genomes. Studies suggest that genome rearrangements play a

significant role in speciation [3].

Genome rearrangements occur less often than nucleotide mutations. Due to their

low rate, gene order data are a valuable source of information about early evolution

[8].

Genome rearrangements include inversions, transpositions, chromosome fusions

and fissions (see figure 1.2). Reversal (or inversion) is the most common rearrange-

ment (figure 1.2a). It happens when the double helix breaks at two points and the

middle part is joined back in the opposite direction. Reversal can happen in circular

chromosomes too (figure 1.2b). Transposition (figure 1.2c) happens when the chro-

mosome breaks at 3 places and the pieces are joined in a wrong order. If a genome

consists of several chromosomes and two different linear chromosomes break, we can

end up with a translocation (figure 1.2d). Fusion and fission may change the number

chromosomes (figure 1.2e and figure 1.2f), or they may change a linear chromosome

to a circular one and vice versa (figure 1.2g). By fusion and fission, a circular segment

may be excised or incorporated into a linear chromosome (figure 1.2h).

CHAPTER 1. BACKGROUND AND RELATED WORK 5

a b reversalc d e a d c b e

(a) Reversal

a dreversal c b ea b c d e

(b) Reversal in a circular chromosome

a b transpositionc d e a d b c e

(c) Transposition

a b
translocation

c d e a b x y z

v w x y z v w c d e

(d) Translocation

a b
fusion

c d
b c d x y

x y fission

a

(e) Fusion and fission of linear chromosomes

a bfusion c d e

fission

a b c

d e

(f) Fusion and fission of circular chromosomes

a bcircularisation c d

linearisation

a b c d

(g) Circularisation and linearisation

a ecircular excision

integration

a b c d e
b c d

(h) Circular excision and the reverse process

Figure 1.2: Types of rearrangements. Each gene is shown as an arrow to indicate its

orientation.

CHAPTER 1. BACKGROUND AND RELATED WORK 6

1.3 Genome Representation

A gene is an oriented sequence of nucleotides. It starts with a tail, and it ends with

a head. The tail and head are the extremities of the gene. We number the genes

with positive numbers, or sometimes, we mark them with letters. The tail of a gene,

marked as a, is denoted as a− and the head as a+. In figure 1.3, we can see a gene

with its tail and head.

a

a− a+

gene tail gene head

Figure 1.3: Gene with its tail and head

If extremities p and q are next to each other in a genome, they form an adjacency

{p, q}. Two consecutive genes do not need to have the same orientation. The adjacency

between two consecutive genes a and b, depending on their respective orientation,

can be of four different types (see figure 1.4): {a+, b−}, {a+, b+}, {a−, b−}, {a−, b+}.
If an extremity is not adjacent to any other gene, the extremity is called a telomere.

We represent it by a singleton set {a−} or {a+}.

a b a b a b a b

Figure 1.4: Possible orientations of two neighbouring genes

A genome is a set of adjacencies and telomeres in which the tail and head of every

gene appear in exactly one adjacency or telomere.

We can reconstruct the chromosomes of a genome by creating the genome graph

(figure 1.5c). The extremities are represented by vertices. The tail and the head of

each gene is joined by an edge. Adjacent extremities are then connected together

(green edges in figure 1.5c). A genome graph has vertices of degree one or two, and

so the graph is a set of disjoint paths and cycles. These paths and cycles are the linear

and circular chromosomes of the genome. Linear chromosomes start and end with

telomeres.

Sometimes it can be useful to add special telomere vertices into the genome graph.

For each telomere x, we add a special vertex Tx and connect them with a green edge

(figure 1.5d). We say that {x, Tx} is a telometric adjacency.

Chromosomes can be represented by lists of gene labels (figure 1.5e). These lists

are obtained by choosing a telomere in a linear chromosome or an arbitrary gene in a

circular chromosome, and then by enumerating the gene labels along the component.

We use positive signs to indicate genes that are read from tail to head and negative

CHAPTER 1. BACKGROUND AND RELATED WORK 7

signs to indicate genes that are read from head to tail. For linear chromosomes, we

put a $ character at the end of the list. Circular chromosomes end with an @ character.

Positive signs may be omitted where convenient.

In figure 1.5a, we can see a genome made up of 7 genes, which consists of two

linear and of one circular chromosome.

3 6 7

4 1 5

2

(a) Genome

{4−}, {4+, 1+}, {1−, 5−}, {5+},
{2−}, {2+},

{3+, 7+}, {3−, 6−}, {6+, 7−}

(b) Adjacencies and telomeres

36

7

4

1

5

2

- +
-

+

-

-
-

-

-

+

+
+

+

+

(c) Genome graph

36

7

4

1

5

2

- +
-

+

-

-
-

-

-

+

+
+

+

+

T2−

T2+

T4−T5+

(d) Genome graph with special telom-

ere vertices

4 -1 5 $

2 $

-3 6 7 @

(e) List of gene labels

Figure 1.5: Different ways of representing a genome

1.4 Distances Between Genomes

Working with genome rearrangements in a biologically plausible way can be quite

complex. For this reason, many genome rearrangement models were developed. These

models differ, for example, in the allowed karyotypes (allowed chromosome structure),

CHAPTER 1. BACKGROUND AND RELATED WORK 8

in the subset of allowed rearrangement operations, or in taking into account gene

orientation.

We can measure the distance of two genomes in every genome rearrangement

model.

Definition 1 (Distance of genomes). The distance dist(π, σ) between two genomes π

and σ is the minimal number of rearrangement operations needed to transform π into σ

(or vice versa), while adhering to the restrictions of the given model. (Note: We consider

only genomes with the same set of genes.)

The distance between two genomes can be used, for example, to determine the

number of rearrangement mutations which occurred between an organism and its

ancestor during evolution.

In this thesis, we use the Breakpoint model and the DCJ model.

1.4.1 Breakpoint Distance

The Breakpoint model does not define which rearrangement operations are allowed,

it only defines the distance between genomes. This distance measure is probably one

of the simplest. It was introduced by Sankoff and Blanchette [9]. The breakpoint

distance has been well-studied for permutations, i.e., unichromosomal genomes.

In this thesis, we work with more general, multichromosomal genomes, and so the

definition in [9] is not sufficient. Instead, we calculate the breakpoint distance as it

was described by Tannier [5]. The breakpoint distance between two genomes depends

on the number of common adjacencies and the number of common telomeres.

Definition 2 (Breakpoint distance). The breakpoint distance of genomes π and σ is:

distBP (π, σ) = g − a (π, σ)− e (π, σ)

2

where g is the number of genes, a(π, σ) is the number of common adjacencies in genomes

π and σ, and e(π, σ) is the number of common telomeres in genomes π and σ.

For example, the genomes in figure 1.6 have 5 genes each, 2 common adjacencies

and 1 common telomere. So, their breakpoint distance is 5− 2− 1/2 = 2.5.

CHAPTER 1. BACKGROUND AND RELATED WORK 9

a b e

c d

(a) Genome 1: {a−, e+}, {a+, b+},
{b−, e−}, {c−}, {c+, d+}, {d−}

a b e

c d

(b) Genome 2: {a−}, {a+, b+},
{b−, e−}, {e+}, {c−}, {c+, d−},
{d+}

Figure 1.6: Breakpoint distance of the genomes is 5− 2− 1/2 = 2.5

1.4.2 Double Cut and Join Distance

The Double Cut and Join (DCJ) model was introduced by Yancopoulos et al. [10] and

revised by Bergeron et al. [6].

In this model, there are no restrictions on the karyotype, and so there can be

arbitrarily many linear and circular chromosomes in the genome simultaneously. The

genome rearrangement operations are modelled by a single operation, which is called

the double cut and join operation.

The Double Cut and Join (DCJ) Operation

If we imagine our genome as a genome graph with special telometric vertices, the DCJ

operation can be described as follows (see figure 1.5d): We break two green edges at

most and then we rejoin the created endpoints in a different way. The DCJ operation

is explained more formally in the following definition:

Definition 3 (The double cut and join operation). The double cut and join operation

acts on two adjacencies or telomeres A1 and A2 in one of the following three ways:

• If A1 = {p, q} and A2 = {r, s}, they are replaced by adjacencies {p, r} and {q, s}
or by adjacencies {p, s} and {q, r}.

• If A1 = {p, q} and A2 = {r} (A2 is a telomere), they are replaced by {p, r} and

{q} or by {q, r} and {p}.

• If A1 = {p} and A2 = {q} (both are telomeres), they are replaced by adjacency

{p, q}.

In addition, as an inverse of the third case, an adjacency {p, q} can be replaced by two

telomeres {p} and {q}.

Using DCJ operations, we can simulate all the common genome rearrangement

operations. A reversal can be done by cutting the interval boundaries and joining the

CHAPTER 1. BACKGROUND AND RELATED WORK 10

created endpoints as in figure 1.7a. Translocation can be done by cutting and joining

the adjacencies of two different linear chromosomes (figure 1.7b). By a DCJ operation,

we can do fusion and fission on linear or circular chromosomes (figure 1.7c and

figure 1.7d). Similarly, circularisation/linearisation, circular excision and integration

can be done. Translocation is possible in two DCJ operations only: by doing a circular

excision followed by an integration.

T T

cut

cutjoin

join

(a) Reversal

T T
cut

join

T T

cut

join

(b) Translocation

T T
cut

join

T T

join

(c) Fission

cut

joinjoin

cut

(d) Fusion

Figure 1.7: Simulating some genome rearrangements using DCJ operations

The Double Cut and Join (DCJ) Distance

The distance of two genomes π and σ, i.e. the minimal number of DCJ operations that

transform π into σ, can be computed using the adjacency graph AG(π, σ).

Definition 4 (Adjacency graph AG(π, σ)). The adjacency graph is a bipartite multi-

graph, in which the vertices of the graph are the adjacencies and telomeres of the genomes

π and σ. Every vertex v ∈ π and w ∈ σ is connected by |Av ∩ Aw| edges, where Av and

CHAPTER 1. BACKGROUND AND RELATED WORK 11

Aw are the adjacencies (or telomeres) represented by vertices v and w. So, if Av and Aw

have two common extremities, then v and w are connected by two edges. If Av and Aw

have one common extremity, then v and w are connected by one edge. Otherwise, there is

no edge between v and w.

In the adjacency graph, every vertex has degree 1 (if it is a telomere) or 2 (if it

is an adjacency), and so the adjacency graph consists of cycles and paths. If the two

genomes are equal, the adjacency graph consists of cycles of length 2 and paths of

length 1.

We can see an example of the adjacency graph in figure 1.8. The adjacency graph

was built for genomes π and σ:

π = {{1−}, {1+, 3−}, {3+, 4+}, {4−}, {5+, 2−}, {2+, 5−}, {6−}, {6+, 7−}, {7+}}
σ = {{1+, 2−}, {2+, 1−}, {3−}, {3+, 4−}, {4+}, {5−}, {5+}, {6 + 7−}, {7+, 6−}}

1- 1+3- 3+4+ 4- 5+2- 2+5- 6- 6+7- 7+

1+2- 2+1- 3- 3+4- 4+ 5- 5+ 6+7- 7+6-

Figure 1.8: Adjacency graph AG(π, σ)

The following observations can be made [6]:

Lemma 1. The application of a single DCJ operation changes the number of circular or

linear components by at most one.

Lemma 2. Let π and σ be two genomes defined on the same set of g genes. Let the

adjacency graph AG(π, σ) have c cycles and pO odd paths. Then π = σ if and only if

g − (c+ pO/2) = 0.

Lemma 3. The application of a single DCJ operation changes the number of odd paths

in the adjacency graph by +2, 0, or -2.

Corollary 1. Let π and σ be two genomes defined on the same set of g genes. Let

the adjacency graph AG(π, σ) have c cycles and pO odd paths. Then distDCJ(π, σ) ≥
g − (c+ pO/2).

Corollary 1 gives us a lower bound on the distance, i.e. a lower bound on the

number of DCJ operations needed to transform π into σ. On the other hand, if π and

σ are not identical, we can always find a DCJ operation that decreases the distance by

1. Therefore, the following holds for the DCJ distance [6]:

CHAPTER 1. BACKGROUND AND RELATED WORK 12

Theorem 1 (The double cut and join distance). Let π and σ be two genomes defined

on the same set of g genes. Let the adjacency graph AG(π, σ) have c cycles and pO odd

paths. Then the DCJ distance between π and σ is:

distDCJ(π, σ) = g − (c+ pO/2)

1.4.3 Other Distances

There are several other interesting genome rearrangement models and distance

measures (see [4]). In this section, we only mention the Reversal model and the

Reversal-Translocation model.

Reversal Distance

The Reversal model allows only the reversal rearrangement operation. If we compare

this model with the DCJ model, we can imagine the Reversal model as a restricted

DCJ model, where only those operations are allowed which do not create new chro-

mosomes. The DCJ model allows reversals, and so it is a lower bound on the Reversal

distance: distDCJ(π, σ) ≤ distrev(π, σ).

Reversal-Translocation Distance

In the Reversal-Translocation model, only the reversal and translocation operations

are allowed.

1.5 The Median Problem

Definition 5 (The median problem). Let G be the set of all possible genomes on a

particular set of genes that are allowed in a given rearrangement model, and let dist be a

distance measure on G. If we consider three genomes π, σ, γ, then the median problem is

to find the genome m ∈ G, called a median that minimizes the sum of distances:

dist(m,π) + dist(m,σ) + dist(m, γ)

The median problem can be used to compute the genome of an ancestral organism

A of two species S1 and S2, and an outgroup species S3 (see figure 1.9). According

to the parsimony principle, we prefer evolutionary histories that explain present-day

genomes with the smallest number of operations.

CHAPTER 1. BACKGROUND AND RELATED WORK 13

S1 = π S2 = σ

A

S3 = γ

Figure 1.9: The preferred genome for A is the median of π, σ, and γ

Calculating the median is a hard problem; for most genome rearrangement models

it was shown to be NP-hard. The NP-hardness of the median problem for multichro-

mosomal DCJ model was shown in [5]. One interesting exception is the breakpoint

distance on genomes with mixed chromosomes, where the median can be computed

in polynomial time [5].

1.6 Small Phylogeny Problem

In the small phylogeny problem, we are given a phylogenetic tree and the genomes of

the extant species (see figure 1.10). The task is to compute the genomes of ancestors,

while minimizing the number of required genome rearrangement operations during

evolution.

S1 S2 S3 S4 S5

S6 S7

S8

S9

Figure 1.10: Small phylogeny problem: We know the phylogeny tree structure and

the genomes of the extant species S1, ..., S5 (black nodes). The task is to compute the

genomes of ancestors S6, ..., S9 (red nodes).

Because the median problem is a special case of the small phylogeny problem, it is

obvious, that the small phylogeny problem is NP-hard for the majority of genome rear-

CHAPTER 1. BACKGROUND AND RELATED WORK 14

rangement models and distance measures. The NP-hardness of the small phylogeny

problem for the breakpoint distance is shown in [11].

1.6.1 Solving the Small Phylogeny Problem

Probably the most popular method for solving the small phylogeny problem is the

Steinerization method [7]. In this method, the algorithm iteratively tries to improve

the evolutionary history until a local optimum is found. In each iteration, the algorithm

cycles through the internal nodes of the tree (through the ancestors). For every internal

node v, we take the genomes ϕa, ϕb, ϕc from the neighbouring nodes and calculate

their median πM ∈ median(ϕa, ϕb, ϕc). We replace the genome inside node v with

genome πM , if the new tree has a better (lower) score (see figure 1.11). When none

of the internal nodes can be improved, the algorithm has found a local optimum. The

Steinerization method is described in Algorithm 1.

ϕc

ϕa ϕb

ϕv
πM

?

Figure 1.11: Steinerization method: the genome of vertex v is replaced by the median

πM , if it improves the score of the phylogenetic tree

Although the median problem is NP-hard in most rearrangement models, several

solvers have been developed which work with acceptable time complexity. The

Steinerization method was used in BPAnalysis software [12] [9] for the breakpoint

model. The same method was used in GRAPPA software [13] [14] [15] for both the

breakpoint and reversal models. The Steinerization method for the DCJ model was

implemented by Adam and Sankoff [16].

MGR [17] is another small phylogeny solver for the reversal model. It uses a

simple heuristic based on operations which bring genomes closer to other genomes in

the tree.

A new algorithm used in PIVO software [1] encompasses and extends all these

existing approaches. This new method is described in detail in chapter 2.

CHAPTER 1. BACKGROUND AND RELATED WORK 15

Data: phylogenetic tree, genomes of extant species

Result: local optimum

1 initialize evolutonary history h:

2 begin

3 leaves: assign the genomes of extant species;

4 internal nodes: assign a random genome;

5 repeat

6 for v ∈ Vinternal do

7 πM ∈ median(ϕa, ϕb, ϕc) ; // nodes a,b,c are the neighbours of v

8 h′ = h, h′(v) = πM ;

9 if score(h′) < score(h) then

10 replace ϕv with πM in h;

11 until no improvement;

12 return h

Algorithm 1: Steinerization method

1.6.2 Definition of the Small Phylogeny Problem from a Com-

puter Scientist’s Perspective

The small phylogeny problem and its related terms are defined in this section in a

more formal way:

Definition 6 (Phylogenetic tree). A phylogenetic tree is a binary tree T = (V,E) rooted

at node r, describing the evolutionary relationships between species. The leaves of the

tree T are the extant species, and an internal node represents the most recent common

ancestor of the node’s children.

Definition 7 (Evolutionary history). Let G be the set of all possible genomes on a

particular set of genes, which is allowed in a rearrangement model. An evolutionary

history h is a function, which assigns a genome from G to every node of a tree T = (V,E):

h : V → G.

In some cases in the following text, when we refer to the genome which is assigned

to node v, we use ϕv instead of h(v).

Definition 8 (Score of an evolutionary history). Let dist be the distance measure of a

rearrangement model. The score of the evolutionary history h on the phylogenetic tree

T = (V,E) is:

score(h, T) =
∑

(u,v)∈E

dist(h(u), h(v))

CHAPTER 1. BACKGROUND AND RELATED WORK 16

Definition 9 (The small phylogeny problem). Let G be the set of all possible genomes

on a particular set of genes, which is allowed in a rearrangement model, and let dist be

the distance measure on G. In the small phylogeny problem, we are given a phylogenetic

tree T = (V,E), with root r and leaves L ⊂ V . We know the genomes of the extant

species, i.e. we are given a function g : L → G, which assigns a genome to every leaf

node. The task is to compute the evolutionary history h, which extends function g to

cover all the nodes of the tree, while having the lowest possible score.

Chapter 2

The PIVO Software

2.1 Introduction

The PIVO (Phylogeny by IteratiVe Optimization) software is a small phylogeny solver,

which was created by Jakub Kováč [1]. PIVO was used to study the mitochondrial

genomes of yeasts from the CTG clade of Hemiascomycetes [18]. This clade is

interesting, because some species have genomes which consist of a single linear

chromosome, some other species have two linear chromosomes, and the rest have a

single circular chromosome. The first reason for creating the PIVO software was that,

the existing small phylogeny solvers did not support multiple chromosome structures.

The second reason was that the small phylogeny solvers mainly used the steinerization

method and they applied various heuristics to enable the computation of data with

thousands of genes. However, in the yeast study, only short mitochondrial genomes

were analysed with a lower number of genes, and more accurate results were needed.

The original PIVO software was written in Python. In this thesis, the original

software was rewritten in Java and several improvements were designed to get even

better results and faster computation. We named our improved version of the original

PIVO algorithm as PIVO2.

In this chapter, we describe both the original PIVO as well as our improved

PIVO2 algorithm. In the description, we use the common name "PIVO" when the

description applies to both PIVO and PIVO2. The name "original PIVO" is used, when

the description applies to the original PIVO algorithm only.

2.2 The Algorithm

The PIVO algorithm uses a local search to find a good evolutionary history. The

evolutionary history is initialized with some genomes, then the PIVO algorithm

17

CHAPTER 2. THE PIVO SOFTWARE 18

iteratively tries to change the genomes in the evolutionary history to get a better score.

The iterations are repeated until a local optimum is found.

In every iteration, a set of candidate genomes Cv is generated for every internal

node v of the tree T . The candidates can be, for example, genomes within distance

1 of the current genome ϕv. More details on candidate generation can be found

in section 2.4. The local search selects the best new evolutionary history from the

neighbourhood of the current evolutionary history (see figure 2.1).

ϕg

ϕa ϕb

ϕe

Ce : ce,1, ce,2, ce,3

Cg : cg,1, cg,2, cg,3, cg,4

ϕc ϕd

ϕf

Cf : cf,1, cf,2, cf,3

cg,1

ϕa ϕb

ce,2

ϕc ϕd

cf,3

Figure 2.1: One iteration of the algorithm: For every internal node (red) the candidate

sets are generated (green). Then the PIVO algorithm selects the best combination of

the candidates (blue).

We get the neighbourhood of the current evolutionary history by selecting a

candidate cv ∈ Cv for every internal node v and replacing the currently assigned

genome ϕv of node v with cv.

Definition 10 (Neighbourhood of the evolutionary history). The neighbourhood N(h)

of the evolutionary history h is a set of evolutionary histories:

N(h) = {h′ | ∀v ∈ Vinternal : h′(v) ∈ Cv}

The size of the neighbourhood increases exponentially with the growing number

of internal nodes: there are
∏

v |Cv| neighbours. Fortunately, we do not have to

enumerate the neighbours, and the neighbour with the lowest score can be computed

efficiently by dynamic programming.

In the dynamic programming, we calculate the score of every candidate. Let us

denote the i-th candidate of node v as cv,i. The score score(cv,i) of candidate cv,i is

the lowest possible score we can get for the subtree rooted at v, if h′(v) = cv,i. The

score of a leaf is 0. Let us save the score of cv,i in the dynamic programming into

the array denoted as M [v, i]. If v is an internal node with children u and w, first, we

compute the candidate scores of nodes u and w. Then, we can compute the scores of

CHAPTER 2. THE PIVO SOFTWARE 19

candidates from Cv:

M [v, i] = min
j
{M [u, j] + dist(cv,i, cu,j)}+ min

k
{M [w, k] + dist(cv,i, cw,k)}

For the candidate cv,i, we simply select which candidate genome from Cu should

be assigned to node u to get the lowest score, and, independently, we select the best

candidate for node w from Cw.

After we calculated the score for every candidate, we select the candidate in

the root node of the phylogenetic tree with the lowest score. Then, we select the

candidates for each child node: If u is the parent of v, we select the candidate cv,i for

which the sum of score(cv,i) + dist(h(u), h(v)) is minimal. The selection of the best

candidate is detailed in algorithm 2.

If n is the number of species, g is the number of genes in every genome, and k

is the number of candidates in every internal node, then the best candidates can be

selected in O(ngk2) time (we suppose that the distance can be calculated in O(g)

time).

1 Function selectBestCandidate()

// r is the root node

2 selected← cr,1, score←M [r, 1];

3 for cr,i ∈ Cr do

4 if M [r, i] < score then selected← cr,i, score←M [r, i];

5 h(r)← selected;

// u and v are the children of r

6 selectBestCandidateChild(u);

7 selectBestCandidateChild(v);

8 Function selectBestCandidateChild(v :node)

9 if v is leaf then return ();

10 selected← cv,1, score←M [r, 1] + dist(cv,1, h(parent));

11 for cv,i ∈ Cv do

12 if M [v, i] + dist(cv,i, h(parent)) < score then

13 selected← cv,i, score←M [v, i] + dist(cv,i, h(parent));

14 h(v)← selected;

// u and w are the children of v

15 selectBestCandidateChild(u);

16 selectBestCandidateChild(w);

Algorithm 2: Selecting the candidates

The PIVO algorithm is flexible, and it can work with several genome rearrangement

CHAPTER 2. THE PIVO SOFTWARE 20

models and distances. The DCJ model is used, in which the distance calculation can

be done in O(g) time. Therefore, the best evolutionary history in N(h) can be found

in O(ngk2) time.

The outline of the PIVO algorithm can be found in Algorithm 3.

Data: phylogenetic tree, genomes of extant species

Result: locally optimal evolutionary history

1 initialize evolutonary history h:

2 begin

3 leaves: set the genomes of extant species;

4 internal nodes: initialize internal nodes;

5 s′ ← score(h), s←∞;

6 while s′ < s do

7 for v ∈ Vinternal do

8 generate candidates Cv;

9 calculate score of the candidates;

10 h← select best neighbourhood of h;

11 s← s′, s′ ← score(h);

12 return h

Algorithm 3: The structure of the PIVO algorithm

2.3 The Usage of the PIVO Algorithm

The PIVO algorithm finds an evolutionary history, which is only a local optimum, and

therefore, better histories may exist. It means, that the PIVO algorithm has to be run

multiple times to find, with higher probability, a history that is near to the global

optimum, see algorithm 4.

2.4 Improved Initialization and Candidate Generation

in PIVO2

2.4.1 Initialization

At the beginning of the PIVO algorithm, the evolutionary history has to be initialized:

We have to assign some genomes to the internal nodes of the phylogenetic tree.

CHAPTER 2. THE PIVO SOFTWARE 21

1 T← load phylogenetic tree;

2 S← load the genomes of extant species;

3 R← required number of runs;

4 i← 0;

5 for i<R do

6 h← Pivo(T,S);

7 save(h);

8 i← i+1;

Algorithm 4: Repeated runs of the PIVO algorithm

Several strategies can be used for initialization. In the original PIVO algorithm, the

internal nodes were initialized with completely random genomes.

Since there are at least g! random genomes (actually more, if we consider gene

orientation and chromosomes), the possibility that the randomly initialized internal

nodes will be meaningful, is very low. Therefore, in the PIVO2 algorithm, we have

chosen a different initialization method, in which we initialize the internal nodes

with the genomes of the extant species. Every internal node v with children u and w

is initialized randomly with ϕu or ϕw. Algorithm 5 describes this new initialization

method.

1 Function initializeWithChild(v :node)

2 if v is internal then

// u and w are the children of v

3 initializeWithChild(u);

4 initializeWithChild(w);

5 σ ← selectRandomly(ϕu, ϕw);

6 h(v)← copy(σ)

7 return

Algorithm 5: Initialization with the genomes of extant species in PIVO2

2.4.2 Candidate Generation

Candidate generation is a very important part of the PIVO algorithm, because the

algorithm is improving the existing evolutionary history by picking a new one from

the neighbourhood N(h), which is generated by selecting candidate genomes from

the candidate sets. The time complexity of the algorithm depends quadratically on

CHAPTER 2. THE PIVO SOFTWARE 22

the number of candidates, and so generating too many candidates may slow down

the algorithm.

2.4.3 Strategies for Candidate Generation

The following candidate generation methods were proposed in [1].

Extant Species

The genome of every extant species is inserted into every candidate set.

candextant(v) = {h(u) | u ∈ Vleaves}

Neighbours

For every internal node v, the neighbourhood of genome ϕv is inserted into the

candidate list Cv. By neighbourhood, we refer to the genomes which are allowed in

the used rearrangement model and are at most in distance 1 from ϕv:

candneigh(v) = {σ | σ ∈ G, dist(ϕv, σ) ≤ 1}

In the DCJ model, and also in most other models, the size of the neighbourhood is

O(g2). For a bigger g, this number can be rather big, so a useful extension of this

method is to generate only those neighbours which do not increase the distance from

the genomes of the three neighbouring nodes too much. The maximum increase in

distance can be 3. Therefore, a reasonable limit l for the distance increase is 0, 1, or 2.

candneighLimited(v) = {σ | σ ∈ G, dist(ϕv, σ) ≤ 1,
∑

(u,v)∈E

(dist(ϕv, ϕu)− dist(σ, ϕu)) ≤ l}

Medians

Similarly, as in the steinerization method, the medians of the three neighbouring

nodes could be inserted into the candidate set. Many medians may exist, but the

algorithm would not need to choose only one of them as in the steinerization method.

The algorithm could add all the medians into the candidate set.

candmedian(v) = {σ | σ ∈ median(ϕa, ϕb, ϕc)}

Intermediates

If a node v is adjacent to nodes u and w, the algorithm could add to Cv the genomes

σ, for which dist(ϕu, σ) + dist(σ, ϕw) = dist(ϕu, ϕw).

CHAPTER 2. THE PIVO SOFTWARE 23

2.4.4 Candidate Generation Strategies in PIVO2

From the strategies described in section 2.4.3, in the PIVO2 algorithm, we opted

for the use of the "Neighbours" candidate generation method. In the "Neighbours"

method, we can optionally turn on the extension which limits the generated neighbour

genomes on the basis of the distance increase.

We proposed and added to the PIVO2 algorithm a new strategy for candidate

generation called "Tree".

Tree

The genome from every node of the tree is inserted into every candidate set. This

method is useful, because genomes can "jump" from one node to another, if the "jump"

yields a better evolutionary history.

candtree(v) = {h(u) | u ∈ V }

2.5 Alternative Genomes in Leaves

The PIVO algorithm has an extension which enables to assign multiple alternative

genomes for the leaves of the evolutionary history. This is useful, because sometimes,

we do not know exactly what is the correct genome of an extant species, and in this

case, we can define multiple possible genomes for the algorithm. Another case is,

when the genome of an extant species contains a duplicated gene. In this situation, we

can delete one copy of the gene and define all the possible results after the deletion as

an alternative genome.

During every iteration of the PIVO algorithm, the algorithm selects the best genome

from the alternatives. We can simply imagine these alternative genomes as if they

were candidates for the leaves. So, our dynamic programming can be used to select

the best alternative genome, in the same way as it selects the best candidate for

internal nodes.

2.6 Randomization of Candidate Selection in the PIVO2

Algorithm

As we can see in algorithm 2, the original PIVO software always selects the first best

candidate during candidate selection. However, this is not optimal, because often the

same decision is made in repeated searches. In the PIVO2 algorithm, we introduced

CHAPTER 2. THE PIVO SOFTWARE 24

randomized candidate selection. If there are multiple evolutionary histories in the

neighbourhood of the current history, which are equally good, the randomization

ensures that each of these evolutionary histories will be picked with equal probability.

To do so, we need to extend the dynamic programming algorithm as outlined below.

Counting the Solutions in PIVO2

During the dynamic programming, the PIVO2 algorithm not only calculates the score

of each candidate cv,i, but it also counts how many solutions with minimal score

exist in the subtree rooted at v, if cv,i is selected. The PIVO2 algorithm stores the

numbers of solutions for candidate cv,i in Q[v, i]. If node v has children u and w, the

numbers of solutions for every candidate of nodes u and w have to be first calculated.

Then, the numbers of solutions for the candidates of node v are calculated: For

each candidate cv,i, the PIVO2 algorithm calculates the sets BESTLEFT [v, i] and

BESTRIGHT [v, i], containing those candidates from the left and right child, for

which the minimal score M [v, i] can be achieved.

BESTLEFT [v, i] = {cu,j ∈ Cu |M [u, j] + dist(cu,j, cv,i) = M [v, i]}

BESTRIGHT [v, i] = {cw,j ∈ Cw |M [w, j] + dist(cw,j, cv,i) = M [v, i]}

Knowing the BESTLEFT [v, i] and BESTRIGHT [v, i], the computation of Q[v, i]

is easy. The number of solutions for the left subtree is summed, similarly, the number

of solutions for the right subtree is summed, then the two sums are multiplied.

Q[v, i] =

 ∑
j∈BESTLEFT [v,i]

Q[u, j]

 ·
 ∑

j∈BESTRIGHT [v,i]

Q[w, j]


If node v is a leaf, its number of solutions is 1, or, if alternative genomes are

defined in the leaf, then, for alternative p, the number of solutions is Q[v, p] = 1.

Randomized Selection of Candidates in PIVO2

To select the candidate at the root node r, we consider the set of candidates which

have minimal score:

GOODCAND = {cr,i | cr,i ∈ Cr,M [r, i] is minimal}

The algorithm selects candidate cr,i ∈ GOODCAND with probability Q[r, i]/Q[r],

where Q[r] is the total number of solutions with minimal score:

Q[r] =
∑

i: M [r,i] is minimal

Q[r, i]

CHAPTER 2. THE PIVO SOFTWARE 25

Choosing the candidate in other internal nodes v is even easier, because it is already

known, which candidate was selected in the parent node p. If node v is the left

child of node p and if cp,k was selected in the node p, then the algorithm looks at

BESTLEFT [p, k] and selects a candidate from this set. The probability of select-

ing candidate cv,i ∈ BESTLEFT [p, k] is Q[v, i]/Q[v], where Q[v] is the number of

solutions with minimal score in the subtree rooted at v:

Q[v] =
∑

i: cv,i∈BESTLEFT [p,k]

Q[v, i]

If the node v is the right child of p, then the selection is made similarly, but, instead of

using set BESTLEFT [p, k], the set BESTRIGHT [p, k] is used.

This randomized selection can be implemented without increasing the time com-

plexity of the score calculation and candidate selection algorithms.

2.7 Tabu Search in the PIVO2 Algorithm

The randomized selection of candidates in PIVO2 (see section 2.6) prevents making

the same decision in repeated searches. Additionally, in the PIVO2 algorithm, a

different approach, called Tabu search, is implemented.

The Tabu search [19] [20] is a metaheuristic search method, which is often used

in local searches to avoid getting always the same local optimum. The Tabu search

uses a data structure called a tabu list. During local searches, those neighbours which

are in the tabu list, are penalized, and are less likely to be chosen.

The algorithm uses a tabu list Tv for every internal node v of the phylogenetic tree.

The list Tv contains genomes π which were assigned to the node in those previous

iterations that resulted in h(v) = π.

When the dynamic programming calculates the score of a candidate cv,i, it adds a

penalty p to the score, if the candidate cv,i is inside the tabu list Tv of the node v. So,

if there are other good candidates which were not present in a previous solution, the

candidate cv,i is not selected. The penalty p should not be too high, because getting an

evolutionary history with a lower score is more important than getting an evolutionary

history with a higher score and a lower number of candidates included in the tabu

lists. A reasonable value for the penalty is p = 1/(|V |+ 1). With this penalty, even if

the next evolutionary history consists only of penalized candidates, the sum of the

penalties is lower than 1. This penalized evolutionary history will then be preferred,

even if there exists a worse history with a lower number of tabu penalties.

The tabu lists are kept during multiple runs of the PIVO2 algorithm.

CHAPTER 2. THE PIVO SOFTWARE 26

A tabu list is implemented as a hashset of genomes, and so, it can be checked

efficiently whether a genome is inside a tabu list.

2.8 Combining Previous Solutions in PIVO2

Based on a proposal in [1], we implemented another heuristic method in the PIVO2

algorithm, which can be optionally turned on. It is a type of candidate generation.

Using this heuristic, the algorithm takes the genomes from previous solutions, and

adds them into the candidate lists. The motivation is that, by combining different

solutions, we may get a better evolutionary history. If H is the set of evolutionary

histories found by the PIVO2 algorithm in the previous runs, the heuristic adds the

genomes {h(v) | h ∈ H} into candidate set Cv of node v.

2.9 Preferred Chromosome Types in PIVO2

In the DCJ model, a genome can have an arbitrary structure: it can be a mix of linear

and circular chromosomes. However, in the real world, the organisms usually have

one of the following two types of genome structures: i) one circular chromosome,

ii) one or more linear chromosomes. In the PIVO algorithm, the preferred type of

genome structure can be prioritised by penalizing genomes which do not have the

preferred structure. The penalty is added to the score of the candidates in the dynamic

programming. In the original PIVO algorithm, the penalty setting was not solved

optimally.

A more optimal penalty setting is implemented in PIVO2, which is described here.

Choosing a suitable value for the penalty is important. If the penalty is too low, this

penalizing method will not work. If the penalty is too high, the local search may not

function satisfactorily.

From section 1.4.2, we know that with one DCJ operation, we can do circular-

ization and linearization, fusion and fission, circular excision and integration. So, if

we repair the genome ϕv (i.e. make the required rearrangement operations to get a

preferred genome structure), the score of the subtree rooted at v increases at most by

2 · r, where r is the number of repair operations. We have defined the penalty to be

p = 2 · r. With this penalty setting, the PIVO2 algorithm works quite well, and the

genomes mostly have the preferred structure.

If a genome consists of l linear and c circular chromosomes, then, depending

on the preferred genome structure, the number of required repair operations is as

follows:

CHAPTER 2. THE PIVO SOFTWARE 27

• Preferred genome structure: one circular chromosome

If there are more circular chromosomes, all of them need to be fused into one

circular chromosome, and so we need c− 1 fusions. All the linear chromosomes

need to be integrated into the circular chromosome; we need l operations for

this. The total number of repair operations is: r = c+ l − 1.

• Preferred genome structure: one or more linear chromosomes

Every circular chromosome needs to be linearized; we need c operations. The

total number of repair operations is: r = c.

• Preferred genome structure: one circular, or one or more linear chromo-

somes

This is the combination of the first two cases. The algorithm selects the case, in

which fewer repair operations are needed. The total number of repair operations

is: r = min(c+ l − 1, c).

2.10 Implementation Details of the PIVO2 algorithm

The original PIVO algorithm is written in Python. The source code of the original

PIVO software does not contain detailed comments, and so it would be rather time

consuming to understand it fully. For this reason we completely reimplemented the

original software by writing PIVO2. Instead of Python, we used Java for PIVO2. Details

of the implementation of the PIVO2 algorithm are discussed in this section.

2.10.1 Genome Representation

The PIVO2 algorithm stores the adjacencies in an array G (we call it the genome

array). For every extremity, the algorithm stores its adjacent extremity in G. If an

extremity e is a telomere, then it is saved into the array as G[e] = e. An example of a

genome array can be seen in figure 2.2.

In a genome array, the head of gene a is represented by index 2 · a− 1 and its tail

by index 2 · a− 2. This array representation is good, because we can quickly tell which

extremity is adjacent to another given extremity, and we can easily save the changes

after a rearrangement operation. In a genome array, every adjacency is stored twice

and the telomeres are stored once.

In PIVO2, we sometimes need to compute a hash value of a genome. To do so, we

simply calculate the hash value of its genome array.

CHAPTER 2. THE PIVO SOFTWARE 28

Index 0 1 2 3 4 5 6 7 8 9 10 11

(Extremity) -1 +1 -2 +2 -3 +3 -4 +4 -5 +5 -6 +6

Adjacent extremity -1 +3 +5 +6 -4 +1 -3 +4 -6 -2 -5 +2

Figure 2.2: The genome array of genome: 1 -3 4 $ -2 -5 6 @

2.10.2 Rearrangement Model

In the PIVO2 software, the DCJ rearrangement model is implemented. The model

includes methods for applying a DCJ operation to a genome, distance calculation,

and neighbour generation. The PIVO algorithm is general, and it would work with

other rearrangement models too. For this reason, in PIVO2 we access the DCJ model

implementation through a rearrangement model interface. Using this interface, other

rearrangement models can be easily added.

Chapter 3

Efficient Distance Calculation

The PIVO algorithm makes a lot of distance calculations between pairs of candidates

in the dynamic programming. When it calculates the scores of candidates of node v

(with children u and w), it calculates distances between every pair of candidates from

Cv and Cu, and Cv and Cw respectively.

In the PIVO2 algorithm, the "Neighbour" and the "Tree" candidate generation meth-

ods are used. For every node v, the "Neighbour" method generates Θ(g2) candidates,

where g is the number of genes. These candidates are in DCJ distance 1 from the

genome assigned to node v in the previous iteration. The "Tree" method generates

Θ(|V |) candidates.

Usually, the number of genes is larger than the tree size, and so g2 � |V |. Therefore,

the majority of distance calculations is made on pairs of genomes πi and σj, such that

all πi have distance 1 from a genome π, and all σj have distance 1 from a genome σ.

More efficient distance calculation in these cases could significantly increase the speed

of the PIVO algorithm. We have designed a faster method of calculating the breakpoint

and DCJ distances in such cases. This new and more efficient distance calculation

method, which is the one of the main improvements of the PIVO2 algorithm, is

described in this chapter (see sections 3.1 and 3.2).

3.1 Breakpoint Distance

The breakpoint distance of genomes π and σ can be simply calculated (see sec-

tion 1.4.1). If g is the number of genes, a(π, σ) is the number of common adjacencies,

and e(π, σ) is the number of common telomeres, then the breakpoint distance between

π and σ is:

distBP (π, σ) = g − a(π, σ)− e(π, σ)

2

29

CHAPTER 3. EFFICIENT DISTANCE CALCULATION 30

In the PIVO2 algorithm, we represent every genome as a genome array, and in this

representation, every adjacency is stored twice and the telomeres are stored only once.

So, the distance can be computed by simply counting the number of indexes where

the array values differ (see figure 3.1). If diff(π, σ) is the number of indexes with

different values in the arrays of the genomes, the breakpoint distance of π and σ is:

distBP (π, σ) =
diff(π, σ)

2

Index 0 1 2 3 4 5 6 7 8 9 10 11

Extremity -1 +1 -2 +2 -3 +3 -4 +4 -5 +5 -6 +6

Adjacent extremity -1 -2 +1 -3 +2 -4 +3 -5 +4 -6 +5 +6

(a) Genome 1: 1 2 3 4 5 6 $

Index 0 1 2 3 4 5 6 7 8 9 10 11

Extremity -1 +1 -2 +2 -3 +3 -4 +4 -5 +5 -6 +6

Adjacent extremity +4 -2 +1 -3 +2 -4 +3 -1 -5 -6 +5 +6

(b) Genome 2: 1 2 3 4 @ 5 6 $

Figure 3.1: The differing columns are marked in red, the breakpoint distance is 1.5

The breakpoint distance can be easily computed in O(g) time. If we have two sets

of genomes A and B, each of size Θ(g2), the distance between every pair of genomes

from sets A and B can be computed in time O(g5). But, if we know that the set A

consists of genomes πi which are in DCJ distance 1 from a genome π, and similarly,

the set B consists of genomes σj which are in DCJ distance 1 from a genome σ, we

can calculate the distances more efficiently, as we show next.

Connection Between the DCJ Operation and the Breakpoint Distance

A DCJ operation cuts at most two adjacencies or telomeres, and from their extremities

it creates at most two new adjacencies or telomeres. So, a DCJ operation changes

the genome array in the worst case at 4 indexes. Therefore, a DCJ operation can be

described as a set of pairs (indexi, extremityi), where indexi means which index was

updated in the array G, and extremityi is the new value G[indexi] = extremityi. Let

us call this pair an "update pair", and the set of these pairs an "update set". An update

set can describe complex rearrangement operations, but if an update set U contains

information about a single DCJ operation, then its size is |U | ≤ 4. If we know the

update set U that transforms a genome π into a genome σ, then the distance between

CHAPTER 3. EFFICIENT DISTANCE CALCULATION 31

π and σ can be calculated in constant time:

distBP (π, σ) =
|U |
2

If we do not know the update set which transforms π into σ, then we do not

improve the time complexity of a single distance computation, because computing the

update set takes Θ(g) time. However, during "neighbour" candidate generation, we

know for every candidate which DCJ operation was performed, and we can save this

additional information as an update set without increasing the time complexity. As it

is explained in the next sections, with this information we can compute the distances

more efficiently.

3.1.1 Efficient Distance Calculation Between a Genome and a Set

of Genomes

Let us first discuss a simplified problem, when our task is to compute the breakpoint

distances between a single genome π and each genome σj from set B, where each

σj is a genome in DCJ distance 1 from a genome σ. We also know for every genome

σj the update set Uj, which transforms σ into σj. The trivial (less efficient) way of

calculating the distances would take O(g · |B|) time. However, it is more efficient to

compute the distance between π and σ and then to check for each σj, how the update

set Uj changes the distance (see figure 3.2).

π σ
difference[]

σ1

σm

U1

Um

distance

Figure 3.2: Efficient breakpoint distance calculation between a genome and a set of

genomes

We calculate a boolean array called difference, which marks differences between

genome arrays π and σ. If π[k] 6= σ[k], then difference[k] = true, otherwise it is false.

If the number of true values in the whole array is t, then the distance is distBP (π, σ) =

t/2. To get the distance of genomes π and σj, we must analyse the update pairs in set

Uj, and update the distance. For every update pair (indexi, extremityi) in Uj, three

cases may occur:

CHAPTER 3. EFFICIENT DISTANCE CALCULATION 32

1. The update pair defines a value which was present in the array of π:

π[indexi] = extremityi

This means that the difference between π and σj gets smaller by 1, so we update

the distance by subtracting 1/2.

2. The update pair redefines a value at an index, at which the values in arrays of π

and σ are different, and the redefined value differs from the value in the array

of π:

difference[indexi] = truef π[indexi] 6= extremityi

In this case, the difference between the genomes does not change, so the distance

remains the same, and no update is needed.

3. The update pair changes the value at an index, at which the values in arrays of

π and σ are the same:

difference[indexi] = false

The difference between π and σj increases by 1, so the distance is increased by

1/2.

All the three cases can be checked in constant time, so the distances can be

calculated in time O(g+ |B| ·u), where u is the size of update sets Uj (see algorithm 6).

Because every σj was derived from σ using a single DCJ operation, the size of u is at

most 4. So, the distances can be calculated in O(g + |B|) time.

3.1.2 Efficient Distance Calculation Between Two Sets of Genomes

Let us extend the previous method, so that we calculate the distance between every

pair of genomes πi ∈ A and σj ∈ B, where every πi ∈ A is a genome in DCJ distance

1 from a genome π, and every σj ∈ B is a genome in DCJ distance 1 from a genome

σ. We know for every genome πi ∈ A the update set UA
i which transforms π into πi,

and also know for every genome σj ∈ B the update set UB
j which transforms σ into

σj. The trivial (less efficient) solution has O(g · |A| · |B|) time complexity. Our more

efficient solution, similar to the previous section, calculates the distance of π and σ

and then it analyses, how the update pairs change the distance (see figure 3.3).

As in the previous section, we calculate the difference array of genomes π and

σ. If the number of true values is t, then the distance is distBP (π, σ) = t/2. Next,

we check, how the update set UB
j changes the distance, using the method from the

previous section. The result is the distance of π and σj. Then we analyse the update

CHAPTER 3. EFFICIENT DISTANCE CALCULATION 33

1 Function breakpointDistance(π,σ: genome, B: set of genomes)

2 difference[]← calculateDifference(π, σ);

3 distance← count the number of true values in difference[];

4 for σj ∈ B do

5 distance[π,σj]← distance;

6 for (indexi, extremityi) ∈ Uj do

7 if π[indexi] = extremityi then

8 distance[π,σj]← distance[π,σj]-1/2

9 else if difference[indexi]=true then

10 nothing

11 else

12 distance[π,σj]← distance[π,σj]+1/2

13 return distance[]

Algorithm 6: Efficient breakpoint distance calculation between a genome and a

set of genomes

π σ
difference[]

σ1

σm

UB
1

UB
m

distance

π1

πn

UA
1

UA
n

Figure 3.3: Efficient breakpoint distance calculation of a set versus a set

set UA
i to get the distance of πi and σj. Here, more cases exist, because several

conflicting situations can occur between the update pairs of UA
i and UB

j . For every

(indexk, extremityk) ∈ UA
i we do the following:

1. The distance is lowered by 1/2 if one of the following holds:

• If the update pair is also present in UB
j (indexk, extremityk) ∈ UB

j :

It means that, in the array representation of πi and σj, the value at

index indexk is the same. When we were analysing the update pair

(indexk, extremityk), the distance was increased by 1/2, and so, now we

have to undo this update by subtracting 1/2.

• If in the array representation of σ, we have σ[indexk] = extremityk, and

the value at index indexk was not changed by the update set UB
j :

It means that σj[indexk] = extremityk, too. Therefore, at index indexk,

CHAPTER 3. EFFICIENT DISTANCE CALCULATION 34

both πi and σj have the same value, and the difference is lowered by 1. So

we have to subtract 1/2 from the distance.

2. Otherwise, if one of the following holds, the distance is not changed:

• If there is difference at index indexk between π and σ, and there is no

update pair in UB
j which sets the value at indexk to π[indexk]:

It means that the difference at index indexk was already calculated into the

distance between πi and σj, and so no distance update is needed.

• If there is an update pair in UB
j that changes the value at indexk, but it

does not set the value to π[indexk]:

Again, the difference at indexk was already calculated into the distance,

and so, no update is needed.

3. Otherwise, the update pair (indexk, extremityk) increases the distance, and so,

1/2 is added to the distance.

After these updates, we get the distance of πi and σj. If u is the maximum size of

an update set, then the time complexity is O(g+ |A| · |B| ·u2). Algorithm 7 summarizes

the efficient breakpoint calculation.

The u2 in the time complexity stems from the fact that for every update pair in UA
i ,

we have to answer the following questions

• "Was the value at index x changed in UB
j ?"

• "Is there an update pair in UB
j which sets the value at index x to π[x]?"

• "Is there an update pair in UB
j which sets the value at index x to a value not

equal to π[x]?"

The answer to these questions can be found in time O(u). However, we can precalcu-

late the answers to all of these questions in a total time O(|B| · u): We cycle through

every update pair in UB
j . If there is an update pair (indexk, extremityk) ∈ UB

j for

which we get a "YES" answer to a question for which x = indexk, we save, that for UB
j

for index x = indexk the answer is "YES", into a hash table. After this precalculation,

answering a question becomes a simple lookup operation in the hash table, and so the

answer can be found in time O(1). After this improvement, the distance calculations

are done in time O(g + |A| · |B| · u).

Since every πi and σj are in DCJ distance 1 from π and σ, the size of the update

sets is at most 4. In this special case, the distances can be calculated in O(g+ |A| · |B|)
time.

CHAPTER 3. EFFICIENT DISTANCE CALCULATION 35

1 Function breakpointDistance(π,σ: genome, A,B: set of genomes)

2 difference[]← calculateDifference(π, σ);

3 distance← count the number of true values in difference[];

4 for πi ∈ A do

5 for σj ∈ B do

6 distance[πi,σj]← distance;

7 for (indexk, extremityk) ∈ UB
j do

8 if π[indexk] = extremityk then

9 distance[πi,σj]← distance[πi,σj]-1/2

10 else if difference[indexk]=true then

11 nothing

12 else

13 distance[πi,σj]← distance[πi,σj]+1/2

14 for (indexk, extremityk) ∈ UA
i do

15 if (indexk, extremityk) ∈ UB
j g(

σ[indexk] = extremitykf 6 ∃y : (indexk, y) ∈ UB
j

)
then

16 distance[πi,σj]← distance[πi,σj]-1/2

17 else if
(
difference[indexk] = truef (indexk, π[indexk]) 6∈ UB

j

)
g(

∃y : (indexk, y) ∈ UB
j f y 6= π[indexk]

)
then

18 nothing

19 else

20 distance[πi,σj]← distance[πi,σj]+1/2

21 return distance[]

Algorithm 7: Efficient breakpoint distance calculation of a set versus a set

3.2 Double Cut and Join Distance

The Double Cut and Join distance of two genomes π and σ can be calculated by

creating the adjacency graph (see section 1.4.2). If g is the number of genes, c is the

number of cycles, and pO is the number of odd paths in the adjacency graph, the DCJ

distance is:

distDCJ(π, σ) = g − (c+ pO/2)

The creation of the adjacency graph and counting of the components can be done

in time O(g), and so the DCJ distance can be calculated in O(g) time [6]. If we want

to calculate the distance between every pair of genomes πi ∈ A and σj ∈ B, it can be

done simply in O(g · |A| · |B|) time.

CHAPTER 3. EFFICIENT DISTANCE CALCULATION 36

3.2.1 Efficient Distance Calculation Between Two Sets of Genomes

If we know that every genome πi ∈ A and every genome σj ∈ B are only in DCJ

distance 1 from some genomes π and σ respectively, and if we have information about

the relationship of πi to π and σj to σ, then we can calculate the distances more

efficiently.

In a DCJ operation, we break at most 2 adjacencies or telomeres, and then create

at most 2 new adjacencies or telomeres. So, we can describe a DCJ operation by two

lists: a disconnect list containing pairs of extremities which must be disconnected,

and a connect list containing pairs of extremities which must be connected.

When we generate the neighbour candidates in the PIVO2 algorithm, we can create

these lists for each candidate without increasing the time complexity.

Our approach for efficient DCJ distance calculation is similar to the one we used in

breakpoint distance calculation: We calculate the adjacency graph for the genomes π

and σ. Then, for every pair πi and σj, we check how the operations from disconnectAi ,

connectAi , disconnectBj , and connectBj change the components of the adjacency graph,

i.e. how they change the distance (see figure 3.4).

π σ
AG(π, σ)

σ1

σm

disconnectB1

disconnectBm

distance

π1

πn

disconnectA1

connectAn

connectA1

disconnectAn

connectB1

connectBm

Figure 3.4: Efficient DCJ distance calculation of a set versus a set

Example 1 (Adjacency graph). Figure 3.5 shows the adjacency graph of genomes

π = a -d -e $ b -c -f @ and σ = a -e d $ b c -f @. We assigned a different color to each

component.

a+d+ e+d- e- b-f- b+c+ f+c-

d+ a+e+ e-d- f-b- b+c- c+f+

a-

a-

Figure 3.5: Adjacency graph AG(π, σ)

CHAPTER 3. EFFICIENT DISTANCE CALCULATION 37

Data Structures

For tracking the changes in the adjacency graph, we will use several data structures.

First, we have to save the information about the components of the adjacency graph

AG(π, σ). An adjacency graph consists of vertices of degree one or two, and so, an

adjacency graph consists of paths and cycles. Let us imagine the paths as a list of

extremities. In this list, the extremities are ordered according to their position along

the path. Similarly, let us imagine cycles as "cyclic" paths (the first and last element of

the extremity list is connected). We assign specific numbers to these paths.

Now, we can generate the following arrays in O(g) time:

• extremityLocation - this array maps every extremity to the number of the path

in which the extremity is located

• extremityPosition - this array maps every extremity to the position within the

list of extremities

• componentSize - maps every path to its extremity list size

• componentCircular - is a boolean array, which stores whether a path is cyclic or

not

Example 2 (Paths of the adjacency graph). In figure 3.6, we listed the paths of the

adjacency graph from example 1. The extremities of genome σ are written with uppercase

letters.

Path 1: a-, A-

Path 2: D+, d+, a+, A+, E+, e+, d-, D-, E-, e-

Path 3: b-, B-, F-, f-, cyclic

Path 4: c+, C+, F+, f+, c-, C-, B+, b+, cyclic

Figure 3.6: Paths of the adjacency graph AG(π, σ)

Example 3 (Arrays for storing paths). In figure 3.7, we can see the arrays storing the

paths from example 2.

As we apply the DCJ operations (disconnecting and connecting extremities), the

components of the adjacency graph change. Paths can split and join; they can change

from linear to cyclic, and vice versa. To track the changes of components, we use a

data structure called Comp. A Comp object saves the information about the original

paths’ pieces which form the component. In the Comp object, we also save whether

CHAPTER 3. EFFICIENT DISTANCE CALCULATION 38

a- a+ b- b+ c- c+ d- d+ e- e+ f- f+

1 2 3 4 4 4 2 2 2 2 3 4

(a) Extremity location

a- a+ b- b+ c- c+ d- d+ e- e+ f- f+

0 2 0 7 4 0 6 1 9 5 3 3

A- A+ B- B+ C- C+ D- D+ E- E+ F- F+

1 3 1 6 5 1 7 0 8 4 2 2

(b) Extremity position

1 2 3 4

2 10 4 8

(c) Component size

1 2 3 4

N N Y Y

(d) Component circular

Figure 3.7: The arrays for storing the paths

the component is a linear path or a cyclic path (cycle). A Comp object COi also has

pointers to other Comp objects. The objects to which COi points, are components

which came into being after COi was changed by a connect or disconnect operation.

The Comp objects form a forest.

To summarize, a Comp object holds the following information about a component

of the adjacency graph:

• list of original paths with start and end indexes

• circularity of the component

• pointers to child Comp objects

Now, we have the necessary data structures for tracking the changes in the adja-

cency graph.

Preparation for Tracking the Changes

Before starting to track the changes, we create a Comp object for every component in

the adjacency graph. Every Comp object holds a single path. Then, we create an array

extremityComp which will map every extremity into the appropriate Comp object

(see figure 3.12). The extremityComp array is similar to the extremityLocation array.

CHAPTER 3. EFFICIENT DISTANCE CALCULATION 39

Tracking the Changes

Now, for every pair πi ∈ A and σj ∈ B, we look at the lists disconnectAi , connectAi ,

disconnectBj , connectBj and analyse, how the disconnect and connect operations

change the adjacency graph, and how the number of cycles and odd paths change.

Disconnecting. If we have to disconnect extremities ext1 and ext2, we must find

the Comp object in which we have these extremities. Finding it is easy, we just start

with the array extremityComp, and follow the pointers to Comp objects. If a Comp

object has two children, we can easily decide which child contains the searched

extremity using the arrays extremityLocation and extremityPosition. We follow the

pointers until we get to a Comp object which has no children.

If the component is circular, we create a new linear component and make a pointer

to it, as seen in figure 3.8.

COMP1
P1[s1, e1], ...,Pk[sk, ek], ..., Pn[sn, en]

circular

COMP2
Pk[r, sk], ...,P1[e1, s1], Pn[en, sn], ..., Pk[ek, r + 1]

linear

r,r+1

Figure 3.8: Disconnecting a circular component: ext1 is in Pk[r] and ext2 is in Pk[r+ 1]

If the found component is linear, we will get two new linear components after

disconnection (figure 3.9).

COMP1
P1[s1, e1], ...,Pk[sk, ek], ..., Pn[sn, en]

linear

COMP2
P1[s1, e1], ...,Pk[sk, r]

linear

r,r+1

COMP3
Pk[r + 1, ek], ...,Pn[sn, en]

linear

Figure 3.9: Disconnecting a linear component: ext1 is in Pk[r] and ext2 is in Pk[r + 1]

Connecting. Connecting extremities ext1 and ext2 is done similarly. We just find

the components comp1 and comp2 which contain the extremities ext1 and ext2.

CHAPTER 3. EFFICIENT DISTANCE CALCULATION 40

If comp1 6= comp2, then we connect two linear components into a single linear

component. We create a new component comp3, and make pointers to it from comp1

and comp2, as seen in figure 3.10.

COMP3
P1[s1, e1], ...,Pk[sk, ek], Pn[en, sn], ..., Pl[el, sl]

linear

COMP1
P1[s1, e1], ...,Pk[sk, ek]

linear

COMP2
Pl[sl, el], ...,Pn[sn, en]

linear

Figure 3.10: Connecting two linear components: ext1 is in Pk[ek], and ext2 is in Pn[en].

If comp1 = comp2, then we connect the two ends of a linear component. We get

a new circular component comp3, and make a pointer to it from comp1, as seen in

figure 3.11.

COMP1
P1[s1, e1], ...,Pk[sk, ek]

linear

COMP3
P1[s1, e1], ...,Pk[sk, ek]

circular

Figure 3.11: ext1 is in P1[s1], and ext2 is in Pk[ek]. So, we are connecting the two ends

of a linear path.

When we finished processing every connect and disconnect operation, we success-

fully got the components of the adjacency graph of πi and σj. After each connect and

disconnect operation, the number of cycles and odd paths was updated, and so we

know the distance of πi and σj.

Before calculating the distance of the next pair, we delete the Comp objects which

were created during tracking.

Example 4 (Tracking the changes in the adjacency graph). In this example, we track

the changes of the adjacency graph from example 1. We make two disconnect and two

connect operations. The tracking is illustrated in figure 3.12.

CHAPTER 3. EFFICIENT DISTANCE CALCULATION 41

COMP1
P1[0,1]
linear

a-, a+, b-, b+, c-, c+, d-, d+, e-, e+, f-, f+

COMP2
P2[0,9]
linear

COMP3
P3[0,3]
circular

COMP4
P4[0,7]
circular

extremityComp

disconnect: e+,d- COMP5
P2[0,5]
linear

COMP6
P2[6,9]
linear

disconnect: b+,c+ COMP7
P4[0,7]
linear

connect: e+,b+ COMP8
P4[0,7],P2[5,0]
linear

connect: c+,d- COMP9
P2[9,6],P4[0,7],P2[5,0]
linear

start of the tracking

odd paths: +0
cycles: +0

odd paths: +0
cycles: -1

odd paths: +0
cycles: -1

odd paths: +0
cycles: -1

Figure 3.12: Tracking the changes

Time Complexity

The initialization of the tracking takes O(g) time, but it has to be done only once.

Every disconnect and connect operation increases the depth of the components

by 1. Every disconnect and connect operation increases the maximal possible size

of the path list in the Comp object by 1. If o is the maximum number of operations

in a connect/disconnect list, then the computation of the distance between a pair of

candidates takes O(o3) time: For O(o) operations, we have to find the component

which can be in depth O(o), and during search, when we are choosing the child

component, we have to check O(o) path list items. Generating a new child component

needs O(o) time.

So, calculating the distance between every pair has O(g + |A| · |B| · o3) time

CHAPTER 3. EFFICIENT DISTANCE CALCULATION 42

complexity. Because every πi ∈ A and σj ∈ B is only in DCJ distance 1 from some

genome π and σ respectively, the size of o is at most 2. So, in our special case,

calculating the distance between every pair takes O(g + |A| · |B|) time.

We implemented this efficient distance calculation in the PIVO2 algorithm. This

way, in comparison with the original PIVO, the time complexity of the PIVO2 algorithm

has decreased fromO(ngk2) toO(n(g+k2)), where k is the maximal size of a candidate

set, n = |V | is the tree size, and g is the number of genes. Since g2 � n, therefore

k = O(g2) and so the time complexity is decreased from O(ng5) to O(ng4).

Chapter 4

Experiments

This chapter contains the comparison of the original PIVO and PIVO2 algorithms.

Here, it is ascertained that the PIVO2 algorithm gives better results and runs more

efficiently.

4.1 Comparing the Results

In this section, we evaluate the evolutionary histories found by the original PIVO

and PIVO2 algorithms. The scores of the evolutionary histories are compared. An

evolutionary history is better, if its score is lower. Both algorithms were run on real as

well as simulated data.

4.1.1 Real Data

The Campanulaceae cpDNA dataset

This is a well studied dataset which consists of 13 Campanulaceae chloroplast genomes

[21]. Each genome has 105 genes and consists of a single circular chromosome. The

phylogenetic tree of these genomes was reconstructed by Bourque and Pevzner using

the MGR software [17], see figure 4.1a.

The reconstruction of ancestral genomes of these species, based on genome rear-

rangements using the DCJ model, was studied in several earlier works, see table 4.1.

In 2008, Adam and Sankoff found an evolutionary history with score 64 in which

each ancestral genome consisted of a single circular chromosome. In case of arbitrary

ancestral genomes, they could find an evolutionary history with score 59. [16]

Histories with lower scores were found by Xu and Moret in 2011. Using their

software GASTS, they found an evolutionary history with score 63, in which each

ancestral genome consisted of a single circular chromosome. [22]

43

CHAPTER 4. EXPERIMENTS 44

Using the original PIVO algorithm, Jakub Kováč has lowered this score to 59. [1]

[23]

With single chromosomal ancestral genomes, the PIVO2 algorithm also found an

evolutionary history with score 59. In the case of arbitrary ancestral genomes, the

PIVO2 algorithm found an evolutionary history with score 56.

software unichromosomal

genome

arbitrary

genome
ABC (Adam and Sankoff, 2008) [16] 64 59

GASTS (Xu and Moret, 2011) [22] 63 -

original PIVO (Kovac et al., 2011a) [1] [23] 59 59

The PIVO2 algorithm 59 56

Table 4.1: Scores for the Campanulaceae dataset

Symphyandra
Trachelium
Adenophora
Campanula
Merciera
Wahlenbergia
Legousia
Triodanus
Asyneuma
Tobacco
Codonopsis
Cyananthus
Platycodon

(a) Phylogenetic tree of Campanulaceae

canMalM
canAlbM
canNerM
canFriM
canVisM
canSojM
canTroM
lodEloM
canOrLM
canOrtM
canParM
canJiuM
canAlaM
canSubM
debHanM
picFarM

(b) Phylogenetic tree of Hemias-

comycetes

Figure 4.1: Phylogenetic trees used in the tests

The Hemiascomycetes mtDNA dataset

This dataset contains 16 mitochondrial genomes of pathogenic yeasts from the CTG

clade of Hemiascomycetes [18]. Using software MrBayes [24], the phylogenetic

tree of these genomes was calculated from protein sequences, see figure 4.1b. Each

genome has 25 genes, and the genomes have various structures: some consist of a

single linear chromosome, some other genomes consist of two linear chromosomes,

and the rest of the genomes consist of a single circular chromosome. The genomes for

CHAPTER 4. EXPERIMENTS 45

some of the species were not known exactly - several possibilities existed. Therefore,

for these species, alternative genomes were used in the tests.

Due to this variability in genome structure of extant species, the ancestral genomes

could have a single circular chromosome, or one or more linear chromosomes. The

original PIVO algorithm found an evolutionary history with score 78 [1].

The PIVO2 algorithm found a better evolutionary history with score 77. In the

case of ancestral genomes with arbitrary structure, an evolutionary history with score

75 was found by the PIVO2 algorithm (no result was published for the original PIVO

algorithm).

software restricted

genome

arbitrary

genome
original PIVO (Kovac et al., 2011a) [1] 78 -

The PIVO2 algorithm 77 75

Table 4.2: Scores for the Hemiascomycetes dataset

4.1.2 Experimental Data

Using experimental data, we also tested both the original and the PIVO2 algorithms.

The experimental data were created for the phylogenetic tree of the Campanulaceae

(figure 4.1a). A random genome consisting of 25 genes was generated. This genome

was put into the root of the tree and a random evolution on the tree was simulated.

No restrictions were applied on the karyotype, i.e. an arbitrary mix of linear and

circular chromosomes was allowed. The extant genomes, which were produced by

simulating the random evolution, were used as the input for both algorithms.

The tests were made under various circumstances. In the simulations, we changed

the parameter which limited the number of rearrangement operations which could

happen between a parent and its child. In those simulations, for which a high number

of mutations was allowed, the simulated evolution was probably not parsimonious.

We expect, that in these cases, even better evolutionary histories will be found in our

tests than the simulated evolutionary history.

We launched the original and the PIVO2 algorithms many times, and calculated

the distribution of scores of the found evolutionary histories. We illustrated the results

in several charts. The results of the PIVO2 algorithm are in red, the results of the

original PIVO algorithm are in blue.

In the first test case, the number of allowed mutations on an edge was limited

to 3. The score of the simulated history was 51. In all runs the PIVO2 algorithm

CHAPTER 4. EXPERIMENTS 46

found histories with score 50, which is better than the score of the simulated history.

The original PIVO algorithm produced worse results, the best score was achieved in

only a few from many runs, and the best history found had a score of 52, as seen in

figure 4.2.

50 51 52 53 54 55 56 57 58 59 60
0

10

20

30

40

50

60

70

80

90

100

score

%

Figure 4.2: Score distribution in test case 1. (blue: original PIVO, red: PIVO2)

In the second test case, the number of allowed mutations on an edge was again

limited to a maximum of 3, the score of the simulated history was 45. Both the

original PIVO and the PIVO2 algorithms found histories with score 45. However, as

seen in figure 4.3, the PIVO2 algorithm found a history with score 45 in every run,

while the original PIVO algorithm was successful only in a very low number of runs.

45 46 47 48 49 50 51 52 53 54
0

10

20

30

40

50

60

70

80

90

100

score

%

Figure 4.3: Score distribution in test case 2. (blue: original PIVO, red: PIVO2)

In the third test case, a maximum of 8 mutations was allowed on an edge, the

simulated history had a score of 77. The PIVO2 algorithm found a more parsimonious

CHAPTER 4. EXPERIMENTS 47

history with a score of 73, whereas the best history found by the original PIVO

algorithm had a score of 78, as seen in figure 4.4.

73 74 75 76 77 78 79 80 81 82 83 84
0

10

20

30

40

50

60

70

80

score

%

Figure 4.4: Score distribution in test case 3. (blue: original PIVO, red: PIVO2)

The fourth test case was similar: the score of the simulated evolution was 87. The

PIVO2 algorithm was again better than the original PIVO algorithm, see figure 4.5.

83 84 85 86 87 88 89 90 91 92 93 94 95
0

5

10

15

20

25

30

35

score

%

Figure 4.5: Score distribution in test case 4. (blue: original PIVO, red: PIVO2)

Finally, in the fifth test case, the simulated evolution contained even more muta-

tions, and it had a score of 103. The comparison of the algorithms is in figure 4.6.

CHAPTER 4. EXPERIMENTS 48

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
0

5

10

15

20

25

30

35

40

score

%

Figure 4.6: Score distribution in test case 5. (blue: original PIVO, red: PIVO2)

Test summary: In every test case, the results achieved by the PIVO2 algorithm

were better than those of the original PIVO algorithm.

4.2 Number of iterations

In this section, we examine, how many iterations are needed until a local optimum

is found by the original PIVO and PIVO2 algorithms. If many iterations are needed,

the score of the history is only slowly improving towards a local optimum, and so the

tested algorithm is slow. We used the same test cases as given in section 4.1.2 and

computed the average number of iterations needed for both algorithms. The results

can be seen in table 4.3.

original PIVO PIVO2

test case 1 5.2 6.49

test case 2 5.34 5.82

test case 3 4.4 6.7

test case 4 5.14 7.57

test case 5 5.29 8.58

Table 4.3: Comparison of the average number of iterations needed to reach a local

optimum

We can see, that the PIVO2 algorithm needs a slightly higher number of iterations.

However, this is amply justified by the fact, that the PIVO2 algorithm gives better

results, than the original PIVO. For test case 5, we have created a chart which illustrates

CHAPTER 4. EXPERIMENTS 49

the decrease of score with the increasing number of iterations. We calculated the

average score, the minimum score, and the maximum score, which were achieved in

each iteration, see figure 4.7. The red line symbolizes the average score and the light

red dotted lines symbolize the minimum and maximum scores of the PIVO2 algorithm.

The interval between the red minimum and maximum lines illustrates what scores

could be achieved in the given iteration. Similarly, for the original PIVO algorithm,

the blue line represents the average score, and the light blue dotted lines are the

minimum and maximum scores.

1 2 3 4 5 6 7 8 9 10 11
100

105

110

115

120

125

iteration

s
co
re

Figure 4.7: Decrease of score with the increasing number of iterations. (blue: original

PIVO, red: PIVO2)

4.3 Speed comparison

The original PIVO algorithm was written in Python, and the PIVO2 algorithm was

reimplemented in Java. Inherently, Python runs slower than Java, and therefore, it is

difficult to compare the speed of the two algorithms meaningfully. According to our

measurements, PIVO2 algorithm (with efficient distance calculation mode switched

off) is approximately 6-7 times faster than the original PIVO algorithm. As we will

show next, PIVO2 runs even faster in the efficient distance calculation mode.

Similarly to section 4.1.2, some test cases were created, but, in these test cases,

we gradually increased the number of genes. The PIVO2 algorithm was run with

the efficient distance calculation mode enabled or disabled, and we measured the

average time needed to compute the distances between each pair of candidates of

two neighbouring inner nodes. The results are in table 4.4. The chart in figure 4.8

illustrates, how many times is the computation faster with the efficient distance

calculation mode switched on.

CHAPTER 4. EXPERIMENTS 50

number

of genes

average

candidate

set size

tOFF

efficient distance

calculation off

tON

efficient distance

calculation on

r =
tOFF

tON

15 340 293 ms 304 ms 0.96

20 600 1 259 ms 913 ms 1.38

25 840 3 136 ms 1 991 ms 1.58

30 1 280 7 713 ms 4 293 ms 1.80

35 1 830 20 406 ms 7924 ms 2.58

40 2 300 36 067 ms 13 117 ms 2.75

45 3 210 84 007 ms 21 981 ms 3.82

50 3 770 120 737 ms 30 998 ms 3.89

55 4 750 220 329 ms 47 126 ms 4.68

60 5 170 284 145 ms 63 659 ms 4.46

65 7 000 549 698 ms 96 794 ms 5.68

Table 4.4: Comparison of the speeds of the PIVO2 algorithm with efficient distance

calculation mode off and on

15 20 25 30 35 40 45 50 55 60 65
0

1

2

3

4

5

6

number of genes

r

Figure 4.8: PIVO2: The increase of r =
tOFF

tON

with the increasing number of genes

Conclusion

In this thesis, we studied the reconstruction of ancestral gene orders by the PIVO

algorithm, which uses an iterative local optimization procedure [1].

We have identified various areas of possible improvements and created an im-

proved algorithm, called PIVO2. The improvements in PIVO2 are based on using

different initialization and candidate generation methods. However, randomization of

candidate selection is perhaps the most significant area of improvement. The PIVO2

software contains several added extensions, which can be optionally turned on.

To increase the speed of the original PIVO algorithm, we have also designed and

implemented a new method of breakpoint and DCJ distance calculation, applicable

when we calculate distances for many pairs of genomes πi and σj, such that all πi
have distance 1 from a genome π, and all σj have distance 1 from a genome σ.

The original PIVO algorithm was written in Python; the reimplmented PIVO2 is in

Java.

To evaluate the improvements, we carried out some practical tests and comparisons.

The tests show that the PIVO2 algorithm is indeed better than the original PIVO

algorithm in finding evolutionary histories with lower score. Moreover, to find a

history with a good score, the PIVO2 algorithm requires a significantly lower number

of runs. The tests also confirm that the new distance calculation method applied in

PIVO2 really increases the computational speed.

Recommendations for further research

When using the efficient distance calculation method between two sets of genomes

A and B (see chapter 3), we are given two genomes - π and σ. For each πi ∈ A

and each σj ∈ B, we know the operations which transform π into πi and σ into σj
respectively (this information was saved during candidate generation). Enabling

distance calculation on arbitrary sets of genomes A and B can be a useful extension

of the efficient distance calculation method. The extension should make the following

precalculation steps:

51

52

• automatically find groups of similar genomes in the sets A and B,

• select a representative genome for each group,

• calculate the transforming operations which regenerate each member of the

group from the representative genome.

Based on these precalculation steps, the efficient distance calculation method should

work for arbitrary sets of genomes A and B. The precalculation procedure should be

further researched in the future.

Bibliography

[1] J Kováč, B Brejová, and T Vinař. A practical algorithm for ancestral rearrange-

ment reconstruction. Algorithms in Bioinformatics, 2011.

[2] International Human Sequencing Genome. Initial sequencing and analysis of

the human genome. Nature, 409(6822):860–921, 2001.

[3] Kirsten M Brown, Lisa M Burk, Loren M Henagan, and Mohamed A F Noor.

A test of the chromosomal rearrangement model of speciation in Drosophila

pseudoobscura. Evolution; international journal of organic evolution, 58:1856–

1860, 2004.

[4] Guillaume Fertin, Anthony Labarre, Irena Rusu, Eric Tannier, and Stéphane

Vialette. Combinatorics of genome rearrangements. 2009.

[5] Eric Tannier, Chunfang Zheng, and David Sankoff. Multichromosomal median

and halving problems under different genomic distances. BMC bioinformatics,

10:120, January 2009.

[6] Anne Bergeron, Julia Mixtacki, and Jens Stoye. A Unifying View of Genome

Rearrangements. Wabi, pages 163–173, 2006.

[7] D Sankoff, R J Cedergren, and G Lapalme. Frequency of insertion-deletion,

transversion, and transition in the evolution of 5S ribosomal RNA. Journal of

molecular evolution, 7:133–149, 1976.

[8] Li-San Wang, Tandy Warnow, Bernard M E Moret, Robert K Jansen, and Linda A

Raubeson. Distance-based genome rearrangement phylogeny. Journal of molecu-

lar evolution, 63:473–483, 2006.

[9] David Sankoff and Mathieu Blanchette. The median problem for breakpoints

in comparative genomics. In Proceedings of the Third Annual International

Conference on Computing and Combinatorics (COCOON 97), volume 1276, pages

251–263, 1997.

53

BIBLIOGRAPHY 54

[10] Sophia Yancopoulos, Oliver Attie, and Richard Friedberg. Efficient sorting

of genomic permutations by translocation, inversion and block interchange.

Bioinformatics (Oxford, England), 21:3340–3346, 2005.

[11] Jakub Kováč. On the Complexity of Rearrangement Problems under the Break-

point Distance. Journal of computational biology : a journal of computational

molecular cell biology, 21:1–15, 2014.

[12] M Blanchette, G Bourque, and D Sankoff. Breakpoint Phylogenies. Genome

informatics. Workshop on Genome Informatics, 8:25–34, 1997.

[13] Stacia Wyman, David A Bader, and Tandy Warnow. A New Implementation and

Detailed Study of Breakpoint Analysis Bernard M.E. Moret.

[14] B M Moret, L S Wang, T Warnow, and S K Wyman. New approaches for recon-

structing phylogenies from gene order data. Bioinformatics (Oxford, England),

17 Suppl 1:S165–73, January 2001.

[15] Bernard M.E. Moret, Jijun Tang, Li-San Wang, and Tandy Warnow. Steps

toward accurate reconstructions of phylogenies from gene-order data. Journal

of Computer and System Sciences, 65(3):508–525, November 2002.

[16] Zaky Adam and David Sankoff. The ABCs of MGR with DCJ. Evolutionary

bioinformatics online, 4:69–74, 2008.

[17] Guillaume Bourque and Pavel a Pevzner. Genome-scale evolution: reconstructing

gene orders in the ancestral species. Genome research, 12(1):26–36, January

2002.

[18] Matus Valach, Zoltan Farkas, Dominika Fricova, Jakub Kovac, Brona Brejova,

Tomas Vinar, Ilona Pfeiffer, Judit Kucsera, Lubomir Tomaska, B Franz Lang, and

Jozef Nosek. Evolution of linear chromosomes and multipartite genomes in

yeast mitochondria. Nucleic acids research, 39(10):4202–4219, May 2011.

[19] Fred Glover. Tabu Search - Part I. ORSA Journal on Computing, 1:190–206,

1989.

[20] Fred Glover. Tabu Search - Part II. ORSA journal on Computing, 2 1:4–32, 1989.

[21] M.E. Cosner, R.K. Jansen, B.M.E. Moret, L.A. Raubeson, L.S. Wang, T Warnow,

and SK Wyman. An empirical comparison of phylogenetic methods on chloroplast

gene order data in Campanulaceae. In Comparative Genomics: Empirical and

BIBLIOGRAPHY 55

Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution

of Gene Families, pages 99–121. 2000.

[22] Andrew Wei Xu and Bernard M E Moret. GASTS : Parsimony Scoring under

Rearrangements. pages 351–363, 2011.

[23] Jakub Kováč, Broňa Brejová, and Tomáš Vinař. A New Approach to the Small

Phylogeny Problem. December 2010.

[24] Fredrik Ronquist and John P Huelsenbeck. MrBayes 3: Bayesian phylogenetic

inference under mixed models. Bioinformatics (Oxford, England), 19:1572–1574,

2003.

	Introduction
	Background and Related Work
	Basic Biological Terms
	Genome Rearrangements
	Genome Representation
	Distances Between Genomes
	Breakpoint Distance
	Double Cut and Join Distance
	Other Distances

	The Median Problem
	Small Phylogeny Problem
	Solving the Small Phylogeny Problem
	Definition of the Small Phylogeny Problem from a Computer Scientist's Perspective

	The PIVO Software
	Introduction
	The Algorithm
	The Usage of the PIVO Algorithm
	Improved Initialization and Candidate Generation in PIVO2
	Initialization
	Candidate Generation
	Strategies for Candidate Generation
	Candidate Generation Strategies in PIVO2

	Alternative Genomes in Leaves
	Randomization of Candidate Selection in the PIVO2 Algorithm
	Tabu Search in the PIVO2 Algorithm
	Combining Previous Solutions in PIVO2
	Preferred Chromosome Types in PIVO2
	Implementation Details of the PIVO2 algorithm
	Genome Representation
	Rearrangement Model

	Efficient Distance Calculation
	Breakpoint Distance
	Efficient Distance Calculation Between a Genome and a Set of Genomes
	Efficient Distance Calculation Between Two Sets of Genomes

	Double Cut and Join Distance
	Efficient Distance Calculation Between Two Sets of Genomes

	Experiments
	Comparing the Results
	Real Data
	Experimental Data

	Number of iterations
	Speed comparison

	Conclusion
	Bibliography

