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Abstrakt

Browser fingerprinting je metóda identifikácie unikátnych webových prehliadačov po-
mocou údajov, ktoré webové prehliadače poskytujú. Príkladmi takýchto údajov sú
rozlíšenie obrazovky, zoznam nainštalovaných pluginov, jazyk systému a mnohé ďalšie.
Zbieraním a následným porovnávaním hodnôt browser fingerprintov vieme určiť, či
pochádzajú z toho istého prehliadača alebo nie. V tejto práci popisujeme našu imple-
mentáciu skriptu, ktorý zbiera informácie o webovom prehliadači vrátane najpokročilejších
údajov, akými sú audio fingerprint a canvas fingerprint. Pomocou tohto skriptu sme
zozbierali 566,704 browser fingerprintov a na týchto dátach sme skúmali efektivitu
tejto metódy identifikácie. 65% nami zozbieraných browser fingerprintov pochádza z
mobilných zariadení, čo z našej práce robí prvú, ktorá dokázala analyzovať efektivitu
tejto metódy na mobilných zariadeniach. V tejto práci ukazujeme, že miera presnosti
identifikácie prehliadačov na počítačoch je väčšia, než na mobilných zariadeniach.

Kľúčové slová: fingerprinting, browser, fingerprint, ochrana súkromia, identifikácia
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Abstract

Browser fingerprinting is a method of web browser identification based on information
provided by each web browser, such as the screen size, the list of installed plugins,
system languages, and others. Collecting and comparing browser fingerprints allows
us to determine whether they come from the same browser or not. In this thesis, we
implement a state-of-the-art browser fingerprinting script that also includes extraction
of the canvas fingerprint and the audio fingerprint. We collected a dataset consisting of
566,704 browser fingerprints, and used it to analyze the accuracy with which users can
be identified using this method. The fact that 65% of the fingerprints in our dataset
originate from mobile devices allowed for this thesis to be the very first large-scale
analysis of how effective browser fingerprint identification is on mobile devices. We dis-
covered, that browser fingerprint identification is more effective at identifying desktop
browsers than browsers used in mobile devices.

Keywords: browser fingerprinting, browser, fingerprint, online privacy, identification
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Introduction

Browser fingerprinting is a method of web browser identification using the features
most browsers make available, such as the screen size, the list of plugins, system lan-
guages and others. Collecting and comparing browser fingerprints allows us to deter-
mine whether they come from the same web browser on the same device or not. The
same browser on the same device is typically used exclusively by a specific user. Browser
fingerprinting is therefore often considered as a form of user identification.

This work implements a browser fingerprinting script that contains the most ad-
vanced browser fingerprint features, including audio and canvas fingerprint. By combin-
ing our knowledge and ideas with existing work, we have created a script that reveals
more information about web browsers than all existing implementations. With 566,704
browser fingerprints collected, our dataset is larger than the datasets analyzed in any
other study on the topic of browser fingerprinting.

While most of the datasets found in other studies were collected from websites
spreading awareness about browser fingerprinting and online privacy, which might have
introduced a bias to their data, our dataset was collected from a real world web ap-
plication. 65% of the fingerprints in our dataset originate from mobile devices, which
enabled us to perform the first large-scale analysis on the use of browser fingerprinting
on mobile devices.

Older studies agree that browser fingerprints on mobile browsers are more uniform
and therefore harder to identify. A recent study by Laperdrix et al.. [24], however,
suggested that using more advanced browser features, such as the canvas fingerprint,
might make mobile browsers easier to distinguish than browsers on desktop devices.
Our work shows that many browser features do, indeed, provide more information on
mobile devices than on desktops. Nevertheless, fingerprints on mobile browsers are,
overall, more uniform, which makes them harder to identify. For comparison, 73% of
fingerprints we collected fromWindows browsers were unique, while only 34% of iPhone
browser fingerprints were unique.

1



Introduction 2

Our results demonstrate, inter alia, that the change rate of fingerprints is signif-
icantly higher on iPhone browsers than on any other device, and that 12 out of 31
browser features can be removed from our dataset with almost no loss in entropy of
the fingerprint distribution.

The following chapter summarizes the results of previous studies of browser finger-
printing. Chapter 2 outlines the goals of this work. In Chapter 3, we list all the features
we use to identify browsers, and explain how we have implemented their extraction.
In Chapter 4, we describe the datasets we used. Chapter 5 provides an overview of
how identification by browser fingerprinting can be prevented. Chapter 6 presents our
results and findings. Lastly, we conclude accomplishments of this thesis in Chapter 6.6.



Chapter 1

Related work and theory

The first research paper that described browser fingerprinting as an identification tech-
nique was written by Eckersley [17] in 2010. To demonstrate to the public how this form
of identification can be used and abused, he created an online project called Panop-
ticlick. This project gained a lot of attention through social media sites like Twitter,
Facebook and Reddit, collected 470,161 browser fingerprint samples and sparked a lot
of interest in the topic of web privacy. In this chapter we are going to describe a few
studies related to our work and explain a few concepts and terms that will be used in
the following parts of this thesis.

1.1 Browser identification

We only found three works that were able to collect and analyze the order of magnitude
in hundreds of thousands of browser fingerprint samples. These works helped us choose
a direction that had not been explored before and provided guidance on which methods
to facilitate, and what to avoid.

Panopticlick

First of these works was a paper written by Eckersley [17]. With 470,161 browser fin-
gerprint samples collected from panopticlick.eff.org, Eckersley was able to observe
that the distribution of these fingerprints contains at least 18.1 bits of entropy. This
means that if we pick a random browser fingerprint, only one in 286,777 other browsers
will have the exact same fingerprint. He also observed that among the browsers with

3



CHAPTER 1. RELATED WORK AND THEORY 4

Flash or Java plugins installed, the distribution can contain up to 18.8 bits of entropy.
Eckersley was able to achieve these results by collecting just 10 different browser feature
values.

Eckersley continued by analyzing how accurately browsers can be identified despite
differences between two fingerprints of the same browser. The data in this project was
collected anonymously, unless the user allowed it to store a unique cookie in their
browser to pair all of the user’s browser fingerprints together. In total, 8,833 visitors of
the website agreed to do that and Eckersley found that even a simple algorithm can be
accurate in recognizing changes of fingerprints. His algorithm compared two browser
fingerprints as strings and if they were at least 85% similar, they were treated as if
they came from the same browser. This algorithm had 99.1% accuracy, while the false
positive rate was 0.86%.

AmIUnique.org

Laperdrix et al. launched this website in 2014 and published their first scientific pub-
lication in 2016 [24]. They were able to collect and analyze almost 119,000 fingerprint
samples. While Panopticlick was their main inspiration, these researchers introduced a
few major improvements with their implementation. In contrast to Panopticlick, they
collected 17 rather than 10 browser feature values, including canvas fingerprint, HTTP
headers, and hardware information. They were the first to collect and analyze canvas
fingerprint on a large scale and were able to prove that this technique works better on
smartphones than on desktop machines. Prior to this study, the consensus was that
smartphone browsers are far less unique than desktop browsers. Laperdrix et al. ob-
served that, with their implementation, 81% of mobile fingerprints were unique. They
also mentioned that while Java and Flash are significant sources of entropy in browser
fingerprinting, they are slowly disappearing from the web. That might affect browser
fingerprinting in the future.

A study with real-world dataset

The third and final work we would like to mention in this section is a paper written by
Erik Flood and Joel Karlsson from Sweden [20]. To our knowledge, their dataset is the
only one containing real-world data and not data collected from a website informing
about browser fingerprinting and privacy issues connected to this technique. They used
a large network of corporate websites to collect browser fingerprints and used machine
learning to identify web browsers. Their set of collected features was very similar to
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the one used in Panopticlick, with a few additions like calculating round-trip time and
clock error. All of these new features, however, turned out to have an insignificant
impact on identification accuracy.

They attempted to use machine learning for more accurate identification. However,
their main conclusion was that while machine learning can bring a slight improvement
in accuracy of browser identification, it requires a lot of additional computational power,
and the static comparison of browser fingerprints ultimately seems to be the best choice.
They also noted that if one decides to use machine learning to identify browsers, it is
a good idea to partition the data, so that a custom classifier can be used for each
OS. Lastly, according to their results, browser features that identify browsers with the
highest accuracy include system fonts, browser plugins, and user-agent strings.

1.2 Browser features

There are a few browser features that caught our interest, namely audio and canvas
fingerprint, and a few projects related to browser features and JavaScript APIs that
are not necessarily related to browser fingerprinting but helped us understand various
browser features. Thanks to these, we were able to implement them in our browser
fingerprinting script, and improve existing implementations.

In 2016, in a work called "A 1-million-site Measurement and Analysis" [19], Steven
Englehardt and Arvind Narayanan crawled 1 million websites to measure and analyze
the methods used to track users online at that time. Most notably, in their research
they discovered a new technique of browser fingerprinting being used on several websites
that uses Audiocontext API, a method that had never been described in a paper before
(see 3.6 to learn more about audio fingerprint). To demonstrate this new technique,
they created https://audiofingerprint.openwpm.com/, a website that collects and
displays the audio fingerprint of the visitor’s browser, and they also collect these fin-
gerprints. As of 31st March, 2018, they do not store fingerprints anymore, though they
have not published any kind of results from using audio fingerprints yet.

Another of their discoveries was that, to identify browsers, many sites use the
canvas fingerprint alone. This indicates how powerful information gained through this
technique can be. See Section 3.6 for a detailed explanation of how canvas and audio
fingerprint works, and how we implemented them in our browser fingerprinting script.

There are several online sources that helped us understand and implement browser
APIs and features. Firstly, MDN Web Docs [8], Mozilla’s take on documenting web
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technologies such as JavaScript, CSS, and HTML. This documentation contains infor-
mation about all of the browser features, APIs, and interfaces, including links to W3C
specification documents related to the feature.

Another great source of information about specific differences in browsers is Mod-
ernizr [9], a JavaScript library for detecting available browser features. Its intended
use is to help developers show relevant content on a website if a certain feature is not
available in a browser. For example, if a website wants to display SVG graphics but
SVG is not available, this website can choose to display the same content in a different
way, or notify the user that their browser lacks some essential features. We did not use
Modernizr this way, but thanks to its detailed documentation and open-sourced code,
we were able to understand how browsers behave in certain situations, and use this
information to make our browser fingerprinting script more accurate.

The last project we would like to mention in this section is called Fingerprintjs2 [2].
It is an open source browser fingerprinting script that contains detection of many
browser features useful for the purpose of browser fingerprinting. Parts of this project
inspired our implementation and we made sure to contribute back to this project when-
ever we found a part of it that we knew how to improve.

1.3 Fingerprinting smartphones

Ever since the first studies on browser fingerprinting, smartphones and smartphone
browsers have been considered more difficult to fingerprint than other devices and
their browsers. Eckersley [17] concluded his study by saying that iPhone and An-
droid browsers are significantly more uniform and harder to fingerprint than desktop
browsers, for the following reasons: the small variety of plugins on smartphone browsers,
the lack of cookie control options, more uniform user-agent strings, and the absence of
Flash on iPhone devices, which meant that he could not collect the list of fonts from
these devices.

Similarly, Erik Flood and Joel Karlsson [20] stressed that the lack of Flash on
iPhones also makes them significantly harder to fingerprint. They believe that the
reasons why handheld devices are harder to fingerprint are: limitations in what software
can be installed, automatic system and application updates and frequent changes in
screen resolution due to screen rotation.

A study that introduced the canvas fingerprinting technique to the public performed
by Mowery et al. [25] was only able to collect 294 samples of browser fingerprints, with
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only 3 of them collected from smartphones (1 Android and 2 iPhone devices).

Laperdrix et al. [24] were able to implement detection of all the browser features
from Panopticlick research, add features like canvas fingerprint to their list, and collect
tens of thousands of samples. In their study, they were able to confirm that the list
of fonts and the list of browser plugins - the two features that are the most power-
ful in identifying desktop browsers - are practically unusable for smartphone browser
identification. Conversely, they found that smartphones have very rich and revealing
user-agent strings, and that the canvas fingerprint technique works better on smart-
phones than on desktops in terms of identification. The latter is mainly due to the
diversity of emojis on smartphones, which they included in the canvas fingerprint. 35%
of the 7,416 Android browser fingerprint samples, and 9% out of 5,335 iOS samples
were unique. According to Laperdrix et al., this significant difference is due to the
wealth of Android smartphone models available on the market.

Sensor fingerprinting

A number of studies took advantage of hardware sensors, present on almost every
smartphone, for their identification. Nakibly et al. [26] point out that the emergence
of the HTML5 standard provides an opportunity to identify smartphones using their
hardware properties. Using GPU, camera, microphone, motion sensor, battery, and
GPS information, they were able to develop a fingerprinting technique that yields 5.14
bits of entropy. However, they do not specify how they collected their dataset, and
how big it is. Using a similar approach, but expanding the list of sensors being used,
Bojinov et al. [15] from Stanford University were able to correctly identify 58.7% of the
3,583 devices in their dataset. They estimated that their approach can yield 7.5 bits
of entropy, making it a robust one. Lastly, Jakobsson et al. [21] introduced a notion of
implicit authentication for mobile devices using data such as the typing pattern and
rhythm, location, times active, and voice. They clustered the data they had collected
to explain how it can be used to implicitly authenticate users based on their actions.

All of these studies suggest that the use of hardware information can greatly improve
the accuracy of browser fingerprints. Nevertheless, collecting most, if not all, of this
data requires user consent prior to being able to access them via the web browser. For
example, a user needs to explicitly allow a website to use their GPS data when trying
to determine their location. Because most websites and web applications do not have a
real use for such data, other than for browser fingerprinting purposes, requiring users
to accept prompts to access their hardware sensors is not feasible in the real world.
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Since we are collecting data from a real-world web application, we cannot ask users
to accept the use of these sensors. We thus decided not to use any sensor data in our
fingerprint implementation.

1.4 Definitions

This section explains few terms used throughout the thesis that readers may not be
familiar with.

Document Object Model

Document Object Model (DOM), is a cross-platform interface for describing HTML and
XHTML documents as tree structures consisting of objects. In HTML DOM, Elements
represent paragraphs, headings, divs, and other HTML elements.

Browsers and operating systems

Whilst we expect readers to be familiar with the terms "web browser" and "operating
system", we would like to list the most popular ones in order to make sure that we can
refer to them by their names. As for operating systems, we will most frequently talk
about Windows, MacOS, Android, and iOS. MacOS and iOS are desktop and mobile
operating systems, respectively, created by Apple. Windows is a popular operating
system mostly used on desktop machines, and Android is an operating system for
smartphones currently maintained by Google.

Among the most popular web browsers are Chrome (by Google), Firefox, Opera, and
Safari (by Apple). All of them are available on both desktop and smartphone operating
systems. Safari, however, is only available on MacOS and iOS after its Windows version
was discontinued in 2012.

Entropy

To measure how accurate a browser fingerprinting method is within a given dataset,
we will use Shannon’s information entropy and refer to it as entropy. The higher the
entropy, the better the method is at identifying unique browsers. When the entropy is
lower, it means that two or more distinct browsers were identified as the same browser.



CHAPTER 1. RELATED WORK AND THEORY 9

The entropy H of a discrete random variable X, with possible values {x1, x2, ..., xn},
and a probability mass function P (X) is:

H(X) = −
n∑

i=1

P (xi)logbP (xi)



Chapter 2

Aim of this work

First research on the topic of browser fingerprinting was performed by Peter Eckers-
ley [17] in 2010. However, internet evolves fast and a lot of new studies have emerged
since. Several important trends and changes with a significant effect on the future of
browser fingerprinting have appeared.

Many studies, such as the one by Peter Eckersley, have shown that the use of browser
and system information provided by Flash can greatly improve the accuracy of browser
identification via fingerprinting. However, Adobe - the company behind Adobe Flash
technology - officially announced that end of support for Flash will take place at the
end of the year 2020.

Adobe Flash, a web technology used in interactive web applications even before
the HTML5 era, is known for its major flaws in core architecture. The latter have
resulted in numerous security holes that required regular patches. Flash had long not
been considered safe, and was hard to maintain for Adobe. The end of support for this
technology therefore did not come as a surprise.

In browser fingerprinting, Adobe Flash is currently the only technology that can
extract the full list of fonts installed on the device. Several research papers have sug-
gested that the list of fonts of a device is a powerful piece of information when it comes
to browser identification. Using this technique, Pierre Laperdrix et al. [24] were able
to collect 31,007 unique lists of fonts from 36,202 unique devices. Not only can a list
of fonts be extracted via Adobe Flash, Pantopticlick research [17] also discovered that
this list of fonts is always returned in the same order on the same machine. However,
the order is not sorted alphabetically or sorted in any other rational way. This is a con-
siderable source of entropy because of the number of different ways in which hundreds
of fonts can be ordered. This source of entropy, however, is an unnecessary one.

10
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While full list of fonts is a powerful piece of information, techniques for obtaining
them will become deprecated in upcoming years. Several browsers already require user
approval before Adobe Flash can be executed, which is not a valid option when trying
to invisibly fingerprint web browsers.

Instead of Flash, developers choose JavaScript more and more often as the go-to
technology for creating rich web applications. JavaScript frameworks such as Angular,
React, Vue.js, and others, have recently seen an explosion in popularity. In their 2017
report, Github, a popular git-repository hosting service, reported JavaScript to be
the most popular programming language in terms of opened pull requests [6]. We
believe that, in the foreseeable future, JavaScript will maintain and strengthen its
popularity among web application developers. It is therefore sensible to study how
accurate JavaScript can be in browser identification.

Another visible trend in the use of web applications is the ever increasing percentage
of users that use smartphones to access the web. As mentioned in Section 1.3, most of
the cited studies have stated that fingerprinting on smartphones is less accurate than
fingerprinting desktop computers. However, a recent analysis of data from smartphone
fingerprints performed by Laperdrix et al. [24] has found that using advanced features
like canvas fingerprints might, in fact, work better on smartphones. In their dataset,
they only had around 17,370 samples of smartphone fingerprints. We, on the other
hand have a dataset with 566,704 browser fingerprint samples, 65% of which are from
smartphone devices. This gave us an excellent opportunity to focus on the use of
browser fingerprinting techniques on smartphones.

Our work is currently the most accurate analysis of its kind, thanks to having access
to the biggest dataset of browser fingerprints to date. Key contributions of our work
include:

• Extensive research on the use of browser fingerprinting techniques on smart-
phones.

• Implementation of a state-of-the-art browser fingerprinting script based on knowl-
edge from previous studies, improved with our own findings.

• First public results on the use of audio fingerprints for browser fingerprinting.

• A review of the state of online privacy.

• Unlike the datasets of all existing studies, the dataset analyzed in this thesis was
collected from a real-world environment.



Chapter 3

Features

In this chapter, we will describe all the data we collect as features in our browser
fingerprint implementation. An extensive review of related studies, as well as relevant
projects, libraries, and articles on the topic of browser fingerprinting, allowed us to
put together a list of the most promising browser fingerprinting features. We omitted
features that were proven to be unreliable, or required too much computing power
or processing time to be acquired. Many of the browser features we have included
had not been tested on a large scale before. Including them enabled us to determine
their efficiency. With each feature implemented in our browser fingerprinting script, we
iterated through many different implementations, always starting with our own, and
testing their efficiency on a small data sample. We then incorporated the results of our
observations in the final implementation of the browser fingerprinting script. Table 3.1
shows whether each individual browser feature found in our final script had been tested
on a large scale before. When there was an external source that inspired us while we
were looking for the most efficient implementation of a browser extraction script, we
made sure to list it in this table. When building our browser fingerprinting script, we
made sure to stay within the boundaries of what a real-world implementation of such
a script might look like.

All methods of browser fingerprinting rely on the fact that some methods are im-
plemented in a different way on different systems, and some may not be implemented
at all. When a feature is not available, all of the implementations of browser fingerprint
we have seen will simply discard any information the browser responded with, and store
their value as undefined, or null. Conversely, based on the assumption that, under
the same conditions, different browsers will respond differently, we decided to always
store the error message generated by the browser.

12
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Table 3.1: Overview of all browser features used in our browser fingerprinting script
and their inclusion in a previous large-scale browser fingerprint analysis. For features
inspired by other work, we also present the source.

Panopticlick AmIUnique Source
Display properties
Screen size 3 3

Available size
Color depth 3 3

Pixel ratio
Browser features
AdBlock 3

Cookies enabled 3 3

Do Not Track (DNT) 3

Plugins 3 3

IE plugins FingerprintJS2 [2]
Indexed database
Local storage 3

Session storage 3

Binary Behaviors FingerprintJS2 [2]
User-agent 3 3

System properties
CPU class
Timezone 3 3

Languages HTTP only HTTP only FingerprintJS2 [2]
Installed fonts Flash only Flash only FingerprintJS2 [2] - fixed and im-

proved
Date format
Tanh Browserprint [1]
Hardware properties
Hardware concurrency
Touch compatibility Panopticlick
WebGL vendor 3 AmIUnique [24]
WebGL renderer 3 AmIUnique [24]
Platform 3

HTTP headers
Accept 3 3

Accept encoding 3 3

Accept language 3 3

User-agent
Orthogonal features
Canvas 3 FingerprintJS2 [2] - improved
Audio openwpm.com [28] - fixed for

iPhones and updated deprecated
parts of JavaScript code
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In order to develop a state-of-the-art script for browser fingerprint extraction, we
combined our findings with knowledge from all related studies and libraries we were
able to find. We designed our script to be precise, consistent, lightweight, and quick.

The complete list of the 31 features we have implemented, along with an example
of their values, can be found in Table 3.2.

3.1 Display properties

In this category, we will list all display-specific and visual features. Access to this
information is useful when websites and web applications want to respond to user-
specific viewing options. An example of the use of this information is showing images
with higher resolution to users with higher density displays, and saving bandwidth for
users with lower density displays by providing them with lower resolution images.

This category provides us with information that can reliably be used as browser
fingerprint features, since these rarely change during regular use of a web browser.
With a few exceptions, the value of these features can only be changed by changing
the display or changing low-level display settings.

Screen size

Trough JavaScript, the total width and height of the user’s screen, in pixels, can be
accessed. This also includes the width and/or height of the taskbar (for Windows users)
and application dock (for MacOS users) or similar parts of the OS. This size is therefore
not representative of what is accessible to the web browser window, unless the latter
is in full-screen mode. Except for Internet Explorer, zooming of the window does not
affect these measures.

The width and height of the window can be accessed through window.screen.width
and window.screen.height.

Available size

window.screen.availWidth and window.screen.availHeight are similar to screen
size. They return the dimensions of the portion of the screen available to the web
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Table 3.2: List of all the features with example values

Value example
Display properties
Screen size 1440x900
Available size 1440x827
Color depth 24
Pixel ratio 2
Browser features
AdBlock true
Cookies enabled true
Do Not Track (DNT) false
Plugins {name: Chrome PDF Plugin, fileName: internal-pdf-viewer, de-

scription: Portable Document Format, mimeType: . . . }, {. . . }
IE plugins empty
Indexed database true
Local storage true
Session storage true
Binary Behaviors false
User-agent Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_3) AppleWe-

bKit/537.36 (KHTML, like Gecko) Chrome/65.0.3325.181 . . .
System properties
CPU class undefined
Timezone -120
Languages en-US, sk-SK, sk, en
Installed fonts Andale Mono; Arial; Arial Black; Arial Hebrew; Arial Narrow;

Arial Rounded MT Bold; Arial Unicode MS; Comic Sans MS;
Date format 01/01/1970, 01:00:00
Tanh -1.4214488238747245
Hardware properties
Hardware concurrency 4
Touch compatibility 0,false,false
WebGL vendor Intel Inc.
WebGL renderer Intel(R) Iris(TM) Graphics 540
Platform MacIntel
HTTP headers
Accept application/json, text/plain, */*
Accept encoding gzip, deflate, br
Accept language en-US,en;q=0.9,sk;q=0.8
User-agent Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_3) Apple. . .
Orthogonal features
Canvas 875f14dcfa55c0f534b7809b0b5109d1
Audio 124.94877783898846
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Figure 3.1: Demonstration of what two images would look like, if their displaying size
was the same, but their pixel ratio was different.

browser window, in pixels. Available size thus amounts to screen size with the width
and/or height of taskbars, docks etc. excluded.

Similarly to screen size, zooming the browser in or out affects available size in
Internet Explorer alone.

Color depth

Color depth, also known as bit depth, is the number of bits that represent the color of
each pixel on the display that contains the browser window. For example, 1-bit color
depth would mean a black and white screen, 8-bit would mean each pixel can be rep-
resented with one of 256 colors. Most modern displays use 24-bit color representation,
also known as True color.

The color depth of a display is accessible through window.screen.colorDepth.

Pixel ratio

The pixel ratio of a display is a size ratio between physical and logical pixels. For
example, a pixel ratio of 2 would mean that 4 physical pixels represent a single logical
pixel. Using more pixels on a screen to represent fewer logical pixels results in sharper
objects for users. Figure 3.1 demonstrates what two images with the same displaying
size but different pixel ratios look like.

The pixel ratio of the user’s device can be accessed through window.devicePixelRatio.
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3.2 Browser features

This section describes those browser fingerprint features collected by us that are closely
tied to the web browser itself. These reflect the capabilities, settings, plugins, available
data storage APIs, and similar properties of the browser.

User-agent string

The user-agent string in HTTP is a list of tokens describing the system and the browser
that are being used to view the website.

Information contained in the user-agent string includes:

• system information

– platform
– operating system
– CPU

• rendering engine compatibility
• browser information

– name
– version
– build number

Websites can adjust content that is being sent according to this information. This
often means that older browsers are served with less complex content, even though
they are able to handle it properly. Web browsers thus make their user-agent strings
easy to spoof, to enable users to request the entire content of a website when necessary.
This might decrease browser fingerprint accuracy if the user chooses to change their
user-agent to a commonly used one. By doing so poorly, however, users might create a
unique user-agent capable of identifying them precisely.

AdBlock

Many users install ad-blocking plugins into their web browsers to filter advertisements
and similar website content [16]. Page elements identified as advertisements are then
hidden from all pages, to provide users with an uninterrupted web experience.



CHAPTER 3. FEATURES 18

A report on the usage of AdBlocks [16] shows that around 11% of all internet users
use some sort of an ad-blocking plugin. This number varies across different device types
and regions, but is significant enough to be used as a browser fingerprint feature.

One example of an ad-blocking plugin is AdBlock Plus, a widespread, open-source
project. Although currently available for all major web browsers across all device types,
AdBlock Plus is just one among thousands available ad-blocking plugins.

While it is not possible to retrieve information about what plugins a user has
installed, it is possible to detect the presence of an ad-blocking plugin by mimicking
the behavior of a web advertisement. We do so by creating a page element that acts as
a web advertisement (through its content, class names, and ID attribute), inserting it
into the DOM, and finally checking whether it is actually present in the DOM or not.
With an ad-blocking plugin is installed, such page element will be filtered out upon
insertion. This allows us to determined whether the web browser has an ad-blocking
plugin installed or not.

This method will not detect all ad-blocking plugins. However, on the same web
browser instance, its results will be consistent, as long as the user does not add or
remove plugins. Since consistency is a key property of a browser fingerprint, this method
fits our needs perfectly.

Do Not Track Header

Do Not Track (DNT) is a proposed HTTP header sent with each HTTP request. It
indicates the user’s tracking preference, with its value being either true or false. By
setting it to true, the user expresses their preference not to be tracked for purposes of
online advertisement and personalized content.

Although still not fully standardized, the DNT header has been present in all major
web browsers for a few years now. The decision to respect this user setting or not is
currently up to web developers, but can be expected to become a web privacy standard
in the foreseeable future.

The DNT property value can be accessed using window.navigator.doNotTrack.
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Cookies

HTTP cookies, also known as cookies, are pieces of data stored in the browser that can
be accessed by both the server and the web browser. They usually hold user-specific
data, such as the login authentication token, or the items in their shopping cart.

Users may decide to disable cookies in their browser for a number of security and
privacy reasons. Many users seem to believe that the latter outweigh the inconveniences
and disadvantages for web personalization this brings.

By trying to store a cookie in a user’s browser, we can detect whether the user has
cookies enabled or not, and then use this information for browser fingerprinting pur-
poses. Accessing this information through navigator.cookieEnabled is also possible,
albeit not reliable, as it can easily be spoofed, and may not work in certain site-specific
cases.

Local Storage

Local storage is very similar to cookies. While both are used to store data on the
client-side, there are a few key differences.

• Local storage can only be accessed by the client-side, while cookies can be read
by both server and the client-side.

• Unike cookies, data stored in local storage never expires.

• Cookies can store up to 4KB of data per domain, while local storage usually has
a limit of 5 MB.

We determine whether the user does or does not have local storage allowed by stor-
ing and, subsequently, removing a key-value pair into this storage. If these operations
are successful, local storage is available. If they return an error, it means it is not.

Session Storage

Session storage works almost the same as Local storage, and uses the same API, with
one important difference. Session storage data is only stored until the browser window
or tab is closed.
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We test whether it is available on the browser using the same method we use for
Local storage detection (see 3.2).

Indexed Database

An indexed database is a transactional database that works entirely within a browser.
While local storage and session storage are useful for storing small amounts of data,
indexed database is ideal for large amounts of structured data. It supports more com-
plicated operations, such as search, and is useful for complex web applications, such as
web email clients. Instead of transferring considerable amounts of data over the internet
with each request, the data can be stored and operated on the client-side.

The availability of an indexed database in a browser can be tested by calling
window.indexedDB.

Binary Behaviors

Binary behaviors, also known as user data, are a predecessor of local storage used in
Internet Explorer. They can be used to store and load persistent data on the client-
side by setting special attributes on the DOM elements. However, this data storage is
unique for Internet Explorer, and obsolete since Internet Explorer version 10.

We detect the availability of binary behaviors by trying to create an element, and
adding behaviors to it by calling document.createElement("div").addBehavior.

Plugins

Plugins are third-party libraries that can be used by the web browser to embed <object>
or <embed> tag into the web page. They are mostly used for displaying animations, ap-
plets, or PDF files inside web pages.

Commonly used plugins include:

• Adobe PDF Reader - viewing PDF files

• Shockwave Flash - interactive applications and games

• Java Applet Plug-in - interactive components
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• Apple Quicktime - a multimedia framework

Browser plugins are often mistaken for browser extensions, from which they, how-
ever, differ in several aspects. Browser plugins cannot affect browser behavior, cannot
add browser menus, do not automatically process the content of the web page, and
have to be inserted into websites. In contrast, browser extensions can affect browser
behavior by filtering or altering website content, or adding new functionality to the
browser.

Examples of commonly used browser extensions include:

• AdBlock Plus - advertisement content filtering

• Grammarly - checking the spelling and grammar of user input on websites

• Momentum - to-do list and welcome screen

• Google Translate - text translation

While the list of browser extensions is not accessible through JavaScript, the list of
browser plugins is. Developers can use this information to show a meaningful message
if a certain necessary plugin is missing. This can be useful when a website is trying
to display a PDF document but the user has no plugin that enables the browser to
display PDF files installed.

The list of plugins is available through navigator.plugins, which returns an iter-
able array. As mentioned above, the main reason for these plugins being exposed via
JavaScript is for developers being able to check whether a user’s browser can handle
content on their website. This iterable array, however, exposes much more than just a
list of plugin names.

navigator.plugins contains the following information about each plugin:

• name
• filename
• description
• supported mime types
• supported mime suffixes

It is worth mentioning that a plugin’s description often contains its version number.
Supported mime types is a list of types that can be handled by the plugin. We combine
all of this information from all available plugins into a single JSON, which we then
store for browser fingerprinting purposes.
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As Eckersley [17] noticed, the amount of plugin information provided by a browser
appears to be exhaustive. While knowing the exact version of the plugin may be useful
for debugging purposes, it may also be dangerous in terms of privacy and security. This
study also shows that information about plugins is the most powerful browser feature
among the 8 they tested. According to their calculations, it provides around 15.4 bits
of entropy.

Firefox decided to tackle this privacy issue by allowing users to disable enumeration
of navigator.plugins. Applications that attempt to check the presence of a browser
plugin have to query for the plugin name or mime types by exact names, rather than
iterating through all of the plugins.

IE Plugins

Surprisingly, Internet Explorer conceals its plugin information similarly to Firefox. It
does not return an iterable array. Instead, all the plugins have to be queried for.

However, a reasonable amount of data can still be obtained by querying for many
common plugins using a predefined list. We used an existing list from the PluginDetect
JavaScript library [11] for purposes of this plugin detection. We query for each one of
them, and use the list of available plugins as a browser fingerprint feature.

Although the development of Internet Explorer has been discontinued, it remains
one of the most popular web browsers. The extra effort needed to distinguish Internet
Explorer browsers is therefore justified.

3.3 System properties

In this section, we describe browser fingerprint features that do not depend on JavaScript
or the web browser, and are closely tied to the operating system and hardware proper-
ties instead. These include various hardware information and low-level system settings
that affect the values of these features we collect.

Timezone

We can read the time zone information of a device by accessing the getTimezoneOffset()
method on any Date objectt, i.e. by using new Date().getTimezoneOffset(). This
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Table 3.3: Example of different date formats in web browsers

USA 12/20/2012, 8:42:47 AM
Great Britain 20/12/2012, 08:42:47
Korea 2012. 12. 20. 오전 8:42:47
Japan 2012/12/20 8:42:47
Slovakia 20. 12. 2012, 8:42:47
Czech republic 20. 12. 2012 8:42:47

method returns the time zone difference between UTC and the date set in the host
device in minutes.

For instance, if the current locale is UTC+1, we will get -60 as a result. Setting the
device clock to adjust for daylight savings, also affects timezone offset, when applied.
The latter is important when searching for all possible edge cases of browser fingerprint
identification. Users can also easily change their timezone offset by changing the time
in their system settings.

Date format

The method toLocaleString(), executed on any Date object, returns a date string in
a format that respects the browser’s locale (i.e. language preference). In older imple-
mentations, the format of the date string returned by this method depends entirely on
its implementation.

In Table 3.3, we demonstrate how the date format differs for different locales. Both
implementation and string format differences are helpful in browser identification.

Languages

A user’s language preference may affect the language in which a website will serve its
content. For historical reasons, there are many different ways of how these languages
can be retrieved. We thus try to read and store all of them in a single JSON object. If a
certain implementation is not available, we simply store the undefined value returned
by the browser in such a case instead.

Language attributes that we try to collect are:

• window.navigator.language
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• window.navigator.languages

• window.navigator.userLanguage

• window.navigator.browserLanguage

• window.navigator.systemLanguage

Languages are always described using BCP 47 [14] language tags (e.g. en_US, ja_JP,
sk_SK). They always return a single language or a list of languages ordered from most
to least preferred.

Tangent

We were not able to find a study that tried calculating and storing the result of the
tangent as a browser feature. We found this feature implemented in Browserprint [1], an
open-source project, the aim of which is to provide the same - and better - functionality
as the Panopticlick research by Eckersley [17], and to spread awareness about web
privacy. We decided to implement it as one of our features, to determine how powerful
it can be.

The idea behind this feature is that different browsers implement mathematical
functions in different ways, and can produce similar, yet not quite the same results.
This should reflect in rounding and precision differences in the returned values of the
mathematical functions.

JavaScript calculates the value for the tangent using Mathematical Markup Lan-
guage (MathML), a low-level specification of mathematical content on the web. How-
ever, the specification of MathML is not yet complete. Many browsers thus do not
support this functionality and, to calculate its value, a CSS fallback is used instead.
This brings even more diversity into the values of this feature.

We use the result of Math.tan(-1e300) as a value of this feature.

Fonts

As mentioned in Section 2, getting the full list of fonts installed on a system is not
possible via JavaScript. However, there is a way to detect whether a given font is or
is not installed on the system by only using JavaScript and CSS. Our implementation
of collecting fonts is inspired by the one found in Fingerprintjs2 [2], an open-source
browser fingerprinting library. We found and fixed one major flaw in this method,
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which we will discuss at the end of this subsection.

The idea behind this method is to use a prepared list of fonts with various standard
and non-standard fonts and to check, one by one, whether the font is or is not available
in the current system. This allows us to create a list of all available fonts within our
prepared list.

The technique of detecting the availability of a single font, we take advantage of
several important properties of fonts in CSS:

• The width and height of a <div> element adjusts to the size of its inner content,
by default, meaning that the exact dimensions of this element can be read.

• Any amount of fallback fonts can be set for an element. If the first one fails to
apply, the second one is used and this continues until it reaches an end of its
fallback fonts and then the default system fallback font is applied.

• A non-specific, generic-family fallback fonts can be used, such as sans-serif,
which is not a font, but rather a type of a font. This way, we let the browser sub-
stitute this fallback with its preset option for these generic font families. Browsers
will always substitute the same generic-family fallback with the same font.

• It is very unlikely for two texts written with the same attributes except for font
family, to be the same size.

The single-font detection method works as follows:

1. Create a list of fallback fonts against which the availability of a single font can
be tested. In our case, we use monospace, sans-serif, and serif as our fallback
fonts, since they are rarely unavailable in a browser. We will refer to these as
default fonts.

2. For each default font, create an element with default styles applied, and store the
width and height of this element.

3. Get the width and height of an element, but with the font set to dimension that
is being tested.

4. Compare the dimensions of all 3 default fonts against the font that is being tested,
one by one. If these dimensions differ in one or more cases, we declare that this
font is available on the system. Figure 3.2 demonstrates what such a difference
looks like.
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Figure 3.2: Example of two different font families on top of each other, with all font
attributes except for font family set to the same value. One of them is Arial, a popular
sans-serif font,the other one is Andale Mono, a monospaced font.

Figure 3.3: Example of different font families, with all of their font attributes, except
for font family, set to the same value.

There are some extremely unlikely conditions under which this method will not
detect a font accurately. Nevertheless, the results are always consistent when the test
ran multiple times. Getting a false negative, would require all three default fonts, as
well as the font that is being tested, to have the same dimensions on a system, which
is very unlikely to occur.

Figure 3.3 shows the difference between the 3 font families we used as default fonts.
A monospaced font is a font where all letters and characters occupy the same amount
of horizontal space. A serif font is a font with serifs or "legs" decorating the ends of its
strokes, and a sans-serif is a serif-less font. With serif and sans-serif fonts, horizontal
space is proportional, not monospaced, therefore letters like "i", "I", and "l" occupy
less horizontal space. For this reason, we included these letters in our testing string,
mmmmmmmmmmlli.

We found that a similar implementation, inspired by Fingerprintjs2 project, was
used in a number of prior studies, and various projects spreading awareness about
browser fingerprinting. When testing this method of font detection, we found the results
of this method to be inconsistent. We first thought that changing the string used for font
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detection might help, since it was only using 3 different characters. While increasing
the diversity of the characters in this string improved the accuracy of our results, the
latter remained inconsistent. We later noticed that the results are always consistent
within a given URL address, but inconsistent between different websites or different
pages of a single website. This finding led us to the discovery that different styles from
outside of the fingerprinting script were applied to our testing element, and affected the
results of this test. To fix this, we now always perform a CSS font reset on the element
before we start working with it, so no external code will ever affect the results of this
test. We discussed our findings with the creator and maintainer of Fingerprintjs2, and
implemented this fix in this project as well.

Font detection is the most time-consuming task within our browser fingerprinting
script. Aiming to keep our script as light and fast as possible, we reused the list of
fonts used by Fingerprintjs2, which consists of 65 fonts. To increase the entropy of this
feature, while keeping the number of fonts limited, we suggest finding an ideal subset
of fonts to be used in this method.

Such list can be built by detecting a substantial number of fonts on a large number
of devices, and analyzing this data.

3.4 Hardware properties

This section describes another category of browser fingerprint features - hardware prop-
erties. A lot of information about the hardware used to run the browser can be accessed
through JavaScript and these values are often hard to change. For example, users are
not able to manually replace a CPU inside their laptop. However, it is not impossible
to spoof the results of these tests.

Platform

We use navigator.platform to get a string that represents the platform of the browser.
The current specification allows for this string to be empty, but any information, in-
cluding an empty string, obtained through any attribute, is useful.

Websites use this information to display appropriate content on certain devices. For
example, a website might serve a simpler version of the UI for TV platforms, and a
more advanced UI for desktop platforms. Another common use case is suggesting the
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right version of software on the website when downloading it (i.e. a Windows build for
Windows platforms and a MacOS build for MacOS platforms).

Examples of platform strings include:

• MacIntel
• Win32
• Android
• WebTV OS

CPU class

The navigator.cpuClass property returns a string that represents the class of the
CPU. This property, however, is implemented in Internet Explorer only, and will only
recognize these CPU classes:

• 68K - Motorola processor
• Alpha - DEC processor
• PPC - Motorola processor
• x86 - Intel processor
• Other - Unknown processor type

Hardware concurrency

CPUs with multiple cores and threads have existed for several years, yet not many
developers have taken advantage of this additional power. In recent years, this trend
has finally started to change, and software developers are now trying to take advantage
of all threads when executing code, where possible. JavaScript is no different. JavaScript
developers can facilitate multiple logical cores by splitting demanding tasks between
multiple Web Workers. However, it is not useful to use more Web Workers than the
number of threads available on the system.

For this reason, the navigator.hardwareConcurrency property is implemented in
most modern web browsers. This property returns the number of logical cores that are
available on the system. Browsers may choose to report a lower number because the
browser assumes it will occupy several logical cores by itself. The value of this property
will, however, always be the same on one system.

CPUs usually have multiple cores, and each core has multiple threads. The number
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of cores multiplied by the number of threads on each core equals to the number of logical
cores, and that is the value we get by calling navigator.hardwareConcurrency.

Touch compatibility

As of 2018, roughly half of web traffic is served to smartphone or tablet devices [18],
which are typically fitted with touch displays. In order to be able to take advantage
of touch and multi-touch gestures (gestures done with multiple fingers), it is useful for
websites to know that the device supports them.

Web applications handle such events by listening to event listeners, such as onClick
or onTouchMove. We try to read all available information about the touch support of
the current browser, and store it as a single browser fingerprint feature.

The data we collect includes:

• navigator.maxTouchPoints - the maximum number of separate touch points
that the touch screen is able to detect

• msMaxTouchPoints - same as above, but for Internet Explorer and Edge browsers

• "ontouchstart" in window - detecting whether "onTouchStart", the most basic
touch event, is available in the browser; returns value true or false

WebGL

WebGL (Web Graphics Library) API is a JavaScript API used for rendering interactive
2D and 3D content. This allows GPU-accelerated image processing to take place inside
a web browser without the use of plugins. Graphics can be displayed in a <canvas>

element specified by the HTML5 standard.

In addition to the GPU-accelerated graphics processing power, the WebGL API
provides JavaScript with GPU-related information, which can be used as browser fin-
gerprint features. We read and store this data:

• Vendor - a string of the graphics card driver that contains the name of its man-
ufacturer (e.g. Intel Inc.)

• Renderer - a string of the graphics card driver describing the model of the graphics
card in detail (e.g. Intel(R) Iris(TM) Graphics 540)
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In order to read this information, we need to create a temporary <canvas> element,
and read it from its properties.

3.5 HTTP Headers

HTTP headers are part of the Hypertext Transfer Protocol (HTTP). They are pieces
of additional information sent with each HTTP request between the server and client
(where, in our situation, the client is a web browser), used to communicate the operating
parameters of HTTP transactions.

This is the only category of browser fingerprint features that we collect on the server
side. In our implementation, we use the HTTP POST request sent from the client side
to transfer all browser fingerprint data. We read the HTTP headers of this HTTP
request, and concatenate them with the rest of the features prior to storing them in a
database.

In this section, we will briefly describe which HTTP headers we collect.

Accept

The HTTP Accept header is used by the client to advertise which content types (MIME
types) it is able to handle. Content types can also contain a quality factor, which defines
an order of preference for each content type represented by a number between 0 and
1. The server selects and uses one of these content types when serving content to this
client.

Accept Encoding

To save bandwidth, content sent via HTTP can be sent in a compressed form by
the server. This will only happen if both the server and the client support the same
compression algorithm. The client advertises what compression algorithm it supports
by setting an HTTP accept-encoding header. The server then selects and uses one of
the accepted encodings.
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Accept Language

Similarly to the languages mentioned in Section 3.3, the client may choose to adver-
tise its preferred languages by setting a HTTP accept-language header. This header
will contain a list of language tags with the quality factor representing the order of
preference for these languages.

User-agent

Lastly, HTTP requests contain user-agent information. This header should contain
information analogical to the user-agent string described in Section 3.2. However, this
two are often not the same, which is why we decided to also collect HTTP user-agent
information.

3.6 Orthogonal features

In this section, we describe two browser fingerprint features that we call “orthogonal”.
This name is appropriate because a single result of each of these two tests is affected by
many different factors. All previous features were, in fact, quite straightforward. Most
of them simply required us to read and store a single piece of information.

If we were using all but the orthogonal features, we would join them all into a single
string and generate its hash. Comparing their hashes would allow us to know whether
two browser fingerprints are the same or not. The orthogonal features are similar to this
but work as a single package. We use a variety of behaviors of different parts of these
methods to bring as much entropy into a single feature as possible. The result of both
of these features is a hash of their values, as their full result would be unnecessarily
long.

Laperdrix et al. [24] suggested that the canvas fingerprint alone could substitute
for all other features, while decreasing complexity and maintaining the entropy of such
the browser fingerprinting method.
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Figure 3.4: A visual representation of the image that we used in our canvas fingerprint
implementation.

Canvas fingerprint

Canvas fingerprinting is browser fingerprinting by generating images using the same
rules on different browsers, and comparing them. Rather than comparing images pixel
by pixel, we compare the hash of their bitmaps, exported in base64 format. This al-
lows us to determine whether they came from the same browser or not. The first
study describing this method was published in 2012 by Keaton Mowery and Hovav
Shacham [25]. Canvas fingerprinting works by offsetting the canvas element far from
the edges of the website’s viewport, thus taking place out of the user’s sight. Figure
3.4 shows an example of a final image used in our implementation.

The different results of the canvas fingerprinting method are due to inconsistencies
between different systems, browsers, and implementations. We reviewed existing re-
search and included our own findings to get as much entropy from canvas fingerprints
as possible. The following text summarizes the key causes of these differences.

Typeface inconsistency

Several typefaces (or fonts), such as Arial, Times, Helvetica, or Georgia, can be found
on almost every system because they are usually part of the operating system itself. On
different systems, however, these typefaces may differ slightly. On each system, there is
at most one typeface with a given name, which will be used whenever requested by its
name. To make sure we are rendering every letter of the alphabet, we insert a pangram
- a sentence containing every letter of the alphabet at least once - into our image.

Keaton Mowery and Hovav Shacham collected 297 images with renders of Arial
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Figure 3.5: 13 ways to render 20px Arial [25]

from 297 distinct users, and found 50 different groups of results . This suggests that
a typeface may differ considerably across browsers, and may increase the entropy of
canvas fingerprints.

Typeface fallback

When a font is not available on a system, a fallback font is used instead. Attempting to
render a text with a fictional font allows us to guarantee that the system’s fallback font
will be applied to this text instead. Fallback fonts are OS and browser specific. Using
this method therefore enables us to increase the entropy of the canvas fingerprint.

Sub-pixel font smoothing

Displaying a font on a computer display means using a few squared pixels to represent
a vector image visually. No standard definition of how this should be achieved exists.
Companies like Apple, Microsoft, Adobe, and many others thus use different font-
rendering engines with different algorithms for this task. Whilst they all have the same
goal - to render a human-readable text - they use different approaches to achieve it.
Their results therefore differ on pixel level. While Apple believes that the design of a
font should be preserved, even at the cost of blurriness, Microsoft believes that fonts
should be rendered with as much sharpness as possible, to improve readability.
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Figure 3.6: A shape without anti-aliasing (left), and a shape with anti-aliasing (right).

Different techniques of font-smoothing and sub-pixel rendering are employed on
different systems, which increases the entropy of canvas fingerprints.

Anti-aliasing

Anti-aliasing is a method of minimizing the distortion of shapes when representing vec-
tor graphics or high-resolution images as smaller images. It is similar to font smoothing,
but can be applied to any graphic, not just fonts. An example of what an anti-aliased
and a non-anti-aliased shape looks like is presented in Figure 3.6

Anti-aliasing in the HTML5 canvas element is controlled by the browser, and is
turned on on some browsers and turned off on others. Implementations of anti-aliasing
algorithms may differ slightly across browsers. This accounts for the differences on
images drawn on different browsers and systems.

To increase the possibility of detecting differences in the anti-aliasing algorithms
that take place on the HTML5 canvas, we draw multiple objects of different shapes
and colors. Unlike all other implementations of canvas fingerprinting we have seen, we
also make sure that all of these objects overlap, set a different transparency for each of
them, apply shadows to some of them, and set their size parameters in float numbers
to take advantage of rounding differences of browsers.

Canvas winding

Winding and even-odd rules are algorithms for filling vector shapes. When applying an
even-odd filling rule, shapes with more than one closed outlines, which are overlapping.
The color of each point is then determined by the parity of the number of closed outlines
that are covering it.
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Figure 3.7: A shape filled using the even-odd rule.

Since not all browsers support winding and even-odd fill rules in the HTML5 canvas,
we include it in the browser fingerprint. Figure 3.7 demonstrates what an image filled
using the even-odd rule looks like.

Emojis

Emojis are ideograms and smileys used on web pages. Whilst originally used in mobile
phone messaging applications, they were added to the Unicode Standard in October
2010, due to their popularity. As of June 2017, there are a total of 2,666 emojis in the
Unicode Standard.

Since emojis are transmitted in a non-graphical way, as Unicode characters, it is
up to the browser or the operating system that is running the browser to decide what
design an emoji will have. For brand and design purposes, emojis are drawn in different
styles on various systems. For an example of a panda face emoji drawn on 12 different
systems, see Figure 3.8.

Audio fingerprint

An audio fingerprint is analogical to a canvas fingerprint in many ways. The main differ-
ence, of course, is that instead of an image, an audio signal is generated. To generate it,
we take advantage of AudioContext interface, which works by linking modules, called
AudioNodes, together into a graph. These modules can generate, process, play, or store
an audio signal. This is, in many ways, similar to real-life musical instruments where,
for example, an electric guitar generates an audio signal, which is then processed by
effects like an echo or a phaser, and finally played through speakers.
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Figure 3.8: 12 styles for a single emoji

In our setup, as shown in Figure 3.9, we use an OscillatorNode to generate a sine,
or triangular wave, and send it through a DynamicsProcessorNode with exactly one
input and one output. The latter lowers the volume of the loudest parts of an audio
signal to prevent clipping and distortion that would be unpleasant for the human ear.
We then send this processed signal to an AudioContextBuffer, used to store an audio
signal so it can be played at a later time. We also set the length, the number of channels,
and the sample rate used to represent our audio signal.

This sound does not have to be played at all. To fingerprint a browser, only the
sampled data stored in the AudioContextBuffer is necessary. We read this data frame
by frame, and add the values up into a single number (or a checksum) which presents
the final audio fingerprint. To check whether two audio fingerprints are the same, all
we need to do is compare their checksums.

The first mention of using AudioContext to fingerprint browsers that we were able
to find is from a paper called "A 1-million-site Measurement and Analysis" [19]. In
this paper, the researchers used a semi-automated approach to analyze 1 million web-
sites with the goal of finding out what methods are being used to track users online.
For purposes of future research, they also created a website with an audio finger-
print demonstration. The website attracted 18,500 visitors with distinct cookies and
the researchers were able to collect 713 different audio fingerprints in total. They also
confirmed that a browser will always generate the same audio fingerprint.
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Figure 3.9: Configuration of nodes in AudioContext API fingerprint implementa-
tion [19]

We used the same implementation of the audio fingerprint as the one found by the
Princeton University researchers, with minor tweaks to ensure that the code compatible
with the newest specification of the AudioContext API.

Since our research is focused on smartphones, we noticed an interesting phenomenon
when trying to generate the audio fingerprints of iPhone and iPad devices. When
checking the data collected by our first iteration of the browser fingerprinting script, we
noticed that no iPhone or iPad fingerprint contained an audio fingerprint. Upon further
research, we found that Apple’s iOS documentation mentions that no Web Audio API
code will be executed, unless triggered by an explicit user action. For purposes of the
analysis of browser fingerprinting, we decided to implement a workaround that would
trigger the browser fingerprinting script on first touch or mouse event, rather than on
page load. This ensured that an audio fingerprint was also collected from iPhone and
iPad devices.

This behavior is specific to Apple, and we have not seen it mentioned in any other
related work or implementation. Whilst we assume that Apple did not do this inten-
tionally, limiting the use of Web APIs to reasonable user actions is a very good practice
that might improve privacy in web applications.

3.7 Omitted features

We did not include all of the browser fingerprint features that we have found in other
implementations and studies, or discovered by ourselves, mainly due to our decision
to create an implementation that could be used in the real web environment. This
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means we do not want to interrupt user experience with user consent pop-up windows,
or execute any code that would significantly decrease the performance of the user’s
browser. For this reason, we, for example, limited the number of fonts we are able to
detect with our font detection method (see 3.3).

A lot of powerful fingerprint data can be obtained from hardware sensors, such as the
accelerometer, the GPS, the camera or the microphone. All of these sensors, however,
require user consent prior to being accessed. Most web applications do not have a real
use for such information, and a pop-up window requiring the user to allow access to
their GPS data would be quite suspicious. We therefore omitted all the features that
would require user consent prior to being accessed.

In Chapter 2 we explained that, since support for Flash will be halted by 2020,
there is no reason to keep using it in browser fingerprints. Therefore, we decided not
to use any data obtained by Flash in our implementation.

Among other omitted features, there is a method of estimating video RAM by
repeatedly allocating textures until it is full, a method for estimating server-client
round-trip delay time, clock skew detection methods and similar. F. Alaca and P.C. van
Oorschot [13] investigated these features and discovered that they either use too many
hardware resources or are too unreliable to be used as browser fingerprint features.

Lastly, we considered using Battery API data and user interaction data as browser
fingerprint features. However, Battery API has been deprecated, and we found user
interaction data, such as the size of the browser’s scroll jumps, to be too unreliable in
our tests.
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Datasets and feature collection

Since browser fingerprint data can be quite sensitive, there is no public dataset of col-
lected browser fingerprints. In order to analyze browser fingerprints, we had to collect
a dataset by ourselves, which also means that we can only compare our methods by
comparing our results with the results published by other researchers. Although com-
paring data side by side would, arguably, be quite interesting, we will only be able to
compare the final results.

This chapter describes the datasets and sources of data used for the purposes of
this thesis, and implementation details of the methods we used.

4.1 Sources of data

For the purposes of our research, three different sources of data, each implemented in a
different project/website, were used to collect three different datasets. In this section,
we will describe each of them and describe the implementation of browser fingerprint
collection in more detail. Using several sources of data may seem unnecessary. The
numbers of visitors of these websites were, however, vastly different. With more users,
the development cycle of a project is longer, the implementation is harder, and the
level of responsibility is higher. Using several sources of data proved to help increase
the speed of our development, and helped us detect problems sooner rather than later.
For instance, it helped us detect an audio fingerprint problem with iPhones and iPads
(see 3.6) before implementing it in our largest source of data, and presumably saved
us several weeks worth of work.
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Promotional website

For the purposes of this thesis, we created a simple informative website that displays
the values of browser fingerprint features to users who allow us to store this data for
analysis purposes. We first expected this website to be the main source of data for our
research. However, we soon realized that a website with no added value, other than
demonstrating a browser fingerprint, will not bring much traffic, and therefore will not
collect a sufficient amount of data.

If readers of this are interested in seeing what their browser fingerprint looks like,
they can visit fp.virpo.sk. Through this website, we shared our work with colleagues,
classmates, and friends, to be able to quickly test our method on any device. This
allowed us to iterate our code quickly in the early stages of development, and to detect
several issues with our implementation. On this website, we used JavaScript to extract
the browser fingerprint, PHP to process it and append HTTP headers to it, and MySQL
database to store it.

Over a period of 10 weeks, we were able to collect 355 fingerprints with 52 distinct
browser IDs. Browser IDs were generated and stored in the browser’s cookies upon first
visit of the website. Because this dataset consists of browser fingerprints of different
versions, we did not analyze this data any further, as we had a much better data
collected elsewhere.

Medium-sized website

Another source of browser fingerprints we used was a medium-sized business website
built on the WordPress content management system. We will refer to this source of
data as the “WordPress website”. Since we were not sure whether we would be allowed
to collect data from the third - and biggest - dataset, we implemented our browser
fingerprinting script on this website to have a backup dataset with a reasonable amount
of data. In order to collect browser fingerprints on this website, we created a custom
WordPress plugin that stores data in a/the MySQL database.

Over a period of 2 months, we iterated 6 different versions of our script, and col-
lected 3,436 fingerprints with 2,600 unique browser IDs. 1,186 of these fingerprints were
collected using the latest version of our script, and 930 of them had a unique browser
ID.

Whilst we did not analyze this data thoroughly, we monitored this dataset for any
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unexpected behaviour, and managed to detect several important cases of a browser
fingerprint not behaving as expected. The findings worth mentioning include an audio
fingerprint bug on iOS (see 3.6), inconsistent font-detection (see 3.3), and conversion
to daylight savings time (see 3.3). To our knowledge, none of these had been described
before.

Large-scale JavaScript web app

By far the largest source of data on which we were able to apply our browser fingerprint-
ing script was a web application used for enhancing audience interaction on events by al-
lowing them to ask questions or answer polls. Since this web app is mainly used by event
participants, most of them will use their smartphone to access it. Indeed, around 65%
of its, approximately, 200,000 active users per week use mobile phones/smartphones,
and 4% use tablets to access it. These attributes make this dataset ideal for an analysis
of browser fingerprinting methods on mobile phones and smartphones on an unprece-
dented scale. In the rest of this thesis, we will refer to this data set and web application
as the “web app”.

We were able to collect 566,704 browser fingerprints with 323,746 distinct browser
IDs. It is also important to note that, unlike most other researchers working on this
topic, we collected and analyzed real-world data from an application used all around the
world. Eckersley [17] analyzed data collected on https://panopticlick.eff.org/,
and Laperdrix et al. [24] analyzed data collected on https://amiunique.org/. Both
of these are websites dedicated to browser fingerprinting, which inform their visitors
what browser fingerprinting is, and that it can be used to track their presence, prior
to collecting their browser fingerprint. These datasets might therefore be biased, since
many of their visitors will attempt to change their browser fingerprint, thus affecting
the data. In contrast, our dataset, reflects how accurate browser fingerprinting can be
in the real world.

4.2 Implementation

As already mentioned, we used a combination of JavaScript, PHP, and MySQL in order
to collect fingerprints from our promotional website and from the WordPress website.
However, implementation in the web app was different and more complex.
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The code

In order to be able to collect fingerprints from the web app, our implementation had to
respect its internal code standards, terms of service, and privacy policy. The web app
is running on AngularJS, a JavaScript open-source front-end web application frame-
work maintained by Google. Its codebase is written in TypeScript, a strict syntactical
superset of JavaScript, which is needs to be compiled to JavaScript and served to users.

In order to be able to collect browser fingerprints from all devices, including iPhones
which, as we discovered, are problematic (see 3.6), the fingerprinting script is triggered
on the first interaction of the user with the web app (touch or mouse event). The script
is ran asynchronously and when it finishes, the results are sent to an API endpoint.

The API runs on Node.js, a JavaScript runtime environment that can execute
JavaScript code on the server side. The codebase of this API is also written in Type-
Script, which is then compiled to JavaScript. We have created a simple endpoint that
receives fingerprint data and the browser ID, and stores them in a MySQL database
together with HTTP header values and a timestamp.

Most modern JavaScript applications use polyfilling techniques. Polyfill is a code
that implements features that are not supported on some browsers, and makes the
application compatible for all or most browsers. However, pollyfilling should be treated
with caution when implemented together with browser fingerprinting scripts. Since
information about different implementations and unsupported features is exactly what
we utilize as identifying information, we made sure that no polyfill interferes with our
browser fingerprinting script.

Errors as a source of additional entropy

If a feature is not available on a browser, the test for this feature will either continue
without executing or, in some cases, crash and stop the execution of the entire finger-
printing script. For this reason, we handle errors separately for each feature, so that
the execution of the script will always finish. Unlike all previous implementations we
are aware of, we decided to store the error message, rather than simply skip unsup-
ported features. Our assumption that different browsers will throw an error for different
reasons, and with different descriptions, proved to be right. For example, in a small
sample of 60,000 fingerprints, our script failed to extract WebGL Vendor information
1,095 times, and collected 14 distinct error messages. These error messages were always
the same on a given browser.
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Browser ID

We wanted to be able to pair all the browser fingerprints collected from a browser.
Doing this required storing this ID in the browser, on the client-side, and sending it to
our API endpoint together with each fingerprint. We used a randomly generated string
consisting of 64 characters long as an ID. We made sure that storing of the browser
ID is as robust as possible. In our implementation, we check whether cookies or local
storage are available, and store the browser ID in either of the two. This way, the
browser ID will be stored even if the cookies are unavailable, which occurs frequently.
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Browser fingerprinting prevention

Given that this thesis is about browser identification and user identification, it will,
naturally, also touch a few points related to privacy and identification prevention.
Being on the web goes hand in hand with leaving some kind of a trace behind. On
the web as we know it today, browsers have to report what technologies are or are not
accessible in order for websites to display correctly. With the diversity of operating
systems, browsers, and their implementations, websites will always be able to abuse
that information to help them identify individuals.

While it is not possible to avoid being fingerprinted altogether, there are, never-
theless, ways to prevent getting identified. As explained above, browser fingerprint
identification works by collecting a predefined set of features from a browser, and com-
paring these values to the values it had previously collected. If it finds a match or an
algorithm identifies a fingerprint as belonging to a specific user, it will assume that
these two fingerprints came from the same browser.

5.1 Fingerprint with common values

We observed that 54.88% of the browser fingerprints we had collected were unique.
The rest was observed at least twice. If the fingerprint of a user is not a unique one,
meaning that a number of browsers have the same fingerprint, it will be harder for
a website to identify this browser. Websites may use additional data, such as pages
visited, to distinguish multiple users or browsers with the same fingerprint. A further
discussion about the latter is, however, out of the scope of this thesis.

Changing the parameters and values of the browser that are commonly abused for
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browser fingerprinting purposes to their most common values will increase the chance
of the fingerprint not being a unique one, and the user staying anonymous. For the
most common fingerprint observed in our data, see Appendix A. The same browser
fingerprint was collected from 493 distinct browsers.

In our sample, Chrome and Firefox were the most popular browsers. Both offer built-
in options to change browser parameters that are often used in browser fingerprints.
However, Firefox and its community is ahead of Chrome when it comes to privacy.
For example, whilst an external extension is necessary to spoof the user-agent string
in Chrome, Firefox allows this to be done directly in its settings. Firefox settings can
also be imported and exported using a single file. This possibility encouraged its users
to create a comprehensive open-source template for Firefox settings called ghacks-
user.js [4]. The latter contains a predefined configuration that strengthens Firefox’s
security, privacy, and anti-fingerprint character. Browsers with these settings are less
likely to be unique. Moreover, all browsers using this settings template will, in most
cases, have the same fingerprint.

5.2 Randomizing browser values

Another way to prevent being identified is by randomizing the values that browser
fingerprint scripts usually collect. As Englehardt [19] pointed out, many websites only
use canvas fingerprint for browser identification. In that case, adding random noise to
all HTML5 canvases that the browser renders would make each canvas fingerprint of
that browser unique. The noise does not have to be significant. Since the result of the
canvas fingerprint is usually a hash of the bitmap from this canvas, it can be changed
by changing the color value of a single pixel.

The same can be done for audio fingerprints. It is possible to add random noise to
the Oscillator node in the AudioContext API. This will result in a difference indistin-
guishable by the human ear, yet sufficient for changing the browser’s audio fingerprint,
making it unique every time.

In another study, Pierre Laperdrix et al. [23] were able to achieve this with their
modified version of Firefox. As for the canvas fingerprint, rather than adding random
noise to the canvas, they slightly changed the shades of the colors of every object,
and used a random fallback font. To randomize the audio fingerprint, they modified
the volume of the audio signal while it is being processed by a factor ranging from
0.000 to 0.001. The researchers then tested their modified version of Firefox against
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two well-known fingerprinting scripts, namely Fingerprintjs2 [2] and MaxMind’s fraud
detection device tracking add-on, and were able to get a different fingerprint for each
out of their 100 attempts.

5.3 Blocking fingerprinting scripts

It is also possible to block fingerprinting scripts completely, using privacy extensions,
such as Ghostery [5], Privacy Badger [12], and others. These extensions use a list of
unwanted scripts that will get blocked upon detection. However, since websites are
capable of detecting whether a script was executed or not, blocking fingerprinting
scripts is only useful if more users do it on the same site. If a script on a website is
blocked by too few browsers, the latter will be easy to identify.

5.4 Response of browser developers

Developers have a significant amount of power in protecting the privacy of their users.
User privacy on the web depends mainly on browser developers, and on the specifica-
tions of web technologies. This section covers a few examples to demonstrate why.

Firefox

Firefox is a really good example of how browser developers can fight for the privacy of
browser users. It has a built-in setting called "Resist fingerprinting". Provided that it
is enabled, the following is an example of what privacy measures will be applied:

• User is notified when a script is trying to extract bitmap from HTML5 canvas,
and the latter will not be able to do so unless the user agrees.

• Both navigator.plugins and navigator.mimeTypes are hidden. They cannot
be accessed as iterable lists. Instead, they have to be queried for when a script
wants to check if a certain plugin or mimeType is supported.

• Third-party cookies are disabled.

• Time precision is reduced.
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More information on fingerprint resistance in Firefox can be found in the documen-
tation of this feature [10]. For now, this option is disabled by default, and can only be
accessed via advanced settings.

Specification with privacy in mind

Two examples of how better specification could have no negative impact on the user,
while preventing a feature from being misused for identification purposes, are briefly
discussed below.

The first example, mentioned in the previous subsection, relates to the way Firefox
treats access to plugins. In all other browsers, navigator.plugins will always return
a full list of plugins, with full details including the precise version. There is rarely a
reason for reading this list, other than checking whether a plugin one needs to use on
their website is available in the browser or not. One almost never actually needs the
full list of plugins. Firefox thus does not return a list of plugins. Instead, each plugin
of interest must be queried separately. navigator.plugins.namedItem(’Shockwave
Flash’);, for example, will return an object if Shockwave Flash is available, or a null
value if it is not.

No specification requires browsers to implement plugin availability to be queried
for. Firefox decided to do so in order to protect the privacy of their users.

The second example is Battery Status API, a browser feature that is now depre-
cated (for security reasons), that allowed websites to read the current state, maximum
capacity, or charging time of the battery of the device, provided that the latter was a
handheld device or a laptop. Lukasz Olejnik et al. [27] reported how this API could be
abused for fingerprinting, and why it was important to remove this API from browsers.
Their work highlights how privacy research can help influence standards and improve
privacy on the web.

5.5 GDPR in context of browser fingerprinting

Another way of fighting for online privacy is enforcing the use of rules and standards
by law. One recent example of such approach is the release of the General Data Privacy
Regulation (GDPR) [3], adopted by the EU on 27th of April 2016. This regulation aims
to give privacy back to the citizens by regulating how personal data can be processed
and collected. GDPR defines personal data as follows:
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Personal data is any information relating to an individual, whether it relates
to his or her private, professional or public life. It can be anything from a
name, a home address, a photo, an email address, bank details, posts on
social networking websites, medical information, or a computer’s IP address.

Since the IP address is basically a subset of the fingerprint, browser fingerprints can
be considered personal data, and GDPR also applies to them. This means, in short,
that websites have to ask for explicit user consent prior to collecting and storing their
browser fingerprint. If this data can be connected to a user directly, this user has a
right for this data to be forgotten.

Whilst it can be argued that the majority of users tend to overlook the terms of
service when using a service, the existence of laws designed to protect these users is
certainly a step forward.
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Results and discussion

This chapter presents and discusses the most notable findings of our work. We consid-
ered the entropy of the entire dataset, as well as the entropy of each feature, on different
device types. We also examined how fingerprints change in time, what fingerprint is
the most typical, and what is the smallest subset of features we can use to make our
script faster, while maintaining its accuracy.

6.1 Dataset description

Between the April 5th and 25th, 2018, we were able to collect 566,703 browser finger-
prints with 323,746 distinct browser IDs, out of which 177,677 (54.88%) were unique.
This is more than the amount Panopticlick (470,161) or AmIUnique (118,934) were
able to collect. In addition, almost 370,000 of the fingerprints in our dataset were col-
lected from smartphones, such as Android and iPhone, which is significantly more than
in previous studies.

The only way we can determine whether two fingerprints come from the same
browser is by storing a unique ID in the user’s browser. Whenever a browser without
such an ID visited our web app, we generated and stored it in its cookies, as well as
in local storage, in order to make it more robust. However, this browser ID is deleted
every time a user decides to delete their cookies and local storage, and is hidden if
a user uses the privacy browser mode (also known as "incognito mode"). This means
that an unknown error will be present in our results. However, it also means that the
real entropy of our dataset can only be higher.

Figure 6.1 illustrates the distribution of the most frequent device types within our
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iPhone (195,490)
34.5%

Android (172,809) 30.5%

Win (134,930)

23.8%

MacOS (47,819)
8.4%

iPad (9,223)1.6% Other (6,432)1.1%

Figure 6.1: Distribution of devices in our dataset

dataset.

6.2 Entropy

The accuracy with which a browser fingerprinting method can identify browsers when
no other method (such as login or cookie information) is available, is its most important
characteristic. In general, the fewer distinct browsers with the same fingerprint there
are, the more accurate this method is. We use entropy (see 1.4) to quantify this quality.
In our dataset, with all the browser features combined, we observed a total of 16.685
bits of entropy. This means that if we pick a browser at random, at most one in 105,362
browsers will share the exact same browser fingerprint.

Isolating fingerprints based on the device they were collected from allows us to
compare the accuracy with which we can identify browsers on that particular device
type. Since we are comparing the entropy of datasets of different sizes, the latter must
first be normalized. Normalized Shannon entropy is defined as:

H(X)

HM
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HM is the maximum attainable entropy of the variable, which in our case is HM =

log2(N), with N being the number of fingerprints in the dataset. The normalized en-
tropy of all features for each device type in isolation is shown in Table 6.1. When
speaking of an isolated device type or an isolated feature, we mean respectively, the
entropy of a fingerprint given data consisting solely of fingerprints from a specific de-
vice, or only information about a certain browser feature.

Our most notable observations include:

• The entropy of fingerprints on mobile phones is lower than their entropy on
desktop devices.
• Android smartphones have higher entropy than iPhones.
• Isolated browser features allowed us to make the following observations:

◦ We have confirmed that mobile phones have very rich user-agent strings, as
previously observed by Laperdrix et al. [24].
◦ System languages and canvas fingerprints, too, work vastly better on mobile

phones than on desktop devices.
◦ Features that work significantly better on mobile phones also include the

color depth, the date format, the platform, the time zone, and the HTTP
encoding.
◦ The results of Math.tanh and the list of system fonts reveal much less in-

formation on mobile phones than on desktop devices.
◦ Information about CPU class and list of plugins practically does not con-

tribute any useful data to the fingerprint on mobile devices.

To be able to compare the entropy found in our dataset to those found in other
studies, the entropies first have to be normalized. The normalized entropy of the Panop-
ticlick study by Eckersley [17] is 0.96, while the normalized entropy of our dataset is
0.87. The two entropies differ for several reasons. Firstly, Eckersley has demonstrated
that the use of Flash can greatly improve the accuracy of browser fingerprinting. How-
ever, since Flash technology is soon to be deprecated, we decided not to include it
in our browser fingerprint implementation. Secondly, the visitors of the Panopticlick
website were encouraged to try changing their browser fingerprint by manipulating
their browser and system settings, as well as deleting their cookies and session infor-
mation. This user behavior results in data bias, where two fingerprints that originate
from the same browser but differ in their feature values might be considered to present
two fingerprints collected from two distinct browsers. The possibility that the Panop-
ticlick dataset is biased is also supported by the results of our analysis of fingerprint
change rate (see Section 6.4). Lastly, most of the fingerprints collected by Panopticlick
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Table 6.1: Normalized entropy of all features for each device type

Desktop Windows MacOS Mobile Android iPhone
All features 0.7818 0.7732 0.7627 0.7589 0.7662 0.7225
JS features 0.7817 0.7731 0.7627 0.7578 0.7638 0.7224
Headers 0.5131 0.4715 0.5151 0.5898 0.7279 0.4274
AdBlock 0.0527 0.0467 0.0294 0.0461 0.0545 0.0548
Audio FP 0.1144 0.0808 0.0398 0.1480 0.0879 0.0890
Available size 0.1854 0.1255 0.0688 0.1710 0.0993 0.1010
Canvas FP 0.1669 0.1196 0.0522 0.2946 0.1826 0.1478
Color depth 0.0534 0.0469 0.0294 0.0824 0.0726 0.0562
Cookies 0.0532 0.0470 0.0294 0.0474 0.0556 0.0553
CPU class 0.0222 0.0228 N/A 0.0015 N/A 0.0016
Date format 0.1591 0.1260 0.0558 0.2684 0.1714 0.1722
DNT 0.0261 0.0221 0.0082 0.0333 0.0097 0.0282
Hardware conc. 0.0628 0.0486 0.0298 0.0796 0.0769 0.0099
IE plugins 0.0793 0.0722 0.0294 0.0474 0.0545 0.0561
Indexed DB 0.0538 0.0477 0.0294 0.0471 0.0548 0.0557
Installed fonts 0.1443 0.1070 0.0449 0.0964 0.0595 0.0612
Languages 0.1596 0.1217 0.0558 0.2899 0.2031 0.1401
Local storage 0.0539 0.0477 0.0296 0.0506 0.0561 0.0575
Math tanh 0.0667 0.0589 0.0294 0.0472 0.0553 0.0548
Pixel ratio 0.0964 0.0782 0.0366 0.1215 0.1068 0.0752
Platform 0.0782 0.0528 0.0294 0.1136 0.0796 0.0567
Plugins 0.1466 0.1067 0.0455 0.0478 0.0558 0.0553
Screen size 0.1350 0.1053 0.0449 0.1638 0.0993 0.0931
Session storage 0.0532 0.0470 0.0296 0.0495 0.0550 0.0575
Timezone 0.1156 0.0928 0.0482 0.1750 0.1226 0.1272
Touch 0.0692 0.0607 0.0297 0.0886 0.0606 0.0562
User-agent 0.1746 0.1239 0.0567 0.3653 0.2631 0.1488
User data 0.0527 0.0467 0.0294 0.0461 0.0545 0.0548
WebGL renderer 0.1668 0.1209 0.0545 0.2164 0.1458 0.1056
WebGL vendor 0.0941 0.0626 0.0364 0.1123 0.0799 0.0600
HTTP accept 0.0527 0.0467 0.0294 0.0464 0.0547 0.0551
HTTP encoding 0.0729 0.0597 0.0361 0.1028 0.0666 0.0667
HTTP language 0.1633 0.1234 0.0570 0.2949 0.2070 0.1349
HTTP user-agent 0.1597 0.1086 0.0568 0.3654 0.2631 0.1489
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originate from desktop devices, while 65% of fingerprints in our dataset come from a
mobile device. Section 6.3 shows that the entropy of fingerprints from mobile devices
is, indeed, lower than the entropy of desktop browser fingerprints.

All of these reasons contribute to the fact that the overall entropy of our dataset
is lower than the one found by Eckersley. We argue that the first two reasons are also
the reasons why our dataset is better at reflecting how accurate browser fingerprinting
techniques are at identifying distinct browsers. However, we are aware that the goal of
Eckersley was to raise awareness about online privacy, and to estimate how accurate
browser fingerprinting techniques are, and acknowledge that they were very successful
at achieving these goals.

6.3 Anonymity set sizes

The degree to which a browser fingerprinting method can successfully identify browsers
can also be judged by considering what portion of the collected fingerprints was unique,
and how big the groups of browsers that share the exact same fingerprint are. We call
these groups anonymity sets. An anonymity set of size 1 represents the number of
browsers that had a unique browser fingerprint. An anonymity set of size 2 is the
total number of browsers that shared their browser fingerprint with exactly one other
browser.

The distribution of anonymity set sizes in our dataset is shown in Figure 6.2. Since
this distribution is severely skewed, we used logarithmic scales on both axes of this
graph. In order to understand our data better, we split the dataset into smaller frac-
tions, with each containing fingerprints from one device type exclusively. Figure 6.3
illustrates the anonymity set sizes found in these fractions.
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Figure 6.2: Distribution of fingerprints as observed in our dataset
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Figure 6.3: Anonymity set sizes of various devices

The height of the lowermost bars in this graph is important because it represents
the portion of unique fingerprints in the given dataset. If we were to identify browsers
based on their fingerprints, these would be the only ones we would be able to distinguish
reliably. All others would fall under a group of browsers, and we would not be able to
distinguish them based on the fingerprint alone.

We observed a considerable difference in the ratio of unique fingerprints from desk-
top and mobile devices. 73.72% of desktop fingerprints were unique, while only 44.86%
of fingerprints collected from mobile devices were unique. The ratio of unique finger-
prints is even lower for iPhone devices, with only 33.94% of them being unique, and
49.95% of them in an anonymity set of size 6 or more. In contrast, 58.22% of Android
browser fingerprints were unique, and only 20.29% of them in an anonymity set of size
6 or more. These results suggest that identifying distinct iPhone browser instances is
significantly more difficult than identifying distinct Android browsers, and that desktop
device browsers are considerably easier to distinguish than mobile phone browsers.
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Figure 6.4: Fingerprint change as a function of time

6.4 Change of fingerprints in time

The rate of fingerprint change for returning visitors on the Panopticlick website was
37.4%, as reported by Eckersley [17]. The fact that this rate was as low as 11.7% in
our dataset appears to confirm our suspicion that the data collected through Panop-
ticlick does not represent a real-world scenario. The main purpose of Panopticlick was
to display browser fingerprints to its visitors, and to inform them how unique their fin-
gerprint was within this dataset. This encouraged visitors to try changing their browser
fingerprints, thus introducing a bias to the dataset.

In contrast, our dataset was collected from a real-world web application, which
brings it as close to the real world as technically possible. Figure 6.4 shows what
fingerprint change looks like as a function of time. Figure 6.5 shows the latter for
different device types.

Having analyzed these graphs, and the features that were the most common subject
of change for individual device types, we can conclude that:
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Figure 6.5: Fingerprint change for each device type separately

• Of the device types we have observed, iPhones, with a fingerprint change rate
of 19%, are the most prone to browser fingerprint changes. The canvas finger-
print, the audio fingerprint, and the user-agent string were usually the features
that changed between visits. We assume that canvas and audio fingerprints are
unstable on iPhones due to software and hardware optimization that prefers per-
formance over accuracy.
• System languages and the canvas fingerprint were the least stable browser features

on Android devices. However, the fingerprint change rate on this operating system
was just 3%.
• On Windows and MacOS devices, the features that tended to change the most

include screen properties such as the screen size, the available size, and the pixel
ratio, as well as plugin information and user-agent strings. Screen properties will
change every time the browser is open on a different display, whenever the browser
window is resized, or when the user zooms in or out on the content of the browser
window.
• Changes of the user-agent string between two visits were usually caused by a

browser update. The latter are usually automatic.

All of the above observations should be taken into consideration when attempting
to identify browsers over extended periods of time.
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Table 6.2: Entropy with and without error description

Feature name Without With Improvement

localStorage 0.1164 0.1574 35.14%
sessionStorage 0.0794 0.0968 21.91%
webGLVendor 2.6577 2.7223 2.43%
webGLRenderer 5.7542 5.8189 1.12%

6.5 Entropy in error descriptions

As explained in Section 4.2, we store error descriptions rather than null values whenever
our browser fingerprinting script fails to retrieve a value of a feature. To quantify
the improvement brought by this change, we have simulated both scenarios using our
dataset.

We noticed an increase of entropy in 7 different features, namely: the indexed DB,
the date format, the canvas fingerprint, the WebGL renderer, the WebGL vendor,
the session storage, and the local storage. This improvement was the most striking
for the latter 4 features. The extraction of a feature value can fail for a number of
reasons, and the error description holds this information. Moreover, error messages
are usually written in the system language of the browser. For these reasons, storing
error descriptions will result in more entropy than simply using a null value. Table 6.2
presents the entropy of these four features with and without error descriptions stored,
and the improvement of entropy in percentage. However, the entropy of the entire
fingerprint improved by mere 0.000008 bits, i.e. not significantly.

6.6 Minimal fingerprint

Each browser fingerprint we collect contains 31 different feature values. The execution
of the script that extracts these values takes 50-150 ms on desktop devices, and 250-
1000 ms on mobile devices. Extracting the list of available fonts, and generating the
canvas and audio fingerprints is especially time demanding. However, while removing
any of these features from our script would reduce its run time, it would also reduce
the entropy in our dataset. We thus decided to find a subset of our fingerprint that is
small in its number of features, while maintaining as much entropy as possible.

The distribution of our fingerprint with all of the features contains 16.685 bits of
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Table 6.3: Highest achievable entropy for the given number of features

Subset size Features Entropy

3 Date format, User-agent, Available size 14.2218
4 All of the above + Canvas FP 15.2366
5 All of the above + WebGL renderer 15.7247
7 All of the above + DNT + HTTP language 16.3192
9 All of the above + Audio FP + Installed fonts 16.5168

entropy. We decided to find the smallest subset of browser features that contains at least
16.5 bits of entropy. There are 231 possible subsets of our set of browser features. We
did not have access to the computing power necessary to test all of these combinations.
We were, however, able to find the subset by approaching this issue in the opposite
way. We expected the number of features necessary to achieve 16.5 bits of entropy to
be lower than 15, meaning that we most likely do not need to check any combinations
containing more than 15 features. To save even more computing power, we started by
trying all possible combinations of 3 different features, determined what the highest
achievable entropy of such a subset was, and increased the size of this subset by 1 until
we found the minimum number of features that yield at least 16.5 bits of entropy. The
results of these tests are shown in Table 6.3.

Firstly, we want to note that every time we increased the subset size, all of the
previous features remained in the ideal subset of features, and one new feature was
added. This might not always be the case. Due to correlations between browser features,
adding a feature to the subset might render one of the previous features redundant,
and change the ideal subset of features completely. However, it was not the case this
time and we discovered that, by using just the 9 browser features listed in Table 6.3
an entropy of 16.5 bits can be achieved in our dataset. The following is a summary of
our learnings from the experiment:

• Both canvas and audio fingerprint are present in the subset of 9 features necessary
for an entropy of at least 16.5 bits.
• By using just 3 browser features - the date format, the user-agent, and the avail-

able size - we can achieve an entropy of 14.2 bits.
• Available size works better as a browser identifier than screen size. As explained

in Section 3.1, available size is equal to screen size with widths and heights of
various taskbars and scrollbars excluded. This means that available size holds
information about the dimensions of the UI elements of the browser and the
operating system.
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• WebGL renderer (information about the graphic chip version) is a better identifier
than WebGL vendor (the name of the vendor that manufactured the graphic
chip).
• As seen in Table 6.1, the Do Not Track (DNT) header only contains a small

amount of information on its own. Nevertheless, because it has to be turned on
by the user explicitly, it does not correlate with any other browser feature, which
makes it a useful addition, even to a small subset of other browser features.
• Removing the canvas fingerprint from the subset of 4 features lowers the entropy

by 1 bit.

While looking for a minimal fingerprint, we also examined how the entropy would
decrease if only one of the features was removed. Based on the results of this exper-
iment, we then removed all browser features that had an insignificant effect on the
entropy when absent from the browser fingerprint. We managed to remove 12 browser
features with the entropy dropping by mere 0.003 bits. The features we removed in
this experiment were: the indexed DB, the local storage, the session storage, the screen
size, one of the user-agents, the color depth, the platform, the CPU class, Math.tanh,
the user data, the WebGL vendor, and the HTTP accept header.



Conclusions

In this work, we have implemented a browser fingerprinting script that contains the
most advanced browser fingerprinting features, including the audio fingerprint and
the canvas fingerprint. In our implementation, we improved the extraction of separate
browser features whenever possible. In order to ensure that our dataset is as close to
the real world as possible, we collected 566,703 browser fingerprints from a real-world
web application,. The fact that 65% of the fingerprints in our dataset originate from a
mobile device enabled us to compile the first large-scale analysis of the use of browser
fingerprinting techniques on mobile devices.

We have observed that the distribution of fingerprints in our dataset contains 16.685
bits of entropy -slightly less than the entropy found by Eckersley [17] or Laperdrix et
al. [24]. However, in Section 6.2 we argue that our results might be better at reflecting
the accuracy of identification by browser fingerprinting in the real world.

We have found that mobile devices are significantly harder to fingerprint than desk-
top devices. The distribution of fingerprints collected from mobile devices contains less
entropy, and it is less common for browsers on mobile devices to have a unique finger-
print. In our dataset, only one third of the browser fingerprints collected from iPhone
devices were unique.

To our knowledge, no other study had implemented or reported how efficient the
audio fingerprinting technique is at identifying browsers. We have demonstrated that
this feature is, in fact,one of the most powerful features within our dataset. Its entropy
in isolation is similar to the entropy of the list of installed fonts, the user-agent string
or the available screen size. It is slightly better at identifying mobile browsers than
browsers found on desktop devices.

While searching for the smallest subset of browser features capable of replacing our
set of features with no loss in entropy, and improved run time, we identified 12 out of
31 browser features that could be removed with almost no loss in entropy. To achieve
an entropy of fingerprint distribution of 16.5 bits in our dataset, we would only need
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to collect the date format, the user-agent string, the available screen size, the audio
fingerprint, the WebGL renderer information, the DNT header, the HTTP language
header, the audio fingerprint, and the list of installed fonts. By only using the first 3
browser features (the date format, the user-agent string, and the available screen size),
we can achieve an entropy of 14.2 bits. These results indicate how powerful each of
these features is. More detailed results can be found in Section 6.6.

When analysing the change rate of the fingerprints in our dataset, we found that the
fingerprints of browsers on Android devices are the most stable, while the fingerprints
of iPhone browsers change the most. The change rate of browser fingerprints on other
systems is close to average. Although we are unsure about the cause of this behaviour,
we also noticed that both the canvas and the audio fingerprint values are rather unstable
on iPhone devices.

Lastly, we have provided an overview of how users can prevent getting identified
by browser fingerprinting techniques. Their identity can be hidden by using com-
mon browsers with common settings, or by using extensions that detect browser-
fingerprinting scripts and prevent their execution. Of all browsers, Firefox seems to
care about the privacy of its users the most. It can, for example, warn the user if a
website is trying to extract a bitmap from any HTML5 canvas element, necessary for
collecting the canvas fingerprint of a web browser.

In future work, it might be worth trying to detect intentional and unintentional
changes in browser fingerprints. Detecting an intentional change of the browser finger-
print would potentially be helpful for purposes of fraud detection. However, collecting
a dataset with browser ID labels for these purposes is a great challenge because, in
most cases, a user that attempts to change their fingerprint will also delete their cook-
ies and local storage data, in order to remain anonymous. Other interesting topics
to explore include correlations between browser features, and browser comparison in
terms of browser fingerprinting. The results of a correlation analysis might be use-
ful for detecting anomalies in fingerprints when a user tries to change their browser
fingerprint.
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Appendix A

Table A1 shows the values of browser features found in the most typical fingerprint of
our dataset. We collected the very same fingerprint from 493 distinct browsers.

Table A1: Most typical fingerprint - observed 493 times

Feature Value
AdBlock False

Audio FP 35.9802674
Available size 667; 375

Canvas FP ded0f60083aee3cc8920f46a3152afcb
Color depth 32

Cookies True
Date format 01/01/1970, 01:00:00

DNT False
Hardware conc. 1

IE plugins empty
Indexed DB True

Installed fonts Arial; Arial Hebrew; Arial Rounded MT Bold; Courier; Courier . . .
Languages en-GB’; ’en-GB’; empty; empty; empty

Local storage True
Math tanh -1.421448824
Pixel ratio 2
Platform iPhone
Plugins empty

Screen size 667; 375
Session storage True

Timezone -60
Touch 0; True; True

User-agent Mozilla/5.0 (iPhone; CPU iPhone OS 11_3 like Mac OS X) . . .
User data FALSE

WebGL renderer Apple A10 GPU
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Continuation of Table ??
Feature Value

WebGL vendor Apple Inc.
HTTP accept application/json, text/plain, */*

HTTP encoding br, gzip, deflate
HTTP language en-gb

HTTP user-agent Mozilla/5.0 (iPhone; CPU iPhone OS 11_3 like Mac OS X) . . .



Appendix B

On the CD attached to this thesis, you will find:

• getBrowserFingerprint.ts - Our implementation of browser feature extraction. We
collected our data using this script, written in TypeScript.
• package.json - An NPM configuration file that holds information about the depen-

dencies of our browser fingerprint script implementation. Executing npm install

in the folder containing this file will install the MD5 NPM package which con-
tains a TypeScript function for hashing messages with MD5. We used the latter
for hashing canvas fingerprints.
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